Sample records for current preclinical studies

  1. Tissue Engineering of the Urethra: A Systematic Review and Meta-analysis of Preclinical and Clinical Studies.

    PubMed

    Versteegden, Luuk R M; de Jonge, Paul K J D; IntHout, Joanna; van Kuppevelt, Toin H; Oosterwijk, Egbert; Feitz, Wout F J; de Vries, Rob B M; Daamen, Willeke F

    2017-10-01

    Urethra repair by tissue engineering has been extensively studied in laboratory animals and patients, but is not routinely used in clinical practice. To systematically investigate preclinical and clinical evidence of the efficacy of tissue engineering for urethra repair in order to stimulate translation of preclinical studies to the clinic. A systematic search strategy was applied in PubMed and EMBASE. Studies were independently screened for relevance by two reviewers, resulting in 80 preclinical and 23 clinical studies of which 63 and 13 were selected for meta-analysis to assess side effects, functionality, and study completion. Analyses for preclinical and clinical studies were performed separately. Full circumferential and inlay procedures were assessed independently. Evaluated parameters included seeding of cells and type of biomaterial. Meta-analysis revealed that cell seeding significantly reduced the probability of encountering side effects in preclinical studies. Remarkably though, cells were only sparsely used in the clinic (4/23 studies) and showed no significant reduction of side effects. ln 21 out of 23 clinical studies, decellularized templates were used, while in preclinical studies other biomaterials showed promising outcomes as well. No direct comparison to current clinical practice could be made due to the limited number of randomized controlled studies. Due to a lack of controlled (pre)clinical studies, the efficacy of tissue engineering for urethra repair could not be determined. Meta-analysis outcome measures were similar to current treatment options described in literature. Surprisingly, it appeared that favorable preclinical results, that is inclusion of cells, were not translated to the clinic. Improved (pre)clinical study designs may enhance clinical translation. We reviewed all available literature on urethral tissue engineering to assess the efficacy in preclinical and clinical studies. We show that improvements to (pre)clinical study design is required to improve clinical translation of tissue engineering technologies. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  2. A Flexible, Preclinical, Medical School Curriculum Increases Student Academic Productivity and the Desire to Conduct Future Research

    ERIC Educational Resources Information Center

    Peacock, Justin G.; Grande, Joseph P.

    2015-01-01

    In 2006, small blocks of flexible curriculum time, termed selectives, were implemented in the Mayo Medical School preclinical curriculum. Selectives permitted students to pursue professional endeavors, such as research, service, and career exploration, in the preclinical years. The purpose of this study was to survey current and former Mayo…

  3. Preclinical QSP Modeling in the Pharmaceutical Industry: An IQ Consortium Survey Examining the Current Landscape

    PubMed Central

    Wu, Fan; Bansal, Loveleena; Bradshaw‐Pierce, Erica; Chan, Jason R.; Liederer, Bianca M.; Mettetal, Jerome T.; Schroeder, Patricia; Schuck, Edgar; Tsai, Alice; Xu, Christine; Chimalakonda, Anjaneya; Le, Kha; Penney, Mark; Topp, Brian; Yamada, Akihiro

    2018-01-01

    A cross‐industry survey was conducted to assess the landscape of preclinical quantitative systems pharmacology (QSP) modeling within pharmaceutical companies. This article presents the survey results, which provide insights on the current state of preclinical QSP modeling in addition to future opportunities. Our results call attention to the need for an aligned definition and consistent terminology around QSP, yet highlight the broad applicability and benefits preclinical QSP modeling is currently delivering. PMID:29349875

  4. Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review

    PubMed Central

    Regner, Gabriela G.; Pereira, Patrícia; Leffa, Douglas T.; de Oliveira, Carla; Vercelino, Rafael; Fregni, Felipe; Torres, Iraci L. S.

    2018-01-01

    Epilepsy is a chronic brain syndrome characterized by recurrent seizures resulting from excessive neuronal discharges. Despite the development of various new antiepileptic drugs, many patients are refractory to treatment and report side effects. Non-invasive methods of brain stimulation, such as transcranial direct current stimulation (tDCS), have been tested as alternative approaches to directly modulate the excitability of epileptogenic neural circuits. Although some pilot and initial clinical studies have shown positive results, there is still uncertainty regarding the next steps of investigation in this field. Therefore, we reviewed preclinical and clinical studies using the following framework: (1) preclinical studies that have been successfully translated to clinical studies, (2) preclinical studies that have failed to be translated to clinical studies, and (3) clinical findings that were not previously tested in preclinical studies. We searched PubMed, Web of Science, Embase, and SciELO (2002–2017) using the keywords “tDCS,” “epilepsy,” “clinical trials,” and “animal models.” Our initial search resulted in 64 articles. After applying inclusion and exclusion criteria, we screened 17 full-text articles to extract findings about the efficacy of tDCS, with respect to the therapeutic framework used and the resulting reduction in seizures and epileptiform patterns. We found that few preclinical findings have been translated into clinical research (number of sessions and effects on seizure frequency) and that most findings have not been tested clinically (effects of tDCS on status epilepticus and absence epilepsy, neuroprotective effects in the hippocampus, and combined use with specific medications). Finally, considering that clinical studies on tDCS have been conducted for several epileptic syndromes, most were not previously tested in preclinical studies (Rasmussen's encephalitis, drug resistant epilepsy, and hippocampal sclerosis-induced epilepsy). Overall, most studies report positive findings. However, it is important to underscore that a successful preclinical study may not indicate success in a clinical study, considering the differences highlighted herein. Although most studies report significant findings, there are still important insights from preclinical work that must be tested clinically. Understanding these factors may improve the evidence for the potential use of this technique as a clinical tool in the treatment of epilepsy. PMID:29623027

  5. Adjuvant bisphosphonate treatment for breast cancer: Where are we heading and can the pre-clinical literature help us get there?

    PubMed

    Russell, Kent; Clemons, Mark; Costa, Luis; Addison, Christina L

    2012-06-01

    Bisphosphonates have demonstrated anti-tumour activity in preclinical studies of bone metastatic disease, thus it was natural to transition these agents into the adjuvant cancer therapy setting. Surprisingly, the results of adjuvant breast cancer trials have shown either modest to no benefit or even harm. We sought to explore whether the preclinical results supporting bisphosphonate use provided clues to help explain the current clinical data. Interestingly, the majority of preclinical data suggested that bisphosphonate treatment was more efficacious when administered after the establishment of osseous metastases. This is similar to the findings of one clinical study whereby patients with biopsy evidence of osseous micrometastases derive greater survival benefit from bisphosphonate treatment. Another clinical study found bisphosphonates were associated with increased incidence of visceral metastases, similar to what has been previously published in preclinical models using "preventative" dosing strategies. While the current clinical data suggest bisphosphonates may be more efficacious in post-menopausal or oestrogen depleted patients, or those with hormone receptor positive tumours, to date no appropriately designed preclinical studies have evaluated these effects. Furthermore, putative mechanisms that regulate response to bisphosphonates in other tumour types remain to be evaluated in breast cancer. Despite the initial optimism regarding adjuvant bisphosphonate therapy, the conflicting clinical results from large trials suggest that we should return to the bench to further investigate factors that may influence response to bisphosphonate treatment or identify appropriate characteristics that would indicate the sub-groups of patients most likely to benefit from bisphosphonate treatment.

