Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)
NASA Astrophysics Data System (ADS)
Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.
2013-12-01
Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.
Magnan, Renee E; Kwan, Bethany M; Bryan, Angela D
2013-01-01
Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this study was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Participants reported their current level of physical activity, exercise self-efficacy and affect during a 30-minute bout of moderate-intensity exercise. More active individuals experienced higher levels of positive affect and tranquillity and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. These models indicate that affect experienced during physical activity is related to the current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed.
ERIC Educational Resources Information Center
Stocklmayer, Susan; Treagust, David
1994-01-01
Analyzes the presentations of electric current in physics textbooks. Concludes that from 1891 to 1991 most textbooks used a fluid model, which predated Faraday, for explaining direct-current circuits. (PR)
Model for intensity calculation in electron guns
NASA Astrophysics Data System (ADS)
Doyen, O.; De Conto, J. M.; Garnier, J. P.; Lefort, M.; Richard, N.
2007-04-01
The calculation of the current in an electron gun structure is one of the main investigations involved in the electron gun physics understanding. In particular, various simulation codes exist but often present some important discrepancies with experiments. Moreover, those differences cannot be reduced because of the lack of physical information in these codes. We present a simple physical three-dimensional model, valid for all kinds of gun geometries. This model presents a better precision than all the other simulation codes and models encountered and allows the real understanding of the electron gun physics. It is based only on the calculation of the Laplace electric field at the cathode, the use of the classical Child-Langmuir's current density, and a geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely described with only a few physical parameters. Indeed, we have showed that only the shape of the electric field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly the electron gun current generation.
Magnan, Renee E.; Kwan, Bethany M.; Bryan, Angela D.
2012-01-01
Objective Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this investigation was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Method Participants reported their current level of physical activity, exercise self-efficacy, and affect during a 30-minute bout of moderate-intensity exercise. Results More active individuals experienced higher levels of positive affect and tranquility and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. Conclusions These models indicate that affect experienced during physical activity is related to current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed. PMID:23088712
Inter-model analysis of tsunami-induced coastal currents
NASA Astrophysics Data System (ADS)
Lynett, Patrick J.; Gately, Kara; Wilson, Rick; Montoya, Luis; Arcas, Diego; Aytore, Betul; Bai, Yefei; Bricker, Jeremy D.; Castro, Manuel J.; Cheung, Kwok Fai; David, C. Gabriel; Dogan, Gozde Guney; Escalante, Cipriano; González-Vida, José Manuel; Grilli, Stephan T.; Heitmann, Troy W.; Horrillo, Juan; Kânoğlu, Utku; Kian, Rozita; Kirby, James T.; Li, Wenwen; Macías, Jorge; Nicolsky, Dmitry J.; Ortega, Sergio; Pampell-Manis, Alyssa; Park, Yong Sung; Roeber, Volker; Sharghivand, Naeimeh; Shelby, Michael; Shi, Fengyan; Tehranirad, Babak; Tolkova, Elena; Thio, Hong Kie; Velioğlu, Deniz; Yalçıner, Ahmet Cevdet; Yamazaki, Yoshiki; Zaytsev, Andrey; Zhang, Y. J.
2017-06-01
To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.
NASA Astrophysics Data System (ADS)
Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.
2013-04-01
We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK
Physical Fitness and the Stress Process
ERIC Educational Resources Information Center
Ensel, Walter M.; Lin, Nan
2004-01-01
In the current paper we focus on the role of physical fitness in the life stress process for both psychological and physical well-being. The major research question posed in the current study is: Does physical fitness deter distress in a model containing the major components of the life stress process? That is, do individuals who exercise show…
Moreno-Murcia, Juan Antonio; Hellín, Pedro; González-Cutre, David; Martínez-Galindo, Celestina
2011-05-01
The purpose of this study was to test an explanatory model of the relationships between physical self-concept and some healthy habits. A sample of 472 adolescents aged 16 to 20 answered different questionnaires assessing physical self-concept, physical activity, intention to be physically active and consumption of alcohol and tobacco. The results of the structural equation model showed that perceived sport competence positively correlated with current physical activity. Body attractiveness positively correlated with physical activity in boys and negatively in girls. Current physical activity positively correlated with the intention to be physically active in the future and negatively with the consumption of alcohol and tobacco. Nevertheless, this last relationship was only significant in boys. The results are discussed in connection with the promotion of healthy lifestyle guidelines among adolescents. This model shows the importance of physical self-concept for engaging in physical activity in adolescence. It also suggests that physical activity is associated with the intention to continue being physically active and with healthy lifestyle habits.
A Theoretical Model of Children's Storytelling Using Physically-Oriented Technologies (SPOT)
ERIC Educational Resources Information Center
Guha, Mona Leigh; Druin, Allison; Montemayor, Jaime; Chipman, Gene; Farber, Allison
2007-01-01
This paper develops a model of children's storytelling using Physically-Oriented Technology (SPOT). The SPOT model draws upon literature regarding current physical storytelling technologies and was developed using a grounded theory approach to qualitative research. This empirical work focused on the experiences of 18 children, ages 5-6, who worked…
ERIC Educational Resources Information Center
Mäntylä, Terhi; Hämäläinen, Ari
2015-01-01
The language of physics is mathematics, and physics ideas, laws and models describing phenomena are usually represented in mathematical form. Therefore, an understanding of how to navigate between phenomena and the models representing them in mathematical form is important for a physics teacher so that the teacher can make physics understandable…
NASA Astrophysics Data System (ADS)
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
Goodrich, Scott G
2006-10-01
Current policies governing the Departments of Defense and Veterans Affairs physical examination programs are out of step with current evidence-based medical practice. Replacing periodic and other routine physical examination types with annual preventive health assessments would afford our service members additional health benefit at reduced cost. Additionally, the Departments of Defense and Veterans Affairs repeat the physical examination process at separation and have been unable to reconcile their respective disability evaluation systems to reduce duplication and waste. A clear, coherent, and coordinated strategy to improve the relevance and utility of our physical examination programs is long overdue. This article discusses existing physical examination programs and proposes a model for a new integrative physical examination program based on need, science, and common sense.
Nuclear winter - Physics and physical mechanisms
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.
1991-01-01
The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.
Students’ mental model in electric current
NASA Astrophysics Data System (ADS)
Pramesti, Y. S.; Setyowidodo, I.
2018-05-01
Electricity is one of essential topic in learning physics. This topic was studied in elementary until university level. Although electricity was related to our daily activities, but it doesn’t ensure that students have the correct concept. The aim of this research was to investigate and then categorized the students’ mental model. Subject consisted of 59 students of mechanical engineering that studied Physics for Engineering. This study was used a qualitative approach that used in this research is phenomenology. Data were analyzed qualitatively by using pre-test, post-test, and investigation for discovering further information. Three models were reported, showing a pattern which related to individual way of thinking about electric current. The mental model that was discovered in this research are: 1) electric current as a flow; 2) electric current as a source of energy, 3) electric current as a moving charge.
Physical characteristics of shrub and conifer fuels for fire behavior models
Jonathan R. Gallacher; Thomas H. Fletcher; Victoria Lansinger; Sydney Hansen; Taylor Ellsworth; David R. Weise
2017-01-01
The physical properties and dimensions of foliage are necessary inputs for some fire spread models. Currently, almost no data exist on these plant characteristics to fill this need. In this report, we measured the physical properties and dimensions of the foliage from 10 live shrub and conifer fuels throughout a 1-year period. We developed models to predict relative...
ERIC Educational Resources Information Center
Metzler, Michael W.; McKenzie, Thomas L.; van der Mars, Hans; Barrett-Williams, Shannon L.; Ellis, Rebecca
2013-01-01
Comprehensive School Physical Activity Programs (CSPAP) are designed to provide expanded opportunities for physical activity beyond regularly scheduled physical education time-including before, during, and after school, as well as at home and in the community. While CSPAPs are gaining support, currently there are no models for designing,…
Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.
Loprinzi, Paul D; Walker, Jerome F; Kane, Christy; Cardinal, Bradley J
2014-01-01
Research demonstrates that nicotine dependence and depression are associated and that physical activity is effective in reducing depression symptoms. However, our understanding of the potential beneficial effects of physical activity on depression in current smokers is more limited. The purpose of this study was to examine whether physical activity moderates the association between nicotine dependence and depression in U.S. smokers. Cross-sectional. National Health and Nutrition Examination Survey 2005-2006. Four hundred forty-one current adult smokers. Participants wore an accelerometer for at least 4 days and completed questionnaires to assess nicotine dependence and depression. Effect modification and statistical interaction models were used. Both models were significant. With regard to the statistical interaction model, and after controlling for age, gender, race/ethnicity, education, comorbidity index, homocysteine, cotinine, total cholesterol, sedentary behavior, and vitamins C, D, and E, objectively measured physical activity moderated the association between nicotine dependence and depression (interaction variable: odds ratio = 3.43; 95% confidence interval: 1.02-11.51; p = .04). In this national sample of current smokers, physical activity moderated the association between nicotine dependence and depression. These results suggest that those individuals with nicotine dependence and who are less physically active are more likely to be depressed than what would be expected on the basis of the individual effects of nicotine and physical inactivity separately.
2015-06-24
physically . While not distinct from IH models, they require inner boundary magnetic field and plasma property values, the latter not currently measured...initialization for the computational grid. Model integration continues until a physically consistent steady-state is attained. Because of the more... physical basis and greater likelihood of realistic solutions, only MHD-type coronal models were considered in the review. There are two major types of
ERIC Educational Resources Information Center
Barker, D. M.; Aggerholm, K.; Standal, O.; Larsson, H.
2018-01-01
Background: Physical educators currently have a number of pedagogical (or curricular) models at their disposal. While existing models have been well-received in educational contexts, these models seek to extend students' capacities within a limited number of "human activities" (Arendt, 1958). The activity of "human practising,"…
Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2013-10-01
The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.
Solitons for Describing 3-D Physical Reality:. the Current Frontier
NASA Astrophysics Data System (ADS)
Werbos, Paul J.
2013-01-01
This chapter begins with a review and assessment of four key frontiers for the fields of memristors, neural networks and chaos: (1) use of learning architectures to expand the possible markets for dense memristor chips, crucial to applications such as power grid intelligent enough to improve the economics of renewable energy; (2) advanced modeling and hardware to build such chips, from graphene to magnetoresistance; (3) second generation quantum computing; and (4) development and use of chaotic soliton models to rebuild the foundations of physics. Current more detailed reviews of the first three frontiers are summarized. The bulk of the paper discusses how a "soliton" model of the electron can fill outstanding gaps in basic physics, such as explanation of the mass and radius of the electron without a need for renormalization. It reviews the two soliton models most widely discussed in physics today, the Skyrme model and the BPS monopole, and proposes alternative Lagrangians starting from the bosonic sector of electroweak theory which may have the required properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.
This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant,more » at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole radial plasma cross-section. The actual EBW experiment will cost several million dollars, and remains in the proposal stage. The HHFW current drive system has been experimentally implemented on NSTX, and successfully drives substantial current. The understanding of the experiment is to be accomplished in terms of general concepts of rf current drive, and also detailed modeling of the experiment which can discern the various competing processes which necessarily occur simultaneously in the experiment. An early discovery of the CompX codes, GENRAY and CQL3D, was that there could be significant interference between the neutral beam injection fast ions in the machine (injected for plasma heating) and the HHFW energy. Under many NSTX experimental conditions, power which could go to the fast ions would then be unavailable for current drive by the desired HHFW interaction with electrons. This result has been born out by experiments; the modeling helps in understanding difficulties with HHFW current drive, and has enabled adjustment of the experiment to avoid interaction with neutral beam injected fast ions thereby achieving stronger HHFW current drive. The detailed physics modeling of the various competing processes is almost always required in fusion energy plasma physics, to ensure a reasonably accurate and certain interpretation of the experiment, enabling the confident design of future, more advanced experiments and ultimately a commercial fusion reactor. More recent work entails detailed investigation of the interaction of the HHFW radiation for fast ions, accounting for the particularly large radius orbits in NSTX, and correlations between multiple HHFW-ion interactions. The spherical aspect of the NSTX experiment emphasized particular physics such as the large orbits which are present to some degree in all tokamaks, but gives clearer clues on the resulting physics phenomena since competing physics effects are reduced.« less
Signals from flavor changing scalar currents at the future colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwood, D.; Reina, L.; Soni, A.
1996-11-22
We present a general phenomenological analysis of a class of Two Higgs Doublet Models with Flavor Changing Neutral Currents arising at the tree level. The existing constraints mainly affect the couplings of the first two generations of quarks, leaving the possibility for non negligible Flavor Changing couplings of the top quark open. The next generation of lepton and hadron colliders will offer the right environment to study the physics of the top quark and to unravel the presence of new physics beyond the Standard Model. In this context we discuss some interesting signals from Flavor Changing Scalar Neutral Currents.
Upgrades, Current Capabilities and Near-Term Plans of the NASA ARC Mars Climate
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, Melinda April; Haberle, Robert M.; Schaeffer, James R.
2012-01-01
We describe and review recent upgrades to the ARC Mars climate modeling framework, in particular, with regards to physical parameterizations (i.e., testing, implementation, modularization and documentation); the current climate modeling capabilities; selected research topics regarding current/past climates; and then, our near-term plans related to the NASA ARC Mars general circulation modeling (GCM) project.
Jeter, Whitney K; Brannon, Laura A
2014-01-01
To date, trauma research has focused on the impact of physical trauma on posttraumatic stress (PTS) symptoms. Sometimes psychological trauma is measured with instances of physical trauma; however, less is known about solely psychological trauma. The current study addresses this by examining psychological trauma and PTS symptoms using the chronic relational trauma (CRT) model. The CRT model examines physical and possible concurrent psychological childhood, peer, and intimate partner trauma; however, psychological trauma alone has yet to be tested. A total of 232 female undergraduates (M age = 18.32, SD = 1.60) completed a series of questionnaires. Structural equation modeling indicated that childhood, peer, and intimate partner psychological trauma predict current PTS symptoms. Contributions of these findings are discussed.
Two-dimensional analytical model for dual-material control-gate tunnel FETs
NASA Astrophysics Data System (ADS)
Xu, Hui Fang; Dai, Yue Hua; Gui Guan, Bang; Zhang, Yong Feng
2016-09-01
An analytical model for a dual-material control-gate (DMCG) tunnel field effect transistor (TFET) is presented for the first time in this paper, and the influence of the mobile charges on the potential profile is taken into account. On the basis of the potential profile, the lateral electric field is derived and the expression for the drain current is obtained by integrating the band-to-band tunneling (BTBT) generation rate applicable to low-bandgap and high-bandgap materials over the tunneling region. The model also predicts the impacts of the control-gate work function on the potential and drain current. The advantage of this work is that it not only offers physical insight into device physics but also provides the basic designing guideline for DMCG TFETs, enabling the designer to optimize the device in terms of the on-state current, the on-off current ratio, and suppressed ambipolar behavior. Very good agreements for both the potential and drain current are observed between the model calculations and the simulated results.
Model Learner Outcomes for Physical Education. Teaching Learners To Think on Their Feet.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul.
This guide is designed to encourage educators as well as parents and community members to view physical education as an integral component of the school's educational program. It can be used for curriculum building and as an example of what represents current best practices in physical education. Model learner outcomes cover eight areas of study:…
NASA Astrophysics Data System (ADS)
Wang, Qian; Ma, Ping; Lu, Hong; Tang, Xue-Zheng; Hua, Ning; Tang, Fa-Kuan
2009-12-01
Two cardiac functional models are constructed in this paper. One is a single current model and the other is a current multipole model. Parameters denoting the properties of these two models are calculated by a least-square fit to the measurements using a simulated annealing algorithm. The measured signals are detected at 36 observation nodes by a superconducting quantum interference device (SQUID). By studying the trends of position, orientation and magnitude of the single current dipole model and the current multipole model in the QRS complex during one time span and comparing the reconstructed magnetocardiography (MCG) of these two cardiac models, we find that the current multipole model is a more appropriate model to represent cardiac electrophysiological activity.
NASA Astrophysics Data System (ADS)
Greenwald, Jared
Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.
Intuitive Physics: Current Research and Controversies.
Kubricht, James R; Holyoak, Keith J; Lu, Hongjing
2017-10-01
Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advances in the physics basis for the European DEMO design
NASA Astrophysics Data System (ADS)
Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.
2015-06-01
In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
Development of the physics driver in NOAA Environmental Modeling System (NEMS)
NASA Astrophysics Data System (ADS)
Lei, H.; Iredell, M.; Tripp, P.
2016-12-01
As a key component of the Next Generation Global Prediction System (NGGPS), a physics driver is developed in the NOAA Environmental Modeling System (NEMS) in order to facilitate the research, development, and transition to operations of innovations in atmospheric physical parameterizations. The physics driver connects the atmospheric dynamic core, the Common Community Physics Package and the other NEMS-based forecast components (land, ocean, sea ice, wave, and space weather). In current global forecasting system, the physics driver has incorporated major existing physics packages including radiation, surface physics, cloud and microphysics, ozone, and stochastic physics. The physics driver is also applicable to external physics packages. The structure adjustment in NEMS by separating the PHYS trunk is to create an open physics package pool. This open platform is beneficial to the enhancement of U.S. weather forecast ability. In addition, with the universal physics driver, the NEMS can also be used for specific functions by connecting external target physics packages through physics driver. The test of its function is to connect a physics dust-radiation model in the system. Then the modified system can be used for dust storm prediction and forecast. The physics driver is also developed into a standalone form. This is to facilitate the development works on physics packages. The developers can save instant fields of meteorology data and snapshots from the running system , and then used them as offline driving data fields to test the new individual physics modules or small modifications to current modules. This prevents the run of whole system for every test.
Effect of the Sport Education Tactical Model on Coeducational and Single Gender Game Performance
ERIC Educational Resources Information Center
Pritchard, Tony; McCollum, Starla; Sundal, Jacqueline; Colquit, Gavin
2014-01-01
Physical education teachers are faced with a decision when teaching physical activities in schools. What type of instructional model should be used, and should classes be coeducational or single gender? The current study had two purposes. The first purpose investigated the effectiveness of the sport education tactical model (SETM) during game play…
Sebire, Simon J; Haase, Anne M; Montgomery, Alan A; McNeill, Jade; Jago, Russ
2014-05-01
The current study investigated cross-sectional associations between maternal and paternal logistic and modeling physical activity support and the self-efficacy, self-esteem, and physical activity intentions of 11- to 12-year-old girls. 210 girls reported perceptions of maternal and paternal logistic and modeling support and their self-efficacy, self-esteem and intention to be physically active. Data were analyzed using multivariable regression models. Maternal logistic support was positively associated with participants' self-esteem, physical activity self-efficacy, and intention to be active. Maternal modeling was positively associated with self-efficacy. Paternal modeling was positively associated with self-esteem and self-efficacy but there was no evidence that paternal logistic support was associated with the psychosocial variables. Activity-related parenting practices were associated with psychosocial correlates of physical activity among adolescent girls. Logistic support from mothers, rather than modeling support or paternal support may be a particularly important target when designing interventions aimed at preventing the age-related decline in physical activity among girls.
NASA Astrophysics Data System (ADS)
Panda, D. K.; Lenka, T. R.
2017-06-01
An enhancement mode p-GaN gate AlGaN/GaN HEMT is proposed and a physics based virtual source charge model with Landauer approach for electron transport has been developed using Verilog-A and simulated using Cadence Spectre, in order to predict device characteristics such as threshold voltage, drain current and gate capacitance. The drain current model incorporates important physical effects such as velocity saturation, short channel effects like DIBL (drain induced barrier lowering), channel length modulation (CLM), and mobility degradation due to self-heating. The predicted I d-V ds, I d-V gs, and C-V characteristics show an excellent agreement with the experimental data for both drain current and capacitance which validate the model. The developed model was then utilized to design and simulate a single-pole single-throw (SPST) RF switch.
Half Moon Bay, Grays Harbor, Washington: Movable-Bed Physical Model Study
2006-09-01
wave machine used in Half Moon Bay physical model.................................50 Figure 28. Wave analysis output from model wave measurements...Point Chehalis used to reduce strong longshore current................82 Figure 46. Analysis of irregular waves measured at model wave Gauge 4...required several reconstruction efforts between origi- nal construction and present day due to the harsh wave climate on the Washington coast. After
Light leptonic new physics at the precision frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Dall, Matthias, E-mail: mledall@uvic.ca
2016-06-21
Precision probes of new physics are often interpreted through their indirect sensitivity to short-distance scales. In this proceedings contribution, we focus on the question of which precision observables, at current sensitivity levels, allow for an interpretation via either short-distance new physics or consistent models of long-distance new physics, weakly coupled to the Standard Model. The electroweak scale is chosen to set the dividing line between these scenarios. In particular, we find that inverse see-saw models of neutrino mass allow for light new physics interpretations of most precision leptonic observables, such as lepton universality, lepton flavor violation, but not for themore » electron EDM.« less
Weak annihilation and new physics in charmless [Formula: see text] decays.
Bobeth, Christoph; Gorbahn, Martin; Vickers, Stefan
We use currently available data of nonleptonic charmless 2-body [Formula: see text] decays ([Formula: see text]) that are mediated by [Formula: see text] QCD- and QED-penguin operators to study weak annihilation and new-physics effects in the framework of QCD factorization. In particular we introduce one weak-annihilation parameter for decays related by [Formula: see text] quark interchange and test this universality assumption. Within the standard model, the data supports this assumption with the only exceptions in the [Formula: see text] system, which exhibits the well-known "[Formula: see text] puzzle", and some tensions in [Formula: see text]. Beyond the standard model, we simultaneously determine weak-annihilation and new-physics parameters from data, employing model-independent scenarios that address the "[Formula: see text] puzzle", such as QED-penguins and [Formula: see text] current-current operators. We discuss also possibilities that allow further tests of our assumption once improved measurements from LHCb and Belle II become available.
Primordial alchemy: from the Big Bang to the present universe
NASA Astrophysics Data System (ADS)
Steigman, Gary
Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts ~1010. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard cosmological model over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Physics and Cosmology beyond the current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal baryon density) and particle physics (e.g., relativistic energy density) are discussed. While this comparison reveals the stunning success of the standard model(s), there are currently some challenge which leave open the door for more theoretical and observational work with potential implications for astronomy, cosmology, and particle physics.
Lattice Gauge Theories Within and Beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelzer, Zechariah John
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involvingmore » $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($$B \\to \\pi \\ell \
Searching for Physics Beyond the Standard Model and Beyond
NASA Astrophysics Data System (ADS)
Abdullah, Mohammad
The hierarchy problem, convolved with the various known puzzles in particle physics, grants us a great outlook of new physics soon to be discovered. We present multiple approaches to searching for physics beyond the standard model. First, two models with a minimal amount of theoretical guidance are analyzed using existing or simulated LHC data. Then, an extension of the Minimal Supersymmetric Standard Model (MSSM) is studied with an emphasis on the cosmological implications as well as the current and future sensitivity of colliders, direct detection and indirect detection experiments. Finally, a more complete model of the MSSM is presented through which we attempt to resolve tension with observations within the context of gauge mediated supersymmetry breaking.
Current Density and Continuity in Discretized Models
ERIC Educational Resources Information Center
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Current algebra, statistical mechanics and quantum models
NASA Astrophysics Data System (ADS)
Vilela Mendes, R.
2017-11-01
Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.
A review of the physics and response models for burnout of semiconductor devices
NASA Astrophysics Data System (ADS)
Orvis, W. J.; Khanaka, G. H.; Yee, J. H.
1984-12-01
Physical mechanisms that cause semiconductor devices to fail from electrical overstress--particularly, EMP-induced electrical stress--are described in light of the current literature and the authors' own research. A major concern is the cause and effects of second breakdown phenomena in p-n junction devices. Models of failure thresholds are evaluated for their inherent errors and for their ability to represent the relevant physics. Finally, the response models that relate electromagnetic stress parameters to appropriate failure-threshold parameters are discussed.
Lima, Manoel C. S.; Barbosa, Maurício F.; Diniz, Tiego A.; Codogno, Jamile S.; Freitas, Ismael F.; Fernandes, Rômulo A.
2014-01-01
Background: It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. Objective: To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. Method: The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Results: Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Conclusion: Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity. PMID:25372009
Lima, Manoel C S; Barbosa, Maurício F; Diniz, Tiego A; Codogno, Jamile S; Freitas Júnior, Ismael F; Fernandes, Rômulo A
2014-01-01
It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b95%CI=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity.
A gentle introduction to Rasch measurement models for metrologists
NASA Astrophysics Data System (ADS)
Mari, Luca; Wilson, Mark
2013-09-01
The talk introduces the basics of Rasch models by systematically interpreting them in the conceptual and lexical framework of the International Vocabulary of Metrology, third edition (VIM3). An admittedly simple example of physical measurement highlights the analogies between physical transducers and tests, as they can be understood as measuring instruments of Rasch models and psychometrics in general. From the talk natural scientists and engineers might learn something of Rasch models, as a specifically relevant case of social measurement, and social scientists might re-interpret something of their knowledge of measurement in the light of the current physical measurement models.
Sheikh, Mashhood Ahmed
2018-05-31
Many researchers view retrospective reports with skepticism. Indeed, the observed association between retrospectively-reported childhood disadvantage (CD) and morbidity in adulthood has been criticized as an artefactual correlation driven by the psychological state of the respondent at the time of reporting (current psychological state). The aim of this study was to assess the role of current psychological state in the association between childhood disadvantage and morbidity in adulthood. The present analysis used cross-sectional data collected in 2007-2008 within the framework of the Tromsø Study (N = 10,765), a representative study of adult men and women in Norway. The association between CD and the physical health outcomes heart attack, angina pectoris, chronic bronchitis/emphysema/COPD, diabetes mellitus, hypothyroid/low metabolism, migraine, hypertension, and comorbidity (i.e., the sum of these physical health outcomes) was assessed with Poisson regression models. Relative risks (RR) and 95% confidence intervals (CI) were estimated. A wide range of indicators of respondents' current psychological state were included in the models to assess the % attenuation in estimates. CD was associated with an increased risk of heart attack, angina pectoris, chronic bronchitis/emphysema/COPD, diabetes mellitus, hypothyroid/low metabolism, migraine, hypertension, and comorbidity (p < 0.05), independent of respondents' current psychological state. A sizeable proportion (23-42%) of the association between CD and physical health outcomes was driven by recall bias or mediation via respondents' current psychological state. Controlling for indicators of current psychological state reduced the strength of associations between CD and physical health outcomes; however, the independent associations remained in the same direction. The association between retrospectively-reported CD and physical health outcomes in adulthood is not driven entirely by respondent's current psychological state. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exciting (the) Vacuum: Possible Manifestations of the Higgs particle at the LHC
David Kaplan
2017-12-09
The Higgs boson is the particle most anticipated at the LHC. However, there is currently no leading theory of electroweak symmetry breaking (and the 'Higgs mechanism'). The many possibilities suggest many ways the Higgs could appear in the detectors, some of which require non-standard search methods. I will review the current state of beyond the standard model physics and the implication for Higgs physics. I then discuss some non-standard Higgs decays and suggest (perhaps naive) new experimental strategies for detecting the Higgs in such cases. In some models, while part of the new physics at the weak scale would be visible, the Higgs would be nearly impossible to detect.
The physics of interstellar shock waves
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Draine, Bruce T.
1987-01-01
This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.
Right-handed charged currents in the era of the Large Hadron Collider
Alioli, Simone; Cirigliano, Vincenzo; Dekens, Wouter Gerard; ...
2017-05-16
We discuss the phenomenology of right-handed charged currents in the frame-work of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the W to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. Here, we subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments,more » that would uniquely point to right-handed charged currents.« less
Risk Management and Physical Modelling for Mountainous Natural Hazards
NASA Astrophysics Data System (ADS)
Lehning, Michael; Wilhelm, Christian
Population growth and climate change cause rapid changes in mountainous regions resulting in increased risks of floods, avalanches, debris flows and other natural hazards. Xevents are of particular concern, since attempts to protect against them result in exponentially growing costs. In this contribution, we suggest an integral risk management approach to dealing with natural hazards that occur in mountainous areas. Using the example of a mountain pass road, which can be protected from the danger of an avalanche by engineering (galleries) and/or organisational (road closure) measures, we show the advantage of an optimal combination of both versus the traditional approach, which is to rely solely on engineering structures. Organisational measures become especially important for Xevents because engineering structures cannot be designed for those events. However, organisational measures need a reliable and objective forecast of the hazard. Therefore, we further suggest that such forecasts should be developed using physical numerical modelling. We present the status of current approaches to using physical modelling to predict snow cover stability for avalanche warnings and peak runoff from mountain catchments for flood warnings. While detailed physical models can already predict peak runoff reliably, they are only used to support avalanche warnings. With increased process knowledge and computer power, current developments should lead to a enhanced role for detailed physical models in natural mountain hazard prediction.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki Okan
Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.
2004-01-01
A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.
NASA Astrophysics Data System (ADS)
Nelson, Philip
To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.
ERIC Educational Resources Information Center
Poulin, David; Martinez, David; Aenchbacher, Amy; Aiello, Rocco; Doyle, Mike; Hilgenbrinck, Linda; Busse, Sean; Cappuccio, Jim
2013-01-01
In Part III of the feature, physical educators and adapted physical educators offer current best practices as models of implementation for readers. Contributions included are: (1) Answer to the Dear Colleague Letter from the Anchorage School District's Adapted Sport Program (David Poulin); (2) Georgia's Adapted Physical Educators Response to the…
Quantum Mechanics for Beginning Physics Students
ERIC Educational Resources Information Center
Schneider, Mark B.
2010-01-01
The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For…
Development of PCK for Novice and Experienced University Physics Instructors: A Case Study
ERIC Educational Resources Information Center
Jang, Syh-Jong; Tsai, Meng-Fang; Chen, Ho-Yuan
2013-01-01
The current study assessed and compared university students' perceptions' of a novice and an experienced physics instructor's Pedagogical Content Knowledge (PCK). Two college physics instructors and 116 students voluntarily participated in this study. The research model comprised three workshops, mid-term and final evaluations and instructor…
Physics-based distributed snow models in the operational arena: Current and future challenges
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.
2017-12-01
The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.
The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc
NASA Astrophysics Data System (ADS)
Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.
2016-08-01
The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.
A Hybrid Physics-Based Data-Driven Approach for Point-Particle Force Modeling
NASA Astrophysics Data System (ADS)
Moore, Chandler; Akiki, Georges; Balachandar, S.
2017-11-01
This study improves upon the physics-based pairwise interaction extended point-particle (PIEP) model. The PIEP model leverages a physical framework to predict fluid mediated interactions between solid particles. While the PIEP model is a powerful tool, its pairwise assumption leads to increased error in flows with high particle volume fractions. To reduce this error, a regression algorithm is used to model the differences between the current PIEP model's predictions and the results of direct numerical simulations (DNS) for an array of monodisperse solid particles subjected to various flow conditions. The resulting statistical model and the physical PIEP model are superimposed to construct a hybrid, physics-based data-driven PIEP model. It must be noted that the performance of a pure data-driven approach without the model-form provided by the physical PIEP model is substantially inferior. The hybrid model's predictive capabilities are analyzed using more DNS. In every case tested, the hybrid PIEP model's prediction are more accurate than those of physical PIEP model. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1315138 and the U.S. DOE, NNSA, ASC Program, as a Cooperative Agreement under Contract No. DE-NA0002378.
Modeling the relationship between family home environment factors and parental health.
Didericksen, Katharine Wickel; Berge, Jerica M
2015-06-01
Understanding parental health is an important part of understanding family health. Previous research suggests that family meals, familial relationship satisfaction, and family physical activity may separately be related to physical health. The current study aims to combine these variables into a structural equation model to determine the collective relationship they have with adult health within a sample of parents (n = 1,435). Most parents were married, White, and highly educated. The relationship between family meals and parental health was significant (β = -.07, t = -2.29, p < .05), with the full model having adequate fit and accounting for some of the overall variance in parental health. Familial relationship satisfaction and family physical activity were not found to be associated with parental health. Exploratory findings of the sample stratified by biological sex are described. Findings from the current study were consistent with a systemic perspective in that parents may have health benefits when they participate in family-level behavior (e.g., family meals). Additional areas for research and limitations to the current study are also discussed. (c) 2015 APA, all rights reserved).
Passive Optical Technique to Measure Physical Properties of a Vibrating Surface
2014-01-01
it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2
NASA Technical Reports Server (NTRS)
Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce
1996-01-01
A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.
Physical plausibility of cold star models satisfying Karmarkar conditions
NASA Astrophysics Data System (ADS)
Fuloria, Pratibha; Pant, Neeraj
2017-11-01
In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9 . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.
Integrating physical and genetic maps: from genomes to interaction networks
Beyer, Andreas; Bandyopadhyay, Sourav; Ideker, Trey
2009-01-01
Physical and genetic mapping data have become as important to network biology as they once were to the Human Genome Project. Integrating physical and genetic networks currently faces several challenges: increasing the coverage of each type of network; establishing methods to assemble individual interaction measurements into contiguous pathway models; and annotating these pathways with detailed functional information. A particular challenge involves reconciling the wide variety of interaction types that are currently available. For this purpose, recent studies have sought to classify genetic and physical interactions along several complementary dimensions, such as ordered versus unordered, alleviating versus aggravating, and first versus second degree. PMID:17703239
Particles, Quarks, Leptons and Coloured Glue.
ERIC Educational Resources Information Center
Ryder, Lewis
1980-01-01
Explains the current situation in particle physics by reviewing the three major periods in the development of atomic theory. Outlines the current picture of fundamental particles and identifies five major problems with this model. (GS)
Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes
NASA Astrophysics Data System (ADS)
Zegaoui, Abdallah; Boutoubat, Mohamed; Sawicki, Jean-Paul; Kessaissia, Fatma Zohra; Djahbar, Abdelkader; Aillerie, Michel
2018-05-01
This paper presents an improved generalized physical model for photovoltaic, PV cells, panels and arrays taking into account the behavior of these devices when considering their biasing existing in direct and reverse modes. Existing PV physical models generally are very efficient for simulating influence of irradiation changes on the short circuit current but they could not visualize the influences of temperature changes. The Enhanced Direct and Reverse Mode model, named EDRM model, enlightens the influence on the short-circuit current of both temperature and irradiation in the reverse mode of the considered PV devices. Due to its easy implementation, the proposed model can be a useful power tool for the development of new photovoltaic systems taking into account and in a more exhaustive manner, environmental conditions. The developed model was tested on a marketed PV panel and it gives a satisfactory results compared with parameters given in the manufacturer datasheet.
Integrated Joule switches for the control of current dynamics in parallel superconducting strips
NASA Astrophysics Data System (ADS)
Casaburi, A.; Heath, R. M.; Cristiano, R.; Ejrnaes, M.; Zen, N.; Ohkubo, M.; Hadfield, R. H.
2018-06-01
Understanding and harnessing the physics of the dynamic current distribution in parallel superconducting strips holds the key to creating next generation sensors for single molecule and single photon detection. Non-uniformity in the current distribution in parallel superconducting strips leads to low detection efficiency and unstable operation, preventing the scale up to large area sensors. Recent studies indicate that non-uniform current distributions occurring in parallel strips can be understood and modeled in the framework of the generalized London model. Here we build on this important physical insight, investigating an innovative design with integrated superconducting-to-resistive Joule switches to break the superconducting loops between the strips and thus control the current dynamics. Employing precision low temperature nano-optical techniques, we map the uniformity of the current distribution before- and after the resistive strip switching event, confirming the effectiveness of our design. These results provide important insights for the development of next generation large area superconducting strip-based sensors.
Maternal violence, victimization, and child physical punishment in Peru.
Gage, Anastasia J; Silvestre, Eva A
2010-07-01
This study examined whether mothers' experience of violence was a risk factor for physical punishment. Data were derived from the nationally representative 2000 Peru Demographic and Family Health Survey. Participants were 12,601 currently married women who were living with biological children aged 0-17 years and were responsible for disciplining the children. A multinomial logit model was used to determine the probabilities of using no physical punishment, slapping/spanking only, beating only, and both slapping/spanking and beating to discipline children. The study found that childhood history of physical punishment, a greater variety of intimate partner emotional violence and experience of intimate partner physical violence increased significantly a mother's probability of using physical punishment with her children, even after controlling for confounding factors. A mother's history of physical violence victimization by someone other than the current partner was also a significant factor for beating children as opposed to using non-physical forms of punishment. Mothers were at substantially increased risk of using physical punishment if they were victims of parental physical violence in childhood, intimate partner violence in the current union, and physical violence by someone other than the current partner. Increased public education is needed of the negative consequences of intimate partner emotional and physical violence victimization for mothers' childrearing strategies. There is a need to integrate intimate partner violence into child welfare programs and develop effective screening mechanisms for maternal violence victimization and child maltreatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
a Physical Parameterization of Snow Albedo for Use in Climate Models.
NASA Astrophysics Data System (ADS)
Marshall, Susan Elaine
The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram
This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less
Source Physics Experiments at the Nevada Test Site
2010-09-01
not display a currently valid OMB control number. 1. REPORT DATE SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND...seismograms through three-dimensional models of the earth will move monitoring science into a physics- based era. This capability should enable...the advanced ability to model synthetic seismograms in three-dimensional earth models should also lead to advances in the ability to locate and
Weinstein, Galit
2016-12-01
Adverse socioeconomic conditions in childhood have been previously linked with high risk of various health conditions. However, the association with future physical function has been less studied. Hand grip strength and chair-rising time are objective measures of physical capability indicating current and future health outcomes. The aim of this study was to test the hypothesis that perceived socio-economic status in childhood is related to current measures of physical function, among Israeli participants of the Survey of Health, Ageing and Retirement in Europe project. The study included 2300 participants aged 50 years or older (mean age 68 ± 10; 56 % women). Generalized linear regression models were used to examine the associations of childhood wealth and number of books in residence with grip strength and time to complete five rises from a chair. Logistic regression models were used to assess the relationships between the early life conditions and the ability to perform the physical tests. Adjustment was made for current income or household wealth, and for demographic, anthropometric, health, and life-style measures. Being wealthy and having a large number of books at home in childhood was associated with a stronger hand grip and a better chair-rise test performance. These associations were more robust in women compared to men, and persisted after adjustment for potential covariates. In addition, childhood wealth and number of books were associated with lower risk of being unable to perform the tests. Thus, early-life programming may contribute to physical function indicators in mid- and late-life.
