Sample records for current potential distribution

  1. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  2. Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Sigrin, Benjamin O.; Lantz, Eric J.

    This work seeks to identify current and future spatial distributions of economic potential for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities in Colorado, Minnesota, and New York. These states were identified by technical experts based on their current favorability for distributed wind deployment. We use NREL's Distributed Wind Market Demand Model (dWind) (Lantz et al. 2017; Sigrin et al. 2016) to identify and rank counties in each of the states by their overall and per capita potential. From this baseline assessment, we also explore how and where improvements in cost, performance, and other marketmore » sensitivities affect distributed wind potential.« less

  3. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas

    2016-03-01

    Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.

  4. Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L

    PubMed Central

    Taylor, Subhashni; Kumar, Lalit; Reid, Nick; Kriticos, Darren J.

    2012-01-01

    The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios. PMID:22536408

  5. Current collection in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1990-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  6. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  7. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  8. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  9. Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xu, Lan; Li, Wenwu

    2018-02-01

    We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.

  10. Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.

    PubMed

    Khan, T; Myklebust, J; Swiontek, T; Sayers, S; Dauzvardis, M

    1994-12-01

    This study investigated the spontaneous injury potentials measured after contusion or transection injury to the cat spinal cord. In addition, the distribution of electrical field potentials on the surface and within the spinal cord were measured following applied electrical fields after transection and contusion injuries. After transection of the spinal cord, the injury potentials were -19.8 +/- 2.6 mV; after contusion of the spinal cord, the injury potentials were -9.5 +/- 2.2 mV. These potentials returned to control values within 2.5-4h after injury. The electrical field distribution measured on the dorsal surface, as well as within the spinal cord, after the application of a 10 microA current, showed little difference between contusion and transection injuries. Scalar potential fields were measured using two configurations of stimulating electrodes: dorsal to dorsal (D-D), in which both electrodes were placed epidurally on the dorsal surface of the spinal cord, and ventral to dorsal (V-D), in which one electrode was placed dorsally and one ventrally. As reported in normal uninjured cats, the total current in the midsagittal plane for the D-D configuration was largely confined to the dorsal portion of the spinal cord; with the V-D configuration, the current distribution was uniform throughout the spinal cord. In the injured spinal cord, the equipotential lines midway between the stimulating electrodes have a wider separation than in the uninjured spinal cord. Because the magnitude of the electrical field E is equal to the current density J multiplied by the resistivity r, this suggests that either the current density is reduced or that the resistivity is reduced.

  11. Analytical results for the time-dependent current density distribution of expanding ultracold gases after a sudden change of the confining potential

    NASA Astrophysics Data System (ADS)

    Boumaza, R.; Bencheikh, K.

    2017-12-01

    Using the so-called operator product expansion to lowest order, we extend the work in Campbell et al (2015 Phys. Rev. Lett 114 125302) by deriving a simple analytical expression for the long-time asymptotic one-body reduced density matrix during free expansion for a one-dimensional system of bosons with large atom number interacting through a repulsive delta potential initially confined by a potential well. This density matrix allows direct access to the momentum distribution and also to the mass current density. For initially confining power-law potentials we give explicit expressions, in the limits of very weak and very strong interaction, for the current density distributions during the free expansion. In the second part of the work we consider the expansion of ultracold gas from a confining harmonic trap to another harmonic trap with a different frequency. For the case of a quantum impenetrable gas of bosons (a Tonks-Girardeau gas) with a given atom number, we present an exact analytical expression for the mass current distribution (mass transport) after release from one harmonic trap to another harmonic trap. It is shown that, for a harmonically quenched Tonks-Girardeau gas, the current distribution is a suitable collective observable and under the weak quench regime, it exhibits oscillations at the same frequencies as those recently predicted for the peak momentum distribution in the breathing mode. The analysis is extended to other possible quenched systems.

  12. Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.

    2017-11-01

    Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in-situ measurements.

  13. Validation of a Numerical Program for Analyzing Kinetic Energy Potential in the Bangka Strait, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Rompas, P. T. D.; Taunaumang, H.; Sangari, F. J.

    2018-02-01

    The paper presents validation of the numerical program that computes the distribution of marine current velocities in the Bangka strait and the kinetic energy potential in the form the distributions of available power per area in the Bangka strait. The numerical program used the RANS model where the pressure distribution in the vertical assumed to be hydrostatic. The 2D and 3D numerical program results compared with the measurement results that are observation results to the moment conditions of low and high tide currents. It found no different significant between the numerical results and the measurement results. There are 0.97-2.2 kW/m2 the kinetic energy potential in the form the distributions of available power per area in the Bangka strait when low tide currents, whereas when high tide currents of 1.02-2.1 kW/m2. The results show that to be enabling the installation of marine current turbines for construction of power plant in the Bangka strait, North Sulawesi, Indonesia.

  14. Observations of Magnetosphere-Ionosphere Coupling Processes in Jupiter's Downward Auroral Current Region

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Mauk, B.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bunce, E. J.; Connerney, J. E. P.; Ebert, R. W.; Gershman, D. J.; Gladstone, R.; Haggerty, D. K.; Hospodarsky, G. B.; Kotsiaros, S.; Kollmann, P.; Kurth, W. S.; Levin, S.; McComas, D. J.; Paranicas, C.; Rymer, A. M.; Saur, J.; Szalay, J. R.; Tetrick, S.; Valek, P. W.

    2017-12-01

    Our view and understanding of Jupiter's auroral regions are ever-changing as Juno continues to map out this region with every auroral pass. For example, since last year's Fall AGU and the release of publications regarding the first perijove orbit, the Juno particles and fields teams have found direct evidence of parallel potential drops in addition to the stochastic broad energy distributions associated with the downward current auroral acceleration region. In this region, which appears to exist in an altitude range of 1.5-3 Jovian radii, the potential drops can reach as high as several megavolts. Associated with these potentials are anti-planetward electron angle beams, energetic ion conics and precipitating protons, oxygen and sulfur. Sometimes the potentials within the downward current region are structured such that they look like the inverted-V type distributions typically found in Earth's upward current region. This is true for both the ion and electron energy distributions. Other times, the parallel potentials appear to be intermittent or spatially structured in a way such that they do not look like the canonical diverging electrostatic potential structure. Furthermore, the parallel potentials vary grossly in spatial/temporal scale, peak voltage and associated parallel current density. Here, we present a comprehensive study of these structures in Jupiter's downward current region focusing on energetic particle measurements from Juno-JEDI.

  15. Impact of Climate Change on Potential Distribution of Chinese Caterpillar Fungus (Ophiocordyceps sinensis) in Nepal Himalaya

    PubMed Central

    Shrestha, Uttam Babu; Bawa, Kamaljit S.

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11–4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species. PMID:25180515

  16. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya.

    PubMed

    Shrestha, Uttam Babu; Bawa, Kamaljit S

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  17. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    USGS Publications Warehouse

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario, whereas two of four species would be severely restricted in range under moderatehigh emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species-distribution models. 6.These model predictions illustrate possible impacts of climate change on narrow-range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.

  18. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Mehdi; Sensale-Rodriguez, Berardi, E-mail: berardi.sensale@utah.edu

    2015-09-15

    In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almostmore » zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.« less

  19. Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation.

    Treesearch

    K.M. Burnett; G.H. Reeves; D.J. Miller; S. Clarke; K. Vance-Borland; K. Christiansen

    2007-01-01

    The geographic distribution of stream reaches with potential to support high-quality habitat for salmonids has bearing on the actual status of habitats and populations over broad spatial extents. As part of the Coastal Landscape Analysis and Modeling Study, we examined how salmon-habitat potential was distributed relative to current and future (+100 years) landscape...

  20. Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing

    Treesearch

    Mark W. Schwartz; Louis R. Iverson; Anantha M. Prasad

    2001-01-01

    We investigated the effect of habitat loss on the ability of trees to shift in distribution across a landscape dominated by agriculture. The potential distribution shifts of four tree species (Diospyros virginiana, Oxydendron arboreum, Pinus virginiana, Quercus falcata var. falcata) whose northern distribution limits fall in the...

  1. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus

    PubMed Central

    Peterson, A. Townsend; Samy, Abdallah M.

    2017-01-01

    Background Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. Method We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. Result The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions. PMID:29206879

  2. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus.

    PubMed

    Alkishe, Abdelghafar A; Peterson, A Townsend; Samy, Abdallah M

    2017-01-01

    Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions.

  3. Bringing modeling to the masses: A web based system to predict potential species distributions

    USGS Publications Warehouse

    Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul

    2010-01-01

    Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.

  4. How will climate change affect the potential distribution of Eurasian Tree Sparrows Passer montanus in North America?

    USGS Publications Warehouse

    Graham, Jim; Jarnevich, Catherine; Young, Nick; Newman, Greg; Stohlgren, Thomas

    2011-01-01

    Habitat suitability models have been used to predict the present and future potential distribution of a variety of species. Eurasian tree sparrows Passer montanus, native to Eurasia, have established populations in other parts of the world. In North America, their current distribution is limited to a relatively small region around its original introduction to St. Louis, Missouri. We combined data from the Global Biodiversity Information Facility with current and future climate data to create habitat suitability models using Maxent for this species. Under projected climate change scenarios, our models show that the distribution and range of the Eurasian tree sparrow could increase as far as the Pacific Northwest and Newfoundland. This is potentially important information for prioritizing the management and control of this non-native species.

  5. [Effect of pulse magnetic field on distribution of neuronal action potential].

    PubMed

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  6. Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing

    Treesearch

    Mark W. Schwartz; Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    2000-01-01

    We investigated the effect of habitat loss on the ability of trees to shift in distribution across a landscape dominated by agriculture. The potential distribution shifts of four tree species (Diospyros virginiana, Oxydendron arboreum, Pinus virginiana, Quercus falcata var. falcata) whose northern distribution limits fall in the southern third of Ohio were used to...

  7. Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence.

    PubMed

    Fagan, Jeffrey A; Sides, Paul J; Prieve, Dennis C

    2004-06-08

    Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.

  8. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  9. Malaria vectors in South America: current and future scenarios.

    PubMed

    Laporta, Gabriel Zorello; Linton, Yvonne-Marie; Wilkerson, Richard C; Bergo, Eduardo Sterlino; Nagaki, Sandra Sayuri; Sant'Ana, Denise Cristina; Sallum, Maria Anice Mureb

    2015-08-19

    Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46% of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and temporal expansion potential in 2070, and we conclude these species will become more important in the dynamics of malaria transmission in South America. Our data suggest that climate and landscape effects will elevate the importance of members of the Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.

  10. Mapping the current and potential distribution of red spruce in Virginia: implications for the restoration of degraded high elevation habitat

    Treesearch

    Heather Griscom; Helmut Kraenzle; Zachary. Bortolot

    2010-01-01

    The objective of our project is to create a habitat suitability model to predict potential and future red spruce forest distributions. This model will be used to better understand the influence of climate change on red spruce distribution and to help guide forest restoration efforts.

  11. Analytical model of a corona discharge from a conical electrode under saturation

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Zubarev, N. M.

    2012-11-01

    Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.

  12. Atlas of current and potential future distributions of common trees of the eastern United States

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Betsy J. Hale; Elaine Kennedy Sutherland

    1999-01-01

    This atlas documents the current and possible future distribution of 80 common tree species in the Eastern United States and gives detailed information on environmental characteristics defining these distributions. Also included are outlines of life history characteristics and summary statistics for these species. Much of the data are derived from Forest Inventory and...

  13. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia

    USGS Publications Warehouse

    Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.

  14. Temperature dependency of state of charge inhomogeneities and their equalization in cylindrical lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Rheinfeld, A.; Rieger, B.; Hoster, H. E.; Jossen, A.

    2016-10-01

    The influence of cell temperature on the current density distribution and accompanying inhomogeneities in state of charge (SOC) during cycling is analyzed in this work. To allow for a detailed insight in the electrochemical behavior of the cell, commercially available 26650 cells were modified to allow for measuring local potentials at four different, nearly equidistant positions along the electrodes. As a follow-up to our previous work investigating local potentials within a cell, we apply this method for studying SOC deviations and their sensitivity to cell temperature. The local potential distribution was studied during constant current discharge operations for various current rates and discharge pulses in order to evoke local inhomogeneities for temperatures ranging from 10 °C to 40 °C. Differences in local potentials were considered for estimating local SOC variations within the electrodes. It could be observed that even low currents such as 0.1C can lead to significant inhomogeneities, whereas a higher cell temperature generally results in more pronounced inhomogeneities. A rapid SOC equilibration can be observed if the variation in the SOC distribution corresponds to a considerable potential difference defined by the open circuit voltage of either the positive or negative electrode. With increasing temperature, accelerated equalization effects can be observed.

  15. How Far Could the Alien Boatman Trichocorixa verticalis verticalis Spread? Worldwide Estimation of Its Current and Future Potential Distribution

    PubMed Central

    Guareschi, Simone; Coccia, Cristina; Sánchez-Fernández, David; Carbonell, José Antonio; Velasco, Josefa; Boyero, Luz; Green, Andy J.; Millán, Andrés

    2013-01-01

    Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on different geographical scales. PMID:23555771

  16. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  17. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, James G.; Daily, William D.

    1994-01-01

    A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  18. Parallel Electric Field on Auroral Magnetic Field Lines.

    NASA Astrophysics Data System (ADS)

    Yeh, Huey-Ching Betty

    1982-03-01

    The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.

  19. A quasi-static model of global atmospheric electricity. I - The lower atmosphere

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Roble, R. G.

    1979-01-01

    A quasi-steady model of global lower atmospheric electricity is presented. The model considers thunderstorms as dipole electric generators that can be randomly distributed in various regions and that are the only source of atmospheric electricity and includes the effects of orography and electrical coupling along geomagnetic field lines in the ionosphere and magnetosphere. The model is used to calculate the global distribution of electric potential and current for model conductivities and assumed spatial distributions of thunderstorms. Results indicate that large positive electric potentials are generated over thunderstorms and penetrate to ionospheric heights and into the conjugate hemisphere along magnetic field lines. The perturbation of the calculated electric potential and current distributions during solar flares and subsequent Forbush decreases is discussed, and future measurements of atmospheric electrical parameters and modifications of the model which would improve the agreement between calculations and measurements are suggested.

  20. Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: An example with coypu (Myocastor coypus)

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin

    2017-01-01

    Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.

  1. Crayfishes (Decapoda : Cambaridae) of Oklahoma: identification, distributions, and natural history.

    PubMed

    Morehouse, Reid L; Tobler, Michael

    2013-01-01

    We furnish an updated crayfish species list for the state of Oklahoma (United States of America), including an updated and illustrated dichotomous key. In addition, we include species accounts that summarize general characteristics, life coloration, similar species, distribution and habitat, life history, and syntopic species. Current and potential distributions were analyzed using ecological niche models to provide a critical resource for the identification of areas with conservation priorities and potential susceptibility to invasive species. Currently, Oklahoma harbors 30 species of crayfish, two of which were recently discovered. Eastern Oklahoma has the highest species diversity, as this area represents the western distribution extent for several species. The work herein provides baseline data for future work on crayfish biology and conservation in Oklahoma and surrounding states.

  2. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements.

    PubMed

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  3. Potential distribution dataset of honeybees in Indian Ocean Islands: Case study of Zanzibar Island.

    PubMed

    Mwalusepo, Sizah; Muli, Eliud; Nkoba, Kiatoko; Nguku, Everlyn; Kilonzo, Joseph; Abdel-Rahman, Elfatih M; Landmann, Tobias; Fakih, Asha; Raina, Suresh

    2017-10-01

    Honeybees ( Apis mellifera ) are principal insect pollinators, whose worldwide distribution and abundance is known to largely depend on climatic conditions. However, the presence records dataset on potential distribution of honeybees in Indian Ocean Islands remain less documented. Presence records in shape format and probability of occurrence of honeybees with different temperature change scenarios is provided in this article across Zanzibar Island. Maximum entropy (Maxent) package was used to analyse the potential distribution of honeybees. The dataset provides information on the current and future distribution of the honey bees in Zanzibar Island. The dataset is of great importance for improving stakeholders understanding of the role of temperature change on the spatial distribution of honeybees.

  4. Sleeping sickness in Uganda: revisiting current and historical distributions.

    PubMed

    Berrang-Ford, Lea; Odiit, Martin; Maiso, Faustin; Waltner-Toews, David; McDermott, John

    2006-12-01

    Sleeping sickness is a parasitic, vector-borne disease, carried by the tsetse fly and prevalent in sub-Saharan Africa. The disease continues to pose a public health burden in Uganda, which experienced a widespread outbreak in 1900-1920, and a more recent outbreak in 1976-1989. The disease continues to spread to uninfected districts. This paper compares the spatial distributions of sleeping in Uganda for the 1900-1920 outbreak period with current disease foci, and discusses information gaps and implications arising for future research, prevention and control. Population census records for 1911 and sleeping sickness records from Medical and Sanitary Reports of the Ugandan Protectorate for 1905-1936 were extracted from the Uganda Archives. Current sleeping sickness distribution data were provided by the Ministry of Health, Uganda. These were used to develop sleeping sickness distribution maps for comparison between the early 1900s and the early 2000s. The distribution of sleeping sickness from 1905-1920 shows notable differences compared to the current distribution of disease. In particular, archival cases were recorded in south-west and central Uganda, areas currently free of disease. The disease focus has moved from lakeshore Buganda (1905-1920) to the Busoga and south-east districts. Archival sleeping sickness distributions indicate the potential for a much wider area of disease risk than indicated by current disease foci. This is compounded by an absence of tsetse distribution data, continued political instability in north-central Uganda, continued spread of disease into new districts, and evidence of the role of livestock movements in spreading the parasite. These results support concerns as to the potential mergence of the two disease foci in the south-east and north-west of the country.

  5. Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1986-01-01

    Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.

  6. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, J.G.; Daily, W.D.

    1994-07-05

    A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  7. Numerical simulations of electric potential field for alternating current potential drop associated with surface cracks in low-alloy steel nuclear material

    NASA Astrophysics Data System (ADS)

    Yeh, Chun-Ping; Huang, Jiunn-Yuan

    2018-04-01

    Low-alloy steels used as structural materials in nuclear power plants are subjected to cyclic stresses during power plant operations. As a result, cracks may develop and propagate through the material. The alternating current potential drop technique is used to measure the lengths of cracks in metallic components. The depth of the penetration of the alternating current is assumed to be small compared to the crack length. This assumption allows the adoption of the unfolding technique to simplify the problem to a surface Laplacian field. The numerical modelling of the electric potential and current density distribution prediction model for a compact tension specimen and the unfolded crack model are presented in this paper. The goal of this work is to conduct numerical simulations to reduce deviations occurring in the crack length measurements. Numerical simulations were conducted on AISI 4340 low-alloy steel with different crack lengths to evaluate the electric potential distribution. From the simulated results, an optimised position for voltage measurements in the crack region was proposed.

  8. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  9. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  10. Perturbations of the magnetic induction in a bubbly liquid metal flow

    NASA Astrophysics Data System (ADS)

    Guichou, Rafael; Tordjeman, Philippe; Bergez, Wladimir; Zamansky, Remi; Paumel, Kevin

    2017-11-01

    The presence of bubbles in liquid metal flow subject to AC magnetic field modifies the distribution of eddy currents in the fluid. This situation is encountered in metallurgy and nuclear industry for Sodium Fast Reactors. We will show that the perturbation of the eddy currents can be measured by an Eddy Current Flowmeter coupled with a lock-in amplifier. The experiments point out that the demodulated signal allows to detect the presence of a single bubble in the flow. The signal is sensitive both to the diameter and the relative position of the bubble. Then, we will present a model of a potential perturbation of the current density caused by a bubble and the distortion of the magnetic field. The eddy current distribution is calculated from the induction equation. This model is derived from a potential flow around a spherical particle. The total vector potential is the sum of the vector potential in the liquid metal flow without bubbles and the perturbated vector potential due to the presence of a bubble. The model is then compared to the experimental measurements realized with the eddy current flow meter for various bubble diameters in galinstan. The very good agreement between model and experiments validates the relevance of the perturbative approach.

  11. The harmonic impact of electric vehicle battery charging

    NASA Astrophysics Data System (ADS)

    Staats, Preston Trent

    The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and SOC leads to reduced estimates of harmonic current injection when compared to more traditional methods that do not account for variation. Evaluation of power distribution system harmonic voltages suggests that for any power distribution network there is a definite threshold penetration of EVs, below which the total harmonic distortion of voltage exceeds 5% at an insignificant number of buses. Thus, most existing distribution systems will probably be able to accommodate the early introduction of EV battery charging without widespread harmonic voltage problems.

  12. Potential for using visual, auditory, and olfactory cues to manage foraging behaviour and spatial distribution of rangeland livestock

    USDA-ARS?s Scientific Manuscript database

    This paper reviews the literature and reports on the current state of knowledge regarding the potential for managers to use visual (VC), auditory (AC), and olfactory (OC) cues to manage foraging behavior and spatial distribution of rangeland livestock. We present evidence that free-ranging livestock...

  13. Electric current distribution of a multiwall carbon nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

    2016-07-15

    The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less

  14. Field-aligned current sources in the high-latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1979-01-01

    The paper determines the electric potential in a plane which is fed current from a pair of field-aligned current sheets. The ionospheric conductivity is modelled as a constant with an enhanced conductivity annular ring. It is shown that field-aligned current distributions are arbitrary functions of azimuth angle (MLT) and thus allow for asymmetric potential configurations over the pole cap. In addition, ionospheric surface currents are computed by means of stream functions. Finally, the discussion relates these methods to the electrical characteristics of the magnetosphere.

  15. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies' niche differentiation and relative risks under scenarios of climate change.

    PubMed

    Meynard, Christine N; Gay, Pierre-Emmanuel; Lecoq, Michel; Foucart, Antoine; Piou, Cyril; Chapuis, Marie-Pierre

    2017-11-01

    The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely. © 2017 John Wiley & Sons Ltd.

  16. Research on Orbital Plasma-Electrodynamics (ROPE)

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Wright, K.

    1994-01-01

    Since the development of probe theory by Langmuir and Blodgett, the problem of current collection by a charged spherically or cylindrically symmetric body has been investigated by a number of authors. This paper overviews the development of a fully three-dimensional particle simulation code which can be used to understand the physics of current collection in three dimensions and can be used to analyze data resulting from the future tethered satellite system (TSS). According to the TSS configurations, two types of particle simulation models were constructed: a simple particle simulation (SIPS) and a super particle simulation (SUPS). The models study the electron transient response and its asymptotic behavior around a three dimensional, highly biased satellite. The potential distribution surrounding the satellite is determined by solving Laplace's equation in the SIPS model and by solving Poisson's equation in the SUPS model. Thus, the potential distribution in space is independent of the density distribution of the particles in the SUPS model but it does depend on the density distribution of the particles in the SUPS model. The evolution of the potential distribution in the SUPS model is described. When the spherical satellite is charged to a highly positive potential and immersed in a plasma with a uniform magnetic field, the formation of an electron torus in the equatorial plane (the plane in perpendicular to the magnetic field) and elongation of the torus along the magnetic field are found in both the SIPS and the SUPS models but the shape of the torus is different. The areas of high potential that exist in the polar regions in the SUPS model exaggerate the elongation of the electron torus along the magnetic field. The current collected by the satellite for different magentic field strengths is investigated in both models. Due to the nonlinear effects present in SUPS, the oscillating phenomenon of the current collection curve during the first 10 plasma periods can be seen (this does not appear in SIPS). From the parametric studies, it appears that the oscillating phenomenon of the current collection curve occurs only when the magnetic field strength is less than 0.2 gauss for the present model.

  17. Electrical Methods: Resistivity Methods

    EPA Pesticide Factsheets

    Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks.

  18. Examining fluvial fish range loss with SDMs

    USGS Publications Warehouse

    Taylor, Andrew T.; Papeş, Monica; Long, James M.

    2018-01-01

    Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial‐specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non‐native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non‐native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non‐native congeners, wherein non‐natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free‐flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.

  19. Modelization of the Current and Future Habitat Suitability of Rhododendron ferrugineum Using Potential Snow Accumulation

    PubMed Central

    Komac, Benjamin; Esteban, Pere; Trapero, Laura; Caritg, Roger

    2016-01-01

    Mountain areas are particularly sensitive to climate change. Species distribution models predict important extinctions in these areas whose magnitude will depend on a number of different factors. Here we examine the possible impact of climate change on the Rhododendron ferrugineum (alpenrose) niche in Andorra (Pyrenees). This species currently occupies 14.6 km2 of this country and relies on the protection afforded by snow cover in winter. We used high-resolution climatic data, potential snow accumulation and a combined forecasting method to obtain the realized niche model of this species. Subsequently, we used data from the high-resolution Scampei project climate change projection for the A2, A1B and B1 scenarios to model its future realized niche model. The modelization performed well when predicting the species’s distribution, which improved when we considered the potential snow accumulation, the most important variable influencing its distribution. We thus obtained a potential extent of about 70.7 km2 or 15.1% of the country. We observed an elevation lag distribution between the current and potential distribution of the species, probably due to its slow colonization rate and the small-scale survey of seedlings. Under the three climatic scenarios, the realized niche model of the species will be reduced by 37.9–70.1 km2 by the end of the century and it will become confined to what are today screes and rocky hillside habitats. The particular effects of climate change on seedling establishment, as well as on the species’ plasticity and sensitivity in the event of a reduction of the snow cover, could worsen these predictions. PMID:26824847

  20. Theoretical Current-Voltage Curve in Low-Pressure Cesium Diode for Electron-Rich Emission

    NASA Technical Reports Server (NTRS)

    Coldstein, C. M.

    1964-01-01

    Although considerable interest has been shown in the space-charge analysis of low-pressure (collisionless case) thermionic diodes, there is a conspicuous lack in the presentation of results in a way that allows direct comparison with experiment. The current-voltage curve of this report was, therefore, computed for a typical case within the realm of experimental interest. The model employed in this computation is shown in Fig. 1 and is defined by the limiting potential distributions [curves (a) and (b)]. Curve (a) represents the potential V as a monotonic function of position with a slope of zero at the anode; curve (b) is similarly monotonic with a slope of zero at the cathode. It is assumed that by a continuous variation of the anode voltage, the potential distributions vary continuously from one limiting form to the other. Although solutions for infinitely spaced electrodes show that spatically oscillatory potential distributions may exist, they have been neglected in this computation.

  1. Physiological basis of a steady endogenous current in rat lumbrical muscle

    PubMed Central

    1984-01-01

    In an attempt to determine the mechanism by which rat skeletal muscle endplates generate a steady outward current, we measured the effects of several drugs (furosemide, bumetanide, 9-anthracene carboxylic acid [9- AC]) and changes in external ion concentration (Na+, K+, Cl-, Ba++) on resting membrane potential (Vm) and on the steady outward current. Each of the following treatments caused a 10-15-mV hyperpolarization of the membrane: replacement of extracellular Cl- with isethionate, addition of furosemide or bumetanide, and addition of 9-AC. These results suggest that Cl- is actively accumulated by the muscle fibers and that the equilibrium potential of Cl- is more positive than the membrane potential. Removal of external Na+ also caused a large hyperpolarization and is consistent with evidence in other tissues that active Cl- accumulation requires external Na+. The same treatments greatly reduced or abolished the steady outward current, with a time course that paralleled the changes in Vm. These results cannot be explained by a model in which the steady outward current is assumed to arise as a result of a nonuniform distribution of Na+ conductance, but they are consistent with models in which the steady current is produced by a nonuniform distribution of GCl or GK. Other treatments (Na+-free and K+-free solutions, and 50 microM BaCl2) caused a temporary reversal of the steady current. Parallel measurements of Vm suggested that in none of these cases did the electrochemical driving force for K+ change sign, which makes it unlikely that the steady current arises as a result of a nonuniform distribution of GK. All of the results, however, are consistent with a model in which the steady outward current arises as a result of a nonuniform distribution of Cl- conductance, with GCl lower near the endplate than in extrajunctional regions. PMID:6325581

  2. Status of exotic woody species in big cypress national preserve. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, L.H.

    The current status of exotic woody plants in Big Cypress National Preserve is documented. A map of the distribution of principal pest species, Melaleuca quinquenervia, Schinus terebinthifolius, and Casuarina sp., is presented. Prognoses of population increases of these problem species are determined utilizing the current distributions and assessing environmental conditions. Some potential problem species are also identified.

  3. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.

    PubMed

    Değirmenci, Evren; Eyüboğlu, B Murat

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  4. Method of imaging the electrical conductivity distribution of a subsurface

    DOEpatents

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  5. Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States

    Treesearch

    Louis R Iverson; Anantha M. Prasad; Mark W. Schwartz; Mark W. Schwartz

    2005-01-01

    We predict current distribution and abundance for tree species present in eastern North America, and subsequently estimate potential suitable habitat for those species under a changed climate with 2 x CO2. We used a series of statistical models (i.e., Regression Tree Analysis (RTA), Multivariate Adaptive Regression Splines (MARS), Bagging Trees (...

  6. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

    PubMed Central

    Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030

  7. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.

    PubMed

    Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T

    2014-11-01

    Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.

  8. The relationship between climate change and the endangered rainforest shrub Triunia robusta (Proteaceae) endemic to southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Shimizu-Kimura, Yoko; Accad, Arnon; Shapcott, Alison

    2017-04-01

    Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes and restricted distributions. This study modelled climate induced changes on the habitat distribution of the endangered rainforest plant Triunia robusta, endemic to southeast Queensland, Australia. Species distribution models were developed for eastern Australia at 250 m grids and southeast Queensland at 25 m grids using ground-truthed presence records and environmental predictor data. The species’ habitat distribution under the current climate was modelled, and the future potential habitat distributions were projected for the epochs 2030, 2050 and 2070. The eastern Australia model identified several spatially disjunct, broad habitat areas of coastal eastern Australia consistent with the current distribution of rainforests, and projected a southward and upslope contraction driven mainly by average temperatures exceeding current range limits. The southeast Queensland models suggest a dramatic upslope contraction toward locations where the majority of known populations are found. Populations located in the Sunshine Coast hinterland, consistent with past rainforest refugia, are likely to persist long-term. Upgrading the level of protection for less formal nature reserves containing viable populations is a high priority to better protect refugial T. robusta populations with respect to climate change.

  9. The relationship between climate change and the endangered rainforest shrub Triunia robusta (Proteaceae) endemic to southeast Queensland, Australia

    PubMed Central

    Shimizu-Kimura, Yoko; Accad, Arnon; Shapcott, Alison

    2017-01-01

    Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes and restricted distributions. This study modelled climate induced changes on the habitat distribution of the endangered rainforest plant Triunia robusta, endemic to southeast Queensland, Australia. Species distribution models were developed for eastern Australia at 250 m grids and southeast Queensland at 25 m grids using ground-truthed presence records and environmental predictor data. The species’ habitat distribution under the current climate was modelled, and the future potential habitat distributions were projected for the epochs 2030, 2050 and 2070. The eastern Australia model identified several spatially disjunct, broad habitat areas of coastal eastern Australia consistent with the current distribution of rainforests, and projected a southward and upslope contraction driven mainly by average temperatures exceeding current range limits. The southeast Queensland models suggest a dramatic upslope contraction toward locations where the majority of known populations are found. Populations located in the Sunshine Coast hinterland, consistent with past rainforest refugia, are likely to persist long-term. Upgrading the level of protection for less formal nature reserves containing viable populations is a high priority to better protect refugial T. robusta populations with respect to climate change. PMID:28422136

  10. A Current Perspective on the Historical Geographic Distribution of the Endangered Muriquis (Brachyteles spp.): Implications for Conservation

    PubMed Central

    2016-01-01

    The muriqui (Brachyteles spp.), endemic to the Atlantic Forest of Brazil, is the largest primate in South America and is endangered, mainly due to habitat loss. Its distribution limits are still uncertain and need to be resolved in order to determine their true conservation status. Species distribution modeling (SDM) has been used to estimate potential species distributions, even when information is incomplete. Here, we developed an environmental suitability model for the two endangered species of muriqui (Brachyteles hypoxanthus and B. arachnoides) using Maxent software. Due to historical absence of muriquis, areas with predicted high habitat suitability yet historically never occupied, were excluded from the predicted historical distribution. Combining that information with the model, it is evident that rivers are potential dispersal barriers for the muriquis. Moreover, although the two species are environmentally separated in a large part of its distribution, there is a potential contact zone where the species apparently do not overlap. This separation might be due to either a physical (i.e., Serra da Mantiqueira mountains) or a biotic barrier (the species exclude one another). Therefore, in addition to environmental characteristics, physical and biotic barriers potentially shaped the limits of the muriqui historical range. Based on these considerations, we proposed the adjustment of their historical distributional limits. Currently only 7.6% of the predicted historical distribution of B. hypoxanthus and 12.9% of B. arachnoides remains forested and able to sustain viable muriqui populations. In addition to measurement of habitat loss we also identified areas for conservation concern where new muriqui populations might be found. PMID:26943910

  11. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    PubMed

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  12. Current sheet in plasma as a system with a controlling parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridman, Yu. A., E-mail: yulya-fridman@yandex.ru; Chukbar, K. V., E-mail: Chukbar-KV@nrcki.ru

    2015-08-15

    A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.

  13. Modelling the current and potential future distributions of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) using CLIMEX.

    PubMed

    Aljaryian, Rasha; Kumar, Lalit; Taylor, Subhashni

    2016-10-01

    The sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae), is an economically significant pest throughout Western Asia and Eastern Europe. This study was conducted to examine the possible risk posed by the influence of climate change on its spread. CLIMEX software was used to model its current global distribution. Future invasion potential was investigated using two global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), under A1B and A2 emission scenarios for 2030, 2070 and 2100. Dry to temperate climatic areas favour sunn pests. The potential global range for E. integriceps is expected to extend further polewards between latitudes 60° N and 70° N. Northern Europe and Canada will be at risk of sunn pest invasion as cold stress boundaries recede under the emission scenarios of these models. However, current highly suitable areas, such as South Africa and central Australia, will contract where precipitation is projected to decrease substantially with increased heat stress. Estimating the sunn pest's potential geographic distribution and detecting its climatic limits can provide useful information for management strategies and allow biosecurity authorities to plan ahead and reduce the expected harmful economic consequences by identifying the new areas for pest invasion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Discharge current distribution in stratified soil under impulse discharge

    NASA Astrophysics Data System (ADS)

    Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti

    2017-06-01

    The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.

  15. Integrating multiple distribution models to guide conservation efforts of an endangered toad

    USGS Publications Warehouse

    Treglia, Michael L.; Fisher, Robert N.; Fitzgerald, Lee A.

    2015-01-01

    Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.

  16. Study on ion energy distribution in low-frequency oscillation time scale of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Li, Wenbo; Ding, Yongjie; Han, Liang; Yu, Daren; Cao, Yong

    2017-11-01

    This paper reports on the dynamic characteristics of the distribution of ion energy during Hall thruster discharge in the low-frequency oscillation time scale through experimental studies, and a statistical analysis of the time-varying peak and width of ion energy and the ratio of high-energy ions during the low-frequency oscillation. The results show that the ion energy distribution exhibits a periodic change during the low-frequency oscillation. Moreover, the variation in the ion energy peak is opposite to that of the discharge current, and the variations in width of the ion energy distribution and the ratio of high-energy ions are consistent with that of the discharge current. The variation characteristics of the ion density and discharge potential were simulated by one-dimensional hybrid-direct kinetic simulations; the simulation results and analysis indicate that the periodic change in the distribution of ion energy during the low-frequency oscillation depends on the relationship between the ionization source term and discharge potential distribution during ionization in the discharge channel.

  17. Four-dimensional ultrasound current source density imaging of a dipole field

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.

    2011-09-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.

  18. Collisionless distribution function for the relativistic force-free Harris sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, C. R.; Neukirch, T.

    A self-consistent collisionless distribution function for the relativistic analogue of the force-free Harris sheet is presented. This distribution function is the relativistic generalization of the distribution function for the non-relativistic collisionless force-free Harris sheet recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)], as it has the same dependence on the particle energy and canonical momenta. We present a detailed calculation which shows that the proposed distribution function generates the required current density profile (and thus magnetic field profile) in a frame of reference in which the electric potential vanishes identically. The connection between the parameters ofmore » the distribution function and the macroscopic parameters such as the current sheet thickness is discussed.« less

  19. The Status and Outlook of Distributed Generation Public Policy in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinaman, Owen; Aznar, Alexandra Y.; Flores-Espino, Francisco

    Mexico is a regional leader in setting goals for reducing greenhouse gas emissions (GHG) and distributed generation (DG) development is a key priority for the country's policymakers. Current DG policies have fostered growth but need to be modernized to serve current needs and accommodate higher penetration levels. In this report, NREL summarizes international DG policy experiences and best practices and identifies the potential opportunities for policy reform.

  20. Current distribution in conducting nanowire networks

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, Giridhar U.

    2017-07-01

    Conducting nanowire networks find diverse applications in solar cells, touch-screens, transparent heaters, sensors, and various related transparent conducting electrode (TCE) devices. The performances of these devices depend on effective resistance, transmittance, and local current distribution in these networks. Although, there have been rigorous studies addressing resistance and transmittance in TCE, not much attention is paid on studying the distribution of current. Present work addresses this compelling issue of understanding current distribution in TCE networks using analytical as well as Monte-Carlo approaches. We quantified the current carrying backbone region against isolated and dangling regions as a function of wire density (ranging from percolation threshold to many multiples of threshold) and compared the wired connectivity with those obtained from template-based methods. Further, the current distribution in the obtained backbone is studied using Kirchhoff's law, which reveals that a significant fraction of the backbone (which is believed to be an active current component) may not be active for end-to-end current transport due to the formation of intervening circular loops. The study shows that conducting wire based networks possess hot spots (extremely high current carrying regions) which can be potential sources of failure. The fraction of these hot spots is found to decrease with increase in wire density, while they are completely absent in template based networks. Thus, the present work discusses unexplored issues related to current distribution in conducting networks, which are necessary to choose the optimum network for best TCE applications.