  6. Management of Leigh syndrome: Current status and new insights.

    PubMed

    Chen, L; Cui, Y; Jiang, D; Ma, C Y; Tse, H-F; Hwu, W-L; Lian, Q

    2018-06-01

    Leigh syndrome (LS) is an inherited mitochondrial encephalopathy associated with gene mutations of oxidative phosphorylation pathway that result in early disability and death in affected young children. Currently, LS is incurable and unresponsive to many treatments, although some case reports indicate that supplements can improve the condition. Many novel therapies are being continuously tested in pre-clinical studies. In this review, we summarize the genetic basis of LS, current treatment, pre-clinical studies in animal models and the management of other mitochondrial diseases. Future therapeutical strategies and challenges are also discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Increasing efficiency of preclinical research by group sequential designs

    PubMed Central

    Piper, Sophie K.; Rex, Andre; Florez-Vargas, Oscar; Karystianis, George; Schneider, Alice; Wellwood, Ian; Siegerink, Bob; Ioannidis, John P. A.; Kimmelman, Jonathan; Dirnagl, Ulrich

    2017-01-01

    Despite the potential benefits of sequential designs, studies evaluating treatments or experimental manipulations in preclinical experimental biomedicine almost exclusively use classical block designs. Our aim with this article is to bring the existing methodology of group sequential designs to the attention of researchers in the preclinical field and to clearly illustrate its potential utility. Group sequential designs can offer higher efficiency than traditional methods and are increasingly used in clinical trials. Using simulation of data, we demonstrate that group sequential designs have the potential to improve the efficiency of experimental studies, even when sample sizes are very small, as is currently prevalent in preclinical experimental biomedicine. When simulating data with a large effect size of d = 1 and a sample size of n = 18 per group, sequential frequentist analysis consumes in the long run only around 80% of the planned number of experimental units. In larger trials (n = 36 per group), additional stopping rules for futility lead to the saving of resources of up to 30% compared to block designs. We argue that these savings should be invested to increase sample sizes and hence power, since the currently underpowered experiments in preclinical biomedicine are a major threat to the value and predictiveness in this research domain. PMID:28282371

  8. Trends in Handheld Computing Among Medical Students

    PubMed Central

    Grasso, Michael A.; Yen, M. Jim; Mintz, Matthew L.

    2005-01-01

    The purpose of this study was to identify trends in the utilization and acceptance of handheld computers (personal digital assistants) among medical students during preclinical and clinical training. These results can be used to identify differences between preclinical and clinical users, differences between current use and idealized use, and perceived limitations of these devices. PMID:16779255

  9. New Kids on the Block: RNA-Based Influenza Virus Vaccines.

    PubMed

    Scorza, Francesco Berlanda; Pardi, Norbert

    2018-04-01

    RNA-based immunization strategies have emerged as promising alternatives to conventional vaccine approaches. A substantial body of published work demonstrates that RNA vaccines can elicit potent, protective immune responses against various pathogens. Consonant with its huge impact on public health, influenza virus is one of the best studied targets of RNA vaccine research. Currently licensed influenza vaccines show variable levels of protection against seasonal influenza virus strains but are inadequate against drifted and pandemic viruses. In recent years, several types of RNA vaccines demonstrated efficacy against influenza virus infections in preclinical models. Additionally, comparative studies demonstrated the superiority of some RNA vaccines over the currently used inactivated influenza virus vaccines in animal models. Based on these promising preclinical results, clinical trials have been initiated and should provide valuable information about the translatability of the impressive preclinical data to humans. This review briefly describes RNA-based vaccination strategies, summarizes published preclinical and clinical data, highlights the roadblocks that need to be overcome for clinical applications, discusses the landscape of industrial development, and shares the authors' personal perspectives about the future of RNA-based influenza virus vaccines.

  10. The Roles of Cigarette Smoking and the Lung in the Transitions between Phases of Preclinical Rheumatoid Arthritis

    PubMed Central

    Sparks, Jeffrey A.; Karlson, Elizabeth W.

    2016-01-01

    While the etiology of rheumatoid arthritis (RA) remains to be fully elucidated, recent research has advanced the understanding of RA pathogenesis to the point where clinical trials for RA prevention are underway. The current paradigm for RA pathogenesis is that individuals progress through distinct preclinical stages prior to the onset of clinically apparent RA. These preclinical RA phases consist of genetic risk, local inflammation, presence of RA-related autoantibodies, asymptomatic systemic inflammation, and early non-specific symptoms prior to clinical seropositive RA. Epidemiologic studies have been important in forming hypotheses related to the biology occurring in preclinical RA. Specifically, studies associating cigarette smoking with overall RA risk as well as transitions between phases of preclinical RA were vital in helping to establish the lung as a potential important initiating site in the pathogenesis of seropositive RA. Herein, we review the epidemiology associating smoking with transitions in preclinical phases of RA as well as the recent literature supporting the lung as a critical site in RA pathogenesis. PMID:26951253

  11. Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges

    PubMed Central

    Day, Chi-Ping; Merlino, Glenn; Van Dyke, Terry

    2015-01-01

    Significant advances have been made in developing novel therapeutics for cancer treatment, and targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The indication is that current preclinical methods are limited in predicting successful outcomes. Such failure exacts enormous cost, both financial and in the quality of human life. This primer explores the current status, promise and challenges of preclinical evaluation in advanced mouse cancer models and briefly addresses emerging models for early-stage preclinical development. PMID:26406370

  12. Impact of ionic current variability on human ventricular cellular electrophysiology.

    PubMed

    Romero, Lucía; Pueyo, Esther; Fink, Martin; Rodríguez, Blanca

    2009-10-01

    Abnormalities in repolarization and its rate dependence are known to be related to increased proarrhythmic risk. A number of repolarization-related electrophysiological properties are commonly used as preclinical biomarkers of arrhythmic risk. However, the variability and complexity of repolarization mechanisms make the use of cellular biomarkers to predict arrhythmic risk preclinically challenging. Our goal is to investigate the role of ionic current properties and their variability in modulating cellular biomarkers of arrhythmic risk to improve risk stratification and identification in humans. A systematic investigation into the sensitivity of the main preclinical biomarkers of arrhythmic risk to changes in ionic current conductances and kinetics was performed using computer simulations. Four stimulation protocols were applied to the ten Tusscher and Panfilov human ventricular model to quantify the impact of +/-15 and +/-30% variations in key model parameters on action potential (AP) properties, Ca(2+) and Na(+) dynamics, and their rate dependence. Simulations show that, in humans, AP duration is moderately sensitive to changes in all repolarization current conductances and in L-type Ca(2+) current (I(CaL)) and slow component of the delayed rectifier current (I(Ks)) inactivation kinetics. AP triangulation, however, is strongly dependent only on inward rectifier K(+) current (I(K1)) and delayed rectifier current (I(Kr)) conductances. Furthermore, AP rate dependence (i.e., AP duration rate adaptation and restitution properties) and intracellular Ca(2+) and Na(+) levels are highly sensitive to both I(CaL) and Na(+)/K(+) pump current (I(NaK)) properties. This study provides quantitative insights into the sensitivity of preclinical biomarkers of arrhythmic risk to variations in ionic current properties in humans. The results show the importance of sensitivity analysis as a powerful method for the in-depth validation of mathematical models in cardiac electrophysiology.