A data-driven approach to modeling physical fatigue in the workplace using wearable sensors.
Sedighi Maman, Zahra; Alamdar Yazdi, Mohammad Ali; Cavuoto, Lora A; Megahed, Fadel M
2017-11-01
Wearable sensors are currently being used to manage fatigue in professional athletics, transportation and mining industries. In manufacturing, physical fatigue is a challenging ergonomic/safety "issue" since it lowers productivity and increases the incidence of accidents. Therefore, physical fatigue must be managed. There are two main goals for this study. First, we examine the use of wearable sensors to detect physical fatigue occurrence in simulated manufacturing tasks. The second goal is to estimate the physical fatigue level over time. In order to achieve these goals, sensory data were recorded for eight healthy participants. Penalized logistic and multiple linear regression models were used for physical fatigue detection and level estimation, respectively. Important features from the five sensors locations were selected using Least Absolute Shrinkage and Selection Operator (LASSO), a popular variable selection methodology. The results show that the LASSO model performed well for both physical fatigue detection and modeling. The modeling approach is not participant and/or workload regime specific and thus can be adopted for other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Smagley, Vladimir Anatolievich
Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.
The analysis and modeling of the ARDEC 2.5 km/s 20-mm plasma railgun shot
NASA Astrophysics Data System (ADS)
Sink, D. A.; Chang, D. I.; Davis, A.; Colombo, G.; Hildenbrand, D. J.
1993-01-01
The 20-mm round-bore plasma railgun was successfully fired at the ARDEC electric gun facility. The 4-m gun with copper rails and alumina composite insulators was operated using a light-gas gun injector to start the projectile, already located in the gun, moving prior to the introduction of current. Current from the EMACK homopolar generator (HPG) was commutated into the gun by an explosively-actuated opening switch. The muzzle velocity was recorded by breakwires and flash X-rays at 2.5 km/s. B-dot sensors, rail current Rogowski coils, and breech and muzzle voltage measurements provided data on the in-bore dynamics of the armature. Post-shot analysis using the ARMRAIL (ARMature Physics and RAILgun Performance Model) code successfully provided calculations reproducing all the main features of the data. Models account for the observed secondary arcs present throughout the shot and the basis for the code and physics modeling is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musolino, M.; Treeck, D. van, E-mail: treeck@pdi-berlin.de; Tahraoui, A.
2016-01-28
We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. Themore » temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.« less
Detangling Spaghetti: Tracking Deep Ocean Currents in the Gulf of Mexico
ERIC Educational Resources Information Center
Curran, Mary Carla; Bower, Amy S.; Furey, Heather H.
2017-01-01
Creation of physical models can help students learn science by enabling them to be more involved in the scientific process of discovery and to use multiple senses during investigations. This activity achieves these goals by having students model ocean currents in the Gulf of Mexico. In general, oceans play a key role in influencing weather…
Relation of Parallel Discrete Event Simulation algorithms with physical models
NASA Astrophysics Data System (ADS)
Shchur, L. N.; Shchur, L. V.
2015-09-01
We extend concept of local simulation times in parallel discrete event simulation (PDES) in order to take into account architecture of the current hardware and software in high-performance computing. We shortly review previous research on the mapping of PDES on physical problems, and emphasise how physical results may help to predict parallel algorithms behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, A.G.W.
1984-01-01
Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more.
The SPARK Programs: A Public Health Model of Physical Education Research and Dissemination
ERIC Educational Resources Information Center
McKenzie, Thomas L.; Sallis, James F.; Rosengard, Paul; Ballard, Kymm
2016-01-01
SPARK [Sports, Play, and Active Recreation for Kids], in its current form, is a brand that represents a collection of exemplary, research-based, physical education and physical activity programs that emphasize a highly active curriculum, on-site staff development, and follow-up support. Given its complexity (e.g., multiple school levels, inclusion…
NASA Astrophysics Data System (ADS)
Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela
2018-05-01
This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.
NASA Technical Reports Server (NTRS)
Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce
1996-01-01
A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.
Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model
NASA Astrophysics Data System (ADS)
Pembroke, Asher; Toffoletto, Frank; Sazykin, Stanislav; Wiltberger, Michael; Lyon, John; Merkin, Viacheslav; Schmitt, Peter
2012-02-01
In this paper we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM) and report some results using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-β ≤ 1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabiti, Cristian; Alfonsi, Andrea; Huang, Dongli
This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.
2011-04-28
quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux noise which...and quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux...metallic nanomechanical resonators, Phys. Rev. B 81, 184112 (2010). 3) L. Faoro, A. Kitaev and L. B. Ioffe, Quasiparticle poisoning and Josephson current
Toward Paradoxical Inconsistency in Electrostatics of Metallic Conductors
Naturally, when dealing with fundamental problems, the V and V effort should include careful exploration and, if necessary, revision of the fundamentals...Current developments show a clear trend toward more serious efforts in validation and verification (V and V) of physical and engineering models...underlying the physics. With this understanding in mind, we review some fundamentals of the models of crystalline electric conductors and find a
Direct modeling for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Leifker, Daniel B.
1991-01-01
Current qualitative device and process models represent only the structure and behavior of physical systems. However, systems in the real world include goal-oriented activities that generally cannot be easily represented using current modeling techniques. An extension of a qualitative modeling system, known as functional modeling, which captures goal-oriented activities explicitly is proposed and how they may be used to support intelligent automation and fault management is shown.
Stochastic fundamental diagram for probabilistic traffic flow modeling.
DOT National Transportation Integrated Search
2011-09-01
Flowing water in river, transported gas or oil in pipe, electric current in wire, moving : goods on conveyor, molecular motors in living cell, and driving vehicles on a highway are : various kinds of flow from physical or non-physical systems, yet ea...
Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen
2016-01-01
A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580
A dynamical model of plasma turbulence in the solar wind
Howes, G. G.
2015-01-01
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075
Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon
2016-07-01
A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.
Patients' mental models and adherence to outpatient physical therapy home exercise programs.
Rizzo, Jon
2015-05-01
Within physical therapy, patient adherence usually relates to attending appointments, following advice, and/or undertaking prescribed exercise. Similar to findings for general medical adherence, patient adherence to physical therapy home exercise programs (HEP) is estimated between 35 and 72%. Adherence to HEPs is a multifactorial and poorly understood phenomenon, with no consensus regarding a common theoretical framework that best guides empirical or clinical efforts. Mental models, a construct used to explain behavior and decision-making in the social sciences, may serve as this framework. Mental models comprise an individual's tacit thoughts about how the world works. They include assumptions about new experiences and expectations for the future based on implicit comparisons between current and past experiences. Mental models play an important role in decision-making and guiding actions. This professional theoretical article discusses empirical research demonstrating relationships among mental models, prior experience, and adherence decisions in medical and physical therapy contexts. Specific issues related to mental models and physical therapy patient adherence are discussed, including the importance of articulation of patients' mental models, assessment of patients' mental models that relate to exercise program adherence, discrepancy between patient and provider mental models, and revision of patients' mental models in ways that enhance adherence. The article concludes with practical implications for physical therapists and recommendations for further research to better understand the role of mental models in physical therapy patient adherence behavior.
Constraining new physics models with isotope shift spectroscopy
NASA Astrophysics Data System (ADS)
Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias
2017-07-01
Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.
Modeling Earth's Ring Current Using The CIMI Model
NASA Astrophysics Data System (ADS)
Craven, J. D., II; Perez, J. D.; Buzulukova, N.; Fok, M. C. H.
2015-12-01
Earth's ring current is a result of the injection of charged particles trapped in the magnetosphere from solar storms. The enhancement of the ring current particles produces magnetic depressions and disturbances to the Earth's magnetic field known as geomagnetic storms, which have been modeled using the comprehensive inner magnetosphere-ionosphere (CIMI) model. The purpose of this model is to identify and understand the physical processes that control the dynamics of the geomagnetic storms. The basic procedure was to use the CIMI model for the simulation of 15 storms since 2009. Some of the storms were run multiple times, but with varying parameters relating to the dynamics of the Earth's magnetic field, particle fluxes, and boundary conditions of the inner-magnetosphere. Results and images were placed in the TWINS online catalog page for further analysis and discussion. Particular areas of interest were extreme storm events. A majority of storms simulated had average DST values of -100 nT; these extreme storms exceeded DST values of -200 nT. The continued use of the CIMI model will increase knowledge of the interactions and processes of the inner-magnetosphere as well as lead to a better understanding of extreme solar storm events for the future advancement of space weather physics.
Modeling of parasitic current collection by solar arrays in low-earth orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, V.A.; Gardner, B.M.; Guidice, D.A.
1996-11-01
In this paper we describe the development of a model of the electron current collected by solar arrays from the ionospheric plasma. This model will assist spacecraft designers in minimizing the impact of plasma interactions on spacecraft operations as they move to higher-voltage solar arrays. The model was developed by first examining in detail the physical processes of importance and then finding an analytic fit to the results over the parameter range of interest. The analytic model is validated by comparison with flight data from the Photovoltaic Array for Space Power Plus diagnostics (PASP Plus) flight experiment [D. A. Guidice,more » 34{ital th} {ital Aerospace} {ital Sciences} {ital Meeting} {ital and} {ital Exhibit}, Reno, NV, 1996, AIAA 96-0926 (American Institute of Aeronautics and Astronautics, Washington, DC, 1996)]. {copyright} {ital 1996 American Institute of Physics.}« less
Survey of current situation in radiation belt modeling
NASA Technical Reports Server (NTRS)
Fung, Shing F.
2004-01-01
The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.
THE MOVEMENT SYSTEM IN EDUCATION.
Hoogenboom, Barbara J; Sulavik, Mark
2017-11-01
Although many physical therapists have begun to focus on movement and function in clinical practice, a significant number continue to focus on impairments or pathoanatomic models to direct interventions. This paradigm may be driven by the current models used to direct and guide curricula used for physical therapist education. The methods by which students are educated may contribute to a focus on independent systems, rather than viewing the body as a functional whole. Students who enter practice must be able to integrate information across multiple systems that affect a patient or client's movement and function. Such integration must be taught to students and it is the responsibility of those in physical therapist education to embrace and teach the next generation of students this identifying professional paradigm of the movement system. The purpose of this clinical commentary is to describe the current state of the movement system in physical therapy education, suggest strategies for enhancing movement system focus in entry level education, and envision the future of physical therapy education related to the movement system. Contributions by a student author offer depth and perspective to the ideas and suggestions presented. 5.
A unified framework for mesh refinement in random and physical space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Stinis, Panos
In recent work we have shown how an accurate reduced model can be utilized to perform mesh renement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for renement in both randommore » and physical space. In this manuscript we focus on the application to random space mesh renement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the effciency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.« less
Saßenroth, Denise; Meyer, Antje; Salewsky, Bastian; Kroh, Martin; Norman, Kristina; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja
2015-01-01
Physical activity and sports have repeatedly been reported to be associated with telomere length. We studied the association of different types of sports across different stages of life on relative leukocyte telomere length (rLTL) in advanced age.815 participants (397 men) from the Berlin Aging Study II aged over 61 years were included in the analysis. rLTL was measured by real time PCR and physical activity was determined retrospectively by questionnaire, assessing type and duration of sports in the past as well as currently. Five separate multiple linear regression models adjusted for various control variables were performed. 67.3% of participants exercised currently, whereas 19.4% performed sports only between the age of 20 and 30. rLTL was higher in subjects who stated to exercise currently (N = 456), and in subjects who engaged in endurance (N = 138) or intensive activity sports (N = 32). Current physical activity was positively associated with rLTL in the risk factor adjusted regression model (β = 0.26, p < 0.001) and practicing sports for a minimum of 10 years preceding the assessment had a significant effect on rLTL (β = 0.39, p = 0.011). The highest impact was seen for intensive activity sports (β = 0.79, p < 0.001) and physical activity since at least 42 years (β = 0.47, p = 0.001). However, physical activity only between 20 and 30 years of age did not affect rLTL in old age when compared to no sports at all (β = -0.16, p = 0.21). Physical activity is clearly associated with longer rLTL. The effect is seen with longer periods of physical activity (at least 10 years), with intensive sports activities having the greatest impact on rLTL. Our data suggest that regular physical activity for at least 10 years is necessary to achieve a sustained effect on rLTL.
How a Climbing Wall Became Part of a NEW Physical Education Program
ERIC Educational Resources Information Center
Cook, Gordon; Boyan, Al; Mendelsohn, Alice; Green, Alison; Woolvett, Colleen
2007-01-01
The introduction of a NEW physical education (PE) program at Ancaster Senior Public School had, at its root, the desire to make physical activity an inclusive domain for both athletic students and those not so inclined. With the growing concerns over the rapid and consistent rise in childhood obesity rates it was evident that the current model of…
Application of physical parameter identification to finite-element models
NASA Technical Reports Server (NTRS)
Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.
1987-01-01
The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.
Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auf der Maur, M., E-mail: auf.der.maur@ing.uniroma2.it; Di Carlo, A.; Galler, B.
Based on numerical simulation and comparison with measured current characteristics, we show that the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model. The qualitative and quantitative differences in the current characteristics of devices with different emission wavelengths are demonstrated to be correlated in a physically consistent way with the tunneling model parameters.
Searching for new physics at the frontiers with lattice quantum chromodynamics.
Van de Water, Ruth S
2012-07-01
Numerical lattice-quantum chromodynamics (QCD) simulations, when combined with experimental measurements, allow the determination of fundamental parameters of the particle-physics Standard Model and enable searches for physics beyond-the-Standard Model. We present the current status of lattice-QCD weak matrix element calculations needed to obtain the elements and phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and to test the Standard Model in the quark-flavor sector. We then discuss evidence that may hint at the presence of new physics beyond the Standard Model CKM framework. Finally, we discuss two opportunities where we expect lattice QCD to play a pivotal role in searching for, and possibly discovery of, new physics at upcoming high-intensity experiments: rare decays and the muon anomalous magnetic moment. The next several years may witness the discovery of new elementary particles at the Large Hadron Collider (LHC). The interplay between lattice QCD, high-energy experiments at the LHC, and high-intensity experiments will be needed to determine the underlying structure of whatever physics beyond-the-Standard Model is realized in nature. © 2012 New York Academy of Sciences.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2011-01-01
Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.
Testing the Standard Model by precision measurement of the weak charges of quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross Young; Roger Carlini; Anthony Thomas
In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.
Effect of surface bilayer charges on the magnetic field around ionic channels
NASA Astrophysics Data System (ADS)
Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson
2017-01-01
In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.
Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator
NASA Astrophysics Data System (ADS)
Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.
2018-03-01
We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.
Current Status of Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Bertulani, Carlos A.; Hussein, Mahir S.
2015-12-01
In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in pursuing a career in nuclear physics.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet
NASA Astrophysics Data System (ADS)
Klimas, Alexander J.; Uritsky, Vadim M.
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
Klimas, Alexander J; Uritsky, Vadim M
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Physical Model Study of Cross Vanes and Ice
2009-08-01
spacing since, in the pre-scour state, experiments and the HEC - RAS hydraulic model (USACE 2002b) found that water surface ele- vation merged with the...docs/eng-manuals/em1110- 2-1612/toc.htm. USACE (2002b) HEC - RAS , Hydraulic Reference Manual. US Army Corps of Engineers Hydrologic Engineering Center...Currently little design guidance is available for constructing these structures on ice-affected rivers . This study used physical and numerical
NASA Technical Reports Server (NTRS)
Schultz, Chris; Carey, Larry; Schultz, Elise V.; Stano, Geoffrey; Gatlin, Patrick N.; Kozlowski, Danielle M.; Blakeslee, Rich J.; Goodman, Steve
2013-01-01
Key points this analysis will address: 1) What physically is going on in the cloud when there is a jump in lightning? -- Updraft variations, Ice fluxes 2) How do these processes fit in with severe storm conceptual models? 3) What would this information provide an end user? --Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi -Doppler derived physical relationships
Physical activity and physical activity adherence in the elderly based on smoking status.
Cooper, Theodore V; Resor, Michelle R; Stoever, Colby J; Dubbert, Patricia M
2007-10-01
This study assessed the impact of current smoking status and lifetime smoking status on physical fitness and physical activity regimen adherence as part of a larger study on walking for exercise in elderly primary care patients at a Veterans Affairs Medical Center. At baseline, 218 participants self-reported smoking status which was verified by carbon monoxide expiration. Former and current smokers responded to questions about length of time quit, average daily cigarette intake, and years a smoker. Smoking measures were re-collected at 6- and 12-month follow-ups if the participants indicated a change in smoking status. Veterans completed multiple measures of physical activity (e.g., 6-min walk, 7-day Physical Activity Recall), and adherence to a physical activity goal was assessed. The Physical Component Summary (PCS) subscale of the Medical Outcomes Study Short Form-36 (MOS SF-36) was used to assess health-related quality of life. Hierarchical regression models indicated smoking status was a predictor of the baseline 6-min walk such that smokers walked significantly shorter distances than nonsmokers. In addition, smoking status was found to be a significant predictor of adherence; however, the overall model that included smoking status as a predictor did not demonstrate a significant effect on adherence. Neither smoking status nor pack years were predictors of baseline self-reported physical activity or changes in physical activity post intervention. Results are consistent with recommendations to use physical exercise as an aid to tobacco cessation, even in aging men with extensive smoking histories.
NASA Astrophysics Data System (ADS)
Wong-Ala, J.; Neuheimer, A. B.; Hixon, M.; Powell, B.
2016-02-01
Connectivity estimates, which measure the exchange of individuals among populations, are necessary to create effective reserves for marine life. Connectivity can be influenced by a combination of biology (e.g. spawning time) and physics (e.g. currents). In the past a dispersal model was created in an effort to explain connectivity for the highly sought after reef fish Lau`ipala (Yellow Tang, Zebrasoma flavescens) around Hawai`i Island using physics alone, but this was shown to be insufficient. Here we created an individual based model (IBM) to describe Lau`ipala life history and behavior forced with ocean currents and temperature (via coupling to a physical model) to examine biophysical interactions. The IBM allows for tracking of individual fish from spawning to settlement, and individual variability in modeled processes. We first examined the influence of different reproductive (e.g. batch vs. constant spawners), developmental (e.g. pelagic larval duration), and behavioral (e.g. active vs. passive buoyancy control) traits on modeled connectivity estimates for larval reef fish around Hawai`i Island and compared results to genetic observations of parent-offspring pair distribution. Our model is trait-based which allows individuals to vary in life history strategies enabling mechanistic links between predictions and underlying traits and straightforward applications to other species and sites.
NASA Astrophysics Data System (ADS)
Srinivas, P. G.; Spencer, E. A.; Vadepu, S. K.; Horton, W., Jr.
2017-12-01
We compare satellite observations of substorm electric fields and magnetic fields to the output of a low dimensional nonlinear physics model of the nightside magnetosphere called WINDMI. The electric and magnetic field satellite data are used to calculate the E X B drift, which is one of the intermediate variables of the WINDMI model. The model uses solar wind and IMF measurements from the ACE spacecraft as input into a system of 8 nonlinear ordinary differential equations. The state variables of the differential equations represent the energy stored in the geomagnetic tail, central plasma sheet, ring current and field aligned currents. The output from the model is the ground based geomagnetic westward auroral electrojet (AL) index, and the Dst index.Using ACE solar wind data, IMF data and SuperMAG identification of substorm onset times up to December 2015, we constrain the WINDMI model to trigger substorm events, and compare the model intermediate variables to THEMIS and GEOTAIL satellite data in the magnetotail. By forcing the model to be consistent with satellite electric and magnetic field observations, we are able to track the magnetotail energy dynamics, the field aligned current contributions, energy injections into the ring current, and ensure that they are within allowable limts. In addition we are able to constrain the physical parameters of the model, in particular the lobe inductance, the plasma sheet capacitance, and the resistive and conductive parameters in the plasma sheet and ionosphere.
NASA Technical Reports Server (NTRS)
Gallagher, Dennis
2018-01-01
Outline - Inner Magnetosphere Effects: Historical Background; Main regions and transport processes: Ionosphere, Plasmasphere, Plasma sheet, Ring current, Radiation belt; Geomagnetic Activity: Storms, Substorm; Models.
Song, Hailong; Cui, Jiankun; Simonyi, Agnes; Johnson, Catherine E; Hubler, Graham K; DePalma, Ralph G; Gu, Zezong
2018-03-15
Blast exposures are associated with traumatic brain injury (TBI) and blast-induced TBIs are common injuries affecting military personnel. Department of Defense and Veterans Administration (DoD/VA) reports for TBI indicated that the vast majority (82.3%) has been mild TBI (mTBI)/concussion. mTBI and associated posttraumatic stress disorders (PTSD) have been called "the invisible injury" of the current conflicts in Iraq and Afghanistan. These injuries induce varying degrees of neuropathological alterations and, in some cases, chronic cognitive, behavioral and neurological disorders. Appropriate animal models of blast-induced TBI will not only assist the understanding of physical characteristics of the blast, but also help to address the potential mechanisms. This report provides a brief overview of physical principles of blast, injury mechanisms related to blast exposure, current blast animal models, and the neurological behavioral and neuropathological findings related to blast injury in experimental settings. We describe relationships between blast peak pressures and the observed injuries. We also report preliminary use of a highly reproducible and intensity-graded blast murine model carried out in open-field with explosives, and describe physical and pathological findings in this experimental model. Our results indicate close relationships between blast intensities and neuropathology and behavioral deficits, particularly at low level blast intensities relevant to mTBI. Copyright © 2016 Elsevier B.V. All rights reserved.
Vidot, Denise C; Bispo, Jordan B; Hlaing, WayWay M; Prado, Guillermo; Messiah, Sarah E
2017-09-01
The relationship between marijuana use and recreational physical activity has yet to be explored in the United States. Our aim was to examine this relationship in a population-based sample of 20-to-59-year olds (N=12,618) using 2007-2014 National Health and Nutrition Examination Surveys. Marijuana use was categorized as never (reference group), past (previously but not within the last 30-days), and current (>1day in the last 30-days) use. Current users were further categorized based on frequency of use (light, moderate, and heavy users). Physical activity was self-reported as moderate (small increase in heartrate/breathing for >10min; MPA) and vigorous (large increase in heartrate/breathing for >10min; VPA). Adjusted odds ratios (AOR) for the relationship between marijuana use and physical activity were estimated via logistic regression models. The majority of the overall sample reported either past (40.5%) or current (12.6%) marijuana use. Marijuana users had a lower prevalence of moderate physical activity than never users (current: 51.9%, past: 50.4%, never: 55.3%, p=0.001). Current (66.8%) and past (67.9%) marijuana users also had a lower prevalence of vigorous physical activity than never users (71.9%, p=0.001). Current and past users had lower odds of recreational MPA (current user AOR: 0.66, 95% CI: 0.50-0.87; past user AOR: 0.78, 95% CI: 0.62-0.98) than never users. As the frequency of marijuana use increased, time spent on MPA decreased. Results suggest that current and past marijuana users were less likely to report recreational MPA than never users. Future studies should examine the potential mechanisms and temporality of this relationship. Copyright © 2017 Elsevier B.V. All rights reserved.
van Londen, G J; Beckjord, E B; Dew, M A; Cooper, K L; Davidson, N E; Bovbjerg, D H; Donovan, H S; Thurston, R C; Morse, J Q; Nutt, S; Rechis, R
2014-04-01
Breast cancer survivors often receive long-term adjuvant endocrine therapy (AET) to reduce recurrence risk. Adherence to AET is suboptimal, which may be due to the experience of symptoms and/or concerns. Few studies have comprehensively assessed self-reported concerns between those who currently, previously or have never received AET. The study objective is to describe self-reported physical and emotional concerns of breast cancer survivors who are current, prior, or never-recipients of AET. Secondary analysis was performed on a subset of survey data collected in the 2010 LIVESTRONG Survey. Breast cancer survivors (n = 1,013, mean 5.4 years post-diagnosis) reported on 14 physical and eight emotional concerns that began after diagnosis and were experienced within 6 months of participation in the survey. Bivariate analyses examined the prevalence of each concern by AET status. The relationships between AET and burden of physical or emotional concerns were modeled with logistic regression. More than 50% of the participants reported currently experiencing cognitive issues, fatigue, fear of recurrence, emotional distress, and identity/grief issues. Thyroid dysfunction and stigma concerns were more common among participants with prior AET (p < 0.01), while fear of recurrence, emotional distress, and concern about appearance were more common among those currently receiving AET (p < 0.01). Fatigue, sexual dysfunction, and pain were more common among prior and current AET recipients (p < 0.01). In adjusted models, receipt of AET was associated with a higher number of physical, but not emotional concerns. A higher number of concerns was associated with younger age, having children, receipt of chemotherapy, longer duration of cancer treatment, and shorter time since diagnosis (p < 0.01). Breast cancer survivors who received AET were at risk of developing a variety of physical and emotional concerns, many of which persisted after treatment. These findings suggest the importance of developing individualized, supportive resources for breast cancer survivors.
Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A
2016-02-01
Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life interventions may be a practical approach to promote physical activity in man.
Bertrais, Sandrine; Preziosi, Paul; Mennen, Louise; Galan, Pilar; Hercberg, Serge; Oppert, Jean-Michel
2004-01-01
Objective. We evaluated the characteristics of French subjects meeting current public health recommendations for physical activity. Methods. We assessed leisure-time physical activity cross-sectionally in 7404 adults aged 45 to 68 years with applied logistic regression models. Results. Meeting the recommended physical activity levels was more likely in subjects aged 60 years and older and in women with higher education levels or living in rural areas and was less likely in smokers. No association was found with time spent watching television. The contribution of vigorous activity to total time spent being active was approximately 2 times higher in subjects meeting recommendations. Conclusions. Participation in some vigorous activity may be viewed as a “facilitator” to attain physical activity recommendations. Relationships with physical environment variables in Europe need further investigation. PMID:15333315
Freisthler, Bridget; Gruenewald, Paul J.; Wolf, Jennifer Price
2015-01-01
The current study extends previous research by examining whether and how current marijuana use and the physical availability of marijuana are related to child physical abuse, supervisory neglect, or physical neglect by parents while controlling for child, caregiver, and family characteristics in a general population survey in California. Individual level data on marijuana use and abusive and neglectful parenting were collected during a telephone survey of 3,023 respondents living in 50 mid-size cities in California. Medical marijuana dispensaries and delivery services data were obtained via six websites and official city lists. Data were analyzed using negative binomial and linear mixed effects multilevel models with individuals nested within cities. Current marijuana use was positively related to frequency of child physical abuse and negatively related to physical neglect. There was no relationship between supervisory neglect and marijuana use. Density of medical marijuana dispensaries and delivery services was positively related to frequency of physical abuse. As marijuana use becomes more prevalent, those who work with families, including child welfare workers must screen for how marijuana use may affect a parent’s ability to provide for care for their children, particularly related to physical abuse. PMID:26198452
Women Vietnam Veterans: Do PTSD Symptoms Mediate Effects of Warzone Service on Health?
Kaiser, Anica Pless; Spiro, Avron; Lee, Lewina Onyi; Stellman, Jeanne Mager
2012-01-01
We assessed the impact of warzone stress on the physical and mental health functioning and well-being of 975 female nurse veterans who had been deployed to Vietnam, and examined whether PTSD symptoms at the time of the survey mediated these relations. A questionnaire was mailed to the Women’s Vietnam Memorial Project members, approximately 25 – 30 years after their wartime service. We examined current physical and mental health functioning in relation to several measures of warzone stress and PTSD symptoms, adjusting for age, length of military service, and current physical health problems. Using regression models, we evaluated whether current PTSD symptoms mediated the effects of warzone stress on mental and physical health. Findings suggested that PTSD symptoms did mediate the relationship between warzone stress and mental, but not physical, health functioning in later life. These findings suggest that among women nurses deployed to Vietnam, the effects of warzone stress many years earlier on current functioning and well-being are both direct and indirect, mediated by PTSD symptoms. The legacy of wartime deployment remains, although muted in its expression, in military nurses nearly 30 years after their return. PMID:22984348
NASA Iced Aerodynamics and Controls Current Research
NASA Technical Reports Server (NTRS)
Addy, Gene
2009-01-01
This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.
Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; ...
2016-07-18
In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict themore » long-term output yields of photovoltaic farms under different environmental conditions.« less
Physical oceanography of the US Atlantic and eastern Gulf of Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliman, J.D.; Imamura, E.
The report provides a summary of the physical oceanography of the U.S. Atlantic and Eastern Gulf of Mexico and its implication to offshore oil and gas exploration and development. Topics covered in the report include: meteorology and air-sea interactions, circulation on the continental shelf, continental slope and rise circulation, Gulf Stream, Loop Current, deep-western boundary current, surface gravity-wave climatology, offshore engineering implications, implications for resource commercialization, and numerical models of pollutant dispersion.
Main directions in the simulation of physical characteristics of the World Ocean and seas
NASA Astrophysics Data System (ADS)
Sarkisyan, A. S.
2016-07-01
A brief analysis of the oceanographic papers printed in this issue is presented. For convenience of the reader, the paper by K. Bryan, a prominent scientist and expert in modeling the physical characteristics of the ocean, is discussed in detail. The remaining studies are described briefly in several sections: direct prognostic modeling, diagnosis-adaptation, four-dimensional analysis, and operational oceanography. At the end of the study, we separately discuss the problem of the reproduction of coastal intensification of temperature, salinity, density, and currents. We believe that the quality of the simulation results can be best assessed in terms of the intensity of coastal currents. In conclusion, this opinion is justified in detail.
Hoffman, Donald D.; Prakash, Chetan
2014-01-01
Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a “conscious agent.” We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale. PMID:24987382
NASA Astrophysics Data System (ADS)
Beh, Kian Lim
2000-10-01
This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.
ERIC Educational Resources Information Center
Guzel, Hattice
2017-01-01
In this research, the purpose was to examine and compare the effect of teaching Electric Current, which is a topic of grade 11 physics lesson, on student achievement and attitude according to the 5E model belonging to the constructivist learning theory and the traditional teaching method. The research was conducted in the spring semester of…
Unified computational model of transport in metal-insulating oxide-metal systems
NASA Astrophysics Data System (ADS)
Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.
2018-04-01
A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.
ERIC Educational Resources Information Center
Khatri, Raina; Henderson, Charles; Cole, Renée; Froyd, Jeffrey E.; Friedrichsen, Debra; Stanford, Courtney
2016-01-01
The physics education research community has produced a wealth of knowledge about effective teaching and learning of college level physics. Based on this knowledge, many research-proven instructional strategies and teaching materials have been developed and are currently available to instructors. Unfortunately, these intensive research and…
Spin and precision electroweak physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marciano, W.J.
1994-12-01
A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for {open_quotes}new physics{close_quotes} is described.
Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation
Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan
2010-01-01
Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939
A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryberger, David; /SLAC
The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appearmore » evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated.« less
Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks
NASA Astrophysics Data System (ADS)
Karpatne, A.; Kumar, V.
2017-12-01
Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.
Search for new physics with a monojet and missing transverse energy in pp collisions at √s = 7 TeV.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Gonzalez, J Suarez; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Maes, J; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Suarez, R Gonzalez; Kalogeropoulos, A; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Velde, C Vander; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Gil, E Cortina; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Brito, L; De Jesus Damiao, D; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Da Costa, E M; Martins, C De Oliveira; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Bernardes, C A; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhu, B; Zou, W; Cabrera, A; Moreno, B Gomez; Rios, A A Ocampo; Oliveros, A F Osorio; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Awad, A; Khalil, S; Radi, A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Dietz-Laursonn, E; Erdmann, M; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Ahmad, W Haj; Heydhausen, D; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Martin, M Aldaya; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Petrukhin, A; Pitzl, D; Raspereza, A; Raval, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Görner, M; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Berger, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J; Singh, S P; Ahuja, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Kumar, A; Naimuddin, M; Ranjan, K; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Khurana, R; Sarkar, S; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Jafari, A; Khakzad, M; Mohammadi, A; Najafabadi, M Mohammadi; Mehdiabadi, S Paktinat; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Grandi, C; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Gennai, S; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Montoya, C A Carrillo; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Biasotto, M; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Gasparini, F; Gozzelino, A; Gulmini, M; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Oso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Meridiani, P; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Rovelli, C; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Pereira, A Vilela; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D; Son, D C; Son, T; Kim, Zero; Kim, J Y; Song, S; Choi, S; Hong, B; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Villalba, R Magaña; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Moreno, S Carrillo; Valencia, F Vazquez; Ibarguen, H A Salazar; Linares, E Casimiro; Pineda, A Morelos; Reyes-Santos, M A; Krofcheck, D; Tam, J; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Musella, P; Nayak, A; Pela, J; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Golutvin, I; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Maestre, J Alcaraz; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Llatas, M Chamizo; Colino, N; De La Cruz, B; Peris, A Delgado; Pardos, C Diez; Vázquez, D Domínguez; Bedoya, C Fernandez; Ramos, J P Fernández; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Lopez, O Gonzalez; Lopez, S Goy; Hernandez, J M; Josa, M I; Merino, G; Pelayo, J Puerta; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Menendez, J Fernandez; Folgueras, S; Caballero, I Gonzalez; Iglesias, L Lloret; Garcia, J M Vizan; Cifuentes, J A Brochero; Cabrillo, I J; Calderon, A; Chuang, S H; Campderros, J Duarte; Felcini, M; Fernandez, M; Gomez, G; Sanchez, J Gonzalez; Jorda, C; Pardo, P Lobelle; Virto, A Lopez; Marco, J; Marco, R; Rivero, C Martinez; Matorras, F; Sanchez, F J Munoz; Gomez, J Piedra; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sanudo, M Sobron; Vila, I; Cortabitarte, R Vilar; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Christiansen, T; Perez, J A Coarasa; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Garrido, R Gomez-Reino; Gouzevitch, M; Govoni, P; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Racz, A; Antunes, J Rodrigues; Rolandi, G; Rommerskirchen, T; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiropulu, M; Stoye, M; Tropea, P; Tsirou, A; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Bäni, L; Bortignon, P; Caminada, L; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Ruiz del Arbol, P Martinez; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguilo, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Rikova, M Ivova; Mejias, B Millan; Otiougova, P; Regenfus, C; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Hos, I; Kangal, E E; Topaksu, A Kayis; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Hansen, M; Hartley, D; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, A Guneratne; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; MacEvoy, B C; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Acosta, M Vazquez; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Liu, H; Henderson, C; Bose, T; Jarrin, E Carrera; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Salur, S; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Sierra, R Vasquez; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Chandra, A; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Long, O R; Luthra, A; Nguyen, H; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; Mccoll, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Cassel, D; Chatterjee, A; Das, S; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gunthoti, K; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Muniz, L; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Quertenmont, L; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Guragain, S; Hohlmann, M; Kalakhety, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Ceballos, G Gomez; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Wenger, E A; Wolf, R; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Zennamo, J; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Jones, J; Laird, E; Pegna, D Lopes; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Vargas, J E Ramirez; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; De Mattia, M; Everett, A; Garfinkel, A F; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Boulahouache, C; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Sakumoto, W; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Yan, M; Atramentov, O; Barker, A; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Patel, R; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Pivarski, J; Safonov, A; Sengupta, S; Tatarinov, A; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Efron, J; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Palmonari, F; Reeder, D; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M
2011-11-11
A study of events with missing transverse energy and an energetic jet is performed using pp collision data at a center-of-mass energy of 7 TeV. The data were collected by the CMS detector at the LHC, and correspond to an integrated luminosity of 36 pb(-1). An excess of these events over standard model contributions is a signature of new physics such as large extra dimensions and unparticles. The number of observed events is in good agreement with the prediction of the standard model, and significant extension of the current limits on parameters of new physics benchmark models is achieved.
NASA Astrophysics Data System (ADS)
Fiechter, J.; Rose, K.; Curchitser, E. N.; Huckstadt, L. A.; Costa, D. P.; Hedstrom, K.
2016-12-01
A fully coupled ecosystem model is used to describe the impact of regional and climate variability on changes in abundance and distribution of forage fish and apex predators in the California Current Large Marine Ecosystem. The ecosystem model consists of a biogeochemical submodel (NEMURO) embedded in a regional ocean circulation submodel (ROMS), and both coupled with a multi-species individual-based submodel for two forage fish species (sardine and anchovy) and one apex predator (California sea lion). Sardine and anchovy are specifically included in the model as they exhibit significant interannual and decadal variability in population abundances, and are commonly found in the diet of California sea lions. Output from the model demonstrates how regional-scale (i.e., upwelling intensity) and basin-scale (i.e., PDO and ENSO signals) physical processes control species distributions and predator-prey interactions on interannual time scales. The results also illustrate how variability in environmental conditions leads to the formation of seasonal hotspots where prey and predator spatially overlap. While specifically focused on sardine, anchovy and sea lions, the modeling framework presented here can provide new insights into the physical and biological mechanisms controlling trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.
NASA Astrophysics Data System (ADS)
Yao, Bing; Yang, Hui
2016-12-01
This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.
Cavallo, David N; Brown, Jane D; Tate, Deborah F; DeVellis, Robert F; Zimmer, Catherine; Ammerman, Alice S
2014-10-01
The primary objective of the current study was to examine the relationship between social support and physical activity within the theory of planned behavior (TPB) theoretical framework. This study used data from the Internet Support for Healthy Associations Promoting Exercise randomized controlled trial. A total of 134 female undergraduate students participated in the study, which included baseline and post measures of perceived social support for physical activity (esteem, informational, and companionship), TPB variables related to physical activity (perceived behavioral control, intention, and attitude), and physical activity behavior. Path analysis revealed a significant indirect relationship between change in companionship support and physical activity mediated by change in intention (.13, p < .01) and a significant direct relationship between change in esteem support and change in physical activity (.26, p = .03). The model explained 27% of the variance in physical activity and 59% of the variance in intention. Overall, change in social support exerted a small to medium amount of influence on change in physical activity in this modified TPB model when controlling for traditional model constructs. Encouraging companionship and esteem support should be considered as a strategy for increasing physical activity in this population.