  1. Distributed gain in plasmonic reflectors and its use for terahertz generation.

    PubMed

    Sydoruk, O; Syms, R R A; Solymar, L

    2012-08-27

    Semiconductor plasmons have potential for terahertz generation. Because practical device formats may be quasi-optical, we studied theoretically distributed plasmonic reflectors that comprise multiple interfaces between cascaded two-dimensional electron channels. Employing a mode-matching technique, we show that transmission through and reflection from a single interface depend on the magnitude and direction of a dc current flowing in the channels. As a result, plasmons can be amplified at an interface, and the cumulative effect of multiple interfaces increases the total gain, leading to plasmonic reflection coefficients exceeding unity. Reversing the current direction in a distributed reflector, however, has the opposite effect of plasmonic deamplification. Consequently, we propose structurally asymmetric resonators comprising two different distributed reflectors and predict that they are capable of terahertz oscillations at low threshold currents.

  2. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China.

    PubMed

    Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan

    2018-01-01

    Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.

  3. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energymore » distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.« less

  4. BKCa currents are enriched in a subpopulation of adult rat cutaneous nociceptive dorsal root ganglion neurons

    PubMed Central

    Zhang, Xiu-Lin; Mok, Lee-Peng; Katz, Elizabeth J; Gold, Michael S.

    2010-01-01

    The biophysical properties and distribution of voltage-dependent, Ca2+-modulated K+ (BKCa) currents among subpopulations of acutely dissociated DiI labeled cutaneous sensory neurons from the adult rat were characterized with whole cell patch clamp techniques. BKCa currents were isolated from total K+ current with iberiotoxin, charybdotoxin, or paxilline. There was considerable variability in biophysical properties of BKCa currents. There was also variability in the distribution of BKCa current among subpopulations of cutaneous DRG neurons. While present in each of the subpopulations defined by cell body size, IB4 binding or capsaicin sensitivity, BKCa current was present in vast majority (>90%) of small diameter IB4+ neurons but was present in only a minority of neurons in subpopulations defined by other criteria (i.e., small diameter IB4−). Current clamp analysis indicated that in IB4+ neurons, BKCa currents contribute to the repolarization of the action potential and adaptation in response to sustained membrane depolarization, while playing little role in the determination of action potential threshold. RT-PCR analysis of mRNA collected from whole DRG revealed the presence of multiple splice variants of the BKCa channel α-subunit, rslo and all 4 of the accessory β subunits, suggesting that heterogeneity in the biophysical and pharmacological properties of BKCa current in cutaneous neurons, reflects, at least in part, the differential distribution of splice variants and/or β subunits. Because even a small decrease in BKCa current appears to have a dramatic influence on excitability, modulation of this current may contribute to sensitization of nociceptive afferents observed following tissue injury. PMID:20105244

  5. Result Merging Strategies for a Current News Metasearcher.

    ERIC Educational Resources Information Center

    Rasolofo, Yves; Hawking, David; Savoy, Jacques

    2003-01-01

    Metasearching of online current news services is a potentially useful Web application of distributed information retrieval techniques. Reports experiences in building a metasearcher designed to provide up-to-date searching over a significant number of rapidly changing current news sites, focusing on how to merge results from the search engines at…

  6. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions.

    PubMed

    Escobar, Luis E; Ryan, Sadie J; Stewart-Ibarra, Anna M; Finkelstein, Julia L; King, Christine A; Qiao, Huijie; Polhemus, Mark E

    2015-09-01

    Vibrio cholerae is a globally distributed water-borne pathogen that causes severe diarrheal disease and mortality, with current outbreaks as part of the seventh pandemic. Further understanding of the role of environmental factors in potential pathogen distribution and corresponding V. cholerae disease transmission over time and space is urgently needed to target surveillance of cholera and other climate and water-sensitive diseases. We used an ecological niche model (ENM) to identify environmental variables associated with V. cholerae presence in marine environments, to project a global model of V. cholerae distribution in ocean waters under current and future climate scenarios. We generated an ENM using published reports of V. cholerae in seawater and freely available remotely sensed imagery. Models indicated that factors associated with V. cholerae presence included chlorophyll-a, pH, and sea surface temperature (SST), with chlorophyll-a demonstrating the greatest explanatory power from variables selected for model calibration. We identified specific geographic areas for potential V. cholerae distribution. Coastal Bangladesh, where cholera is endemic, was found to be environmentally similar to coastal areas in Latin America. In a conservative climate change scenario, we observed a predicted increase in areas with environmental conditions suitable for V. cholerae. Findings highlight the potential for vulnerability maps to inform cholera surveillance, early warning systems, and disease prevention and control. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Agreements between ground-based and satellite-based observations. [of earth magnetospheric currents

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Weimer, D.; Iijima, T.; Ahn, B.-H.; Kamide, Y.

    1990-01-01

    The polar ionospheric parameters obtained by the meridian chain of magnetometers are compared with those obtained by satellites, and a number of ionospheric quantities including the distribution of the electric potential, field-aligned currents, ionospheric currents and their equatorial counterparts, and the relationship between the AE index and the cross-polar cap potential is determined. It is noted that the agreement observed between the ground-based and satellite-based results allows to reduce the search for the driving mechanism of the ionospheric Pedersen current to identifying the driving mechanism of the Pedersen counterpart current in the equatorial plane.

  8. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  9. Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius).

    PubMed

    Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J

    2018-01-01

    Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.

  10. Distribution and status of redband trout in the interior Columbia river basin and portions of the Klamath river and great basins

    Treesearch

    Russell F. Thurow; Bruce E. Rieman; Danny C. Lee; Philip J. Howell; Raymon D. Perkinson

    2007-01-01

    We summarized existing knowledge (circa 1996) of the potential historical range and the current distribution and status of non-anadromous interior redband trout Oncorhynchus mykiss ssp. in the U.S. portion of the interior Columbia River Basin and portions of the Klamath River and Great Basins (ICRB). We estimated that the potential historical range included 5,458...

  11. Potential effects of climate change on the distribution of waterbirds in the Prairie Pothole Region, U.S.A.

    USGS Publications Warehouse

    Steen, Valerie; Powell, Abby N.

    2012-01-01

    Wetland-dependent birds are considered to be at particularly high risk for negative climate change effects. Current and future distributions of American Bittern (Botaurus lentiginosus), American Coot (Fulica americana), Black Tern (Chlidonias niger), Pied-billed Grebe (Podilymbus podiceps) and Sora (Porzana carolina), five waterbird species common in the Prairie Pothole Region (PPR), were predicted using species distribution models (SDMs) in combination with climate data that projected a drier future for the PPR. Regional-scale SDMs were created for the U.S. PPR using breeding bird survey occurrence records for 1971-2000 and wetland and climate parameters. For each waterbird species, current distribution and four potential future distributions were predicted: all combinations of two Global Circulation Models and two emissions scenarios. Averaged for all five species, the ensemble range reduction was 64%. However, projected range losses for individual species varied widely with Sora and Black Tern projected to lose close to 100% and American Bittern 29% of their current range. Future distributions were also projected to a hypothetical landscape where wetlands were numerous and constant to highlight areas suitable as conservation reserves under a drier future climate. The ensemble model indicated that northeastern North Dakota and northern Minnesota would be the best areas for conservation reserves within the U.S. PPR under the modeled conditions.

  12. Predictive modeling and mapping of Malayan Sun Bear (Helarctos malayanus) distribution using maximum entropy.

    PubMed

    Nazeri, Mona; Jusoff, Kamaruzaman; Madani, Nima; Mahmud, Ahmad Rodzi; Bahman, Abdul Rani; Kumar, Lalit

    2012-01-01

    One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.

  13. Predictive Modeling and Mapping of Malayan Sun Bear (Helarctos malayanus) Distribution Using Maximum Entropy

    PubMed Central

    Nazeri, Mona; Jusoff, Kamaruzaman; Madani, Nima; Mahmud, Ahmad Rodzi; Bahman, Abdul Rani; Kumar, Lalit

    2012-01-01

    One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear’s population. PMID:23110182

  14. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization

    NASA Astrophysics Data System (ADS)

    Ghazavi, Atefeh; Cogan, Stuart F.

    2018-06-01

    Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.

  15. Distributed expert systems for ground and space applications

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.

  16. Perspective on the span-distributed-load concept for application to large cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    Results of a simplified analysis of the span-distributed-load concept (in which payload is placed within the wing structure) are presented. It is shown that a design based on these principles has a high potential for application to future large air cargo transport. Significant improvements are foreseen in increased payload fraction and productivity and in reduced fuel consumption and operating costs. A review of the efforts in the 1940's to develop all-wing aircraft shows the potential of transferring those early technological developments to current design of distributed-load aircraft. Current market analyses are projected to 1990 to show the future commercial demand for large capacity freighters. Several configuration designs which would serve different market requirements for these large freighters are discussed as are some of the pacing-technology requirements.

  17. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to either dissolve or newly precipitate when surface water or ground-water/surface-water mixtures are delivered through the Authority's current distribution system are carbonates (particularly aragonite and calcite). Other types of minerals having the potential to dissolve or newly precipitate under conditions present throughout most of the distribution system include a form of silica, an aluminum hyroxide (gibbsite or diaspore), or the Fe-containing mineral Fe3(OH)8. Dissolution of most of these minerals (except perhaps the Fe-containing minerals) is not likely to substantially affect trace-element concentrations or aesthetic characteristics of delivered water, except perhaps hardness. Precipitation of these minerals would probably be of concern only if the quantities of material involved were large enough to clog pipes or fixtures. The mineral Fe3(OH)8 was not found in the current distribution system. Some Fe-containing minerals that were identified in the distribution system were associated with relatively high contents of selected elements, including As, Cr, Cu, Mn, Pb, and Zn. However, these Fe-containing minerals were not identified as minerals likely to dissolve when the source of water was changed from ground water to surface water or a ground-water/surface-water mixture. Based on the modeled potential for calcite precipitation and additional calculations of corrosion indices ground water, surface water, and ground-water/surface-water mixtures are not likely to differ greatly in corrosion potential. In particular, surface water and ground-water/surface-water mixtures do not appear likely to dissolve large quantities of existing calcite and expose metal surfaces in the distribution system to substantially increased corrosion. Instead, modeling calculations indicate that somewhat larger masses of material would tend to precipitate from surface water or ground-water/surface-water mixtures compared to ground water alone.

  18. [Geographic distribution of birds in the Sierra Madre Oriental of San Luis Potosi, Mexico: a regional analysis of conservation status].

    PubMed

    Sahagún Sánchez, Francisco Javier; Navarro, Jaime Castro; Reyes Hernández, Humberto

    2013-06-01

    The Sierra Madre Oriental region in the mexican state of San Luis Potosi is a relevant place for bird conservation at a country level. Therefore the main goal of this study was to analyze the geographic patterns of distribution and the conservation current state of the birds, to support the needs to expand the conservation areas in the future. Data was collected from various databases of zoological museums and collections, and field sampling methods conducted from January 2009 to May 2011. Potential distributions were modeled for 284 species using GARP software and then a map was developed to determine areas with favorable environmental characteristics for the distribution of species richness. Finally, the importance of conservation areas for the potential distribution of birds in the region was evaluated. A total of 359 species were recorded of which 71.4% are permanent residents, 19% are winter migrants and 4% are summer residents. From this total, 41 species were endemic, 47 were species at risk and 149 were neotropical migrants. The largest species richness correspond to oak forests, cloud forests, and tropical moist forests located at altitudes from 100m to 1 500m. Their potential distribution was concentrated towards the center and Southeast of the study area. Only 10% of areas with a high potential conservation was included in areas of priority for bird conservation (AICA) and just 3% of all potential areas were under some governmental category of protection. However, no conservation area has a management plan currently applied and monitored. The information generated is important for the development of management proposals for birds conservation in the region.

  19. Global Distributions of Ionospheric Electrostatic Potentials for Various Interplanetary Conditions

    NASA Astrophysics Data System (ADS)

    Kartalev, M.; Papitashvili, V.; Keremidarska, V.; Grigorov, K.; Romanov, D.

    2001-12-01

    We report on a study of the global ionospheric electrostatic potential distributions obtained from combining two algorithms used for the mapping of high-latitude and middle-latitude ionospheric electrodynamics; that is, the LiMIE (http://www.sprl.umich.edu/mist/) and IMEH (http://geospace.nat.bg) models, respectively. In this combination, the latter model utilizes the LiMIE high-latitude field-aligned current distributions for various IMF conditions and different seasons (summer, winter, equinox). The IMEH model is a mathematical tool, allowing us to study conjugacy (or non-conjugacy) of the ionospheric electric fields on a global scale, from the northern and southern polar regions to the middle- and low-latitudes. The proposed numerical scheme permits testing of different mechanisms of the interhemispheric coupling and mapping to the ionosphere through the appropriate current systems. The scheme is convenient for determining self-consistently the separatrices in both the northern and southern hemispheres. In this study we focus on the global ionospheric electrostatic field distributions neglecting other possible electric field sources. Considering some implications of the proposed technique for the space weather specification and forecasting, we developed a Web-based interface providing global distributions of the ionospheric electrostatic potentials in near-real time from the ACE upstream solar wind observations at L1.

  20. [Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].

    PubMed

    Yang, Xia; Zheng, Jiang-Hua; Mu, Chen; Lin, Jun

    2017-02-01

    Specific information on geographic distribution of a species is important for its conservation. This study was conducted to determine the potential geographic distribution of Alhagi sparsifolia, which is a plant used in traditional Uighur medicine, and predict how climate change would affect its geographic range. The potential geographic distribution of A. sparsifolia under the current conditions in China was simulated with MaxEnt software based on species presence data at 42 locations and 19 climatic variables. The future distributions of A. sparsifolia were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).The result showed that mean temperature of the coldest quarter, annual mean temperature, precipitation of the coldest quarter, annual precipitation, precipitation of the wettest month, mean temperature of the wettest quarter and the temperature annual range were the seven climatic factors influencing the geographic distribution of A. sparsifolia under current climate, the suitable habitats are mainly located in the Xinjiang, in the middle and north of Gansu, in the west of Neimeng, in the north of Nei Monggol. From 2050 to 2070, the model simulations indicated that the suitable habitats of A. sparsifolia would decrease under the climate change scenarios of RCP2.6 and scenarios of RCP8.5 on the whole. Copyright© by the Chinese Pharmaceutical Association.

  1. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance

    NASA Astrophysics Data System (ADS)

    dos Reis, R. D.; Ajeesh, M. O.; Kumar, N.; Arnold, F.; Shekhar, C.; Naumann, M.; Schmidt, M.; Nicklas, M.; Hassinger, E.

    2016-08-01

    Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion. These materials are now commonly dubbed Weyl semi-metals (WSM). One predicted property of Weyl fermions is the chiral or Adler-Bell-Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (MR). Here, we present experimental evidence that the observation of the chiral anomaly can be hindered by an effect called ‘current jetting’. This effect also leads to a strong apparent negative longitudinal MR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect. In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample. As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance. Our results on the MR of the Weyl semimetal candidate materials NbP, NbAs, TaAs, and TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced ‘zero resistance’ and a strong dependence of the ‘measured resistance’ on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a ‘negative resistance’. Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a negative longitudinal MR as evidence for the chiral anomaly in putative Weyl semimetals.

  2. Near term climate projections for invasive species distributions

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.

    2009-01-01

    Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.

  3. Projecting potential distribution of Eucryptorrhynchus scrobiculatus Motschulsky and E. brandti (Harold) under historical climate and RCP 8.5 scenario.

    PubMed

    Ji, Yingchao; Luo, Wen; Zhang, Ganyu; Wen, Junbao

    2017-08-22

    Ailanthus altissima (Mill.) Swingle and its variant A. altissima var. Qiantouchun are notorious invasive weeds. Two weevils, Eucryptorrhynchus scrobiculatus (ESC) and E. brandti (EBR) are considered as candidates for biological control of A. altissima. The aim of this study was to model the potential distributions of ESC and EBR using CLIMEX 4.0. The projected potential distributions of ESC and EBR included almost all current distribution areas of A. altissima, except Southeast Asia. Under historical climate, potential distribution area of EBR is larger than that of ESC, 46.67 × 10 6  km 2 and 35.65 × 10 6  km 2 , respectively. For both ESC and EBR, climate change expanded the northern boundary of potential distributions northward approximately 600 km by the middle of 21st century, and 1000 km by the end of 21st century under RCP 8.5. However, the suitable range decreased to the south in the Southern Hemisphere because of heat stress. The modelled potential distributions of ESC and EBR in the United States demonstrated that the climate was suitable for both weevils. Therefore, considering only climate suitability, both ESC and EBR can be considered as potential biological control agents against A. altissima with some confidence that climatic conditions are likely suitable.

  4. Scientific critique of the paper “Climatic distribution of citrus black spot caused by Phyllosticta citricarpa. A historical analysis of disease spread in South Africa” by Martínez-Minaya et al. (2015)

    USDA-ARS?s Scientific Manuscript database

    The global potential distribution of Phyllosticta citricarpa, the causal organism of citrus black spot (CBS), is at the heart of an ongoing debate on the level of potential pest risk posed by P. citricarpa to citrus producing orchards within the European Union (EU). The EU currently regulates the i...

  5. Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings

    PubMed Central

    Cserpán, Dorottya; Meszéna, Domokos; Wittner, Lucia; Tóth, Kinga; Ulbert, István; Somogyvári, Zoltán

    2017-01-01

    Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations; however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here, we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus. PMID:29148974

  6. Visualization of Electrical Field of Electrode Using Voltage-Controlled Fluorescence Release

    PubMed Central

    Jia, Wenyan; Wu, Jiamin; Gao, Di; Wang, Hao; Sun, Mingui

    2016-01-01

    In this study we propose an approach to directly visualize electrical current distribution at the electrode-electrolyte interface of a biopotential electrode. High-speed fluorescent microscopic images are acquired when an electric potential is applied across the interface to trigger the release of fluorescent material from the surface of the electrode. These images are analyzed computationally to obtain the distribution of the electric field from the fluorescent intensity of each pixel. Our approach allows direct observation of microscopic electrical current distribution around the electrode. Experiments are conducted to validate the feasibility of the fluorescent imaging method. PMID:27253615

  7. Monitoring and remediation of on-farm and off-farm ground current measured as step potential on a Wisconsin dairy farm: A case study.

    PubMed

    Stetzer, Dave; Leavitt, Adam M; Goeke, Charles L; Havas, Magda

    2016-01-01

    Ground current commonly referred to as "stray voltage" has been an issue on dairy farms since electricity was first brought to rural America. Equipment that generates high-frequency voltage transients on electrical wires combined with a multigrounded (electrical distribution) system and inadequate neutral returns all contribute to ground current. Despite decades of problems, we are no closer to resolving this issue, in part, due to three misconceptions that are addressed in this study. Misconception 1. The current standard of 1 V at cow contact is adequate to protect dairy cows; Misconception 2. Frequencies higher than 60 Hz do not need to be considered; and Misconception 3. All sources of ground current originate on the farm that has a ground current problem. This case study of a Wisconsin dairy farm documents, 1. how to establish permanent monitoring of ground current (step potential) on a dairy farm; 2. how to determine and remediate both on-farm and off-farm sources contributing to step potential; 3. which step-potential metrics relate to cow comfort and milk production; and 4. how these metrics relate to established standards. On-farm sources include lighting, variable speed frequency drives on motors, radio frequency identification system and off-farm sources are due to a poor primary neutral return on the utility side of the distribution system. A step-potential threshold of 1 V root mean square (RMS) at 60 Hz is inadequate to protect dairy cows as decreases of a few mV peak-peak at higher frequencies increases milk production, reduces milking time and improves cow comfort.

  8. Distributed computing for membrane-based modeling of action potential propagation.

    PubMed

    Porras, D; Rogers, J M; Smith, W M; Pollard, A E

    2000-08-01

    Action potential propagation simulations with physiologic membrane currents and macroscopic tissue dimensions are computationally expensive. We, therefore, analyzed distributed computing schemes to reduce execution time in workstation clusters by parallelizing solutions with message passing. Four schemes were considered in two-dimensional monodomain simulations with the Beeler-Reuter membrane equations. Parallel speedups measured with each scheme were compared to theoretical speedups, recognizing the relationship between speedup and code portions that executed serially. A data decomposition scheme based on total ionic current provided the best performance. Analysis of communication latencies in that scheme led to a load-balancing algorithm in which measured speedups at 89 +/- 2% and 75 +/- 8% of theoretical speedups were achieved in homogeneous and heterogeneous clusters of workstations. Speedups in this scheme with the Luo-Rudy dynamic membrane equations exceeded 3.0 with eight distributed workstations. Cluster speedups were comparable to those measured during parallel execution on a shared memory machine.

  9. Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES).

    PubMed

    Bortoletto, M; Rodella, C; Salvador, R; Miranda, P C; Miniussi, C

    2016-01-01

    We propose the use of a new montage for transcranial direct current stimulation (tDCS), called concentric electrodes tDCS (CE-tDCS), involving two concentric round electrodes that may improve stimulation focality. To test efficacy and focality of CE-tDCS, we modelled the current distribution and tested physiological effects on cortical excitability. Motor evoked potentials (MEPs) from first dorsal interosseous (FDI) and abductor digiti minimi (ADM) were recorded before and after the delivery of anodal, cathodal and sham stimulation on the FDI hotspot for 10 minutes. MEP amplitude of FDI increased after anodal-tDCS and decreased after cathodal-tDCS, supporting the efficacy of CE-tDCS in modulating cortical excitability. Moreover, modelled current distribution and no significant effects of stimulation on MEP amplitude of ADM suggest high focality of CE-tDCS. CE-tDCS may allow a better control of current distribution and may represent a novel tool for applying tDCS and other transcranial current stimulation approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  11. Forecasting weed distributions using climate data: a GIS early warning tool

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Barnett, David T.; Stohlgren, Thomas J.; Kartesz, John T.

    2010-01-01

    The number of invasive exotic plant species establishing in the United States is continuing to rise. When prevention of exotic species from entering into a country fails at the national level and the species establishes, reproduces, spreads, and becomes invasive, the most successful action at a local level is early detection followed eradication. We have developed a simple geographic information system (GIS) analysis for developing watch lists for early detection of invasive exotic plants that relies upon currently available species distribution data coupled with environmental data to aid in describing coarse-scale potential distributions. This GIS analysis tool develops environmental envelopes for species based upon the known distribution of a species thought to be invasive and represents the first approximation of its potential habitat while the necessary data are collected to perform more in­-depth analyses. To validate this method we looked at a time series of species distributions for 66 species in Pacific Northwest, and northern Rocky Mountain counties. The time series analysis presented here did select counties that the invasive exotic weeds invaded in subsequent years, showing that this technique could be useful in developing watch lists for the spread of particular exotic species. We applied this same habitat-matching model based upon bioclimaric envelopes to 100 invasive exotics with various levels of known distributions within continental U.S. counties. For species with climatically limited distributions, county watch lists describe county-specific vulnerability to invasion. Species with matching habitats in a county would be added to that county's list. These watch lists can influence management decisions for early warning, control prioritization, and targeted research to determine specific locations within vulnerable counties. This tool provides useful information for rapid assessment of the potential distribution based upon climate envelopes of current distributions for new invasive exotic species.

  12. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike

    PubMed Central

    Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R.

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species. PMID:27732622

  13. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike.

    PubMed

    Estrada-Contreras, Israel; Equihua, Miguel; Laborde, Javier; Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species.

  14. Alcohol beverage control, privatization and the geographic distribution of alcohol outlets

    PubMed Central

    2012-01-01

    Background With Pennsylvania currently considering a move away from an Alcohol Beverage Control state to a privatized alcohol distribution system, this study uses a spatial analytical approach to examine potential impacts of privatization on the number and spatial distribution of alcohol outlets in the city of Philadelphia over a long time horizon. Methods A suite of geospatial data were acquired for Philadelphia, including 1,964 alcohol outlet locations, 569,928 land parcels, and school, church, hospital, park and playground locations. These data were used as inputs for exploratory spatial analysis to estimate the expected number of outlets that would eventually operate in Philadelphia. Constraints included proximity restrictions (based on current ordinances regulating outlet distribution) of at least 200 feet between alcohol outlets and at least 300 feet between outlets and schools, churches, hospitals, parks and playgrounds. Results Findings suggest that current state policies on alcohol outlet distributions in Philadelphia are loosely enforced, with many areas exhibiting extremely high spatial densities of outlets that violate existing proximity restrictions. The spatial model indicates that an additional 1,115 outlets could open in Philadelphia if privatization was to occur and current proximity ordinances were maintained. Conclusions The study reveals that spatial analytical approaches can function as an excellent tool for contingency-based “what-if” analysis, providing an objective snapshot of potential policy outcomes prior to implementation. In this case, the likely outcome is a tremendous increase in alcohol outlets in Philadelphia, with concomitant negative health, crime and quality of life outcomes that accompany such an increase. PMID:23170899

  15. Direct measurement of concentration distribution within the boundary layer of an ion-exchange membrane.

    PubMed

    Choi, Jae-Hwan; Park, Jin-Soo; Moon, Seung-Hyeon

    2002-07-15

    In this study the concentration distributions within the diffusion boundary layer were obtained by directly measuring the potential drops while the currents (under- and overlimiting) passed through the Neosepta CMX cation-exchange membrane (Tokuyama Corp., Japan). Potential drops according to the distance from the membrane surface on the depleted side were measured using a microelectrode to obtain the concentration profile. From the concentration profiles obtained, it was observed that the diffusion boundary layers existed in the range of 300-350 microm, which reasonably coincide with the theoretical diffusion boundary layer thickness calculated from the limiting current density. Although there were some deviations between the concentrations determined from the Nernst model and those from experiments, it was confirmed that the Nernst model effectively depicts the transport phenomena in the ion-exchange membrane system. In addition it was found that the salt concentration at the membrane surface increased when the currents applied exceeded the limiting current. It is thought that the concentration polarization formed in the diffusion boundary layer at currents near or lower than the limiting current was disturbed by a turbulent convection when the current was greater than the limiting current. As a consequence, the concentration at the membrane surface increased to a sufficient level for generation of the overlimiting current.

  16. Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell

    NASA Astrophysics Data System (ADS)

    Das, Subrat; Morsi, Yos; Brooks, Geoffrey

    2013-12-01

    This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10-12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.

  17. Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.

    1993-01-01

    Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.

  18. Simulation of real I-V characteristics of metal/GaN/AlGaN heterostructure based on the 12-EXT model of trap-assisted tunnelling

    NASA Astrophysics Data System (ADS)

    Racko, Juraj; Benko, Peter; Mikolášek, Miroslav; Granzner, Ralf; Kittler, Mario; Schwierz, Frank; Harmatha, Ladislav; Breza, Juraj

    2017-02-01

    The contribution employs electrical simulation to assess the effect of the distribution of aluminium in the metal/GaN/AlGaN heterostructure on the leakage current. The heterostructure is characterized by a high density of traps causing an increase of the leakage current consisting of the thermionic emission component and of a non-negligible contribution of trap-assisted tunnelling. The leakage current is highly sensitive to the bending of the potential barrier Ec in the subsurface region of the GaN/AlGaN structure. The band bending is strongly affected by the sheet bound charge at the first GaN/AlGaN/GaN interface due to spontaneous and piezoelectric polarization. The overall charge depends on the concentration of Al, the distribution of Al at the first heterointerface having a strong effect on the formation of the potential barrier.

  19. A Semianalytical Ion Current Model for Radio Frequency Driven Collisionless Sheaths

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    We propose a semianalytical ion dynamics model for a collisionless radio frequency biased sheath. The model uses bulk plasma conditions and electrode boundary condition to predict ion impact energy distribution and electrical properties of the sheath. The proposed model accounts for ion inertia and ion current modulation at bias frequencies that are of the same order of magnitude as the ion plasma frequency. A relaxation equation for ion current oscillations is derived which is coupled with a damped potential equation in order to model ion inertia effects. We find that inclusion of ion current modulation in the sheath model shows marked improvements in the predictions of sheath electrical properties and ion energy distribution function.

  20. Climate-Induced Range Shifts and Possible Hybridisation Consequences in Insects

    PubMed Central

    Sánchez-Guillén, Rosa Ana; Muñoz, Jesús; Rodríguez-Tapia, Gerardo; Feria Arroyo, T. Patricia; Córdoba-Aguilar, Alex

    2013-01-01

    Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful. PMID:24260411

  1. The point spread function of the human head and its implications for transcranial current stimulation

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Bikson, Marom; Parra, Lucas C.

    2012-10-01

    Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode-cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown.

  2. Module Hipot and ground continuity test results

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1984-01-01

    Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.

  3. Current-wave spectra coupling project. Volume III. Cumulative distribution of forces on structures subjected to the combined action of currents and random waves for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane. [CUFOR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venezian, G.; Bretschneider, C.L.

    1980-08-01

    This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peakmore » force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.« less

  4. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    PubMed

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  5. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang

    2017-08-01

    Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

  6. Plasma dynamics on current-carrying magnetic flux tubes. II - Low potential simulation

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    The evolution of plasma in a current-carrying magnetic flux tube of variable cross section is investigated using a one-dimensional numerical simulation. The flux tube is narrow at the two ends and broad in the middle. The middle part of the flux tube is loaded with a hot, magnetically trapped population, and the two ends have a more dense, gravitationally bound population. A potential difference larger than the gravitational potential but less than the energy of the hot population is applied across the domain. The general result is that the potential change becomes distributed along the anode half of the domain, with negligible potential change on the cathode half. The potential is supported by the mirror force of magnetically trapped particles. The simulations show a steady depletion of plasma on the anode side of the flux tube. The current steadily decreases on a time scale of an ion transit time. The results may provide an explanation for the observed plasma depletions on auroral field lines carrying upward currents.

  7. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US

    USGS Publications Warehouse

    Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.

    2011-01-01

    The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.

  8. Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates

    PubMed Central

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; Gon, Sam 'Ohukani'ohi'a; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  9. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; Gon, Sam 'ohukani'ohi'a; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  10. Polymer space-charge-limited transistor as a solid-state vacuum tube triode

    NASA Astrophysics Data System (ADS)

    Chao, Yu-Chiang; Ku, Ming-Che; Tsai, Wu-Wei; Zan, Hsiao-Wen; Meng, Hsin-Fei; Tsai, Hung-Kuo; Horng, Sheng-Fu

    2010-11-01

    We report the construction of a polymer space-charge-limited transistor (SCLT), a solid-state version of vacuum tube triode. The SCLT achieves a high on/off ratio of 3×105 at a low operation voltage of 1.5 V by using high quality insulators both above and below the grid base electrode. Applying a greater bias to the base increases the barrier potential, and turns off the channel current, without introducing a large parasitic leakage current. Simulation result verifies the influence of base bias on channel potential distribution. The output current density is 1.7 mA/cm2 with current gain greater than 1000.

  11. Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China

    PubMed Central

    Tang, Cindy Q.; Dong, Yi-Fei; Herrando-Moraira, Sonia; Matsui, Tetsuya; Ohashi, Haruka; He, Long-Yuan; Nakao, Katsuhiro; Tanaka, Nobuyuki; Tomita, Mizuki; Li, Xiao-Shuang; Yan, Hai-Zhong; Peng, Ming-Chun; Hu, Jun; Yang, Ruo-Han; Li, Wang-Jun; Yan, Kai; Hou, Xiuli; Zhang, Zhi-Ying; López-Pujol, Jordi

    2017-01-01

    This study, using species distribution modeling (involving a new approach that allows for uncertainty), predicts the distribution of climatically suitable areas prevailing during the mid-Holocene, the Last Glacial Maximum (LGM), and at present, and estimates the potential formation of new habitats in 2070 of the endangered and rare Tertiary relict tree Davidia involucrata Baill. The results regarding the mid-Holocene and the LGM demonstrate that south-central and southwestern China have been long-term stable refugia, and that the current distribution is limited to the prehistoric refugia. Given future distribution under six possible climate scenarios, only some parts of the current range of D. involucrata in the mid-high mountains of south-central and southwestern China would be maintained, while some shift west into higher mountains would occur. Our results show that the predicted suitable area offering high probability (0.5‒1) accounts for an average of only 29.2% among the models predicted for the future (2070), making D. involucrata highly vulnerable. We assess and propose priority protected areas in light of climate change. The information provided will also be relevant in planning conservation of other paleoendemic species having ecological traits and distribution ranges comparable to those of D. involucrata. PMID:28272437

  12. Mixture distributions of wind speed in the UAE

    NASA Astrophysics Data System (ADS)

    Shin, J.; Ouarda, T.; Lee, T. S.

    2013-12-01

    Wind speed probability distribution is commonly used to estimate potential wind energy. The 2-parameter Weibull distribution has been most widely used to characterize the distribution of wind speed. However, it is unable to properly model wind speed regimes when wind speed distribution presents bimodal and kurtotic shapes. Several studies have concluded that the Weibull distribution should not be used for frequency analysis of wind speed without investigation of wind speed distribution. Due to these mixture distributional characteristics of wind speed data, the application of mixture distributions should be further investigated in the frequency analysis of wind speed. A number of studies have investigated the potential wind energy in different parts of the Arabian Peninsula. Mixture distributional characteristics of wind speed were detected from some of these studies. Nevertheless, mixture distributions have not been employed for wind speed modeling in the Arabian Peninsula. In order to improve our understanding of wind energy potential in Arabian Peninsula, mixture distributions should be tested for the frequency analysis of wind speed. The aim of the current study is to assess the suitability of mixture distributions for the frequency analysis of wind speed in the UAE. Hourly mean wind speed data at 10-m height from 7 stations were used in the current study. The Weibull and Kappa distributions were employed as representatives of the conventional non-mixture distributions. 10 mixture distributions are used and constructed by mixing four probability distributions such as Normal, Gamma, Weibull and Extreme value type-one (EV-1) distributions. Three parameter estimation methods such as Expectation Maximization algorithm, Least Squares method and Meta-Heuristic Maximum Likelihood (MHML) method were employed to estimate the parameters of the mixture distributions. In order to compare the goodness-of-fit of tested distributions and parameter estimation methods for sample wind data, the adjusted coefficient of determination, Bayesian Information Criterion (BIC) and Chi-squared statistics were computed. Results indicate that MHML presents the best performance of parameter estimation for the used mixture distributions. In most of the employed 7 stations, mixture distributions give the best fit. When the wind speed regime shows mixture distributional characteristics, most of these regimes present the kurtotic statistical characteristic. Particularly, applications of mixture distributions for these stations show a significant improvement in explaining the whole wind speed regime. In addition, the Weibull-Weibull mixture distribution presents the best fit for the wind speed data in the UAE.

  13. Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information

    USGS Publications Warehouse

    Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.

    2009-01-01

    The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.

  14. Impacts of climate change and renewable energy development on habitat of an endemic squirrel, Xerospermophilus mohavensis, in the Mojave Desert, USA

    USGS Publications Warehouse

    Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.

    2016-01-01

    Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.

  15. Modeling impacts of climate change on the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand.

    PubMed

    Suwannatrai, A; Pratumchart, K; Suwannatrai, K; Thinkhamrop, K; Chaiyos, J; Kim, C S; Suwanweerakamtorn, R; Boonmars, T; Wongsaroj, T; Sripa, B

    2017-01-01

    Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.

  16. A model for calculating the vertical distribution of the atmospheric electric potential in the exchange layer in a maritime clean atmosphere

    NASA Astrophysics Data System (ADS)

    Kulkarni, M. N.; Kamra, A. K.

    2012-11-01

    A theoretical model is developed for calculating the vertical distribution of atmospheric electric potential in exchange layer of maritime clean atmosphere. The transport of space charge in electrode layer acts as a convective generator in this model and plays a major role in determining potential distribution in vertical. Eddy diffusion is the main mechanism responsible for the distribution of space charge in vertical. Our results show that potential at a particular level increases with increase in the strength of eddy diffusion under similar conditions. A method is suggested to estimate columnar resistance, the ionospheric potential and the vertical atmospheric electric potential distribution in exchange layer from measurements of total air-earth current density and surface electric field made over oceans. The results are validated and found to be in very good agreement with the previous aircraft measurements. Different parameters involved in the proposed methodology can be determined either theoretically, as in the present work, or experimentally using the near surface atmospheric electrical measurements or using some other surface-based measurement technique such as LIDAR. A graphical relationship between the atmospheric eddy diffusion coefficient and height of exchange layer obtained from atmospheric electrical approach, is reported.

  17. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata.

    PubMed

    Galdino, Tarcísio Visintin da Silva; Kumar, Sunil; Oliveira, Leonardo S S; Alfenas, Acelino C; Neven, Lisa G; Al-Sadi, Abdullah M; Picanço, Marcelo C

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs.

  18. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata

    PubMed Central

    Oliveira, Leonardo S. S.; Alfenas, Acelino C.; Neven, Lisa G.; Al-Sadi, Abdullah M.

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625

  19. Internet of Things: a possible change in the distributed modeling and simulation architecture paradigm

    NASA Astrophysics Data System (ADS)

    Riecken, Mark; Lessmann, Kurt; Schillero, David

    2016-05-01

    The Data Distribution Service (DDS) was started by the Object Management Group (OMG) in 2004. Currently, DDS is one of the contenders to support the Internet of Things (IoT) and the Industrial IOT (IIoT). DDS has also been used as a distributed simulation architecture. Given the anticipated proliferation of IoT and II devices, along with the explosive growth of sensor technology, can we expect this to have an impact on the broader community of distributed simulation? If it does, what is the impact and which distributed simulation domains will be most affected? DDS shares many of the same goals and characteristics of distributed simulation such as the need to support scale and an emphasis on Quality of Service (QoS) that can be tailored to meet the end user's needs. In addition, DDS has some built-in features such as security that are not present in traditional distributed simulation protocols. If the IoT and II realize their potential application, we predict a large base of technology to be built around this distributed data paradigm, much of which could be directly beneficial to the distributed M&S community. In this paper we compare some of the perceived gaps and shortfalls of current distributed M&S technology to the emerging capabilities of DDS built around the IoT. Although some trial work has been conducted in this area, we propose a more focused examination of the potential of these new technologies and their applicability to current and future problems in distributed M&S. The Internet of Things (IoT) and its data communications mechanisms such as the Data Distribution System (DDS) share properties in common with distributed modeling and simulation (M&S) and its protocols such as the High Level Architecture (HLA) and the Test and Training Enabling Architecture (TENA). This paper proposes a framework based on the sensor use case for how the two communities of practice (CoP) can benefit from one another and achieve greater capability in practical distributed computing.

  20. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties.