  13. Cardiovascular photodynamic therapy: state of the art

    NASA Astrophysics Data System (ADS)

    Woodburn, Kathryn W.; Rockson, Stanley G.

    2000-05-01

    Photodynamic therapy (PDT) has been used traditionally for oncologic and ophthalmic indications. In addition, the enormous potential for the use of PDT agents in cardiovascular diseases is currently being translated into reality. Preclinical studies with various photosensitizers have demonstrated reduction in atheromatous plaque and prevention of intimal hyperplasia. With recent advances in light-based vascular devices and laser diode technology, the clinical use of cardiovascular photodynamic therapy is even more likely. Two photosensitizers, 5-aminolevulinic acid (ALA) and AntrinR (motexafin lutetium) Injection, are under clinical evaluation with many other agents in preclinical testing. Here, preclinical studies are reviewed and the clinical viability of cardiovascular photodynamic therapy is discussed.

  14. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis.

    PubMed

    Kitz, Jenna; Lowes, Lori E; Goodale, David; Allan, Alison L

    2018-04-28

    The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch ® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.

  15. Animal Research on Nicotine Reduction: Current Evidence and Research Gaps.

    PubMed

    Smith, Tracy T; Rupprecht, Laura E; Denlinger-Apte, Rachel L; Weeks, Jillian J; Panas, Rachel S; Donny, Eric C; Sved, Alan F

    2017-09-01

    A mandated reduction in the nicotine content of cigarettes may improve public health by reducing the prevalence of smoking. Animal self-administration research is an important complement to clinical research on nicotine reduction. It can fill research gaps that may be difficult to address with clinical research, guide clinical researchers about variables that are likely to be important in their own research, and provide policy makers with converging evidence between clinical and preclinical studies about the potential impact of a nicotine reduction policy. Convergence between clinical and preclinical research is important, given the ease with which clinical trial participants can access nonstudy tobacco products in the current marketplace. Herein, we review contributions of preclinical animal research, with a focus on rodent self-administration, to the science of nicotine reduction. Throughout this review, we highlight areas where clinical and preclinical research converge and areas where the two differ. Preclinical research has provided data on many important topics such as the threshold for nicotine reinforcement, the likelihood of compensation, moderators of the impact of nicotine reduction, the impact of environmental stimuli on nicotine reduction, the impact of nonnicotine cigarette smoke constituents on nicotine reduction, and the impact of nicotine reduction on vulnerable populations. Special attention is paid to current research gaps including the dramatic rise in alternative tobacco products, including electronic nicotine delivery systems (ie, e-cigarettes). The evidence reviewed here will be critical for policy makers as well as clinical researchers interested in nicotine reduction. This review will provide policy makers and clinical researchers interested in nicotine reduction with an overview of the preclinical animal research conducted on nicotine reduction and the regulatory implications of that research. The review also highlights the utility of preclinical research for research questions related to nicotine reduction. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Sex Differences in Stroke Therapies

    PubMed Central

    Sohrabji, Farida; Park, Min Jung; Mahnke, Amanda H

    2016-01-01

    Stroke is the 5th leading cause of death and acquired disability in aged populations. Women are disproportionally affected by stroke, having a higher incidence and worse outcomes than men. Numerous preclinical studies have discovered novel therapies for the treatment of stroke, but almost all of these were found to be unsuccessful in clinical trials. Despite known sex differences in occurrence and severity of stroke, few therapeutics, both preclinically and clinically, take into account possible sex differences in treatment. Reanalysis of data from the only currently FDA-approved stroke therapy, tPA, has shown to not only improve stroke outcomes for both sexes, but to also show sexual dimorphism by more robust improvement in stroke outcome in females. Experimental evidence supports the inclusion of sex as a variable in the study of a number of novel stroke drugs and therapies, including preclinical studies of anti-inflammatory drugs (minocycline), stimulators of cell survival (IGF-1), and inhibitors of cell death pathways (pharmacological inhibition of PARP-1, NO production, and caspase activation), as well as in current clinical trials of stem cell therapy and cortical stimulation. Overall, study design and analyses in clinical trials, as well as in preclinical studies, must include both sexes equally, consider possible sex differences in the analyses, and report the differences/similarities in more systemized/structured way to translate promising therapies to both sexes and increase stroke recovery. PMID:27870437

  17. Regulatory considerations on new adjuvants and delivery systems.

    PubMed

    Sesardic, D

    2006-04-12

    New and improved vaccines and delivery systems are increasingly being developed for prevention, treatment and diagnosis of human diseases. Prior to their use in humans, all new biological products must undergo pre-clinical evaluation. These pre-clinical studies are important not only to establish the biological properties of the material and to evaluate its possible risk to the public, but also to plan protocols for subsequent clinical trials from which safety and efficacy can be evaluated. For vaccines, evaluation in pre-clinical studies is particularly important as information gained may also contribute to identifying the optimum composition and formulation process and provide an opportunity to develop suitable indicator tests for quality control. Data from pre-clinical and laboratory evaluation studies, which continue during clinical studies, is used to support an application for marketing authorisation. Addition of a new adjuvant and exploration of new delivery systems for vaccines presents challenges to both manufacturers and regulatory authorities. Because no adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine, pre-clinical and appropriate toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/vaccine combination. Current regulatory requirements for the pharmaceutical and pre-clinical safety assessment of vaccines are insufficient and initiatives are in place to develop more specific guidelines for evaluation of adjuvants in vaccines.

  18. The Role of Three-Dimensional Scaffolds in Treating Long Bone Defects: Evidence from Preclinical and Clinical Literature-A Systematic Review.

    PubMed

    Roffi, Alice; Krishnakumar, Gopal Shankar; Gostynska, Natalia; Kon, Elizaveta; Candrian, Christian; Filardo, Giuseppe

    2017-01-01

    Long bone defects represent a clinical challenge. Bone tissue engineering (BTE) has been developed to overcome problems associated with conventional methods. The aim of this study was to assess the BTE strategies available in preclinical and clinical settings and the current evidence supporting this approach. A systematic literature screening was performed on PubMed database, searching for both preclinical (only on large animals) and clinical studies. The following string was used: "(Scaffold OR Implant) AND (Long bone defect OR segmental bone defect OR large bone defect OR bone loss defect)." The search retrieved a total of 1573 articles: 51 preclinical and 4 clinical studies were included. The great amount of preclinical papers published over the past few years showed promising findings in terms of radiological and histological evidence. Unfortunately, this in vivo situation is not reflected by a corresponding clinical impact, with few published papers, highly heterogeneous and with small patient populations. Several aspects should be further investigated to translate positive preclinical findings into clinical protocols: the identification of the best biomaterial, with both biological and biomechanical suitable properties, and the selection of the best choice between cells, GFs, or their combination through standardized models to be validated by randomized trials.