Discrete-time modelling of musical instruments
NASA Astrophysics Data System (ADS)
Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti
2006-01-01
This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.
Freisthler, Bridget; Gruenewald, Paul J
2014-10-01
The purpose of the current study is to assess statistical associations between individual demographic and personality characteristics, the city-level physical availability of medical marijuana (as measured through densities per roadway mile of storefront dispensaries and delivery services), and the incidence and prevalence of marijuana use. Individual level data on marijuana use were collected during a telephone survey of 8853 respondents living in 50 mid-size cities in California. Data on medical marijuana dispensaries and delivery services were obtained via six different websites and official city lists. Three outcome variables pertaining to lifetime, past year use, and frequency of past year use were analyzed using random effects logistic models (for lifetime and past year use) and random effects tobit models (for frequency of past 365-day use). The current study finds that the total physical availability of medical marijuana through dispensaries and delivery services per roadway mile at the city-level is positively related to current marijuana use and greater frequency of use, controlling for a variety of demographic and personality characteristics. As expected, current physical availability of medical marijuana was unrelated to lifetime use. Regulations on the number and densities of marijuana outlets may be a sufficient means to restrain overall levels of marijuana use within cities. However, alternative use of delivery services may also provide easy access to marijuana and mitigate these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Freisthler, Bridget; Gruenewald, Paul J.
2014-01-01
Background The purpose of the current study is to assess statistical associations between individual demographic and personality characteristics, the city-level physical availability of medical marijuana (as measured through densities per roadway mile of storefront dispensaries and delivery services), and the incidence and prevalence of marijuana use. Method Individual level data on marijuana use were collected during a telephone survey of 8,853 respondents living in 50 mid-size cities in California. Data on medical marijuana dispensaries and delivery services were obtained via six different websites and official city lists. Three outcome variables pertaining to lifetime, past year use, and frequency of past year use were analyzed using random effects logistic models (for lifetime and past year use) and random effects tobit models (for frequency of past 365-day use). Results The current study finds that the total physical availability of medical marijuana through dispensaries and delivery services per roadway mile at the city-level is positively related to current marijuana use and greater frequency of use, controlling for a variety of demographic and personality characteristics. As expected, current physical availability of medical marijuana was unrelated to lifetime use. Conclusions Regulations on the number and densities of marijuana outlets may be a sufficient means to restrain overall levels of marijuana use within cities. However, alternative use of delivery services may also provide easy access to marijuana and mitigate these effects. PMID:25156224
Vasilenko, Sara A; Lefkowitz, Eva S; Welsh, Deborah P
2014-01-01
Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that explicates possible processes of how adolescent sexual behavior may influence physical, mental, and social health. Next, we review the current literature consistent with this conceptual model, demonstrating that although early sexual behavior can be associated with some negative outcomes, sex may be, on average, a positive experience in late adolescence. Finally, we discuss important future directions for research in these areas, including how individuals' attitudes about and perceptions of sexual behavior influence outcomes of sex. © 2014 Wiley Periodicals, Inc.
Advanced analytical modeling of double-gate Tunnel-FETs - A performance evaluation
NASA Astrophysics Data System (ADS)
Graef, Michael; Hosenfeld, Fabian; Horst, Fabian; Farokhnejad, Atieh; Hain, Franziska; Iñíguez, Benjamín; Kloes, Alexander
2018-03-01
The Tunnel-FET is one of the most promising devices to be the successor of the standard MOSFET due to its alternative current transport mechanism, which allows a smaller subthreshold slope than the physically limited 60 mV/dec of the MOSFET. Recently fabricated devices show smaller slopes already but mostly not over multiple decades of the current transfer characteristics. In this paper the performance limiting effects, occurring during the fabrication process of the device, such as doping profiles and midgap traps are analyzed by physics-based analytical models and their performance limiting abilities are determined. Additionally, performance enhancing possibilities, such as hetero-structures and ambipolarity improvements are introduced and discussed. An extensive double-gate n-Tunnel-FET model is presented, which meets the versatile device requirements and shows a good fit with TCAD simulations and measurement data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahesh, M; Borras, C; Frey, G
This workshop is jointly organized by the AAPM, the Spanish (SEFM) and the Russian (AMPR) Medical Physics Societies, as part of formal educational exchange agreements signed by the AAPM with each one of these two societies.With the rapid technological advances in radiation therapy both for treatment and imaging, it is challenging how physics is taught to medical physicists practicing in radiation therapy. The main Objectives: of this workshop is to bring forth current status, challenges and issues related to education of radiation therapy physicists here in the US, Spain and Russia. Medical physicists from each one of these countries willmore » present educational requirements of international recommendations and directives and analyze their impact on national legislations. Current and future educational models and plans for harmonization will be described. The role of universities, professional societies and examination boards, such as the American Board of Radiology, will be discussed. Minimum standards will be agreed upon. Learning Objectives: Review medical physics educational models supported by AAPM, SEFM, and AMPR. Discuss the role of governmental and non-governmental organizations in elaborating and adopting medical physics syllabi. Debate minimum educational standards for medical physics education based on country-specific resources.« less
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
Development of Cell Models as a Basis for Bioreactor Design for Genetically Modified Bacteria
1986-10-30
of future behavior based on specifying the current state vector . Generally a total population greater than 10,000 is sufficient to allow treatment of...specifying the current state vector (essentially values for all variables in the model). Deterministic models become increasingly valid as the number of...host I A) and therein PARASItIS converts the host’s biomaterial or activities into its own + A and B are in physical contact. SYMBIOSIS (or perhaps Oi
Evaluation of snow modeling with Noah and Noah-MP land surface models in NCEP GFS/CFS system
NASA Astrophysics Data System (ADS)
Dong, J.; Ek, M. B.; Wei, H.; Meng, J.
2017-12-01
Land surface serves as lower boundary forcing in global forecast system (GFS) and climate forecast system (CFS), simulating interactions between land and the atmosphere. Understanding the underlying land model physics is a key to improving weather and seasonal prediction skills. With the upgrades in land model physics (e.g., release of newer versions of a land model), different land initializations, changes in parameterization schemes used in the land model (e.g., land physical parametrization options), and how the land impact is handled (e.g., physics ensemble approach), it always prompts the necessity that climate prediction experiments need to be re-conducted to examine its impact. The current NASA LIS (version 7) integrates NOAA operational land surface and hydrological models (NCEP's Noah, versions from 2.7.1 to 3.6 and the future Noah-MP), high-resolution satellite and observational data, and land DA tools. The newer versions of the Noah LSM used in operational models have a variety of enhancements compared to older versions, where the Noah-MP allows for different physics parameterization options and the choice could have large impact on physical processes underlying seasonal predictions. These impacts need to be reexamined before implemented into NCEP operational systems. A set of offline numerical experiments driven by the GFS forecast forcing have been conducted to evaluate the impact of snow modeling with daily Global Historical Climatology Network (GHCN).
Hospital-Based Outpatient Direct Access to Physical Therapist Services: Current Status in Wisconsin.
Boissonnault, William G; Lovely, Karen
2016-11-01
Direct access to physical therapist services is available in all 50 states, with reported benefits including reduced health care costs, enhanced patient satisfaction, and no apparent compromised patient safety. Despite the benefits and legality of direct access, few data exist regarding the degree of model adoption, implementation, and utilization. The purposes of the study were: (1) to investigate the extent of implementation and utilization of direct access to outpatient physical therapist services in Wisconsin hospitals and medical centers, (2) to identify barriers to and facilitators for the provisioning of such services, and (3) to identify potential differences between facilities that do and do not provide direct access services. A descriptive survey was conducted. Eighty-nine survey questionnaires were distributed via email to the directors of rehabilitation services at Wisconsin hospitals and medical centers. The survey investigated facility adoption of the direct access model, challenges to and resources utilized during model implementation, and current barriers affecting model utilization. Forty-seven (52.8%) of the 89 survey questionnaires were completed and returned. Forty-two percent of the survey respondents (20 of 47) reported that their facility offered direct access to physical therapist services, but fewer than 10% of patients were seen via direct access at 95% of the facilities offering such services. The most frequently reported obstacles to model implementation and utilization were lack of health care provider, administrator, and patient knowledge of direct access; its legality in Wisconsin; and physical therapists' differential diagnosis and medical screening abilities. Potential respondent bias and limited generalizability of the results are limitations of the study. These findings apply to hospitals and medical centers located in Wisconsin, not to facilities located in other geographic regions. Respondents representing direct access organizations reported more timely access to physical therapist services, enhanced patient satisfaction, decreased organizational health care costs, and improved efficiency of resource utilization as benefits of model implementation. For organizations without direct access, not being an organizational priority, concerns from referral sources, and concerns that the physician-patient relationship would be negatively affected were noted as obstacles to model adoption. © 2016 American Physical Therapy Association.
ERIC Educational Resources Information Center
Pfister, Hans
2014-01-01
Physics students encountering electric circuits for the first time often ask why adding more resistors to a circuit sometimes increases and sometimes decreases the resulting total resistance. It appears that these students have an inadequate understanding of current flow and resistance. Students who do not adopt a model of current, voltage, and…
Bell, R.G.; Hume, T.M.; Dolphin, T.J.; Green, M.O.; Walters, R.A.
1997-01-01
Physical environmental factors, including sediment characteristics, inundation time, tidal currents and wind waves, likely to influence the structure of the benthic community at meso-scales (1-100 m) were characterised for a sandflat off Wiroa Island (Manukau Harbour, New Zealand). In a 500 x 250 m study site, sediment characteristics and bed topography were mostly homogenous apart from patches of low-relief ridges and runnels. Field measurements and hydrodynamic modelling portray a complex picture of sediment or particulate transport on the intertidal flat, involving interactions between the larger scale tidal processes and the smaller scale wave dynamics (1-4 s; 1-15 m). Peak tidal currents in isolation are incapable of eroding bottom sediments, but in combination with near-bed orbital currents generated by only very small wind waves, sediment transport can be initiated. Work done on the bed integrated over an entire tidal cycle by prevailing wind waves is greatest on the elevated and flatter slopes of the study site, where waves shoal over a wider surf zone and water depths remain shallow e enough for wave-orbital currents to disturb the bed. The study also provided physical descriptors quantifying static and hydrodynamic (tidal and wave) factors which were used in companion studies on ecological spatial modelling of bivalve distributions and micro-scale sediment reworking and transport.
Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, G. L.; Rotunno, A. M.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari
2009-07-01
Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a fewmore » nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.« less
NASA Technical Reports Server (NTRS)
Chuss, David
2010-01-01
The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.
Physically based DC lifetime model for lead zirconate titanate films
NASA Astrophysics Data System (ADS)
Garten, Lauren M.; Hagiwara, Manabu; Ko, Song Won; Trolier-McKinstry, Susan
2017-09-01
Accurate lifetime predictions for Pb(Zr0.52Ti0.48)O3 thin films are critical for a number of applications, but current reliability models are not consistent with the resistance degradation mechanisms in lead zirconate titanate. In this work, the reliability and lifetime of chemical solution deposited (CSD) and sputtered Pb(Zr0.52Ti0.48)O3 thin films are characterized using highly accelerated lifetime testing (HALT) and leakage current-voltage (I-V) measurements. Temperature dependent HALT results and impedance spectroscopy show activation energies of approximately 1.2 eV for the CSD films and 0.6 eV for the sputtered films. The voltage dependent HALT results are consistent with previous reports, but do not clearly indicate what causes device failure. To understand more about the underlying physical mechanisms leading to degradation, the I-V data are fit to known conduction mechanisms, with Schottky emission having the best-fit and realistic extracted material parameters. Using the Schottky emission equation as a base, a unique model is developed to predict the lifetime under highly accelerated testing conditions based on the physical mechanisms of degradation.
Phenomenological Modeling of Infrared Sources: Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming; Kwok, Sun (Editor)
1993-01-01
Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.
User assessment of smoke-dispersion models for wildland biomass burning.
Steve Breyfogle; Sue A. Ferguson
1996-01-01
Several smoke-dispersion models, which currently are available for modeling smoke from biomass burns, were evaluated for ease of use, availability of input data, and output data format. The input and output components of all models are listed, and differences in model physics are discussed. Each model was installed and run on a personal computer with a simple-case...
NIMROD resistive magnetohydrodynamic simulations of spheromak physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, E. B.; Cohen, B. I.; McLean, H. S.
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena andmore » the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less
NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, E B; Cohen, B I; McLean, H S
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth ofmore » symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less
McNeill, Lorna Haughton; Wyrwich, Kathleen W; Brownson, Ross C; Clark, Eddie M; Kreuter, Matthew W
2006-02-01
Social ecological models suggest that conditions in the social and physical environment, in addition to individual factors, play important roles in health behavior change. Using structural equation modeling, this study tested a theoretically and empirically based explanatory model of physical activity to examine theorized direct and indirect effects of individual (e.g., motivation and self-efficacy), social environmental (e.g., social support), and physical environmental factors (e.g., neighborhood quality and availability of facilities). A community-based sample of adults (N = 910) was recruited from 2 public health centers (67% female, 43% African American, 43% < $20,000/year, M age = 33 years) and completed a self-administered survey assessing their current physical activity level, intrinsic and extrinsic motivation for physical activity, perceived social support, self-efficacy, and perceptions of the physical environment. Results indicated that (a) perceptions of the physical environment had direct effects on physical activity, (b) both the social and physical environments had indirect effects on physical activity through motivation and self-efficacy, and (c) social support influenced physical activity indirectly through intrinsic and extrinsic motivation. For all forms of activity, self-efficacy was the strongest direct correlate of physical activity, and evidence of a positive dose-response relation emerged between self-efficacy and intensity of physical activity. Findings from this research highlight the interactive role of individual and environmental influences on physical activity.
Electrochemical current noise on aluminum microelectrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaac, J.W.; Hebert, K.R.
1999-02-01
Aluminum disk microelectrodes were used to investigate electrochemical current noise in pH 8.8 borate buffer. The current noise spectra, expressed in terms of the current spectral density, had a characteristic two-plateau structure in the experimental bandwidth of 0.05--50 Hz, were potential-independent, and increased proportionally to electrode area. Injection of NaCl solution near the electrode surface, at potentials below that of the onset of pitting corrosion, caused 0.1--1 Hz current fluctuations to appear. From the frequency and area dependence of the current spectral density in the chloride-free solution, it was concluded that the noise arose from a number of discrete, approximatelymore » evenly distributed voltage noise sources positioned electrically in series with the inner barrier layer of the oxide film. A mathematical model for the current noise was developed which described a physical mechanism for noise production based on fluctuations in the widths of cracks or pores in the outer part of the surface film. The model was consistent with the observed area and frequency dependence of the current spectral density, suggesting that the physical process it described is a possible mechanism of noise generation. It could not be determined whether the noise sources were isolated defects or flaws, or pores in an outer precipitated portion of the oxide film.« less
The distribution of density in supersonic turbulence
NASA Astrophysics Data System (ADS)
Squire, Jonathan; Hopkins, Philip F.
2017-11-01
We propose a model for the statistics of the mass density in supersonic turbulence, which plays a crucial role in star formation and the physics of the interstellar medium (ISM). The model is derived by considering the density to be arranged as a collection of strong shocks of width ˜ M^{-2}, where M is the turbulent Mach number. With two physically motivated parameters, the model predicts all density statistics for M>1 turbulence: the density probability distribution and its intermittency (deviation from lognormality), the density variance-Mach number relation, power spectra and structure functions. For the proposed model parameters, reasonable agreement is seen between model predictions and numerical simulations, albeit within the large uncertainties associated with current simulation results. More generally, the model could provide a useful framework for more detailed analysis of future simulations and observational data. Due to the simple physical motivations for the model in terms of shocks, it is straightforward to generalize to more complex physical processes, which will be helpful in future more detailed applications to the ISM. We see good qualitative agreement between such extensions and recent simulations of non-isothermal turbulence.
An analytical drain current model for symmetric double-gate MOSFETs
NASA Astrophysics Data System (ADS)
Yu, Fei; Huang, Gongyi; Lin, Wei; Xu, Chuanzhong
2018-04-01
An analytical surface-potential-based drain current model of symmetric double-gate (sDG) MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson's equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson's equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.
Han, Ho; Pettee Gabriel, Kelley; Kohl, Harold Willis
2017-01-01
The Transtheoretical Model (TTM) is a successful framework for guiding behavior change programs for several health behaviors, yet its application to reduce of sedentary behavior has been neglected. In addition, no data exist regarding the association between determinants of sedentary behaviors based on the TTM and physical activity behavior. The purpose of this study was to investigate college students' stages of motivational readiness to avoid sedentary behaviors and relevant psychological determinants using newly developed TTM questionnaires and to identify the association between current physical activity and sedentary behaviors based on TTM constructs. Data were obtained from 225 college students enrolled in health education and physical education courses. Participants completed a package of questionnaires including validated TTM, physical activity and sitting time questionnaires. Participants also wore an accelerometer for seven consecutive days. MANOVAs were conducted to determine mean differences in psychological constructs across the TTM stages, and Chi-square tests and Spearman correlation were used to evaluate the associations between current physical activity and sedentary behavior. A majority of the participants were in the sedentary stages, and men and women differed in proportion of individuals in the stages (78.0% vs. 68.1%, respectively). The gender difference was also found in use of the processes of change. In general, the mean scores of the TTM constructs increased as the stages progressed. No significant associations were found between the TTM constructs for sedentary behavior and current physical activity levels (p>0.05). A high proportion of college students were in sedentary stages regardless of physical activity levels, but different distributions in men and women. Participants in earlier stages were less likely to utilize the TTM constructs to reduce sedentary behaviors than those in later stages. A lack of association between physical activity and the psychological determinants of sedentary behavior was found.
Research in Theoretical High Energy Physics- Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Nobuchika
PI Dr. Okada’s research interests are centered on phenomenological aspects of particle physics. It has been abundantly clear in recent years that an extension of the Standard Model (SM), i.e. new physics beyond the SM, is needed to explain a number of experimental observations such as the neutrino oscillation data, the existence of non-baryonic dark matter, and the observed baryon asymmetry of the Universe. In addition, the SM suffers from several theoretical/conceptual problems, such as the gauge hierarchy problem, the fermion mass hierarchy problem, and the origin of the electroweak symmetry breaking. It is believed that these problems can alsomore » be solved by new physics beyond the SM. The main purpose of the Dr. Okada’s research is a theoretical investigation of new physics opportunities from various phenomenological points of view, based on the recent progress of experiments/observations in particle physics and cosmology. There are many possibilities to go beyond the SM and many new physics models have been proposed. The major goal of the project is to understand the current status of possible new physics models and obtain the future prospects of new physics phenomena toward their discoveries.« less
Climate Model Diagnostic Analyzer
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei
2015-01-01
The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.
This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tregillis, I. L.
The Los Alamos Physics and Engineering Models (PEM) program has developed a model for Richtmyer-Meshkov instability (RMI) based ejecta production from shock-melted surfaces, along with a prescription for a self-similar velocity distribution (SSVD) of the resulting ejecta particles. We have undertaken an effort to validate this source model using data from explosively driven tin coupon experiments. The model’s current formulation lacks a crucial piece of physics: a method for determining the duration of the ejecta production interval. Without a mechanism for terminating ejecta production, the model is not predictive. Furthermore, when the production interval is hand-tuned to match time-integrated massmore » data, the predicted time-dependent mass accumulation on a downstream sensor rises too sharply at early times and too slowly at late times because the SSVD overestimates the amount of mass stored in the fastest particles and underestimates the mass stored in the slowest particles. The functional form of the resulting m(t) is inconsistent with the available time-dependent data; numerical simulations and analytic studies agree on this point. Simulated mass tallies are highly sensitive to radial expansion of the ejecta cloud. It is not clear if the same effect is present in the experimental data but if so, depending on the degree, this may challenge the model’s compatibility with tin coupon data. The current implementation of the model in FLAG is sensitive to the detailed interaction between kinematics (hydrodynamic methods) and thermodynamics (material models); this sensitivity prohibits certain physics modeling choices. The appendices contain an extensive analytic study of piezoelectric ejecta mass measurements, along with test problems, excerpted from a longer work (LA-UR-17-21218).« less
Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System
NASA Astrophysics Data System (ADS)
Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.
2017-12-01
The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS
Rowe, A; Hernandez, P; Kuhle, S; Kirkland, S
2017-10-01
Decreased lung function has health impacts beyond diagnosable lung disease. It is therefore important to understand the factors that may influence even small changes in lung function including obesity, physical fitness and physical activity. The aim of this study was to determine the anthropometric measure most useful in examining the association with lung function and to determine how physical activity and physical fitness influence this association. The current study used cross-sectional data on 4662 adults aged 40-79 years from the Canadian Health Measures Survey Cycles 1 and 2. Linear regression models were used to examine the association between the anthropometric and lung function measures (forced expiratory volume in 1 s [FEV 1 ] and forced vital capacity [FVC]); R 2 values were compared among models. Physical fitness and physical activity terms were added to the models and potential confounding was assessed. Models using sum of 5 skinfolds and waist circumference consistently had the highest R 2 values for FEV 1 and FVC, while models using body mass index consistently had among the lowest R 2 values for FEV 1 and FVC and for men and women. Physical activity and physical fitness were confounders of the relationships between waist circumference and the lung function measures. Waist circumference remained a significant predictor of FVC but not FEV 1 after adjustment for physical activity or physical fitness. Waist circumference is an important predictor of lung function. Physical activity and physical fitness should be considered as potential confounders of the relationship between anthropometric measures and lung function. Copyright © 2017. Published by Elsevier Ltd.
The clouds of Venus. [physical and chemical properties
NASA Technical Reports Server (NTRS)
Young, A. T.
1975-01-01
The physical and chemical properties of the clouds of Venus are reviewed, with special emphasis on data that are related to cloud dynamics. None of the currently-popular interpretations of cloud phenomena on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models. Several lines of attack are suggested to resolve some of the contradictions. A sound understanding of the clouds appears to be several years in the future.
Effect of mean velocity shear on the dissipation rate of turbulent kinetic energy
NASA Technical Reports Server (NTRS)
Yoshizawa, Akira; Liou, Meng-Sing
1992-01-01
The dissipation rate of turbulent kinetic energy in incompressible turbulence is investigated using a two-scale DIA. The dissipation rate is shown to consist of two parts; one corresponds to the dissipation rate used in the current turbulence models of eddy-viscosity type, and another comes from the viscous effect that is closely connected with mean velocity shear. This result can elucidate the physical meaning of the dissipation rate used in the current turbulence models and explain part of the discrepancy in the near-wall dissipation rates between the current turbulence models and direct numerical simulation of the Navier-Stokes equation.
Craig, Cora Lynn; Bauman, Adrian; Latimer-Cheung, Amy; Rhodes, Ryan E; Faulkner, Guy; Berry, Tanya R; Tremblay, Mark S; Spence, John C
2015-01-01
The objective of the My ParticipACTION campaign was to inspire Canadian adults to increase their physical activity through messaging that was relevant, engaging, and designed to build self-efficacy to be more active. This research examined the communication effects of the campaign according to the a priori Hierarchy of Effects Model (saliency → cognitive engagement → self-efficacy to become more active → trial behavior) and investigated how these effects related to overall self-efficacy for physical activity, intention to be active, and current activity level. Participants (N = 1,110) were recruited from an existing panel of Canadian adults 18 years and older and completed a short online questionnaire about the potential communication effects. Logistic regression models were constructed to test the communication effects adjusting for age, gender, and education. The relations were consistent with those hypothesized in the model. In addition, some earlier outcomes in the sequence of effects were associated with other outcomes further down the progression. When intention to be active was included, the initial relation between ad-specific self-efficacy and current physical activity disappeared. This analysis suggested that the campaign was successful in increasing self-efficacy to be more active and that using the Hierarchy of Effects Model was useful in guiding the design of campaign messages and assessing communication effects. Given the limited amount of theoretical testing of the Hierarchy of Effects Model, future research employing longitudinal designs is required to further confirm the communication effects of such an intervention and further test the model.
NASA Astrophysics Data System (ADS)
Jain, Prateek; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh
2017-08-01
We present a surface potential based analytical model for double gate tunnel field effect transistor (DGTFET) for the current, terminal charges, and terminal capacitances. The model accounts for the effect of the mobile charge in the channel and captures the device physics in depletion as well as in the strong inversion regime. The narrowing of the tunnel barrier in the presence of mobile charges in the channel is incorporated via modeling of the inverse decay length, which is constant under channel depletion condition and bias dependent under inversion condition. To capture the ambipolar current behavior in the model, tunneling at the drain junction is also included. The proposed model is validated against TCAD simulation data and it shows close match with the simulation data.
Prediction of enjoyment in school physical education.
Gråstén, Arto; Jaakkola, Timo; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami
2012-01-01
The specific aim of this study was to examine whether motivational climate, perceived physical competence, and exercise motivation predict enjoyment in school physical education within the same sample of adolescents across three years of secondary school. A sample of 639 students (girls = 296, boys = 343) aged between 13- to 15-years at the commencement of the study completed the Intrinsic Motivation Climate in Physical Education Questionnaire, Physical Self-Perception Profile, Physical Education Motivation Scale, and Physical Education Enjoyment Scale. Results derived from path analyses indicated that task-involving motivational climate predicted enjoyment in physical education via perceived physical competence and intrinsic motivation in both girls and boys. In particular, these results supported previous findings of Vallerand et. al (1997) with the self-determination theory and the achievement goal theory. Ego-involving climate was not a significant predictor either in girls or boys. The current results provide continuing support for the investigation of Vallerand's model in the physical education setting, and highlight that motivational climate is an area that requires further evaluation as a contributing factor in the improvement of physical education teaching. A better understanding of the role of motivational climate may assist efforts to promote children's and adolescents' perceived physical competence, intrinsic motivation, and enjoyment in the school physical education setting. Key pointsThe findings of the current study support existing suggestions of Vallerand's (1997) model in which social factors mediated by a psychological mediator, and exercise motivation are related to positive consequences in the PE context.Task-involving motivational climate predicted PE enjoyment via perceived physical competence and intrinsic motivation with both girls and boys. Task-involving motivational climate in PE lessons at Grade 7 had a strong association with PE enjoyment via perceived physical competence and intrinsic motivation at Grade 9 for both girls and boys.Ego-involving climate did not fit either the data for the girls or boys, as PE lessons based on ego-involving motivational climate did not significantly influence on the level of PE enjoyment.The results of the current study and previous practical findings support task-involving teaching methods to promote adolescent's PE enjoyment through secondary school years. School PE could be most effective if based on task-involving motivational climate, in which the main objective is increasing students' perceived physical competence, intrinsic motivation, and enjoyment.
ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Jarek
2005-08-29
The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input,more » which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates have no impact on the model developed in this report.« less
Planning for Capital Reinvestment.
ERIC Educational Resources Information Center
Biedenweg, Frederick; Weisburg-Swanson, Lynda; Gardner, Catherine
1998-01-01
Describes and evaluates four alternatives for planning and budgeting for capital reinvestment for college and university facilities: physical plant auditing; a depreciation-based approach; percentage of current replacement value; and facility subsystem modeling, or life-cycle modeling. Each has advantages and limitations in budgeting for and…
Modeling of spacecraft charging
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1977-01-01
Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.
Defining event reconstruction of digital crime scenes.
Carrier, Brian D; Spafford, Eugene H
2004-11-01
Event reconstruction plays a critical role in solving physical crimes by explaining why a piece of physical evidence has certain characteristics. With digital crimes, the current focus has been on the recognition and identification of digital evidence using an object's characteristics, but not on the identification of the events that caused the characteristics. This paper examines digital event reconstruction and proposes a process model and procedure that can be used for a digital crime scene. The model has been designed so that it can apply to physical crime scenes, can support the unique aspects of a digital crime scene, and can be implemented in software to automate part of the process. We also examine the differences between physical event reconstruction and digital event reconstruction.
Victimization, Smoking, and Chronic Physical Health Problems Among Sexual Minority Women
Simoni, Jane M.
2014-01-01
Background Sexual minority women (SMW) have been shown to be at increased risk for abuse, smoking, and chronic physical health problems compared with heterosexual women. In the general population, abuse and smoking are associated with physical health problems. However, there has been little research on their associations among SMW. Purpose The current study examined a mediational model of abuse, smoking, and self-reported physical health conditions in a national sample of SMW. Methods Participants (N=1,224) were recruited via the Internet and completed measures of childhood trauma, adult sexual assault, smoking, body mass index, and chronic medical conditions. Results Structural equation modeling demonstrated that childhood abuse was associated with adult sexual assault, smoking, and physical health problems, but smoking was not a significant mediator. Conclusions The results highlight the impact of childhood abuse on physical health problems among SMW and the need to examine other health behaviors that may mediate this relation. PMID:21735343
Future sensitivity to new physics in Bd, Bs, and K mixings
NASA Astrophysics Data System (ADS)
Charles, Jérôme; Descotes-Genon, Sébastien; Ligeti, Zoltan; Monteil, Stéphane; Papucci, Michele; Trabelsi, Karim
2014-02-01
We estimate, in a large class of scenarios, the sensitivity to new physics in Bd and Bs mixings achievable with 50 ab-1 of Belle II and 50 fb-1 of LHCb data. We find that current limits on new physics contributions in both Bd ,s systems can be improved by a factor of ˜5 for all values of the CP-violating phases, corresponding to over a factor of 2 increase in the scale of new physics probed. Assuming the same suppressions by Cabbibo-Kobayashi-Maskawa matrix elements as those of the standard model box diagrams, the scale probed will be about 20 TeV for tree-level new physics contributions, and about 2 TeV for new physics arising at one loop. We also explore the future sensitivity to new physics in K mixing. Implications for generic new physics and for various specific scenarios, such as minimal flavor violation, light third-generation dominated flavor violation, or U(2) flavor models are studied.
Testing the standard model by precision measurement of the weak charges of quarks.
Young, R D; Carlini, R D; Thomas, A W; Roche, J
2007-09-21
In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the standard model. Consequently, this result improves the lower-bound on the scale of relevant new physics to approximately 1 TeV.
A Dynamic Coupled Magnetosphere-Ionosphere-Ring Current Model
NASA Astrophysics Data System (ADS)
Pembroke, Asher
In this thesis we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM). We report some results of the coupled model using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-beta ¡=1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging. Finally, we introduce several new methods for magnetospheric visualization and analysis, including a fluid-spatial volume for RCM and a field-aligned analysis mesh for the LFM. The latter allows us to construct novel visualizations of flux tubes, drift surfaces, topological boundaries, and bursty-bulk flows.
Next generation initiation techniques
NASA Technical Reports Server (NTRS)
Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans
1993-01-01
Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The third kind of next-generation technique involves strategies to initialize convective scale (non-hydrostatic) models.
A physical optics/equivalent currents model for the RCS of trihedral corner reflectors
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polycarpou, Anastasis C.
1993-01-01
The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.
Current challenges in fundamental physics
NASA Astrophysics Data System (ADS)
Egana Ugrinovic, Daniel
The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of particle physics. The Standard Model is a remarkably successful theory of fundamental physics, but it suffers from severe problems. It does not provide an explanation for the origin or stability of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for dark matter. In this thesis we provide experimentally testable solutions for most of these problems and we study their phenomenology.
NASA Astrophysics Data System (ADS)
Correnti, Dan S.
2018-06-01
The underlying mechanisms of the fundamental electric and magnetic forces are not clear in current models; they are mainly mathematical constructs. This study examines the underlying physics from a classical viewpoint to explain Coulomb's electric force and Lorentz's magnetic force. This is accomplished by building upon already established physics. Although no new physics is introduced, extension of existing models is made by close examination. We all know that an electron carries a bound cylindrical B-field (CBF) as it translates. Here, we show how the electron CBF plays an intrinsic role in the generation of the electric and magnetic forces.
Spike train generation and current-to-frequency conversion in silicon diodes
NASA Technical Reports Server (NTRS)
Coon, D. D.; Perera, A. G. U.
1989-01-01
A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.
Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment
NASA Astrophysics Data System (ADS)
O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.
2018-03-01
Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.
DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov
Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relativelymore » new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larmat, Carene; Rougier, Esteban; Lei, Zhou
This project is in support of the Source Physics Experiment SPE (Snelson et al. 2013), which aims to develop new seismic source models of explosions. One priority of this program is first principle numerical modeling to validate and extend current empirical models.
Brocchini, Maurizio
2013-12-08
This paper, which is largely the fruit of an invited talk on the topic at the latest International Conference on Coastal Engineering, describes the state of the art of modelling by means of Boussinesq-type models (BTMs). Motivations for using BTMs as well as their fundamentals are illustrated, with special attention to the interplay between the physics to be described, the chosen model equations and the numerics in use. The perspective of the analysis is that of a physicist/engineer rather than of an applied mathematician. The chronological progress of the currently available BTMs from the pioneering models of the late 1960s is given. The main applications of BTMs are illustrated, with reference to specific models and methods. The evolution in time of the numerical methods used to solve BTMs (e.g. finite differences, finite elements, finite volumes) is described, with specific focus on finite volumes. Finally, an overview of the most important BTMs currently available is presented, as well as some indications on improvements required and fields of applications that call for attention.
Brocchini, Maurizio
2013-01-01
This paper, which is largely the fruit of an invited talk on the topic at the latest International Conference on Coastal Engineering, describes the state of the art of modelling by means of Boussinesq-type models (BTMs). Motivations for using BTMs as well as their fundamentals are illustrated, with special attention to the interplay between the physics to be described, the chosen model equations and the numerics in use. The perspective of the analysis is that of a physicist/engineer rather than of an applied mathematician. The chronological progress of the currently available BTMs from the pioneering models of the late 1960s is given. The main applications of BTMs are illustrated, with reference to specific models and methods. The evolution in time of the numerical methods used to solve BTMs (e.g. finite differences, finite elements, finite volumes) is described, with specific focus on finite volumes. Finally, an overview of the most important BTMs currently available is presented, as well as some indications on improvements required and fields of applications that call for attention. PMID:24353475
Increasing Physical Activity in Children with Autism through Music, Prompting, and Modeling
ERIC Educational Resources Information Center
Dieringer, Shannon Titus; Zoder-Martell, Kimberly; Porretta, David L.; Bricker, Angela; Kabazie, Jaclyn
2017-01-01
The purpose of the current study was to evaluate strategies to increase gross motor task completion (GMTC) in physical activity programming for children with autism spectrum disorder in a school setting. A multiple baseline design across five participants was used compare the impact of the presentation of music with lyrical instruction alone and…
A Flush Toilet Model for the Transistor
ERIC Educational Resources Information Center
Organtini, Giovanni
2012-01-01
In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted.…
USDA-ARS?s Scientific Manuscript database
In this paper we generated DNA fingerprints and end sequences from bacterial artificial chromosomes (BACs) from two new libraries to improve the first generation integrated physical and genetic map of the rainbow trout (Oncorhynchus mykiss) genome. The current version of the physical map is compose...
Shim, Eun-Jung; Hahm, Bong-Jin; Go, Dong Jin; Lee, Kwang-Min; Noh, Hae Lim; Park, Seung-Hee; Song, Yeong Wook
2018-06-01
To examine factors in the fear-avoidance model, such as pain, pain catastrophizing, fear-avoidance beliefs, physical disability, and depression and their relationships with physical and psychological quality of life in patients with rheumatic diseases. The data were obtained from 360 patients with rheumatic diseases who completed self-report measures assessing study variables. Structural equation modeling was used to examine the hypothesized relationships among factors specified in the fear-avoidance model predicting physical and psychological quality of life. Final models fit the data well, explaining 96% and 82% of the variance in physical and psychological quality of life, respectively. Higher pain catastrophizing was related to stronger fear-avoidance beliefs that had a direct negative association with physical disability and depression, which, in turn, negatively affected physical quality of life. Pain severity was also directly related to physical disability. Physical disability also affected physical quality of life indirectly through depression. The hypothesized relationships specified in the model were also confirmed for psychological quality of life. However, physical disability had an indirect association with psychological quality of life via depression. The current results underscore the significant role of cognitive, affective, and behavioral factors in perceived physical disability and their mediated detrimental effect on physical and psychological quality of life in patients with rheumatic diseases. Implications for rehabilitation The fear-avoidance model is applicable to the prediction of quality of life in patients with rheumatic diseases. As pain-catastrophizing and fear-avoidance beliefs are important factors linked to physical disability and depression, intervening these cognitive factors is necessary to improve physical function and depression in patients with rheumatic diseases. Considering the strong association between depression and physical and psychological quality of life, the assessment and treatment of the former should be included in the rehabilitation of patients with rheumatic diseases. Interventions targeting physical function and depression are likely to be effective in terms of improving physical and psychological quality of life in patients with rheumatic diseases.
NASA Astrophysics Data System (ADS)
Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.
2016-05-01
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.
1994-01-01
Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.
Physical processes associated with current collection by plasma contactors
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, Victoria A.
1990-01-01
Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.
Open Access Publishing in High-Energy Physics: the SCOAP3 Initiative
NASA Astrophysics Data System (ADS)
Mele, S.
2010-10-01
Scholarly communication in High-Energy Physics (HEP) shows traits very similar to Astronomy and Astrophysics: pervasiveness of Open Access to preprints through community-based services; a culture of openness and sharing among its researchers; a compact number of yearly articles published by a relatively small number of journals which are dear to the community. These aspects have led HEP to spearhead an innovative model for the transition of its scholarly publishing to Open Access. The Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP) aims to be a central body to finance peer-review service rather than the purchase of access to information as in the traditional subscription model, with all articles in the discipline eventually available in Open Access. Sustainable funding to SCOAP would come from libraries, library consortia and HEP funding agencies, through a re-direction of funds currently spent for subscriptions to HEP journals. This paper presents the cultural and bibliometric factors at the roots of SCOAP and the current status of this worldwide initiative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platania, P., E-mail: platania@ifp.cnr.it; Figini, L.; Farina, D.