    PubMed

    Ohyu, Shigeharu; Okamoto, Yoshiwo; Kuriki, Shinya

    2002-06-01

    A novel magnetocardiographic inverse method for reconstructing the action potential amplitude (APA) and the activation time (AT) on the ventricular myocardium is proposed. This method is based on the propagated excitation model, in which the excitation is propagated through the ventricle with nonuniform height of action potential. Assumption of stepwise waveform on the transmembrane potential was introduced in the model. Spatial gradient of transmembrane potential, which is defined by APA and AT distributed in the ventricular wall, is used for the computation of a current source distribution. Based on this source model, the distributions of APA and AT are inversely reconstructed from the QRS interval of magnetocardiogram (MCG) utilizing a maximum a posteriori approach. The proposed reconstruction method was tested through computer simulations. Stability of the methods with respect to measurement noise was demonstrated. When reference APA was provided as a uniform distribution, root-mean-square errors of estimated APA were below 10 mV for MCG signal-to-noise ratios greater than, or equal to, 20 dB. Low-amplitude regions located at several sites in reference APA distributions were correctly reproduced in reconstructed APA distributions. The goal of our study is to develop a method for detecting myocardial ischemia through the depression of reconstructed APA distributions.

  1. Satellite-based peatland mapping: potential of the MODIS sensor.

    Treesearch

    D. Pflugmacher; O.N. Krankina; W.B. Cohen

    2006-01-01

    Peatlands play a major role in the global carbon cycle but are largely overlooked in current large-scale vegetation mapping efforts. In this study, we investigated the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to capture extent and distribution of peatlands in the St. Petersburg region of Russia.

  2. INTRODUCTION AND STATIC ELECTRICITY, VOLUME 1.

    ERIC Educational Resources Information Center

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME, PART OF A TWO-VOLUME SET, PROVIDES AUTOINSTRUCTION IN PHYSICS. THE MATERIAL COVERS UNITS ON (1) STATIC ELECTRICITY AND ELECTRICAL CHARGES, (2) COULOMB'S LAW, (3) DISTRIBUTION OF CHARGE AND FLOW OF CURRENT, (4) DIFFERENCE OF POTENTIAL, (5) BATTERIES AND CIRCUITS, (6) RESISTANCE AND RESISTORS, (7) POTENTIAL DIVIDER AND WHEATSTONE…

  3. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    USGS Publications Warehouse

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  4. Global distributions of ionospheric electric potentials for variable IMF conditions: climatology and near-real time specification

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Papitashvili, V. O.; Keremidarska, V. I.; Grigorov, K. G.; Romanov, D. K.

    2002-03-01

    We report a study of global climatology in the ionospheric electric potentials obtained from combining two algorithms used for mapping of high- and middle/low latitude ionospheric electrodynamics: the LiMIE (http://www.sprl.umich.edu/mist/limie.html) and IMEH (http://geospace.nat.bg) models, respectively. In this combination, the latter model utilizes high-latitude field-aligned current distributions provided by LiMIE for various IMF conditions and different seasons (summer, winter, equinox). For the testing purposes, we developed a Web-based interface which provides global distributions of the ionospheric electric potential in near-real time utilizing solar wind observations made onboard the NASA's ACE spacecraft upstream at L1. We discuss the electric potential global modeling over both the northern and southern hemispheres and consider some implications for the solar cycle studies and space weather forecasting.

  5. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  6. Modeling potential climate change impacts on the trees of the northeastern United States

    Treesearch

    Louis Iverson; Anantha Prasad; Stephen Matthews

    2008-01-01

    We evaluated 134 tree species from the eastern United States for potential response to several scenarios of climate change, and summarized those responses for nine northeastern United States. We modeled and mapped each species individually and show current and potential future distributions for two emission scenarios (A1fi [higher emission] and B1 [lower emission]) and...

  7. Comparison of four modeling tools for the prediction of potential distribution for non-indigenous weeds in the United States

    USGS Publications Warehouse

    Magarey, Roger; Newton, Leslie; Hong, Seung C.; Takeuchi, Yu; Christie, Dave; Jarnevich, Catherine S.; Kohl, Lisa; Damus, Martin; Higgins, Steven I.; Miller, Leah; Castro, Karen; West, Amanda; Hastings, John; Cook, Gericke; Kartesz, John; Koop, Anthony

    2018-01-01

    This study compares four models for predicting the potential distribution of non-indigenous weed species in the conterminous U.S. The comparison focused on evaluating modeling tools and protocols as currently used for weed risk assessment or for predicting the potential distribution of invasive weeds. We used six weed species (three highly invasive and three less invasive non-indigenous species) that have been established in the U.S. for more than 75 years. The experiment involved providing non-U. S. location data to users familiar with one of the four evaluated techniques, who then developed predictive models that were applied to the United States without knowing the identity of the species or its U.S. distribution. We compared a simple GIS climate matching technique known as Proto3, a simple climate matching tool CLIMEX Match Climates, the correlative model MaxEnt, and a process model known as the Thornley Transport Resistance (TTR) model. Two experienced users ran each modeling tool except TTR, which had one user. Models were trained with global species distribution data excluding any U.S. data, and then were evaluated using the current known U.S. distribution. The influence of weed species identity and modeling tool on prevalence and sensitivity effects was compared using a generalized linear mixed model. Each modeling tool itself had a low statistical significance, while weed species alone accounted for 69.1 and 48.5% of the variance for prevalence and sensitivity, respectively. These results suggest that simple modeling tools might perform as well as complex ones in the case of predicting potential distribution for a weed not yet present in the United States. Considerations of model accuracy should also be balanced with those of reproducibility and ease of use. More important than the choice of modeling tool is the construction of robust protocols and testing both new and experienced users under blind test conditions that approximate operational conditions.

  8. Field-aligned electrostatic potential differences on the Martian night side

    NASA Astrophysics Data System (ADS)

    Lillis, Rob; Collinson, Glyn; Mitchell, David

    2017-04-01

    Field-aligned electrostatic potential differences on the Martian night side above 170 km can be inferred with the aid of a kinetic electron transport model and in a statistical sense, by energy-dependent angular shifts in electron loss cones measured in Mars orbit. Potentials between 170 km and 400 km derived from pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/ Electron Reflectometer experiment (MAG/ER) at 2 a.m. local time are typically small (-10 V to 10 V) but can reach magnitudes of >100 V. Geographically, the strongest negative potential differences (with mean values up to -50 V) are preferentially observed at the boundaries between open and closed strong magnetic field regions, while positive potential differences are preferentially observed further from open field lines. These characteristics may reflect current systems closing at high altitude through cross-tail currents and at low altitude in the conducting night side ionosphere. We will present a synthesis of potentials derived from pitch angle distributions measured by both MGS MAG/ER as mentioned above, and by the MAVEN Solar Wind Electron Analyzer (SWEA) collected at a range of local times and altitudes.

  9. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector

    PubMed Central

    Piaggio, Antoinette J.

    2018-01-01

    Common vampire bats (Desmodus rotundus) occur throughout much of South America to northern México. Vampire bats have not been documented in recent history in the United States, but have been documented within about 50 km of the U.S. state of Texas. Vampire bats feed regularly on the blood of mammals and can transmit rabies virus to native species and livestock, causing impacts on the health of prey. Thus cattle producers, wildlife management agencies, and other stakeholders have expressed concerns about whether vampire bats might spread into the southern United States. On the other hand, concerns about vampire-borne rabies can also result in wanton destruction at bat roosts in areas occupied by vampire bats, but also in areas not known to be occupied by this species. This can in turn negatively affect some bat roosts, populations, and species that are of conservation concern, including vampire bats. To better understand the current and possible future distribution of vampire bats in North America and help mitigate future cattle management problems, we used 7,094 vampire bat occurrence records from North America and species distribution modeling (SDM) to map the potential distribution of vampire bats in North America under current and future climate change scenarios. We analysed and mapped the potential distribution of this species using 5 approaches to species distribution modeling: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy. We then projected these models into 17 “worst-case” future climate scenarios for year 2070 to generate hypotheses about how the vampire bat distribution in North America might change in the future. Of the variables used in this analysis, minimum temperature of the coldest month had the highest variable importance using all 5 SDM approaches. These results suggest two potential near-future routes of vampire bat dispersal into the U.S., one via southern Texas, and a second into southern Florida. Some of our SDM models support the hypothesis that suitable habitat for vampire bats may currently exist in parts of the México–U.S. borderlands, including extreme southern portions of Texas, as well as in southern Florida. However, this analysis also suggests that extensive expansion into the south-eastern and south-western U.S. over the coming ~60 years appears unlikely. PMID:29466401

  10. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector.

    PubMed

    Hayes, Mark A; Piaggio, Antoinette J

    2018-01-01

    Common vampire bats (Desmodus rotundus) occur throughout much of South America to northern México. Vampire bats have not been documented in recent history in the United States, but have been documented within about 50 km of the U.S. state of Texas. Vampire bats feed regularly on the blood of mammals and can transmit rabies virus to native species and livestock, causing impacts on the health of prey. Thus cattle producers, wildlife management agencies, and other stakeholders have expressed concerns about whether vampire bats might spread into the southern United States. On the other hand, concerns about vampire-borne rabies can also result in wanton destruction at bat roosts in areas occupied by vampire bats, but also in areas not known to be occupied by this species. This can in turn negatively affect some bat roosts, populations, and species that are of conservation concern, including vampire bats. To better understand the current and possible future distribution of vampire bats in North America and help mitigate future cattle management problems, we used 7,094 vampire bat occurrence records from North America and species distribution modeling (SDM) to map the potential distribution of vampire bats in North America under current and future climate change scenarios. We analysed and mapped the potential distribution of this species using 5 approaches to species distribution modeling: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy. We then projected these models into 17 "worst-case" future climate scenarios for year 2070 to generate hypotheses about how the vampire bat distribution in North America might change in the future. Of the variables used in this analysis, minimum temperature of the coldest month had the highest variable importance using all 5 SDM approaches. These results suggest two potential near-future routes of vampire bat dispersal into the U.S., one via southern Texas, and a second into southern Florida. Some of our SDM models support the hypothesis that suitable habitat for vampire bats may currently exist in parts of the México-U.S. borderlands, including extreme southern portions of Texas, as well as in southern Florida. However, this analysis also suggests that extensive expansion into the south-eastern and south-western U.S. over the coming ~60 years appears unlikely.

  11. Electron energy distributions measured during electron beam/plasma interactions. [in E region

    NASA Technical Reports Server (NTRS)

    Jost, R. J.; Anderson, H. R.; Mcgarity, J. O.

    1980-01-01

    In the large vacuum facility at the NASA-Johnson Space Center an electron beam was projected 20 m parallel to B from a gun with variable accelerating potential (1.0 to 2.5 kV) to an aluminum target. The ionospheric neutral pressure and field were approximated. Beam electron energy distributions were measured directly using an electrostatic deflection analyzer and indirectly with a detector that responded to the X-rays produced by electron impact on the target. At low currents the distribution is sharply peaked at the acceleration potential. At high currents a beam plasma discharge occurs and electrons are redistributed in energy so that the former energy peak broadens to 10-15 percent FWHM with a strongly enhanced low energy tail. At the 10% of maximum point the energy spectrum ranges from less than 1/2 to 1.2 times the gun energy. The effect is qualitatively the same at all pitch angles and locations sampled.

  12. [Projection of potential geographic distribution of Apocynum venetum under climate change in northern China].

    PubMed

    Yang, Hui-Feng; Zheng, Jiang-Hua; Jia, Xiao-Guang; Li, Xiao-Jin

    2017-03-01

    Apocynum venetum belongs to apocynaceae and is a perennial medicinal plant, its stem is an important textile raw materials. The projection of potential geographic distribution of A. venetum has an important significance for the protection and sustainable utilization of the plant. This study was conducted to determine the potential geographic distribution of A. venetum and to project how climate change would affect its geographic distribution. The projection geographic distribution of A. venetum under current bioclimatic conditions in northern China was simulated using MaxEnt software based on species presence data at 44 locations and 19 bioclimatic parameters. The future distributions of A. venetum were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The result showed that min air temperature of the coldest month, annual mean air temperature, precipitation of the coldest quarter and mean air temperature of the wettest quarter dominated the geographic distribution of A. venetum. Under current climate, the suitable habitats of A. venetum is 11.94% in China, the suitable habitats are mainly located in the middle of Xinjiang, in the northern part of Gansu, in the southern part of Neimeng, in the northern part of Ningxia, in the middle and northern part of Shaanxi, in the southern part of Shanxi, in the middle and northern part of Henan, in the middle and southern part of Hebei, Shandong, Tianjin, in the southern part of Liaoning and part of Beijing. From 2050 to 2070, the model outputs indicated that the suitable habitats of A. venetum would decrease under the climate change scenarios of RCP2.6 and RCP8.5. Copyright© by the Chinese Pharmaceutical Association.

  13. Work Distribution in a Fully Distributed Processing System.

    DTIC Science & Technology

    1982-01-01

    Institute of Technology Atlanta, Georgia 30332 THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR AND SHOULD NOT BE...opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Navy position...SECTIONO1 Distributed data processing systems are currently being studied by researchers and prospective users because of their potential for improvements

  14. Analytical study of the performance of a geomembrane leak detection system.

    PubMed

    Lugli, Francesco; Mahler, Claudio Fernando

    2016-05-01

    The electrical detection of leaks in geomembranes is a method that allows identifying leakage of contaminants in lined facilities (e.g. sanitary landfills, pollutant ponds, etc.). The procedure in the field involves placing electrodes above and below the geomembrane, to generate an electrical current, which in turn engenders an electric potential distribution in the protective layer (generally a clayey soil). The electric potential will be greater in areas with higher current density, i.e. near leaks. In this study, we combined models from the literature to carry out a parametric analysis to identify the variables that most influence the amplitude of the electrical signals produced by leaks. The basic hypothesis is that the electrical conduction phenomena in a liner system could be depicted by a direct current circuit. After determining the value of the current at the leak, we calculated the electric potential distribution according to the model of Darilek and Laine. This enabled analysing the sensitivity of the parameters, which can be useful in the design of landfills and facilitate the location of leaks. This study showed that geomembranes with low electrical resistance (owing to low thickness, low resistivity, or extensive area) can hinder the leak detection process. In contrast, low thickness and high resistivity of the protection layer magnify the leak signal. © The Author(s) 2016.

  15. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  16. Past and ongoing shifts in Joshua tree distribution support future modeled range contraction

    USGS Publications Warehouse

    Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris

    2011-01-01

    The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.

  17. Determining suitable locations for seed transfer under climate change: a global quantitative method

    Treesearch

    Kevin M. Potter; William W. Hargrove

    2012-01-01

    Changing climate conditions will complicate efforts to match seed sources with the environments to which they are best adapted. Tree species distributions may have to shift to match new environmental conditions, potentially requiring the establishment of some species entirely outside of their current distributions to thrive. Even within the portions of tree species...

  18. Current Distributional Information on Freshwater Mussels (family Unionidae) in Mississippi National Forests

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    1995-01-01

    Little is known about the distribution of freshwater mussels in Mississippi national forests. Review of the scant available information revealed that the national forests harbor a diverse mussel fauna of possibly 46 or more species (including confirmed, probable, and potential occurrences). Occurrence of 33 species is confirmed. Because of the geographic, physiographic...

  19. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing regeneration probability at the trailing edge underscores the Schlaepfer et al. Future regeneration potential of big sagebrush potential futility of efforts to preserve and/or restore big sagebrush in these areas. Conversely, increasing regeneration probability at the leading edge suggest a growing potential for conflicts in management goals between maintaining existing grasslands by preventing sagebrush expansion versus accepting a shift in plant community composition to sagebrush dominance.

  20. Modeling current climate conditions for forest pest risk assessment

    Treesearch

    Frank H. Koch; John W. Coulston

    2010-01-01

    Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...

  1. Potential effects of climate change on the distribution range of the main silicate sinker of the Southern Ocean.

    PubMed

    Pinkernell, Stefan; Beszteri, Bánk

    2014-08-01

    Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.

  2. Distribution of grizzly bears in the Greater Yellowstone Ecosystem, 2004

    USGS Publications Warehouse

    Schwartz, C.C.; Haroldson, M.A.; Gunther, K.; Moody, D.

    2006-01-01

    The US Fish and Wildlife Service (USFWS) proposed delisting the Yellowstone grizzly bear (Ursus arctos horribilis) in November 2005. Part of that process required knowledge of the most current distribution of the species. Here, we update an earlier estimate of occupied range (1990–2000) with data through 2004. We used kernel estimators to develop distribution maps of occupied habitats based on initial sightings of unduplicated females (n = 481) with cubs of the year, locations of radiomarked bears (n = 170), and spatially unique locations of conflicts, confrontations, and mortalities (n = 1,075). Although each data set was constrained by potential sampling bias, together they provided insight into areas in the Greater Yellowstone Ecosystem (GYE) currently occupied by grizzly bears. The current distribution of 37,258 km2 (1990–2004) extends beyond the distribution map generated with data from 1990–2000 (34,416 km2 ). Range expansion is particularly evident in parts of the Caribou–Targhee National Forest in Idaho and north of Spanish Peaks on the Gallatin National Forest in Montana.

  3. Techniques and Tools for Performance Tuning of Parallel and Distributed Scientific Applications

    NASA Technical Reports Server (NTRS)

    Sarukkai, Sekhar R.; VanderWijngaart, Rob F.; Castagnera, Karen (Technical Monitor)

    1994-01-01

    Performance degradation in scientific computing on parallel and distributed computer systems can be caused by numerous factors. In this half-day tutorial we explain what are the important methodological issues involved in obtaining codes that have good performance potential. Then we discuss what are the possible obstacles in realizing that potential on contemporary hardware platforms, and give an overview of the software tools currently available for identifying the performance bottlenecks. Finally, some realistic examples are used to illustrate the actual use and utility of such tools.

  4. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Dong, Ze Hua, E-mail: zehua.dong@gmail.com; Kong, De Jie

    Multi-electrode technique named as wire beam electrode (WBE) was used to study pitting corrosion of rebar under concrete cover. When WBE embedded mortar sample was immersed in NaCl solution, uneven distributions of galvanic current and open circuit potential (OCP) on the WBE were observed due to the initiation of pitting corrosion. The following oxygen depletion in mortar facilitated the negative shift of the OCP and the smoothing of the current and potential distributions. Wetting–drying cycle experiments showed that corrosion products instead of oxygen in wet mortar specimen sustained the propagation of pitting corrosion due to Fe (III) taking part inmore » cathodic depolarization during oxygen-deficient wet period, which was confirmed by micro-Raman spectroscopy. In addition, new pitting corrosion occurred mainly near the corrosion products, leading to preferentially horizontal propagation of rust layer on the WBE. A localized corrosion factor was further presented to quantify the localised corrosion based on galvanic current maps.« less

  5. Marcus-Hush-Chidsey theory of electron transfer to and from species bound at a non-uniform electrode surface: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Henstridge, Martin C.; Batchelor-McAuley, Christopher; Gusmão, Rui; Compton, Richard G.

    2011-11-01

    Two simple models of electrode surface inhomogeneity based on Marcus-Hush theory are considered; a distribution in formal potentials and a distribution in electron tunnelling distances. Cyclic voltammetry simulated using these models is compared with that simulated using Marcus-Hush theory for a flat, uniform and homogeneous electrode surface, with the two models of surface inhomogeneity yielding broadened peaks with decreased peak-currents. An edge-plane pyrolytic graphite electrode is covalently modified with ferrocene via 'click' chemistry and the resulting voltammetry compared with each of the three previously considered models. The distribution of formal potentials is seen to fit the experimental data most closely.

  6. Past, present and future distributions of an Iberian Endemic, Lepus granatensis: ecological and evolutionary clues from species distribution models.

    PubMed

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species' ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.

  7. Past, Present and Future Distributions of an Iberian Endemic, Lepus granatensis: Ecological and Evolutionary Clues from Species Distribution Models

    PubMed Central

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species’ ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model’s output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change. PMID:23272115

  8. Topological States in Partially-PT -Symmetric Azimuthal Potentials

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Torner, Lluis

    2015-11-01

    We introduce partially-parity-time (p PT ) -symmetric azimuthal potentials composed from individual PT -symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potential excitations carrying topological dislocations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such nonconservative ratchetlike structures support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely charged vortex solitons remain equivalent in similar fully-P T -symmetric potentials. The vortex solitons in the p P T - and P T -symmetric potentials are shown to feature qualitatively different internal current distributions, which are described by different discrete rotation symmetries of the intensity profiles.

  9. Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque) in Ecuador: importance of protected areas in future scenarios of global warming.

    PubMed

    Ortega-Andrade, H Mauricio; Prieto-Torres, David A; Gómez-Lora, Ignacio; Lizcano, Diego J

    2015-01-01

    In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque's potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador.

  10. Ecological and Geographical Analysis of the Distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of Protected Areas in Future Scenarios of Global Warming

    PubMed Central

    Ortega-Andrade, H. Mauricio; Prieto-Torres, David A.; Gómez-Lora, Ignacio; Lizcano, Diego J.

    2015-01-01

    In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque’s potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador. PMID:25798851

  11. Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance.

    PubMed

    Haider, S; Hrbek, A; Xu, Y

    2008-06-01

    Primarily this report outlines our investigation on utilizing magneto-acousto-electrical-tomography (MAET) to image the lead field current density in volume conductors. A lead field current density distribution is obtained when a current/voltage source is applied to a sample via a pair of electrodes. This is the first time a high-spatial-resolution image of current density is presented using MAET. We also compare an experimental image of current density in a sample with its corresponding numerical simulation. To image the lead field current density, rather than applying a current/voltage source directly to the sample, we place the sample in a static magnetic field and focus an ultrasonic pulse on the sample to simulate a point-like current dipole source at the focal point. Then by using electrodes we measure the voltage/current signal which, based on the reciprocity theorem, is proportional to a component of the lead field current density. In the theory section, we derive the equation relating the measured voltage to the lead field current density and the displacement velocity caused by ultrasound. The experimental data include the MAET signal and an image of the lead field current density for a thin sample. In addition, we discuss the potential improvements for MAET especially to overcome the limitation created by the observation that no signal was detected from the interior of a region having a uniform conductivity. As an auxiliary we offer a mathematical formula whereby the lead field current density may be utilized to reconstruct the distribution of the electrical impedance in a piecewise smooth object.

  12. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States.

    PubMed

    McClure, Meredith L; Burdett, Christopher L; Farnsworth, Matthew L; Lutman, Mark W; Theobald, David M; Riggs, Philip D; Grear, Daniel A; Miller, Ryan S

    2015-01-01

    Wild pigs (Sus scrofa), also known as wild swine, feral pigs, or feral hogs, are one of the most widespread and successful invasive species around the world. Wild pigs have been linked to extensive and costly agricultural damage and present a serious threat to plant and animal communities due to their rooting behavior and omnivorous diet. We modeled the current distribution of wild pigs in the United States to better understand the physiological and ecological factors that may determine their invasive potential and to guide future study and eradication efforts. Using national-scale wild pig occurrence data reported between 1982 and 2012 by wildlife management professionals, we estimated the probability of wild pig occurrence across the United States using a logistic discrimination function and environmental covariates hypothesized to influence the distribution of the species. Our results suggest the distribution of wild pigs in the U.S. was most strongly limited by cold temperatures and availability of water, and that they were most likely to occur where potential home ranges had higher habitat heterogeneity, providing access to multiple key resources including water, forage, and cover. High probability of occurrence was also associated with frequent high temperatures, up to a high threshold. However, this pattern is driven by pigs' historic distribution in warm climates of the southern U.S. Further study of pigs' ability to persist in cold northern climates is needed to better understand whether low temperatures actually limit their distribution. Our model highlights areas at risk of invasion as those with habitat conditions similar to those found in pigs' current range that are also near current populations. This study provides a macro-scale approach to generalist species distribution modeling that is applicable to other generalist and invasive species.

  13. CO2 Data Distribution and Support from the Goddard Earth Science Data and Information Services Center (GES-DISC)

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer

    2015-01-01

    This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.

  14. Risk assessment for two bird species in northern Wisconsin

    Treesearch

    Megan M. Friggens; Stephen N. Matthews

    2012-01-01

    Species distribution models for 147 bird species have been derived using climate, elevation, and distribution of current tree species as potential predictors (Matthews et al. 2011). In this case study, a risk matrix was developed for two bird species (fig. A2-5), with projected change in bird habitat (the x axis) based on models of changing suitable habitat resulting...

  15. Constraints and benefits of changing the distribution process for recreation special use permits in the U.S

    Treesearch

    Jessie Meybin; Robert Burns; Alan Graefe; James D. Absher

    2010-01-01

    A significant policy change governing recreation Special Use Permits on U.S. Federal lands was implemented in October 2008. The changes may have a major impact on current and potential recreation users, members of local communities, and existing outfitter/guide services. This paper presents findings from interviews with permit distribution supervisors about changes in...

  16. An indicator of tree migration in forests of the eastern United States

    Treesearch

    C.W. Woodall; C.M. Oswalt; J.A. Westfall; C.H. Perry; M.D. Nelson; A.O. Finley

    2009-01-01

    Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to simulation activities due to a lack of consistent, long-term forest inventory datasets. The goal of this study was to compare current geographic distributions of...

  17. Distribution and status of seven native salmonids in the interior Columbia River basin and portions of the Klamath River and Great basins

    Treesearch

    Russell F. Thurow; Danny C. Lee; Bruce E. Rieman

    1997-01-01

    We summarized presence, absence, current status, and potential historical distribution of seven native salmonid taxa - bull trout Salvelinus confluentus, Yellowstone cutthroat trout Oncorhynchus clarki bouvieri, westslope cutthroat trout O. c. lewisi, redband trout and steelhead O. mykiss gairdneri, stream type (age-1 migrant) chinook salmon O. tshawytscha. and ocean...

  18. Characterization of focused seepage through an earthfill dam using geoelectrical methods.

    PubMed

    Ikard, S J; Revil, A; Schmutz, M; Karaoulis, M; Jardani, A; Mooney, M

    2014-01-01

    Resistivity and self-potential tomography can be used to investigate anomalous seepage inside heterogeneous earthen dams. The self-potential (SP) signals provide a unique signature to groundwater flow because the source current density responsible for the SP signals is proportional to the Darcy velocity. The distribution of the SP signals is also influenced by the distribution of the resistivity; therefore, resistivity and SP need to be used in concert to elucidate groundwater flow pathways. In this study, a survey is conducted at a small earthen dam in Colorado where anomalous seepage is observed on the downstream face at the dam toe. The data reveal SP and direct current resistivity anomalies that are used to delineate three anomalous seepage zones within the dam and to estimate the source of the localized seepage discharge. The SP data are inverted in two dimensions using the resistivity distribution to determine the distribution of the Darcy velocity responsible for the observed seepage. The inverted Darcy velocity agrees with an estimation of the Darcy velocity from the hydraulic conductivity obtained from a slug test and the observed head gradient. © 2013, National Ground Water Association.

  19. A quasi-static model of global atmospheric electricity. II - Electrical coupling between the upper and lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.

  20. A tool to assess potential for alien plant establishment and expansion under climate change.

    PubMed

    Roger, Erin; Duursma, Daisy Englert; Downey, Paul O; Gallagher, Rachael V; Hughes, Lesley; Steel, Jackie; Johnson, Stephen B; Leishman, Michelle R

    2015-08-15

    Predicting the influence of climate change on the potential distribution of naturalised alien plant species is an important and challenging task. While prioritisation of management actions for alien plants under current climatic conditions has been widely adopted, very few systems explicitly incorporate the potential of future changes in climate conditions to influence the distribution of alien plant species. Here, we develop an Australia-wide screening tool to assess the potential of naturalised alien plants to establish and spread under both current and future climatic conditions. The screening tool developed uses five spatially explicit criteria to establish the likelihood of alien plant population establishment and expansion under baseline climate conditions and future climates for the decades 2035 and 2065. Alien plants are then given a threat rating according to current and future threat to enable natural resource managers to focus on those species that pose the largest potential threat now and in the future. To demonstrate the screening tool, we present results for a representative sample of approximately 10% (n = 292) of Australia's known, naturalised alien plant species. Overall, most alien plant species showed decreases in area of habitat suitability under future conditions compared to current conditions and therefore the threat rating of most alien plant species declined between current and future conditions. Use of the screening tool is intended to assist natural resource managers in assessing the threat of alien plant establishment and spread under current and future conditions and thus prioritise detailed weed risk assessments for those species that pose the greatest threat. The screening tool is associated with a searchable database for all 292 alien plant species across a range of spatial scales, available through an interactive web-based portal at http://weedfutures.net/. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Integrating Paleodistribution Models and Phylogeography in the Grass-Cutting Ant Acromyrmex striatus (Hymenoptera: Formicidae) in Southern Lowlands of South America

    PubMed Central

    Cristiano, Maykon Passos; Clemes Cardoso, Danon; Fernandes-Salomão, Tânia Maria; Heinze, Jürgen

    2016-01-01

    Past climate changes often have influenced the present distribution and intraspecific genetic diversity of organisms. The objective of this study was to investigate the phylogeography and historical demography of populations of Acromyrmex striatus (Roger, 1863), a leaf-cutting ant species restricted to the open plains of South America. Additionally, we modeled the distribution of this species to predict its contemporary and historic habitat. From the partial sequences of the mitochondrial gene cytochrome oxidase I of 128 A. striatus workers from 38 locations we estimated genetic diversity and inferred historical demography, divergence time, and population structure. The potential distribution areas of A. striatus for current and quaternary weather conditions were modeled using the maximum entropy algorithm. We identified a total of 58 haplotypes, divided into five main haplogroups. The analysis of molecular variance (AMOVA) revealed that the largest proportion of genetic variation is found among the groups of populations. Paleodistribution models suggest that the potential habitat of A. striatus may have decreased during the Last Interglacial Period (LIG) and expanded during the Last Maximum Glacial (LGM). Overall, the past potential distribution recovered by the model comprises the current potential distribution of the species. The general structuring pattern observed was consistent with isolation by distance, suggesting a balance between gene flow and drift. Analysis of historical demography showed that populations of A. striatus had remained constant throughout its evolutionary history. Although fluctuations in the area of their potential historic habitat occurred during quaternary climate changes, populations of A. striatus are strongly structured geographically. However, explicit barriers to gene flow have not been identified. These findings closely match those in Mycetophylax simplex, another ant species that in some areas occurs in sympatry with A. striatus. Ecophysiological traits of this species and isolation by distance may together have shaped the phylogeographic pattern. PMID:26734939

  2. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    PubMed

    Steen, Valerie; Skagen, Susan K; Noon, Barry R

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  3. Current Knowledge of Leishmania Vectors in Mexico: How Geographic Distributions of Species Relate to Transmission Areas

    PubMed Central

    González, Camila; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A. Townsend; Sánchez-Cordero, Víctor

    2011-01-01

    Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological niches of nine sand fly species and projected niches to estimate potential distributions by using known occurrences, environmental coverages, and the algorithms GARP and Maxent. All vector species were distributed in areas with known recurrent transmission, except for Lu. diabolica, which appeared to be related only to areas of occasional transmission in northern Mexico. The distribution of Lu. o. olmeca does not overlap with all reported cutaneous leishmaniasis cases, suggesting that Lu. cruciata and Lu. shannoni are likely also involved as primary vectors in those areas. Our study provides useful information of potential risk areas of leishmaniasis transmission in Mexico. PMID:22049037

  4. Equilibrium of Global Amphibian Species Distributions with Climate

    PubMed Central

    Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F.; Diniz-Filho, Jose Alexandre F.; Araújo, Miguel B.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions. PMID:22511938

  5. Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chandra, Nitish

    The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.

  6. A note on dust grain charging in space plasmas

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  7. A Numerical Model of Seawater Volume and Velocity Dynamic for Marine Currents Power Plant in the Bangka Strait, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Rompas, P. T. D.; Taunaumang, H.; Sangari, F. J.

    2017-03-01

    One of equipment as prime movers in the marine current power plant is turbine. Marine current turbines require a data of marine currents velocity in its design. The objective of this study was to get the velocities distribution of marine currents in the Bangka strait. The method used survey, observation, and measurement in the Bangka strait. The data of seawater density conducted measurement in the Bangka strait. The data of width and depth of the strait collected from the map of Bangka strait and its depth of the sea. Problem solving of the study used a numerical model. The velocities distribution of marine current obtained from a numerical model in the form of numerical program. The results showed that the velocities distribution at seawater column when low and high tide currents which the maximum happened at 0.1 Sv were 0-0.9 and 0-1.0 m/s respectively, while at 0.3 Sv were 0-2.7 and 0-3.0 m/s respectively. The results will be a product in analyzing the potential kinetic energy that used to design profile of the turbines as prime mover for marine currents power plant in the Bangka strait, North Sulawesi, Indonesia.

  8. Evaluation and Application of Overvoltage into Communication Equipment Due to Potential Rise at Earthing Terminal of Distribution Line Induced by Lightning Surge

    NASA Astrophysics Data System (ADS)

    Ito, Katsuji; Hirose, Yasuo

    Overvoltage induced by surge currents due to thunderstorm lightnings causes harmful breakdown troubles of CATV communication equipment installed in and with power distribution systems. In this paper, the origin and natures of surge currents, their invading route into the system, and the system components such as earth impedances affecting over voltages are studied. Transient analyses are then performed using an equivalent circuit to evaluate over voltages. Application of the obtained results to the field fault data of communication equipment and possible protection method of them are discussed.

  9. Isothermal magnetostatic atmospheres. II - Similarity solutions with current proportional to the magnetic potential cubed

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1988-01-01

    The paper presents a family of isothermal magnetostatic atmospheres with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry. The distributed current in the model J is directed along the x-axis, where x is the horizontal ignorable coordinate. The current J is taken to be proportional to the cube of the magnetostatic potential A and falls off exponentially with distance vertical to the base with an e-folding distance equal to the gravitational scale height. A range of similarity solution examples are displayed depending on the values of the similarity parameters. Each similarity parameter corresponds to a symmetry of the underlying nonlinear elliptic equation for A. The similarity parameters also determine the source currents for the potential field solution of the family. The solutions show the interplay between the gravitational force, the J & B force (B, magnetic field induction) and the gas pressure gradient.

  10. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    PubMed

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.

  11. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    PubMed Central

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration. PMID:25705876

  12. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole-Cole parameters. In the second case, we perform a laboratory sandbox experiment in which we mix a volume of burning coal and sand. The algorithm is able to localize the burning coal both in terms of electrical conductivity and chargeability.

  13. 75 FR 43425 - Distribution of Source Material to Exempt Persons and to General Licensees and Revision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... requirements with current health and safety standards. Finally, the NRC is proposing to revise, clarify, or... lung and liver diseases.\\2\\ Because of the potential for uranium and thorium to produce health effects... order to better evaluate potential impacts to public health and safety. \\1\\ U.S. Department of Health...

  14. Representing the effects of stratosphere–troposphere exchange on 3-D O3 distributions in chemistry transport models using a potential vorticity-based parameterization

    EPA Science Inventory

    Downward transport of ozone (O3) from the stratosphere can be a significant contributor to tropospheric O3 background levels. However, this process often is not well represented in current regional models. In this study, we develop a seasonally and spatially varying potential vor...

  15. Potential redistribution of tree species habitat under five climate change scenarios in the eastern US

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    2002-01-01

    Global climate change could have profound effects on the Earth's biota, including large redistributions of tree species and forest types. We used DISTRIB, a deterministic regression tree analysis model, to examine environmental drivers related to current forest-species distributions and then model potential suitable habitat under five climate change scenarios...

  16. Current distribution, habitat, and status of Category 2 candidate plant species on and near the U.S. Department of Energy's Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomquist, Kevin W.; Lindemann, Tim A.; Lyon, Glen E.

    1995-12-31

    Results of surveys conducted between 1991 and 1995 were used to document the distribution and habitat of 11 Category 2 candidate plant species known to occur on or near the Nevada Test Site (NTS). Approximately 200 areas encompassing about 13,000 ha were surveyed. Distributions of all species except Frasera-pahutensis and Phaceliaparishii were increased, and the ranges of Camissonia megalantha, Galium hilendiae ssp. kingstonense, Penstemon albomarginatus, and Penstemon pahutensis were expanded. The status of each species was assessed based on current distribution population trends, and potential threats. Recommendations were made to reclassi& the following five species to Category 3C: Arctomecon merriamii,more » F. pahutensis, P. pahutensis, Phacelia beatleyae, and Phaceliaparishii. Two species, C. megalantha and Cymopterus ripIeyi var. saniculoides, were recommended for reclassification to Category 3B status. No recommendation was made to reclassify Astragalus funereus, G. hilendiae ssp. kingstonense, P. albomarginatus, or Penstemon fruticiformis var. amargosae from their current Category 2 status. Populations of these four species are not threatened on NTS, but the NTS populations represent only a.small portion of each species’ range and the potential threats of mining or grazing activities off NTS on these species was notassessed. Conservation measures recommended included the development of an NTS ecosystem conservation plan, continued conduct of preactivity and plant surveys on NTS, and protection of plant type localities on NTS.« less

  17. Design of Magnetic Charged Particle Lens Using Analytical Potential Formula

    NASA Astrophysics Data System (ADS)

    Al-Batat, A. H.; Yaseen, M. J.; Abbas, S. R.; Al-Amshani, M. S.; Hasan, H. S.

    2018-05-01

    In the current research was to benefit from the potential of the two cylindrical electric lenses to be used in the product a mathematical model from which, one can determine the magnetic field distribution of the charged particle objective lens. With aid of simulink in matlab environment, some simulink models have been building to determine the distribution of the target function and their related axial functions along the optical axis of the charged particle lens. The present study showed that the physical parameters (i.e., the maximum value, Bmax, and the half width W of the field distribution) and the objective properties of the charged particle lens have been affected by varying the main geometrical parameter of the lens named the bore radius R.

  18. Three-dimensional eddy current solution of a polyphase machine test model (abstract)

    NASA Astrophysics Data System (ADS)

    Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado

    1994-05-01

    This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.

  19. Calorie increase and water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2015-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to increase calorie production and minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvement in calorie production as well as the associated change in water demand. We also consider what distribution of crops would maintain current calorie production while minimizing crop water demand. In doing all of this, our study provides a novel tool for improving crop calorie production without necessarily increasing resource demands.

  20. Atlas of climate change effects in 150 bird species of the Eastern United States

    Treesearch

    Stephen Matthews; Raymond O' Connor; Louis R. Iverson; Anantha M. Prasad

    2004-01-01

    NOTE: Instructions for navigating this publication can be found on the front cover. This atlas documents the current and potential future distribution of 150 common bird species in the Eastern United States. Distribution data for individual species were derived from the Breeding Bird Survey (BBS) from 1981 to 1990. Regression tree analysis was used to model the BBS...