  19. Standards and Methodological Rigor in Pulmonary Arterial Hypertension Preclinical and Translational Research.

    PubMed

    Provencher, Steeve; Archer, Stephen L; Ramirez, F Daniel; Hibbert, Benjamin; Paulin, Roxane; Boucherat, Olivier; Lacasse, Yves; Bonnet, Sébastien

    2018-03-30

    Despite advances in our understanding of the pathophysiology and the management of pulmonary arterial hypertension (PAH), significant therapeutic gaps remain for this devastating disease. Yet, few innovative therapies beyond the traditional pathways of endothelial dysfunction have reached clinical trial phases in PAH. Although there are inherent limitations of the currently available models of PAH, the leaky pipeline of innovative therapies relates, in part, to flawed preclinical research methodology, including lack of rigour in trial design, incomplete invasive hemodynamic assessment, and lack of careful translational studies that replicate randomized controlled trials in humans with attention to adverse effects and benefits. Rigorous methodology should include the use of prespecified eligibility criteria, sample sizes that permit valid statistical analysis, randomization, blinded assessment of standardized outcomes, and transparent reporting of results. Better design and implementation of preclinical studies can minimize inherent flaws in the models of PAH, reduce the risk of bias, and enhance external validity and our ability to distinguish truly promising therapies form many false-positive or overstated leads. Ideally, preclinical studies should use advanced imaging, study several preclinical pulmonary hypertension models, or correlate rodent and human findings and consider the fate of the right ventricle, which is the major determinant of prognosis in human PAH. Although these principles are widely endorsed, empirical evidence suggests that such rigor is often lacking in pulmonary hypertension preclinical research. The present article discusses the pitfalls in the design of preclinical pulmonary hypertension trials and discusses opportunities to create preclinical trials with improved predictive value in guiding early-phase drug development in patients with PAH, which will need support not only from researchers, peer reviewers, and editors but also from academic institutions, funding agencies, and animal ethics authorities. © 2018 American Heart Association, Inc.

  20. A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis

    PubMed Central

    2011-01-01

    Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis. PMID:21345267

  1. Sex differences in stroke therapies.

    PubMed

    Sohrabji, Farida; Park, Min Jung; Mahnke, Amanda H

    2017-01-02

    Stroke is the fifth leading cause of death and acquired disability in aged populations. Women are disproportionally affected by stroke, having a higher incidence and worse outcomes than men. Numerous preclinical studies have discovered novel therapies for the treatment of stroke, but almost all of these have been shown to be unsuccessful in clinical trials. Despite known sex differences in occurrence and severity of stroke, few preclinical or clinical therapeutics take into account possible sex differences in treatment. Reanalysis of data from studies of tissue plasminogen activator (tPA), the only currently FDA-approved stroke therapy, has shown that tPA improves stroke outcomes for both sexes and also shows sexual dimorphism by more robust improvement in stroke outcome in females. Experimental evidence supports the inclusion of sex as a variable in the study of a number of novel stroke drugs and therapies, including preclinical studies of anti-inflammatory drugs (minocycline), stimulators of cell survival (insulin-like growth factor-1), and inhibitors of cell death pathways (pharmacological inhibition of poly[ADP-ribose] polymerase-1, nitric oxide production, and caspase activation) as well as in current clinical trials of stem cell therapy and cortical stimulation. Overall, study design and analysis in clinical trials as well as in preclinical studies must include both sexes equally, consider possible sex differences in the analyses, and report the differences/similarities in more systematic/structured ways to allow promising therapies for both sexes and increase stroke recovery. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Ischaemic conditioning: pitfalls on the path to clinical translation

    PubMed Central

    Przyklenk, Karin

    2015-01-01

    The development of novel adjuvant strategies capable of attenuating myocardial ischaemia-reperfusion injury and reducing infarct size remains a major, unmet clinical need. A wealth of preclinical evidence has established that ischaemic ‘conditioning’ is profoundly cardioprotective, and has positioned the phenomenon (in particular, the paradigms of postconditioning and remote conditioning) as the most promising and potent candidate for clinical translation identified to date. However, despite this preclinical consensus, current phase II trials have been plagued by heterogeneity, and the outcomes of recent meta-analyses have largely failed to confirm significant benefit. As a result, the path to clinical application has been perceived as ‘disappointing’ and ‘frustrating’. The goal of the current review is to discuss the pitfalls that may be stalling the successful clinical translation of ischaemic conditioning, with an emphasis on concerns regarding: (i) appropriate clinical study design and (ii) the choice of the ‘right’ preclinical models to facilitate clinical translation. PMID:25560903

  3. A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke

    PubMed Central

    Maysami, Samaneh; Wong, Raymond; Pradillo, Jesus M; Denes, Adam; Dhungana, Hiramani; Malm, Tarja; Koistinaho, Jari; Orset, Cyrille; Rahman, Mahbubur; Rubio, Marina; Schwaninger, Markus; Vivien, Denis; Bath, Philip M; Rothwell, Nancy J

    2015-01-01

    Stroke represents a global challenge and is a leading cause of permanent disability worldwide. Despite much effort, translation of research findings to clinical benefit has not yet been successful. Failure of neuroprotection trials is considered, in part, due to the low quality of preclinical studies, low level of reproducibility across different laboratories and that stroke co-morbidities have not been fully considered in experimental models. More rigorous testing of new drug candidates in different experimental models of stroke and initiation of preclinical cross-laboratory studies have been suggested as ways to improve translation. However, to our knowledge, no drugs currently in clinical stroke trials have been investigated in preclinical cross-laboratory studies. The cytokine interleukin 1 is a key mediator of neuronal injury, and the naturally occurring interleukin 1 receptor antagonist has been reported as beneficial in experimental studies of stroke. In the present paper, we report on a preclinical cross-laboratory stroke trial designed to investigate the efficacy of interleukin 1 receptor antagonist in different research laboratories across Europe. Our results strongly support the therapeutic potential of interleukin 1 receptor antagonist in experimental stroke and provide further evidence that interleukin 1 receptor antagonist should be evaluated in more extensive clinical stroke trials. PMID:26661169

  4. Oncolytic Poxviruses

    PubMed Central

    Chan, Winnie M.; McFadden, Grant

    2015-01-01

    Current standard treatments of cancer can prolong survival of many cancer patients but usually do not effectively cure the disease. Oncolytic virotherapy is an emerging therapeutic for the treatment of cancer that exploits replication-competent viruses to selectively infect and destroy cancerous cells while sparing normal cells and tissues. Clinical and/or preclinical studies on oncolytic viruses have revealed that the candidate viruses being tested in trials are remarkably safe and offer potential for treating many classes of currently incurable cancers. Among these candidates are vaccinia and myxoma viruses, which belong to the family Poxviridae and possess promising oncolytic features. This article describes poxviruses that are being developed for oncolytic virotherapy and summarizes the outcomes of both clinical and preclinical studies. Additionally, studies demonstrating superior efficacy when poxvirus oncolytic virotherapy is combined with conventional therapies are described. PMID:25839047