The purpose of this work is the optical modeling and physical performances evaluations of the JT-60SA ECRF launcher system. The beams have been simulated with the electromagnetic code GRASP® and used as input for ECCD calculations performed with the beam tracing code GRAY, capable of modeling propagation, absorption and current drive of an EC Gaussion beam with general astigmatism. Full details of the optical analysis has been taken into account to model the launched beams. Inductive and advanced reference scenarios has been analysed for physical evaluations in the full poloidal and toroidal steering ranges for two slightly different layouts ofmore » the launcher system.« less
Ionization potential depression in an atomic-solid-plasma picture
NASA Astrophysics Data System (ADS)
Rosmej, F. B.
2018-05-01
Exotic solid density matter such as heated hollow crystals allow extended material studies while their physical properties and models such as the famous ionization potential depression are presently under renewed controversial discussion. Here we develop an atomic-solid-plasma (ASP) model that permits ionization potential depression studies also for single and multiple core hole states. Numerical calculations show very good agreement with recently available data not only in absolute values but also for Z-scaled properties while currently employed methods fail. For much above solid density compression, the ASP model predicts increased K-edge energies that are related to a Fermi surface rising. This is in good agreement with recent quantum molecular dynamics simulations. For hot dense matter a quantum number dependent optical electron finite temperature ion sphere model is developed that fits well with line shift and line disappearance data from dense laser produced plasma experiments. Finally, the physical transparency of the ASP picture allows a critical discussion of current methods.
Development of the Joint NASA/NCAR General Circulation Model
NASA Technical Reports Server (NTRS)
Lin, S.-J.; Rood, R. B.
1999-01-01
The Data Assimilation Office at NASA/Goddard Space Flight Center is collaborating with NCAR/CGD in an ambitious proposal for the development of a unified climate, numerical weather prediction, and chemistry transport model which is suitable for global data assimilation of the physical and chemical state of the Earth's atmosphere. A prototype model based on the NCAR CCM3 physics and the NASA finite-volume dynamical core has been built. A unique feature of the NASA finite-volume dynamical core is its advanced tracer transport algorithm on the floating Lagrangian control-volume coordinate. The model currently has a highly idealized ozone production/loss chemistry derived from the observed 2D (latitude-height) climatology of the recent decades. Nevertheless, the simulated horizontal wave structure of the total ozone is in good qualitative agreement with the observed (TOMS). Long term climate simulations and NWP experiments have been carried out. Current up to date status and futur! e plan will be discussed in the conference.
Ható, Zoltán; Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezsö
2017-07-21
In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; ...
2016-09-01
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less
Future Warming Patterns Linked to Today's Climate Variability.
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.
NASA Astrophysics Data System (ADS)
Yu, Fei; Ma, Xiaoyu; Deng, Wanling; Liou, Juin J.; Huang, Junkai
2017-11-01
A physics-based drain current compact model for amorphous InGaZnO (a-InGaZnO) thin-film transistors (TFTs) is proposed. As a key feature, the surface potential model accounts for both exponential tail and deep trap densities of states, which are essential to describe a-InGaZnO TFT electrical characteristics. The surface potential is solved explicitly without the process of amendment and suitable for circuit simulations. Furthermore, based on the surface potential, an explicit closed-form expression of the drain current is developed. For the cases of the different operational voltages, surface potential and drain current are verified by numerical results and experimental data, respectively. As a result, our model can predict DC characteristics of a-InGaZnO TFTs.
Computational Modeling of Hydrodynamics and Scour around Underwater Munitions
NASA Astrophysics Data System (ADS)
Liu, X.; Xu, Y.
2017-12-01
Munitions deposited in water bodies are a big threat to human health, safety, and environment. It is thus imperative to predict the motion and the resting status of the underwater munitions. A multitude of physical processes are involved, which include turbulent flows, sediment transport, granular material mechanics, 6 degree-of-freedom motion of the munition, and potential liquefaction. A clear understanding of this unique physical setting is currently lacking. Consequently, it is extremely hard to make reliable predictions. In this work, we present the computational modeling of two importance processes, i.e., hydrodynamics and scour, around munition objects. Other physical processes are also considered in our comprehensive model. However, they are not shown in this talk. To properly model the dynamics of the deforming bed and the motion of the object, an immersed boundary method is implemented in the open source CFD package OpenFOAM. Fixed bed and scour cases are simulated and compared with laboratory experiments. The future work of this project will implement the coupling between all the physical processes.
First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2014-10-01
Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.
Movement Activity Determination with Health-related Variables of University Students in Kosice.
Bakalár, Peter; Zvonar, Martin; Sedlacek, Jaromir; Lenkova, Rut; Sagat, Peter; Vojtasko, Lubos; Liptakova, Erika; Barcalova, Miroslava
2018-06-01
There is currently a strong scientific evidence about the negative health consequences of physical inactivity. One of the potential tools for promoting physical activity at the institutional level of the Ecological model is to create conditions and settings that would enable pupils, students and employees engage in some form of physical activity. However, physical activities as a subject are being eliminated from the study programs at Slovak universities. The purpose of the study was to find current evidence about the level of structured physical activity and health-related variables in university students in Košice. The sample consisted of 1,993 or, more precisely, 1,398 students who attended two universities in Košice. To collect data, students completed a questionnaire and were tested for body height, body weight, circumferential measures and percentage body fat. The university students did not sufficiently engage in a structured physical activity. A large number of students had either low or high values of percentage body fat and BMI and high WHR values. Our findings have shown that the research into physical activity of university students should receive more attention.
An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud
Dinh, Thanh; Kim, Younghan
2016-01-01
This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud. PMID:27367689
An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud.
Dinh, Thanh; Kim, Younghan
2016-06-28
This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud.
Meson exchange current (MEC) models in neutrino interaction generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katori, Teppei
2015-05-15
Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process inmore » neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.« less
Krueger, Hans; Krueger, Joshua; Koot, Jacqueline
2015-04-30
Tobacco smoking, excess weight and physical inactivity contribute substantially to the preventable disease burden in Canada. The purpose of this paper is to determine the potential reduction in economic burden if all provinces achieved prevalence rates of these three risk factors (RFs) equivalent to those of the province with the lowest rates, and to update and address a limitation noted in our previous model. We used a previously developed approach based on population attributable fractions to estimate the economic burden associated with these RFs. Sex-specific relative risk and age-/sex-specific prevalence data were used in the modelling. The previous model was updated using the most current data for developing resource allocation weights. In 2012, the prevalence of tobacco smoking, excess weight and physical inactivity was the lowest in British Columbia. If age- and sex-specific prevalence rates from BC were applied to populations living in the other provinces, the annual economic burden attributable to these three RFs would be reduced by $5.3 billion. Updating the model resulted in a considerable shift in economic burden from smoking to excess weight, with the estimated annual economic burden attributable to excess weight now 25% higher compared to that of tobacco smoking ($23.3 vs. $18.7 billion). Achieving RF prevalence rates equivalent to those of the province with the lowest rates would result in a 10% reduction in economic burden attributable to excess weight, smoking and physical inactivity in Canada. This study shows that using current resource use data is important for this type of economic modelling.
Liu-Ambrose, T Y L; Ashe, M C; Marra, C
2010-11-01
In this study, whether physical activity is independently associated with direct healthcare costs in community-dwelling older adults with multiple chronic conditions was examined. Cross-sectional analysis. Research laboratory. 299 community-dwelling men and women volunteers aged 65 years and older with chronic conditions. None. Primary dependent variable was direct healthcare costs incurred in the previous 3 months. Participants completed the Health Resource Utilisation (HRU) questionnaire. To estimate HRU, direct costs in the previous 3 months were calculated using the three-party payer perspective of the British Columbia Ministry of Health, deemed representative of the Canadian healthcare system costs. For medications, the Retail Pharmacy Dispensed prescription cost tables were used. Primary independent variables were (1) self-report current level of physical activity as assessed by the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) and (2) general balance and mobility as assessed by the National Institute on Aging Balance Scale. The mean number of chronic conditions per participant was six. Current level of physical activity was independently and inversely associated with HRU. Age, sex, number of chronic conditions, global cognitive function, body mass index, and general balance and mobility together accounted for 24.3% of the total variance. Adding the PASIPD score resulted in an R2 change of 3.3% and significantly improved the model. The total variance accounted by the final model was 27.6%. Physical activity promotion may reduce healthcare costs in older adults with chronic conditions.
Ruiz, Jorge G; Andrade, Allen D; Anam, Ramankumar; Aguiar, Rudxandra; Sun, Huaping; Roos, Bernard A
2012-01-01
The prevalence of obesity and associated health complications are currently at unprecedented levels. Physical activity in this population can improve patient outcomes. Virtual reality (VR) self-modeling may improve self-efficacy and adherence to physical activity. We conducted a comparative study of 30 participants randomized to 3 versions of a 3D avatar-based VR intervention about exercise: virtual representation of the self exercising condition; virtual representation of other person exercising and control condition. Participants in the virtual representation of the self group significantly increased their levels of physical activity. The improvement in physical activity for participants in the visual representation of other person exercising was marginal. The improvement for the control group was not significant. However, the effect sizes for comparing the pre and post intervention physical activity levels were quite large for all three groups. We did not find any group difference in the improvements of physical activity levels and self-efficacy among sedentary, overweight or obese individuals.
Consequences of Psychotherapy Clients' Mental Health Ideology.
ERIC Educational Resources Information Center
Milling, Len; Kirsch, Irving
Current theoretical approaches to understanding emotional difficulties are dominated by the medical model of mental illness, which assumes that emotional dysfunction can be viewed the same way as physical dysfunction. To examine the relationship between psychotherapy clients' beliefs about the medical model of psychotherapy and their behavior…
Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima
2017-10-01
We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.
Fatigue, self-efficacy, physical activity, and quality of life in women with breast cancer.
Haas, Barbara K
2011-01-01
More than 192 000 US women faced the challenge of living with breast cancer in 2009. Although exercise may help combat treatment-related symptoms, cancer-related fatigue has been identified as a potential barrier to engaging in physical activity. Self-efficacy has been proposed to mediate the impact of cancer-related fatigue on physical activity and subsequently improve quality of life (QOL). The purpose of this study was to determine the linkages among the concepts of an introductory model of fatigue related to cancer, self-efficacy for physical activity, physical activity, and QOL in women being treated for breast cancer. Women currently receiving treatment for breast cancer were asked to complete 5 instruments: demographic profile, Piper Fatigue Scale, Physical Activity Assessment Inventory, Human Activity Profile, and McGill QOL Questionnaire. Structural equation modeling of the data was performed to determine the direct and indirect influences of study variables on QOL. The model was tested based on responses of 73 participants. All paths between variables were significant. The model explained 53% of the variance in QOL scores, 28% of the variance in physical activity, and 31% of the variance in self-efficacy. Although fatigue is most commonly thought of as a physical problem requiring physical intervention, this study provides emerging evidence to suggest there may be potential interventions to improve self-efficacy that may mediate the effect of fatigue on QOL. Interventions to improve self-efficacy may contribute to increased physical activity and improved QOL in this population.
Parental influences on 7-9 year olds' physical activity: a conceptual model.
Leary, Janie M; Lilly, Christa L; Dino, Geri; Loprinzi, Paul D; Cottrell, Lesley
2013-05-01
Models characterizing parental influence on child and adolescent physical activity (PA) over time are limited. Preschool and Adolescent Models (PM and AM) of PA are available leaving the need to focus on elementary-aged children. We tested current models (PM and AM) with a sample of 7-9 year-olds, and then developed a model appropriate to this specific target population. Parent-child dyads completed questionnaires in 2010-2011. All models were assessed using path analysis and model fit indices. For adequate power, 90 families were needed, with 174 dyads participating. PM and AM exhibited poor fit when applied to the study population. A gender-specific model was developed and demonstrated acceptable fit. To develop an acceptable model for this population, constructs from both the PM (i.e. parental perception of child competency) and AM (i.e., child-reported self-efficacy) were used. For boys, self-efficacy was a strong predictor of PA, which was influenced by various parental variables. For girls, parental PA demonstrated the greatest strength of association with child PA. This new model can be used to promote PA and guide future research/interventions. Future studies, particularly longitudinal designs, are needed to confirm the utility of this model as a bridge between currently available models. Copyright © 2013 Elsevier Inc. All rights reserved.
Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M. W.; Guild, T. B.
2009-12-01
Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.
Edwards-Stewart, Amanda; Ahmad, Zeba S; Thoburn, John W; Furman, Rich; Lambert, Ashly J; Shelly, Lauren; Gunn, Ginger
2012-01-01
The current article introduces Embedded Indigenous Psychological Support Teams (IPST) as a possible addition to current disaster relief efforts. This article highlights psychological first aid in an international context by drawing on mainstream disaster relief models such as The American Red Cross, Critical Incident Stress Management, and Flexible Psychological First Aid. IPST are explained as teams utilizing techniques from both CISM and FPFA with a focus on resiliency. It is currently theorized that in utilizing IPST existing disaster relief models may be more effective in mitigating negative physical or mental health consequences post-disaster.
NASA Astrophysics Data System (ADS)
Anderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz
2017-02-01
Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4-5 April 2010 and 5-6 August 2011 storms. The four models are the Weimer (2005b) field-aligned current statistical model, the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real-time specification.
The physics behind the larger scale organization of DNA in eukaryotes.
Emanuel, Marc; Radja, Nima Hamedani; Henriksson, Andreas; Schiessel, Helmut
2009-07-01
In this paper, we discuss in detail the organization of chromatin during a cell cycle at several levels. We show that current experimental data on large-scale chromatin organization have not yet reached the level of precision to allow for detailed modeling. We speculate in some detail about the possible physics underlying the larger scale chromatin organization.
Marine Renewable Energy: Resource Characterization and Physical Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Copping, Andrea E.
This complete reference to marine renewable energy covers aspects of resource characterization and physical effects of harvesting the ocean’s vast and powerful resources—from wave and tidal stream to ocean current energy. Experts in each of these areas contribute their insights to provide a cohesive overview of the marine renewable energy spectrum based on theoretical, numerical modeling, and field-measurement approaches.
ERIC Educational Resources Information Center
Li, Weidong; Wright, Paul M.; Rukavina, Paul Bernard; Pickering, Molly
2008-01-01
The purpose of the current study was to test the validity and reliability of a two-factor model of the Personal and Social Responsibility Questionnaire (PSRQ) and examine the relationships between perceptions of personal and social responsibility and intrinsic motivation in physical education. Participants were 253 middle school students who…
Wang, J C; Liu, W C; Chatzisarantis, N L; Lim, C B
2010-06-01
The purpose of the current study was to examine the influence of perceived motivational climate on achievement goals in physical education using a structural equation mixture modeling (SEMM) analysis. Within one analysis, we identified groups of students with homogenous profiles in perceptions of motivational climate and examined the relationships between motivational climate, 2 x 2 achievement goals, and affect, concurrently. The findings of the current study showed that there were at least two distinct groups of students with differing perceptions of motivational climate: one group of students had much higher perceptions in both climates compared with the other group. Regardless of their grouping, the relationships between motivational climate, achievement goals, and enjoyment seemed to be invariant. Mastery climate predicted the adoption of mastery-approach and mastery-avoidance goals; performance climate was related to performance-approach and performance-avoidance goals. Mastery-approach goal had a strong positive effect while performance-avoidance had a small negative effect on enjoyment. Overall, it was concluded that only perception of a mastery motivational climate in physical education may foster intrinsic interest in physical education through adoption of mastery-approach goals.
But I like PE: factors associated with enjoyment of physical education class in middle school girls.
Barr-Anderson, Daheia J; Neumark-Sztainer, Dianne; Schmitz, Kathryn H; Ward, Dianne S; Conway, Terry L; Pratt, Charlotte; Baggett, Chris D; Lytle, Leslie; Pate, Russell R
2008-03-01
The current study examined associations between physical education (PE) class enjoyment and sociodemographic, personal, and perceived school environment factors among early adolescent girls. Participants included 1,511 sixth-grade girls who completed baseline assessments for the Trial of Activity in Adolescent Girls, with 50% indicating they enjoyed PE class a lot. Variables positively associated with PE class enjoyment included physical activity level, perceived benefits of physical activity, self-efficacy for leisure time physical activity, and perceived school climate for girls' physical activity as influenced by teachers, while body mass index was inversely associated with PE class enjoyment. After adjusting for all variables in the model, PE class enjoyment was significantly greater in Blacks than in Whites. In model testing, with mutual adjustment for all variables, self-efficacy was the strongest correlate of PE class enjoyment, followed by perceived benefits, race/ethnicity, and teachers' support for girls' physical activity, as compared to boys, at school. The overall model explained 11% of the variance in PE class enjoyment. Findings suggest that efforts to enhance girls' self-efficacy and perceived benefits and to provide a supportive PE class environment that promotes gender equality can potentially increase PE class enjoyment among young girls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K.C.; Hazeltine, R.D.
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}
NASA Technical Reports Server (NTRS)
Olsen, W.; Walker, E.
1986-01-01
Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms.
Geomagnetically induced currents: Science, engineering, and applications readiness
NASA Astrophysics Data System (ADS)
Pulkkinen, A.; Bernabeu, E.; Thomson, A.; Viljanen, A.; Pirjola, R.; Boteler, D.; Eichner, J.; Cilliers, P. J.; Welling, D.; Savani, N. P.; Weigel, R. S.; Love, J. J.; Balch, C.; Ngwira, C. M.; Crowley, G.; Schultz, A.; Kataoka, R.; Anderson, B.; Fugate, D.; Simpson, J. J.; MacAlester, M.
2017-07-01
This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics-based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the "impact" aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.
Geomagnetically induced currents: Science, engineering, and applications readiness
Pulkkinen, Antti; Bernabeu, E.; Thomson, A.; Viljanen, A.; Pirjola, R.; Boteler, D.; Eichner, J.; Cilliers, P.J.; Welling, D.; Savani, N.P.; Weigel, R.S.; Love, Jeffrey J.; Balch, Christopher; Ngwira, C.M.; Crowley, G.; Schultz, Adam; Kataoka, R.; Anderson, B.; Fugate, D.; Simpson, J.J.; MacAlester, M.
2017-01-01
This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics-based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the “impact” aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael
2017-09-01
A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less
Physics through the 1990s: Elementary-particle physics
NASA Astrophysics Data System (ADS)
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: elementary-particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less
Physics through the 1990s: Elementary-particle physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
Fahim, Muhammad; Lee, Sungyoung; Yoon, Yongik
2014-01-01
Current generation smartphone can be seen as one of the most ubiquitous device for physical activity recognition. In this paper we proposed a physical activity recognizer to provide u-healthcare services in a cost effective manner by utilizing cloud computing infrastructure. Our model is comprised on embedded triaxial accelerometer of the smartphone to sense the body movements and a cloud server to store and process the sensory data for numerous kind of services. We compute the time and frequency domain features over the raw signals and evaluate different machine learning algorithms to identify an accurate activity recognition model for four kinds of physical activities (i.e., walking, running, cycling and hopping). During our experiments we found Support Vector Machine (SVM) algorithm outperforms for the aforementioned physical activities as compared to its counterparts. Furthermore, we also explain how smartphone application and cloud server communicate with each other.
Search for Decays of the Λ$$0\\atop{b}$$ Baryon with the D0 Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho, Enrique
2011-11-25
This thesis presents work I performed within the D0 Collaboration to make the measurement of the Branching Ratio of Λmore » $$0\\atop{b}$$ baryon in the channel Λ$$0\\atop{b}$$ → J/ΨΛ 0 . The b-hadron such as the Λ$$0\\atop{b}$$ are currently the subject of much research in both the theorical and experimental particle physics communities. Measurements of the production and decays of b-hadrons can improve the understanding of the electroweak and strong interactions described by the Standard Model of particle physics, as well as proving opportunities to search for physics beyond the Standard Model.« less
Scientific study in solar and plasma physics relative to rocket and balloon projects
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.
Zhang, Tao; Xiang, Ping; Gu, Xiangli; Rose, Melanie
2016-06-01
The 2 × 2 achievement goal model, including the mastery-approach, mastery-avoidance, performance-approach, and performance-avoidance goal orientations, has recently been used to explain motivational outcomes in physical activity. This study attempted to examine the relationships among 2 × 2 achievement goal orientations, physical activity, and health-related quality of life (HRQOL) in college students. Participants were 325 students (130 men and 195 women; Mage = 21.4 years) enrolled in physical activity classes at a Southern university. They completed surveys validated in previous research assessing achievement goal orientations, physical activity, and HRQOL. Path analyses revealed a good fit between the model and data (root mean square error of approximation = .06; Comparative Fit Index = .99; Bentler-Bonett Nonnormed Fit Index = .98; Incremental Fit Index = .99), but the model explained small variances in the current study. Mastery-approach and performance-approach goal orientations only had low or no relationships with physical activity. Mastery-approach goal orientation and physical activity also had low positive relationships with HRQOL, but mastery-avoidance and performance-avoidance goal orientations had low negative relationships with HRQOL. The hypothesized mediational role of physical activity in the relationship between mastery-approach and performance-approach goal orientations and HRQOL was not supported in this study. Although the data fit the proposed model well, only small variance was explained by the model. The relationship between physical activity and HRQOL of the college students and other related correlates should be further studied.
USDA-ARS?s Scientific Manuscript database
Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evalu...
In recent years the applications of regional air quality models are continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physic...
Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea
NASA Astrophysics Data System (ADS)
Queste, Bastien Y.; Vic, Clément; Heywood, Karen J.; Piontkovski, Sergey A.
2018-05-01
At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6-12 to <2 μmol kg-1) not represented in climatologies. Because of the nonlinearity between denitrification and oxygen concentration, resolutions of current Earth system models are too coarse to accurately estimate denitrification. We develop a novel physical proxy for oxygen from the glider data and use a high-resolution physical model to show eddy stirring of oxygen across the Gulf of Oman. We use the model to investigate spatial and seasonal differences in the ratio of oxic and suboxic water across the Gulf of Oman and waters exported to the wider Arabian Sea.
Physical fitness in people with posttraumatic stress disorder: a systematic review.
Vancampfort, Davy; Stubbs, Brendon; Richards, Justin; Ward, Philip B; Firth, Joseph; Schuch, Felipe B; Rosenbaum, Simon
2017-12-01
People with posttraumatic stress disorder (PTSD) have an increased risk of cardiovascular diseases (CVD). Physical fitness is a key modifiable risk factor for CVD and associated mortality. We reviewed the evidence-base regarding physical fitness in people with PTSD. Two independent reviewers searched PubMed, CINAHL, PsycARTICLES, PEDro, and SPORTDiscus from inception until May 2016 using the key words "fitness" OR "exercise" AND "posttraumatic stress disorder" OR "PTSD". In total, 5 studies involving 192 (44 female) individuals with PTSD met the inclusion criteria. Lower baseline physical fitness are associated with greater reductions in avoidance and hyperarousal symptoms, as well as with total, physical, and social symptoms of anxiety sensitivity. Rigorous data comparing physical fitness with age- and gender matched general population controls are currently lacking. The research field regarding physical fitness in people with PTSD is still in its infancy. Given the established relationships between physical fitness, morbidity and mortality in the general population and the current gaps in the PTSD literature, targets for future research include exploring: (a) whether people with PTSD are at risk of low physical fitness and therefore in need of intensified assessment, treatment and follow-up, (b) the relationships among physical fitness, overall health status, chronic disease risk reduction, disability, and mortality in individuals PTSD, (c) psychometric properties of submaximal physical fitness tests in PTSD, (d) physical fitness changes following physical activity in PTSD, and (e) optimal methods of integrating physical activity programs within current treatment models for PTSD. Implications for Rehabilitation People with PTSD should aim to achieve 150 minutes of moderate or 75 minutes vigorous physical activity per week while also engaging in resistance training exercises at least twice a week. Health care professionals should assist people with PTSD to overcome barriers to physical activity such as physical pain, loss of energy, lack of interest and motivation, generalized fatigue and feelings of hyperarousal.
Assessing physical activity using wearable monitors: measures of physical activity.
Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R
2012-01-01
Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.
Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston
2016-01-01
Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...
RNA Helicases at work: binding and rearranging
Jankowsky, Eckhard
2010-01-01
RNA helicases are ubiquitous, highly conserved enzymes that participate in nearly all aspects of RNA metabolism. These proteins bind or remodel RNA or RNA–protein complexes in an ATP-dependent fashion. How RNA helicases physically perform their cellular tasks has been a longstanding question, but in recent years, intriguing models have started to link structure, mechanism and biological function for some RNA helicases. This review outlines our current view on major structural and mechanistic themes of RNA helicase function, and on emerging physical models for cellular roles of these enzymes. PMID:20813532
Combining Statistics and Physics to Improve Climate Downscaling
NASA Astrophysics Data System (ADS)
Gutmann, E. D.; Eidhammer, T.; Arnold, J.; Nowak, K.; Clark, M. P.
2017-12-01
Getting useful information from climate models is an ongoing problem that has plagued climate science and hydrologic prediction for decades. While it is possible to develop statistical corrections for climate models that mimic current climate almost perfectly, this does not necessarily guarantee that future changes are portrayed correctly. In contrast, convection permitting regional climate models (RCMs) have begun to provide an excellent representation of the regional climate system purely from first principles, providing greater confidence in their change signal. However, the computational cost of such RCMs prohibits the generation of ensembles of simulations or long time periods, thus limiting their applicability for hydrologic applications. Here we discuss a new approach combining statistical corrections with physical relationships for a modest computational cost. We have developed the Intermediate Complexity Atmospheric Research model (ICAR) to provide a climate and weather downscaling option that is based primarily on physics for a fraction of the computational requirements of a traditional regional climate model. ICAR also enables the incorporation of statistical adjustments directly within the model. We demonstrate that applying even simple corrections to precipitation while the model is running can improve the simulation of land atmosphere feedbacks in ICAR. For example, by incorporating statistical corrections earlier in the modeling chain, we permit the model physics to better represent the effect of mountain snowpack on air temperature changes.
Improving wave forecasting by integrating ensemble modelling and machine learning
NASA Astrophysics Data System (ADS)
O'Donncha, F.; Zhang, Y.; James, S. C.
2017-12-01
Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.
Searching for a relevant definition of sarcopenia: results from the cross-sectional EPIDOS study
Dupuy, Charlotte; Lauwers-Cances, Valérie; Guyonnet, Sophie; Gentil, Catherine; Abellan Van Kan, Gabor; Beauchet, Olivier; Schott, Anne-Marie; Vellas, Bruno; Rolland, Yves
2015-01-01
Background The diversity of definitions proposed for sarcopenia has been rarely tested in the same population, and so far, their clinical utilities for predicting physical difficulties could not be clearly understood. Our objective is to report the prevalence of sarcopenia and the characteristics of sarcopenic community-dwelling older women according to the different definitions of sarcopenia currently proposed. We also assessed these definitions for their incremental predictive value over currently standard predictors for some self-reported difficulties in physical function and knee extension strength. Methods Cross-sectional analysis included data from 3025 non-disabled women aged 75 years or older without previous history of hip fracture from the inclusion visit of the EPIDémiologie de l'OStéoporose study. A total body composition evaluation was available for 2725 women. Sarcopenia was defined using six different definitions of sarcopenia based on different muscle mass, gait speed, and grip strength cut-offs. Self-reported difficulties in physical function and knee extension strength were collected. Logistic regression and multiple linear regression models were built for each physical dysfunction, and the predictive capacity of sarcopenia (one model for each definition) was studied using the C-statistic, the net reclassification index, or adjusted R2. Results The estimated prevalence of sarcopenia ranged from 3.3–20.0%. Only 85 participants (3.1%) were identified having sarcopenia according to all definitions. All definitions were, to some degree, associated with self-reported difficulties in physical function and knee extension strength, but none improved the predictive ability of the self-reported difficulties in physical function. Conversely, all definitions accounted for a small but significant amount of explained variation for predicting knee extension strength. Conclusions Prevalence of sarcopenia varies widely depending on the definition adopted. Based on this research, the current definitions for sarcopenia does not substantially increment the predictive value of clinical characteristics of patients to predict self-reported physical difficulties and knee extension strength. PMID:26136190
The influence of decadal scale climactic events on the transport of larvae.
NASA Astrophysics Data System (ADS)
Rasmuson, L. K.; Edwards, C. A.; Shanks, A.
2016-02-01
Understanding the processes that influence larval transport remains an important, yet difficult, task. This is especially true as more studies demonstrate that biological and physical oceanographic processes vary at long (e.g. decadal+) time scales. We used individual based biophysical models to study transport of Dungeness crab larvae (the most economically valuable fishery on the West Coast of the Continental United States) over a 10-year period; during both positive and negative phases of the Pacific decadal oscillation (PDO). A physical oceanographic model of the California current was developed using the Regional Ocean Modeling System with 1/30-degree resolution. Measured and modeled PDO indices were positively correlated. The biological model was implemented using the Lagrangian Transport Model, and modified to incorporate temperature dependent development and stage specific behaviors. Super individuals were used to scale production and incorporate mortality. Models were validated using time series statistics to compare measured and modeled daily recruitment. More larvae recruited, in both our measured and modeled time series, during negative PDOs. Our work suggests larvae exhibit a vertically migratory behavior too or almost too the bottom each day. During positive PDO years larvae were competent to settle earlier than negative PDO years, however, pelagic larval durations did not differ. The southern end of the population appears to be a sink population, which likely explains the decline in commercial catch. Ultimately, the population is much more demographically closed than previously thought. We hypothesize the stronger flow in the California current during negative PDO's enhances membership of larvae in the current. Further, migrating almost too the bottom causes larvae to enter the benthic boundary layer on the continental shelf and the California undercurrent on the continental slope, both, which decrease net alongshore advection. These factors result in a higher number of larvae closing their larval phase within the California current. We hypothesize Dungeness crabs have evolved to complete their larval phase within the oceanographic context of the California current and differences with the oceanography in the Alaska current may explain the difficulties in managing fisheries.
A multiscale strength model for tantalum over an extended range of strain rates
NASA Astrophysics Data System (ADS)
Barton, N. R.; Rhee, M.
2013-09-01
A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].
Walsh, Deirdre M J; Morrison, Todd G; Conway, Ronan J; Rogers, Eamonn; Sullivan, Francis J; Groarke, AnnMarie
2018-01-01
Background: Post traumatic growth (PTG) can be defined as positive change following a traumatic event. The current conceptualization of PTG encompasses five main dimensions, however, there is no dimension which accounts for the distinct effect of a physical trauma on PTG. The purpose of the present research was to test the role of PTG, physical post traumatic growth (PPTG), resilience and mindfulness in predicting psychological and health related adjustment. Method: Ethical approval was obtained from relevant institutional ethics committees. Participants ( N = 241), who were at least 1 year post prostate cancer treatment, were invited to complete a battery of questionnaires either through an online survey or a paper and pencil package received in the post The sample ranged in age from 44 to 88 years ( M = 64.02, SD = 7.76). Data were analysis using confirmatory factor analysis and structural equation modeling. Results: The physical post traumatic growth inventory (P-PTGI) was used to evaluate the role of PPTG in predicting adjustment using structural equation modeling. P-PTGI predicted lower distress and improvement of quality of life, whereas conversely, the traditional PTG measure was linked with poor adjustment. The relationship between resilience and adjustment was found to be mediated by P-PTGI. Conclusion: Findings suggest the central role of PTG in the prostate cancer survivorship experience is enhanced by the inclusion of PPTG. Adjusting to a physical trauma such as illness (internal transgressor) is unlike a trauma with an external transgressor as the physical trauma creates an entirely different framework for adjustment. The current study demonstrates the impact of PPTG on adjustment. This significantly adds to the theory of the development of PTG by highlighting the interplay of resilience with PTG, PPTG, and adjustment.
Current sensing using bismuth rare-earth iron garnet films
NASA Astrophysics Data System (ADS)
Ko, Michael; Garmire, Elsa
1995-04-01
Ferrimagnetic iron garnet films are investigated as current-sensing elements. The Faraday effect within the films permits measurement of the magnetic field or current by a simple polarimetric technique. Polarized diffraction patterns from the films have been observed that arise from the presence of magnetic domains in the films. A physical model for the diffraction is discussed, and results from a mathematical analysis are in good agreement with the experimental observations. A method of current sensing that uses this polarized diffraction is demonstrated.
Physical and mental health correlates of adverse childhood experiences among low-income women.
Cambron, Christopher; Gringeri, Christina; Vogel-Ferguson, Mary Beth
2014-11-01
The present study used secondary data gathered from a statewide random sample of 1,073 adult women enrolled in Utah's single-parent cash assistance program and logistic regression to examine associations between self-reported physical, emotional, and sexual abuse during childhood and later life physical and mental health indicators. Results demonstrated significant associations between low-income women's self-reports of physical, emotional, or sexual abuse in childhood, and current and lifetime anxiety disorder, domestic violence, current posttraumatic stress disorder, bipolar disorder, physical health or mental health issues, and any mental health diagnosis. These results build on previous research to paint a fuller picture of the associations between childhood abuse and physical and mental health for low-income women in Utah. Consistent with research by the Centers for Disease Control and Prevention, findings suggest the applicability of conceptualizing childhood abuse as a public health issue. Social workers can play an integral role in promoting and implementing broader screening practices, connecting affected individuals with long-term interventions, and applying research findings to the design and provision of services within a public health model.
Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill
NASA Astrophysics Data System (ADS)
Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis
2011-10-01
In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert
A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape jointmore » degradation, a possible failure mode, can be incorporated into the model.« less
Numerical study of the current sheet and PSBL in a magnetotail model
NASA Technical Reports Server (NTRS)
Doxas, I.; Horton, W.; Sandusky, K.; Tajima, T.; Steinolfson, R.
1989-01-01
The current sheet and plasma sheet boundary layer (PSBL) in a magnetotail model are discussed. A test particle code is used to study the response of ensembles of particles to a two-dimensional, time-dependent model of the geomagnetic tail, and test the proposition (Coroniti, 1985a, b; Buchner and Zelenyi, 1986; Chen and Palmadesso, 1986; Martin, 1986) that the stochasticity of the particle orbits in these fields is an important part of the physical mechanism for magnetospheric substorms. The realistic results obtained for the fluid moments of the particle distribution with this simple model, and their insensitivity to initial conditions, is consistent with this hypothesis.
Transforming community access to space science models
NASA Astrophysics Data System (ADS)
MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-04-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Transforming Community Access to Space Science Models
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-01-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Using polarized positrons to probe physics beyond the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furletova, Yulia; Mantry, Sonny
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
Furletova, Yulia; Mantry, Sonny
2018-05-25
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
NASA Astrophysics Data System (ADS)
Furletova, Yulia; Mantry, Sonny
2018-05-01
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.
Prediction of AL and Dst Indices from ACE Measurements Using Hybrid Physics/Black-Box Techniques
NASA Astrophysics Data System (ADS)
Spencer, E.; Rao, A.; Horton, W.; Mays, L.
2008-12-01
ACE measurements of the solar wind velocity, IMF and proton density is used to drive a hybrid Physics/Black- Box model of the nightside magnetosphere. The core physics is contained in a low order nonlinear dynamical model of the nightside magnetosphere called WINDMI. The model is augmented by wavelet based nonlinear mappings between the solar wind quantities and the input into the physics model, followed by further wavelet based mappings of the model output field aligned currents onto the ground based magnetometer measurements of the AL index and Dst index. The black box mappings are introduced at the input stage to account for uncertainties in the way the solar wind quantities are transported from the ACE spacecraft at L1 to the magnetopause. Similar mappings are introduced at the output stage to account for a spatially and temporally varying westward auroral electrojet geometry. The parameters of the model are tuned using a genetic algorithm, and trained using the large geomagnetic storm dataset of October 3-7 2000. It's predictive performance is then evaluated on subsequent storm datasets, in particular the April 15-24 2002 storm. This work is supported by grant NSF 7020201
Structure and dynamics of the coronal magnetic field
NASA Technical Reports Server (NTRS)
VanHoven, Gerard; Schnack, Dalton D.
1996-01-01
The last few years have seen a marked increase in the sophistication of models of the solar corona. This has been brought about by a confluence of three key elements. First, the collection of high-resolution observations of the Sun, both in space and time, has grown tremendously. The SOHO (Solar Heliospheric Observatory) mission is providing additional correlated high-resolution magnetic, white-light and spectroscopic observations. Second, the power and availability of supercomputers has made two- and three-dimensional modeling routine. Third, the sophistication of the models themselves, both in their geometrical realism and in the detailed physics that has been included, has improved significantly. The support from our current Space Physics Theory grant has allowed us to exploit this confluence of capabilities. We have carried out direct comparisons between observations and models of the solar corona. The agreement between simulated coronal structure and observations has verified that the models are mature enough for detailed analysis, as we will describe. The development of this capability is especially timely, since observations obtained from three space missions that are underway (Ulysses, WIND and SOHO) offer an opportunity for significant advances in our understanding of the corona and heliosphere. Through this interplay of observations and theory we can improve our understanding of the Sun. Our achievements thus far include progress modeling the large-scale structure of the solar corona, three-dimensional models of active region fields, development of emerging flux and current, formation and evolution of coronal loops, and coronal heating by current filaments.
Future warming patterns linked to today’s climate variability
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
Future warming patterns linked to today’s climate variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Aiguo
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
Meyers, Linda D; Murphy, Suzanne P; Yaktine, Ann L
2013-09-01
The Institute of Medicine's Food and Nutrition Board had a productive year, with important expert committee reports on the Supplemental Food Assistance Program, physical fitness, and accelerating obesity prevention efforts that provided grounding for dietary guidance and nutrition policies and programs. This summary describes Food and Nutrition Board activities, including current thinking on dietary reference intakes. The summary also highlights consensus reports on defining and measuring Supplemental Food Assistance Program benefit adequacy and on physical fitness and health outcomes in youth. In addition, current and new activities related to obesity prevention and care are addressed. What do these activities have in common? All adhere to the Institute of Medicine report model by filling gaps and by being analytical, evidence-based, and challenging.
Problematic Drinking, Impulsivity, and Physical IPV Perpetration: A Dyadic Analysis
Leone, Ruschelle M.; Crane, Cory A.; Parrott, Dominic J.; Eckhardt, Christopher I.