  1. A multiplet table for Mn I (Adelman, Svatek, Van Winkler, Warren 1989): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.; Adelman, Saul J.

    1989-01-01

    The machine-readable version of the multiplet table, as it is currently being distributed from the Astronomical Data Center, is described. The computerized version of the table contains data on excitation potentials, J values, multiplet terms, intensities of the transitions, and multiplet numbers. Files ordered by multiplet and by wavelength are included in the distributed version.

  2. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  3. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L.

    USGS Publications Warehouse

    Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.

    2011-01-01

    Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role.Main conclusions Our results demonstrate the importance of species co-occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate-induced spatial segregation of the major tree species could have ecological and economic consequences. ?? 2010 Blackwell Publishing Ltd.

  4. Two-dimensional potential double layers and discrete auroras

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1979-01-01

    This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.

  5. Two-dimensional quasineutral description of particles and fields above discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1985-01-01

    Stationary hot and cool particle distributions in the auroral magnetosphere are modelled using adiabatic assumptions of particle motion in the presence of broad-scale electrostatic potential structure. The study has identified geometrical restrictions on the type of broadscale potential structure which can be supported by a multispecies plasma having specified sources and energies. Without energization of cool thermal ionospheric electrons, a substantial parallel potential drop cannot be supported down to altitudes of 2000 km or less. Observed upward-directed field-aligned currents must be closed by return currents along field lines which support little net potential drop. In such regions the plasma density appears significantly enhanced. Model details agree well with recent broad-scale implications of satellite observations.

  6. The current status of red spruce in the eastern United States: distribution, population trends, and environmental drivers

    Treesearch

    Gregory Nowacki; Robert Carr; Michael. Van Dyck

    2010-01-01

    Red spruce (Picea rubens Sarg.) was affected by an array of direct (logging, fire, and grazing) and indirect human activities (acid deposition) over the past centuries. To adequately assess past impacts on red spruce, thus helping frame its restoration potential, requires a clear understanding of its current status. To achieve this, Forest and...

  7. Tree migration detection through comparisons of historic and current forest inventories

    Treesearch

    Christopher W. Woodall; Christopher M. Oswalt; James A. Westfall; Charles H. Perry; Mark N. Nelson

    2009-01-01

    Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to modeling activities with little empirical analysis of long-term forest inventory datasets. The goal of this study was to compare historic and current spatial...

  8. Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2016-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.

  9. Kirchhoff and Ohm in action: solving electric currents in continuous extended media

    NASA Astrophysics Data System (ADS)

    Dolinko, A. E.

    2018-03-01

    In this paper we show a simple and versatile computational simulation method for determining electric currents and electric potential in 2D and 3D media with arbitrary distribution of resistivity. One of the highlights of the proposed method is that the simulation space containing the distribution of resistivity and the points of external applied voltage are introduced by means of digital images or bitmaps, which easily allows simulating any phenomena involving distributions of resistivity. The simulation is based on the Kirchhoff’s laws of electric currents and it is solved by means of an iterative procedure. The method is also generalised to account for media with distributions of reactive impedance. At the end of this work, we show an example of application of the simulation, consisting in reproducing the response obtained with the geophysical method of electric resistivity tomography in presence of soil cracks. This paper is aimed at undergraduate or graduated students interested in computational physics and electricity and also researchers involved in the area of continuous electric media, which could find a simple and powerful tool for investigation.

  10. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  11. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  12. Testing and Analysis of NEXT Ion Engine Discharge Cathode Assembly Wear

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Foster, John E.; Soulas, George C.; Nakles, Michael

    2003-01-01

    Experimental and analytical investigations were conducted to predict the wear of the discharge cathode keeper in the NASA Evolutionary Xenon Thruster. The ion current to the keeper was found to be highly dependent upon the beam current, and the average beam current density was nearly identical to that of the NSTAR thruster for comparable beam current density. The ion current distribution was highly peaked toward the keeper orifice. A deterministic wear assessment predicted keeper orifice erosion to the same diameter as the cathode tube after processing 375 kg of xenon. A rough estimate of discharge cathode assembly life limit due to sputtering indicated that the current design exceeds the qualification goal of 405 kg. Probabilistic wear analysis showed that the plasma potential and the sputter yield contributed most to the uncertainty in the wear assessment. It was recommended that fundamental experimental and modeling efforts focus on accurately describing the plasma potential and the sputtering yield.

  13. Measurement and dynamics of the spatial distribution of an electron localized at a metal-dielectric interface

    NASA Astrophysics Data System (ADS)

    Bezel, Ilya; Gaffney, Kelly J.; Garrett-Roe, Sean; Liu, Simon H.; Miller, André D.; Szymanski, Paul; Harris, Charles B.

    2004-01-01

    The ability of time- and angle-resolved two-photon photoemission to estimate the size distribution of electron localization in the plane of a metal-adsorbate interface is discussed. It is shown that the width of angular distribution of the photoelectric current is inversely proportional to the electron localization size within the most common approximations in the description of image potential states. The localization of the n=1 image potential state for two monolayers of butyronitrile on Ag(111) is used as an example. For the delocalized n=1 state, the shape of the signal amplitude as a function of momentum parallel to the surface changes rapidly with time, indicating efficient intraband relaxation on a 100 fs time scale. For the localized state, little change was observed. The latter is related to the constant size distribution of electron localization, which is estimated to be a Gaussian with a 15±4 Å full width at half maximum in the plane of the interface. A simple model was used to study the effect of a weak localization potential on the overall width of the angular distribution of the photoemitted electrons, which exhibited little sensitivity to the details of the potential. This substantiates the validity of the localization size estimate.

  14. Anomalous current from the covariant Wigner function

    NASA Astrophysics Data System (ADS)

    Prokhorov, George; Teryaev, Oleg

    2018-04-01

    We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.

  15. Electrical changes of the polar ionosphere during magnetospheric substorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, B.H.; Kamide, Y.; Akasofu, S.H.

    1986-05-01

    Changes of the distribution of the potential, electric fields, ionospheric currents, field-aligned currents, the Joule heat production rate, the particle energy injection rate and the total energy dissipation rate are examined in detail by comparing them at a presubstorm epoch and the maximum epoch for several substorms on March 17, 18, and 19, 1978. The data sets are obtained on the basis of the magnetic records from the six International Magnetospheric Study meridian chains of observatories by using the computer code developed by Kamide e-italict-italic a-italicl-italic. (1981) and the conductivity model developed by Ahn et al. (1983b). A number ofmore » global features that are found to be common to most of the substorms examined in this study include the following: (1) The positive potential cell in the morning sector extends into the evening sector during substorms. (2) When it is intensified, the westward electrojet on the nightside tends to flow equatorward of the positive potential ridge. (3) The so-called ''Harang discontinuity'' may be identified as the ridge of the negative potential cell. (4) The distribution of field- aligned currents determined by our method is more complicated than the statistical pattern obtained by polar orbiting satellites. (5) The basic ionospheric current pattern is fundamentally the same during a fairly quiet period, a slightly disturbed period and a substorm period. (6) The highest Joule heat production occurs along the westward extension of the westward electrojet, while the particle energy injection rate is high along the westward electrojet in the morning sector.« less

  16. Using Ecological Niche Models and Niche Analyses to Understand Speciation Patterns: The Case of Sister Neotropical Orchid Bees

    PubMed Central

    Silva, Daniel P.; Vilela, Bruno; De Marco, Paulo; Nemésio, André

    2014-01-01

    The role of past connections between the two major South American forested biomes on current species distribution has been recognized a long time ago. Climatic oscillations that further separated these biomes have promoted parapatric speciation, in which many species had their continuous distribution split, giving rise to different but related species (i.e., different potential distributions and realized niche features). The distribution of many sister species of orchid bees follow this pattern. Here, using ecological niche models and niche analyses, we (1) tested the role of ecological niche differentiation on the divergence between sister orchid-bees (genera Eulaema and Eufriesea) from the Amazon and Atlantic forests, and (2) highlighted interesting areas for new surveys. Amazonian species occupied different realized niches than their Atlantic sister species. Conversely, species of sympatric but distantly related Eulaema bees occupied similar realized niches. Amazonian species had a wide potential distribution in South America, whereas Atlantic Forest species were more limited to the eastern coast of the continent. Additionally, we identified several areas in need of future surveys. Our results show that the realized niche of Atlantic-Amazonian sister species of orchid bees, which have been previously treated as allopatric populations of three species, had limited niche overlap and similarity. These findings agree with their current taxonomy, which treats each of those populations as distinct valid species. PMID:25422941

  17. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile.

    PubMed

    Castillo, Andrea G; Alò, Dominique; González, Benito A; Samaniego, Horacio

    2018-01-01

    The main goal of this contribution was to define the ecological niche of the guanaco ( Lama guanicoe ), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species ( L.g. cacsilensis and L.g. guanicoe ). We used maximum entropy to model lineage's climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics.

  18. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile

    PubMed Central

    Castillo, Andrea G.; González, Benito A.

    2018-01-01

    Background The main goal of this contribution was to define the ecological niche of the guanaco (Lama guanicoe), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species (L.g. cacsilensis and L.g. guanicoe). Methods We used maximum entropy to model lineage’s climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. Results We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Discussion Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics. PMID:29868293

  19. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motie, Iman; Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-calledmore » the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.« less

  20. Activation Time of Cardiac Tissue In Response to a Linear Array of Spatial Alternating Bipolar Electrodes

    NASA Astrophysics Data System (ADS)

    Mashburn, David; Wikswo, John

    2007-11-01

    Prevailing theories about the response of the heart to high field shocks predict that local regions of high resistivity distributed throughout the heart create multiple small virtual electrodes that hyperpolarize or depolarize tissue and lead to widespread activation. This resetting of bulk tissue is responsible for the successful functioning of cardiac defibrillators. By activating cardiac tissue with regular linear arrays of spatially alternating bipolar currents, we can simulate these potentials locally. We have studied the activation time due to distributed currents in both a 1D Beeler-Reuter model and on the surface of the whole heart, varying the strength of each source and the separation between them. By comparison with activation time data from actual field shock of a whole heart in a bath, we hope to better understand these transient virtual electrodes. Our work was done on rabbit RV using florescent optical imaging and our Phased Array Stimulator for driving the 16 current sources. Our model shows that for a total absolute current delivered to a region of tissue, the entire region activates faster if above-threshold sources are more distributed.

  1. Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A

    PubMed Central

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts. PMID:24927165

  2. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    USGS Publications Warehouse

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  3. The potential distribution of the Russian wheat aphid (Diuraphis noxia): an updated distribution model including irrigation improves model fit for predicting potential spread.

    PubMed

    Avila, G A; Davidson, M; van Helden, M; Fagan, L

    2018-04-18

    Diuraphis noxia (Kurdjumov), Russian wheat aphid, is one of the world's most invasive and economically important agricultural pests of wheat and barley. In May 2016, it was found for the first time in Australia, with further sampling confirming it was widespread throughout south-eastern regions. Russian wheat aphid is not yet present in New Zealand. The impacts of this pest if it establishes in New Zealand, could result in serious control problems in wheat- and barley-growing regions. To evaluate whether D. noxia could establish populations in New Zealand we used the climate modelling software CLIMEX to locate where potential viable populations might occur. We re-parameterised the existing CLIMEX model by Hughes and Maywald (1990) by improving the model fit using currently known distribution records of D. noxia, and we also considered the role of irrigation into the potential spread of this invasive insect. The updated model now fits the current known distribution better than the previous Hughes and Maywald CLIMEX model, particularly in temperate and Mediterranean areas in Australia and Europe; and in more semi-arid areas in north-western China and Middle Eastern countries. Our model also highlights new climatically suitable areas for the establishment of D. noxia, not previously reported, including parts of France, the UK and New Zealand. Our results suggest that, when suitable host plants are present, Russian wheat aphid could establish in these regions. The new CLIMEX projections in the present study are useful tools to inform risk assessments and target surveillance and monitoring efforts for identifying susceptible areas to invasion by Russian wheat aphid.

  4. Inactivation of bacterial biothreat agents in water, a review.

    PubMed

    Rose, L J; Rice, E W

    2014-12-01

    Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed.

  5. Inactivation of bacterial biothreat agents in water, a review

    PubMed Central

    Rice, E. W.

    2016-01-01

    Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed. PMID:25473971

  6. Extremely Nonthermal Monoenergetic Precipitation in the Auroral Acceleration Region: In Situ Observations

    NASA Astrophysics Data System (ADS)

    Hatch, S.; Chaston, C. C.; Labelle, J. W.

    2017-12-01

    We report in situ measurements through the auroral acceleration region that reveal extremely nonthermal monoenergetic electron distributions. These auroral primaries are indicative of source populations in the plasma sheet well described as kappa distributions with κ ≲ 2. We show from observations and modeling how this large deviation from Maxwellian form may modify the acceleration potential required to drive current closure through the auroral ionosphere.

  7. Stabilization of Gold Nanorods (GNRs) in Aqueous and Organic Environments by Select Surface Functionalization

    DTIC Science & Technology

    2016-01-01

    collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/ AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13...is confirmed by ultraviolet-visible and zeta-potential measurements. Additionally, 3 different methods are applied to achieve self-assembly of GNRs

  8. Appendix 2: Risk-based framework and risk case studies. Risk Assessment for two bird species in northern Wisconsin.

    Treesearch

    Megan M. Friggens; Stephen N. Matthews

    2012-01-01

    Species distribution models for 147 bird species have been derived using climate, elevation, and distribution of current tree species as potential predictors (Matthews et al. 2011). In this case study, a risk matrix was developed for two bird species (fig. A2-5), with projected change in bird habitat (the x axis) based on models of changing suitable habitat resulting...

  9. Electrochemical Engineering.

    ERIC Educational Resources Information Center

    Alkire, Richard C.

    1983-01-01

    Discusses engineering ramifications of electrochemistry, focusing on current/potential distribution, evaluation of trade-offs between influences of different phenomena, use of dimensionless numbers to assist in scale-over to new operating conditions, and economics. Also provides examples of electrochemical engineering education content related to…

  10. Impacts of changing ocean circulation on the distribution of marine microplastic litter.

    PubMed

    Welden, Natalie Ac; Lusher, Amy L

    2017-05-01

    Marine plastic pollution is currently a major scientific focus, with attention paid to its distribution and impacts within ecosystems. With recent estimates indicating that the mass of plastic released to the marine environment may reach 250 million metric tons by 2025, the effects of plastic on our oceans are set to increase. Distribution of microplastics, those plastics measuring less than 5 mm, are of increasing concern because they represent an increasing proportion of marine litter and are known to interact with species in a range of marine habitats. The local abundance of microplastic is dependent on a complex interaction between the scale of local plastic sources and prevailing environmental conditions; as a result, microplastic distribution is highly heterogeneous. Circulation models have been used to predict plastic distribution; however, current models do not consider future variation in circulation patterns and weather systems caused by a changing climate. In this study, we discuss the potential impacts of global climate change on the abundance and distribution of marine plastic pollution. Integr Environ Assess Manag 2017;13:483-487. © 2017 SETAC. © 2017 SETAC.

  11. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  12. Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].

  13. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  14. Spatial nonuniformity of current flow and its consideration in determination of characteristics of surface illuminated InAsSbP/InAs-based photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zotova, N. V.; Karandashev, S. A.; Matveev, B. A., E-mail: Bmat@iropt3.ioffe.ru

    Current-voltage characteristics of surface-irradiated photodiodes based on the InAsSbP/InAs structures are analyzed using experimental data on the distribution of electroluminescence intensity over the diode surface and taking into account thickening the current streamlines near the contacts. The influence of the potential barrier associated with the N-InAsSbP/n-InAs junction in double heterostructures on the differential resistance of diodes under zero bias, the value of the reverse current, and spreading of the forward current is discussed.

  15. Effects of life-history requirements on the distribution of a threatened reptile.

    PubMed

    Thompson, Denise M; Ligon, Day B; Patton, Jason C; Papeş, Monica

    2017-04-01

    Survival and reproduction are the two primary life-history traits essential for species' persistence; however, the environmental conditions that support each of these traits may not be the same. Despite this, reproductive requirements are seldom considered when estimating species' potential distributions. We sought to examine potentially limiting environmental factors influencing the distribution of an oviparous reptile of conservation concern with respect to the species' survival and reproduction and to assess the implications of the species' predicted climatic constraints on current conservation practices. We used ecological niche modeling to predict the probability of environmental suitability for the alligator snapping turtle (Macrochelys temminckii). We built an annual climate model to examine survival and a nesting climate model to examine reproduction. We combined incubation temperature requirements, products of modeled soil temperature data, and our estimated distributions to determine whether embryonic development constrained the northern distribution of the species. Low annual precipitation constrained the western distribution of alligator snapping turtles, whereas the northern distribution was constrained by thermal requirements during embryonic development. Only a portion of the geographic range predicted to have a high probability of suitability for alligator snapping turtle survival was estimated to be capable of supporting successful embryonic development. Historic occurrence records suggest adult alligator snapping turtles can survive in regions with colder climes than those associated with consistent and successful production of offspring. Estimated egg-incubation requirements indicated that current reintroductions at the northern edge of the species' range are within reproductively viable environmental conditions. Our results highlight the importance of considering survival and reproduction when estimating species' ecological niches, implicating conservation plans, and benefits of incorporating physiological data when evaluating species' distributions. © 2016 Society for Conservation Biology.

  16. Understanding Peripheral Bat Populations Using Maximum-Entropy Suitability Modeling

    PubMed Central

    Barnhart, Paul R.; Gillam, Erin H.

    2016-01-01

    Individuals along the periphery of a species distribution regularly encounter more challenging environmental and climatic conditions than conspecifics near the center of the distribution. Due to these potential constraints, individuals in peripheral margins are expected to change their habitat and behavioral characteristics. Managers typically rely on species distribution maps when developing adequate management practices. However, these range maps are often too simplistic and do not provide adequate information as to what fine-scale biotic and abiotic factors are driving a species occurrence. In the last decade, habitat suitability modelling has become widely used as a substitute for simplistic distribution mapping which allows regional managers the ability to fine-tune management resources. The objectives of this study were to use maximum-entropy modeling to produce habitat suitability models for seven species that have a peripheral margin intersecting the state of North Dakota, according to current IUCN distributions, and determine the vegetative and climatic characteristics driving these models. Mistnetting resulted in the documentation of five species outside the IUCN distribution in North Dakota, indicating that current range maps for North Dakota, and potentially the northern Great Plains, are in need of update. Maximum-entropy modeling showed that temperature and not precipitation were the variables most important for model production. This fine-scale result highlights the importance of habitat suitability modelling as this information cannot be extracted from distribution maps. Our results provide baseline information needed for future research about how and why individuals residing in the peripheral margins of a species’ distribution may show marked differences in habitat use as a result of urban expansion, habitat loss, and climate change compared to more centralized populations. PMID:27935936

  17. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE PAGES

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; ...

    2016-05-01

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  18. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  19. Estimation of Operating Condition of Appliances Using Circuit Current Data on Electric Distribution Boards

    NASA Astrophysics Data System (ADS)

    Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie

    The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.

  20. Programming in Vienna Fortran

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Mehrotra, Piyush; Zima, Hans

    1992-01-01

    Exploiting the full performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna Fortran is a language extension of Fortran which provides the user with a wide range of facilities for such mapping of data structures. In contrast to current programming practice, programs in Vienna Fortran are written using global data references. Thus, the user has the advantages of a shared memory programming paradigm while explicitly controlling the data distribution. In this paper, we present the language features of Vienna Fortran for FORTRAN 77, together with examples illustrating the use of these features.

  1. Computer modeling of inversion layer MOS solar cells and arrays

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1991-01-01

    A two dimensional numerical model of the inversion layer metal insulator semiconductor (IL/MIS) solar cell is proposed by using the finite element method. The two-dimensional current flow in the device is taken into account in this model. The electrostatic potential distribution, the electron concentration distribution, and the hole concentration distribution for different terminal voltages are simulated. The results of simple calculation are presented. The existing problems for this model are addressed. Future work is proposed. The MIS structures are studied and some of the results are reported.

  2. Increased food production and reduced water use through optimized crop distribution

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  3. Design of a national distributed health data network.

    PubMed

    Maro, Judith C; Platt, Richard; Holmes, John H; Strom, Brian L; Hennessy, Sean; Lazarus, Ross; Brown, Jeffrey S

    2009-09-01

    A distributed health data network is a system that allows secure remote analysis of separate data sets, each comprising a different medical organization's or health plan's records. Distributed health data networks are currently being planned that could cover millions of people, permitting studies of comparative clinical effectiveness, best practices, diffusion of medical technologies, and quality of care. These networks could also support assessment of medical product safety and other public health needs. Distributed network technologies allow data holders to control all uses of their data, which overcomes many practical obstacles related to confidentiality, regulation, and proprietary interests. Some of the challenges and potential methods of operation of a multipurpose, multi-institutional distributed health data network are described.

  4. Distribution and diversity of twelve Curcuma species in China.

    PubMed

    Zhang, Lanyue; Wei, Jingwen; Yang, Zhiwen; Chen, Feng; Xian, Qiqiu; Su, Ping; Pan, Wanyi; Zhang, Kun; Zheng, Xi; Du, Zhiyun

    2018-02-01

    Genus Curcuma a wild species presents an important source of valuable characters for improving the cultivated Curcuma varieties. Based on the collected germplasms, herbariums, field surveys and other literatures, the ecogeographical diversity of Genus Curcuma and its potential distributions under the present and future climate are analysed by DIVA-GIS. The results indicate Genus Curcuma is distributed over 17 provinces in China, and particularly abundant in Guangxi and Guangdong provinces. The simulated current distributions are close to the actual distribution regions. In the future climate, the suitable areas for four Curcuma species will be extended, while for other three species the regions will be significantly decreased, and thus these valuable resources need protecting.

  5. MEETING IN CHINA: EMERGING ENVIRONMENTAL CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise (including potential adverse health effects, bioaccumulation, and widespread distribution). This presentation will discuss emerging environmental c...

  6. MEETING IN NEW ZEALAND: EMERGING ENVIRONMENTAL CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise (including potential adverse health effects, bioaccumulation, and widespread distribution). This presentation will discuss emerging environmental c...

  7. MEETING IN GERMANY: EMERGING ENVIRONMENTAL CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise (including potential adverse health effects, bioaccumulation, and widespread distribution). This presentation will discuss emerging environmental c...

  8. Regional Extinctions and Quaternary Shifts in the Geographic Range of Lestodelphys halli, the Southernmost Living Marsupial: Clues for Its Conservation.

    PubMed

    Formoso, Anahí E; Martin, Gabriel M; Teta, Pablo; Carbajo, Aníbal E; Sauthier, Daniel E Udrizar; Pardiñas, Ulyses F J

    2015-01-01

    The Patagonian opossum (Lestodelphys halli), the southernmost living marsupial, inhabits dry and open environments, mainly in the Patagonian steppe (between ~32 °S and ~49 °S). Its rich fossil record shows its occurrence further north in Central Argentina during the Quaternary. The paleoenvironmental meaning of the past distribution of L. halli has been mostly addressed in a subjective framework without an explicit connection with the climatic "space" currently occupied by this animal. Here, we assessed the potential distribution of this species and the changes occurred in its geographic range during late Pleistocene-Holocene times and linked the results obtained with conservation issues. To this end, we generated three potential distribution models with fossil records and three with current ones, using MaxEnt software. These models showed a decrease in the suitable habitat conditions for the species, highlighting a range shift from Central-Eastern to South-Western Argentina. Our results support that the presence of L. halli in the Pampean region during the Pleistocene-Holocene can be related to precipitation and temperature variables and that its current presence in Patagonia is more related to temperature and dominant soils. The models obtained suggest that the species has been experiencing a reduction in its geographic range since the middle Holocene, a process that is in accordance with a general increase in moisture and temperature in Central Argentina. Considering the findings of our work and the future scenario of global warming projected for Patagonia, we might expect a harsh impact on the distribution range of this opossum in the near future.

  9. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  10. Analysis of superconducting electromagnetic finite elements based on a magnetic vector potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements are extended based on a variational principle that uses the electromagnetic four potential as primary variable. The variational principle is extended to include the ability to predict a nonlinear current distribution within a conductor. The extension of this theory is first done on a normal conductor and tested on two different problems. In both problems, the geometry remains the same, but the material properties are different. The geometry is that of a 1-D infinite wire. The first problem is merely a linear control case used to validate the new theory. The second problem is made up of linear conductors with varying conductivities. Both problems perform well and predict current densities that are accurate to within a few ten thousandths of a percent of the exact values. The fourth potential is then removed, leaving only the magnetic vector potential, and the variational principle is further extended to predict magnetic potentials, magnetic fields, the number of charge carriers, and the current densities within a superconductor. The new element produces good results for the mean magnetic field, the vector potential, and the number of superconducting charge carriers despite a relatively high system condition number. The element did not perform well in predicting the current density. Numerical problems inherent to this formulation are explored and possible remedies to produce better current predicting finite elements are presented.

  11. Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Banks, P. M.

    1986-01-01

    The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.

  12. Potential Impacts of Climate Change on Native Plant Distributions in the Falkland Islands

    PubMed Central

    Upson, Rebecca; Williams, Jennifer J.; Wilkinson, Tim P.; Maclean, Ilya M. D.; McAdam, Jim H.; Moat, Justin F.

    2016-01-01

    The Falkland Islands are predicted to experience up to 2.2°C rise in mean annual temperature over the coming century, greater than four times the rate over the last century. Our study investigates likely vulnerabilities of a suite of range-restricted species whose distributions are associated with archipelago-wide climatic variation. We used present day climate maps calibrated using local weather data, 2020–2080 climate predictions from regional climate models, non-climate variables derived from a digital terrain model and a comprehensive database on local plant distributions. Weighted mean ensemble models were produced to assess changes in range sizes and overlaps between the current range and protected areas network. Target species included three globally threatened Falkland endemics, Nassauvia falklandica, Nastanthus falklandicus and Plantago moorei; and two nationally threatened species, Acaena antarctica and Blechnum cordatum. Our research demonstrates that temperature increases predicted for the next century have the potential to significantly alter plant distributions across the Falklands. Upland species, in particular, were found to be highly vulnerable to climate change impacts. No known locations of target upland species or the southwestern species Plantago moorei are predicted to remain environmentally suitable in the face of predicted climate change. We identify potential refugia for these species and associated gaps in the current protected areas network. Species currently restricted to the milder western parts of the archipelago are broadly predicted to expand their ranges under warmer temperatures. Our results emphasise the importance of implementing suitable adaptation strategies to offset climate change impacts, particularly site management. There is an urgent need for long-term monitoring and artificial warming experiments; the results of this study will inform the selection of the most suitable locations for these. Results are also helping inform management recommendations for the Falkland Islands Government who seek to better conserve their biodiversity and meet commitments to multi-lateral environmental agreements. PMID:27880846

  13. Potential Impacts of Climate Change on Native Plant Distributions in the Falkland Islands.

    PubMed

    Upson, Rebecca; Williams, Jennifer J; Wilkinson, Tim P; Clubbe, Colin P; Maclean, Ilya M D; McAdam, Jim H; Moat, Justin F

    2016-01-01

    The Falkland Islands are predicted to experience up to 2.2°C rise in mean annual temperature over the coming century, greater than four times the rate over the last century. Our study investigates likely vulnerabilities of a suite of range-restricted species whose distributions are associated with archipelago-wide climatic variation. We used present day climate maps calibrated using local weather data, 2020-2080 climate predictions from regional climate models, non-climate variables derived from a digital terrain model and a comprehensive database on local plant distributions. Weighted mean ensemble models were produced to assess changes in range sizes and overlaps between the current range and protected areas network. Target species included three globally threatened Falkland endemics, Nassauvia falklandica, Nastanthus falklandicus and Plantago moorei; and two nationally threatened species, Acaena antarctica and Blechnum cordatum. Our research demonstrates that temperature increases predicted for the next century have the potential to significantly alter plant distributions across the Falklands. Upland species, in particular, were found to be highly vulnerable to climate change impacts. No known locations of target upland species or the southwestern species Plantago moorei are predicted to remain environmentally suitable in the face of predicted climate change. We identify potential refugia for these species and associated gaps in the current protected areas network. Species currently restricted to the milder western parts of the archipelago are broadly predicted to expand their ranges under warmer temperatures. Our results emphasise the importance of implementing suitable adaptation strategies to offset climate change impacts, particularly site management. There is an urgent need for long-term monitoring and artificial warming experiments; the results of this study will inform the selection of the most suitable locations for these. Results are also helping inform management recommendations for the Falkland Islands Government who seek to better conserve their biodiversity and meet commitments to multi-lateral environmental agreements.

  14. (Mis)perceptions of inequality.

    PubMed

    Hauser, Oliver P; Norton, Michael I

    2017-12-01

    Laypeople's beliefs about the current distribution of outcomes such as income and wealth in their country influence their attitudes toward issues ranging from taxation to healthcare - but how accurate are these beliefs? We review the burgeoning literature on (mis)perceptions of inequality. First, we show that people on average misperceive current levels of inequality, typically underestimating the extent of inequality in their country. Second, we delineate potential causes of these misperceptions, including people's overreliance on cues from their local environment, leading to their erroneous beliefs about both the overall distributions of wealth and income and their place in those distributions. Third, we document that these (mis)perceptions of inequality - but not actual levels of inequality - drive behavior and preferences for redistribution. More promisingly, we review research suggesting that correcting misperceptions influences preferences and policy outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy

    PubMed Central

    2011-01-01

    Background The continuing spread of the Asian tiger mosquito Aedes albopictus in Europe is of increasing public health concern due to the potential risk of new outbreaks of exotic vector-borne diseases that this species can transmit as competent vector. We predicted the most favorable areas for a short term invasion of Ae. albopictus in north-eastern Italy using reconstructed daily satellite data time series (MODIS Land Surface Temperature maps, LST). We reconstructed more than 11,000 daily MODIS LST maps for the period 2001-09 (i.e. performed spatial and temporal gap-filling) in an Open Source GIS framework. We aggregated these LST maps over time and identified the potential distribution areas of Ae. albopictus by adapting published temperature threshold values using three variables as predictors (0°C for mean January temperatures, 11°C for annual mean temperatures and 1350 growing degree days filtered for areas with autumnal mean temperatures > 11°C). The resulting maps were integrated into the final potential distribution map and this was compared with the known current distribution of Ae. albopictus in north-eastern Italy. Results LST maps show the microclimatic characteristics peculiar to complex terrains, which would not be visible in maps commonly derived from interpolated meteorological station data. The patterns of the three indicator variables partially differ from each other, while winter temperature is the determining limiting factor for the distribution of Ae. albopictus. All three variables show a similar spatial pattern with some local differences, in particular in the northern part of the study area (upper Adige valley). Conclusions Reconstructed daily land surface temperature data from satellites can be used to predict areas of short term invasion of the tiger mosquito with sufficient accuracy (200 m pixel resolution size). Furthermore, they may be applied to other species of arthropod of medical interest for which temperature is a relevant limiting factor. The results indicate that, during the next few years, the tiger mosquito will probably spread toward northern latitudes and higher altitudes in north-eastern Italy, which will considerably expand the range of the current distribution of this species. PMID:21812983

  16. High concentration effects of neutral-potential-well interface traps on recombination dc current-voltage lineshape in metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang

    2008-11-01

    Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.

  17. Measurement realities of current collection in dynamic space plasma environments

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1990-01-01

    Theories which describe currents collected by conducting and non-conducting bodies immersed in plasmas have many of their concepts based upon the fundamentals of sheath-potential distributions and charged-particle behavior in superimposed electric and magnetic fields. Those current-collecting bodies (or electrodes) may be Langmuir probes, electric field detectors, aperture plates on ion mass spectrometers and retarding potential analyzers, or spacecraft and their rigid and tethered appendages. Often the models are incomplete in representing the conditions under which the current-voltage characteristics of the electrode and its system are to be measured. In such cases, the experimenter must carefully take into account magnetic field effects and particle anisotropies, perturbations caused by the current collection process itself and contamination on electrode surfaces, the complexities of non-Maxwellian plasma distributions, and the temporal variability of the local plasma density, temperature, composition and fields. This set of variables is by no means all-inclusive, but it represents a collection of circumstances guaranteed to accompany experiments involving energetic particle beams, plasma discharges, chemical releases, wave injection and various events of controlled and uncontrolled spacecraft charging. Here, an attempt is made to synopsize these diagnostic challenges and frame them within a perspective that focuses on the physics under investigation and the requirements on the parameters to be measured. Examples include laboratory and spaceborne applications, with specific interest in dynamic and unstable plasma environments.

  18. Using FIA data to assess current and potential future tree species importance values in the eastern United States

    Treesearch

    Louis Iverson; Anantha Prasad; Anantha Prasad

    2003-01-01

    FIA data are extremely valuable for evaluating regional variation in forest distribution. We have processed and summarized FIA data to show four patterns across the Eastern United States: 1) the number and density of FIA forested plots by state, 2) current importance values and frequencies for several species within 20 x 20 km blocks, 3) tree diversity by block, and 4...

  19. Using FIA data to assess current and potential future tree species importance values in the eastern United States

    Treesearch

    Louis Iverson; Anantha Prasad

    2002-01-01

    FIA data are extremely valuable for evaluating regional variation in forest distribution. We have processed and summarized FIA data to show four patterns across the Eastern United States: 1) the number and density of FIA forested plots by state, 2) current importance values and frequencies for several species within 20 x 20 km blocks, 3) tree diversity by block, and 4...

  20. Channel bed particle size distribution procedure used to evaluate watershed cumulative effects for range permit re-issuance on the Santa Fe National Forest

    Treesearch

    Bruce Sims; Jim Piatt; Lee Johnson; Carol Purchase; John Phillips

    1996-01-01

    Personnel on the Santa Fe National Forest used methodologies adapted from Bevenger and King (1995) to collect base line particle size data on streams within grazing allotments currently scheduled for permit reissuance. This information was used to determine the relative current health of the watersheds as well as being used in the development of potential alternatives...

  1. Can antibiotic use be both just and sustainable... or only more or less so?

    PubMed

    Millar, Michael

    2011-03-01

    Antibiotic resistance threatens the capacity to treat life-threatening infections. If it is accepted that it will be many years (if not decades) until the production of new antibiotics overcomes current concerns with antibiotic resistance then ways to conserve the effectiveness of current antibiotics will have to be found. For many bacterial agents of infection levels of antibiotic resistance are directly dependent on the quantity of antibiotic prescribed. Antibiotics are currently underutilised in many parts of the world. If a just distribution of access to antibiotics requires equal access for individuals with equal need irrespective of wealth then responding to this requirement of justice has the potential to shorten the effective life of currently available antibiotics. Increasing the range and numbers of individuals treated with antibiotics would seem to threaten sustainability and also potentially undermine the access of future generations to cost-effective treatments for bacterial infection. The control of antibiotic resistance requires that the determinants of infectious disease transmission are addressed, such as poor housing, education and nutrition as well as the provision of antibiotics. The apparent tension between intragenerational justice and sustainability diminishes when the account of distributive justice extends beyond access to antibiotics and includes plural entitlements. Controlling antibiotic resistance requires more than the redistribution or reduction (in the overall use) of antibiotics.

  2. Diet and conservation implications of an invasive chameleon, Chamaeleo jacksonii (Squamata: Chamaeleonidae) in Hawaii

    USGS Publications Warehouse

    Kraus, Fred; Medeiros, Arthur; Preston, David; Jarnevich, Catherine S.; Rodda, Gordon H.

    2012-01-01

    We summarize information on current distribution of the invasive lizard Chamaeleo jacksonii and predict its potential distribution in the Hawaiian Islands. Potential distribution maps are based on climate models developed from known localities in its native range and its Hawaiian range. We also present results of analysis of stomach contents of a sample of 34 chameleons collected from native, predominantly dryland, forest on Maui. These data are the first summarizing prey range of this non-native species in an invaded native-forest setting. Potential distribution models predict that the species can occur throughout most of Hawaii from sea level to >2,100 m elevation. Important features of this data set are that approximately one-third of the diet of these lizards is native insects, and the lizards are consuming large numbers of arthropods each day. Prey sizes span virtually the entire gamut of native Hawaiian arthropod diversity, thereby placing a large number of native species at risk of predation. Our dietary results contrast with expectations for most iguanian lizards and support suggestions that chameleons comprise a third distinct foraging-mode category among saurians. The combination of expanding distribution, large potential range size, broad diet, high predation rates, and high densities of these chameleons imply that they may well become a serious threat to some of the Hawaiian fauna.

  3. CATALYTIC ENZYME-BASED METHODS FOR WATER TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION

    EPA Science Inventory

    Current chemistry-based decontaminants for chemical or biological warfare agents and related toxic materials are caustic and have the potential for causing material and environmental damage. In addition, most are bulk liquids that require significant logistics and storage capabil...

  4. DEVELOPMENT OF WEIGHTED DISTRIBUTIONS OF REPS FOR DIOXIN-LIKE COMPOUNDS

    EPA Science Inventory

    Potential health risks associated with exposure to mixtures of dioxin-like compounds are currently assessed using a toxic equivalency factor (TEF) approach. Recently, both the WH0 and NAS reviewed the TEF methodology and acknowledged the importance of better characterizing varia...

  5. Analytical approach to an integrate-and-fire model with spike-triggered adaptation

    NASA Astrophysics Data System (ADS)

    Schwalger, Tilo; Lindner, Benjamin

    2015-12-01

    The calculation of the steady-state probability density for multidimensional stochastic systems that do not obey detailed balance is a difficult problem. Here we present the analytical derivation of the stationary joint and various marginal probability densities for a stochastic neuron model with adaptation current. Our approach assumes weak noise but is valid for arbitrary adaptation strength and time scale. The theory predicts several effects of adaptation on the statistics of the membrane potential of a tonically firing neuron: (i) a membrane potential distribution with a convex shape, (ii) a strongly increased probability of hyperpolarized membrane potentials induced by strong and fast adaptation, and (iii) a maximized variability associated with the adaptation current at a finite adaptation time scale.

  6. Climate Change and the Distribution of Neotropical Red-Bellied Toads (Melanophryniscus, Anura, Amphibia): How to Prioritize Species and Populations?