  5. Balancing paediatric anaesthesia: preclinical insights into analgesia, hypnosis, neuroprotection, and neurotoxicity.

    PubMed

    Sanders, R D; Ma, D; Brooks, P; Maze, M

    2008-11-01

    Logistical and ethical reasons make conducting clinical research in paediatric practice difficult, and therefore safe and efficacious advances are dependent on good preclinical research. For example, notable advances have been made in preclinical studies of pain processing that correlate well with patient data. Other areas of paediatric anaesthetic research remain in their infancy including mechanisms of anaesthesia and anaesthetic neuroprotection and neurotoxicity. Animal data have identified the potential 'double-edged' sword of administering anaesthetic agents in the young; although these agents can be neuroprotective in certain circumstances, they can be neurotoxic in others. The potential for this toxicity must be balanced against the importance of providing adequate anaesthesia for which there can be no compromise. We review the current state of preclinical research in paediatric anaesthesia and identify areas which require further exploration in order to provide the foundations for well-conducted clinical trials.

  6. Dissolution DNP for in vivo preclinical studies

    NASA Astrophysics Data System (ADS)

    Comment, Arnaud

    2016-03-01

    The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future.

  7. Preclinical magnetic resonance imaging and systems biology in cancer research: current applications and challenges.

    PubMed

    Albanese, Chris; Rodriguez, Olga C; VanMeter, John; Fricke, Stanley T; Rood, Brian R; Lee, YiChien; Wang, Sean S; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F; Wang, Yue

    2013-02-01

    Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Preclinical Rheumatoid Arthritis (Autoantibodies): An Updated Review

    PubMed Central

    Deane, Kevin D.

    2014-01-01

    Multiple studies demonstrate that there is a period of development of rheumatoid arthritis (RA) during which there are elevations of disease-related biomarkers, including autoantibodies, in the absence of and prior to the development of RA; this period can be termed ‘preclinical RA’. These ‘preclinical’ autoantibodies including rheumatoid factor and antibodies to citrullinated protein antigens, and more recent studies have also identified a wider variety of autoantibodies and a wide range of inflammatory biomarkers. These findings in conjunction with established and emerging data about genetic and environmental risk factors for RA support a model of disease development where certain factors lead to an initial triggering of RA-related autoimmunity that expands over time to the point where symptomatic arthritis classifiable as RA develops. Herein will be reviewed updates in the field, as well as a discussion of current limitations of our understanding of preclinical RA, and potential future directions for study. PMID:24643396

  9. CAP--advancing the evaluation of preclinical Alzheimer disease treatments.

    PubMed

    Reiman, Eric M; Langbaum, Jessica B; Tariot, Pierre N; Lopera, Francisco; Bateman, Randall J; Morris, John C; Sperling, Reisa A; Aisen, Paul S; Roses, Allen D; Welsh-Bohmer, Kathleen A; Carrillo, Maria C; Weninger, Stacie

    2016-01-01

    If we are to find treatments to postpone, reduce the risk of, or completely prevent the clinical onset of Alzheimer disease (AD), we need faster methods to evaluate promising preclinical AD treatments, new ways to work together in support of common goals, and a determination to expedite the initiation and performance of preclinical AD trials. In this article, we note some of the current challenges, opportunities and emerging strategies in preclinical AD treatment. We describe the Collaboration for Alzheimer's Prevention (CAP)-a convening, harmonizing and consensus-building initiative to help stakeholders advance AD prevention research with rigour, care and maximal impact-and we demonstrate the impact of CAP on the goals and design of new preclinical AD trials.

  10. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future.

    PubMed

    Pasipanodya, Jotam; Gumbo, Tawanda

    2011-01-01

    Antimicrobial pharmacokinetic-pharmacodynamic (PK/PD) science and clinical trial simulations have not been adequately applied to the design of doses and dose schedules of antituberculosis regimens because many researchers are skeptical about their clinical applicability. We compared findings of preclinical PK/PD studies of current first-line antituberculosis drugs to findings from several clinical publications that included microbiologic outcome and pharmacokinetic data or had a dose-scheduling design. Without exception, the antimicrobial PK/PD parameters linked to optimal effect were similar in preclinical models and in tuberculosis patients. Thus, exposure-effect relationships derived in the preclinical models can be used in the design of optimal antituberculosis doses, by incorporating population pharmacokinetics of the drugs and MIC distributions in Monte Carlo simulations. When this has been performed, doses and dose schedules of rifampin, isoniazid, pyrazinamide, and moxifloxacin with the potential to shorten antituberculosis therapy have been identified. In addition, different susceptibility breakpoints than those in current use have been identified. These steps outline a more rational approach than that of current methods for designing regimens and predicting outcome so that both new and older antituberculosis agents can shorten therapy duration.

  11. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis

    PubMed Central

    Tashiro, Jun; Rubio, Gustavo A.; Limper, Andrew H.; Williams, Kurt; Elliot, Sharon J.; Ninou, Ioanna; Aidinis, Vassilis; Tzouvelekis, Argyrios; Glassberg, Marilyn K.

    2017-01-01

    Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans. PMID:28804709

  12. CAP—advancing the evaluation of preclinical Alzheimer disease treatments

    PubMed Central

    Reiman, Eric M.; Langbaum, Jessica B.; Tariot, Pierre N.; Lopera, Francisco; Bateman, Randall J.; Morris, John C.; Sperling, Reisa A.; Aisen, Paul S.; Roses, Allen D.; Welsh-Bohmer, Kathleen A.; Carrillo, Maria C.; Weninger, Stacie

    2016-01-01

    If we are to find treatments to postpone, reduce the risk of, or completely prevent the clinical onset of Alzheimer disease (AD), we need faster methods to evaluate promising preclinical AD treatments, new ways to work together in support of common goals, and a determination to expedite the initiation and performance of preclinical AD trials. In this article, we note some of the current challenges, opportunities and emerging strategies in preclinical AD treatment. We describe the Collaboration for Alzheimer’s Prevention (CAP)—a convening, harmonizing and consensus-building initiative to help stakeholders advance AD prevention research with rigour, care and maximal impact—and we demonstrate the impact of CAP on the goals and design of new preclinical AD trials. PMID:26416539

  13. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage.