2016-01-01
Alcohol use and impulsivity are two known risk factors for intimate partner violence (IPV). The current study examined the independent and interactive effects of problematic drinking and five facets of impulsivity (i.e., negative urgency, positive urgency, sensation seeking, lack of premeditation, and lack of perseverance) on perpetration of physical IPV within a dyadic framework. Participants were 289 heavy drinking heterosexual couples (total N = 578) with a recent history of psychological and/or physical IPV recruited from two metropolitan U.S. cities. Parallel multilevel Actor Partner Interdependence Models were utilized and demonstrated Actor problematic drinking, negative urgency, and lack of perseverance were associated with physical IPV. Findings also revealed associations between Partner problematic drinking and physical IPV as well as significant Partner Problematic Drinking x Actor Impulsivity (Negative Urgency and Positive Urgency) interaction effects on physical IPV. Findings highlight the importance of examining IPV within a dyadic framework and are interpreted using the I3 meta-theoretical model. PMID:26828640
Statistical physics of vehicular traffic and some related systems
NASA Astrophysics Data System (ADS)
Chowdhury, Debashish; Santen, Ludger; Schadschneider, Andreas
2000-05-01
In the so-called “microscopic” models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a “particle”; the nature of the “interactions” among these particles is determined by the way the vehicles influence each others’ movement. Therefore, vehicular traffic, modeled as a system of interacting “particles” driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called “particle-hopping” models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.
A nowcast model for tides and tidal currents in San Francisco Bay, California
Cheng, Ralph T.; Smith, Richard E.
1998-01-01
National Oceanographic and Atmospheric Administration (NOAA) installed Physical Oceanographic Real-Time System (PORTS) in San Francisco Bay, California to provide observations of tides, tidal currents, and meteorological conditions. PORTS data are used for optimizing vessel operations, increasing margin of safety for navigation, and guiding hazardous material spill prevention and response. Because tides and tidal currents in San Francisco Bay are extremely complex, limited real-time observations are insufficient to provide spatial resolution for variations of tides and tidal currents. To fill the information gaps, a highresolution, robust, semi-implicit, finite-difference nowcast numerical model has been implemented for San Francisco Bay. The model grid and water depths are defined on coordinates based on Mercator projection so the model outputs can be directly superimposed on navigation charts. A data assimilation algorithm has been established to derive the boundary conditions for model simulations. The nowcast model is executed every hour continuously for tides and tidal currents starting from 24 hours before the present time (now) covering a total of 48 hours simulation. Forty-eight hours of nowcast model results are available to the public at all times through the World Wide Web (WWW). Users can view and download the nowcast model results for tides and tidal current distributions in San Francisco Bay for their specific applications and for further analysis.
NASA Astrophysics Data System (ADS)
Joyce, C. J.; Tobiska, W. K.; Copeland, K.; Smart, D. F.; Shea, M. A.; Nowicki, S.; Atwell, W.; Benton, E. R.; Wilkins, R.; Hands, A.; Gronoff, G.; Meier, M. M.; Schwadron, N.
2017-12-01
Despite its potential for causing a wide range of harmful effects, including health hazards to airline passengers and damage to aircraft and satellite electronics, atmospheric radiation remains a relatively poorly defined risk, lacking sufficient measurements and modelling to fully evaluate the dangers posed. While our reliance on airline travel has increased dramatically over time, there remains an absence of international guidance and standards to protect aircraft passengers from potential health impacts due to radiation exposure. This subject has been gaining traction within the scientific community in recent years, with an expanding number of models with increasing capabilities being made available to evaluate atmospheric radiation hazards. We provide a general description of these modelling efforts, including the physics and methods used by the models, as well as their data inputs and outputs. We also discuss the current capacity for model validation via measurements and discuss the needs for the next generation of models, both in terms of their capabilities and the measurements required to validate them. This review of the status of atmospheric radiation modelling is part of a larger series of studies made as part of the SAFESKY program, with other efforts focusing on the underlying physics and implications, measurements and regulations/standards of atmospheric radiation.
A Comparison of Two Models of Risky Sexual Behavior During Late Adolescence.
Braje, Sopagna Eap; Eddy, J Mark; Hall, Gordon C N
2016-01-01
Two models of risky sexual behavior (RSB) were compared in a community sample of late adolescents (N = 223). For the traumagenic model, early negative sexual experiences were posited to lead to an association between negative affect with sexual relationships. For the cognitive escape model, depressive affect was posited to lead to engagement in RSB as a way to avoid negative emotions. The current study examined whether depression explained the relationship between sexual trauma and RSB, supporting the cognitive escape model, or whether it was sexual trauma that led specifically to RSB, supporting the traumagenic model. Physical trauma experiences were also examined to disentangle the effects of sexual trauma compared to other emotionally distressing events. The study examined whether the results would be moderated by participant sex. For males, support was found for the cognitive escape model but not the traumagenic model. Among males, physical trauma and depression predicted engagement in RSB but sexual trauma did not. For females, support was found for the traumagenic and cognitive escape model. Among females, depression and sexual trauma both uniquely predicted RSB. There was an additional suppressor effect of socioeconomic status in predicting RSB among females. Results suggest that the association of trauma type with RSB depends on participant sex. Implications of the current study for RSB prevention efforts are discussed.
[New simulation technologies in neurosurgery].
Byvaltsev, V A; Belykh, E G; Konovalov, N A
2016-01-01
The article presents a literature review on the current state of simulation technologies in neurosurgery, a brief description of the basic technology and the classification of simulation models, and examples of simulation models and skills simulators used in neurosurgery. Basic models for the development of physical skills, the spectrum of available computer virtual simulators, and their main characteristics are described. It would be instructive to include microneurosurgical training and a cadaver course of neurosurgical approaches in neurosurgery training programs and to extend the use of three-dimensional imaging. Technologies for producing three-dimensional anatomical models and patient-specific computer simulators as well as improvement of tactile feedback systems and display quality of virtual models are promising areas. Continued professional education necessitates further research for assessing the validity and practical use of simulators and physical models.
NASA Technical Reports Server (NTRS)
Stewart, Mark E.
2017-01-01
Evaporation and condensation at a liquidvapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of interfacial physics does not predict behavior or evaporation condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrages equation which demonstrates thin thermal layers at the fluidvapor interface.
Noise in state of the art clocks and their impact for fundamental physics
NASA Technical Reports Server (NTRS)
Maleki, L.
2001-01-01
In this paper a review of the use of advanced atomic clocks in testing the fundamental physical laws will be presented. Noise sources of clocks will be discussed, together with an outline their characterization based on current models. The paper will conclude with a discussion of recent attempts to reduce the fundamental, as well as technical noise in atomic clocks.
Exact symmetries in the velocity fluctuations of a hot Brownian swimmer
NASA Astrophysics Data System (ADS)
Falasco, Gianmaria; Pfaller, Richard; Bregulla, Andreas P.; Cichos, Frank; Kroy, Klaus
2016-09-01
Symmetries constrain dynamics. We test this fundamental physical principle, experimentally and by molecular dynamics simulations, for a hot Janus swimmer operating far from thermal equilibrium. Our results establish scalar and vectorial steady-state fluctuation theorems and a thermodynamic uncertainty relation that link the fluctuating particle current to its entropy production at an effective temperature. A Markovian minimal model elucidates the underlying nonequilibrium physics.
New experimental developments for s- and p-process research
NASA Astrophysics Data System (ADS)
Reifarth, R.; Ershova, O.; Glorius, J.; Göbel, K.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Sonnabend, K.; Heil, M.
2012-12-01
Almost all of the heavy elements are produced via neutron-induced processes in a multitude of stellar production sites. The remaining minor part is produced via photon- and proton-induced reactions. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. An important tool to determine such components is the comparison of observed with modeled abundance distributions based on improved nuclear physics input. The FRANZ facility at the Goethe University Frankfurt, which is currently under construction will provide unprecedented neutron fluxes and proton currents available for nuclear astrophysics. It will be possible to investigate important branchpoint nuclei of the s-process nucleosynthesis path and proton-induced reactions important for p-process modeling. At the GSI close to Darmstadt radioactive isotopes can be investigated in inverse kinematics. This allows experiments such as proton-induced cross section measurements using a heavy-ion storage ring or measurements of gamma-induced reactions using the Coulomb dissociation method. The future FAIR facility will allow similar experiments on very exotic nuclei, since orders of magnitude higher radioactive ions beams will be possible.
Baena-Extremera, Antonio; Granero-Gallegos, Antonio; Ponce-de-León-Elizondo, Ana; Sanz-Arazuri, Eva; Valdemoros-San-Emeterio, María de Los Ángeles; Martínez-Molina, Marina
2016-04-01
In view of the rise in sedentary lifestyle amongst young people, knowledge regarding their intention to partake in physical activity can be decisive when it comes to instilling physical activity habits to improve the current and future health of school students. Therefore, the object of this study was to find a predictive model of the intention to partake in leisure- time physical activity based on motivation, satisfaction and competence. The sample consisted of 347 Spanish, male, high school students and 411 female students aged between 13 and 18 years old. We used a questionnaire made up of the Sport Motivation Scale, Sport Satisfaction Instrument, and the competence factor in the Basic Psychological Needs in Exercise Scale and Intention to Partake in Leisure-Time Physical Activity, all of them adapted to school Physical Education. We carried out confirmatory factor analyses and structural equation models. The intention to partake in leisure-time physical activity was predicted by competence and the latter by satisfaction/fun. Intrinsic motivation was revealed to be the best predictor of satisfaction/fun. Intrinsic motivation should be enhanced in order to predict an intention to partake in physical activity in Physical Education students.
Multiscale modeling of ductile failure in metallic alloys
NASA Astrophysics Data System (ADS)
Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoğlu, Cihan; Onck, Patrick R.
2010-04-01
Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale.
Particle Dark Matter constraints: the effect of Galactic uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, Maria; Bernal, Nicolás; Iocco, Fabio
2017-02-01
Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less
Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment
NASA Astrophysics Data System (ADS)
Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.
2009-11-01
The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.
Evaluating the professional libraries of practicing physical therapists.
Brown, Suzanne R; Roush, James R; Lamkin, Alyson R; Perrakis, Rena; Kronenfeld, Michael R
2007-01-01
The primary objective of this study was to explore the use of information resources by a sample of physical therapists. A qualitatively designed study using structured individual interviews, examination of professional libraries, and identification of information resources was initiated in three sites (Southern California, Arizona, and Georgia). Participants included forty physical therapists with between five and twenty years of experience. The Internet and continuing education activities appeared to be the primary information sources for the physical therapists surveyed. The personal professional libraries of participants were limited in scope and contained titles copyrighted more than ten years ago. Access to peer-reviewed journals in the sample was limited primarily to those received as a benefit of professional association membership. Participants did not maintain current print professional information resources. The majority of books in the personal and workplace professional libraries held copyrights dating from the time of the participants' enrollment in an entry-level physical therapy program. Medical librarians may play an important role in shifting physical therapy towards evidence-based practice by collaborating in professional development for this group. Physical therapy educators and professional leaders should support current public collections of physical therapy-related information resources to encourage the movement towards an evidence-based practice model in physical therapy.
Evaluating the professional libraries of practicing physical therapists
Brown, Suzanne R.; Roush, James R.; Lamkin, Alyson R.; Perrakis, Rena; Kronenfeld, Michael R.
2007-01-01
Background and Purpose: The primary objective of this study was to explore the use of information resources by a sample of physical therapists. Methods: A qualitatively designed study using structured individual interviews, examination of professional libraries, and identification of information resources was initiated in three sites (Southern California, Arizona, and Georgia). Participants included forty physical therapists with between five and twenty years of experience. Results: The Internet and continuing education activities appeared to be the primary information sources for the physical therapists surveyed. The personal professional libraries of participants were limited in scope and contained titles copyrighted more than ten years ago. Access to peer-reviewed journals in the sample was limited primarily to those received as a benefit of professional association membership. Discussion and Conclusions: Participants did not maintain current print professional information resources. The majority of books in the personal and workplace professional libraries held copyrights dating from the time of the participants' enrollment in an entry-level physical therapy program. Medical librarians may play an important role in shifting physical therapy towards evidence-based practice by collaborating in professional development for this group. Physical therapy educators and professional leaders should support current public collections of physical therapy-related information resources to encourage the movement towards an evidence-based practice model in physical therapy. PMID:17252068
Near Earth Asteroid Characteristics for Asteroid Threat Assessment
NASA Technical Reports Server (NTRS)
Dotson, Jessie
2015-01-01
Information about the physical characteristics of Near Earth Asteroids (NEAs) is needed to model behavior during atmospheric entry, to assess the risk of an impact, and to model possible mitigation techniques. The intrinsic properties of interest to entry and mitigation modelers, however, rarely are directly measureable. Instead we measure other properties and infer the intrinsic physical properties, so determining the complete set of characteristics of interest is far from straightforward. In addition, for the majority of NEAs, only the basic measurements exist so often properties must be inferred from statistics of the population of more completely characterized objects. We will provide an assessment of the current state of knowledge about the physical characteristics of importance to asteroid threat assessment. In addition, an ongoing effort to collate NEA characteristics into a readily accessible database for use by the planetary defense community will be discussed.
Novel dark matter phenomenology at colliders
NASA Astrophysics Data System (ADS)
Wardlow, Kyle Patrick
While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.;
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
Observation model and parameter partials for the JPL geodetic GPS modeling software GPSOMC
NASA Technical Reports Server (NTRS)
Sovers, O. J.; Border, J. S.
1988-01-01
The physical models employed in GPSOMC and the modeling module of the GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS) measurements are described. Details of the various contributions to range and phase observables are given, as well as the partial derivatives of the observed quantities with respect to model parameters. A glossary of parameters is provided to enable persons doing data analysis to identify quantities in the current report with their counterparts in the computer programs. There are no basic model revisions, with the exceptions of an improved ocean loading model and some new options for handling clock parametrization. Such misprints as were discovered were corrected. Further revisions include modeling improvements and assurances that the model description is in accord with the current software.
Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.
Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy
2016-02-08
Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stoltz, Peter; Veitzer, Seth
2008-04-01
We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.
Six-year trajectory of objective physical function in persons with depressive and anxiety disorders.
Lever-van Milligen, Bianca A; Lamers, Femke; Smit, Jan H; Penninx, Brenda W J H
2017-02-01
Depression and anxiety have been related to poorer self-reported physical functioning over time; however, objective measures of physical function are less frequently examined. This study assessed the 6-year trajectory of hand-grip strength and lung function in persons with depressive and/or anxiety disorders. At four waves (baseline, 2, 4, and 6 years) hand-grip strength and lung function were assessed in 2,480 participants, aged 18-65 years, of the Netherlands Study of Depression and Anxiety. Linear mixed models were used to examine the association between baseline psychiatric status (current and remitted depression and anxiety, healthy controls) and physical function during 6-year follow-up, adjusted for sociodemographics, lifestyle, and health indicators. Although there were no differences in the rate of decline over time, women with current, but not remitted, depression and anxiety had poorer hand-grip strength (B = -1.34, P < .001) and poorer lung function (B = -11.91, P =.002) compared to healthy women during the entire 6-year follow-up. Associations with depression and anxiety severity measures confirmed dose-response relationships with objective physical function. In men, stronger 6-year decline of lung function was found in those with current disorders (current diagnosis-by-time: B = -11.72, P = .002) and even in those with remitted disorders (remitted diagnosis by time: B = -10.11, P = .04) compared to healthy men. Depression and anxiety are associated with consistently poorer hand-grip strength in women and poorer lung function in women and men over 6 years of time, implicating their long-lasting impact on physical functioning. © 2016 Wiley Periodicals, Inc.
Lai, Zhigang; Yin, Kedong
2014-01-01
Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.
Self-consistent modeling of CFETR baseline scenarios for steady-state operation
NASA Astrophysics Data System (ADS)
Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team
2017-07-01
Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.
Modeling micro-droplet formation in near-field electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Popell, George Colin
Near-field electrohydrodynamic jet (E-jet) printing has recently gained significant interest within the manufacturing research community because of its ability to produce micro/sub-micron-scale droplets using a wide variety of inks and substrates. However, the process currently operates in open-loop and as a result suffers from unpredictable printing quality. The use of physics-based, control-oriented process models is expected to enable closed-loop control of this printing technique. The objective of this research is to perform a fundamental study of the substrate-side droplet shape-evolution in near-field E-jet printing and to develop a physics-based model of the same that links input parameters such as voltage magnitude and ink properties to the height and diameter of the printed droplet. In order to achieve this objective, a synchronized high-speed imaging and substrate-side current-detection system was used implemented to enable a correlation between the droplet shape parameters and the measured current signal. The experimental data reveals characteristic process signatures and droplet spreading regimes. The results of these studies are then used as the basis for a model that predicts the droplet diameter and height using the measured current signal as the input. A unique scaling factor based on the measured current signal is used in this model instead of relying on empirical scaling laws found in literature. For each of the three inks tested in this study, the average absolute error in the model predictions is under 4.6% for diameter predictions and under 10.6% for height predictions of the steady-state droplet. While printing under non-conducive ambient conditions of low humidity and high temperatures, the use of the environmental correction factor in the model is seen to result in average absolute errors of 10.35% and 12.5% for diameter and height predictions.
Jolly, Kate; Duda, Joan L; Daley, Amanda; Eves, Frank F; Mutrie, Nanette; Ntoumanis, Nikos; Rouse, Peter C; Lodhia, Rekha; Williams, Geoffrey C
2009-06-08
The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT)-based exercise referral consultation. An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n = 7) or to the SDT-based intervention (n = 6).Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. The trial is registered as Current Controlled trials ISRCTN07682833.
Design Considerations of a Virtual Laboratory for Advanced X-ray Sources
NASA Astrophysics Data System (ADS)
Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.
2004-11-01
The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.
Davenport, Todd E
2015-12-01
Physical therapists increasingly are contributing clinical case reports to the health literature, which form the basis for higher quality evidence that has been incorporated into clinical practice guidelines. Yet, few resources exist to assist physical therapists with the basic mechanics and quality standards of producing a clinical case report. This situation is further complicated by the absence of uniform standards for quality in case reporting. The importance of including a concise yet comprehensive description of patient functioning in all physical therapy case reports suggest the potential appropriateness of basing quality guidelines on the World Health Organization's International Classification of Functioning Disability and Health (ICF) model. The purpose of this paper is to assist physical therapists in creating high-quality clinical case reports for the peer-reviewed literature using the ICF model as a guiding framework. Along these lines, current recommendations related to the basic mechanics of writing a successful clinical case report are reviewed, as well and a proposal for uniform clinical case reporting requirements is introduced with the aim to improve the quality and feasibility of clinical case reporting in physical therapy that are informed by the ICF model. Copyright © 2013 John Wiley & Sons, Ltd.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Imaging plasmas at the Earth and other planets
NASA Astrophysics Data System (ADS)
Mitchell, D. G.
2006-05-01
The field of space physics, both at Earth and at other planets, was for decades a science based on local observations. By stitching together measurements of plasmas and fields from multiple locations either simultaneously or for similar conditions over time, and by comparing those measurements against models of the physical systems, great progress was made in understanding the physics of Earth and planetary magnetospheres, ionospheres, and their interactions with the solar wind. However, the pictures of the magnetospheres were typically statistical, and the large-scale global models were poorly constrained by observation. This situation changed dramatically with global auroral imaging, which provided snapshots and movies of the effects of field aligned currents and particle precipitation over the entire auroral oval during quiet and disturbed times. And with the advent of global energetic neutral atom (ENA) and extreme ultraviolet (EUV) imaging, global constraints have similarly been added to ring current and plasmaspheric models, respectively. Such global constraints on global models are very useful for validating the physics represented in those models, physics of energy and momentum transport, electric and magnetic field distribution, and magnetosphere-ionosphere coupling. These techniques are also proving valuable at other planets. For example with Hubble Space Telescope imaging of Jupiter and Saturn auroras, and ENA imaging at Jupiter and Saturn, we are gaining new insights into the magnetic fields, gas-plasma interactions, magnetospheric dynamics, and magnetosphere-ionosphere coupling at the giant planets. These techniques, especially ENA and EUV imaging, rely on very recent and evolving technological capabilities. And because ENA and EUV techniques apply to optically thin media, interpretation of their measurements require sophisticated inversion procedures, which are still under development. We will discuss the directions new developments in imaging are taking, what technologies and mission scenarios might best take advantage of them, and how our understanding of the Earth's and other planets' plasma environments may benefit from such advancements.
Momentary assessment of contextual influences on affective response during physical activity.
Dunton, Genevieve Fridlund; Liao, Yue; Intille, Stephen; Huh, Jimi; Leventhal, Adam
2015-12-01
Higher positive and lower negative affective response during physical activity may reinforce motivation to engage in future activity. However, affective response during physical activity is typically examined under controlled laboratory conditions. This research used ecological momentary assessment (EMA) to examine social and physical contextual influences on momentary affective response during physical activity in naturalistic settings. Participants included 116 adults (mean age = 40.3 years, 73% female) who completed 8 randomly prompted EMA surveys per day for 4 days across 3 semiannual waves. EMA surveys measured current activity level, social context, and physical context. Participants also rated their current positive and negative affect. Multilevel models assessed whether momentary physical activity level moderated differences in affective response across contexts controlling for day of the week, time of day, and activity intensity (measured by accelerometer). The Activity Level × Alone interaction was significant for predicting positive affect (β = -0.302, SE = 0.133, p = .024). Greater positive affect during physical activity was reported when with other people (vs. alone). The Activity Level × Outdoors interaction was significant for predicting negative affect (β = -0.206, SE = 0.097, p = .034). Lower negative affect during physical activity was reported outdoors (vs. indoors). Being with other people may enhance positive affective response during physical activity, and being outdoors may dampen negative affective response during physical activity. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Poli, E.; Bock, A.; Lochbrunner, M.; Maj, O.; Reich, M.; Snicker, A.; Stegmeir, A.; Volpe, F.; Bertelli, N.; Bilato, R.; Conway, G. D.; Farina, D.; Felici, F.; Figini, L.; Fischer, R.; Galperti, C.; Happel, T.; Lin-Liu, Y. R.; Marushchenko, N. B.; Mszanowski, U.; Poli, F. M.; Stober, J.; Westerhof, E.; Zille, R.; Peeters, A. G.; Pereverzev, G. V.
2018-04-01
The paraxial WKB code TORBEAM (Poli, 2001) is widely used for the description of electron-cyclotron waves in fusion plasmas, retaining diffraction effects through the solution of a set of ordinary differential equations. With respect to its original form, the code has undergone significant transformations and extensions, in terms of both the physical model and the spectrum of applications. The code has been rewritten in Fortran 90 and transformed into a library, which can be called from within different (not necessarily Fortran-based) workflows. The models for both absorption and current drive have been extended, including e.g. fully-relativistic calculation of the absorption coefficient, momentum conservation in electron-electron collisions and the contribution of more than one harmonic to current drive. The code can be run also for reflectometry applications, with relativistic corrections for the electron mass. Formulas that provide the coupling between the reflected beam and the receiver have been developed. Accelerated versions of the code are available, with the reduced physics goal of inferring the location of maximum absorption (including or not the total driven current) for a given setting of the launcher mirrors. Optionally, plasma volumes within given flux surfaces and corresponding values of minimum and maximum magnetic field can be provided externally to speed up the calculation of full driven-current profiles. These can be employed in real-time control algorithms or for fast data analysis.
Towards an integrated forecasting system for fisheries on habitat-bound stocks
NASA Astrophysics Data System (ADS)
Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.
2013-03-01
First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.
Liu, Jing-Dong; Chung, Pak-Kwong
2017-08-01
The purpose of the current study was to examine the factor structure and measurement invariance of a scale measuring students' perceptions of need-supportive teaching (Need-Supportive Teaching Style Scale in Physical Education; NSTSSPE). We sampled 615 secondary school students in Hong Kong, 200 of whom also completed a follow-up assessment two months later. Factor structure of the scale was examined through exploratory structural equation modeling (ESEM). Further, nomological validity of the NSTSSPE was evaluated by examining the relationships between need-supportive teaching style and student satisfaction of psychological needs. Finally, four measurement models-configural, metric invariance, scalar invariance, and item uniqueness invariance-were assessed using multiple group ESEM to test the measurement invariance of the scale across gender, grade, and time. ESEM results suggested a three-factor structure of the NSTSSPE. Nomological validity was supported, and weak, strong, and strict measurement invariance of the NSTSSPE was evidenced across gender, grade, and time. The current study provides initial psychometric support for the NSTSSPE to assess student perceptions of teachers' need-supportive teaching style in physical education classes.
EcoWellness: The Missing Factor in Holistic Wellness Models
ERIC Educational Resources Information Center
Reese, Ryan F.; Myers, Jane E.
2012-01-01
A growing body of multidisciplinary literature has delineated the benefits that natural environments have on physical and mental health. Current wellness models in counseling do not specifically address the impact of nature on wellness or how the natural world can be integrated into counseling. The concept of EcoWellness is presented as the…
NASA Technical Reports Server (NTRS)
Katz, I.; Cassidy, J. J.; Mandell, M. J.; Parks, D. E.; Schnuelle, G. W.; Stannard, P. R.; Steen, P. G.
1981-01-01
The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs.
NASA Astrophysics Data System (ADS)
Hermann, Robert
1982-07-01
Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.
Cloud Feedback in Atmospheric General Circulation Models: An Update
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Ingram, W. J.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Cohen-Solal, E.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.;
1996-01-01
Six years ago, we compared the climate sensitivity of 19 atmospheric general circulation models and found a roughly threefold variation among the models; most of this variation was attributed to differences in the models' depictions of cloud feedback. In an update of this comparison, current models showed considerably smaller differences in net cloud feedback, with most producing modest values. There are, however, substantial differences in the feedback components, indicating that the models still have physical disagreements.
Using Experiment and Computer Modeling to Determine the Off-Axis Magnetic Field of a Solenoid
ERIC Educational Resources Information Center
Lietor-Santos, Juan Jose
2014-01-01
The study of the ideal solenoid is a common topic among introductory-based physics textbooks and a typical current arrangement in laboratory hands-on experiences where the magnetic field inside a solenoid is determined at different currents and at different distances from its center using a magnetic probe. It additionally provides a very simple…
Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Hua-sheng, E-mail: huashengxie@gmail.com; Xiao, Yong, E-mail: yxiao@zju.edu.cn
2015-02-15
A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small.more » This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.« less
Modulation of wave fields by current and wind intensifications off the Catalan coast
NASA Astrophysics Data System (ADS)
Pallares Lopez, Elena; Sánchez-Arcilla, Agustin; Espino, Manuel
2017-04-01
The coupling between waves, ocean and atmospheric models has been one of the main topics in the physical oceanography community for the last decade. The resulting challenge is more difficult and relevant in coastal areas, where the interaction between wind, waves and currents fields is far from negligible, and therefore some sort of model coupling is required. However, it is important to remark that it is only during energetic "enough" events that the coupling becomes quantitatively significant. The Western Mediterranean sea is an area characterised by calm periods most of the year. However, coastal areas often present highly variable and heterogeneous wind, wave and current conditions, which make the numerical prediction of meteo-oceanographic processes difficult and with large associated local errors. Specifically, the Catalan coast is frequently affected by offshore wind intensifications channel by river valleys and by local current intensifications associated to coastal "bulges" (e.g. deltaic forms) that can reach up to 1 m/s in the surface. In this study we present different coupling strategies applied to both calm periods and energetic events, represented by the wind jets or current intensifications mentioned before, with the objective to quantify the effect of model coupling on the resulting wave fields off the Catalan coast. The SWAN wave model is used to model the wave fields, together with the ROMS oceanic model and the WRF atmospheric model. Two different types of coupling are considered: the first is a one-way coupling consisting in introducing the current field as an input for the SWAN wave model; the second one, consists in running in parallel the ROMS circulation model, the WRF atmospheric model and the SWAN wave model. The second methodology is more complex and should better reproduce the physics involved in the interactions, but requires an important computational capacity, not always available, so a critical comparison between the two methodologies, balancing costs and benefits will be presented and analysed. From the results obtained from a set of typical synoptic situations, it can be concluded that during most of the time, with the calm conditions typical of the Mediterranean coast, it is not necessary to consider the coupling in any of its forms to provide accurate wave simulations. However, when a wind or current intensification occurs, the results improve considerably with the coupled model and the robustness of predictions greatly improves. Because of that an "intelligent" modelling sequence that activates the coupling in terms of the expected meteo-oceanography is proposed for operational applications.
Multi-physics CFD simulations in engineering
NASA Astrophysics Data System (ADS)
Yamamoto, Makoto
2013-08-01
Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.
Understanding flavour at the LHC
Nir, Yosef
2018-05-22
Huge progress in flavour physics has been achieved by the two B-factories and the Tevatron experiments. This progress has, however, deepened the new physics flavour puzzle: If there is new physics at the TeV scale, why aren't flavour changing neutral current processes enhanced by orders of magnitude compared to the standard model predictions? The forthcoming ATLAS and CMS experiments can potentially solve this puzzle. Perhaps even more surprisingly, these experiments can potentially lead to progress in understanding the standard model flavour puzzle: Why is there smallness and hierarchy in the flavour parameters? Thus, a rich and informative flavour program is awaiting us not only in the flavour-dedicated LHCb experiment, but also in the high-pT ATLAS and CMS experiments.
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.
2011-09-01
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.
NASA Astrophysics Data System (ADS)
Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang
2017-09-01
Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.
Fluid-gravity model for the chiral magnetic effect.
Kalaydzhyan, Tigran; Kirsch, Ingo
2011-05-27
We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma. © 2011 American Physical Society
But I Like PE: Factors Associated With Enjoyment of Physical Education Class in Middle School Girls
Barr-Anderson, Daheia J.; Neumark-Sztainer, Dianne; Schmitz, Kathryn H.; Ward, Dianne S.; Conway, Terry L.; Pratt, Charlotte; Baggett, Chris D.; Lytle, Leslie; Pate, Russell R.
2008-01-01
The current study examined associations between physical education (PE) class enjoyment and sociodemographic, personal, and perceived school environment factors among early adolescent girls. Participants included 1,511 sixth-grade girls who completed baseline assessments for the Trial of Activity in Adolescent Girls, with 50% indicating they enjoyed PE class a lot. Variables positively associated with PE class enjoyment included physical activity level, perceived benefits of physical activity, self-efficacy for leisure time physical activity, and perceived school climate for girls' physical activity as influenced by teachers, while body mass index was inversely associated with PE class enjoyment. After adjusting for all variables in the model, PE class enjoyment was significantly greater in Blacks than in Whites. In model testing, with mutual adjustment for all variables, self-efficacy was the strongest correlate of PE class enjoyment, followed by perceived benefits, race/ethnicity, and teacher's support for girls' physical activity, as compared to boys, at school. The overall model explained 11% of the variance in PE class enjoyment. Findings suggest that efforts to enhance girls' self-efficacy and perceived benefits and to provide a supportive PE class environment that promotes gender equality can potentially increase PE class enjoyment among young girls. PMID:18431947
Heterogenous Combustion of Porous Graphite Particles in Normal and Microgravity
NASA Technical Reports Server (NTRS)
Chelliah, Harsha K.; Miller, Fletcher J.; Delisle, Andrew J.
2001-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants. The primary objective of the present work is to develop a rigorous model that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed. The details of this experimental and theoretical model development effort are described.
Geospace environment modeling 2008--2009 challenge: Dst index
Rastätter, L.; Kuznetsova, M.M.; Glocer, A.; Welling, D.; Meng, X.; Raeder, J.; Wittberger, M.; Jordanova, V.K.; Yu, Y.; Zaharia, S.; Weigel, R.S.; Sazykin, S.; Boynton, R.; Wei, H.; Eccles, V.; Horton, W.; Mays, M.L.; Gannon, J.
2013-01-01
This paper reports the metrics-based results of the Dst index part of the 2008–2009 GEM Metrics Challenge. The 2008–2009 GEM Metrics Challenge asked modelers to submit results for four geomagnetic storm events and five different types of observations that can be modeled by statistical, climatological or physics-based models of the magnetosphere-ionosphere system. We present the results of 30 model settings that were run at the Community Coordinated Modeling Center and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations, we use comparisons of 1 hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of 1 minute model data with the 1 minute Dst index calculated by the United States Geological Survey. The latter index can be used to calculate spectral variability of model outputs in comparison to the index. We find that model rankings vary widely by skill score used. None of the models consistently perform best for all events. We find that empirical models perform well in general. Magnetohydrodynamics-based models of the global magnetosphere with inner magnetosphere physics (ring current model) included and stand-alone ring current models with properly defined boundary conditions perform well and are able to match or surpass results from empirical models. Unlike in similar studies, the statistical models used in this study found their challenge in the weakest events rather than the strongest events.
NASA Astrophysics Data System (ADS)
Henderson, M. G.; Bent, R.; Chen, Y.; Delzanno, G. L.; Jeffery, C. A.; Jordanova, V. K.; Morley, S.; Rivera, M. K.; Toth, G.; Welling, D. T.; Woodroffe, J. R.; Engel, M.
2017-12-01
Large geomagnetic storms can have devastating effects on power grids. The largest geomagnetic storm ever recorded - called the Carrington Event - occurred in 1859 and produced Geomagnetically Induced Currents (GICs) strong enough to set fires in telegraph offices. It has been estimated that if such a storm occurred today, it would have devastating, long-lasting effects on the North American power transmission infrastructure. Acutely aware of this imminent threat, the North American Electric Reliability Corporation (NERC) was recently instructed to establish requirements for transmission system performance during geomagnetic disturbance (GMD) events and, although the benchmarks adopted were based on the best available data at the time, they suffer from a severely limited physical understanding of the behavior of GMDs and the resulting GICs for strong events. To rectify these deficiencies, we are developing a first-of-its-kind data-informed modelling capability that will provide transformational understanding of the underlying physical mechanisms responsible for the most harmful intense localized GMDs and their impacts on real power transmission networks. This work is being conducted in two separate modes of operation: (1) using historical, well-observed large storm intervals for which robust data-assimilation can be performed, and (2) extending the modelling into a predictive realm in order to assess impacts of poorly and/or never-before observed Carrington-class events. Results of this work are expected to include a potential replacement for the current NERC benchmarking methodology and the development of mitigation strategies in real power grid networks. We report on progress to date and show some preliminary results of modeling large (but not yet extreme) events.
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.
2017-12-01
During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the strength of the ionospheric convection, field-aligned current densities and ring current pressure amplitude and distribution.
Precision measurement of the weak charge of the proton.
2018-05-01
Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5 ± 9.3 parts per billion (the uncertainty is one standard deviation). Our value for the proton's weak charge is in excellent agreement with the standard model 2 and sets multi-teraelectronvolt-scale constraints on any semi-leptonic parity-violating physics not described within the standard model. Our results show that precision parity-violating measurements enable searches for physics beyond the standard model that can compete with direct searches at high-energy accelerators and, together with astronomical observations, can provide fertile approaches to probing higher mass scales.
Modelling the core magnetic field of the earth
NASA Technical Reports Server (NTRS)
Harrison, C. G. A.; Carle, H. M.
1982-01-01
It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.
Towards the identification of new physics through quark flavour violating processes.
Buras, Andrzej J; Girrbach, Jennifer
2014-08-01
We outline a systematic strategy that should help in this decade to identify new physics (NP) beyond the standard model (SM) by means of quark flavour violating processes, and thereby extend the picture of short distance physics down to scales as short as 10(-20) m and even shorter distance scales corresponding to energies of 100 TeV. Rather than using all of the possible flavour-violating observables that will be measured in the coming years at the LHC, SuperKEKB and in Kaon physics dedicated experiments at CERN, J-PARC and Fermilab, we concentrate on those observables that are theoretically clean and very sensitive to NP. Assuming that the data on the selected observables will be very precise, we stress the importance of correlations between these observables as well as of future precise calculations of non-perturbative parameters by means of lattice QCD simulations with dynamical fermions. Our strategy consists of twelve steps, which we will discuss in detail while illustrating the possible outcomes with the help of the SM, models with constrained minimal flavour violation (CMFV), MFV at large and models with tree-level flavour changing neutral currents mediated by neutral gauge bosons and scalars. We will also briefly summarize the status of a number of concrete models. We propose DNA charts that exhibit correlations between flavour observables in different NP scenarios. Models with new left-handed and/or right-handed currents and non-MFV interactions can be distinguished transparently in this manner. We emphasize the important role of the stringent CMFV relations between various observables as standard candles of flavour physics. The pattern of deviations from these relations may help in identifying the correct NP scenario. The success of this program will be very much facilitated through direct signals of NP at the LHC, even if the LHC will not be able to probe the physics at scales shorter than 4 × 10(-20) m. We also emphasize the importance of lepton flavour violation, electric dipole moments, and (g - 2)e, μ in these studies.
NASA Astrophysics Data System (ADS)
Claude, Nicolas; El Kadi Abderrezzak, Kamal; Duclercq, Marion; Tassi, Pablo; Leroux, Clément
2017-04-01
The Isère River (France) has been strongly impacted during the 19th and 20th centuries by human activities, such as channelization, sediment dredging and damming. The hydrology and river morphodynamic have been significantly altered, thereby leading to riverbed incision, a decrease in submersion frequency of gravel bars and an intense development of riparian vegetation on the bars. The flood risk has increased due to the reduction of the flow conveyance of the river, and the ecological status of the river has been degraded. To face these issues, a research program involving EDF and French state authorities has been recently initiated. Modification of the current hydrology, mainly controlled by dams, and definition of a new bed cross-sectional profile, are expected to foster the submersion frequency and mobility of the bars, thus limiting the riparian development. To assess the performance of these mitigating solutions, a physical and numerical modelling study has been conducted, applied to a 2 km long reach of the Isère River. The experimental setup consists of an undistorted movable bed designed to ensure the similarity of the Froude number and initial conditions for sediment particle motion. The resulting physical model is 35 m long and 2.6 m wide, with sand mixture composed of three grain size classes. The numerical simulations performed with the Telemac Modelling System (www.opentelemac.org) show, for the current morphology, a limited sediment mobility and submersion for flow discharge lower than 400 m3/s, confirming that the actual conditions in the Isère River promote the development of riparian vegetation. Different new bed geometry profiles have been evaluated using the numerical model. Then two configurations, one based on the creation of deflecting bedforms in the thalweg and one based on the transformation of the long bars into small central bars, have been selected and modelled with the physical model.