    PubMed Central

    Zank, Caroline; Becker, Fernando Gertum; Abadie, Michelle; Baldo, Diego; Maneyro, Raúl; Borges-Martins, Márcio

    2014-01-01

    We used species distribution modeling to investigate the potential effects of climate change on 24 species of Neotropical anurans of the genus Melanophryniscus. These toads are small, have limited mobility, and a high percentage are endangered or present restricted geographical distributions. We looked at the changes in the size of suitable climatic regions and in the numbers of known occurrence sites within the distribution limits of all species. We used the MaxEnt algorithm to project current and future suitable climatic areas (a consensus of IPCC scenarios A2a and B2a for 2020 and 2080) for each species. 40% of the species may lose over 50% of their potential distribution area by 2080, whereas 28% of species may lose less than 10%. Four species had over 40% of the currently known occurrence sites outside the predicted 2080 areas. The effect of climate change (decrease in climatic suitable areas) did not differ according to the present distribution area, major habitat type or phylogenetic group of the studied species. We used the estimated decrease in specific suitable climatic range to set a conservation priority rank for Melanophryniscus species. Four species were set to high conservation priority: M. montevidensis, (100% of its original suitable range and all known occurrence points potentially lost by 2080), M. sp.2, M. cambaraensis, and M. tumifrons. Three species (M. spectabilis, M. stelzneri, and M. sp.3) were set between high to intermediate priority (more than 60% decrease in area predicted by 2080); nine species were ranked as intermediate priority, while eight species were ranked as low conservation priority. We suggest that monitoring and conservation actions should be focused primarily on those species and populations that are likely to lose the largest area of suitable climate and the largest number of known populations in the short-term. PMID:24755937

  7. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2016-11-21

    We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.

  8. In search of critically endangered species: the current situation of two tiny salamander species in the Neotropical mountains of Mexico.

    PubMed

    Sandoval-Comte, Adriana; Pineda, Eduardo; Aguilar-López, José L

    2012-01-01

    Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide.

  9. The Impact of Climate Change on the Potential Distribution of Agricultural Pests: The Case of the Coffee White Stem Borer (Monochamus leuconotus P.) in Zimbabwe

    PubMed Central

    Kutywayo, Dumisani; Chemura, Abel; Kusena, Winmore; Chidoko, Pardon; Mahoya, Caleb

    2013-01-01

    The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT) and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge, Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-related variables are more important in determining species range for the CWB than temperature related variables. The CWB has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by 2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation mechanisms. PMID:24014222

  10. Introduced American Bullfrog distribution and diets in Grand Teton National Park

    USGS Publications Warehouse

    Flynn, Lauren M; Kreofsky, Tess Marie; Sepulveda, Adam

    2017-01-01

    Introduced American Bullfrogs (Lithobates catesbeianus) have been present in Grand Teton National Park since approximately the 1950s, but little is known about their distribution and potential impacts. In this study, we surveyed the current bullfrog distribution and spatial overlap with sympatric native amphibians in the park, and characterized post-metamorphic bullfrog diets from July – September 2015. Despite surveys in multiple large rivers and floodplain habitats, we only documented bullfrogs in a geothermal pond and 5 km of stream channel immediately downstream of this pond. In these waters, bullfrogs overlapped with native amphibians at the downstream end of their distribution, and we did not document native amphibians in bullfrog stomach contents. Larger bullfrogs (SVL ≥ 96 mm) primarily consumed native rodents (especially meadow voles, Microtus pennsylvanicus), while smaller bullfrogs frequently consumed native invertebrates and less frequently consumed non-native invertebrates and fish. Taken together, these data indicate that the distribution and implications of the bullfrog invasion in Grand Teton National Park are currently localized to a small area, so these bullfrogs should therefore be vulnerable to eradication.

  11. Convection vortex at dayside of high latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Alexeev, I. I.; Feldstein, Y. I.; Greenwald, R. A.

    Investigation of mesoscale convection in the dayside sector by SuperDARN radars has revealed the existence in afternoon sector a convection vortex whose location, intensity and convection direction coincide with the polar cap geomagnetic disturbances (DPC), which is reviewed thoroughly. Possible mechanism of the DPC generation are also described. Importance of the Earth's co-rotation potential is discussed. The existence of DPC vortex is interpreted in the framework of three dimensional current system with the field-aligned currents of coaxial cable type. In the vortex focus, the current outflowing from the ionosphere is concentrated whereas the inflowing current is distributed along the current system periphery.

  12. Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Zhou, Xue

    2016-01-18

    We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.

  13. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    PubMed

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  14. Collisionless current sheet equilibria

    NASA Astrophysics Data System (ADS)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  15. Increasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change

    PubMed Central

    Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming

    2011-01-01

    Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes. PMID:21479188

  16. Use of a spread sheet to calculate the current-density distribution produced in human and rat models by low-frequency electric fields.

    PubMed

    Hart, F X

    1990-01-01

    The current-density distribution produced inside irregularly shaped, homogeneous human and rat models by low-frequency electric fields is obtained by a two-stage finite-difference procedure. In the first stage the model is assumed to be equipotential. Laplace's equation is solved by iteration in the external region to obtain the capacitive-current densities at the model's surface elements. These values then provide the boundary conditions for the second-stage relaxation solution, which yields the internal current-density distribution. Calculations were performed with the Excel spread-sheet program on a Macintosh-II microcomputer. A spread sheet is a two-dimensional array of cells. Each cell of the sheet can represent a square element of space. Equations relating the values of the cells can represent the relationships between the potentials in the corresponding spatial elements. Extension to three dimensions is readily made. Good agreement was obtained with current densities measured on human models with both, one, or no legs grounded and on rat models in four different grounding configurations. The results also compared well with predictions of more sophisticated numerical analyses. Spread sheets can provide an inexpensive and relatively simple means to perform good, approximate dosimetric calculations on irregularly shaped objects.

  17. Telluric currents: A meeting of theory and observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boteler, D.H.; Seager, W.H.

    Pipe-to-soil (P/S) potential variations resulting from telluric currents have been observed on pipelines in many locations. However, it has never teen clear which parts of a pipeline will experience the worst effects. Two studies were conducted to answer this question. Distributed-source transmission line (DSTL) theory was applied to the problem of modeling geomagnetic induction in pipelines. This theory predicted that the largest P/S potential variations would occur at the ends of the pipeline. The theory also predicted that large P/S potential variations, of opposite sign, should occur on either side of an insulating flange. Independently, an observation program was conductedmore » to determine the change in telluric current P/S potential variations and to design counteractive measures along a pipeline in northern Canada. Observations showed that the amplitude of P/S potential fluctuations had maxima at the northern and southern ends of the pipeline. A further set of recordings around an insulating flange showed large P/S potential variations, of opposite sign, on either side of the flange. Agreement between the observations and theoretical predictions was remarkable. While the observations confirmed the theory, the theory explains how P/S potential variations are produced by telluric currents and provides the basis for design of cathodic protection systems for pipelines that can counteract any adverse telluric effects.« less

  18. Energy & mass-charge distribution peculiarities of ion emitted from penning source

    NASA Astrophysics Data System (ADS)

    Mamedov, N. V.; Kolodko, D. V.; Sorokin, I. A.; Kanshin, I. A.; Sinelnikov, D. N.

    2017-05-01

    The optimization of hydrogen Penning sources used, in particular, in plasma chemical processing of materials and DLC deposition, is still very important. Investigations of mass-charge composition of these ion source emitted beams are particular relevant for miniature linear accelerators (neutron flux generators) nowadays. The Penning ion source energy and mass-charge ion distributions are presented. The relation between the discharge current abrupt jumps with increasing plasma density in the discharge center and increasing potential whipping (up to 50% of the anode voltage) is shown. Also the energy spectra in the discharge different modes as the pressure and anode potential functions are presented. It has been revealed that the atomic hydrogen ion concentration is about 5-10%, and it weakly depends on the pressure and the discharge current (in the investigated range from 1 to 10 mTorr and from 50 to 1000 μA) and increases with the anode voltage (up 1 to 3,5 kV).

  19. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung, E-mail: yamcy@yangtze.hku.hk, E-mail: ghc@everest.hku.hk

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 1190–1199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate themore » information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.« less

  20. Optically controlled resonant tunneling in a double-barrier diode

    NASA Astrophysics Data System (ADS)

    Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.

    1991-03-01

    The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.

  1. Lithium manganese oxide spinel electrodes

    NASA Astrophysics Data System (ADS)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The results compared favorably with those available in the literature. Dynamic Monte Carlo simulations were conducted to investigate the concentration dependence of the diffusion coefficient fundamentally. The dynamic Monte Carlo predictions compare favorably with the experimental data.

  2. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Wei, Xuefeng F.; Grill, Warren M.

    2005-12-01

    Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.

  3. Understanding the Impact of Return-Current Losses on the X-Ray Emission from Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    I obtain and examine the implications of one-dimensional analytic solutions for return-current losses on an initially power-law distribution of energetic electrons with a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These solutions show, for example, that return-current losses are not sensitive to plasma density, but are sensitive to plasma temperature and the low energy cutoff of the injected nonthermal electron distribution. A characteristic distance from the electron injection site, x(sub rc), is derived. At distances less than x(sub rc) the electron flux density is not reduced by return-current losses, but plasma heating can be substantial in this region, in the upper, coronal part of the flare loop. Before the electrons reach the collisional thick-target region of the flare loop, an injected power-law electron distribution with a low-energy cutoff maintains that structure, but with a flat energy distribution below the cutoff energy, which is now determined by the total potential drop experienced by the electrons. Modifications due to the presence of collisional losses are discussed. I compare these results with earlier analytical results and with more recent numerical simulations. Emslie's 1980 conjecture that there is a maximum integrated X-ray source brightness on the order of 10(exp -15) photons per square centimeter per second per square centimeter is examined. I find that this is not actually a maximum brightness and its value is parameter dependent, but it is nevertheless a valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss an observational approach to identifying return-current losses in flare data, including identification of a return-current "bump" in X-ray light curves at low photon energies.

  4. M-currents and other potassium currents in bullfrog sympathetic neurones

    PubMed Central

    Adams, P. R.; Brown, D. A.; Constanti, A.

    1982-01-01

    1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K+) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (IK) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (IC) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (IA) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K+ current, the M-current (IM). 2. IM was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance GM showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (ḠM) of 84±14 (S.E.M.) nS per neurone. The voltage sensitivity of GM could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle. 3. IM activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at ≃ 150 ms at -35 mV at 22 °C. 4. Instantaneous current—voltage (I/V) curves were approximately linear in the presence of IM, suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of IM. 5. It is suggested that IM exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation. PMID:6294290

  5. Population of computational rabbit-specific ventricular action potential models for investigating sources of variability in cellular repolarisation.

    PubMed

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.

  6. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation. PMID:24587229

  7. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    PubMed Central

    Carbajo, Aníbal E; Vera, Carolina; González, Paula LM

    2009-01-01

    Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent period of time only in certain areas. Given that changes maintain for 60 years or double in 30 years, the hantavirus reservoir Oligoryzomys longicaudatus may contract its distribution in Argentine Patagonia extensively. PMID:19607707

  8. Architectural Optimization of Digital Libraries

    NASA Technical Reports Server (NTRS)

    Biser, Aileen O.

    1998-01-01

    This work investigates performance and scaling issues relevant to large scale distributed digital libraries. Presently, performance and scaling studies focus on specific implementations of production or prototype digital libraries. Although useful information is gained to aid these designers and other researchers with insights to performance and scaling issues, the broader issues relevant to very large scale distributed libraries are not addressed. Specifically, no current studies look at the extreme or worst case possibilities in digital library implementations. A survey of digital library research issues is presented. Scaling and performance issues are mentioned frequently in the digital library literature but are generally not the focus of much of the current research. In this thesis a model for a Generic Distributed Digital Library (GDDL) and nine cases of typical user activities are defined. This model is used to facilitate some basic analysis of scaling issues. Specifically, the calculation of Internet traffic generated for different configurations of the study parameters and an estimate of the future bandwidth needed for a large scale distributed digital library implementation. This analysis demonstrates the potential impact a future distributed digital library implementation would have on the Internet traffic load and raises questions concerning the architecture decisions being made for future distributed digital library designs.

  9. Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems.

    PubMed

    Schock, Michael R; Hyland, Robert N; Welch, Meghan M

    2008-06-15

    Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.

  10. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    PubMed Central

    Krasteva, Vessela TZ; Papazov, Sava P; Daskalov, Ivan K

    2003-01-01

    Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM) of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium. PMID:14693034

  11. Biodiversity funds and conservation needs in the EU under climate change

    PubMed Central

    Lung, Tobias; Meller, Laura; van Teeffelen, Astrid J.A.; Thuiller, Wilfried; Cabeza, Mar

    2014-01-01

    Despite ambitious biodiversity policy goals, less than a fifth of the European Union’s (EU) legally protected species and habitats show a favorable conservation status. The recent EU biodiversity strategy recognizes that climate change adds to the challenge of halting biodiversity loss, and that an optimal distribution of financial resources is needed. Here, we analyze recent EU biodiversity funding from a climate change perspective. We compare the allocation of funds to the distribution of both current conservation priorities (within and beyond Natura 2000) and future conservation needs at the level of NUTS-2 regions, using modelled bird distributions as indicators of conservation value. We find that funding is reasonably well aligned with current conservation efforts but poorly fit with future needs under climate change, indicating obstacles for implementing adaptation measures. We suggest revising EU biodiversity funding instruments for the 2014-2020 budget period to better account for potential climate change impacts on biodiversity. PMID:25264456

  12. Biodiversity funds and conservation needs in the EU under climate change.

    PubMed

    Lung, Tobias; Meller, Laura; van Teeffelen, Astrid J A; Thuiller, Wilfried; Cabeza, Mar

    2014-07-01

    Despite ambitious biodiversity policy goals, less than a fifth of the European Union's (EU) legally protected species and habitats show a favorable conservation status. The recent EU biodiversity strategy recognizes that climate change adds to the challenge of halting biodiversity loss, and that an optimal distribution of financial resources is needed. Here, we analyze recent EU biodiversity funding from a climate change perspective. We compare the allocation of funds to the distribution of both current conservation priorities (within and beyond Natura 2000) and future conservation needs at the level of NUTS-2 regions, using modelled bird distributions as indicators of conservation value. We find that funding is reasonably well aligned with current conservation efforts but poorly fit with future needs under climate change, indicating obstacles for implementing adaptation measures. We suggest revising EU biodiversity funding instruments for the 2014-2020 budget period to better account for potential climate change impacts on biodiversity.

  13. Is Switzerland Suitable for the Invasion of Aedes albopictus?

    PubMed Central

    Neteler, Markus; Metz, Markus; Rocchini, Duccio; Rizzoli, Annapaola; Flacio, Eleonora; Engeler, Luca; Guidi, Valeria; Lüthy, Peter; Tonolla, Mauro

    2013-01-01

    Background Over the last 30 years, the Asian tiger mosquito, Aedes albopictus, has rapidly spread around the world. The European distribution comprises the Mediterranean basin with a first appearance in Switzerland in 2003. Early identification of the most suitable areas in Switzerland allowing progressive invasion by this species is considered crucial to suggest adequate surveillance and control plans. Methodology/Principal Findings We identified the most suitable areas for invasion and establishment of Ae. albopictus in Switzerland. The potential distribution areas linked to the current climatic suitability were assessed using remotely sensed land surface temperature data recorded by the MODIS satellite sensors. Suitable areas for adult survival and overwintering of diapausing eggs were also identified for future climatic conditions, considering two different climate change scenarios (A1B, A2) for the periods 2020–2049 and 2045–2074. At present, the areas around Lake Geneva in western Switzerland provide suitable climatic conditions for Ae. albopictus. In northern Switzerland, parts of the Rhine valley, around Lake Constance, as well as the surroundings of Lake Neuchâtel, appear to be suitable for the survival at least of adult Ae. albopictus. However, these areas are characterized by winters currently being too cold for survival and development of diapausing eggs. In southern Switzerland, Ae. albopictus is already well-established, especially in the Canton of Ticino. For the years 2020–2049, the predicted possible spread of the tiger mosquito does not differ significantly from its potential current distribution. However, important expansions are obtained if the period is extended to the years 2045–2074, when Ae. albopictus may invade large new areas. Conclusions/Significance Several parts of Switzerland provide suitable climatic conditions for invasion and establishment of Ae. albopictus. The current distribution and rapid spread in other European countries suggest that the tiger mosquito will colonize new areas in Switzerland in the near future. PMID:24349190

  14. Is Switzerland suitable for the invasion of Aedes albopictus [corrected]?

    PubMed

    Neteler, Markus; Metz, Markus; Rocchini, Duccio; Rizzoli, Annapaola; Flacio, Eleonora; Engeler, Luca; Guidi, Valeria; Lüthy, Peter; Tonolla, Mauro

    2013-01-01

    Over the last 30 years, the Asian tiger mosquito, Aedes albopictus, has rapidly spread around the world. The European distribution comprises the Mediterranean basin with a first appearance in Switzerland in 2003. Early identification of the most suitable areas in Switzerland allowing progressive invasion by this species is considered crucial to suggest adequate surveillance and control plans. We identified the most suitable areas for invasion and establishment of Ae. albopictus in Switzerland. The potential distribution areas linked to the current climatic suitability were assessed using remotely sensed land surface temperature data recorded by the MODIS satellite sensors. Suitable areas for adult survival and overwintering of diapausing eggs were also identified for future climatic conditions, considering two different climate change scenarios (A1B, A2) for the periods 2020-2049 and 2045-2074. At present, the areas around Lake Geneva in western Switzerland provide suitable climatic conditions for Ae. albopictus. In northern Switzerland, parts of the Rhine valley, around Lake Constance, as well as the surroundings of Lake Neuchâtel, appear to be suitable for the survival at least of adult Ae. albopictus. However, these areas are characterized by winters currently being too cold for survival and development of diapausing eggs. In southern Switzerland, Ae. albopictus is already well-established, especially in the Canton of Ticino. For the years 2020-2049, the predicted possible spread of the tiger mosquito does not differ significantly from its potential current distribution. However, important expansions are obtained if the period is extended to the years 2045-2074, when Ae. albopictus may invade large new areas. Several parts of Switzerland provide suitable climatic conditions for invasion and establishment of Ae. albopictus. The current distribution and rapid spread in other European countries suggest that the tiger mosquito will colonize new areas in Switzerland in the near future.

  15. Assessing the potential for establishment of western cherry fruit fly using ecological niche modeling.

    PubMed

    Kumar, Sunil; Neven, Lisa G; Yee, Wee L

    2014-06-01

    Sweet cherries, Prunus avium (L.) L., grown in the western United States are exported to many countries around the world. Some of these countries have enforced strict quarantine rules and trade restrictions owing to concerns about the potential establishment and subsequent spread of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), a major quarantine pest of sweet cherry. We used 1) niche models (CLIMEX and MaxEnt) to map the climatic suitability, 2) North Carolina State University-Animal and Plant Health Inspection Service Plant Pest Forecasting System to examine chilling requirement, and 3) host distribution and availability to assess the potential for establishment of R. indifferens in areas of western North America where it currently does not exist and eight current or potential fresh sweet cherry markets: Colombia, India, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam. Results from niche models conformed well to the current distribution of R. indifferens in western North America. MaxEnt and CLIMEX models had high performance and predicted climatic suitability in some of the countries (e.g., Andean range in Colombia and Venezuela, northern and northeastern India, central Taiwan, and parts of Vietnam). However, our results showed no potential for establishment of R. indifferens in Colombia, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam when the optimal chilling requirement to break diapause (minimum temperature < or = 3 degree C for at least 15 wk) was used as the criterion for whether establishment can occur. Furthermore, these countries have no host plant species available for R. indifferens. Our results can be used to make scientifically informed international trade decisions and negotiations by policy makers.

  16. Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms

    NASA Astrophysics Data System (ADS)

    Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.

    2015-06-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.

  17. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  18. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).

    PubMed

    Pandit, Shubha N; Maitland, Bryan M; Pandit, Laxmi K; Poesch, Mark S; Enders, Eva C

    2017-11-15

    Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species' spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change - critical information for conservation planning - are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041-2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with >50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO 2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions - such as assisted migration - may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Regional Extinctions and Quaternary Shifts in the Geographic Range of Lestodelphys halli, the Southernmost Living Marsupial: Clues for Its Conservation

    PubMed Central

    Formoso, Anahí E.; Martin, Gabriel M.; Teta, Pablo; Carbajo, Aníbal E.; Sauthier, Daniel E. Udrizar; Pardiñas, Ulyses F. J.

    2015-01-01

    The Patagonian opossum (Lestodelphys halli), the southernmost living marsupial, inhabits dry and open environments, mainly in the Patagonian steppe (between ~32°S and ~49°S). Its rich fossil record shows its occurrence further north in Central Argentina during the Quaternary. The paleoenvironmental meaning of the past distribution of L. halli has been mostly addressed in a subjective framework without an explicit connection with the climatic “space” currently occupied by this animal. Here, we assessed the potential distribution of this species and the changes occurred in its geographic range during late Pleistocene-Holocene times and linked the results obtained with conservation issues. To this end, we generated three potential distribution models with fossil records and three with current ones, using MaxEnt software. These models showed a decrease in the suitable habitat conditions for the species, highlighting a range shift from Central-Eastern to South-Western Argentina. Our results support that the presence of L. halli in the Pampean region during the Pleistocene-Holocene can be related to precipitation and temperature variables and that its current presence in Patagonia is more related to temperature and dominant soils. The models obtained suggest that the species has been experiencing a reduction in its geographic range since the middle Holocene, a process that is in accordance with a general increase in moisture and temperature in Central Argentina. Considering the findings of our work and the future scenario of global warming projected for Patagonia, we might expect a harsh impact on the distribution range of this opossum in the near future. PMID:26203650

  20. Environmental constraints on the invasion of Triadica sebifera in the eastern United States: an experimental field assessment.

    PubMed

    Pattison, Robert R; Mack, Richard N

    2009-01-01

    Identifying the environmental constraints that affect the distribution of an invasive species is fundamental to its effective control. Triadica sebifera (Chinese tallow tree) has invaded the southeastern United States, but its potential for further range and habitat extension has been unresolved. We explored experimentally environmental factors in macro- and microhabitats that affect its persistence at five widely separated sites along the Atlantic seaboard of the United States and at two sites inland; three sites occur well beyond the tree's current range. At each site, seeds and young vegetative plants (0.5-0.65 m tall) of T. sebifera were placed in four microhabitats (closed-canopy upland, closed-canopy lowland, open-canopy upland, and open-canopy lowland). Plant growth, leaf CO(2) assimilation rates, leaf N concentrations and delta(13)C ratios, and stem water potential were measured for two growing seasons. Percent seed germination was consistently higher in open-canopy microhabitats and lowest at northern and inland sites. T. sebifera grew in all open-canopy microhabitats, even 300-500 km beyond its current distribution. Plant growth in closed-canopy habitats was lower, attributable to lower carbon gain per unit leaf area in shaded compared with open-canopy environments, especially at northern and inland sites. Neither competition, other than canopy shade, nor grazing was a key constraint on distribution at any scale. Our results demonstrate that T. sebifera is dispersal limited at landscape scales but limited locally by dispersal and overstory shade; it has yet to occupy the full extent of its new range in North America. Quantifying environmental factors both within and well beyond a species' current range can effectively highlight the limits on its distribution.

  1. The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.

    PubMed

    Sawyer, Jemima E R; Hennebry, James E; Revill, Alexander; Brown, Angus M

    2017-06-01

    The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential. Copyright © 2017 the American Physiological Society.

  2. Investigation of tunneling current and local contact potential difference on the TiO2(110) surface by AFM/KPFM at 78 K.

    PubMed

    Wen, Huan Fei; Li, Yan Jun; Arima, Eiji; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Xu, Rui; Cheng, Zhi Hai

    2017-03-10

    We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO 2 (110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.

  3. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-12-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.

  4. High-Energy Electron Shell in ECR Ion Source:

    NASA Astrophysics Data System (ADS)

    Niimura, M. G.; Goto, A.; Yano, Y.

    1997-05-01

    As an injector of cyclotrons and RFQ linacs, ECR ion source (ECRIS) is expected to deliver highly charged ions (HCI) at high beam-current (HBC). Injections of light gases and supplementary electrons have been employed for enhancement of HCI and HBC, respectively. Further amelioration of the performance may be feasible by investigating the hot-electron ring inside an ECRIS. Its existence has been granted because of the MeV of Te observable via X-ray diagnostics. However, its location, acceleration mechanism, and effects on the performance are not well known.We found them by deriving the radially negative potential distribution for an ECRIS from measured endloss-current data. It was evidenced from a hole-burning on the parabolic potential profile (by uniformly distributed warm-electron space charges of 9.5x10^5cm-3) and from a local minimum of the electrostatically-trapped ion distribution. A high-energy electron shell (HEES) was located right on the ECR-radius of 6 cm with shell-halfwidth of 1 cm. Such a thin shell around core plasma can only be generated by the Sadeev-Shapiro or v_phxBz acceleration mechanism that can raise Te up to a relativistic value. Here, v_ph is the phase velocity of ES Bernstein waves propagating backwards against incident microwave and Bz the axial mirror magnetic field. The HEES carries diamagnetic current which reduces the core magnetic pressure, thereby stabilizing the ECR surface against driftwave instabilities similarly to gas-mixing.

  5. Moving spray-plate center-pivot sprinkler rating index for assessing runoff potential

    USDA-ARS?s Scientific Manuscript database

    Numerous moving spray-plate center-pivot sprinklers are commercially available providing a range of drop size distributions and wetted diameters. A means to quantitatively compare sprinkler choices in regards to maximizing infiltration and minimizing runoff is currently lacking. The objective of thi...

  6. Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California Birds?

    PubMed Central

    Stralberg, Diana; Jongsomjit, Dennis; Howell, Christine A.; Snyder, Mark A.; Alexander, John D.; Wiens, John A.; Root, Terry L.

    2009-01-01

    By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages. PMID:19724641

  7. New hope for the survival of the Amur leopard in China

    PubMed Central

    Jiang, Guangshun; Qi, Jinzhe; Wang, Guiming; Shi, Quanhua; Darman, Yury; Hebblewhite, Mark; Miquelle, Dale G.; Li, Zhilin; Zhang, Xue; Gu, Jiayin; Chang, Youde; Zhang, Minghai; Ma, Jianzhang

    2015-01-01

    Natural range loss limits the population growth of Asian big cats and may determine their survival. Over the past decade, we collected occurrence data of the critically endangered Amur leopard worldwide and developed a distribution model of the leopard’s historical range in northeastern China over the past decade. We were interested to explore how much current range area exists, learn what factors limit their spatial distribution, determine the population size and estimate the extent of potential habitat. Our results identify 48,252 km2 of current range and 21,173.7 km2 of suitable habitat patches and these patches may support 195.1 individuals. We found that prey presence drives leopard distribution, that leopard density exhibits a negative response to tiger occurrence and that the largest habitat patch connects with 5,200 km2of Russian current range. These insights provide a deeper understanding of the means by which endangered predators might be saved and survival prospects for the Amur leopard not only in China, but also through imperative conservation cooperation internationally. PMID:26638877

  8. New hope for the survival of the Amur leopard in China.

    PubMed

    Jiang, Guangshun; Qi, Jinzhe; Wang, Guiming; Shi, Quanhua; Darman, Yury; Hebblewhite, Mark; Miquelle, Dale G; Li, Zhilin; Zhang, Xue; Gu, Jiayin; Chang, Youde; Zhang, Minghai; Ma, Jianzhang

    2015-12-07

    Natural range loss limits the population growth of Asian big cats and may determine their survival. Over the past decade, we collected occurrence data of the critically endangered Amur leopard worldwide and developed a distribution model of the leopard's historical range in northeastern China over the past decade. We were interested to explore how much current range area exists, learn what factors limit their spatial distribution, determine the population size and estimate the extent of potential habitat. Our results identify 48,252 km(2) of current range and 21,173.7 km(2) of suitable habitat patches and these patches may support 195.1 individuals. We found that prey presence drives leopard distribution, that leopard density exhibits a negative response to tiger occurrence and that the largest habitat patch connects with 5,200 km(2)of Russian current range. These insights provide a deeper understanding of the means by which endangered predators might be saved and survival prospects for the Amur leopard not only in China, but also through imperative conservation cooperation internationally.

  9. Real time testing of intelligent relays for synchronous distributed generation islanding detection

    NASA Astrophysics Data System (ADS)

    Zhuang, Davy

    As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.

  10. [Potential distribution and geographic characteristics of wild populations of Vanilla planifolia (Orchidaceae) Oaxaca, Mexico].

    PubMed

    Hernandez-Ruiz, Jesús; Herrera-Cabrera, B Edgar; Delgado-Alvarado, Adriana; Salazar-Rojas, Víctor M; Bustamante-Gonzalez, Ángel; Campos-Contreras, Jorge E; Ramírez-Juarez, Javier

    2016-03-01

    Wild specimens of Vanilla planifolia represent a vital part of this resource primary gene pool, and some plants have only been reported in Oaxaca, Mexico. For this reason, we studied its geographical distribution within the state, to locate and describe the ecological characteristics of the areas where they have been found, in order to identify potential areas of establishment. The method comprised four stages: 1) the creation of a database with herbarium records, 2) the construction of the potential distribution based on historical herbarium records for the species, using the model of maximum entropy (MaxEnt) and 22 bioclimatic variables as predictors; 3) an in situ systematic search of individuals, based on herbarium records and areas of potential distribution in 24 municipalities, to determine the habitat current situation and distribution; 4) the description of the environmental factors of potential ecological niches generated by MaxEnt. A review of herbarium collections revealed a total of 18 records of V. planifolia between 1939 and 1998. The systematic search located 28 plants distributed in 12 sites in 95 364 Km(2). The most important variables that determined the model of vanilla potential distribution were: precipitation in the rainy season (61.9 %), soil moisture regime (23.4 %) and precipitation during the four months of highest rainfall (8.1 %). The species potential habitat was found to be distributed in four zones: wet tropics of the Gulf of Mexico, humid temperate, humid tropical, and humid temperate in the Pacific. Precipitation oscillated within the annual ranges of 2 500 to 4 000 mm, with summer rains, and winter precipitation as 5 to 10 % of the total. The moisture regime and predominating climate were udic type I (330 to 365 days of moisture) and hot humid (Am/A(C) m). The plants were located at altitudes of 200 to 1 190 masl, on rough hillsides that generally make up the foothills of mountain systems, with altitudes of 1 300 to 2 500 masl. In natural conditions, distribution of the species is not limited to high evergreen forests, since it was also found in mountain mesophyll and tropical evergreen forests. The location of new specimens of V. planifolia in its wild condition reduces the potential distribution area by 66 %. This area is fragmented into three geographically separated areas. Habitat reduction was due to the increased number of located plants that define the environmental conditions into a more accurate level. Conservation actions can thus be designed and implemented, focusing on more specific areas within the state of Oaxaca, Mexico.

  11. Why inputs matter: Selection of climatic variables for species distribution modelling in the Himalayan region

    NASA Astrophysics Data System (ADS)

    Bobrowski, Maria; Schickhoff, Udo

    2017-04-01

    Betula utilis is a major constituent of alpine treeline ecotones in the western and central Himalayan region. The objective of this study is to provide first time analysis of the potential distribution of Betula utilis in the subalpine and alpine belts of the Himalayan region using species distribution modelling. Using Generalized Linear Models (GLM) we aim at examining climatic factors controlling the species distribution under current climate conditions. Furthermore we evaluate the prediction ability of climate data derived from different statistical methods. GLMs were created using least correlated bioclimatic variables derived from two different climate models: 1) interpolated climate data (i.e. Worldclim, Hijmans et al., 2005) and 2) quasi-mechanistical statistical downscaling (i.e. Chelsa; Karger et al., 2016). Model accuracy was evaluated by the ability to predict the potential species distribution range. We found that models based on variables of Chelsa climate data had higher predictive power, whereas models using Worldclim climate data consistently overpredicted the potential suitable habitat for Betula utilis. Although climatic variables of Worldclim are widely used in modelling species distribution, our results suggest to treat them with caution when remote regions like the Himalayan mountains are in focus. Unmindful usage of climatic variables for species distribution models potentially cause misleading projections and may lead to wrong implications and recommendations for nature conservation. References: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N., Linder, H.P. & Kessler, M. (2016) Climatologies at high resolution for the earth land surface areas. arXiv:1607.00217 [physics].

  12. Pioneer Venus Orbiter planar retarding potential analyzer plasma experiment

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.

    1980-01-01

    The retarding potential analyzer (RPA) on the Pioneer Venus Orbiter Mission measures most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. Several functions not previously used in RPA's were developed and incorporated into this instrument to accomplish these measurements on a spinning spacecraft with a small bit rate. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection.

  13. Peculiarities of Spacecraft Photoelectron Shield Formation in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Veselov, Mikhail; Chugunin, Dmitriy

    Traditionally, the current balance equations for a spacecraft in space plasma rely on the electric field of positively charged spacecraft. Equilibrium potential V is derived from currents outward and toward the spacecraft body. The currents are in turn functions of V. However, in reality photoelectrons move in both the electric field of the spacecraft and the Earth or the interplanetary magnetic field. This causes an anisotropic distribution of photoelectrons along a magnetic field line with the characteristic size of the order of several photoelectron gyro-radii. As a result, confinement of photoelectrons in the spacecraft-related electric field is much longer. Thus, a fraction of returned photoelectrons in the electron current toward the spacecraft can be rather great and may even dominate several times over the ambient electrons’ fraction. Modeled ph-electron trajectories as well as general photoelectron shield distribution around spacecraft are represented, and comparison of experimental data on the electron density with the magnetic flux tube model is discussed.

  14. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects

    PubMed Central

    Bai, Yunjun; Wei, Xueping

    2018-01-01

    Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700

  15. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects.

    PubMed

    Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang

    2018-01-01

    The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.

  16. Distribution and abundance of saltcedar and Russian olive in the western United States

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Jarnevich, Catherine S.; Shafroth, Patrick B.

    2011-01-01

    Over the past century, two introduced Eurasian trees, saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) have become wide spread on western United States of American (U.S.) rivers. This paper reviews the literature on the following five key areas related to their distribution and abundance in the western United States: (1) the history of introduction, planting, and spread of saltcedar and Russian olive; (2) their current distribution; (3) their current abundance; (4) factors controlling their current distribution and abundance; and (5) models that have been developed to predict their future distribution and abundance. Saltcedar and Russian olive are now the third and fourth most frequently occurring woody riparian plants and the second and fifth most abundant species (out of 42 native and non-native species) along rivers in the western United States. Currently there is not a precise estimate of the areas that these species occupy in the entire West. Climatic variables are important determinants of their distribution and abundance. For example, saltcedar is limited by its sensitivity to hard freezes, whereas Russian olive appears to have a chilling requirement for bud break and seed germination, and can presumably survive colder winter temperatures. Either species can be dominant, co-dominant or sub-dominant relative to native species on a given river system. A number of environmental factors such as water availability, soil salinity, degree of stream flow regulation, and fire frequency can influence the abundance of these species relative to native species. Numerous studies suggest that both species have spread on western rivers primarily through a replacement process, whereby stress-tolerant species have moved into expanded niches that are no longer suitable for mesic native pioneer species. Better maps of current distribution and rigorous monitoring of distributional changes though time can help to resolve differences in predictions of potential future spread. An adequate understanding does not yet exist of what fraction of western riparian zones is resistant to dominance by either of these species, what fraction is at risk and could benefit from intervention, and what fraction has been altered to the point that saltcedar or Russian olive are most likely to thrive.

  17. Monochloramine use for prevention of Legionella in hospital water systems.

    PubMed

    Kandiah, Sheetal; Yassin, Mohamed H; Stout, Janet

    2013-06-01

    Eradication of Legionella species from water distribution systems especially in hospital settings has proven to be challenging. Legionella species causes Legionnaire's disease that is a potentially fatal respiratory disease often acquired through the aerosolization of contaminated water. Monochloramine has been used successfully in the municipal water systems to eradicate Legionella and there is currently limited data to support its use in the hospital setting. This technology appears to be affordable, safe and effective at penetrating biofilm in water distribution systems.

  18. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    NASA Astrophysics Data System (ADS)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  19. Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK

    PubMed Central

    Gove, Benedict; Williams, Leah J.; Beresford, Alison E.; Roddis, Philippa; Campbell, Colin; Teuten, Emma; Langston, Rowena H. W.; Bradbury, Richard B.

    2016-01-01

    Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies, to enable realisation of their full potential. PMID:27224050

  20. Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK.

    PubMed

    Gove, Benedict; Williams, Leah J; Beresford, Alison E; Roddis, Philippa; Campbell, Colin; Teuten, Emma; Langston, Rowena H W; Bradbury, Richard B

    2016-01-01

    Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies, to enable realisation of their full potential.

  1. Integration of Reference Frames Using VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Smith, David E. (Technical Monitor)

    2001-01-01

    Very Long Baseline Interferometry (VLBI) has the unique potential to integrate the terrestrial and celestial reference frames through simultaneous estimation of positions and velocities of approx. 40 active VLBI stations and a similar number of stations/sites with sufficient historical data, the position and position stability of approx. 150 well-observed extragalactic radio sources and another approx. 500 sources distributed fairly uniformly on the sky, and the time series of the five parameters that specify the relative orientation of the two frames. The full realization of this potential is limited by a number of factors including the temporal and spatial distribution of the stations, uneven distribution of observations over the sources and the sky, variations in source structure, modeling of the solid/fluid Earth and troposphere, logistical restrictions on the daily observing network size, and differing strategies for optimizing analysis for TRF, for CRF and for EOP. The current status of separately optimized and integrated VLBI analysis will be discussed.

  2. Orbital Alignment of Main-belt Comets

    NASA Astrophysics Data System (ADS)

    Kim, Yoonyoung; JeongAhn, Youngmin; Hsieh, Henry H.