    PubMed

    Rosenholm, Jessica M; Mamaeva, Veronika; Sahlgren, Cecilia; Lindén, Mika

    2012-01-01

    Nanotechnology may help overcome persisting limitations of current cancer treatment and thus contribute to the creation of more effective, safer and more affordable therapies. While some nanotechnology-based drug delivery systems are already being marketed and others are in clinical trial, most still remain in the preclinical development stage. Mesoporous silica nanoparticles have been highlighted as an interesting drug delivery platform, due to their flexibility and high drug load potential. Although numerous reports demonstrate sophisticated drug delivery mechanisms in vitro, the therapeutic benefit of these systems for in vivo applications have been under continuous debate. This has been due to nontranslatable conditions used in the in vitro studies, as well as contradictory conclusions drawn from preclinical (in vivo) studies. However, recent studies have indicated that the encouraging cellular studies could in fact be repeated also in vivo. Here, we report on these recent advances regarding therapeutic efficacy, targeting and safety issues related to the application of mesoporous silica nanoparticles in cancer therapy.

  14. CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV

    PubMed Central

    Kim, Michelle B.; Giesler, Kyle E.; Tahirovic, Yesim A.; Truax, Valarie M.; Liotta, Dennis C.; Wilson, Lawrence J.

    2018-01-01

    Introduction The chemokine receptor CCR5 has garnered significant attention in recent years as a target to treat HIV infection largely due to the approval and success of the drug Maraviroc. The side effects and inefficiencies with other first generation agents led to failed clinical trials, prompting the development of newer CCR5 antagonists. Areas covered This review aims to survey the current status of ‘next generation’ CCR5 antagonists in the preclinical pipeline with an emphasis on emerging agents for the treatment of HIV infection. These efforts have culminated in the identification of advanced second-generation agents to reach the clinic and the dual CCR5/CCR2 antagonist Cenicriviroc as the most advanced currently in phase II clinical studies. Expert opinion The clinical success of CCR5 inhibitors for treatment of HIV infection has rested largely on studies of Maraviroc and a second-generation dual CCR5/CCR2 antagonist Cenicriviroc. Although research efforts identified several promising preclinical candidates, these were dropped during early clinical studies. Despite patient access to Maraviroc, there is insufficient enthusiasm surrounding its use as front-line therapy for treatment of HIV. The non-HIV infection related development activities for Maraviroc and Cenicriviroc may help drive future interests. PMID:27791451

  15. Physiological remodeling of bifurcation aneurysms: preclinical results of the eCLIPs device.

    PubMed

    Marotta, Thomas R; Riina, Howard A; McDougall, Ian; Ricci, Donald R; Killer-Oberpfalzer, Monika

    2018-02-01

    OBJECTIVE Intracranial bifurcation aneurysms are complex lesions for which current therapy, including simple coiling, balloon- or stent-assisted coiling, coil retention, or intrasaccular devices, is inadequate. Thromboembolic complications due to a large burden of intraluminal metal, impedance of access to side branches, and a high recurrence rate, due largely to the unmitigated high-pressure flow into the aneurysm (water hammer effect), are among the limitations imposed by current therapy. The authors describe herein a novel device, eCLIPs, and its use in a preclinical laboratory study that suggests the device's design and functional features may overcome many of these limitations. METHODS A preclinical model of wide-necked bifurcation aneurysms in rabbits was used to assess functional features and efficacy of aneurysm occlusion by the eCLIPs device. RESULTS The eCLIPs device, in bridging the aneurysm neck, allows coil retention, disrupts flow away from the aneurysm, leaves the main vessel and side branches unencumbered by intraluminal metal, and serves as a platform for endothelial growth across the neck, excluding the aneurysm from the circulation. CONCLUSIONS The eCLIPs device permits physiological remodeling of the bifurcation.

  16. CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success?

    PubMed

    Gerace, Dario; Martiniello-Wilks, Rosetta; Nassif, Najah Therese; Lal, Sara; Steptoe, Raymond; Simpson, Ann Margaret

    2017-03-09

    Due to their ease of isolation, differentiation capabilities, and immunomodulatory properties, the therapeutic potential of mesenchymal stem cells (MSCs) has been assessed in numerous pre-clinical and clinical settings. Currently, whole pancreas or islet transplantation is the only cure for people with type 1 diabetes (T1D) and, due to the autoimmune nature of the disease, MSCs have been utilised either natively or transdifferentiated into insulin-producing cells (IPCs) as an alternative treatment. However, the initial success in pre-clinical animal models has not translated into successful clinical outcomes. Thus, this review will summarise the current state of MSC-derived therapies for the treatment of T1D in both the pre-clinical and clinical setting, in particular their use as an immunomodulatory therapy and targets for the generation of IPCs via gene modification. In this review, we highlight the limitations of current clinical trials of MSCs for the treatment of T1D, and suggest the novel clustered regularly interspaced short palindromic repeat (CRISPR) gene-editing technology and improved clinical trial design as strategies to translate pre-clinical success to the clinical setting.

  17. Pharmacologic therapy for acute pancreatitis

    PubMed Central

    Kambhampati, Swetha; Park, Walter; Habtezion, Aida

    2014-01-01

    While conservative management such as fluid, bowel rest, and antibiotics is the mainstay of current acute pancreatitis management, there is a lot of promise in pharmacologic therapies that target various aspects of the pathogenesis of pancreatitis. Extensive review of preclinical studies, which include assessment of therapies such as anti-secretory agents, protease inhibitors, anti-inflammatory agents, and anti-oxidants are discussed. Many of these studies have shown therapeutic benefit and improved survival in experimental models. Based on available preclinical studies, we discuss potential novel targeted pharmacologic approaches that may offer promise in the treatment of acute pancreatitis. To date a variety of clinical studies have assessed the translational potential of animal model effective experimental therapies and have shown either failure or mixed results in human studies. Despite these discouraging clinical studies, there is a great clinical need and there exist several preclinical effective therapies that await investigation in patients. Better understanding of acute pancreatitis pathophysiology and lessons learned from past clinical studies are likely to offer a great foundation upon which to expand future therapies in acute pancreatitis. PMID:25493000

  18. The bench is closer to the bedside than we think: Uncovering the ethical ties between preclinical researchers in translational neuroscience and patients in clinical trials.

    PubMed

    Yarborough, Mark; Bredenoord, Annelien; D'Abramo, Flavio; Joyce, Nanette C; Kimmelman, Jonathan; Ogbogu, Ubaka; Sena, Emily; Strech, Daniel; Dirnagl, Ulrich

    2018-06-01

    Millions of people worldwide currently suffer from serious neurological diseases and injuries for which there are few, and often no, effective treatments. The paucity of effective interventions is, no doubt, due in large part to the complexity of the disorders, as well as our currently limited understanding of their pathophysiology. The bleak picture for patients, however, is also attributable to avoidable impediments stemming from quality concerns in preclinical research that often escape detection by research regulation efforts. In our essay, we connect the dots between these concerns about the quality of preclinical research and their potential ethical impact on the patients who volunteer for early trials of interventions informed by it. We do so in hopes that a greater appreciation among preclinical researchers of these serious ethical consequences can lead to a greater commitment within the research community to adopt widely available tools and measures that can help to improve the quality of research.