Dimensional Model for Estimating Factors influencing Childhood Obesity: Path Analysis Based Modeling
Kheirollahpour, Maryam; Shohaimi, Shamarina
2014-01-01
The main objective of this study is to identify and develop a comprehensive model which estimates and evaluates the overall relations among the factors that lead to weight gain in children by using structural equation modeling. The proposed models in this study explore the connection among the socioeconomic status of the family, parental feeding practice, and physical activity. Six structural models were tested to identify the direct and indirect relationship between the socioeconomic status and parental feeding practice general level of physical activity, and weight status of children. Finally, a comprehensive model was devised to show how these factors relate to each other as well as to the body mass index (BMI) of the children simultaneously. Concerning the methodology of the current study, confirmatory factor analysis (CFA) was applied to reveal the hidden (secondary) effect of socioeconomic factors on feeding practice and ultimately on the weight status of the children and also to determine the degree of model fit. The comprehensive structural model tested in this study suggested that there are significant direct and indirect relationships among variables of interest. Moreover, the results suggest that parental feeding practice and physical activity are mediators in the structural model. PMID:25097878
Advanced Propulsion Physics Lab: Eagleworks Investigations
NASA Technical Reports Server (NTRS)
Scogin, Tyler
2014-01-01
Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.
NASA Technical Reports Server (NTRS)
Stewart, Mark
2017-01-01
Evaporation and condensation at a liquid-vapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of inter-facial physics does not consistently predict behavior of evaporation or condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrage's equation, which demonstrates thin thermal layers at the fluid vapor interface.
NASA Astrophysics Data System (ADS)
He, Jibo; LHCb Collaboration
2016-04-01
Electroweak penguin decays are flavour-changing neutral current processes, and are highly suppressed in the Standard Model. They can only proceed via loop diagrams. Such decays may receive contributions from New Physics and change their decay behaviours like decay rate and angular distribution. Studying the properties of these decays thus provides a powerful method to probe for New Physics. In this contribution the most recent LHCb results on electroweak penguin decays are reported.
Papas, Rebecca K; Gakinya, Benson N; Mwaniki, Michael M; Lee, Hana; Kiarie, Stella W; Martino, Steve; Loxley, Michelle P; Keter, Alfred K; Klein, Debra A; Sidle, John E; Baliddawa, Joyce B; Maisto, Stephen A
2017-08-01
Victimization from physical and sexual violence presents global health challenges. Partner violence is higher in Kenya than Africa. Violence against drinkers and HIV-infected individuals is typically elevated, so dual vulnerabilities may further augment risk. Understanding violence risks can improve interventions. Participants were 614 HIV-infected outpatient drinkers in western Kenya enrolled in a randomized trial to reduce alcohol use. At baseline, past 90-day partner physical and sexual violence were examined descriptively and in gender-stratified regression models. We hypothesized higher reported violence against women than men, and positive violence association with HIV stigma and alcohol use across gender. Women reported significantly more current sexual (26.3 vs. 5.7%) and physical (38.9 vs. 24.8%) victimization than men. Rates were generally higher than Kenyan lifetime national averages. In both regression models, HIV stigma and alcohol-related sexual expectations were significantly associated with violence while alcohol use was not. For women, higher violence risk was also conferred by childhood violence, past-year transactional sex, and younger age. HIV-infected Kenyan drinkers, particularly women, endorse high current violence due to multiple risk factors. Findings have implications for HIV interventions. Longitudinal research is needed to understand development of risk.
Experimental investigation and model verification for a GAX absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, S.C.; Christensen, R.N.
1996-12-31
In the ammonia-water generator-absorber heat exchange (GAX) absorption heat pump, the heat and mass transfer processes which occur between the generator and absorber are the most crucial in assuring that the heat pump will achieve COPs competitive with those of current technologies. In this study, a model is developed for the heat and mass transfer processes that occur in a counter-current vertical fluted tube absorber (VFTA) with inserts. Correlations for heat and mass transfer in annuli are used to model the processes in the VTA. Experimental data is used to validate the model for three different insert geometries. Comparison ofmore » model results with experimental data provides insight into model corrections necessary to bring the model into agreement with the physical phenomena observed in the laboratory.« less
NASA Technical Reports Server (NTRS)
Jensen, Eric
2017-01-01
In this talk, I will begin by discussing the physical processes that govern the competition between heterogeneous and homogeneous ice nucleation in upper tropospheric cirrus clouds. Next, I will review the current knowledge of low-temperature ice nucleation from laboratory experiments and field measurements. I will then discuss the uncertainties and deficiencies in representations of cirrus processes in global models used to estimate the climate impacts of changes in cirrus clouds. Lastly, I will review the critical field measurements needed to advance our understanding of cirrus and their susceptibility to changes in aerosol properties.
Phenomenology of Ξb→Ξcτ ν decays
NASA Astrophysics Data System (ADS)
Dutta, Rupak
2018-04-01
Deviations from the standard model prediction have been reported in various semileptonic B decays mediated via b →c charged-current interactions. In this context, we analyze corresponding semileptonic baryon decays Ξb→Ξcτ ν using the helicity formalism. We report numerical results on various observables such as the decay rate, ratio of branching ratios, lepton-side forward-backward asymmetry, longitudinal polarization fraction of the charged lepton, and the convexity parameter for this decay mode using results from the relativistic quark model. We also provide an estimate of the new physics effect on these observables under various new physics scenarios.
Nano-Transistor Modeling: Two Dimensional Green's Function Method
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
Two quantum mechanical effects that impact the operation of nanoscale transistors are inversion layer energy quantization and ballistic transport. While the qualitative effects of these features are reasonably understood, a comprehensive study of device physics in two dimensions is lacking. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL (Drain Induced Barrier Lowering), and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI).
Physical parameters in long-decay coronal enhancements. [from Skylab X ray observations
NASA Technical Reports Server (NTRS)
Maccombie, W. J.; Rust, D. M.
1979-01-01
Four well-observed long-decay X-ray enhancements (LDEs) are examined which were associated with filament eruptions, white-light transients, and loop prominence systems. In each case the physical parameters of the X-ray-emitting plasma are determined, including the spatial distribution and temporal evolution of temperature and density. The results and recent analyses of other aspects of the four LDEs are compared with current models of loop prominence systems. It is concluded that only a magnetic-reconnection model, such as that proposed by Kopp and Pneuman (1976) is consistent with the observations.
Supercomputer requirements for selected disciplines important to aerospace
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron
1989-01-01
Speed and memory requirements placed on supercomputers by five different disciplines important to aerospace are discussed and compared with the capabilities of various existing computers and those projected to be available before the end of this century. The disciplines chosen for consideration are turbulence physics, aerodynamics, aerothermodynamics, chemistry, and human vision modeling. Example results for problems illustrative of those currently being solved in each of the disciplines are presented and discussed. Limitations imposed on physical modeling and geometrical complexity by the need to obtain solutions in practical amounts of time are identified. Computational challenges for the future, for which either some or all of the current limitations are removed, are described. Meeting some of the challenges will require computer speeds in excess of exaflop/s (10 to the 18th flop/s) and memories in excess of petawords (10 to the 15th words).
Physics of Electronic Materials
NASA Astrophysics Data System (ADS)
Rammer, Jørgen
2017-03-01
1. Quantum mechanics; 2. Quantum tunneling; 3. Standard metal model; 4. Standard conductor model; 5. Electric circuit theory; 6. Quantum wells; 7. Particle in a periodic potential; 8. Bloch currents; 9. Crystalline solids; 10. Semiconductor doping; 11. Transistors; 12. Heterostructures; 13. Mesoscopic physics; 14. Arithmetic, logic and machines; Appendix A. Principles of quantum mechanics; Appendix B. Dirac's delta function; Appendix C. Fourier analysis; Appendix D. Classical mechanics; Appendix E. Wave function properties; Appendix F. Transfer matrix properties; Appendix G. Momentum; Appendix H. Confined particles; Appendix I. Spin and quantum statistics; Appendix J. Statistical mechanics; Appendix K. The Fermi-Dirac distribution; Appendix L. Thermal current fluctuations; Appendix M. Gaussian wave packets; Appendix N. Wave packet dynamics; Appendix O. Screening by symmetry method; Appendix P. Commutation and common eigenfunctions; Appendix Q. Interband coupling; Appendix R. Common crystal structures; Appendix S. Effective mass approximation; Appendix T. Integral doubling formula; Bibliography; Index.
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
Stephenson, Chris P; Baguley, Ian J
2018-02-01
Functional Neurological Symptom Disorder (FND) is a relatively common neurological condition, accounting for approximately 3-6% of neurologist referrals. FND is considered a transient disorder of neuronal function, sometimes linked to physical trauma and psychological stress. Despite this, chronic disability is common, for example, around 40% of adults with motor FND have permanent disability. Building on current theoretical models, this paper proposes that microglial dysfunction could perpetuate functional changes within acute motor FND, thus providing a pathophysiological mechanism underlying the chronic stage of the motor FND phenotypes seen clinically. Core to our argument is microglia's dual role in modulating neuroimmunity and their control of synaptic plasticity, which places them at a pathophysiological nexus wherein coincident physical trauma and psychological stress could cause long-term change in neuronal networks without producing macroscopic structural abnormality. This model proposes a range of hypotheses that are testable with current technologies. Copyright © 2017. Published by Elsevier Ltd.
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
Icing simulation: A survey of computer models and experimental facilities
NASA Technical Reports Server (NTRS)
Potapczuk, M. G.; Reinmann, J. J.
1991-01-01
A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.
Icing simulation: A survey of computer models and experimental facilities
NASA Technical Reports Server (NTRS)
Potapczuk, M. G.; Reinmann, J. J.
1991-01-01
A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.
NASA Astrophysics Data System (ADS)
Shokri, Ali
2017-04-01
The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.
Minimal Unified Resolution to R_{K^{(*)}} and R(D^{(*)}) Anomalies with Lepton Mixing.
Choudhury, Debajyoti; Kundu, Anirban; Mandal, Rusa; Sinha, Rahul
2017-10-13
It is a challenging task to explain, in terms of a simple and compelling new physics scenario, the intriguing discrepancies between the standard model expectations and the data for the neutral-current observables R_{K} and R_{K^{*}}, as well as the charged-current observables R(D) and R(D^{*}). We show that this can be achieved in an effective theory with only two unknown parameters. In addition, this class of models predicts some interesting signatures in the context of both B decays as well as high-energy collisions.
Fluid equations in the presence of electron cyclotron current drive
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Kruger, Scott E.
2012-12-01
Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.
Fluid equations in the presence of electron cyclotron current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Thomas G.; Kruger, Scott E.
Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.
Combustion Of Porous Graphite Particles In Oxygen Enriched Air
NASA Technical Reports Server (NTRS)
Delisle, Andrew J.; Miller, Fletcher J.; Chelliah, Harsha K.
2003-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.
NASA Astrophysics Data System (ADS)
Lingel, Karen; Skwarnicki, Tomasz; Smith, James G.
Penguin, or loop, decays of B mesons induce effective flavor-changing neutral currents, which are forbidden at tree level in the standard model. These decays give special insight into the CKM matrix and are sensitive to non-standard-model effects. In this review, we give a historical and theoretical introduction to penguins and a description of the various types of penguin processes: electromagnetic, electroweak, and gluonic. We review the experimental searches for penguin decays, including the measurements of the electromagnetic penguins b -> sgamma and B -> K*gamma and gluonic penguins B -> Kpi, B+ -> omegaK+ and B -> eta'K, and their implications for the standard model and new physics. We conclude by exploring the future prospects for penguin physics.
Paraboloid magnetospheric magnetic field model and the status of the model as an ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions It is a reason why the method of the paraboloid magnetospheric model construction based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters Such approach is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace equation for each of these large-scale current systems in the magnetosphere with a
Electrode Models for Electric Current Computed Tomography
CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.
2016-01-01
This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280
Electrode models for electric current computed tomography.
Cheng, K S; Isaacson, D; Newell, J C; Gisser, D G
1989-09-01
This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 omega.cm were studied. Values of "effective" contact impedance zeta used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 omega.cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an "effective" contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field.
Supersymmetry and Kaon physics
NASA Astrophysics Data System (ADS)
Yamamoto, Kei
2017-01-01
Kaon physics has played an essential role in testing the Standard Model and in searching for new physics with measurements of CP violation and rare decays. Current progress of lattice calculations enables us to predict kaon observables accurately, especially for the direct CP violation, ε‧/ε, and there is a discrepancy from the experimental data at the 2.9 σ level. On the experimental side, the rare kaon decays and are ongoing to be measured at the SM accuracy by KOTO at J-PARC and NA62 at CERN. These kaon observables are good probes for new physics. We study supersymmetric effects; the chargino and gluino contributions to Z penguin, in kaon observables.
A useful demonstration of calculus in a physics high school laboratory
NASA Astrophysics Data System (ADS)
Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David
2018-01-01
The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an experiment of a falling magnet in a column of self-induced eddy currents. The presented method combines multiple physics concepts such as 1D kinematics, classical mechanics, electromagnetism and non-trivial mathematics. It offers the opportunity for lateral as well as project-based learning.
A Flush Toilet Model for the Transistor
NASA Astrophysics Data System (ADS)
Organtini, Giovanni
2012-04-01
In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted. This is not true for transistors. In most textbooks the behavior of a transistor is given without formal explanation. When the amplification is computed, for some reason, students have difficulties in identifying the basic physical mechanisms that give rise to such an effect. In this paper we give a simple and captivating illustration of the working principles of a transistor as an amplifier, tailored to high school students even with almost no background in electronics nor in modern physics. We assume that the target audience is familiar with the idea that a diode works as a check valve for currents. The lecture emphasis is on the illustration of physics principles governing the behavior of a transistor, rather than on a formal description of the processes leading to amplification.
Computational studies of physical properties of Nb-Si based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Lizhi
2015-04-16
The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less
Integrated simulations for fusion research in the 2030's time frame (white paper outline)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Alex; LoDestro, Lynda L.; Parker, Jeffrey B.
This white paper presents the rationale for developing a community-wide capability for whole-device modeling, and advocates for an effort with the expectation of persistence: a long-term programmatic commitment, and support for community efforts. Statement of 2030 goal (two suggestions): (a) Robust integrated simulation tools to aid real-time experimental discharges and reactor designs by employing a hierarchy in fidelity of physics models. (b) To produce by the early 2030s a capability for validated, predictive simulation via integration of a suite of physics models from moderate through high fidelity, to understand and plan full plasma discharges, aid in data interpretation, carry outmore » discovery science, and optimize future machine designs. We can achieve this goal via a focused effort to extend current scientific capabilities and rigorously integrate simulations of disparate physics into a comprehensive set of workflows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; Baker, Benjamin Allen; Schunert, Sebastian
The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition,more » this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.« less
NASA Astrophysics Data System (ADS)
Chen, Dong; Sun, Dihua; Zhao, Min; Zhou, Tong; Cheng, Senlin
2018-07-01
In fact, driving process is a typical cyber physical process which couples tightly the cyber factor of traffic information with the physical components of the vehicles. Meanwhile, the drivers have situation awareness in driving process, which is not only ascribed to the current traffic states, but also extrapolates the changing trend. In this paper, an extended car-following model is proposed to account for drivers' situation awareness. The stability criterion of the proposed model is derived via linear stability analysis. The results show that the stable region of proposed model will be enlarged on the phase diagram compared with previous models. By employing the reductive perturbation method, the modified Korteweg de Vries (mKdV) equation is obtained. The kink-antikink soliton of mKdV equation reveals theoretically the evolution of traffic jams. Numerical simulations are conducted to verify the analytical results. Two typical traffic Scenarios are investigated. The simulation results demonstrate that drivers' situation awareness plays a key role in traffic flow oscillations and the congestion transition.
NASA Astrophysics Data System (ADS)
Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.
2011-03-01
Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.
Workshop on Computational Turbulence Modeling
NASA Technical Reports Server (NTRS)
1993-01-01
This document contains presentations given at Workshop on Computational Turbulence Modeling held 15-16 Sep. 1993. The purpose of the meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Papers cover the following topics: turbulence modeling activities at the Center for Modeling of Turbulence and Transition (CMOTT); heat transfer and turbomachinery flow physics; aerothermochemistry and computational methods for space systems; computational fluid dynamics and the k-epsilon turbulence model; propulsion systems; and inlet, duct, and nozzle flow.
NASA Astrophysics Data System (ADS)
Russ, Rosemary S.; Odden, Tor Ole B.
2017-12-01
Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship between the multifaceted practices of professional science. The current study draws on existing research in the philosophy of science and psychology to advocate for intertwining two important aspects of scientific reasoning: using evidence from experimentation and modeling. We present a case from an undergraduate physics course to illustrate how these aspects can be intertwined productively and describe specific ways in which these aspects of reasoning can mutually reinforce one another in student learning. We end by discussing implications for this work for instruction in introductory physics courses and for research on scientific reasoning at the undergraduate level.
Matsuzaki, Mika; Kuper, Hannah; Kulkarni, Bharati; Radhakrishna, K V; Viljakainen, Heli; Taylor, Amy E; Sullivan, Ruth; Bowen, Liza; Tobias, Jon H; Ploubidis, George B; Wells, Jonathan C; Prabhakaran, Dorairaj; Davey Smith, George; Ebrahim, Shah; Ben-Shlomo, Yoav; Kinra, Sanjay
2014-06-01
Undernutrition and physical inactivity are both associated with lower bone mass. This study aimed to investigate the combined effects of early-life undernutrition and urbanized lifestyles in later life on bone mass accrual in young adults from a rural community in India that is undergoing rapid socioeconomic development. This was a prospective cohort study of participants of the Hyderabad Nutrition Trial (1987-1990), which offered balanced protein-calorie supplementation to pregnant women and preschool children younger than 6 y in the intervention villages. The 2009-2010 follow-up study collected data on current anthropometric measures, bone mineral density (BMD) measured by dual-energy X-ray absorptiometry, blood samples, diet, physical activity, and living standards of the trial participants (n = 1446, aged 18-23 y). Participants were generally lean and had low BMD [mean hip BMD: 0.83 (women), 0.95 (men) g/cm²; lumbar spine: 0.86 (women), 0.93 (men) g/cm²]. In models adjusted for current risk factors, no strong evidence of a positive association was found between BMD and early-life supplementation. On the other hand, current lean mass and weight-bearing physical activity were positively associated with BMD. No strong evidence of an association was found between BMD and current serum 25-hydroxyvitamin D or dietary intake of calcium, protein, or calories. Current lean mass and weight-bearing physical activity were more important determinants of bone mass than was early-life undernutrition in this population. In transitional rural communities from low-income countries, promotion of physical activity may help to mitigate any potential adverse effects of early nutritional disadvantage.
Matsuzaki, Mika; Kuper, Hannah; Kulkarni, Bharati; Radhakrishna, KV; Viljakainen, Heli; Taylor, Amy E; Sullivan, Ruth; Bowen, Liza; Tobias, Jon H; Ploubidis, George B; Wells, Jonathan C; Prabhakaran, Dorairaj; Davey Smith, George; Ebrahim, Shah; Ben-Shlomo, Yoav; Kinra, Sanjay
2014-01-01
Background: Undernutrition and physical inactivity are both associated with lower bone mass. Objective: This study aimed to investigate the combined effects of early-life undernutrition and urbanized lifestyles in later life on bone mass accrual in young adults from a rural community in India that is undergoing rapid socioeconomic development. Design: This was a prospective cohort study of participants of the Hyderabad Nutrition Trial (1987–1990), which offered balanced protein-calorie supplementation to pregnant women and preschool children younger than 6 y in the intervention villages. The 2009–2010 follow-up study collected data on current anthropometric measures, bone mineral density (BMD) measured by dual-energy X-ray absorptiometry, blood samples, diet, physical activity, and living standards of the trial participants (n = 1446, aged 18–23 y). Results: Participants were generally lean and had low BMD [mean hip BMD: 0.83 (women), 0.95 (men) g/cm2; lumbar spine: 0.86 (women), 0.93 (men) g/cm2]. In models adjusted for current risk factors, no strong evidence of a positive association was found between BMD and early-life supplementation. On the other hand, current lean mass and weight-bearing physical activity were positively associated with BMD. No strong evidence of an association was found between BMD and current serum 25-hydroxyvitamin D or dietary intake of calcium, protein, or calories. Conclusions: Current lean mass and weight-bearing physical activity were more important determinants of bone mass than was early-life undernutrition in this population. In transitional rural communities from low-income countries, promotion of physical activity may help to mitigate any potential adverse effects of early nutritional disadvantage. PMID:24695898
Indirect handle on the down-quark Yukawa coupling.
Goertz, Florian
2014-12-31
To measure the Yukawa couplings of the up and down quarks, Yu,d, seems to be far beyond the capabilities of current and (near) future experiments in particle physics. By performing a general analysis of the potential misalignment between quark masses and Yukawa couplings, we derive predictions for the magnitude of induced flavor-changing neutral currents (FCNCs), depending on the shift in the physical Yukawa coupling of first-generation quarks. We find that a change of more than 50% in Yd would generically result in ds transitions in conflict with kaon physics. This could already be seen as evidence for a nonvanishing direct coupling of the down quark to the newly discovered Higgs boson. The nonobservation of certain--already well-constrained--processes is thus turned into a powerful indirect measure of otherwise basically unaccessible physical parameters of the effective standard model. Similarly, improvements in limits on FCNCs in the up-type quark sector can lead to valuable information on Yu.
Nowcast model for hazardous material spill prevention and response, San Francisco Bay, California
Cheng, Ralph T.; Wilmot, Wayne L.; Galt, Jerry A.
1997-01-01
The National Oceanic and Atmospheric Administration (NOAA) installed the Physical Oceanographic Real-time System (PORTS) in San Francisco Bay, California, to provide real-time observations of tides, tidal currents, and meteorological conditions to, among other purposes, guide hazardous material spill prevention and response. Integrated with nowcast modeling techniques and dissemination of real-time data and the nowcasting results through the Internet on the World Wide Web, emerging technologies used in PORTS for real-time data collection forms a nowcast modeling system. Users can download tides and tidal current distribution in San Francisco Bay for their specific applications and/or for further analysis.
Gibb, B E; Alloy, L B; Abramson, L Y; Rose, D T; Whitehouse, W G; Hogan, M E
2001-01-01
Few studies have examined the relation between childhood maltreatment and adult suicidality within the context of a coherent theoretical model. The current study evaluates the ability of the hopelessness theory of depression's (Abramson, Metalsky, & Alloy, 1989) etiological chain to account for this relation in a sample of 297 undergraduates. Supporting the model, emotional, but not physical or sexual, maltreatment was uniquely related to average levels of suicidal ideation across a 2.5-year follow-up. Further, students' cognitive styles and average levels of hopelessness partially mediated this relation. Although these results cannot speak to causality, they support the developmental model evaluated.
Flavour-changing neutral currents making and breaking the standard model.
Archilli, F; Bettler, M-O; Owen, P; Petridis, K A
2017-06-07
The standard model of particle physics is our best description yet of fundamental particles and their interactions, but it is known to be incomplete. As yet undiscovered particles and interactions might exist. One of the most powerful ways to search for new particles is by studying processes known as flavour-changing neutral current decays, whereby a quark changes its flavour without altering its electric charge. One example of such a transition is the decay of a beauty quark into a strange quark. Here we review some intriguing anomalies in these decays, which have revealed potential cracks in the standard model-hinting at the existence of new phenomena.
NASA Astrophysics Data System (ADS)
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
The Earth's magnetosphere modeling and ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base Fairfield et al 1994 which contains Earth s magnetospheric magnetic field measurements accumulated during many years The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The last version of the Tsyganenko model has been constructed for a geomagnetic storm time interval This version based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters The same method has been used previously for paraboloid model construction This method is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace
Neutrons and Fundamental Symmetries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plaster, Bradley
2016-01-11
The research supported by this project addressed fundamental open physics questions via experiments with subatomic particles. In particular, neutrons constitute an especially ideal “laboratory” for fundamental physics tests, as their sensitivities to the four known forces of nature permit a broad range of tests of the so-called “Standard Model”, our current best physics model for the interactions of subatomic particles. Although the Standard Model has been a triumphant success for physics, it does not provide satisfactory answers to some of the most fundamental open questions in physics, such as: are there additional forces of nature beyond the gravitational, electromagnetic, weakmore » nuclear, and strong nuclear forces?, or why does our universe consist of more matter than anti-matter? This project also contributed significantly to the training of the next generation of scientists, of considerable value to the public. Young scientists, ranging from undergraduate students to graduate students to post-doctoral researchers, made significant contributions to the work carried out under this project.« less
Unmanned Air Vehicle -Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred Oppel, SNL 06134
2013-04-17
This package contains modules that model the mobility of systems such as helicopters and fixed wing flying in the air. This package currently models first order physics - basically a velocity integrator. UAV mobility uses an internal clock to maintain stable, high-fidelity simulations over large time steps This package depends on interface that reside in the Mobility package.
ERIC Educational Resources Information Center
Raab, Markus
2007-01-01
Background: Recent developments of theories for teaching decision making in sport offer a large variety of applications for the context of physical education. Purpose: This review of current models of teaching tactical skills concludes that most models incorporate different cognitive learning mechanisms, such as implicit and explicit learning, and…
ERIC Educational Resources Information Center
Vasilenko, Sara A.; Lefkowitz, Eva S.; Welsh, Deborah P.
2014-01-01
Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that…
Inter-Disciplinary Collaboration in Support of the Post-Standby TREAT Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Baker, Benjamin; Ortensi, Javier
Although analysis methods have advanced significantly in the last two decades, high fidelity multi- physics methods for reactors systems have been under development for only a few years and are not presently mature nor deployed. Furthermore, very few methods provide the ability to simulate rapid transients in three dimensions. Data for validation of advanced time-dependent multi- physics is sparse; at TREAT, historical data were not collected for the purpose of validating three-dimensional methods, let alone multi-physics simulations. Existing data continues to be collected to attempt to simulate the behavior of experiments and calibration transients, but it will be insufficient formore » the complete validation of analysis methods used for TREAT transient simulations. Hence, a 2018 restart will most likely occur without the direct application of advanced modeling and simulation methods. At present, the current INL modeling and simulation team plans to work with TREAT operations staff in performing reactor simulations with MAMMOTH, in parallel with the software packages currently being used in preparation for core restart (e.g., MCNP5, RELAP5, ABAQUS). The TREAT team has also requested specific measurements to be performed during startup testing, currently scheduled to run from February to August of 2018. These startup measurements will be crucial in validating the new analysis methods in preparation for ultimate application for TREAT operations and experiment design. This document describes the collaboration between modeling and simulation staff and restart, operations, instrumentation and experiment development teams to be able to effectively interact and achieve successful validation work during restart testing.« less
Some current themes in physical hydrology of the land-atmosphere interface
Milly, P.C.D.
1991-01-01
Certain themes arise repeatedly in current literature dealing with the physical hydrology of the interface between the atmosphere and the continents. Papers contributed to the 1991 International Association of Hydrological Sciences Symposium on Hydrological Interactions between Atmosphere, Soil and Vegetation echo these themes, which are discussed in this paper. The land-atmosphere interface is the region where atmosphere, soil, and vegetation have mutual physical contact, and a description of exchanges of matter or energy among these domains must often consider the physical properties and states of the entire system. A difficult family of problems is associated with the reconciliation of the wide range of spatial scales that arise in the course of observational, theoretical, and modeling activities. These scales are determined by some of the physical elements of the interface, by patterns of natural variability of the physical composition of the interface, by the dynamics of the processes at the interface, and by methods of measurement and computation. Global environmental problems are seen by many hydrologists as a major driving force for development of the science. The challenge for hydrologists will be to respond to this force as scientists rather than problem-solvers.
NASA Astrophysics Data System (ADS)
Jazebi, Saeed
This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the iron core magnetizing characteristic is modified with the accurate measurement of the air-core inductance. The air-core inductance is measured using a non-ideal low-power rectifier. Its dc output serves to drive the transformer into deep saturation, and its ripple provides low-amplitude variable excitation. The principal advantage of this method is its simplicity. To model the eddy current effects in the windings, a novel equivalent circuit is proposed. The circuit is derived from the principle of duality and therefore, matches the electromagnetic physical behavior of the transformer windings. It properly models the flux paths and current distribution from dc to MHz. The model is synthesized from a non-uniform concentric discretization of the windings. Concise guidelines are given to optimally calculate the width of the sub-divisions for various transient simulations. To compute the circuit parameters only information about the geometry of the windings and about their material properties is needed. The calculation of the circuit parameters does not require an iterative process. Therefore, the parameters are always real, positive, and free from convergence problems. The proposed model is tested with single-phase transformers for the calculation of magnetizing inrush currents, series ferroresonance, and Geomagnetic Induced Currents (GIC). The electromagnetic transient response of the model is compared to laboratory measurements for validation. Also, 3D finite element simulations are used to validate the electromagnetic behavior of the transformer model. Large manufacturer of transformers, power system designers, and electrical utility companies can benefit from the new model. It simplifies the design and optimization of the transformers' insulation, thereby reducing cost, and enhancing reliability of the system. The model could also be used for inrush current and differential protection studies, geomagnetic induced current studies, harmonic penetration studies, and switching transient studies.
NASA Astrophysics Data System (ADS)
Brinson, James R.
The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.
NASA Astrophysics Data System (ADS)
Akasofu, S.-I.; Kamide, Y.
1998-07-01
A new approach is needed to advance magnetospheric physics in the future to achieve a much closer integration than in the past among satellite-based researchers, ground-based researchers, and theorists/modelers. Specifically, we must find efficient ways to combine two-dimensional ground-based data and single points satellite-based data to infer three-dimensional aspects of magnetospheric disturbances. For this particular integration purpose, we propose a new project. It is designed to determine the currents on the magnetospheric equatorial plane from the ionospheric current distribution which has become available by inverting ground-based magnetic data from an extensive, systematic network of observations, combined with ground-based radar measurements of ionospheric parameters, and satellite observations of auroras, electric fields, and currents. The inversion method is based on the KRM/AMIE algorithms. In the first part of the paper, we extensively review the reliability and accuracy of the KRM and AMIE algorithms and conclude that the ionospheric quantities thus obtained are accurate enough for the next step. In the second part, the ionospheric current distribution thus obtained is projected onto the equatorial plane. This process requires a close cooperation with modelers in determining an accurate configuration of the magnetospheric field lines. If we succeed in this projection, we should be able to study the changing distribution of the currents in a vast region of the magnetospheric equatorial plane for extended periods with a time resolution of about 5 min. This process requires a model of the magnetosphere for the different phases of the magnetospheric substorm. Satellite-based observations are needed to calibrate the projection results. Agreements and disagreements thus obtained will be crucial for theoretical studies of magnetospheric plasma convection and dynamics, particularly in studying substorms. Nothing is easy in these procedures. However, unless we can overcome the associated difficulties, we may not be able to make distinct progresses. We believe that the proposed project is one way to draw the three groups closer together in advancing magnetospheric physics in the future. It is important to note that the proposed project has become possible because ground-based space physics has made a major advance during the last decade.
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi
2017-03-01
Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.
Nature as a network of morphological infocomputational processes for cognitive agents
NASA Astrophysics Data System (ADS)
Dodig-Crnkovic, Gordana
2017-01-01
This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational models and their relationships to physical systems, especially cognitive systems such as living beings. Natural morphological infocomputation as a conceptual framework necessitates generalization of models of computation beyond the traditional Turing machine model presenting symbol manipulation, and requires agent-based concurrent resource-sensitive models of computation in order to be able to cover the whole range of phenomena from physics to cognition. The central role of agency, particularly material vs. cognitive agency is highlighted.
Reduction of collisional-radiative models for transient, atomic plasmas
NASA Astrophysics Data System (ADS)
Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai
2017-10-01
Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).
Integrated tokamak modeling: when physics informs engineering and research planning
NASA Astrophysics Data System (ADS)
Poli, Francesca
2017-10-01
Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.
Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839
Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.
Emaus, Aina; Dieli-Conwright, Christina; Xu, Xinxin; Lacey, James V.; Ingles, Sue A.; Reynolds, Peggy; Bernstein, Leslie; Henderson, Katherine D.
2012-01-01
Objective Although physical activity modulates the hypothalamic-ovarian-pituitary axis, the few studies investigating whether physical activity is associated with age at natural menopause have had mixed results. We set out to determine whether physical activity is associated with the timing of natural menopause in a large cohort of California women, overall, and by smoking history. Methods We investigated the association between long-term physical activity (hours/week/year) and age at natural menopause among 97,945 women in the California Teachers Study. Multivariable Cox proportional hazards regression methods were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). The impact of cigarette smoking (never smoker, former-light smoker, former-heavy smoker, current-light smoker, current-heavy smoker) as an effect modifier was evaluated. Results In a multivariable model adjusting for body mass index at age 18, age at menarche, race/ethnicity, and age at first full-term pregnancy, increased physical activity was statistically significantly associated with older age at natural menopause (ptrend=0.005). Higher body mass index at age 18 (ptrend=0.0003) and older age at menarche (ptrend=0.0003) were also associated with older age at natural menopause. Hispanic ethnicity (vs. non-Hispanic whites, HR 1.17, 95% CI 1.09–1.26), current smokers (vs. never smokers, HR 1.68, 95% CI 1.60–1.75 for current-light smokers; HR 1.38, 95% CI 1.33–1.44 for current-heavy smokers) and older age at first full-term pregnancy (HR≥29, 2+ full-term pregnancies vs. <29, 2+ full-term pregnancies 1.10, 95% CI 1.06–1.14) were associated with earlier age at natural menopause. Upon stratification by smoking history, increased physical activity was statistically significantly associated with older natural menopause among heavy smokers only (HRHighest vs. Lowest quartile 0.88, 95% CI 0.81–0.97, ptrend=0.02 for former-heavy smokers; HRHighest vs. Lowest quartile 0.89, 95% CI 0.80–0.99, ptrend=0.04 for current-heavy smokers). Conclusion Age at natural menopause is a complex trait; the determinants of age at natural menopause, including physical activity, may differ by smoking status. PMID:23435025
Emaus, Aina; Dieli-Conwright, Christina; Xu, Xinxin; Lacey, James V; Ingles, Sue A; Reynolds, Peggy; Bernstein, Leslie; Henderson, Katherine D
2013-03-01
Although physical activity modulates the hypothalamic-pituitary-ovarian axis, the few studies that have investigated whether physical activity is associated with age at natural menopause have yielded mixed results. We set out to determine whether physical activity is associated with the timing of natural menopause in a large cohort of California women overall and by smoking history. We investigated the association between long-term physical activity (h/wk/y) and age at natural menopause among 97,945 women in the California Teachers Study. Multivariable Cox proportional hazards regression methods were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). The impact of cigarette smoking (never smoker, former light smoker, former heavy smoker, current light smoker, and current heavy smoker) as an effect modifier was evaluated. In a multivariable model adjusted for body mass index at age 18 years, age at menarche, race/ethnicity, and age at first full-term pregnancy, increased physical activity was statistically significantly associated with older age at natural menopause (P(trend) = 0.005). Higher body mass index at age 18 years (P(trend) = 0.0003) and older age at menarche (P(trend) = 0.0003) were also associated with older age at natural menopause. Hispanic ethnicity (vs non-Hispanic whites; HR, 1.17; 95% CI, 1.09-1.26), current smokers (vs never smokers; HR, 1.68; 95% CI, 1.60-1.75 for current light smokers; HR, 1.38; 95% CI, 1.33-1.44 for current heavy smokers), and older age at first full-term pregnancy (HR(≥29, 2+ full-term pregnancies) vs HR(<29, 2+ full-term pregnancies), 1.10; 95% CI, 1.06-1.14) were associated with earlier age at natural menopause. Upon stratification by smoking history, increased physical activity was statistically significantly associated with older age at natural menopause among heavy smokers only (HR(highest quartile) vs HR(lowest quartile), 0.88; 95% CI, 0.81-0.97; P(trend) = 0.02 for former heavy smokers; HR(highest quartile) vs HR(lowest quartile), 0.89; 95% CI, 0.80-0.99; P(trend) = 0.04 for current heavy smokers). Age at natural menopause is a complex trait; the determinants of age at natural menopause, including physical activity, may differ by smoking status.
Efficacy-mediated effects of spirituality and physical activity on quality of life: A path analysis
2012-01-01
Background Physical activity has been established as an important determinant of quality of life, particularly among older adults. Previous research has suggested that physical activity’s influence on quality of life perceptions is mediated by changes in self-efficacy and health status. In the same vein, spirituality may be a salient quality of life determinant for many individuals. Methods In the current study, we used path analysis to test a model in which physical activity, spirituality, and social support were hypothesized to influence global quality of life in paths mediated by self-efficacy and health status. Cross-sectional data were collected from a sample of 215 adults (male, n = 51; female, n = 164) over the age of 50 (M age = 66.55 years). Results The analysis resulted in a model that provided acceptable fit to the data (χ2 = 33.10, df = 16, p < .01; RMSEA = .07; SRMR = .05; CFI = .94). Conclusions These results support previous findings of an efficacy-mediated relationship between physical activity and quality of life, with the exception that self-efficacy in the current study was moderately associated with physical health status (.38) but not mental health status. Our results further suggest that spirituality may influence health and well-being via a similar, efficacy-mediated path, with strongest effects on mental health status. These results suggest that those who are more spiritual and physically active report greater quality of life, and the effects of these factors on quality of life may be partially mediated by perceptions of self-efficacy. PMID:22642832
Jolly, Kate; Duda, Joan L; Daley, Amanda; Eves, Frank F; Mutrie, Nanette; Ntoumanis, Nikos; Rouse, Peter C; Lodhia, Rekha; Williams, Geoffrey C
2009-01-01
Background The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT)-based exercise referral consultation. Methods/Design Design: An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. Participants: 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n = 7) or to the SDT-based intervention (n = 6). Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. Discussion This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. Trial registration The trial is registered as Current Controlled trials ISRCTN07682833. PMID:19505293
Current-limiting challenges for all-spin logic devices
Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng
2015-01-01
All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410
NASA Astrophysics Data System (ADS)
Menzel, R.; Paynter, D.; Jones, A. L.