    2018-03-01

    We examine the orbital element distribution of main-belt comets (MBCs), which are objects that exhibit cometary activity yet orbit in the main asteroid belt and may be potentially useful as tracers of ice in the inner solar system. We find that the currently known and currently active MBCs have remarkably similar longitudes of perihelion, which are also aligned with that of Jupiter. The clustered objects have significantly higher current osculating eccentricities relative to their proper eccentricities, consistent with their orbits being currently, though only temporarily, secularly excited in osculating eccentricity due to Jupiter’s influence. At the moment, most MBCs seem to have current osculating elements that may be particularly favorable for the object becoming active (e.g., maybe because of higher perihelion temperatures or higher impact velocities causing an effective increase in the size of the potential triggering impactor population). At other times, other icy asteroids will have those favorable conditions and might become MBCs at those times as well.

  3. Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population.

    PubMed

    Alimi, Temitope O; Fuller, Douglas O; Qualls, Whitney A; Herrera, Socrates V; Arevalo-Herrera, Myriam; Quinones, Martha L; Lacerda, Marcus V G; Beier, John C

    2015-08-20

    Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria vectors and hosts. Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent. Results from our land change modeling indicate that about 70,000 km(2) of forest land would be lost by 2050 and 78,000 km(2) by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are expected to decrease in line with current downward trends, both vectors are predicted to experience range expansions in the future. Elevation, annual precipitation and temperature were influential in all models both current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An. nuneztovari s.l. distribution. As the region tackles the challenge of malaria elimination, investigations such as this could be useful for planning and management purposes and aid in predicting and addressing potential impediments to elimination.

  4. Train hard, sleep well? Perceived training load, sleep quantity and sleep stage distribution in elite level athletes.

    PubMed

    Knufinke, Melanie; Nieuwenhuys, Arne; Geurts, Sabine A E; Møst, Els I S; Maase, Kamiel; Moen, Maarten H; Coenen, Anton M L; Kompier, Michiel A J

    2018-04-01

    Sleep is essential for recovery and performance in elite athletes. While it is generally assumed that exercise benefits sleep, high training load may jeopardize sleep and hence limit adequate recovery. To examine this, the current study assessed objective sleep quantity and sleep stage distributions in elite athletes and calculated their association with perceived training load. Mixed-methods. Perceived training load, actigraphy and one-channel EEG recordings were collected among 98 elite athletes during 7 consecutive days of regular training. Actigraphy revealed total sleep durations of 7:50±1:08h, sleep onset latencies of 13±15min, wake after sleep onset of 33±17min and sleep efficiencies of 88±5%. Distribution of sleep stages indicated 51±9% light sleep, 21±8% deep sleep, and 27±7% REM sleep. On average, perceived training load was 5.40±2.50 (scale 1-10), showing large daily variability. Mixed-effects models revealed no alteration in sleep quantity or sleep stage distributions as a function of day-to-day variation in preceding training load (all p's>.05). Results indicate healthy sleep durations, but elevated wake after sleep onset, suggesting a potential need for sleep optimization. Large proportions of deep sleep potentially reflect an elevated recovery need. With sleep quantity and sleep stage distributions remaining irresponsive to variations in perceived training load, it is questionable whether athletes' current sleep provides sufficient recovery after strenuous exercise. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Extension of the Mott-Gurney Law for a Bilayer Gap

    NASA Astrophysics Data System (ADS)

    Dubinov, A. E.; Kitayev, I. N.

    2018-04-01

    Steady drift states of an electron flow in a planar gap filled with a bilayer dielectric have been considered. Exact mathematical formulas have been derived that describe the distributions of the electrostatic potential and space charge limited electron flow current (extended Mott-Gurney law for a bilayer diode).

  6. Potential geographic distribution of Palmer amaranth under current and future climates

    USDA-ARS?s Scientific Manuscript database

    Herbicide resistant weeds are increasingly becoming a major challenge for agricultural production worldwide. Palmer amaranth is an invasive annual forb that has recently emerged as one of the most widespread and severe agronomic weeds in the US, due in part to its facility for evolving herbicide res...

  7. Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed Photovoltaic Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Lowder, T.

    This report provides a high-level overview of the developing U.S. solar loan product landscape, from both a market and economic perspective. It covers current and potential U.S. solar lending institutions; currently available loan products; loan program structures and post-loan origination options; risks and uncertainties of the solar asset class as it pertains to lenders; and an economic analysis comparing loan products to third party-financed systems in California.

  8. Historical range, current distribution, and conservation status of the Swift Fox, Vulpes velox, in North America

    USGS Publications Warehouse

    Sovada, Marsha A.; Woodward, Robert O.; Igl, Lawrence D.

    2009-01-01

    The Swift Fox (Vulpes velox) was once common in the shortgrass and mixed-grass prairies of the Great Plains of North America. The species' abundance declined and its distribution retracted following European settlement of the plains. By the late 1800s, the species had been largely extirpated from the northern portion of its historical range, and its populations were acutely depleted elsewhere. Swift Fox populations have naturally recovered somewhat since the 1950s, but overall abundance and distribution remain below historical levels. In a 1995 assessment of the species' status under the US Endangered Species Act, the US Fish and Wildlife Service concluded that a designation of threatened or endangered was warranted, but the species was "precluded from listing by higher listing priorities." A major revelation of the 1995 assessment was the recognition that information useful for determining population status was limited. Fundamental information was missing, including an accurate estimate of the species' distribution before European settlement and an estimate of the species' current distribution and trends. The objectives of this paper are to fill those gaps in knowledge. Historical records were compiled and, in combination with knowledge of the habitat requirements of the species, the historical range of the Swift Fox is estimated to be approximately 1.5 million km2. Using data collected between 2001 and 2006, the species' current distribution is estimated to be about 44% of its historical range in the United States and 3% in Canada. Under current land use, approximately 39% of the species' historical range contains grassland habitats with very good potential for Swift Fox occupation and another 10% supports grasslands with characteristics that are less preferred (e.g., a sparse shrub component or taller stature) but still suitable. Additionally, land use on at least 25% of the historical range supports dryland farming, which can be suitable for Swift Fox occupation. In the United States, approximately 52% of highest quality habitats currently available are occupied by Swift Foxes.

  9. Nonuniform discharge currents in active plasma lenses

    DOE PAGES

    van Tilborg, J.; Barber, S. K.; Tsai, H. -E.; ...

    2017-03-24

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  10. Nonuniform discharge currents in active plasma lenses

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Geddes, C. G. R.; Gonsalves, A. J.; Schroeder, C. B.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2017-03-01

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  11. Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change

    PubMed Central

    Zhao, Wanqing; Zhao, Qing

    2017-01-01

    The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is a serious invasive species that significantly damages plants of approximately 60 families around the world. It is originally from North America and has also been introduced to other continents. Our goals were to create a current and future potential global distribution map for this pest under climate change with MaxEnt software. We tested the hypothesis of niche conservatism for P. solenopsis by comparing its native niche in North America to its invasive niches on other continents using Principal components analyses (PCA) in R. The potentially suitable habitat for P. solenopsis in its native and non-native ranges is presented in the present paper. The results suggested that the mean temperature of the wettest quarter and the mean temperature of the driest quarter are the most important environmental variables determining the potential distribution of P. solenopsis. We found strong evidence for niche shifts in the realized climatic niche of this pest in South America and Australia due to niche unfilling; however, a niche shift in the realized climatic niche of this pest in Eurasian owing to niche expansion. PMID:28700721

  12. Parasitic current collection by PASP Plus solar arrays

    NASA Technical Reports Server (NTRS)

    Davis, Victoria Ann; Gardner, Barbara M.

    1995-01-01

    Solar cells at potentials positive with respect to a surrounding plasma collect electrons. Current is collected by the exposed high voltage surfaces: the interconnects and the sides of the solar cells. This current is a drain on the array power that can be significant for high-power arrays. In addition, this current influences the current balance that determines the floating potential of the spacecraft. One of the objectives of the Air Force (PL/GPS) PASP Plus (Photovoltaic Array Space Power Plus Diagnostics) experiment is an improved understanding fo parasitic current collection. We have done computer modeling of parasitic current collection and have examined current collection flight data from the first year of operations. Prior to the flight we did computer modeling to improve our understanding of the physical processes that control parasitic current collection. At high potentials, the current rapidly rises due to a phenomenon called snapover. Under snapover conditions, the equilibrium potential distribution across the dielectric surface is such that part of the area is at potentials greater than the first crossover of the secondary yield curve. Therefore, each incident electron generates more than one secondary electron. The net effect is that the high potential area and the collecting area increase. We did two-dimensional calculations for the various geometries to be flown. The calculations span the space of anticipated plasma conditions, applied potential, and material parameters. We used the calculations and early flight data to develop an analytic formula for the dependence of the current on the primary problem variables. The analytic formula was incorporated into the EPSAT computer code. EPSAT allows us to easily extend the results to other conditions. PASP Plus is the principal experiment integrated onto the Advanced Photovoltaic and Electronics Experiments (APEX) satellite bus. The experiment is testing twelve different solar array designs. Parasitic current collection is being measured for eight of the designs under various operational and environment conditions. We examined the current collected as a function of the various parameters for the six non-concentrator designs. The results are similar to those obtained in previous experiments and predicted by the calculations. We are using the flight data to validate the analytic formula developed. The formula can be used to quantify the parasitic current collected. Anticipating the parasitic current value allows the spacecraft designer to include this interaction when developing the design.

  13. Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; informmore » stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.« less

  14. Particle sizing of pharmaceutical aerosols via direct imaging of particle settling velocities.

    PubMed

    Fishler, Rami; Verhoeven, Frank; de Kruijf, Wilbur; Sznitman, Josué

    2018-02-15

    We present a novel method for characterizing in near real-time the aerodynamic particle size distributions from pharmaceutical inhalers. The proposed method is based on direct imaging of airborne particles followed by a particle-by-particle measurement of settling velocities using image analysis and particle tracking algorithms. Due to the simplicity of the principle of operation, this method has the potential of circumventing potential biases of current real-time particle analyzers (e.g. Time of Flight analysis), while offering a cost effective solution. The simple device can also be constructed in laboratory settings from off-the-shelf materials for research purposes. To demonstrate the feasibility and robustness of the measurement technique, we have conducted benchmark experiments whereby aerodynamic particle size distributions are obtained from several commercially-available dry powder inhalers (DPIs). Our measurements yield size distributions (i.e. MMAD and GSD) that are closely in line with those obtained from Time of Flight analysis and cascade impactors suggesting that our imaging-based method may embody an attractive methodology for rapid inhaler testing and characterization. In a final step, we discuss some of the ongoing limitations of the current prototype and conceivable routes for improving the technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui

    2016-07-21

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less

  16. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  17. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  18. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  19. Inferences from the Historical Distribution of Wild and Domesticated Maize Provide Ecological and Evolutionary Insight

    PubMed Central

    Hufford, Matthew B.; Martínez-Meyer, Enrique; Gaut, Brandon S.; Eguiarte, Luis E.; Tenaillon, Maud I.

    2012-01-01

    Background The species Zea mays includes both domesticated maize (ssp. mays) and its closest wild relatives known as the teosintes. While genetic and archaeological studies have provided a well-established history of Z. mays evolution, there is currently minimal description of its current and past distribution. Here, we implemented species distribution modeling using paleoclimatic models of the last interglacial (LI; ∼135,000 BP) and the last glacial maximum (LGM; ∼21,000 BP) to hindcast the distribution of Zea mays subspecies over time and to revisit current knowledge of its phylogeography and evolutionary history. Methodology/Principal Findings Using a large occurrence data set and the distribution modeling MaxEnt algorithm, we obtained robust present and past species distributions of the two widely distributed teosinte subspecies (ssps. parviglumis and mexicana) revealing almost perfect complementarity, stable through time, of their occupied distributions. We also investigated the present distributions of primitive maize landraces, which overlapped but were broader than those of the teosintes. Our data reinforced the idea that little historical gene flow has occurred between teosinte subspecies, but maize has served as a genetic bridge between them. We observed an expansion of teosinte habitat from the LI, consistent with population genetic data. Finally, we identified locations potentially serving as refugia for the teosintes throughout epochs of climate change and sites that should be targeted in future collections. Conclusion/Significance The restricted and highly contrasting ecological niches of the wild teosintes differ substantially from domesticated maize. Variables determining the distributions of these taxa can inform future considerations of local adaptation and the impacts of climate change. Our assessment of the changing distributions of Zea mays taxa over time offers a unique glimpse into the history of maize, highlighting a strategy for the study of domestication that may prove useful for other species. PMID:23155371

  20. Lp-Norm Regularization in Volumetric Imaging of Cardiac Current Sources

    PubMed Central

    Rahimi, Azar; Xu, Jingjia; Wang, Linwei

    2013-01-01

    Advances in computer vision have substantially improved our ability to analyze the structure and mechanics of the heart. In comparison, our ability to observe and analyze cardiac electrical activities is much limited. The progress to computationally reconstruct cardiac current sources from noninvasive voltage data sensed on the body surface has been hindered by the ill-posedness and the lack of a unique solution of the reconstruction problem. Common L2- and L1-norm regularizations tend to produce a solution that is either too diffused or too scattered to reflect the complex spatial structure of current source distribution in the heart. In this work, we propose a general regularization with Lp-norm (1 < p < 2) constraint to bridge the gap and balance between an overly smeared and overly focal solution in cardiac source reconstruction. In a set of phantom experiments, we demonstrate the superiority of the proposed Lp-norm method over its L1 and L2 counterparts in imaging cardiac current sources with increasing extents. Through computer-simulated and real-data experiments, we further demonstrate the feasibility of the proposed method in imaging the complex structure of excitation wavefront, as well as current sources distributed along the postinfarction scar border. This ability to preserve the spatial structure of source distribution is important for revealing the potential disruption to the normal heart excitation. PMID:24348735

  1. Regional Distribution Models with Lack of Proximate Predictors: Africanized Honeybees Expanding North

    NASA Technical Reports Server (NTRS)

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L. A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species-environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  2. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  3. Regional distribution models with lack of proximate predictors: Africanized honeybees expanding north

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L.A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species–environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  4. Driving factors behind the distribution of dinocyst composition and abundance in surface sediments in a western Mediterranean coastal lagoon: report from a high resolution mapping study.

    PubMed

    Fertouna-Bellakhal, Mouna; Dhib, Amel; Béjaoui, Béchir; Turki, Souad; Aleya, Lotfi

    2014-07-15

    Species composition and abundance of dinocysts in relation to environmental factors were studied at 123 stations of surface sediment in Bizerte Lagoon. Forty-eight dinocyst types were identified, mainly dominated by Brigantidinium simplex, Votadinum spinosum, Alexandrium pseudogonyaulax, Alexandrium catenella, and Lingulodinum machaerophorum along with many round brown cysts and spiny round brown cysts. Cysts ranged from 1276 to 20126 cysts g(-1)dry weight sediment. Significant differences in cyst distribution pattern were recorded among the zones, with a higher cyst abundance occurring in the lagoon's inner areas. Redundancy analyses showed two distinct associations of dinocysts according to location and environmental variables. Ballast water discharges are potential introducers of non-indigenous species, especially harmful ones such as A. catenella and Polysphaeridium zoharyi, with currents playing a pivotal role in cyst distribution. Findings concerning harmful cyst species indicate potential seedbeds for initiation of future blooms and outbreaks of potentially toxic species in the lagoon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Effects of Anthropogenic Structures on Habitat Connectivity and the Potential Spread of Non-Native Invertebrate Species in the Offshore Environment.

    PubMed

    Simons, Rachel D; Page, Henry M; Zaleski, Susan; Miller, Robert; Dugan, Jenifer E; Schroeder, Donna M; Doheny, Brandon

    2016-01-01

    Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.

  6. Electric fields and vector potentials of thin cylindrical antennas

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1990-09-01

    The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.

  7. Properties and potential applications of the culinary-medicinal cauliflower mushroom, Sparassis crispa Wulf.:Fr. (Aphyllophoromycetideae): a review.

    PubMed

    Chandrasekaran, Gayathri; Oh, Deuk-Sil; Shin, Hyun-Jae

    2011-01-01

    Sparassis crispa is a culinary-medicinal mushroom that has recently become popular in Korea, China, Japan, Germany, and the USA. S. crispa is a good source of food and nutraceuticals, or dietary supplements, due to its rich flavor compounds and beta-glucan content. This review is a comprehensive summary of its distribution, growth, management, general constituents, functional ingredients, as well as its current and potential medicinal and other applications.

  8. Quasi-exospheric heat flux of solar-wind electrons

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Schultz, M.

    1975-01-01

    Density, bulk-velocity, and heat-flow moments are calculated for truncated Maxwellian distributions representing the cool and hot populations of solar-wind electrons, as realized at the base of a hypothetical exosphere. The electrostatic potential is thus calculated by requiring charge quasi-neutrality and the absence of electrical current. Plasma-kinetic coupling of the cool-electron and proton bulk velocities leads to an increase in the electrostatic potential and a decrease in the heat-flow moment.

  9. Storage, transmission and distribution of hydrogen

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.; Hagler, R., Jr.

    1979-01-01

    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  10. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons.

    PubMed

    Engel, Dominique; Seutin, Vincent

    2015-11-15

    The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration are unknown. Using cell-attached patch-clamp recordings, we find a higher Ih current density in the axon-bearing dendrite than in the soma or in dendrites without axon in nigral dopamine neurons. Ih is mainly concentrated in the dendritic membrane area surrounding the axon origin and decreases with increasing distances from this site. Single EPSPs and temporal summation are similarly affected by blockade of Ih in axon- and non-axon-bearing dendrites. The presence of Ih close to the axon is pivotal to control the integrative functions and the output signal of dopamine neurons and may consequently influence the downstream coding of movement. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Reynolds, Lindsay V.

    2011-01-01

    Understanding the potential spread of invasive species is essential for land managers to prevent their establishment and restore impacted habitat. Habitat suitability modeling provides a tool for researchers and managers to understand the potential extent of invasive species spread. Our goal was to use habitat suitability modeling to map potential habitat of the riparian plant invader, Russian olive (Elaeagnus angustifolia). Russian olive has invaded riparian habitat across North America and is continuing to expand its range. We compiled 11 disparate datasets for Russian olive presence locations (n = 1,051 points and 139 polygons) in the western US and used Maximum entropy (Maxent) modeling to develop two habitat suitability maps for Russian olive in the western United States: one with coarse-scale water data and one with fine-scale water data. Our models were able to accurately predict current suitable Russian olive habitat (Coarse model: training AUC = 0.938, test AUC = 0.907; Fine model: training AUC = 0.923, test AUC = 0.885). Distance to water was the most important predictor for Russian olive presence in our coarse-scale water model, but it was only the fifth most important variable in the fine-scale model, suggesting that when water bodies are considered on a fine scale, Russian olive does not necessarily rely on water. Our model predicted that Russian olive has suitable habitat further west from its current distribution, expanding into the west coast and central North America. Our methodology proves useful for identifying potential future areas of invasion. Model results may be influenced by locations of cultivated individuals and sampling bias. Further study is needed to examine the potential for Russian olive to invade beyond its current range. Habitat suitability modeling provides an essential tool for enhancing our understanding of invasive species spread.

  12. Current-Voltage and Floating-Potential characteristics of cylindrical emissive probes from a full-kinetic model based on the orbital motion theory

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Sánchez-Arriaga, Gonzalo

    2018-02-01

    To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.

  13. Solar-terrestrial coupling through atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.

  14. Influence of the contact potential and space-charge effect on the performance of a Stoffel-Johnson design electron source for inverse photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniraj, M.; Barman, Sudipta Roy

    By imaging the spatial intensity distribution of the electrons from a Stoffel-Johnson (SJ) type low energy electron source for inverse photoemission spectroscopy (IPES), we find that the focus is distorted when the beam current exceeds the limiting value due to space charge effect. The space charge effect and the contact potential difference suppress the beam current at low energies (<10 eV). In this work, we show that these limitations of the SJ source can be overcome by compensation of the contact potential difference between the cathode and the lens electrodes and an uniform well focused electron beam with the set kineticmore » energy can be obtained. The size of the electron beam is around 1 mm full width at half maximum over the whole energy range of 5 to 30 eV generally used for IPES. The compensation of the contact potential difference also enhances the beam current substantially at low energies (<10 eV) and uniform beam current is achieved for the whole energy range. We find that the drift in the electron beam position is sensitive to the lens electrode separation and it is about 1 mm over the whole energy range. By measuring the n = 1 image potential state on Cu(100), we show that the resolution is better when the cathode filament current is set to lower values.« less

  15. International Review of Standards and Labeling Programs for Distribution Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie; Scholand, Michael; Carreño, Ana María

    Transmission and distribution (T&D) losses in electricity networks represent 8.5% of final energy consumption in the world. In Latin America, T&D losses range between 6% and 20% of final energy consumption, and represent 7% in Chile. Because approximately one-third of T&D losses take place in distribution transformers alone, there is significant potential to save energy and reduce costs and carbon emissions through policy intervention to increase distribution transformer efficiency. A large number of economies around the world have recognized the significant impact of addressing distribution losses and have implemented policies to support market transformation towards more efficient distribution transformers. Asmore » a result, there is considerable international experience to be shared and leveraged to inform countries interested in reducing distribution losses through policy intervention. The report builds upon past international studies of standards and labeling (S&L) programs for distribution transformers to present the current energy efficiency programs for distribution transformers around the world.« less

  16. Atomistic simulations of carbon diffusion and segregation in liquid silicon

    NASA Astrophysics Data System (ADS)

    Luo, Jinping; Alateeqi, Abdullah; Liu, Lijun; Sinno, Talid

    2017-12-01

    The diffusivity of carbon atoms in liquid silicon and their equilibrium distribution between the silicon melt and crystal phases are key, but unfortunately not precisely known parameters for the global models of silicon solidification processes. In this study, we apply a suite of molecular simulation tools, driven by multiple empirical potential models, to compute diffusion and segregation coefficients of carbon at the silicon melting temperature. We generally find good consistency across the potential model predictions, although some exceptions are identified and discussed. We also find good agreement with the range of available experimental measurements of segregation coefficients. However, the carbon diffusion coefficients we compute are significantly lower than the values typically assumed in continuum models of impurity distribution. Overall, we show that currently available empirical potential models may be useful, at least semi-quantitatively, for studying carbon (and possibly other impurity) transport in silicon solidification, especially if a multi-model approach is taken.

  17. Evaluations of dielectric property and drug release profile of 5-FU patches based on plasma charged electrets

    NASA Astrophysics Data System (ADS)

    Wang, YUAN; Hejuan, LIANG; Ping, HUANG; Xiaoqiang, AN; Jian, JIANG; Lili, CUI

    2018-05-01

    In the present study, the electret 5-fluorouracil patch was developed, the effective surface potential, piezoelectric coefficient d 33, open-circuit thermally stimulated discharge (TSD) current spectra and shear adhesion of the patch were measured. The drug release profile of the patch was determined by using high performance liquid chromatography method. A stable potential difference which was positively dependent on the surface potential of the electret was generated on two sides of the patch. The measurements of d 33 coefficient, TSD current spectra and adhesion performance showed that the electrostatic field of the electret could cause polarization and cohesive strength decreasing of the matrix molecules, change the distribution and interaction of the drug molecules in patch, therefore to increase the release of drug from the transdermal patch.

  18. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D.

    2009-01-01

    Gas hydrates (GHs) are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural GH accumulations, the status of the primary international research and development (R&D) programs, and the remaining science and technological challenges facing the commercialization of production. After a brief examination of GH accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate-production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical-simulation capabilities are quite advanced and that the related gaps either are not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of GH deposits and determine that there are consistent indications of a large production potential at high rates across long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets; (b) methods to maximize production; and (c) some of the conditions and characteristics that render certain GH deposits undesirable for production. Copyright ?? 2009 Society of Petroleum Engineers.

  19. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D.

    2008-01-01

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production. Copyright 2008, Society of Petroleum Engineers.

  20. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.

    PubMed

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-09-12

    Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.

  1. A GIS model predicting potential distributions of a lineage: a test case on hermit spiders (Nephilidae: Nephilengys).

    PubMed

    Năpăruş, Magdalena; Kuntner, Matjaž

    2012-01-01

    Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change.

  2. A GIS Model Predicting Potential Distributions of a Lineage: A Test Case on Hermit Spiders (Nephilidae: Nephilengys)

    PubMed Central

    Năpăruş, Magdalena; Kuntner, Matjaž

    2012-01-01

    Background Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. Methodology/Principal Findings We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Conclusions Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change. PMID:22238692

  3. Sensitivity of Rabbit Ventricular Action Potential and Ca2+ Dynamics to Small Variations in Membrane Currents and Ion Diffusion Coefficients

    PubMed Central

    Lo, Yuan Hung; Peachey, Tom; Abramson, David; McCulloch, Andrew

    2013-01-01

    Little is known about how small variations in ionic currents and Ca2+ and Na+ diffusion coefficients impact action potential and Ca2+ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004) to 5%–10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca2+ peaks are highly sensitive to 10% increase in L-type Ca2+ current; moderately influenced by 10% increase in Na+-Ca2+ exchanger, Na+-K+ pump, rapid delayed and slow transient outward K+ currents, and Cl− background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca2+ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca2+ channels and Na+-Ca2+ exchanger in between junctional and submembrane spaces while Ca2+-activated Cl−-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca2+, but not in Na+ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca2+ signaling. PMID:24222910

  4. Will climate change impact the potential distribution of a native vine (Merremia peltata) which is behaving invasively in the Pacific region?

    PubMed

    Taylor, Subhashni; Kumar, Lalit

    2016-02-01

    Merremia peltata is a species with uncertain status in the island nations of the Pacific region. It has been designated introduced and invasive in some countries whereas it is considered native in others. Recent increase in its abundance across some island landscapes have led to calls for its designation as an invasive species of environmental concern with biological control being suggested as a control strategy. Climate change will add to the complications of managing this species since changes in climate will influence its range limits. In this study, we develop a process-oriented niche model of M. peltata using CLIMEX to investigate the impacts of climate change on its potential distribution. Information on the climatic requirements of M. peltata and its current geographic distribution were used to calibrate the model. The results indicate that under current climate, 273,132 km(2) of the land area in the region is climatically unsuitable or marginal for M. peltata whereas 664,524 km(2) is suitable to highly suitable. Under current climate, areas of climatic suitability for M. peltata were identified on the archipelagos of Fiji, Papua New Guinea, Solomon Islands and Vanuatu. By the end of the century, some archipelagos like Fiji, Hawaii, New Caledonia and Vanuatu will probably become more suitable while PNG and Solomon Islands become less suitable for M. peltata. The results can be used to inform biosecurity planning, management and conservation strategies on islands.

  5. COMPARISON OF MYCOBACTERIUM AVIUM ISOLATES FROM A DRINKING WATER DISTRIBUTION SYSTEM AND FROM THE POPULATION SERVED BY THE SYSTEM

    EPA Science Inventory

    Background: Current evidence suggests that drinking water, soil, and produce are potential sources of Mycobacterium avium infections, a pathogen not known to be transmitted person-to-person.

    Methods: We sampled water during 2000-2002 from a large municipal drinking water ...

  6. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Systems Biology Approach

    EPA Science Inventory

    Ensuring chemical safety and sustainability form a main priority of the U.S. Environmental Protection Agency. This entails efforts on multiple fronts to characterize the potential hazard posed by chemicals currently in use and those to be commercialized in the future. The use of ...

  7. Threatened, endangered, and vulnerable species of terrestrial vertebrates in the Rocky Mountain Region

    Treesearch

    Deborah M. Finch

    1991-01-01

    This report describes the current status of 67 threatened, endangered, and vulnerable wildlife species in the Rocky Mountain Region of the U.S. Forest Service. Known or potential reasons for population declines and species susceptibility are identified; and distributions, habitats, specialized needs, and perceived threats of individual species are discusses.

  8. Current and Future Potential Risk of Establishment of Grapholita molesta (Lepidoptera: Tortricidae) in Washington State

    USDA-ARS?s Scientific Manuscript database

    The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), is a primary pest of stone fruits in many countries, including the United States. The distribution of this pest is concentrated in areas receiving higher than lower rainfall. It prefers sites where stone fruits and apple...

  9. Landforms, Geology, and Soils of the MOFEP Study Area

    Treesearch

    Dennis Meinert; Tim Nigh; John Kabrick

    1997-01-01

    We summarize important landform, geological, and soil characteristics that affect the distribution of plants and animals at the MOFEP sites and that can potentially affect the observed response to MOFEP experimental treatments. The Missouri Ozark Forest Ecosystem Project (MOFEP) is located within the Current River Hills Subsection of the Ozark Highlands Section. The...

  10. The current distribution, predictive modeling, and restoration potential of red spruce in West Virginia

    Treesearch

    Gregory Nowacki; Dan Wendt

    2010-01-01

    The environmental relationships of red spruce (Picea rubens Sarg.) were assessed in east-central West Virginia. Although many significant relationships existed, red spruce was most strongly associated with elevation, climate, and soil moisture factors. Specifically, red spruce was positively associated with elevation, number of frost days, mean...

  11. Evaluator and Program Manager Perceptions of Evaluation Capacity and Evaluation Practice

    ERIC Educational Resources Information Center

    Fierro, Leslie A.; Christie, Christina A.

    2017-01-01

    The evaluation community has demonstrated an increased emphasis and interest in evaluation capacity building in recent years. A need currently exists to better understand how to measure evaluation capacity and its potential outcomes. In this study, we distributed an online questionnaire to managers and evaluation points of contact working in…

  12. Regime shifts and weakened environmental gradients in open oak and pine ecosystems

    Treesearch

    Brice B. Hanberry; Dan C. Dey; Hong S. He

    2012-01-01

    Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition,...

  13. AN ALTERNATIVE METHOD FOR ESTABLISHING TEFS FOR DIOXIN-LIKE COMPOUNDS. PART 3. DEVEOPMENT OF WEIGHTED DISTRIBUTIONS OF REPS FOR PCB 126 AND 2,3,4,7,8-PECDF

    EPA Science Inventory

    Currently, regulatory agencies utilize the toxic equivalency factor (TEF) approach to evaluate potential health risks associated with exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (PCBs). Th...

  14. Could natural selection change the geographic range limits of light brown apple moth (Lepidoptera, Tortricidae) in North America?

    Treesearch

    Amy C. Morey; Robert C. Venette; William D. Hutchison

    2013-01-01

    We artificially selected for increased freeze tolerance in the invasive light brown apple moth. Our results suggest that, by not accounting for adaptation to cold, current models of potential geographic distributions could underestimate the areas at risk of exposure to this species.

  15. Model of lightning strike to a steel reinforce structure using PSpice

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-03-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.

  16. Evolution simulation of lightning discharge based on a magnetohydrodynamics method

    NASA Astrophysics Data System (ADS)

    Fusheng, WANG; Xiangteng, MA; Han, CHEN; Yao, ZHANG

    2018-07-01

    In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user-defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.

  17. Ecological Niche Modeling for the Prediction of the Geographic Distribution of Cutaneous Leishmaniasis in Tunisia

    PubMed Central

    Chalghaf, Bilel; Chlif, Sadok; Mayala, Benjamin; Ghawar, Wissem; Bettaieb, Jihène; Harrabi, Myriam; Benie, Goze Bertin; Michael, Edwin; Salah, Afif Ben

    2016-01-01

    Cutaneous leishmaniasis is a very complex disease involving multiple factors that limit its emergence and spatial distribution. Prediction of cutaneous leishmaniasis epidemics in Tunisia remains difficult because most of the epidemiological tools used so far are descriptive in nature and mainly focus on a time dimension. The purpose of this work is to predict the potential geographic distribution of Phlebotomus papatasi and zoonotic cutaneous leishmaniasis caused by Leishmania major in Tunisia using Grinnellian ecological niche modeling. We attempted to assess the importance of environmental factors influencing the potential distribution of P. papatasi and cutaneous leishmaniasis caused by L. major. Vectors were trapped in central Tunisia during the transmission season using CDC light traps (John W. Hock Co., Gainesville, FL). A global positioning system was used to record the geographical coordinates of vector occurrence points and households tested positive for cutaneous leishmaniasis caused by L. major. Nine environmental layers were used as predictor variables to model the P. papatasi geographical distribution and five variables were used to model the L. major potential distribution. Ecological niche modeling was used to relate known species' occurrence points to values of environmental factors for these same points to predict the presence of the species in unsampled regions based on the value of the predictor variables. Rainfall and temperature contributed the most as predictors for sand flies and human case distributions. Ecological niche modeling anticipated the current distribution of P. papatasi with the highest suitability for species occurrence in the central and southeastern part of Tunisian. Furthermore, our study demonstrated that governorates of Gafsa, Sidi Bouzid, and Kairouan are at highest epidemic risk. PMID:26856914

  18. Ecological Niche Modeling for the Prediction of the Geographic Distribution of Cutaneous Leishmaniasis in Tunisia.

    PubMed

    Chalghaf, Bilel; Chlif, Sadok; Mayala, Benjamin; Ghawar, Wissem; Bettaieb, Jihène; Harrabi, Myriam; Benie, Goze Bertin; Michael, Edwin; Salah, Afif Ben

    2016-04-01

    Cutaneous leishmaniasis is a very complex disease involving multiple factors that limit its emergence and spatial distribution. Prediction of cutaneous leishmaniasis epidemics in Tunisia remains difficult because most of the epidemiological tools used so far are descriptive in nature and mainly focus on a time dimension. The purpose of this work is to predict the potential geographic distribution of Phlebotomus papatasi and zoonotic cutaneous leishmaniasis caused by Leishmania major in Tunisia using Grinnellian ecological niche modeling. We attempted to assess the importance of environmental factors influencing the potential distribution of P. papatasi and cutaneous leishmaniasis caused by L. major. Vectors were trapped in central Tunisia during the transmission season using CDC light traps (John W. Hock Co., Gainesville, FL). A global positioning system was used to record the geographical coordinates of vector occurrence points and households tested positive for cutaneous leishmaniasis caused by L. major. Nine environmental layers were used as predictor variables to model the P. papatasi geographical distribution and five variables were used to model the L. major potential distribution. Ecological niche modeling was used to relate known species' occurrence points to values of environmental factors for these same points to predict the presence of the species in unsampled regions based on the value of the predictor variables. Rainfall and temperature contributed the most as predictors for sand flies and human case distributions. Ecological niche modeling anticipated the current distribution of P. papatasi with the highest suitability for species occurrence in the central and southeastern part of Tunisian. Furthermore, our study demonstrated that governorates of Gafsa, Sidi Bouzid, and Kairouan are at highest epidemic risk. © The American Society of Tropical Medicine and Hygiene.

  19. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX.

    PubMed

    Ge, Xuezhen; He, Shanyong; Zhu, Chenyi; Wang, Tao; Xu, Zhichun; Shixiang, Zong

    2018-05-23

    The international invasive and quarantined defoliating insect Hyphantria cunea Drury (Lepidoptera: Arctiidae) causes huge ecological and economic losses in the world. The future climate change may alter the distribution of H. cunea and aggravate the damage. In the present study, we used CLIMEX to project the potential global distribution of H. cunea according to both historical climate data (1950-2000) and future climate warming estimates (2011-2100) to define the impact of climate change. Under the historical climate scenario, we found that H. cunea can survive on every continent, and temperature is the main factor that limits its establishment. With climate change, the suitability will increase in middle and high latitude regions, while decrease in the low latitude regions. Besides, tropic regions will be most sensitive to the climate change impacts for the pest to survive. The impacts of climate change will also increase over time, whether the positive impacts or negative impacts. The projected potential distributions provide a theoretical basis for quarantine and control strategies for the management of this pest in each country. Furthermore, these results provide substantial guidance for studies of the effects of climate change on other major forest pests. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    NASA Astrophysics Data System (ADS)

    Liu, Manwen; Li, Zheng

    2018-05-01

    Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  1. Using Citizen Science Data to Model the Distributions of Common Songbirds of Turkey Under Different Global Climatic Change Scenarios

    PubMed Central

    Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H.; Bilgin, Raşit

    2013-01-01

    In this study, we evaluated the potential impact of climate change on the distributions of Turkey’s songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey’s songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges. PMID:23844151

  2. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios.

    PubMed

    Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H; Bilgin, Raşit

    2013-01-01

    In this study, we evaluated the potential impact of climate change on the distributions of Turkey's songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey's songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges.

  3. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.

    PubMed

    Keh, Huan J; Ding, Jau M

    2003-07-15

    An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.

  4. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere.

    PubMed

    Shimoyama, M; Oyama, K-I; Abe, T; Yau, A W

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (

  5. Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change.

    PubMed

    Kaky, Emad; Gilbert, Francis

    2017-01-01

    Climate change is one of the most difficult of challenges to conserving biodiversity, especially for countries with few data on the distributions of their taxa. Species distribution modelling is a modern approach to the assessment of the potential effects of climate change on biodiversity, with the great advantage of being robust to small amounts of data. Taking advantage of a recently validated dataset, we use the medicinal plants of Egypt to identify hotspots of diversity now and in the future by predicting the effect of climate change on the pattern of species richness using species distribution modelling. Then we assess how Egypt's current Protected Area network is likely to perform in protecting plants under climate change. The patterns of species richness show that in most cases the A2a 'business as usual' scenario was more harmful than the B2a 'moderate mitigation' scenario. Predicted species richness inside Protected Areas was higher than outside under all scenarios, indicating that Egypt's PAs are well placed to help conserve medicinal plants.

  6. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  7. Lunar Regolith Simulant User's Guide

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Rickman, D. L.; McLemore, C. A.; Fikes, J. C.

    2010-01-01

    Based on primary characteristics, currently or recently available lunar regolith simulants are discussed from the perspective of potential experimental uses. The characteristics used are inherent properties of the material rather than their responses to behavioral (geomechanical, physiochemical, etc.) tests. We define these inherent or primary properties to be particle composition, particle size distribution, particle shape distribution, and bulk density. Comparable information about lunar materials is also provided. It is strongly emphasized that anyone considering either choosing or using a simulant should contact one of the members of the simulant program listed at the end of this document.

  8. Direct current resistivity profiling to study distribution of water in the unsaturated zone near the Amargosa Desert Research Site, Nevada

    USGS Publications Warehouse

    Abraham, Jared D.; Lucius, Jeffrey E.

    2004-01-01

    In order to study the distribution of water in the unsaturated zone and potential for ground-water recharge near the Amargosa Desert Research Site south of Beatty, Nevada, the U.S. Geological Survey collected direct-current resistivity measurements along three profiles in May 2003 using an eight-channel resistivity imaging system. Resistivity data were collected along profiles across the ADRS, across a poorly incised (distributary) channel system of the Amargosa River southwest of the ADRS, and across a well-incised flood plain of the Amargosa River northwest of the ADRS.This report describes results of an initial investigation to estimate the distribution of water in the unsaturated zone and to evaluate the shallow subsurface stratigraphy near the ADRS. The geophysical method of dc resistivity was employed by using automated data collection with numerous electrodes. "Cross sections" of resistivity, produced by using an inversion algorithm on the field data, at the three field sites are presented and interpreted.