  19. Drugs for solid cancer: the productivity crisis prompts a rethink

    PubMed Central

    Rösel, Daniel; Brábek, Jan; Veselý, Pavel; Fernandes, Michael

    2013-01-01

    Despite remarkable progress in cancer-drug discovery, the delivery of novel, safe, and sustainably effective products to the clinic has stalled. Using Src as a model, we examine key steps in drug development. The preclinical evidence on the relationship between Src and solid cancer is in sharp contrast with the modest anticancer effect noted in conventional clinical trials. Here, we consider Src inhibitors as an example of a promising drug class directed to invasion and metastasis and identify roadblocks in translation. We question the assumption that a drug-induced tumor shrinkage in preclinical and clinical studies predicts a successful outcome. Our analysis indicates that the key areas requiring attention are related, and include preclinical models (in vitro and mouse models), meaningful clinical trial end points, and an appreciation of the role of metastasis in morbidity and mortality. Current regulations do not reflect the natural history of the disease, and may be unrelated to the key complications: local invasion, metastasis, and the development of resistance. Alignment of preclinical and clinical studies and regulations based on mechanistic trial end points and platforms may help in overcoming these roadblocks. Viewed kaleidoscopically, most elements necessary and sufficient for a novel translational paradigm are in place. PMID:23836990

  20. Induction of cellular and molecular immunomodulatory pathways by vitamin A and Flavonoids

    PubMed Central

    Patel, Sapna; Vajdy, Michael

    2016-01-01

    Introduction A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. Areas Covered Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of Vitamin A and select flavonoids in induction of innate and adaptive B and T cell responses, including TH1, TH2 and Treg. Expert Opinion While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immuno-modulatory compounds. PMID:26185959

  1. Neuraxial Analgesia In Neonates And Infants: Review of Clinical and Preclinical Strategies for the Development of Safety and Efficacy Data

    PubMed Central

    Walker, Suellen M.; Yaksh, Tony L.

    2015-01-01

    Neuraxial agents provide robust pain control, have the potential to improve outcomes, and are an important component of the perioperative care of children. Opioids or clonidine improve analgesia when added to perioperative epidural infusions; analgesia is significantly prolonged by addition of clonidine, ketamine, neostigmine or tramadol to single shot caudal injections of local anesthetic; and neonatal intrathecal anesthesia/analgesia is increasing in some centers. However, it is difficult to determine the relative risk-benefit of different techniques and drugs without detailed and sensitive data related to analgesia requirements, side-effects, and follow-up. Current data related to benefits and complications in neonates and infants are summarized, but variability in current neuraxial drug use reflects the relative lack of high quality evidence. Recent preclinical reports of adverse effects of general anesthetics on the developing brain have increased awareness of the potential benefit of neuraxial anesthesia/analgesia to avoid or reduce general anesthetic dose requirements. However, the developing spinal cord is also vulnerable to drug-related toxicity, and although there are well-established preclinical models and criteria for assessing spinal cord toxicity in adult animals, until recently there had been no systematic evaluation during early life. Therefore, the second half of this review presents preclinical data evaluating age-dependent changes in the pharmacodynamic response to different spinal analgesics, and recent studies evaluating spinal toxicity in specific developmental models. Finally, we advocate use of neuraxial agents with the widest demonstrable safety margin and suggest minimum standards for preclinical evaluation prior to adoption of new analgesics or preparations into routine clinical practice. PMID:22798528

  2. Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery: A critical review from basics to current clinical status.

    PubMed

    Haedersdal, Merete; Erlendsson, Andrés M; Paasch, Uwe; Anderson, R Rox

    2016-05-01

    Ablative fractional lasers enhance uptake of topical therapeutics and the concept of fractional laser-assisted drug delivery has now been taken into clinical practice. We systematically reviewed preclinical data and clinical evidence for fractional lasers to enhance drug uptake and improve clinical efficacy. We searched PubMed and Embase databases; 34 articles met the inclusion criteria. Studies were categorized into experimental preclinical studies and clinical trials, the latter graded according to level of evidence. All preclinical trials (n = 16) documented enhanced topical drug uptake into skin after ablative fractional laser treatment. Clinical evidence encompassed 18 studies, of which 9 were randomized controlled trials and 2 were controlled trials, examining neoplastic lesions, photodamaged skin, scars, onychomycosis, and topical anesthetics. The highest level of evidence was reached for actinic keratoses treated with methylaminolevulinate for photodynamic therapy (level IB, 5 randomized controlled trials), substantiating superior and long-lasting efficacy versus conventional photodynamic therapy. No adverse events were reported, but ablative fractional laser-assisted drug delivery implies risks of systemic drug absorption, especially when performed over large skin areas. Fractional laser-assisted drug delivery is beneficial in enhancing preclinical and clinical outcomes for certain skin conditions. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. The failure to detect drug-induced sensory loss in standard preclinical studies.

    PubMed

    Gauvin, David V; Abernathy, Matthew M; Tapp, Rachel L; Yoder, Joshua D; Dalton, Jill A; Baird, Theodore J

    2015-01-01

    Over the years a number of drugs have been approved for human use with limited signs of toxicity noted during preclinical risk assessment study designs but then show adverse events in compliant patients taking the drugs as prescribed within the first few years on the market. Loss or impairments in sensory systems, such as hearing, vision, taste, and smell have been reported to the FDA or have been described in the literature appearing in peer-reviewed scientific journals within the first five years of widespread use. This review highlights the interactive cross-modal compensation within sensory systems that can occur that reduces the likelihood of identifying these losses in less sentient animals used in standard preclinical toxicology and safety protocols. We provide some historical and experimental evidence to substantiate these sensory effects in and highlight the critical importance of detailed training of technicians on basic ethological, species-specific behaviors of all purpose-bred laboratory animals used in these study designs. We propose that the time, effort and cost of training technicians to be better able to identify and document very subtle changes in behavior will serve to increase the likelihood of early detection of biomarkers predictive of drug-induced sensory loss within current standard regulatory preclinical research protocols. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Detection of Elevated Plasma Levels of EGF Receptor Prior to Breast Cancer Diagnosis among Hormone Therapy Users

    PubMed Central

    Pitteri, Sharon J.; Amon, Lynn M.; Buson, Tina Busald; Zhang, Yuzheng; Johnson, Melissa M.; Chin, Alice; Kennedy, Jacob; Wong, Chee-Hong; Zhang, Qing; Wang, Hong; Lampe, Paul D.; Prentice, Ross L.; McIntosh, Martin W.; Hanash, Samir M.; Li, Christopher I.