2017-12-01
Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.
NASA Astrophysics Data System (ADS)
Rodriguez Marco, Albert
Battery management systems (BMS) require computationally simple but highly accurate models of the battery cells they are monitoring and controlling. Historically, empirical equivalent-circuit models have been used, but increasingly researchers are focusing their attention on physics-based models due to their greater predictive capabilities. These models are of high intrinsic computational complexity and so must undergo some kind of order-reduction process to make their use by a BMS feasible: we favor methods based on a transfer-function approach of battery cell dynamics. In prior works, transfer functions have been found from full-order PDE models via two simplifying assumptions: (1) a linearization assumption--which is a fundamental necessity in order to make transfer functions--and (2) an assumption made out of expedience that decouples the electrolyte-potential and electrolyte-concentration PDEs in order to render an approach to solve for the transfer functions from the PDEs. This dissertation improves the fidelity of physics-based models by eliminating the need for the second assumption and, by linearizing nonlinear dynamics around different constant currents. Electrochemical transfer functions are infinite-order and cannot be expressed as a ratio of polynomials in the Laplace variable s. Thus, for practical use, these systems need to be approximated using reduced-order models that capture the most significant dynamics. This dissertation improves the generation of physics-based reduced-order models by introducing different realization algorithms, which produce a low-order model from the infinite-order electrochemical transfer functions. Physics-based reduced-order models are linear and describe cell dynamics if operated near the setpoint at which they have been generated. Hence, multiple physics-based reduced-order models need to be generated at different setpoints (i.e., state-of-charge, temperature and C-rate) in order to extend the cell operating range. This dissertation improves the implementation of physics-based reduced-order models by introducing different blending approaches that combine the pre-computed models generated (offline) at different setpoints in order to produce good electrochemical estimates (online) along the cell state-of-charge, temperature and C-rate range.
Students conception and perception of simple electrical circuit
NASA Astrophysics Data System (ADS)
Setyani, ND; Suparmi; Sarwanto; Handhika, J.
2017-11-01
This research aims to describe the profile of the students’ conception and perception on the simple electrical circuit. The results of this research suppose to be used as a reference by teachers to use learning models or strategies to improve understanding the physics concept. The research method used is descriptive qualitative. Research subjects are the students of physics education program, Universitas Sebelas Maret, Surakarta, Indonesia (49 students). The results showed that students have alternative conceptions. Their conceptions are (1) a high-voltage wire has an electric current and can cause electric shock, (2) the potential difference and the value of resistance used in a circuit is influenced by electric current, (3) the value of resistance of a lamp is proportional to the filament thickness, (4) the amount of electric current that coming out from the positive pole battery is the same for all type of circuit, in series or parallel (battery is constant current sources), (5) the current at any resistor in the series circuit is influenced by the resistor used, (6) the resistor consume the current through it. This incorrect conception can cause misconceptions.
A fluid modeling perspective on the tokamak power scrape-off width using SOLPS-ITER
NASA Astrophysics Data System (ADS)
Meier, Eric
2016-10-01
SOLPS-ITER, a 2D fluid code, is used to conduct the first fluid modeling study of the physics behind the power scrape-off width (λq). When drift physics are activated in the code, λq is insensitive to changes in toroidal magnetic field (Bt), as predicted by the 0D heuristic drift (HD) model developed by Goldston. Using the HD model, which quantitatively agrees with regression analysis of a multi-tokamak database, λq in ITER is projected to be 1 mm instead of the previously assumed 4 mm, magnifying the challenge of maintaining the peak divertor target heat flux below the technological limit. These simulations, which use DIII-D H-mode experimental conditions as input, and reproduce the observed high-recycling, attached outer target plasma, allow insights into the scrape-off layer (SOL) physics that set λq. Independence of λq with respect to Bt suggests that SOLPS-ITER captures basic HD physics: the effect of Bt on the particle dwell time ( Bt) cancels with the effect on drift speed ( 1 /Bt), fixing the SOL plasma density width, and dictating λq. Scaling with plasma current (Ip), however, is much weaker than the roughly 1 /Ip dependence predicted by the HD model. Simulated net cross-separatrix particle flux due to magnetic drifts exceeds the anomalous particle transport, and a Pfirsch-Schluter-like SOL flow pattern is established. Up-down ion pressure asymmetry enables the net magnetic drift flux. Drifts establish in-out temperature asymmetry, and an associated thermoelectric current carries significant heat flux to the outer target. The density fall-off length in the SOL is similar to the electron temperature fall-off length, as observed experimentally. Finally, opportunities and challenges foreseen in ongoing work to extrapolate SOLPS-ITER and the HD model to ITER and future machines will be discussed. Supported by U.S. Department of Energy Contract DESC0010434.
Damian, April Joy; Mendelson, Tamar
2017-11-10
Alcohol use is a pervasive and costly public health problem in the United States. Relapse rates from alcohol use disorders are high. Although exercise has been proposed as a strategy to prevent relapse, lifestyle modification is the least studied aspect of relapse prevention programs, especially among racial/ethnic minority populations. The current study assessed whether being physically active was associated with remission from alcohol abuse or dependence among Black (African American and Afro Caribbean) adults in the U.S. We utilized data on Black adult participants (n = 4,828) from the nationally representative National Survey of American Life (NSAL) conducted in 2001-2003. Logistic regression models were estimated to assess the odds of being in 12-month remission or currently meeting DSM-IV criteria for alcohol abuse or dependence based on level of physical activity, adjusting for socio-demographic and neighborhood characteristics. People who endorsed being physically active had higher odds of being in 12-month remission from alcohol use problems (OR: 1.67, 95% CI: 1.28, 2.17) than people who were physically inactive, adjusting for individual- and neighborhood-level characteristics. People who were physically active did not differ significantly from those who were inactive with respect to odds of currently meeting DSM-IV criteria for alcohol abuse or dependence. Conclusions/Importance: Physical activity was positively associated with being in 12-month remission from alcohol use problems. Longitudinal studies are needed to establish temporal ordering and to explore exercise as a potential relapse prevention strategy for alcohol use problems.
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meurice, Yannick L; Reno, Mary Hall
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less
Mock Data Challenge for the MPD/NICA Experiment on the HybriLIT Cluster
NASA Astrophysics Data System (ADS)
Gertsenberger, Konstantin; Rogachevsky, Oleg
2018-02-01
Simulation of data processing before receiving first experimental data is an important issue in high-energy physics experiments. This article presents the current Event Data Model and the Mock Data Challenge for the MPD experiment at the NICA accelerator complex which uses ongoing simulation studies to exercise in a stress-testing the distributed computing infrastructure and experiment software in the full production environment from simulated data through the physical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz Cruz, J. Lorenzo
This paper intends to review the subject of Higgs Physics. I start from the early stages, including its phenomenology and the current expectations for the possible Higgs discovery at the coming LHC. Then, I discuss the proposals for new physics that attempt to solve the hierarchy problem, where the Higgs boson can be either a fundamental or composite field. Finally, I also comment on the hardest questions, namely on the possible connection between the Higgs mechanism, the Standard Model parameters and gravity.
Ahongshangbam, Shurmala; Chakrabarti, Amit
2013-06-01
Occurrence of chronic physical pain is increasingly identified among youth, and medically unsupervised analgesic use is a possible risk factor for opioid dependence and other mental diseases in later life. Therefore, the present study was carried out in young student population in Sikkim, India, to explore predictors (including current chronic pain and current analgesic use) of low QoL in youth to identify a subset of population vulnerable to substance use and mental diseases in later life. The study was conducted in a health university setting in Sikkim, North East India. In this cross-sectional study, 156 participants were enrolled with almost equal number of males and females. Generic instruments for demographics and current analgesic use and SF - 36, for assessment of quality of life (QoL), were used. QoL was measured in general, physical and emotional domains. Presence of chronic physical pain during past four weeks was captured using SF - 36. Almost two-third participants reported presence of current physical pain (69%, n=108); and (14%, n=22) reported current analgesic use for pain. In logistic regression model controlled for age, ethnicity, gender and residence, higher body mass index (BMI) (β=-0.16, P=0.02) and current analgesic use (β=1.6, P=0.006) predicted low QoL in emotional domain (less accomplishment due to emotional problem). Current analgesic use also predicted low QoL in another measure of emotional domain (depressed β=2.0, P=0.001). This study identified a subset of participants in their youth with low QoL in emotional domain predicted by current analgesic use and possible overweight problem. Low QoL in more than one emotional domain also identifies possibility of later psychiatric impairment. However, chronic pain did not emerge as a significant predictor of low QoL in emotional domain.
The CEOP Inter-Monsoon Studies (CIMS)
NASA Technical Reports Server (NTRS)
Lau, William K. M.
2003-01-01
Prediction of climate relies on models, and better model prediction depends on good model physics. Improving model physics requires the maximal utilization of climate data of the past, present and future. CEOP provides the first example of a comprehensive, integrated global and regional data set, consisting of globally gridded data, reference site in-situ observations, model location time series (MOLTS), and integrated satellite data for a two-year period covering two complete annual cycles of 2003-2004. The monsoon regions are the most important socio-economically in terms of devastation by floods and droughts, and potential impacts from climate change md fluctuatinns nf the hydrologic cyc!e. Scientifically, it is most challenging, because of complex interactions of atmosphere, land and oceans, local vs. remote forcings in contributing to climate variability and change in the region. Given that many common features, and physical teleconnection exist among different monsoon regions, an international research focus on monsoon must be coordinated and sustained. Current models of the monsoon are grossly inadequate for regional predictions. For improvement, models must be confronted with relevant observations, and model physic developers must be made to be aware of the wealth of information from existing climate data, field measurements, and satellite data that can be used to improve models. Model transferability studles must be conducted. CIMS is a major initiative under CEOP to engage the modeling and the observational communities to join in a coordinated effort to study the monsoons. The objectives of CIMS are (a) To provide a better understanding of fundamental physical processes (diurnal cycle, annual cycle, and intraseasonal oscillations) in monsoon regions around the world and (b) To demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. In this talk, I will present the basic concepts of CIMS and the key scientific problems facing monsoon climates and provide examples of common monsoon features, and possible monsoon induced teleconnections linking different parts of the world.
A Risk-Based Approach for Aerothermal/TPS Analysis and Testing
NASA Technical Reports Server (NTRS)
Wright, Michael J.; Grinstead, Jay H.; Bose, Deepak
2007-01-01
The current status of aerothermal and thermal protection system modeling for civilian entry missions is reviewed. For most such missions, the accuracy of our simulations is limited not by the tools and processes currently employed, but rather by reducible deficiencies in the underlying physical models. Improving the accuracy of and reducing the uncertainties in these models will enable a greater understanding of the system level impacts of a particular thermal protection system and of the system operation and risk over the operational life of the system. A strategic plan will be laid out by which key modeling deficiencies can be identified via mission-specific gap analysis. Once these gaps have been identified, the driving component uncertainties are determined via sensitivity analyses. A Monte-Carlo based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system material response modeling. These data are then used to advocate for and plan focused testing aimed at reducing key uncertainties. The results of these tests are used to validate or modify existing physical models. Concurrently, a testing methodology is outlined for thermal protection materials. The proposed approach is based on using the results of uncertainty/sensitivity analyses discussed above to tailor ground testing so as to best identify and quantify system performance and risk drivers. A key component of this testing is understanding the relationship between the test and flight environments. No existing ground test facility can simultaneously replicate all aspects of the flight environment, and therefore good models for traceability to flight are critical to ensure a low risk, high reliability thermal protection system design. Finally, the role of flight testing in the overall thermal protection system development strategy is discussed.
Improving orbit prediction accuracy through supervised machine learning
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli
2018-05-01
Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.
NASA Astrophysics Data System (ADS)
Gianni, Guillaume; Doherty, John; Perrochet, Pierre; Brunner, Philip
2017-04-01
Physical properties of alluvial environments are typically featuring a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. A literature review on current modelling practice shows that hydrogeological models are often calibrated using isotropic hydraulic conductivity fields and steady state conditions. We aim at understanding how these simplifications affect the predictions of hydraulic heads and exchange fluxes using fully coupled, physically based synthetic models and advanced calibration approaches. Specifically, we present an analysis of the information content provided by averaged, steady state hydraulic data compared to transient data with respect to the determination of aquifer hydraulic properties. We show that the information content in average hydraulic heads is insufficient to inform anisotropic properties of alluvial aquifers and can lead to important biases on the calibrated parameters. We further explore the consequences of these biases on predictions of fluxes and water table dynamics. The results of this synthetic analysis are considered in the calibration of a highly dynamic and anisotropic alluvial aquifer system in Switzerland (the Rhône River). The results of the synthetic and real-world modelling and calibration exercises provide insight on future data acquisition, modelling and calibration strategies for these environments.
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team
2018-04-01
Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.
Greene, Carolyn A; Ford, Julian D; Wakefield, Dorothy B; Barry, Lisa C
2014-10-01
The purpose of this study was to evaluate the interrelationship among childhood abuse and traumatic loss, posttraumatic stress symptoms (PTSS), and Axis I psychiatric disorders other than PTSD among newly incarcerated adults, and to test a proposed model in which the severity of PTSS mediates the relationship between childhood abuse/loss and adult psychiatric disorders. Four hundred sixty-five male and female inmates participated in a structured clinical research interview. Four types of interpersonal potentially traumatic experiences (physical abuse, sexual abuse, emotional abuse, and traumatic loss) were assessed for occurrence prior to the age of 18 years old. Current psychiatric disorders and PTSS were also assessed by structured interview. Negative binomial regression was used to evaluate the association between the cumulative number of types of childhood abuse/loss experienced and number of current Axis I disorders, and to test the mediation model. Approximately half of the sample (51%) experienced 1 or more types of childhood abuse/loss, and 30% of the sample had at least one psychiatric disorder other than PTSD. For both men and women, childhood physical abuse and childhood sexual abuse were independently associated with psychiatric morbidity, and an increasing number of types of childhood trauma experienced was associated with an increase in the number of current Axis I diagnoses. However, these associations were no longer statistically significant when severity of PTSS was added to the model, providing support for the proposed mediation model. Implications for secondary prevention services for at-risk inmates are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
A process-oriented measure of habit strength for moderate-to-vigorous physical activity
Grove, J. Robert; Zillich, Irja; Medic, Nikola
2014-01-01
Purpose: Habitual action is an important aspect of health behaviour, but the relevance of various habit strength indicators continues to be debated. This study focused specifically on moderate-to-vigorous physical activity (MVPA) and evaluated the construct validity of a framework emphasizing patterned action, stimulus-response bonding, automaticity, and negative consequences for nonperformance as indicators of habit strength for this form of exercise. Methods: Upper-level undergraduates (N = 124) provided demographic information and responded to questionnaire items assessing historical MVPA involvement, current MVPA involvement, and the four proposed habit strength dimensions. Factor analyses were used to examine the latent structure of the habit strength indicators, and the model's construct validity was evaluated via an examination of relationships with repetition history and current behaviour. Results: At a measurement level, findings indicated that the proposed four-component model possessed psychometric integrity as a coherent set of factors. Criterion-related validity was also demonstrated via significant changes in three of the four factors as a function of past involvement in MVPA and significant correlations with the frequency, duration, and intensity of current MVPA. Conclusions: These findings support the construct validity of this exercise habit strength model and suggest that it could provide a template for future research on how MVPA habits are developed and maintained. PMID:25750789
A process-oriented measure of habit strength for moderate-to-vigorous physical activity.
Grove, J Robert; Zillich, Irja; Medic, Nikola
2014-01-01
Purpose : Habitual action is an important aspect of health behaviour, but the relevance of various habit strength indicators continues to be debated. This study focused specifically on moderate-to-vigorous physical activity (MVPA) and evaluated the construct validity of a framework emphasizing patterned action, stimulus-response bonding, automaticity, and negative consequences for nonperformance as indicators of habit strength for this form of exercise. Methods : Upper-level undergraduates ( N = 124) provided demographic information and responded to questionnaire items assessing historical MVPA involvement, current MVPA involvement, and the four proposed habit strength dimensions. Factor analyses were used to examine the latent structure of the habit strength indicators, and the model's construct validity was evaluated via an examination of relationships with repetition history and current behaviour. Results : At a measurement level, findings indicated that the proposed four-component model possessed psychometric integrity as a coherent set of factors. Criterion-related validity was also demonstrated via significant changes in three of the four factors as a function of past involvement in MVPA and significant correlations with the frequency, duration, and intensity of current MVPA. Conclusions : These findings support the construct validity of this exercise habit strength model and suggest that it could provide a template for future research on how MVPA habits are developed and maintained.
Hinton, Pamela S; Johnstone, Brick; Blaine, Edward; Bodling, Angela
2011-09-01
To determine the relative influence of current exercise and diet on the late-life cognitive health of former Division I collision-sport collegiate athletes (ie, football players) compared with noncollision-sport athletes and non-athletes. Graduates (n = 400) of a Midwestern university (average age, 64.09 years; standard deviation, 13.32) completed a self-report survey to assess current demographics/physical characteristics, exercise, diet, cognitive difficulties, and physical and mental health. Former football players reported more cognitive difficulties, as well as worse physical and mental health than controls. Among former football players, greater intake of total and saturated fat and cholesterol and lower overall diet quality were significantly correlated with cognitive difficulties; current dietary intake was not associated with cognitive health for the noncollision-sport athletes or nonathletes. Hierarchical regressions predicting cognitive difficulties indicated that income was positively associated with fewer cognitive difficulties and predicted 8% of the variance; status as a former football player predicted an additional 2% of the variance; and the interaction between being a football player and total dietary fat intake significantly predicted an additional 6% of the total variance (total model predicted 16% of variance). Greater intake of dietary fat was associated with increased cognitive difficulties, but only in the former football players, and not in the controls. Prior participation in football was associated with worse physical and mental health, while more frequent vigorous exercise was associated with higher physical and mental health ratings. Former football players reported more late-life cognitive difficulties and worse physical and mental health than former noncollision-sport athletes and nonathletes. A novel finding of the present study is that current dietary fat was associated with more cognitive difficulties, but only in the former football players. These results suggest the need for educational interventions to encourage healthy dietary habits to promote the long-term cognitive health of collision-sport athletes.
NASA Technical Reports Server (NTRS)
Browning, G. L.; Tzur, I.; Roble, R. G.
1987-01-01
A time-dependent model is introduced that can be used to simulate the interaction of a thunderstorm with its global electrical environment. The model solves the continuity equation of the Maxwell current, which is assumed to be composed of the conduction, displacement, and source currents. Boundary conditions which can be used in conjunction with the continuity equation to form a well-posed initial-boundary value problem are determined. Properties of various components of solutions of the initial-boundary value problem are analytically determined. The results indicate that the problem has two time scales, one determined by the background electrical conductivity and the other by the time variation of the source function. A numerical method for obtaining quantitative results is introduced, and its properties are studied. Some simulation results on the evolution of the displacement and conduction currents during the electrification of a storm are presented.
Modeling transport and deposition of the Mekong River sediment
Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.
2012-01-01
A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.
NASA Astrophysics Data System (ADS)
Ma, H.
2016-12-01
Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave radiation (modeled by MODTRAN). These seven parameters were validated over several representative sites with different biome type, and compared with MODIS and GLASS product. Results showed that this unified inversion algorithm can retrieve temporally complete and physical consistent land surface parameters with high accuracy.
HEP Software Foundation Community White Paper Working Group - Detector Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolakis, J.
A working group on detector simulation was formed as part of the high-energy physics (HEP) Software Foundation's initiative to prepare a Community White Paper that describes the main software challenges and opportunities to be faced in the HEP field over the next decade. The working group met over a period of several months in order to review the current status of the Full and Fast simulation applications of HEP experiments and the improvements that will need to be made in order to meet the goals of future HEP experimental programmes. The scope of the topics covered includes the main componentsmore » of a HEP simulation application, such as MC truth handling, geometry modeling, particle propagation in materials and fields, physics modeling of the interactions of particles with matter, the treatment of pileup and other backgrounds, as well as signal processing and digitisation. The resulting work programme described in this document focuses on the need to improve both the software performance and the physics of detector simulation. The goals are to increase the accuracy of the physics models and expand their applicability to future physics programmes, while achieving large factors in computing performance gains consistent with projections on available computing resources.« less
NASA Astrophysics Data System (ADS)
Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.
2015-10-01
The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.
Test of electical resistivity and current diffusion modelling on MAST and JET
NASA Astrophysics Data System (ADS)
Keeling, D. L.; Challis, C. D.; Jenkins, I.; Hawkes, N. C.; Lupelli, I.; Michael, C.; de Bock, M. F. M.; the MAST Team; contributors, JET
2018-01-01
Experiments have been carried out on the MAST and JET tokamaks intended to compare the electrical resistivity of the plasma with theoretical formulations. The tests consist of obtaining motional stark effect (MSE) measurements in MHD-free plasmas during plasma current ramp-up (JET and MAST), ramp-down (MAST) and in stationary state (JET and MAST). Simulations of these plasmas are then performed in which the current profile evolution is calculated according to the poloidal field diffusion equation (PFDE) with classical or neoclassical resistivity. Synthetic MSE data are produced in the simulations for direct comparison with the experimental data. It is found that the toroidal current profile evolution modelled using neoclassical resistivity did not match the experimental observations on either device during current ramp-up or ramp-down as concluded from comparison of experimental and synthetic MSE profiles. In these phases, use of neoclassical resistivity in the modelling systematically overestimates the rate of current profile evolution. During the stationary state however, the modelled toroidal current profile matched experimental observations to a high degree of accuracy on both devices using neoclassical resistivity. Whilst no solution to the mismatch in the dynamic phases of the plasma is proposed, it is suggested that some physical process other than MHD which is not captured by the simple diffusive model of current profile evolution is responsible.
CORSICA modelling of ITER hybrid operation scenarios
NASA Astrophysics Data System (ADS)
Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.
2016-12-01
The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Coleman, Justin
This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less
NASA Astrophysics Data System (ADS)
Williams, Kevin Vaughan
Rapid growth in use of composite materials in structural applications drives the need for a more detailed understanding of damage tolerant and damage resistant design. Current analytical techniques provide sufficient understanding and predictive capabilities for application in preliminary design, but current numerical models applicable to composites are few and far between and their development into well tested, rigorous material models is currently one of the most challenging fields in composite materials. The present work focuses on the development, implementation, and verification of a plane-stress continuum damage mechanics based model for composite materials. A physical treatment of damage growth based on the extensive body of experimental literature on the subject is combined with the mathematical rigour of a continuum damage mechanics description to form the foundation of the model. The model has been implemented in the LS-DYNA3D commercial finite element hydrocode and the results of the application of the model are shown to be physically meaningful and accurate. Furthermore it is demonstrated that the material characterization parameters can be extracted from the results of standard test methodologies for which a large body of published data already exists for many materials. Two case studies are undertaken to verify the model by comparison with measured experimental data. The first series of analyses demonstrate the ability of the model to predict the extent and growth of damage in T800/3900-2 carbon fibre reinforced polymer (CFRP) plates subjected to normal impacts over a range of impact energy levels. The predicted force-time and force-displacement response of the panels compare well with experimental measurements. The damage growth and stiffness reduction properties of the T800/3900-2 CFRP are derived using published data from a variety of sources without the need for parametric studies. To further demonstrate the physical nature of the model, a IM6/937 CFRP with a more brittle matrix system than 3900-2 is also analysed. Results of analyses performed under the same impact conditions do not compare as well quantitatively with measurements but the results are still promising and qualitative differences between the T800/3900-2 and IM6/937 are accurately captured. Finally, to further demonstrate the capability of the model, the response of a notched CFRP plate under quasi-static tensile loading is simulated and compared to experimental measurements. Of particular significance is the fact that the experimental test modelled in this case is uniquely suited to the characterization of the strain softening phenomenon observed in FRP laminates. Results of this virtual experiment compare very favourably with the measured damage growth and force-displacement curves.
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar
This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-10-20
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchand, R.; Miyake, Y.; Usui, H.
2014-06-15
Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing results obtained with and without these effects. Simulation results are presented and compared with increasing levels of complexity in the physics of interaction between solar environmentmore » and the SPP spacecraft. The comparisons focus particularly on spacecraft floating potentials, contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. The physical effects considered include spacecraft charging, photoelectron and secondary electron emission, and the presence of a background magnetic field. Model predictions obtained with our different computational approaches are found to be in agreement within 2% when the same physical processes are taken into account and treated similarly. The comparisons thus indicate that, with the correct description of important physical effects, our simulation models should have the required skill to predict details of satellite-plasma interaction physics under relevant conditions, with a good level of confidence. Our models concur in predicting a negative floating potential V{sub fl}∼−10V for SPP at perihelion. They also predict a “saturated emission regime” whereby most emitted photo- and secondary electron will be reflected by a potential barrier near the surface, back to the spacecraft where they will be recollected.« less
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
NASA Astrophysics Data System (ADS)
Arons, Jonathan
The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of electric current that separate regions of differing magnetization into the domain of highly relativistic magnetic fields - those with energy density large compared to the rest mass energy of the charged particles - the plasma - caught in that field. The investigators will create theoretical and computational models of the magnetic dissipation - a form of viscous flow in the thin sheets of electric current that form in the magnetized regions around the rotating stars - using Particle in-Cell plasma simulations. These simulations use a large computer to solve the equations of motion of many charged particles - millions to billions in the research that will be pursued - to unravel the dissipation of those fields and the acceleration of beams of particles in the thin sheets. The results will be incorporated into macroscopic MHD models of the magnetic structures around the stars which determine the location and strength of the current sheets, so as to model and analyze the pulsed gamma ray emission seen from hundreds of Rotation Powered Pulsars. The computational models will be assisted by ``pencil and paper'' theoretical modeling designed to motivate and interpret the computer simulations, and connect them to the observations.
Derivation and calibration of a gas metal arc welding (GMAW) dynamic droplet model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reutzel, E.W.; Einerson, C.J.; Johnson, J.A.
1996-12-31
A rudimentary, existing dynamic model for droplet growth and detachment in gas metal arc welding (GMAW) was improved and calibrated to match experimental data. The model simulates droplets growing at the end of an imaginary spring. Mass is added to the drop as the electrode melts, the droplet grows, and the spring is displaced. Detachment occurs when one of two criteria is met, and the amount of mass that is detached is a function of the droplet velocity at the time of detachment. Improvements to the model include the addition of a second criterion for drop detachment, a more sophisticatedmore » model of the power supply and secondary electric circuit, and the incorporation of a variable electrode resistance. Relevant physical parameters in the model were adjusted during model calibration. The average current, droplet frequency, and parameter-space location of globular-to-streaming mode transition were used as criteria for tuning the model. The average current predicted by the calibrated model matched the experimental average current to within 5% over a wide range of operating conditions.« less
Simulation of the hybrid and steady state advanced operating modes in ITER
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.
2007-09-01
Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW, under the assumptions described in section 4. These simulations will be presented and compared with particular focus on the resulting temperature profiles, source profiles and peripheral physics profiles. The steady state simulations are at an early stage and are focused on developing a range of safety factor profiles with 100% non-inductive current.
NASA Technical Reports Server (NTRS)
Rastaetter, L.; Kuznetsova, M.; Hesse, M.; Pulkkinen, A.; Glocer, A.; Yu, Y.; Meng, X.; Raeder, J.; Wiltberger, M.; Welling, D.;
2011-01-01
In this paper the metrics-based results of the Dst part of the 2008-2009 GEM Metrics Challenge are reported. The Metrics Challenge asked modelers to submit results for 4 geomagnetic storm events and 5 different types of observations that can be modeled by statistical or climatological or physics-based (e.g. MHD) models of the magnetosphere-ionosphere system. We present the results of over 25 model settings that were run at the Community Coordinated Modeling Center (CCMC) and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations we use comparisons of one-hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of one-minute model data with the one-minute Dst index calculated by the United States Geologic Survey (USGS).
Microscopic models for bridging electrostatics and currents
NASA Astrophysics Data System (ADS)
Borghi, L.; DeAmbrosis, A.; Mascheretti, P.
2007-03-01
A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2014-09-30
At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH
3Mo: A Model for Music-Based Biofeedback
Maes, Pieter-Jan; Buhmann, Jeska; Leman, Marc
2016-01-01
In the domain of sports and motor rehabilitation, it is of major importance to regulate and control physiological processes and physical motion in most optimal ways. For that purpose, real-time auditory feedback of physiological and physical information based on sound signals, often termed “sonification,” has been proven particularly useful. However, the use of music in biofeedback systems has been much less explored. In the current article, we assert that the use of music, and musical principles, can have a major added value, on top of mere sound signals, to the benefit of psychological and physical optimization of sports and motor rehabilitation tasks. In this article, we present the 3Mo model to describe three main functions of music that contribute to these benefits. These functions relate the power of music to Motivate, and to Monitor and Modify physiological and physical processes. The model brings together concepts and theories related to human sensorimotor interaction with music, and specifies the underlying psychological and physiological principles. This 3Mo model is intended to provide a conceptual framework that guides future research on musical biofeedback systems in the domain of sports and motor rehabilitation. PMID:27994535
Rigoli, D; Kane, R T; Mancini, V; Thornton, A; Licari, M; Hands, B; McIntyre, F; Piek, J
2017-06-01
Growing evidence has highlighted the importance of motor proficiency in relation to psychosocial outcomes including self-perceived competence in various domains, perceived social support, and emotional areas such as anxiety and depression. The Environmental Stress Hypothesis-elaborated (Cairney, Rigoli, & Piek, 2013) is a proposed theoretical framework for understanding these relationships and recent studies have begun examining parts of this model using child and adolescent populations. However, the extent to which the relationships between these areas exist, persist or change during early adulthood is currently unclear. The current study aimed to investigate the Environmental Stress Hypothesis in a sample of 95 young adults aged 18-30years and examined the mediating role of physical self-worth and perceived social support in the relationship between motor proficiency and internalising symptoms. The McCarron Assessment of Neuromuscular Development (McCarron, 1997) was used to assess motor proficiency, the Depression Anxiety Stress Scale (Lovibond & Lovibond, 1995) provided a measure of internalising symptoms, and the Physical Self Perceptions Profile (Fox & Corbin, 1989) and the Multidimensional Scale of Perceived Social Support (Zimet, Dahlem, Zimet, & Farley, 1988) were used to investigate the possible mediating role of physical self-worth and perceived social support respectively. Potential confounding variables such as age, gender and BMI were also considered in the analysis. Structural Equation Modelling revealed that perceived social support mediated the relationship between motor proficiency and internalising symptoms, whereas, the mediating role of physical self-worth was non-significant. The current results provide support for part of the model pathways as described in the Environmental Stress Hypothesis and suggest an important relationship between motor proficiency and psychosocial outcomes in young adults. Specifically, the results support previous literature regarding the significant role of perceived social support for mental well-being and suggest that an intervention that considers social support may also indirectly influence mental health outcomes in young adults who experience movement difficulties. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Giovannella, S.
2018-05-01
The Mu2e experiment at Fermilab searches for the charged-lepton flavor violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. The dynamics of such a process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed, in three years of running Mu2e will improve the current limit by four orders of magnitude. Such a charged lepton flavor-violating reaction probes new physics at a scale inaccessible with direct searches at either present or planned high energy colliders. The experiment both complements and extends the current search for muon decay to electron-photon at MEG and searches for new physics at the LHC. This paper focuses on the physics motivation, the design and the status of the experiment.
Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model
NASA Astrophysics Data System (ADS)
Anderson, K. R.
2016-12-01
Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.
Minority Contributions to Science, Engineering, and Medicine.
ERIC Educational Resources Information Center
Funches, Peggy; And Others
Offering an historical perspective on the development of science, engineering, medicine, and technology and providing current role models for minority students, the bulletin lists the outstanding contributions made by: (1) Blacks - medicine, chemistry, architecture, engineering, physics, biology, and exploration; (2) Hispanos - biomedical…
DEVELOPMENT OF A COMPOSITION DATABASE FOR SELECTED MULTICOMPONENT OILS
During any oil spill incident, the properties of the spilled oil, including its chemical composition, physical properties, and changes due to weathering, are immediately important. U.S. EPA is currently developing new models for application to environmental problems associated...
Applied technology section. Monthly report, March 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckner, M.R.
1994-04-20
This is a monthly report giving the details on research currently being conducted at the Savannah River Technology Center. The following are areas of the research, engineering modeling and simulation, applied statistics, applied physics,experimental thermal hydraulics,and packaging and transportation.
Evaluation of wind induced currents modeling along the Southern Caspian Sea
NASA Astrophysics Data System (ADS)
Bohluly, Asghar; Esfahani, Fariba Sadat; Montazeri Namin, Masoud; Chegini, Fatemeh
2018-02-01
To improve our understanding of the Caspian Sea hydrodynamics, its circulation is simulated with special focus on wind-driven currents of its southern basin. The hydrodynamic models are forced with a newly developed fine resolution wind field to increase the accuracy of current modeling. A 2D shallow water equation model and a 3D baroclinic model are applied separately to examine the performance of each model for specific applications in the Caspian Sea. The model results are validated against recent field measurements including AWAC and temperature observations in the southern continental shelf region. Results show that the 2D model is able to well predict the depth-averaged current speed in storm conditions in narrow area of southern coasts. This finding suggests physical oceanographers apply 2D modeling as a more affordable method for extreme current speed analysis at the continental shelf region. On the other hand the 3D model demonstrates a better performance in reproducing monthly mean circulation and hence is preferable for surface circulation of Caspian Sea. Monthly sea surface circulation fields of the southern basin reveal a dipole cyclonic-anticyclonic pattern, a dominant eastward current along the southern coasts which intensifies from May to November and a dominant southward current along the eastern coasts in all months except February when the flow is northward. Monthly mean wind fields exhibit two main patterns including a north-south pattern occurring at warm months and collision of two wind fronts especially in the cold months. This collision occurs on a narrow region at the southern continental shelf regions. Due to wind field complexities, it leads to a major source of uncertainty in predicting the wind-driven currents. However, this source of uncertainty is significantly alleviated by applying a fine resolution wind field.
The limitations of mathematical modeling in high school physics education
NASA Astrophysics Data System (ADS)
Forjan, Matej
The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems geometrical approach to solving differential equations is appropriate, while in dynamical systems of higher dimensions mathematical constraints are avoided by using a graphical oriented programs for modeling. Because in dealing with dynamical systems with four or more dimensions we may encounter problems in numerical solving, we also show how to overcome them. In the case of electrostatic pendulum we show the process of modeling the real dynamical system and we put a particular emphasize on the different phases of modeling and on the way of overcoming constraints on which we encounter in the development of the model.
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian; Yu, Dapeng
2016-04-01
Surface water (pluvial) flooding occurs when rainwater from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flooding poses a serious hazard to urban areas across the world, with the UK's perceived risk appearing to have increased in recent years due to surface water flood events seeming more severe and frequent. Surface water flood risk currently accounts for 1/3 of all UK flood risk, with approximately two million people living in urban areas at risk of a 1 in 200-year flood event. Research often focuses upon using numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer a novel, alternative and innovative environment to collect data within, creating a controlled, closed system where independent variables can be altered independently to investigate cause and effect relationships. A physical modelling environment provides a suitable platform to investigate rainfall-runoff processes occurring within an urban catchment. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered 1:100 physical model consisting of: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed (>75% CUC) rainfall events of varying intensity, and; (ii) a fully interchangeable, modular plot surface have been conducted to investigate and quantify the influence of a number of terrestrial and meteorological factors on overland flow and rainfall-runoff patterns within a modelled urban setting. Terrestrial factors investigated include altering the physical model's catchment slope (0°- 20°), as well as simulating a number of spatially-varied impermeability and building density/configuration scenarios. Additionally, the influence of different storm dynamics and intensities were investigated. Preliminary results demonstrate that rainfall-runoff responses in the physical modelling environment are highly sensitive to slight increases in catchment gradient and rainfall intensity and that more densely distributed building layouts significantly increase peak flows recorded at the physical model outflow when compared to sparsely distributed building layouts under comparable simulated rainfall conditions.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.
1999-01-01
This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.
Sterrett, S G
2014-06-01
I address questions about values in model-making in engineering, specifically: Might the role of values be attributable solely to interests involved in specifying and using the model? Selected examples illustrate the surprisingly wide variety of things one must take into account in the model-making itself. The notions of system (as used in engineering thermodynamics), and physically similar systems (as used in the physical sciences) are important and powerful in determining what is relevant to an engineering model. Another example (windfarms) illustrates how an idea to completely re-characterize, or reframe, an engineering problem arose during model-making. I employ a qualitative analogue of the notion of physically similar systems. Historical cases can thus be drawn upon; I illustrate with a comparison between a geoengineering proposal to inject, or spray, sulfate aerosols, and two different historical cases involving the spraying of DDT (fire ant eradication; malaria eradication). The current geoengineering proposal is seen to be like the disastrous and counterproductive case, and unlike the successful case, of the spraying of DDT. I conclude by explaining my view that model-making in science is analogous to moral perception in action, drawing on a view in moral theory that has come to be called moral particularism.
Taming Many-Parameter BSM Models with Bayesian Neural Networks
NASA Astrophysics Data System (ADS)
Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.
2017-09-01
The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.
Modeling Emerging Solar Cell Materials and Devices
NASA Astrophysics Data System (ADS)
Thongprong, Non
Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving potential for the heterojunction diode. This brings about the meaning of R s as the resistance that gives rise to the diode voltage equal to the interface quasi-Fermi level splitting instead of the voltage between the electrodes. Quasi-Fermi levels that drop near the electrodes because of unmatched electrode work functions or due to charge injection can also increase Rs. Furthermore, we are able to study dissociation and recombination rates of bound charge pairs across the interface (i.e. polaron pairs or PPs) and arrive at the physical meaning of Rp as recombination resistance of PPs. In the dark, PP density is very low, so Rp is possibly caused by a tunneling leakage current at the interface. Ideality factors are parameters that depend on the split of quasi-Fermi levels and the ratio of recombination rate to recombination rate at equilibrium. Even though they are related to trap characteristics as normally understood, their relations are complicated and careful inte Rpretations of fitted ideality factors are needed. Our models are successfully applied to actual devices, and useful physics can be deduced, for example differences between the Shockley parameters under dark and illumination conditions. Another puRpose of this thesis is to study electronic properties of CsSnBr3 perovskite and processes of growing the perovskite film using an epitaxy technique. Calculation results using density functional theory reveal that a CsSnBr3 film that is grown on a NaCl(100) substrate can undergo a phase transition to CsSn 2Br5, which is a wide-bandgap semiconductor material. Actual mechanisms of the transition and the interface between CsSnBr3 and CsSn2Br5are interesting for future studies.