  9. Wintering Sandhill Crane exposure to wind energy development in the central and southern Great Plains, USA

    USGS Publications Warehouse

    Pearse, Aaron T.; Brandt, David; Krapu, Gary

    2016-01-01

    Numerous wind energy projects have been constructed in the central and southern Great Plains, USA, the main wintering area for midcontinental Sandhill Cranes (Grus canadensis). In an initial assessment of the potential risks of wind towers to cranes, we estimated spatial overlap, investigated potential avoidance behavior, and determined the habitat associations of cranes. We used data from cranes marked with platform transmitting terminals (PTTs) with and without global positioning system (GPS) capabilities. We estimated the wintering distributions of PTT-marked cranes prior to the construction of wind towers, which we compared with current tower locations. Based on this analysis, we found 7% spatial overlap between the distributions of cranes and towers. When we looked at individually marked cranes, we found that 52% would have occurred within 10 km of a tower at some point during winter. Using data from cranes marked after tower construction, we found a potential indication of avoidance behavior, whereby GPS-marked cranes generally used areas slightly more distant from existing wind towers than would be expected by chance. Results from a habitat selection model suggested that distances between crane locations and towers may have been driven more by habitat selection than by avoidance, as most wind towers were constructed in locations not often selected by wintering cranes. Our findings of modest regional overlap and that few towers have been placed in preferred crane habitat suggest that the current distribution of wind towers may be of low risk to the continued persistence of wintering midcontinental Sandhill Cranes in the central and southern Great Plains.

  10. Glacial Refugia and Future Habitat Coverage of Selected Dactylorhiza Representatives (Orchidaceae)

    PubMed Central

    2015-01-01

    The intensively discussed taxonomic complexity of the Dactylorhiza genus is probably correlated with its migration history during glaciations and interglacial periods. Previous studies on past processes affecting the current distribution of Dactylorhiza species as well as the history of the polyploid complex formation were based only on molecular data. In the present study the ecological niche modeling (ENM) technique was applied in order to describe the distribution of potential refugia for the selected Dactylorhiza representatives during the Last Glacial Maximum. Additionally, future changes in their potential habitat coverage were measured with regard to three various climatic change scenarios. The maximum entropy method was used to create models of suitable niche distribution. A database of Dactylorhiza localities was prepared on the grounds of information collected from literature and data gathered during field works. Our research indicated that the habitats of majority of the studied taxa will decrease by 2080, except for D. incarnata var. incarnata, for which suitable habitats will increase almost two-fold in the global scale. Moreover, the potential habitats of some taxa are located outside their currently known geographical ranges, e.g. the Aleutian Islands, the western slopes of the Rocky Mountains, Newfoundland, southern Greenland and Iceland. ENM analysis did not confirm that the Balkans, central Europe or central Russia served as the most important refugia for individual representatives of the Dactylorhiza incarnata/maculata complex. Our study rather indicated that the Black Sea coast, southern Apennines and Corsica were the main areas characterized by habitats suitable for most of the taxa. PMID:26599630

  11. The Impact of Global Climate Change on the Geographic Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil

    NASA Astrophysics Data System (ADS)

    Nabout, João Carlos; Magalhães, Mara Rúbia; de Amorim Gomes, Marcos Aurélio; da Cunha, Hélida Ferreira

    2016-04-01

    The global Climate change may affect biodiversity and the functioning of ecosystems by changing the appropriate locations for the development and establishment of the species. The Hancornia speciosa, popularly called Mangaba, is a plant species that has potential commercial value and contributes to rural economic activities in Brazil. The aim of this study was to evaluate the impact of global climate change on the potential geographic distribution, productivity, and value of production of H. speciosa in Brazil. We used MaxEnt to estimate the potential geographic distribution of the species in current and future (2050) climate scenarios. We obtained the productivity and value of production for 74 municipalities in Brazil. Moreover, to explain the variation the productivity and value of production, we constructed 15 models based on four variables: two ecological (ecological niche model and the presence of Unity of conservation) and two socio-economic (gross domestic product and human developed index). The models were selected using Akaike Information Criteria. Our results suggest that municipalities currently harvesting H. speciosa will have lower harvest rates in the future (mainly in northeastern Brazil). The best model to explain the productivity was ecological niche model; thus, municipalities with higher productivity are inserted in regions with higher environmental suitability (indicated by niche model). Thus, in the future, the municipalities harvesting H. speciosa will produce less because there will be less suitable habitat for H. speciosa, which in turn will affect the H. speciosa harvest and the local economy.

  12. Currents and Associated Electron Scattering and Bouncing Near the Diffusion Region at Earth's Magnetopause

    NASA Technical Reports Server (NTRS)

    Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.; hide

    2016-01-01

    Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).

  13. Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5°C-4.0°C global warming.

    PubMed

    Takano, Kohei Takenaka; Hibino, Kenshi; Numata, Ayaka; Oguro, Michio; Aiba, Masahiro; Shiogama, Hideo; Takayabu, Izuru; Nakashizuka, Tohru

    2017-12-01

    Rapid expansion of exotic bamboos has lowered species diversity in Japan's ecosystems by hampering native plant growth. The invasive potential of bamboo, facilitated by global warming, may also affect other countries with developing bamboo industries. We examined past (1975-1980) and recent (2012) distributions of major exotic bamboos ( Phyllostachys edulis and P. bambusoides ) in areas adjacent to 145 weather stations in central and northern Japan. Bamboo stands have been established at 17 sites along the latitudinal and altitudinal distributional limit during the last three decades. Ecological niche modeling indicated that temperature had a strong influence on bamboo distribution. Using mean annual temperature and sun radiation data, we reproduced bamboo distribution (accuracy = 0.93 and AUC (area under the receiver operating characteristic curve) = 0.92). These results infer that exotic bamboo distribution has shifted northward and upslope, in association with recent climate warming. Then, we simulated future climate data and projected the climate change impact on the potential habitat distribution of invasive bamboos under different temperature increases (i.e., 1.5°C, 2.0°C, 3.0°C, and 4.0°C) relative to the preindustrial period. Potential habitats in central and northern Japan were estimated to increase from 35% under the current climate (1980-2000) to 46%-48%, 51%-54%, 61%-67%, and 77%-83% under 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming levels, respectively. These infer that the risk areas can increase by 1.3 times even under a 1.5°C scenario and expand by 2.3 times under a 4.0°C scenario. For sustainable ecosystem management, both mitigation and adaptation are necessary: bamboo planting must be carefully monitored in predicted potential habitats, which covers most of Japan.

  14. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  15. Achieving Zero Current for Polar Wind Outflow on Open Flux Tubes Subjected to Large Photoelectron Fluxes

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; Khazanov, G.; Horwitz, J. L.

    1997-01-01

    In this study we investigate how the condition of zero current on open flux tubes with polar wind outflow, subjected to large photoelectron fluxes, can be achieved. We employ a steady state collisionless semikinetic model to determine the density profiles of O(+), H(+), thermal electrons and photoelectrons coming from the ionosphere along with H(+), ions and electrons coming from the magnetosphere. The model solution attains a potential distribution which both satisfies the condition of charge neutrality and zero current. For the range of parameters considered in this study we find that a 45-60 volt discontinuous potential drop may develop to reflect most of the photoelectrons back toward the ionosphere. This develops because the downward flux of electrons from the magnetosphere to the ionosphere on typical open flux tubes (e.g. the polar rain) appears to be insufficient to balance the photoelectron flux from the ionosphere.

  16. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  17. Reconstruction of electrocardiogram using ionic current models for heart muscles.

    PubMed

    Yamanaka, A; Okazaki, K; Urushibara, S; Kawato, M; Suzuki, R

    1986-11-01

    A digital computer model is presented for the simulation of the electrocardiogram during ventricular activation and repolarization (QRS-T waves). The part of the ventricular septum and the left ventricular free wall of the heart are represented by a two dimensional array of 730 homogeneous functional units. Ionic currents models are used to determine the spatial distribution of the electrical activities of these units at each instant of time during simulated cardiac cycle. In order to reconstruct the electrocardiogram, the model is expanded three-dimensionally with equipotential assumption along the third axis and then the surface potentials are calculated using solid angle method. Our digital computer model can be used to improve the understanding of the relationship between body surface potentials and intracellular electrical events.

  18. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis

    PubMed Central

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G. John; Lillo, Francesco; De Villiers, F. André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species’ native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain. PMID:27248830

  19. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    PubMed

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.

  20. Preliminary analysis of the span-distributed-load concept for cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    A simplified computer analysis of the span-distributed-load airplane (in which payload is placed within the wing structure) has shown that the span-distributed-load concept has high potential for application to future air cargo transport design. Significant increases in payload fraction over current wide-bodied freighters are shown for gross weights in excess of 0.5 Gg (1,000,000 lb). A cruise-matching calculation shows that the trend toward higher aspect ratio improves overall efficiency; that is, less thrust and fuel are required. The optimal aspect ratio probably is not determined by structural limitations. Terminal-area constraints and increasing design-payload density, however, tend to limit aspect ratio.

  1. Two-Photon Scanning Photochemical Microscopy: Mapping Ligand-Gated Ion Channel Distributions

    NASA Astrophysics Data System (ADS)

    Denk, Winfried

    1994-07-01

    The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine.

  2. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  3. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  4. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  5. Liver allocation and distribution: time for a change.

    PubMed

    Deshpande, Ranjit; Hirose, Ryutaro; Mulligan, David

    2017-04-01

    Liver allograft allocation has been a topic of hot debate for over a decade. New redistricting changes have been proposed by the Liver and Intestinal Transplant Committee to the existing United Network for Organ Sharing (UNOS) liver allocation policy. The basis of this new proposal is similar to the old one with an aim to distribute organs in a fair, efficient and equitable fashion. In this review, we plan to look in depth at the redistribution proposals thus far, their merits and how they may help patients who do not have adequate access to livers. Many authors have criticized the proposed changes to organ distribution to reduce geographic disparity in access to liver transplantation. Our focus in this article is to bring forth the most recent literature and proposed changes in the current distribution system. We will also mention two other possible methods that have been proposed to redesign distribution using concentric circles and neighborhoods. In this article, we also look at the economics of the redistricting proposal and its effects on transplant centers. The UNOS Liver and Intestinal Transplant Committee has recommended a proposal using the eight-district model with proximity circles and three additional Model for End-Stage Liver Disease (MELD) points with initial sharing MELD threshold of 25 as a starting point to reduce disparity in patient access to deceased donor livers for transplantation. This proposal has met with significant resistance because of concerns of cost, logistics and impact on existing transplant centers. Other methodologies have also been proposed that have the potential to significantly improve our current disparity of access to life-saving organs. Variation in the supply of donor organs vs. the demand or need for liver transplant by geography and the current defined areas of distribution drive this disparity. Cost benefits to the healthcare system in caring for patients with advanced stages of liver disease may outweigh increased costs of transportation and transplantation. The current allocation boundaries are not optimal for liver distribution, as modeled by all suggested solutions thus far. The need to identify a more optimal and equitable allocation/distribution system is paramount.

  6. Preparation of TiO2-Decorated Boron Particles by Wet Ball Milling and their Photoelectrochemical Hydrogen and Oxygen Evolution Reactions

    PubMed Central

    Jung, Hye Jin; Nam, Kyusuk; Sung, Hong-Gye; Hyun, Hyung Soo; Sohn, Youngku; Shin, Weon Gyu

    2016-01-01

    TiO2-coated boron particles were prepared by a wet ball milling method, with the particle size distribution and average particle size being easily controlled by varying the milling operation time. Based on the results from X-ray photoelectron spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy, it was confirmed that the initial oxide layer on the boron particles surface was removed by the wet milling process, and that a new B–O–Ti bond was formed on the boron surface. The uniform TiO2 layer on the 150 nm boron particles was estimated to be 10 nm thick. Based on linear sweep voltammetry, cyclic voltammetry, current-time amperometry, and electrochemical impedance analyses, the potential for the application of TiO2-coated boron particles as a photoelectrochemical catalyst was demonstrated. A current of 250 μA was obtained at a potential of 0.5 V for hydrogen evolution, with an onset potential near to 0.0 V. Finally, a current of 220 μA was obtained at a potential of 1.0 V for oxygen evolution. PMID:28774132

  7. Theory of a cylindrical probe in a collisionless magnetoplasma

    NASA Technical Reports Server (NTRS)

    Laframboise, J. G.; Rubinstein, J.

    1976-01-01

    A theory is presented for a cylindrical electrostatic probe in a collisionless plasma in the case where the probe axis is inclined at an angle to a uniform magnetic field. The theory is applicable to electron collection, and under more restrictive conditions, to ion collection. For a probe at space potential, the theory is exact in the limit where probe radius is much less than Debye length. At attracting probe potentials, the theory yields an upper bound and an adiabatic limit for current collection. At repelling probe potentials, it provides a lower bound. The theory is valid if the ratios of probe radius to Debye length and probe radius to mean gyroradius are not simultaneously large enough to produce extrema in the probe sheath potential. The numerical current calculations are based on the approximation that particle orbits are helices near the probe, together with the use of kinetic theory to relate velocity distributions near the probe to those far from it. Probe characteristics are presented for inclination angles from 0 to 90 deg and for probe-radius mean-gyroradius ratios from 0.1 to infinity. For an angle of 0 deg, the end-effect current is calculated separately.

  8. Benefits of Genomic Insights and CRISPR-Cas Signatures to Monitor Potential Pathogens across Drinking Water Production and Distribution Systems

    PubMed Central

    Zhang, Ya; Kitajima, Masaaki; Whittle, Andrew J.; Liu, Wen-Tso

    2017-01-01

    The occurrence of pathogenic bacteria in drinking water distribution systems (DWDSs) is a major health concern, and our current understanding is mostly related to pathogenic species such as Legionella pneumophila and Mycobacterium avium but not to bacterial species closely related to them. In this study, genomic-based approaches were used to characterize pathogen-related species in relation to their abundance, diversity, potential pathogenicity, genetic exchange, and distribution across an urban drinking water system. Nine draft genomes recovered from 10 metagenomes were identified as Legionella (4 draft genomes), Mycobacterium (3 draft genomes), Parachlamydia (1 draft genome), and Leptospira (1 draft genome). The pathogenicity potential of these genomes was examined by the presence/absence of virulence machinery, including genes belonging to Type III, IV, and VII secretion systems and their effectors. Several virulence factors known to pathogenic species were detected with these retrieved draft genomes except the Leptospira-related genome. Identical clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) genetic signatures were observed in two draft genomes recovered at different stages of the studied system, suggesting that the spacers in CRISPR-Cas could potentially be used as a biomarker in the monitoring of Legionella related strains at an evolutionary scale of several years across different drinking water production and distribution systems. Overall, metagenomics approach was an effective and complementary tool of culturing techniques to gain insights into the pathogenic characteristics and the CRISPR-Cas signatures of pathogen-related species in DWDSs. PMID:29097994

  9. Retarding potential analyzer for the Pioneer-Venus Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.

    1979-01-01

    The retarding potential analyzer on the Pioneer-Venus Orbiter Mission has been designed to measure most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. To accomplish these measurements on a spinning vehicle with a small telemetry bit rate, several functions, including decision functions not previously used in RPA's, have been developed and incorporated into this instrument. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection. Extensive numerical simulation and plasma chamber tests have been conducted to verify adequacy of the design for the Pioneer Mission.

  10. Determining accessibility to dermatologists and teledermatology locations in Kentucky: demonstration of an innovative geographic information systems approach.

    PubMed

    Shannon, Gary William; Buker, Carol Marie

    2010-01-01

    Teledermatology provides a partial solution to the problem of accessibility to dermatology services in underserved areas, yet methodologies to determine the locations and geographic dimensions of these areas and the locational efficiency of remote teledermatology sites have been found wanting. This article illustrates an innovative Geographic Information Systems approach using dermatologists' addresses, U.S. Census population data, and the Topologically Integrated Geographic Encoding and Referencing System. Travel-time-based service areas were calculated and mapped for each dermatologist in the state of Kentucky and for possible locations of several remote teledermatology sites. Populations within the current and possible remote service areas were determined. These populations and associated maps permit assessment of the locational efficiency of the current distribution of dermatologists, location of underserved areas, and the potential contribution of proposed hypothetical teledermatology sites. This approach is a valuable and practical tool for evaluating access to current distributions of dermatologists as well as planning for and implementing teledermatology.

  11. The Importance of the Numerical Resolution of the Laplace Equation in the optimization of a Neuronal Stimulation Technique

    NASA Astrophysics Data System (ADS)

    Faria, Paula

    2010-09-01

    For the past few years, the potential of transcranial direct current stimulation (tDCS) for the treatment of several pathologies has been investigated. Knowledge of the current density distribution is an important factor in optimizing such applications of tDCS. For this goal, we used the finite element method to solve the Laplace equation in a spherical head model in order to investigate the three dimensional distribution of the current density and the variation of its intensity with depth using different electrodes montages: the traditional one with two sponge electrodes and new electrode montages: with sponge and EEG electrodes and with EEG electrodes varying the numbers of electrodes. The simulation results confirm the effectiveness of the mixed system which may allow the use of tDCS and EEG recording concomitantly and may help to optimize this neuronal stimulation technique. The numerical results were used in a promising application of tDCS in epilepsy.

  12. The innovative concept of three-dimensional hybrid receptor modeling

    NASA Astrophysics Data System (ADS)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  13. A critical review on characterization strategies of organic matter for wastewater and water treatment processes.

    PubMed

    Tran, Ngoc Han; Ngo, Huu Hao; Urase, Taro; Gin, Karina Yew-Hoong

    2015-10-01

    The presence of organic matter (OM) in raw wastewater, treated wastewater effluents, and natural water samples has been known to cause many problems in wastewater treatment and water reclamation processes, such as treatability, membrane fouling, and the formation of potentially toxic by-products during wastewater treatment. This paper summarizes the current knowledge on the methods for characterization and quantification of OM in water samples in relation to wastewater and water treatment processes including: (i) characterization based on the biodegradability; (ii) characterization based on particle size distribution; (iii) fractionation based on the hydrophilic/hydrophobic properties; (iv) characterization based on the molecular weight (MW) size distribution; and (v) characterization based on fluorescence excitation emission matrix. In addition, the advantages, disadvantages and applications of these methods are discussed in detail. The establishment of correlations among biodegradability, hydrophobic/hydrophilic fractions, MW size distribution of OM, membrane fouling and formation of toxic by-products potential is highly recommended for further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A 2D forward and inverse code for streaming potential problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.

    2013-12-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  15. 78 FR 32309 - Distribution of Source Material to Exempt Persons and to General Licensees and Revision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... align the requirements with current health and safety standards. Finally, the rule revises, clarifies... potential for uranium and thorium to produce health effects from both chemical toxicity and radiological... impacts to public health and safety. \\1\\ U.S. Department of Health and Human Services, Agency for Toxic...

  16. Managing the Grey Literature of a Discipline through Collaboration: AgEcon Search

    ERIC Educational Resources Information Center

    Kelly, Julia; Letnes, Louise

    2005-01-01

    AgEcon Search, http://www.agecon.lib.umn.edu, is an important and ground-breaking example of an alternative method of delivering current research results to many potential users. AgEcon Search, through a distributed model, collects and disseminates the grey literature of the fields of agricultural and resource economics. The development of this…

  17. Sensitivity of allowable cuts to intensive management.

    Treesearch

    Roger D. Fight; Dennis L. Schweitzer

    1974-01-01

    A sensitivity analysis of allowable cuts on two BLM master units shows that even-flow allowable cuts depend primarily on: (1) assumed long-term growth potential, (2) period that growth increases must be cumulated before they can be removed from the stands on which they occur, and (3) amount and age-class distribution of the initial inventory. Current allowable cut...

  18. Influence of forest structure on the abundance of snowshoe hares in western Wyoming

    Treesearch

    Nathan D. Berg; Eric M. Gese; John R. Squires; Lise M. Aubry

    2012-01-01

    Snowshoe hares (Lepus americanus) are a primary prey species for Canada lynx (Lynx canadensis) in western North America. Lynx management plans require knowledge of potential prey distribution and abundance in the western United States. Whether even-aged regenerating forests or multi-storied forests contain more snowshoe hares is currently unknown. During 2006-...

  19. Evaluating the sources of potential migrant species: implications under climate change

    Treesearch

    Ines Ibanez; James S. Clark; Michael C. Dietze

    2008-01-01

    As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the...

  20. Maximizing species conservation in continental Ecuador: a case of systematic conservation planning for biodiverse regions

    PubMed Central

    Lessmann, Janeth; Muñoz, Jesús; Bonaccorso, Elisa

    2014-01-01

    Ecuador has the largest number of species by area worldwide, but also a low representation of species within its protected areas. Here, we applied systematic conservation planning to identify potential areas for conservation in continental Ecuador, with the aim of increasing the representation of terrestrial species diversity in the protected area network. We selected 809 terrestrial species (amphibians, birds, mammals, and plants), for which distributions were estimated via species distribution models (SDMs), using Maxent. For each species we established conservation goals based on conservation priorities, and estimated new potential protected areas using Marxan conservation planning software. For each selected area, we determined their conservation priority and feasibility of establishment, two important aspects in the decision-making processes. We found that according to our conservation goals, the current protected area network contains large conservation gaps. Potential areas for conservation almost double the surface area of currently protected areas. Most of the newly proposed areas are located in the Coast, a region with large conservation gaps and irreversible changes in land use. The most feasible areas for conservation were found in the Amazon and Andes regions, which encompass more undisturbed habitats, and already harbor most of the current reserves. Our study allows defining a viable strategy for preserving Ecuador's biodiversity, by combining SDMs, GIS-based decision-support software, and priority and feasibility assessments of the selected areas. This approach is useful for complementing protected area networks in countries with great biodiversity, insufficient biological information, and limited resources for conservation. PMID:25360277

  1. Standard reporting for medical apps.

    PubMed

    Albrecht, Urs-Vito; Von Jan, Ute; Pramann, Oliver

    2013-01-01

    Apps running on mobile devices are continually gaining importance, for medical professionals as well as for patients. When used appropriately, they can support their users, have the potential to increase efficiency and to lower costs. However, the information available for "medical apps" that are currently being distributed in the official mobile app stores of different mobile platforms often rather raises than answers questions regarding important aspects such as functionality, limits, data integrity, security and privacy. In this paper, we analyze the current situation, including a basic overview over current reporting and regulatory mechanisms and propose the use of an app-synopsis as step in direction of transparency.

  2. Performance of low-rank QR approximation of the finite element Biot-Savart law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D A; Fasenfest, B J

    2006-01-12

    We are concerned with the computation of magnetic fields from known electric currents in the finite element setting. In finite element eddy current simulations it is necessary to prescribe the magnetic field (or potential, depending upon the formulation) on the conductor boundary. In situations where the magnetic field is due to a distributed current density, the Biot-Savart law can be used, eliminating the need to mesh the nonconducting regions. Computation of the Biot-Savart law can be significantly accelerated using a low-rank QR approximation. We review the low-rank QR method and report performance on selected problems.

  3. The potential impact of invasive woody oil plants on protected areas in China under future climate conditions.

    PubMed

    Dai, Guanghui; Yang, Jun; Lu, Siran; Huang, Conghong; Jin, Jing; Jiang, Peng; Yan, Pengbo

    2018-01-18

    Biodiesel produced from woody oil plants is considered a green substitute for fossil fuels. However, a potential negative impact of growing woody oil plants on a large scale is the introduction of highly invasive species into susceptible regions. In this study, we examined the potential invasion risk of woody oil plants in China's protected areas under future climate conditions. We simulated the current and future potential distributions of three invasive woody oil plants, Jatropha curcas, Ricinus communis, and Aleurites moluccana, under two climate change scenarios (RCP2.6 and RCP8.5) up to 2050 using species distribution models. Protected areas in China that will become susceptible to these species were then identified using a spatial overlay analysis. Our results showed that by 2050, 26 and 41 protected areas would be threatened by these invasive woody oil plants under scenarios RCP2.6 and RCP8.5, respectively. A total of 10 unique forest ecosystems and 17 rare plant species could be potentially affected. We recommend that the invasive potential of woody oil plants be fully accounted for when developing forest-based biodiesel, especially around protected areas.

  4. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.

    PubMed

    Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R

    2016-04-01

    Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas. © 2015 John Wiley & Sons Ltd.

  5. Strangers in Paradise: The biogeographic range expansion of the foraminifera Amphistegina in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Langer, M. R.; Weinmann, A. E.; Rödder, D.; Lötters, S.

    2012-04-01

    Species distribution models (SDMs) have become important tools in biogeography and biodiversity research over the last decades. They are mainly based on the fundamental niche concept and allow the correlative prediction of species' potential distributional ranges by combining occurrence records with information on environmental (e.g. climatic) conditions. The generated environmental envelope of a species is projected into geographic space, thus defining areas of adequate habitat suitability. Here we apply a species distribution model (SDM) to assess potential range expansions of Amphistegina spp. in the Mediterranean Sea under current und future climate conditions. The model uses an environmental envelope of information from localities where amphisteginids are currently known to occur. Amphisteginid foraminifers are a group of circumtropically distributed, larger symbiont-bearing, calcareous foraminifera that have a well-documented record as detectors of historical climate change. They are currently expanding their biogeographic range in the Mediterranean Sea and rapidly progressing northwestward, closely approaching the Adriatic and the Tyrrhenian Sea. The shift in range locally leads to profound ecological changes where amphisteginids have become the dominant species along entire stretches of coastline. Mass deposits of amphisteginids reflect an increased carbonate production and reduced assemblage diversity, and these are likely to trigger major changes in ecosystem functioning. It is anticipated that the ongoing warming trend will convey the northwestward migration of amphisteginid foraminifers. Our model indicates that further warming is likely to cause a northwestward range extension and predicts dispersal through the straits of Sicily, Messina and Otranto into the Tyrrhenian and Adriatic Sea. Rapid proliferation and the extreme abundances of amphisteginid foraminifera affect the dynamic equilibrium of established foraminiferal biotas. In the eastern Mediterranean, diverse assemblages of shallow-water foraminifera are being replaced by monocultures of rapidly spreading amphisteginids. Climate change, through long-term temperature increase, will continue to promote the homogenization of foraminiferal fauna, ultimately leading to a meridionalization of the Mediterranean Sea.

  6. Mechanistic species distribution modeling reveals a niche shift during invasion.

    PubMed

    Chapman, Daniel S; Scalone, Romain; Štefanić, Edita; Bullock, James M

    2017-06-01

    Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual populations. Ignoring such effects could substantially underestimate the extent and impact of invasions. © 2017 by the Ecological Society of America.

  7. Freshwater wetlands: fertile grounds for the invasive Phragmites australis in a climate change context

    PubMed Central

    Tougas-Tellier, Marie-Andrée; Morin, Jean; Hatin, Daniel; Lavoie, Claude

    2015-01-01

    Climate change will likely affect flooding regimes, which have a large influence on the functioning of freshwater riparian wetlands. Low water levels predicted for several fluvial systems make wetlands especially vulnerable to the spread of invaders, such as the common reed (Phragmites australis), one of the most invasive species in North America. We developed a model to map the distribution of potential germination grounds of the common reed in freshwater wetlands of the St. Lawrence River (Québec, Canada) under current climate conditions and used this model to predict their future distribution under two climate change scenarios simulated for 2050. We gathered historical and recent (remote sensing) data on the distribution of common reed stands for model calibration and validation purposes, then determined the parameters controlling the species establishment by seed. A two-dimensional model and the identified parameters were used to simulate the current (2010) and future (2050) distribution of germination grounds. Common reed stands are not widespread along the St. Lawrence River (212 ha), but our model suggests that current climate conditions are already conducive to considerable further expansion (>16,000 ha). Climate change may also exacerbate the expansion, particularly if river water levels drop, which will expose large bare areas propitious to seed germination. This phenomenon may be particularly important in one sector of the river, where existing common reed stands could increase their areas by a factor of 100, potentially creating the most extensive reedbed complex in North America. After colonizing salt and brackishwater marshes, the common reed could considerably expand into the freshwater marshes of North America which cover several million hectares. The effects of common reed expansion on biodiversity are difficult to predict, but likely to be highly deleterious given the competitiveness of the invader and the biological richness of freshwater wetlands. PMID:26380675

  8. Refining climate change projections for organisms with low dispersal abilities: a case study of the Caspian whip snake.

    PubMed

    Sahlean, Tiberiu C; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R

    2014-01-01

    Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as "costs" to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species' dispersal abilities greatly reduced estimated area of potential future distributions.

  9. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    PubMed Central

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  10. Analysis of current distribution in a large superconductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Alamgir, A. K. M.; Harada, Naoyuki; Tsuda, Makoto; Ono, Michitaka; Takano, Hirohisa

    An imbalanced current distribution which is often observed in cable-in-conduit (CIC) superconductors composed of multistaged, triplet type sub-cables, can deteriorate the performance of the coils. It is, hence very important to analyze the current distribution in a superconductor and find out methods to realize a homogeneous current distribution in the conductor. We apply magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and thereby analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of individual layer. We numerically analyze a homogeneous current distribution as a function of the twist pitches of layers, using the fundamental formula. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor.

  11. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  12. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber

    NASA Astrophysics Data System (ADS)

    Ding, Can; Yuan, Zhao; He, Junjia

    2017-10-01

    A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.

  13. Future distribution of tundra refugia in northern Alaska

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Payer, David C.; Cook, Joseph A.; Talbot, Sandra L.

    2013-01-01

    Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.

  14. Impact of climate change on vector transmission of Trypanosoma cruzi (Chagas, 1909) in North America.

    PubMed

    Carmona-Castro, O; Moo-Llanes, D A; Ramsey, J M

    2018-03-01

    Climate change can influence the geographical range of the ecological niche of pathogens by altering biotic interactions with vectors and reservoirs. The distributions of 20 epidemiologically important triatomine species in North America were modelled, comparing the genetic algorithm for rule-set prediction (GARP) and maximum entropy (MaxEnt), with or without topographical variables. Potential shifts in transmission niche for Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) (Chagas, 1909) were analysed for 2050 and 2070 in Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. There were no significant quantitative range differences between the GARP and MaxEnt models, but GARP models best represented known distributions for most species [partial-receiver operating characteristic (ROC) > 1]; elevation was an important variable contributing to the ecological niche model (ENM). There was little difference between niche breadth projections for RCP 4.5 and RCP 8.5; the majority of species shifted significantly in both periods. Those species with the greatest current distribution range are expected to have the greatest shifts. Positional changes in the centroid, although reduced for most species, were associated with latitude. A significant increase or decrease in mean niche elevation is expected principally for Neotropical 1 species. The impact of climate change will be specific to each species, its biogeographical region and its latitude. North American triatomines with the greatest current distribution ranges (Nearctic 2 and Nearctic/Neotropical) will have the greatest future distribution shifts. Significant shifts (increases or decreases) in mean elevation over time are projected principally for the Neotropical species with the broadest current distributions. Changes in the vector exposure threat to the human population were significant for both future periods, with a 1.48% increase for urban populations and a 1.76% increase for rural populations in 2050. © 2017 The Royal Entomological Society.

  15. Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters.

    PubMed

    Khadioli, N; Tonnang, Z E H; Muchugu, E; Ong'amo, G; Achia, T; Kipchirchir, I; Kroschel, J; Le Ru, B

    2014-12-01

    Maize (Zea mays) is a major staple food in Africa. However, maize production is severely reduced by damage caused by feeding lepidopteran pests. In East and Southern Africa, Chilo partellus is one of the most damaging cereal stem borers mainly found in the warmer lowland areas. In this study, it was hypothesized that the future distribution and abundance of C. partellus may be affected greatly by the current global warming. The temperature-dependent population growth potential of C. partellus was studied on artificial diet under laboratory conditions at six constant temperatures (15, 18, 20, 25, 28, 30, 32 and 35 °C), relative humidity of 75±5% and a photoperiod of L12:L12 h. Several non-linear models were fitted to the data to model development time, mortality and reproduction of the insect species. Cohort updating algorithm and rate summation approach were stochastically used for simulating age and stage structure populations and generate life-table parameters. For spatial analysis of the pest risk, three generic risk indices (index of establishment, generation number and activity index) were visualized in the geographical information system component of the advanced Insect Life Cycle modeling (ILCYM) software. To predict the future distribution of C. partellus we used the climate change scenario A1B obtained from WorldClim and CCAFS databases. The maps were compared with available data on the current distribution of C. partellus in Kenya. The results show that the development times of the different stages decreased with increasing temperatures ranging from 18 to 35 °C; at the extreme temperatures, 15 and 38 °C, no egg could hatch and no larvae completed development. The study concludes that C. partellus may potentially expands its range into higher altitude areas, highland tropics and moist transitional regions, with the highest maize potential where the species has not been recorded yet. This has serious implication in terms of food security since these areas produce approximately 80% of the total maize in East Africa.

  16. Electrochemical current noise on aluminum microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaac, J.W.; Hebert, K.R.

    1999-02-01

    Aluminum disk microelectrodes were used to investigate electrochemical current noise in pH 8.8 borate buffer. The current noise spectra, expressed in terms of the current spectral density, had a characteristic two-plateau structure in the experimental bandwidth of 0.05--50 Hz, were potential-independent, and increased proportionally to electrode area. Injection of NaCl solution near the electrode surface, at potentials below that of the onset of pitting corrosion, caused 0.1--1 Hz current fluctuations to appear. From the frequency and area dependence of the current spectral density in the chloride-free solution, it was concluded that the noise arose from a number of discrete, approximatelymore » evenly distributed voltage noise sources positioned electrically in series with the inner barrier layer of the oxide film. A mathematical model for the current noise was developed which described a physical mechanism for noise production based on fluctuations in the widths of cracks or pores in the outer part of the surface film. The model was consistent with the observed area and frequency dependence of the current spectral density, suggesting that the physical process it described is a possible mechanism of noise generation. It could not be determined whether the noise sources were isolated defects or flaws, or pores in an outer precipitated portion of the oxide film.« less

  17. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    PubMed

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival.

  18. Projected Range Contractions of European Protected Oceanic Montane Plant Communities: Focus on Climate Change Impacts Is Essential for Their Future Conservation

    PubMed Central

    Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival. PMID:24752011

  19. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  20. Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.; Hwang, K. S.; Wu, S. T.

    1995-01-01

    Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.

  1. Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming

    NASA Astrophysics Data System (ADS)

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Hare, Jonathan A.; Moret, Skye; Perretti, Charles T.; Saba, Vincent S.

    2017-04-01

    The U.S. Northeast Continental Shelf marine ecosystem has warmed much faster than the global ocean and it is expected that this enhanced warming will continue through this century. Complex bathymetry and ocean circulation in this region have contributed to biases in global climate model simulations of the Shelf waters. Increasing the resolution of these models results in reductions in the bias of future climate change projections and indicates greater warming than suggested by coarse resolution climate projections. Here, we used a high-resolution global climate model and historical observations of species distributions from a trawl survey to examine changes in the future distribution of suitable thermal habitat for various demersal and pelagic species on the Shelf. Along the southern portion of the shelf (Mid-Atlantic Bight and Georges Bank), a projected 4.1 °C (surface) to 5.0 °C (bottom) warming of ocean temperature from current conditions results in a northward shift of the thermal habitat for the majority of species. While some southern species like butterfish and black sea bass are projected to have moderate losses in suitable thermal habitat, there are potentially significant increases for many species including summer flounder, striped bass, and Atlantic croaker. In the north, in the Gulf of Maine, a projected 3.7 °C (surface) to 3.9 °C (bottom) warming from current conditions results in substantial reductions in suitable thermal habitat such that species currently inhabiting this region may not remain in these waters under continued warming. We project a loss in suitable thermal habitat for key northern species including Acadian redfish, American plaice, Atlantic cod, haddock, and thorney skate, but potential gains for some species including spiny dogfish and American lobster. We illustrate how changes in suitable thermal habitat of important commercially fished species may impact local fishing communities and potentially impact major fishing ports along the U.S. Northeast Shelf. Given the complications of multiple drivers including species interactions and fishing pressure, it is difficult to predict exactly how species will shift. However, observations of species distribution shifts in the historical record under ocean warming suggest that temperature will play a primary role in influencing how species fare. Our results provide critical information on the potential for suitable thermal habitat on the U.S. Northeast Shelf for demersal species in the region, and may contribute to the development of ecosystem-based fisheries management strategies in response to climate change.

  2. Potential impacts of projected climate change on vegetation management in Hawai`i Volcanoes National Park

    USGS Publications Warehouse

    Camp, Richard J.; Loh, Rhonda; Berkowitz, S. Paul; Brinck, Kevin W.; Jacobi, James D.; Price, Jonathan; McDaniel, Sierra; Fortini, Lucas B.

    2018-01-01

    Climate change will likely alter the seasonal and annual patterns of rainfall and temperature in Hawai`i. This is a major concern for resource managers at Hawai`i Volcanoes National Park where intensely managed Special Ecological Areas (SEAs), focal sites for managing rare and endangered plants, may no longer provide suitable habitat under future climate. Expanding invasive species’ distributions also may pose a threat to areas where native plants currently predominate. We combine recent climate modeling efforts for the state of Hawai`i with plant species distribution models to forecast changes in biodiversity in SEAs under future climate conditions. Based on this bioclimatic envelope model, we generated projected species range maps for four snapshots in time (2000, 2040, 2070, and 2090) to assess whether the range of 39 native and invasive species of management interest are expected to contract, expand, or remain the same under a moderately warmer and more variable precipitation scenario. Approximately two-thirds of the modeled native species were projected to contract in range, while one-third were shown to increase. Most of the park’s SEAs were projected to lose a majority of the native species modeled. Nine of the 10 modeled invasive species were projected to contract within the park; this trend occurred in most SEAs, including those at low, middle, and high elevations. There was good congruence in the current (2000) distribution of species richness and SEA configuration; however, the congruence between species richness hotspots and SEAs diminished by the end of this century. Over time the projected species-rich hotspots increasingly occurred outside of current SEA boundaries. Our research brought together managers and scientists to increase understanding of potential climate change impacts, and provide needed information to address how plants may respond under future conditions relative to current managed areas.

  3. Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites.

    PubMed

    Megía-Palma, Rodrigo; Martínez, Javier; Cuervo, José J; Belliure, Josabel; Jiménez-Robles, Octavio; Gomes, Verónica; Cabido, Carlos; Pausas, Juli G; Fitze, Patrick S; Martín, José; Merino, Santiago

    2018-05-05

    Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite molecular co-speciation, suggests that parasites of the genus Schellackia co-evolved with their lizard hosts. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  4. Determinants of bird species richness, endemism, and island network roles in Wallacea and the West Indies: is geography sufficient or does current and historical climate matter?

    PubMed Central

    Dalsgaard, Bo; Carstensen, Daniel W; Fjeldså, Jon; Maruyama, Pietro K; Rahbek, Carsten; Sandel, Brody; Sonne, Jesper; Svenning, Jens-Christian; Wang, Zhiheng; Sutherland, William J

    2014-01-01

    Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction-immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong determinant of island richness, endemism and network roles. PMID:25505528

  5. The effect of cardiac electric anisotropy on epicardial potential fields during ventricular repolarization.

    PubMed

    Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B

    1986-11-01

    We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.

  6. Simulation-Based Validation for Four-Dimensional Multi-Channel Ultrasound Current Source Density Imaging

    PubMed Central

    Wang, Zhaohui; Witte, Russell S.

    2015-01-01

    Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247

  7. Reactive power compensator

    DOEpatents

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  8. Reactive Power Compensator.

    DOEpatents

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  9. Temperature and voltage stress dependent dielectric relaxation process of the doped Ba0.67Sr0.33TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2013-09-01

    The current decay characteristic in the time domain is studied in Y3+ and Mn2+ modified Ba0.67Sr0.33TiO3 ceramics under different temperatures (25 °C-213 °C) and voltage stresses (0 V-800 V). The decay of the current is correlated with the overlapping of the relaxation process and leakage current. With respect to the inherent remarkable dielectric nonlinearity, a simple method through curve fitting is derived to differentiate these two currents. Two mechanisms of the relaxation process are proposed: a distribution of the potential barriers mode around room temperature and an electron injection mode at the elevated temperature of 110 °C.

  10. Landscape genetics indicate recently increased habitat fragmentation in African forest-associated chafers.

    PubMed

    Eberle, Jonas; Rödder, Dennis; Beckett, Marc; Ahrens, Dirk

    2017-05-01

    Today, indigenous forests cover less than 0.6% of South Africa's land surface and are highly fragmented. Most forest relicts are very small and typically occur in fire-protected gorges along the eastern Great Escarpment. Yet, they hold a unique and valuable fauna with high endemism and ancient phylogenetic lineages, fostered by long-term climatic stability and complex microclimates. Despite numerous studies on southern African vegetation cover, the current state of knowledge about the natural extension of indigenous forests is rather fragmentary. We use an integrated approach of population-level phylogeography and climatic niche modeling of forest-associated chafer species to assess connectivity and extent of forest habitats since the last glacial maximum. Current and past species distribution models ascertained potential fluctuations of forest distribution and supported a much wider potential current extension of forests based on climatic data. Considerable genetic admixture of mitochondrial and nuclear DNA among many populations and an increase in mean population mutation rate in Extended Bayesian Skyline Plots of all species indicated more extended or better connected forests in the recent past (<5 kya). Genetic isolation of certain populations, as revealed by population differentiation statistics (GST'), as well as landscape connectivity statistics and habitat succession scenarios suggests considerable loss of habitat connectivity. As major anthropogenic influence is likely, conservational actions need to be considered. © 2017 John Wiley & Sons Ltd.

  11. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    NASA Astrophysics Data System (ADS)

    Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.

    2005-08-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.

  12. Reassessing the Crater Distributions on Ganymede and Callisto: Results from Voyager and Galileo, and an Outlook to ESA's JUICE Mission to Jupiter

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Schmedemann, Nico; Neukum, Gerhard; Werner, Stephanie C.; Ivanov, Boris A.; Stephan, Katrin; Jaumann, Ralf; Palumbo, Pasquale

    2014-11-01

    Crater distributions and origin of potential impactors on the Galilean satellites has been an issue of controversial debate. In this work, we review the current knowledge of the cratering record on Ganymede and Callisto and present strategies for further studies using images from ESA’s JUICE mission to Jupiter. Crater distributions in densely cratered units on these two satellites show a complex shape between 20 m and 200 km crater diameter, similar to lunar highland distributions implying impacts of members of a collisionally evolved projectile family. Also, the complex shape predominantly indicates production distributions. No evidence for apex-antapex asymmetries in crater frequency was found, therefore the majority of projectiles (a) preferentially impacted from planetocentric orbits, or (b) the satellites were rotating non-synchronously during a time of heavy bombardment. The currently available imaging data are insufficient to investigate in detail significant changes in the shape of crater distributions with time. Clusters of secondary craters are well mappable and excluded from crater counts, lack of sufficient image coverage at high resolution, however, in many cases impedes the identification of source craters. ESA’s future JUICE mission will study Ganymede as the first icy satellite in the outer Solar system from an orbit under stable viewing conditions. Measurements of crater distributions can be carried out based on global geologic mapping at highest spatial resolutions (10s of meters down to 3 m/pxl).

  13. Assessment of the potential of urban organic carbon dynamics to off-set urban anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Churkina, G.; Wattenbach, M.; Cubasch, U.

    2010-12-01

    The impact of urban systems on current and future global carbon emissions has been a focus of several studies. Many mitigation options in terms of increasing energy efficiency are discussed. However, apart from technical mitigation potential urban systems also have a considerable biogenic potential to mitigate carbon through an optimized management of organic carbon pools of vegetation and soil. Berlin city area comprises almost 50% of areas covered with vegetation or largely covered with vegetation. This potentially offers various areas for carbon mitigation actions. To assess the mitigation potentials our first objective is to estimate how large current vegetation and soil carbon stocks of Berlin are. We use publicly available forest and soil inventories to calculate soil organic carbon of non-pervious areas and forest standing biomass carbon. This research highlights data-gaps and assigns uncertainty ranges to estimated carbon resources. The second objective is to assess the carbon mitigation potential of Berlin’s vegetation and soils using a biogeochemical simulation model. BIOME-BGC simulates carbon-, nitrogen- and water-fluxes of ecosystems mechanistically. First, its applicability for Berlin forests is tested at selected sites. A spatial application gives an estimate of current net carbon fluxes. The application of such a model allows determining the sensitivity of key ecosystem processes (e.g. carbon gains through photosynthesis, carbon losses through decomposition) towards external drivers. This information can then be used to optimise forest management in terms of carbon mitigation. Initial results of Berlin’s current carbon stocks and its spatial distribution and preliminary simulations results will be presented.

  14. A Multi-Scale Distribution Model for Non-Equilibrium Populations Suggests Resource Limitation in an Endangered Rodent

    PubMed Central

    Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.

    2014-01-01

    Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists. PMID:25237807

  15. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

    PubMed

    Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A

    2017-01-01

    Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

  16. Effects of climate change on niche shifts of Pseudotrapelus dhofarensis and Pseudotrapelus jensvindumi (Reptilia: Agamidae) in Western Asia.

    PubMed

    Rounaghi, Iman; Hosseinian Yousefkhani, Seyyed Saeed

    2018-01-01

    Genus Pseudotrapelus has a wide distribution in North Africa and in the Middle East. In the present study, we modeled the habitat suitability of two Omani species of the genus (Pseudotrapelus dhofarensis and Pseudotrapelus jensvindumi) to evaluate the potential effects of climate change on their distribution. Mean diurnal range and precipitation of wettest quarter are the most highly contributed variables for P. jensvindumi and P. dhofarensis, respectively. The potential distribution for P. dhofarensis in the current time covers the southern coastal regions of Oman, Yemen, the Horn of Africa, and Socotra Island, but the suitable regions were reduced in the future prediction and limited to Yemen, Socotra Island, and Oman. There have not been any records of the species outside of Oman. Analysis of habitat suitability for P. jensvindumi indicated that the species is restricted to the Al Hajar Mountain of Oman and the southeast coastal region of Iran, but there are no records of the species from Iran. Because mean diurnal range will not be influenced by climate change in future, the potential distribution of the species is not expected to be changed in 2050. All predicted models were performed with the highest AUC (more than 0.97) using the Maxent method. Investigation to find unknown populations of these two species in Iran, Yemen, and Socotra Island is essential for developing conservation programs in the future.

  17. Hazardous air pollutants in industrial area of Mumbai - India.

    PubMed

    Srivastava, Anjali; Som, Dipanjali

    2007-09-01

    Hazardous Air Pollutants (HAPs) have a potential to be distributed into different component of environment with varying persistence. In the current study fourteen HAPs have been quantified in the air using TO-17 method in an industrial area of Mumbai. The distribution of these HAPs in different environmental compartments have been calculated using multi media mass balance model, TaPL3, along with long range transport potential and persistence. Results show that most of the target compounds partition mostly in air. Phenol and trifluralin, partition predominantly into soil while ethyl benzene and xylene partition predominantly into vegetation compartment. Naphthalene has the highest persistence followed by ethyl benzene, xylene and 1,1,1 trihloro ethane. Long range transport potential is maximum for 1,1,1 trichloroethane. Assessment of human health risk in terms of non-carcinogenic hazard and carcinogenic risk due to exposure to HAPs. have been estimated for industrial workers and residents in the study area considering all possible exposure routes using the output from TaPL3 model. The overall carcinogenic risk for residents and workers are estimated as high as unity along with very high hazard potential.

  18. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk.

    PubMed

    Yan, Zhengyu; Liu, Yanhua; Yan, Kun; Wu, Shengmin; Han, Zhihua; Guo, Ruixin; Chen, Meihong; Yang, Qiulian; Zhang, Shenghu; Chen, Jianqiu

    2017-10-01

    Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQ t  < 1.0, and EEQ t  < 1.0 ng E 2 /L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Lowland tapir distribution and habitat loss in South America.

    PubMed

    Cordeiro, Jose Luis Passos; Fragoso, José M V; Crawshaw, Danielle; Oliveira, Luiz Flamarion B

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  20. Lowland tapir distribution and habitat loss in South America

    PubMed Central

    Fragoso, José M.V.; Crawshaw, Danielle; Oliveira, Luiz Flamarion B.

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management. PMID:27672509

  1. Tree range expansion may be enhanced by escape from negative plant-soil feedbacks.

    PubMed

    McCarthy-Neumann, Sarah; Ibáñez, Inés

    2012-12-01

    Many plant species are expected to shift their distributional ranges in response to global warming. As they arrive at new sites, migrant plant species may be released from their natural soil pathogens and/or deprived of key symbiotic organisms. Under such scenarios plant-soil feedbacks (PSF) will likely have an impact on plant species' ability to establish in new areas. In this study we evaluated the role that PSF may play on the migratory potential of dominant temperate tree species at the northern limit of their distributional range in the Great Lakes region of North America. To test their ability to expand their current range, we assessed seedling establishment, i.e., survival, of local and potential migrant tree species in a field transplant experiment. To test for the presence and strength of PSF, we also assessed seedling survival during establishment in a greenhouse experiment, where the potential migrant species were grown in soils collected within and beyond their distributional ranges. The combination of experiments provided us with a comprehensive understanding of the role of PSF in seedling establishment in new areas. In the field, we found that survival for most migrant species was similar to those of the local community, ensuring that these species could establish in areas beyond their current range. In the greenhouse, we found that the majority of species experienced strong negative conspecific feedbacks mediated by soil biota, but these responses occurred for most species only in low light conditions. Lastly, our combined results indicate that migrant tree species can colonize and may even have enhanced short-term recruitment beyond their ranges due to a lack of conspecific adults (and the resulting negative PSF from these adults).

  2. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) With Special Reference to North America and Europe.

    PubMed

    Kistner, Erica Jean

    2017-12-08

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål; Hemiptera: Pentatomidae), has recently emerged as a harmful pest of horticultural crops in North America and Europe. Native to East Asia, this highly polyphagous insect is spreading rapidly worldwide. Climate change will add further complications to managing this species in terms of both geographic distribution and population growth. This study used CLIMEX to compare potential H. halys distribution under recent and future climate models using one emission scenario (A2) with two different global circulation models, CSIRO Mk3.0 and MIROC-H. Simulated changes in seasonal phenology and voltinism were examined. Under the possible future climate scenarios, suitable range in Europe expands northward. In North America, the suitable H. halys range shifts northward into Canada and contracts from its southern temperature range limits in the United States due to increased heat stress. Prolonged periods of warm temperatures resulted in longer H. halys growing seasons. However, future climate scenarios indicated that rising summer temperatures decrease H. halys growth potential compared to recent climatic conditions, which in turn, may reduce mid-summer crop damage. Climate change may increase the number of H. halys generations produced annually, thereby enabling the invasive insect to become multivoltine in the northern latitudes of North America and Europe where it is currently reported to be univoltine. These results indicate prime horticultural production areas in Europe, the northeastern United States, and southeastern Canada are at greatest risk from H. halys under both current and possible future climates. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Initiation of arcing on tungsten surface exposed to steady state He plasmas

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Noiri, Yasuyuki; Ohno, Noriyasu

    2015-09-01

    Arcing was initiated in steady state helium plasmas by negatively biasing a tungsten electrode to around -500 V. On the tungsten electrode, nanostructures were grown by the plasma irradiation. In this study, we characterized the property of the initiated arcing by measuring the temporal evolutions of the electrode potential and the arc current. The ignition frequency and duration of arcing were presented from the potential measurements; the arc duration was in the range of <10 ms and the distribution altered when changing the biasing voltage. The behavior of arc spots was observed with a fast framing camera. It was shown that the spots split frequently, and sometimes, they run on the surface independently. From the fluctuation of the arc current, the fractal feature of arcing was revealed.

  4. Conduction in titanium dioxide films and metal–TiO{sub 2}–Si structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalygina, V. M.; Egorova, I. M.; Prudaev, I. A.

    2016-08-15

    The effect of the annealing of titanium oxide films on the electrical properties of metal–TiO{sub 2}–n-Si structures is investigated. It is shown that, regardless of the annealing temperature, the conductivity of the structures at positive gate potentials is determined by the space-charge-limited current in the insulator with traps exponentially distributed in terms of energy. At negative gate potentials, the main contribution to the current is provided by the generation of electron–hole pairs in the space-charge region in silicon. The properties of the TiO{sub 2}/n-Si interface depend on the structure and phase state of the oxide film, which are determined bymore » the annealing temperature.« less

  5. New Strategies in Radiation Therapy: Exploiting the Full Potential of Protons

    PubMed Central

    Mohan, Radhe; Mahajan, Anita; Minsky, Bruce D.

    2013-01-01

    Protons provide significant dosimetric advantages compared with photons due to their unique depth-dose distribution characteristics. However, they are more sensitive to the effects of intra- and inter-treatment fraction anatomic variations and uncertainties in treatment setup. Furthermore, in the current practice of proton therapy, the biological effectiveness of protons relative to photons is assumed to have a generic fixed value of 1.1. However, this is a simplification, and it is likely higher in different portions of the proton beam. Current clinical practice and trials have not fully exploited the unique physical and biological properties of protons. Intensity-modulated proton therapy, with its ability to manipulate energies (in addition to intensities), provides an entirely new dimension, which, with ongoing research, has considerable potential to increase the therapeutic ratio. PMID:24077353

  6. New strategies in radiation therapy: exploiting the full potential of protons.

    PubMed

    Mohan, Radhe; Mahajan, Anita; Minsky, Bruce D

    2013-12-01

    Protons provide significant dosimetric advantages compared with photons because of their unique depth-dose distribution characteristics. However, they are more sensitive to the effects of intra- and intertreatment fraction anatomic variations and uncertainties in treatment setup. Furthermore, in the current practice of proton therapy, the biologic effectiveness of protons relative to photons is assumed to have a generic fixed value of 1.1. However, this is a simplification, and it is likely higher in different portions of the proton beam. Current clinical practice and trials have not fully exploited the unique physical and biologic properties of protons. Intensity-modulated proton therapy, with its ability to manipulate energies (in addition to intensities), provides an entirely new dimension, which, with ongoing research, has considerable potential to increase the therapeutic ratio. ©2013 AACR.

  7. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges

    USGS Publications Warehouse

    Mishra, U.; Jastrow, J.D.; Matamala, R.; Hugelius, G.; Koven, C.D.; Harden, Jennifer W.; Ping, S.L.; Michaelson, G.J.; Fan, Z.; Miller, R.M.; McGuire, A.D.; Tarnocai, C.; Kuhry, P.; Riley, W.J.; Schaefer, K.; Schuur, E.A.G.; Jorgenson, M.T.; Hinzman, L.D.

    2013-01-01

    The vast amount of organic carbon (OC) stored in soils of the northern circumpolar permafrost region is a potentially vulnerable component of the global carbon cycle. However, estimates of the quantity, decomposability, and combustibility of OC contained in permafrost-region soils remain highly uncertain, thereby limiting our ability to predict the release of greenhouse gases due to permafrost thawing. Substantial differences exist between empirical and modeling estimates of the quantity and distribution of permafrost-region soil OC, which contribute to large uncertainties in predictions of carbon–climate feedbacks under future warming. Here, we identify research challenges that constrain current assessments of the distribution and potential decomposability of soil OC stocks in the northern permafrost region and suggest priorities for future empirical and modeling studies to address these challenges.

  8. Local adaptation and the evolution of species' ranges under climate change.

    PubMed

    Atkins, K E; Travis, J M J

    2010-10-07

    The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention. 2010 Elsevier Ltd. All rights reserved.

  9. Description of a 20 kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  10. Description of a 20 Kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  11. A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa.

    PubMed

    van Wilgen, B W; Reyers, B; Le Maitre, D C; Richardson, D M; Schonegevel, L

    2008-12-01

    This paper reports an assessment of the current and potential impacts of invasive alien plants on selected ecosystem services in South Africa. We used data on the current and potential future distribution of 56 invasive alien plant species to estimate their impact on four services (surface water runoff, groundwater recharge, livestock production and biodiversity) in five terrestrial biomes. The estimated reductions in surface water runoff as a result of current invasions were >3000 million m(3) (about 7% of the national total), most of which is from the fynbos (shrubland) and grassland biomes; the potential reductions would be more than eight times greater if invasive alien plants were to occupy the full extent of their potential range. Impacts on groundwater recharge would be less severe, potentially amounting to approximately 1.5% of the estimated maximum reductions in surface water runoff. Reductions in grazing capacity as a result of current levels of invasion amounted to just over 1% of the potential number of livestock that could be supported. However, future impacts could increase to 71%. A 'biodiversity intactness index' (the remaining proportion of pre-modern populations) ranged from 89% to 71% for the five biomes. With the exception of the fynbos biome, current invasions have almost no impact on biodiversity intactness. Under future levels of invasion, however, these intactness values decrease to around 30% for the savanna, fynbos and grassland biomes, but to even lower values (13% and 4%) for the two karoo biomes. Thus, while the current impacts of invasive alien plants are relatively low (with the exception of those on surface water runoff), the future impacts could be very high. While the errors in these estimates are likely to be substantial, the predicted impacts are sufficiently large to suggest that there is serious cause for concern.

  12. A review of public policies to procure and distribute kidneys for transplantation.

    PubMed

    Singer, P A

    1990-03-01

    The purpose of this article is to provide an up-to-date review of the current status of frequently changing public policies for the procurement and distribution of donor kidneys for transplantation. Issues in procurement involve the Uniform Anatomical Gift Act, criteria for brain death, routine inquiry/required request policies, and the use of living kidney donors. Issues in distribution involve access to the transplant waiting list and use of the new national point system to select recipients from the list. These public policies are relevant for internists, who often care for potential organ donors and patients with end-stage renal disease. The issues are also relevant for policy-minded physicians because renal transplantation is the paradigm for organ transplant policy.

  13. The effects of acid rain on nitrogen fixation in Western Washington coniferous forests

    Treesearch

    Robert Denison; Bruce Caldwell; Bernard Bormann; Lindell Eldred; Cynthia Swanberg; Steven Anderson

    1976-01-01

    We investigated both the current status of nitrogen fixation in Western Washington forests, and the potential effects of acid rain on this vital process. Even the low concentrations of sulfur dioxide presently found in the Northwest are thought to have an adverse effect on nitrogen fixation by limiting the distribution of the epiphytic nitrogen-fixing lichen, ...

  14. Current and potential use of broadleaf herbs for reestablishing native communities

    Treesearch

    Scott C. Walker; Nancy L. Shaw

    2005-01-01

    Use of forbs for revegetation in the Intermountain West has been problematic due to the large number of species and lack of research data. Some forbs are found in numerous plant communities and distributed over wide geographic ranges while others are more narrowly adapted. Seed sources for revegetation use may be selected from species and ecotypes indigenous to the...

  15. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  16. The Impact of Measurement Error on the Accuracy of Individual and Aggregate SGP

    ERIC Educational Resources Information Center

    McCaffrey, Daniel F.; Castellano, Katherine E.; Lockwood, J. R.

    2015-01-01

    Student growth percentiles (SGPs) express students' current observed scores as percentile ranks in the distribution of scores among students with the same prior-year scores. A common concern about SGPs at the student level, and mean or median SGPs (MGPs) at the aggregate level, is potential bias due to test measurement error (ME). Shang,…

  17. Using environmental and site-specific variables to model current and potential distribution of red spruce forest habitat in West Virginia

    Treesearch

    Nathan Beane; James Rentch

    2010-01-01

    With the extensive loss of presettlement habitat for red spruce, this species is a high priority for restoration in West Virginia. The advent of climate change caused by human activity and the uncertainty of future environmental changes has also raised interests in the protection and restoration of red spruce ecosystems.

  18. Tree-structured sensor fusion architecture for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Iyengar, S. Sitharama; Kashyap, Rangasami L.; Madan, Rabinder N.; Thomas, Daryl D.

    1990-10-01

    An assessment of numerous activities in the field of multisensor target recognition reveals several trends and conditions which are cause for concern. .These concerns are analyzed in terms of their potential impact on the ultimate employment of automatic target recognition in military systems. Suggestions for additional investigation and guidance for current activities are presented with respect to some of the identified concerns.

  19. One-dimensional models of quasi-neutral parallel electric fields

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1981-01-01

    Parallel electric fields can exist in the magnetic mirror geometry of auroral field lines if they conform to the quasineutral equilibrium solutions. Results on quasi-neutral equilibria and on double layer discontinuities were reviewed and the effects on such equilibria due to non-unique solutions, potential barriers and field aligned current flows using as inputs monoenergetic isotropic distribution functions were examined.

  20. Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.

    2016-09-01

    The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.

  1. Nonuniformity of carrier injection and the degradation of blue LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, N. I.; Efremov, A. A.; Rebane, Yu. T.

    The distribution of electroluminescence (EL) intensity over the area and in the course of time before and after the optical degradation of blue InGaN/GaN LEDs is studied. Current-voltage characteristics have been recorded. It is found that the initially bright luminescence near the region of metallization of the p-contact turns weak after the degradation of an LED. The time delay of {approx}20-40 ns is observed in the distribution of EL intensity over the area of LEDs after their degradation. We suppose that a rise in the excess current after degradation is due to the density increasing of the InGaN/GaN interface statesmore » and the formation of an electrical dipole, which lowers the potential barriers in p-GaN and n-GaN layers. The corresponding increase of capacitance leads to a time delay in the spreading of the injection current and in the distribution of the emission brightness over the area. The lateral nonuniformity of the carrier injection into the quantum, well before and after optical degradation, is attributed to diffusion and electromigration of hydrogen, induced by mechanical stress. The metallization of the p-contact may be the source of mechanical stress.« less

  2. Species-free species distribution models describe macroecological properties of protected area networks.

    PubMed

    Robinson, Jason L; Fordyce, James A

    2017-01-01

    Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have narrow geographic distributions, and are thus prone to future shifts away from the climatic conditions in these parks in current climates. In other cases, some parks are broadly similar to large geographic regions surrounding the park or have climatic envelopes that may persist into near-term climate change. Larger parks predict larger climatic envelopes, in current conditions, but on average the predicted area of climate envelopes are smaller in our single future conditions scenario. Individual units in a protected area network may vary in the potential for climate adaptation, and adaptive management strategies for the network should account for the landscape contexts of the geodiversity or climate diversity within individual units. Conservation strategies, including maintaining connectivity, assessing the feasibility of assisted migration and other landscape restoration or enhancements can be optimized using analysis methods to assess the spatial properties of protected area networks in biogeographic and macroecological contexts.

  3. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    PubMed Central

    Christoffersen, Gert R. J.; Laugesen, Jakob L.; Møller, Per; Bredie, Wender L. P.; Schachtman, Todd R.; Liljendahl, Christina; Viemose, Ida

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject’s evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions—from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US. PMID:28983243

  4. Increase in quantity and quality of suitable areas for invasive species as climate changes.

    PubMed

    Bertelsmeier, Cleo; Luque, Gloria M; Courchamp, Franck

    2013-12-01

    As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species' establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima. © 2013 Society for Conservation Biology.

  5. Effects of electron pressure anisotropy on current sheet configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less

  6. Predicting presence and absence of trout (Salmo trutta) in Iran

    PubMed Central

    Mostafavi, Hossein; Pletterbauer, Florian; Coad, Brian W.; Mahini, Abdolrassoul Salman; Schinegger, Rafaela; Unfer, Günther; Trautwein, Clemens; Schmutz, Stefan

    2014-01-01

    Species distribution modelling, as a central issue in freshwater ecology, is an important tool for conservation and management of aquatic ecosystems. The brown trout (Salmo trutta) is a sensitive species which reacts to habitat changes induced by human impacts. Therefore, the identification of suitable habitats is essential. This study explores the potential distribution of brown trout by a species distribution modelling approach for Iran. Furthermore, modelling results are compared to the distribution described in the literature. Areas outside the currently known distribution which may offer potential habitats for brown trout are identified. The species distribution modelling was based on five different modelling techniques: Generalised Linear Model, Generalised Additive Model, Generalised Boosting Model, Classification Tree Analysis and Random Forests, which are finally summarised in an ensemble forecasting approach. We considered four environmental descriptors at the local scale (slope, bankfull width, wetted width, and elevation) and three climatic parameters (mean air temperature, range of air temperature and annual precipitation) which were extracted on three different spatial extents (1/5/10 km). The performance of all models was excellent (≥0.8) according to the TSS (True Skill Statistic) criterion. Slope, mean and range of air temperature were the most important variables in predicting brown trout occurrence. Presented results deepen the knowledge about distribution patterns of brown trout in Iran. Moreover, this study gives a basic background for the future development of assessment methods for riverine ecosystems in Iran. PMID:24707064

  7. Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain).

    PubMed

    Carratalá, A; Moreno-González, R; León, V M

    2017-01-01

    The occurrence and seasonal distribution of polycyclic aromatic hydrocarbons (PAHs) and legacy and current-use pesticides (CUPs) in air were characterized around the Mar Menor lagoon using both active and passive sampling devices. The seasonal distribution of these pollutants was determined at 6 points using passive samplers. Passive sampler sampling rates were estimated for all detected analytes using an active sampler, considering preferentially winter data, due to probable losses in active sampling during summer (high temperatures and solar irradiation). The presence of 28 compounds (14 CUPs, 11 PAHs and 3 organochlorinated pesticides) were detected in air by polyurethane passive sampling. The most commonly detected contaminants (>95% of samples) in air were chlorpyrifos, chlorpyrifos-methyl and phenanthrene. The maximum concentrations corresponded to phenanthrene (6000 pg m -3 ) and chlorpyrifos (4900 pg m -3 ). The distribution of contaminants was spatially and seasonally heterogeneous. The highest concentrations of PAHs were found close to the airport, while the highest concentrations of pesticides were found in the influence area of agricultural fields (western stations). PAH and herbicide concentrations were higher in winter than in the other seasons, although some insecticides such as chlorpyrifos were more abundant in autumn. The presence of PAHs and legacy and current-use pesticides in air confirmed their transference potential to marine coastal areas such as the Mar Menor lagoon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    NASA Technical Reports Server (NTRS)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  9. Water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  10. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Modelling potential/current distribution in microbial electrochemical systems shows how the optimal bioanode architecture depends on electrolyte conductivity.

    PubMed

    Lacroix, Rémy; Da Silva, Serge; Gaig, Monica Viaplana; Rousseau, Raphael; Délia, Marie-Line; Bergel, Alain

    2014-11-07

    The theoretical bases for modelling the distribution of the electrostatic potential in microbial electrochemical systems are described. The secondary potential distribution (i.e. without mass transport limitation of the substrate) is shown to be sufficient to validly address microbial electrolysis cells (MECs). MECs are modelled with two different ionic conductivities of the solution (1 and 5.3 S m(-1)) and two bioanode kinetics (jmax = 5.8 or 34 A m(-2)). A conventional reactor configuration, with the anode and the cathode face to face, is compared with a configuration where the bioanode perpendicular to the cathode implements the electrochemical reaction on its two sides. The low solution conductivity is shown to have a crucial impact, which cancels out the advantages obtained by setting the bioanode perpendicular to the cathode. For the same reason, when the surface area of the anode is increased by multiplying the number of plates, care must be taken not to create too dense anode architecture. Actually, the advantages of increasing the surface area by multiplying the number of plates can be lost through worsening of the electrochemical conditions in the multi-layered anode, because of the increase of the electrostatic potential of the solution inside the anode structure. The model gives the first theoretical bases for scaling up MECs in a rather simple but rigorous way.

  12. Plasma distribution and spacecraft charging modeling near Jupiter

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Divine, N.

    1977-01-01

    To assess the role of spacecraft charging near Jupiter, the plasma distribution in Jupiter's magnetosphere was modeled using data from the plasma analyzer experiments on Pioneer 10 (published results) and on Pioneer 11 (preliminary results). In the model, electron temperatures are kT = 4 eV throughout, whereas proton temperatures range over 100 or equal to kT or equal to 400 eV. The model fluxes and concentrations vary over three orders of magnitude among several corotating regions, including, in order to increasing distance from Jupiter, a plasma void, plasma sphere, sporadic zone, ring current, current sheet, high latitude plasma and magnetosheath. Intermediate and high energy electrons and protons (to 100 MeV) are modeled as well. The models supply the information for calculating particle fluxes to a spacecraft in the Jovian environment. The particle balance equations (including effects of secondary and photoemission) then determine the spacecraft potential.

  13. Isolation and characterization of 10 microsatellite loci in Cneorum tricoccon (Cneoraceae), a Mediterranean relict plant.

    PubMed

    García-Fernández, Alfredo; Lázaro-Nogal, Ana; Traveset, Anna; Valladares, Fernando

    2012-08-01

    The main aim of this study was to isolate and characterize microsatellite loci in Cneorum tricoccon (Cneoraceae), a Mediterranean shrub relict of the early Tertiary, which inhabits western Mediterranean islands and coasts. Microsatellites will be useful for investigating biogeography and landscape genetics across the species distribution range, including current or past gene flow. Seventeen microsatellite loci were characterized, of which 10 were polymorphic and amplified for a total of 56 alleles in three populations of C. tricoccon. The markers revealed average coefficients of expected heterozygosity (H(e) = 0.425), observed heterozygosity (H(o) = 0.282), and inbreeding coefficient value per population (F(IS) = 0.408). These microsatellite primers will potentially be useful in the study of population and landscape genetics, conservation status of isolated populations, island-continental distribution, current or historical movements between populations, and in the investigation of the consequences of dispersal mechanisms of these plants.

  14. MNE software for processing MEG and EEG data

    PubMed Central

    Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.

    2013-01-01

    Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute cortically-constrained minimum-norm current estimates from M/EEG data, is a software package that provides comprehensive analysis tools and workflows including preprocessing, source estimation, time–frequency analysis, statistical analysis, and several methods to estimate functional connectivity between distributed brain regions. The present paper gives detailed information about the MNE package and describes typical use cases while also warning about potential caveats in analysis. The MNE package is a collaborative effort of multiple institutes striving to implement and share best methods and to facilitate distribution of analysis pipelines to advance reproducibility of research. Full documentation is available at http://martinos.org/mne. PMID:24161808

  15. Habitat-Forming Bryozoans in New Zealand: Their Known and Predicted Distribution in Relation to Broad-Scale Environmental Variables and Fishing Effort

    PubMed Central

    Wood, Anna C. L.; Rowden, Ashley A.; Compton, Tanya J.; Gordon, Dennis P.; Probert, P. Keith

    2013-01-01

    Frame-building bryozoans occasionally occur in sufficient densities in New Zealand waters to generate habitat for other macrofauna. The environmental conditions necessary for bryozoans to generate such habitat, and the distributions of these species, are poorly known. Bryozoan-generated habitats are vulnerable to bottom fishing, so knowledge of species’ distributions is essential for management purposes. To better understand these distributions, presence records were collated and mapped, and habitat suitability models were generated (Maxent, 1 km2 grid) for the 11 most common habitat-forming bryozoan species: Arachnopusia unicornis , Cellaria immersa , Cellaria tenuirostris , Celleporariaagglutinans , Celleporinagrandis , Cinctipora elegans , Diaperoecia purpurascens , Galeopsis porcellanicus , Hippomenella vellicata , Hornerafoliacea , and Smittoideamaunganuiensis . The models confirmed known areas of habitat, and indicated other areas as potentially suitable. Water depth, vertical water mixing, tidal currents, and water temperature were useful for describing the distribution of the bryozoan species at broad scales. Areas predicted as suitable for multiple species were identified, and these ‘hotspots’ were compared to fishing effort data. This showed a potential conflict between fishing and the conservation of bryozoan-generated habitat. Fishing impacts are known from some sites, but damage to large areas of habitat-forming bryozoans is likely to have occurred throughout the study area. In the present study, spatial error associated with the use of historic records and the coarse native resolution of the environmental variables limited both the resolution at which the models could be interpreted and our understanding of the ecological requirements of the study species. However, these models show species distribution modelling has potential to further our understanding of habitat-forming bryozoan ecology and distribution. Importantly, comparisons between hotspots of suitable habitat and the distribution of bottom fishing in the study area highlight the need for management measures designed to mitigate the impact of seafloor disturbance on bryozoan-generated habitat in New Zealand waters. PMID:24086460

  16. Habitat-forming bryozoans in New Zealand: their known and predicted distribution in relation to broad-scale environmental variables and fishing effort.

    PubMed

    Wood, Anna C L; Rowden, Ashley A; Compton, Tanya J; Gordon, Dennis P; Probert, P Keith

    2013-01-01

    Frame-building bryozoans occasionally occur in sufficient densities in New Zealand waters to generate habitat for other macrofauna. The environmental conditions necessary for bryozoans to generate such habitat, and the distributions of these species, are poorly known. Bryozoan-generated habitats are vulnerable to bottom fishing, so knowledge of species' distributions is essential for management purposes. To better understand these distributions, presence records were collated and mapped, and habitat suitability models were generated (Maxent, 1 km(2) grid) for the 11 most common habitat-forming bryozoan species: Arachnopusia unicornis, Cellaria immersa, Cellaria tenuirostris, Celleporaria agglutinans, Celleporina grandis, Cinctipora elegans, Diaperoecia purpurascens, Galeopsis porcellanicus, Hippomenella vellicata, Hornera foliacea, and Smittoidea maunganuiensis. The models confirmed known areas of habitat, and indicated other areas as potentially suitable. Water depth, vertical water mixing, tidal currents, and water temperature were useful for describing the distribution of the bryozoan species at broad scales. Areas predicted as suitable for multiple species were identified, and these 'hotspots' were compared to fishing effort data. This showed a potential conflict between fishing and the conservation of bryozoan-generated habitat. Fishing impacts are known from some sites, but damage to large areas of habitat-forming bryozoans is likely to have occurred throughout the study area. In the present study, spatial error associated with the use of historic records and the coarse native resolution of the environmental variables limited both the resolution at which the models could be interpreted and our understanding of the ecological requirements of the study species. However, these models show species distribution modelling has potential to further our understanding of habitat-forming bryozoan ecology and distribution. Importantly, comparisons between hotspots of suitable habitat and the distribution of bottom fishing in the study area highlight the need for management measures designed to mitigate the impact of seafloor disturbance on bryozoan-generated habitat in New Zealand waters.

  17. Estimation of electric fields and current from ground-based magnetometer data

    NASA Technical Reports Server (NTRS)

    Kamide, Y.; Richmond, A. D.

    1984-01-01

    Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.

  18. Uneven biofilm and current distribution in three-dimensional macroporous anodes of bio-electrochemical systems composed of graphite electrode arrays.

    PubMed

    Li, Jun; Hu, Linbin; Zhang, Liang; Ye, Ding-Ding; Zhu, Xun; Liao, Qiang

    2017-03-01

    A 3-D macroporous anode was constructed using different numbers of graphite rod arrays in fixed-volume bio-electrochemical systems (BESs), and the current and biofilm distribution were investigated by dividing the 3-D anode into several subunits. In the fixed-volume chamber, current production was not significantly improved after the electrode number increased to 36. In the case of 100 electrodes, a significant uneven current distribution was found in the macroporous anode. This was attributed to a differential pH distribution, which resulted from proton accumulation inside the macroporous anode. The pH distribution influenced the biofilm development and led to an uneven biofilm distribution. With respect to current generation, the uneven distribution of both the pH and biofilm contributed to the uneven current distribution. The center had a low pH, which led to less biofilm and a lower contribution to the total current, limiting the performance of the BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization and predictability of basin scale SWE distributions using ASO snow depth and SWE retrievals

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.

    2017-12-01

    The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.

  20. Current collection from an unmagnetized plasma: A tutorial

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.

    1990-01-01

    The current collected by a body in an unmagnetized plasma depends in general on: (1) the properties of the plasma; (2) the properties of the body; and (3) the properties of any neutral species that are present. The important plasma properties are the velocity distributions of the plasma particles at a location remote from the body (at infinity), and the Debye length which determines the importance of plasma space charge effects. The important body properties are its surface characteristics, namely the conductivity and secondary yield coefficients. The neutral species affect the current through collisions which impede the flow of current and possibly through ionization of the neutrals which can enhance the current. The technique for calculating the current collected by a body in a plasma is reviewed with special attention given to the distinction between orbit limited and space charge limited regimes, the asymptotic variation of the potential with distance from a body, and the concept of a sheath.

Top