New Models and Methods for the Electroweak Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Linda
2017-09-26
This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less
Continuous measurement of an atomic current
NASA Astrophysics Data System (ADS)
Laflamme, C.; Yang, D.; Zoller, P.
2017-04-01
We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
Bergström, Jörgen S; Hayman, Danika
2016-02-01
This article provides an overview of the connection between the microstructural state and the mechanical response of various bioresorbable polylactide (PLA) devices for medical applications. PLLA is currently the most commonly used material for bioresorbable stents and sutures, and its use is increasing in many other medical applications. The non-linear mechanical response of PLLA, due in part to its low glass transition temperature (T g ≈ 60 °C), is highly sensitive to the molecular weight and molecular orientation field, the degree of crystallinity, and the physical aging time. These microstructural parameters can be tailored for specific applications using different resin formulations and processing conditions. The stress-strain, deformation, and degradation response of a bioresorbable medical device is also strongly dependent on the time history of applied loads and boundary conditions. All of these factors can be incorporated into a suitable constitutive model that captures the multiple physics that are involved in the device response. Currently developed constitutive models already provide powerful computations simulation tools, and more progress in this area is expected to occur in the coming years.
NASA Technical Reports Server (NTRS)
Gallagher, Dennis L
1998-01-01
The plasmasphere has often been considered one of the more boring regions in the magnetosphere. Its low energy plasma doesn't begin to compete against the free sources of energy available in the ring current, auroral zone, or plasma sheet. Its best known feature is its relatively highly density, archived as a result of prolonged accumulation of ionospheric outflow onto corotating flux tubes. On second look, however, the plasmasphere can be found to exhibit a remarkable influence on its more energetic cousins and display convection behavior indicative of physical processes acting throughout the magnetosphere for which we have no explanation. Plasmaspheric plasma densities and composition of heavy ions are particularly sensitive to heating by processes active in the ionosphere and all along field lines. Wave propagation and instabilities, collisional losses in the ring current, and heat transport from superthermal electrons are all equally sensitive to dense, heavy plasmaspheric densities and density gradients. It is in this context that we seek to characterize plasmaspheric populations using event based, empirical, and physical modeling methods. The modeling approaches, the challenges, and some of the results of these efforts will be presented.
Surface Rupture Effects on Earthquake Moment-Area Scaling Relations
NASA Astrophysics Data System (ADS)
Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro
2017-09-01
Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.
Starspot detection and properties
NASA Astrophysics Data System (ADS)
Savanov, I. S.
2013-07-01
I review the currently available techniques for the starspots detection including the one-dimensional spot modelling of photometric light curves. Special attention will be paid to the modelling of photospheric activity based on the high-precision light curves obtained with space missions MOST, CoRoT, and Kepler. Physical spot parameters (temperature, sizes and variability time scales including short-term activity cycles) are discussed.
Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior
Russell A. Parsons; William E. Mell; Peter McCauley
2011-01-01
Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...
Remarks on the chemical Fokker-Planck and Langevin equations: Nonphysical currents at equilibrium.
Ceccato, Alessandro; Frezzato, Diego
2018-02-14
The chemical Langevin equation and the associated chemical Fokker-Planck equation are well-known continuous approximations of the discrete stochastic evolution of reaction networks. In this work, we show that these approximations suffer from a physical inconsistency, namely, the presence of nonphysical probability currents at the thermal equilibrium even for closed and fully detailed-balanced kinetic schemes. An illustration is given for a model case.
Effects of including electrojet turbulence in LFM-RCM simulations of geospace storms
NASA Astrophysics Data System (ADS)
Oppenheim, M. M.; Wiltberger, M. J.; Merkin, V. G.; Zhang, B.; Toffoletto, F.; Wang, W.; Lyon, J.; Liu, J.; Dimant, Y. S.
2016-12-01
Global geospace system simulations need to incorporate nonlinear and small-scale physical processes in order to accurately model storms and other intense events. During times of strong magnetospheric disturbances, large-amplitude electric fields penetrate from the Earth's magnetosphere to the E-region ionosphere where they drive Farley-Buneman instabilities (FBI) that create small-scale plasma density turbulence. This induces nonlinear currents and leads to anomalous electron heating. Current global Magnetosphere-Ionosphere-Thermosphere (MIT) models disregard these effects by assuming simple laminar ionospheric currents. This paper discusses the effects of incorporating accurate turbulent conductivities into MIT models. Recently, we showed in Liu et al. (2016) that during storm-time, turbulence increases the electron temperatures and conductivities more than precipitation. In this talk, we present the effect of adding these effects to the combined Lyon-Fedder-Mobarry (LFM) global MHD magnetosphere simulator and the Rice Convection Model (RCM). The LFM combines a magnetohydrodynamic (MHD) simulation of the magnetosphere with a 2D electrostatic solution of the ionosphere. The RCM uses drift physics to accurately model the inner magnetosphere, including a storm enhanced ring current. The LFM and coupled LFM-RCM simulations have previously shown unrealistically high cross-polar-cap potentials during strong solar wind driving conditions. We have recently implemented an LFM module that modifies the ionospheric conductivity to account for FBI driven anomalous electron heating and non-linear cross-field current enhancements as a function of the predicted ionospheric electric field. We have also improved the LFM-RCM code by making it capable of handling dipole tilts and asymmetric ionospheric solutions. We have tested this new LFM version by simulating the March 17, 2013 geomagnetic storm. These simulations showed a significant reduction in the cross-polar-cap potential during the strongest driving conditions, significant increases in the ionospheric conductivity in the auroral oval, and better agreement with DMSP observations of sub-auroral polarization streams. We conclude that accurate MIT simulations of geospace storms require the inclusion of turbulent conductivities.
Probing new physics with atmospheric neutrinos at KM3NeT-ORCA
NASA Astrophysics Data System (ADS)
Coelho, João A. B.;
2017-09-01
We present the prospects of ORCA searches for new physics phenomena using atmospheric neutrinos. Focus is given to exploiting the impact of strong matter effects on the oscillation of atmospheric neutrinos in light of expanded models, such as sterile neutrinos and non-standard interactions. In the presence of light sterile neutrinos that mix with active neutrinos, additional resonances and suppressions may occur at different energies. One may also use neutrino oscillations to probe the properties of the coherent forward scattering which may be altered by new interactions beyond the Standard Model. Preliminary studies show that ORCA would be able to probe some parameters of these models with sensitivity up to one order of magnitude better than current constraints.
NASA Technical Reports Server (NTRS)
Abbott, J. M.; Deidrich, J. H.; Groeneweg, J. F.; Povinelli, L. A.; Reid, L.; Reinmann, J. J.; Szuch, J. R.
1985-01-01
An effort is currently underway at the NASA Lewis Research Center to rehabilitate and extend the capabilities of the Altitude Wind Tunnel (AWT). This extended capability will include a maximum test section Mach number of about 0.9 at an altitude of 55,000 ft and a -20 F stagnation temperature (octagonal test section, 20 ft across the flats). In addition, the AWT will include an icing and acoustic research capability. In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide essential input to the AWT final design process. This paper describes the modeling program, including the rationale and criteria used in program definition, and presents some early program results.
Improve SSME power balance model
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1992-01-01
Effort was dedicated to development and testing of a formal strategy for reconciling uncertain test data with physically limited computational prediction. Specific weaknesses in the logical structure of the current Power Balance Model (PBM) version are described with emphasis given to the main routing subroutines BAL and DATRED. Selected results from a variational analysis of PBM predictions are compared to Technology Test Bed (TTB) variational study results to assess PBM predictive capability. The motivation for systematic integration of uncertain test data with computational predictions based on limited physical models is provided. The theoretical foundation for the reconciliation strategy developed in this effort is presented, and results of a reconciliation analysis of the Space Shuttle Main Engine (SSME) high pressure fuel side turbopump subsystem are examined.
NASA Astrophysics Data System (ADS)
Jones, S.; Zwart, J. A.; Solomon, C.; Kelly, P. T.
2017-12-01
Current efforts to scale lake carbon biogeochemistry rely heavily on empirical observations and rarely consider physical or biological inter-lake heterogeneity that is likely to regulate terrestrial dissolved organic carbon (tDOC) decomposition in lakes. This may in part result from a traditional focus of lake ecologists on in-lake biological processes OR physical-chemical pattern across lake regions, rather than on process AND pattern across scales. To explore the relative importance of local biological processes and physical processes driven by lake hydrologic setting, we created a simple, analytical model of tDOC decomposition in lakes that focuses on the regulating roles of lake size and catchment hydrologic export. Our simplistic model can generally recreate patterns consistent with both local- and regional-scale patterns in tDOC concentration and decomposition. We also see that variation in lake hydrologic setting, including the importance of evaporation as a hydrologic export, generates significant, emergent variation in tDOC decomposition at a given hydrologic residence time, and creates patterns that have been historically attributed to variation in tDOC quality. Comparing predictions of this `biologically null model' to field observations and more biologically complex models could indicate when and where biology is likely to matter most.
NASA Astrophysics Data System (ADS)
Ding, Y.; Yu, J.; Bao, X.; Yao, Z.
2016-02-01
The characteristics and dynamical mechanism of summer-time coastal current over the northwestern South China Sea (NSCS) shelf have been investigated based on a high resolution unstructured-grid finite volume community ocean model (FVCOM). Model-data comparison demonstrates that model well resolves the coastal dynamics over the NSCS shelf. The coastal current on the NSCS shelf is intensively influenced by monsoon and freshwater discharge of the Pearl River. Strong southwesterly wind drive the coastal current northeastward. However, under weak southwest monsoon, the coastal current west of Pearl River estuary (PRE) advects toward southwest, and splits into two parts when reaching east of the Qiongzhou Strait, with one branch entering the Gulf of Tonkin through the Qiongzhou Strait, transporting low salinity water into the Gulf of Tonkin, and the other part flows cyclonic and interacts with the northeastward current around southeast of Hainan Island, forming a cyclonic eddy east of the Qiongzhou Strait. A variety of model experiments focused on freshwater discharge, wind forcing, tidal rectification, and stratification are performed to study the physical mechanism of the southwestward coastal current which is usually against the summer wind. Process-oriented experiment results indicate that the southwest monsoon and freshwater discharge are important factors influencing the formation of southwestward coastal current during summer. Momentum balance analysis suggests that the along shelf barotropic pressure gradient due to the Pearl River discharge and wind forcing provides the main driving force for the southwestward coastal current.
Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing
Lin, Shih-kang; Yeh, Chao-kuei; Xie, Wei; Liu, Yu-chen; Yoshimura, Masahiro
2013-01-01
Soldering is an ancient process, having been developed 5000 years ago. It remains a crucial process with many modern applications. In electronic devices, electric currents pass through solder joints. A new physical phenomenon – the supersaturation of solders under high electric currents – has recently been observed. It involves (1) un-expected supersaturation of the solder matrix phase, and (2) the formation of unusual “ring-shaped” grains. However, the origin of these phenomena is not yet understood. Here we provide a plausible explanation of these phenomena based on the changes in the phase stability of Pb-Sn solders. Ab initio-aided CALPHAD modeling is utilized to translate the electric current-induced effect into the excess Gibbs free energies of the phases. Hence, the phase equilibrium can be shifted by current stressing. The Pb-Sn phase diagrams with and without current stressing clearly demonstrate the change in the phase stabilities of Pb-Sn solders under current stressing. PMID:24060995
Formulating physical processes in a full-range model of soil water retention
NASA Astrophysics Data System (ADS)
Nimmo, J. R.
2016-12-01
Currently-used water retention models vary in how much their formulas correspond to controlling physical processes such as capillarity, adsorption, and air-trapping. In model development, realistic correspondence to physical processes has often been a lower priority than ease of use and compatibility with other models. For example, the wettest range is normally represented simplistically, as by a straight line of zero slope, or by default using the same formulation as for the middle range. The new model presented here recognizes dominant processes within three segments of the range from oven-dryness to saturation. The adsorption-dominated dry range is represented by a logarithmic relation used in earlier models. The middle range of capillary advance/retreat and Haines jumps is represented by a new adaptation of the lognormal distribution function. In the wet range, the expansion of trapped air in response to matric pressure change is important because (1) it displaces water, and (2) it triggers additional volume-adjusting processes such as the collapse of liquid bridges between air pockets. For this range, the model incorporates the Boyles' law inverse-proportionality of trapped air volume and pressure, amplified by an empirical factor to account for the additional processes. With their basis in processes, the model's parameters have a strong physical interpretation, and in many cases can be assigned values from knowledge of fundamental relationships or individual measurements. An advantage of the physically-plausible treatment of the wet range is that it avoids such problems as the blowing-up of derivatives on approach to saturation, enhancing the model's utility for important but challenging wet-range phenomena such as domain exchange between preferential flow paths and soil matrix. Further development might be able to accommodate hysteresis by a systematic adjustment of the relation between the wet and middle ranges.
Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming
2015-06-01
Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.
Statistical Analysis of Physiological Signals
NASA Astrophysics Data System (ADS)
Ruiz, María G.; Pérez, Leticia
2003-07-01
In spite of two hundred years of clinical practice, Homeopathy still lacks of scientific basis. Its fundamental laws, similia principle and the activity of the denominated ultra-high dilutions are controversial issues that do not fit into the mainstream medicine or current physical-chemistry field as well. Aside its clinical efficacy, the identification of physical - chemistry parameters, as markers of the homeopathic effect, would allow to construct mathematic models [1], which in turn, could provide clues regarding the involved mechanism.
D. M. Jimenez; B. W. Butler; J. Reardon
2003-01-01
Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...
Peer Review of Launch Environments
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.
2011-01-01
Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.
Modeling and Simulation for a Surf Zone Robot
2012-12-14
of-freedom surf zone robot is developed and tested with a physical test platform and with a simulated robot in Robot Operating System . Derived from...terrain. The application of the model to future platforms is analyzed and a broad examination of the current state of surf zone robotic systems is...public release; distribution is unlimited MODELING AND SIMULATION FOR A SURF ZONE ROBOT Eric Shuey Lieutenant, United States Navy B.S., Systems
A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics.
Chang, C C; Nicholson, A N; Rinaldi, E; Berkowitz, E; Garron, N; Brantley, D A; Monge-Camacho, H; Monahan, C J; Bouchard, C; Clark, M A; Joó, B; Kurth, T; Orginos, K; Vranas, P; Walker-Loud, A
2018-06-01
The axial coupling of the nucleon, g A , is the strength of its coupling to the weak axial current of the standard model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates the rate at which neutrons decay to protons, the strength of the attractive long-range force between nucleons and other features of nuclear physics. Precision tests of the standard model in nuclear environments require a quantitative understanding of nuclear physics that is rooted in quantum chromodynamics, a pillar of the standard model. The importance of g A makes it a benchmark quantity to determine theoretically-a difficult task because quantum chromodynamics is non-perturbative, precluding known analytical methods. Lattice quantum chromodynamics provides a rigorous, non-perturbative definition of quantum chromodynamics that can be implemented numerically. It has been estimated that a precision of two per cent would be possible by 2020 if two challenges are overcome 1,2 : contamination of g A from excited states must be controlled in the calculations and statistical precision must be improved markedly 2-10 . Here we use an unconventional method 11 inspired by the Feynman-Hellmann theorem that overcomes these challenges. We calculate a g A value of 1.271 ± 0.013, which has a precision of about one per cent.
Development of a numerical model for the electric current in burner-stabilised methane-air flames
NASA Astrophysics Data System (ADS)
Speelman, N.; de Goey, L. P. H.; van Oijen, J. A.
2015-03-01
This study presents a new model to simulate the electric behaviour of one-dimensional ionised flames and to predict the electric currents in these flames. The model utilises Poisson's equation to compute the electric potential. A multi-component diffusion model, including the influence of an electric field, is used to model the diffusion of neutral and charged species. The model is incorporated into the existing CHEM1D flame simulation software. A comparison between the computed electric currents and experimental values from the literature shows good qualitative agreement for the voltage-current characteristic. Physical phenomena, such as saturation and the diodic effect, are captured by the model. The dependence of the saturation current on the equivalence ratio is also captured well for equivalence ratios between 0.6 and 1.2. Simulations show a clear relation between the saturation current and the total number of charged particles created. The model shows that the potential at which the electric field saturates is strongly dependent on the recombination rate and the diffusivity of the charged particles. The onset of saturation occurs because most created charged particles are withdrawn from the flame and because the electric field effects start dominating over mass based diffusion. It is shown that this knowledge can be used to optimise ionisation chemistry mechanisms. It is shown numerically that the so-called diodic effect is caused primarily by the distance the heavier cations have to travel to the cathode.
Development of the electromagnetic technology for broken rail detection from a mobil platform
NASA Astrophysics Data System (ADS)
Plotnikov, Yuri; Raghunathan, Arun; Kumar, Ajith; Noffsinger, Joseph; Fries, Jeffrey; Ehret, Steven; Frangieh, Tannous; Palanganda, Samhitha
2016-02-01
Timely detection of breaks in running rails remains a topic of significant importance for the railroad industry. GE has been investigating new ideas of the Rail Integrity Monitoring or RIM technology that can be implemented on a wide range of the rolling stock platforms including locomotives, passenger and freight cars. The focus of the project is to establish a simple, non-contact, and inexpensive means of nondestructive inspection by fusion of known solutions with new technology development that can result in detection with high reliability. A scaled down model of a typical locomotive-track system has been developed at GE Global research for detailed study of the detection process. In addition, a finite element model has been established and used to understand distribution of the magnetic field and currents in such a system. Both models have been using the rails and wheel-axles geometry to establish a realistic model that would provide the electric current and magnetic field distribution close to the real world phenomenon. Initial magnetic field maps were obtained by scanning a 1:15 model constructed of steel bars using a 3D scanner and an inductive coil. Sensitivity to a broken rail located between two locomotive axles simulated by an opening in this metallic frame was demonstrated. Further investigation and optimization was conducted on a larger, 1:3 scale, physical model and by running mathematical simulations. Special attention was paid to consistency between the finite element and physical model results. The obtained results allowed establishment of a working frequency range, inductive current injection into the rail-wheel-axle loop and measuring the electromagnetic response to a broken rail. The verification and full scale system prototype tests are following the laboratory experiments and mathematical simulations.
Sell, Timothy C; Abt, John P; Crawford, Kim; Lovalekar, Mita; Nagai, Takashi; Deluzio, Jennifer B; Smalley, Brain W; McGrail, Mark A; Rowe, Russell S; Cardin, Sylvain; Lephart, Scott M
2010-01-01
Physical training for United States military personnel requires a combination of injury prevention and performance optimization to counter unintentional musculoskeletal injuries and maximize warrior capabilities. Determining the most effective activities and tasks to meet these goals requires a systematic, research-based approach that is population specific based on the tasks and demands of the Warrior. The authors have modified the traditional approach to injury prevention to implement a comprehensive injury prevention and performance optimization research program with the 101st Airborne Division (Air Assault) at Fort Campbell, KY. This is second of two companion papers and presents the last three steps of the research model and includes Design and Validation of the Interventions, Program Integration and Implementation, and Monitor and Determine the Effectiveness of the Program. An 8-week trial was performed to validate the Eagle Tactical Athlete Program (ETAP) to improve modifiable suboptimal characteristics identified in Part I. The experimental group participated in ETAP under the direction of a ETAP Strength and Conditioning Specialist while the control group performed the current physical training at Fort Campbell under the direction of a Physical Training Leader and as governed by FM 21-20 for the 8-week study period. Soldiers performing ETAP demonstrated improvements in several tests for strength, flexibility, performance, physiology, and the APFT compared to current physical training performed at Fort Campbell. ETAP was proven valid to improve certain suboptimal characteristics within the 8-week trial as compared to the current training performed at Fort Campbell. ETAP has long-term implications and with expected greater improvements when implemented into a Division pre-deployment cycle of 10-12 months which will result in further systemic adaptations for each variable.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(sub E) less than x less than - 14 R(sub E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(E) less than x less than -14 R(E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
Li, Yue-Song; Chen, Xin-Jun; Yang, Hong
2012-06-01
By adopting FVCOM-simulated 3-D physical field and based on the biological processes of chub mackerel (Scomber japonicas) in its early life history from the individual-based biological model, the individual-based ecological model for S. japonicas at its early growth stages in the East China Sea was constructed through coupling the physical field in March-July with the biological model by the method of Lagrange particle tracking. The model constructed could well simulate the transport process and abundance distribution of S. japonicas eggs and larvae. The Taiwan Warm Current, Kuroshio, and Tsushima Strait Warm Current directly affected the transport process and distribution of the eggs and larvae, and indirectly affected the growth and survive of the eggs and larvae through the transport to the nursery grounds with different water temperature and foods. The spawning grounds in southern East China Sea made more contributions to the recruitment to the fishing grounds in northeast East China Sea, but less to the Yangtze estuary and Zhoushan Island. The northwestern and southwestern parts of spawning grounds had strong connectivity with the nursery grounds of Cheju and Tsushima Straits, whereas the northeastern and southeastern parts of the spawning ground had strong connectivity with the nursery grounds of Kyushu and Pacific Ocean.
Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Done, James; Holland, Greg; Bruyere, Cindy
2013-10-19
Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias inmore » the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.« less
Dogra, Shilpa; Al-Sahab, Ban; Manson, James; Tamim, Hala
2015-04-01
The purpose of the current study was to determine whether aging expectations (AE) are associated with physical activity participation and health among older adults of low socioeconomic status (SES). A cross-sectional analysis of a sample of 170 older adults (mean age 70.9 years) was conducted. Data on AE, physical activity, and health were collected using the 12 item Expectations Regarding Aging instrument, the Healthy Physical Activity Participation Questionnaire, and the Short Form-36, respectively. Adjusted linear regression models showed significant associations between AE and social functioning, energy/vitality, mental health, and self-rated general health, as well as physical activity. These results suggest that AE may help to better explain the established association between low SES, low physical activity uptake, and poor health outcomes among older adults.
Comprehensive model for the nucleus of Periodic Comet Tempel 2 and its activity
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
1991-01-01
A comprehensive synergistic physical model for the nucleus of Periodic Comet Tempel 2 was developed on the basis of observations carried out in 1988. The model includes the best possible estimates of the comet's bulk properties (including the dimensions and the approximate shape), information on its state of rotation, and the characterization of its activity. The model is shown to be consistent with all lines of evidence that are currently available, including relevant information from earlier apparitions.
Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, H.; Lin, P.
2017-12-01
The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dartevelle, Sebastian
2007-10-01
Large-scale volcanic eruptions are hazardous events that cannot be described by detailed and accurate in situ measurement: hence, little to no real-time data exists to rigorously validate current computer models of these events. In addition, such phenomenology involves highly complex, nonlinear, and unsteady physical behaviors upon many spatial and time scales. As a result, volcanic explosive phenomenology is poorly understood in terms of its physics, and inadequately constrained in terms of initial, boundary, and inflow conditions. Nevertheless, code verification and validation become even more critical because more and more volcanologists use numerical data for assessment and mitigation of volcanic hazards.more » In this report, we evaluate the process of model and code development in the context of geophysical multiphase flows. We describe: (1) the conception of a theoretical, multiphase, Navier-Stokes model, (2) its implementation into a numerical code, (3) the verification of the code, and (4) the validation of such a model within the context of turbulent and underexpanded jet physics. Within the validation framework, we suggest focusing on the key physics that control the volcanic clouds—namely, momentum-driven supersonic jet and buoyancy-driven turbulent plume. For instance, we propose to compare numerical results against a set of simple and well-constrained analog experiments, which uniquely and unambiguously represent each of the key-phenomenology. Key« less
NASA Astrophysics Data System (ADS)
Fiechter, Jerome; Edwards, Christopher A.; Moore, Andrew M.
2018-04-01
A physical-biogeochemical model is used to produce a retrospective analysis at 3-km resolution of alongshore phytoplankton variability in the California Current during 1988-2010. The simulation benefits from downscaling a regional circulation reanalysis, which provides improved physical ocean state estimates in the high-resolution domain. The emerging pattern is one of local upwelling intensification in response to increased alongshore wind stress in the lee of capes, modulated by alongshore meanders in the geostrophic circulation. While stronger upwelling occurs near most major topographic features, substantial increases in phytoplankton biomass only ensue where local circulation patterns are conducive to on-shelf retention of upwelled nutrients. Locations of peak nutrient delivery and chlorophyll accumulation also exhibit interannual variability and trends noticeably larger than the surrounding shelf regions, thereby suggesting that long-term planktonic ecosystem response in the California Current exhibits a significant local scale (O(100 km)) alongshore component.
Jahncke, Helena; Hygge, Staffan; Mathiassen, Svend Erik; Hallman, David; Mixter, Susanna; Lyskov, Eugene
2017-09-01
The aims of this questionnaire study were to describe the occurrence and desired number of alternations between mental and physical tasks in industrial and non-industrial blue-collar work, and determine to which extent selected personal and occupational factors influence these conditions. On average, the 122 participating workers (55 females) reported to have close to four alternations per day between mental and physical tasks, and to desire more alternations than they actually had. They also expressed a general preference for performing a physical task after a mental task and vice versa. In univariate regression models, the desired change in task alternations was significantly associated with gender, age, occupation, years with current work tasks and perceived job control, while occupation was the only significant determinant in a multiple regression model including all factors. Our results suggest that alternations between productive physical and mental tasks could be a viable option in future job rotation. Practitioner Summary: We addressed attitudes among blue-collar workers to alternations between physically and mentally demanding tasks. More alternations were desired than those occurring in the job, and workers preferred performing a physical task after a mental and vice versa. Alternating physical and mental tasks could, thus, be a viable option in job rotation.
Kim, Jinhyun; Richardson, Virginia
2012-01-01
Socioeconomic inequalities and lack of private health insurance have been viewed as significant contributors to health disparities in the United States. However, few studies have examined their impact on physical functioning over time, especially in later life. The current study investigated the impact of socioeconomic inequalities and lack of private health insurance on individuals' growth trajectories in physical functioning, as measured by activities of daily living. Data from the Health and Retirement Study (1994-2006) were used for this study, 6519 black and white adults who provided in-depth information about health, socioeconomic, financial and health insurance information were analysed. Latent growth curve modelling was used to estimate the initial level of physical functioning and its rate of change over time. Results showed that higher level of income and assets and having private health insurance significantly predicted better physical functioning. In particular, decline in physical functioning was slower among those who had private health insurance. Interestingly, changes in economic status, such as decreases in income and assets, had a greater impact on women's physical functioning than on men's. Black adults did not suffer more rapid declines in physical functioning than white adults after controlling for socioeconomic status. The current longitudinal study suggested that anti-poverty and health insurance policies should be enhanced to reduce the negative impact of socioeconomic inequalities on physical functioning throughout an individual's life course. © 2011 Blackwell Publishing Ltd.
Relationship Characteristics Associated with Teen Dating Violence Perpetration.
Vivolo-Kantor, Alana M; Massetti, Greta; Niolon, Phyllis; Foshee, Vangie; McNaughton-Reyes, Luz
2016-01-01
Teen dating violence (TDV) is unstable across dating relationships, suggesting that characteristics of the relationship could be related to TDV. Few empirical studies have examined these links. This study examined associations between relationship characteristics and TDV perpetration among teens and sex differences in those associations. Relationship characteristics examined include tactics used to manipulate partners; ways of responding to relationship problems; relationship duration; exclusivity of the relationship; age difference between partners; and history of sexual intercourse with partner. Data were drawn from 667 teens in a current relationship (62.5% female and 81.4% white) enrolled in the 11 th or 12 th grade in 14 public schools in a rural US state. Bivariate and multivariable regression analyses examined proposed associations. 30.1% and 8.2% of teens reported controlling and physical TDV perpetration, respectively. In multivariable models, frequent use manipulation tactics increased risk for controlling or physical TDV perpetration. Teens dating a partner two or more years younger were at significantly increased risk for both controlling and physical perpetration. A significant interaction emerged between sex and exit/neglect accommodation for physical TDV. Characteristics of a current dating relationship play an important role in determining risk for controlling and physical TDV perpetration.
NASA Astrophysics Data System (ADS)
Khan, Imad; Shafquatullah; Malik, M. Y.; Hussain, Arif; Khan, Mair
Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration) are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number) which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters.
From Rivers to Oceans and Back: Linking Models to Encompass the Full Salmon Life Cycle
NASA Astrophysics Data System (ADS)
Danner, E.; Hendrix, N.; Martin, B.; Lindley, S. T.
2016-02-01
Pacific salmon are a promising study subject for investigating the linkages between freshwater and coastal ocean ecosystems. Salmon use a wide range of habitats throughout their life cycle as they move with water from mountain streams, mainstem rivers, estuaries, bays, and coastal oceans, with adult fish swimming back through the same migration route they took as juveniles. Conditions in one habitat can have growth and survival consequences that manifest in the following habitat, so is key that full life cycle models are used to further our understanding salmon population dynamics. Given the wide range of habitats and potential stressors, this approach requires the coordination of a multidisciplinary suite of physical and biological models, including climate, hydrologic, hydraulic, food web, circulation, bioenergetic, and ecosystem models. Here we present current approaches to linking physical and biological models that capture the foundational drivers for salmon in complex and dynamic systems.
Zenil, Hector; Kiani, Narsis A.; Ball, Gordon; Gomez-Cabrero, David
2016-01-01
Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698038
Testing a workplace physical activity intervention: a cluster randomized controlled trial
2011-01-01
Background Increased physical activity levels benefit both an individuals' health and productivity at work. The purpose of the current study was to explore the impact and cost-effectiveness of a workplace physical activity intervention designed to increase physical activity levels. Methods A total of 1260 participants from 44 UK worksites (based within 5 organizations) were recruited to a cluster randomized controlled trial with worksites randomly allocated to an intervention or control condition. Measurement of physical activity and other variables occurred at baseline, and at 0 months, 3 months and 9 months post-intervention. Health outcomes were measured during a 30 minute health check conducted in worksites at baseline and 9 months post intervention. The intervention consisted of a 3 month tool-kit of activities targeting components of the Theory of Planned Behavior, delivered in-house by nominated facilitators. Self-reported physical activity (measured using the IPAQ short-form) and health outcomes were assessed. Results and discussion Multilevel modelling found no significant effect of the intervention on MET minutes of activity (from the IPAQ) at any of the follow-up time points controlling for baseline activity. However, the intervention did significantly reduce systolic blood pressure (B = -1.79 mm/Hg) and resting heart rate (B = -2.08 beats) and significantly increased body mass index (B = .18 units) compared to control. The intervention was found not to be cost-effective, however the substantial variability round this estimate suggested that further research is warranted. Conclusions The current study found mixed support for this worksite physical activity intervention. The paper discusses some of the tensions involved in conducting rigorous evaluations of large-scale randomized controlled trials in real-world settings. Trial registration Current controlled trials ISRCTN08807396 PMID:21481265
NASA Astrophysics Data System (ADS)
He, R.; Zong, H.; Xue, Z. G.; Fennel, K.; Tian, H.; Cai, W. J.; Lohrenz, S. E.
2017-12-01
An integrated terrestrial-ocean ecosystem modeling system is developed and used to investigate marine physical-biogeochemical variabilities in the Gulf of Mexico and southeastern US shelf sea. Such variabilities stem from variations in the shelf circulation, boundary current dynamics, impacts of climate variability, as well as growing population and associated land use practices on transport of carbon and nutrients within terrestrial systems and their delivery to the coastal ocean. We will report our efforts in evaluating the performance of the coupled modeling system via extensive model and data comparisons, as well as findings from a suite of case studies and scenario simulations. Long-term model simulation results are used to quantify regional ocean circulation dynamics, nitrogen budget and carbon fluxes. Their corresponding sub-regional differences are also characterized and contrasted.
Wang, Ping; Zheng, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Huang, Feng; Song, Zhenjie; Zhang, Zhiyong
2014-01-15
The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.
C3 System Performance Simulation and User Manual. Getting Started: Guidelines for Users
NASA Technical Reports Server (NTRS)
2006-01-01
This document is a User's Manual describing the C3 Simulation capabilities. The subject work was designed to simulate the communications involved in the flight of a Remotely Operated Aircraft (ROA) using the Opnet software. Opnet provides a comprehensive development environment supporting the modeling of communication networks and distributed systems. It has tools for model design, simulation, data collection, and data analysis. Opnet models are hierarchical -- consisting of a project which contains node models which in turn contain process models. Nodes can be fixed, mobile, or satellite. Links between nodes can be physical or wireless. Communications are packet based. The model is very generic in its current form. Attributes such as frequency and bandwidth can easily be modified to better reflect a specific platform. The model is not fully developed at this stage -- there are still more enhancements to be added. Current issues are documented throughout this guide.
Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael
2011-01-01
Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value consistent with theoretical expectations and cycloid modeling.
Semileptonic B-meson decays to light pseudoscalar mesons on the HISQ ensembles
NASA Astrophysics Data System (ADS)
Gelzer, Zechariah; Bernard, C.; Tar, C. De; El-Khadra, AX; Gámiz, E.; Gottlieb, Steven; Kronfeld, Andreas S.; Liu, Yuzhi; Meurice, Y.; Simone, J. N.; Toussaint, D.; Water, R. S. Van de; Zhou, R.
2018-03-01
We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of B mesons with both charged currents (B → πlv, Bs → Klv) and neutral currents (B → πl+l-, B → Kl+l-). The results are important for constraining or revealing physics beyond the Standard Model. This work uses MILC's (2+1 + 1)-flavor ensembles with the HISQ action for the sea and light valence quarks and the clover action in the Fermilab interpretation for the b quark. Simulations are carried out at three lattice spacings down to 0.088 fm, with both physical and unphysical sea-quark masses. We present preliminary results for correlation-function fits.
McBride, Orla; Adamson, Gary; Bunting, Brendan P; McCann, Siobhan
2009-01-01
Research has demonstrated that diagnostic orphans (i.e. individuals who experience only one to two criteria of DSM-IV alcohol dependence) can encounter significant health problems. Using the SF-12v2, this study examined the general health functioning of alcohol users, and in particular, diagnostic orphans. Current drinkers (n = 26,913) in the National Epidemiologic Survey on Alcohol and Related Conditions were categorized into five diagnosis groups: no alcohol use disorder (no-AUD), one-criterion orphans, two-criterion orphans, alcohol abuse and alcohol dependence. Latent variable modelling was used to assess the associations between the physical and mental health factors of the SF-12v2 and the diagnosis groups and a variety of background variables. In terms of mental health, one-criterion orphans had significantly better health than two-criterion orphans and the dependence group, but poorer health than the no-AUD group. No significant differences were evident between the one-criterion orphan group and the alcohol abuse group. One-criterion orphans had significantly poorer physical health when compared to the no-AUD group. One- and two-criterion orphans did not differ in relation to physical health. Consistent with previous research, diagnostic orphans in the current study appear to have experienced clinically relevant symptoms of alcohol dependence. The current findings suggest that diagnostic orphans may form part of an alcohol use disorders spectrum severity.
Cho, Jinmyoung; Martin, Peter; Poon, Leonard W; MacDonald, M; Jazwinski, S M; Green, R C; Gearing, M; Johnson, M A; Markesbery, W R; Woodard, J L; Tenover, J S; Siegler, L C; Rott, C; Rodgers, W L; Hausman, D; Arnold, J; Davey, A
2013-01-01
The developmental adaptation model (Martin & Martin, 2002) provides insights into how current experiences and resources (proximal variables) and past experiences (distal variables) are correlated with outcomes (e.g., well-being) in later life. Applying this model, the current study examined proximal and distal variables associated with positive and negative affect in oldest-old adults, investigating age differences. Data from 306 octogenarians and centenarians who participated in Phase III of the Georgia Centenarian Study were used. Proximal variables included physical functioning, cognitive functioning, self-rated health, number of chronic conditions, social resources, and perceived economic status; distal variables included education, social productive activities, management of personal assets, and other learning experiences. Analysis of variance and block-wise regression analyses were conducted. Octogenarians showed significantly higher levels of positive emotion than centenarians. Cognitive functioning was significantly associated with positive affect, and number of health problems was significantly associated with negative affect after controlling for gender, ethnicity, residence, and marital status. Furthermore, four significant interaction effects suggested that positive affect significantly depended on the levels of cognitive and physical functioning among centenarians, whereas positive affect was dependent on the levels of physical health problems and learning experiences among octogenarians. Findings of this study addressed the importance of current and past experiences and resources in subjective well-being among oldest-old adults as a life-long process. Mechanisms connecting aging processes at the end of a long life to subjective well-being should be explored in future studies.
NASA Astrophysics Data System (ADS)
Brewer, Jacob S.
It is well known that exposure to severe stress increases the risk for developing mood disorders. Currently, the neurobiological and genetic mechanisms underlying the functional effects of psychological stress are poorly understood. Presenting a major obstacle to the study of psychological stress is the inability of current animal models of stress to distinguish between physical and psychological stressors. A novel paradigm recently developed by Warren et al., is able to tease apart the effects of physical and psychological stress in adult mice by allowing these mice to "witness," the social defeat of another mouse thus removing confounding variables associated with physical stressors. Using this 'witness' model of stress and RNA-Seq technology, the current study aims to study the genetic effects of psychological stress. After, witnessing the social defeat of another mouse, VTA tissue was extracted, sequenced, and analyzed for differential expression. Since genes often work together in complex networks, a pathway and gene ontology (GO) analysis was performed using data from the differential expression analysis. The pathway and GO analyzes revealed a perturbation of the glutamatergic synapse pathway and an enrichment of positive excitatory post-synaptic potential regulation. This is consistent with the excitatory synapse theory of depression. Together these findings demonstrate a dysregulation of the mesolimbic reward pathway at the gene level as a result of psychological stress potentially contributing to depressive like behaviors.