    2010-01-01

    Applying advanced proteomic technologies to prospectively collected specimens from large studies is one means of identifying preclinical changes in plasma proteins that are potentially relevant to the early detection of diseases like breast cancer. We conducted fourteen independent quantitative proteomics experiments comparing pooled plasma samples collected from 420 estrogen receptor positive (ER+) breast cancer patients ≤17 months prior to their diagnosis and matched controls. Based on the over 3.4 million tandem mass spectra collected in the discovery set, 503 proteins were quantified of which 57 differentiated cases from controls with a p-value<0.1. Seven of these proteins, for which quantitative ELISA assays were available, were assessed in an independent validation set. Of these candidates, epidermal growth factor receptor (EGFR) was validated as a predictor of breast cancer risk in an independent set of preclinical plasma samples for women overall [odds ratio (OR)=1.44, p-value=0.0008], and particularly for current users of estrogen plus progestin (E+P) menopausal hormone therapy (OR=2.49, p-value=0.0001). Among current E+P users EGFR's sensitivity for breast cancer risk was 31% with 90% specificity. While EGFR's sensitivity and specificity are insufficient for a clinically useful early detection biomarker, this study suggests that proteins that are elevated preclinically in women who go on to develop breast cancer can be discovered and validated using current proteomic technologies. Further studies are warranted to both examine the role of EGFR and to discover and validate other proteins that could potentially be used for breast cancer early detection. PMID:20959476

  5. Current preclinical models for the advancement of translational bladder cancer research.

    PubMed

    DeGraff, David J; Robinson, Victoria L; Shah, Jay B; Brandt, William D; Sonpavde, Guru; Kang, Yibin; Liebert, Monica; Wu, Xue-Ru; Taylor, John A

    2013-02-01

    Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care. ©2012 AACR.

  6. A review of vagus nerve stimulation as a therapeutic intervention

    PubMed Central

    Johnson, Rhaya L; Wilson, Christopher G

    2018-01-01

    In this review, we provide an overview of the US Food and Drug Administration (FDA)-approved clinical uses of vagus nerve stimulation (VNS) as well as information about the ongoing studies and preclinical research to expand the use of VNS to additional applications. VNS is currently FDA approved for therapeutic use in patients aged >12 years with drug-resistant epilepsy and depression. Recent studies of VNS in in vivo systems have shown that it has anti-inflammatory properties which has led to more preclinical research aimed at expanding VNS treatment across a wider range of inflammatory disorders. Although the signaling pathway and mechanism by which VNS affects inflammation remain unknown, VNS has shown promising results in treating chronic inflammatory disorders such as sepsis, lung injury, rheumatoid arthritis (RA), and diabetes. It is also being used to control pain in fibromyalgia and migraines. This new preclinical research shows that VNS bears the promise of being applied to a wider range of therapeutic applications. PMID:29844694

  7. Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays.

    PubMed

    Harris, Kate; Aylott, Mike; Cui, Yi; Louttit, James B; McMahon, Nicholas C; Sridhar, Arun

    2013-08-01

    Human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are a potential source to develop assays for predictive electrophysiological safety screening. Published studies show that the relevant physiology and pharmacology exist but does not show the translation between stem cell cardiomyocyte assays and other preclinical safety screening assays, which is crucial for drug discovery and safety scientists and the regulators. Our studies are the first to show the pharmacology of ion channel blockade and compare them with existing functional cardiac electrophysiology studies. Ten compounds (a mixture of pure hERG [E-4031 and Cisapride], hERG and sodium [Flecainide, Mexiletine, Quinidine, and Terfenadine], calcium channel blockers [Nifedipine and Verapamil], and two proprietary compounds [GSK A and B]) were tested, and results from hiPSC-CMs studied on multielectrode arrays (MEA) were compared with other preclincial models and clinical drug concentrations and effects using integrated risk assessment plots. All ion channel blockers produced (1) functional effects on repolarization and depolarization around the IC25 and IC50 values and (2) excessive blockade of hERG and/or blockade of sodium current precipitated arrhythmias. Our MEA data show that hiPSC-CMs demonstrate relevant pharmacology and show excellent correlations to current functional cardiac electrophysiological studies. Based on these results, MEA assays using iPSC-CMs offer a reliable, cost effective, and surrogate to preclinical in vitro testing, in addition to the 3Rs (refine, reduce, and replace animals in research) benefit.

  8. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings.

    PubMed

    Arentz, Susan; Abbott, Jason Anthony; Smith, Caroline Anne; Bensoussan, Alan

    2014-12-18

    Polycystic ovary syndrome (PCOS) is a prevalent, complex endocrine disorder characterised by polycystic ovaries, chronic anovulation and hyperandrogenism leading to symptoms of irregular menstrual cycles, hirsutism, acne and infertility. Evidence based medical management emphasises a multidisciplinary approach for PCOS, as conventional pharmaceutical treatment addresses single symptoms, may be contra-indicated, is often associated with side effects and not effective in some cases. In addition women with PCOS have expressed a strong desire for alternative treatments. This review examines the reproductive endocrine effects in PCOS for an alternative treatment, herbal medicine. The aim of this review was to identify consistent evidence from both pre-clinical and clinical research, to add to the evidence base for herbal medicine in PCOS (and associated oligo/amenorrhoea and hyperandrogenism) and to inform herbal selection in the provision clinical care for these common conditions. We undertook two searches of the scientific literature. The first search sought pre-clinical studies which explained the reproductive endocrine effects of whole herbal extracts in oligo/amenorrhoea, hyperandrogenism and PCOS. Herbal medicines from the first search informed key words for the second search. The second search sought clinical studies, which corroborated laboratory findings. Subjects included women with PCOS, menstrual irregularities and hyperandrogenism. A total of 33 studies were included in this review. Eighteen pre-clinical studies reported mechanisms of effect and fifteen clinical studies corroborated pre-clinical findings, including eight randomised controlled trials, and 762 women with menstrual irregularities, hyperandrogenism and/or PCOS. Interventions included herbal extracts of Vitex agnus-castus, Cimicifuga racemosa, Tribulus terrestris, Glycyrrhiza spp., Paeonia lactiflora and Cinnamomum cassia. Endocrine outcomes included reduced luteinising hormone (LH), prolactin, fasting insulin and testosterone. There was evidence for the regulation of ovulation, improved metabolic hormone profile and improved fertility outcomes in PCOS. There was evidence for an equivalent effect of two herbal medicines and the pharmaceutical agents bromocriptine (and Vitex agnus-castus) and clomiphene citrate (and Cimicifuga racemosa). There was less robust evidence for the complementary combination of spirinolactone and Glycyrrhiza spp. for hyperandrogenism. Preclinical and clinical studies provide evidence that six herbal medicines may have beneficial effects for women with oligo/amenorrhea, hyperandrogenism and PCOS. However the quantity of pre-clinical data was limited, and the quality of clinical evidence was variable. Further pre-clinical studies are needed to explain the effects of herbal medicines not included in this review with current clinical evidence but an absence of pre-clinical data.

  9. The current status of biomarkers for predicting toxicity

    PubMed Central

    Campion, Sarah; Aubrecht, Jiri; Boekelheide, Kim; Brewster, David W; Vaidya, Vishal S; Anderson, Linnea; Burt, Deborah; Dere, Edward; Hwang, Kathleen; Pacheco, Sara; Saikumar, Janani; Schomaker, Shelli; Sigman, Mark; Goodsaid, Federico

    2013-01-01

    Introduction There are significant rates of attrition in drug development. A number of compounds fail to progress past preclinical development due to limited tools that accurately monitor toxicity in preclinical studies and in the clinic. Research has focused on improving tools for the detection of organ-specific toxicity through the identification and characterization of biomarkers of toxicity. Areas covered This article reviews what we know about emerging biomarkers in toxicology, with a focus on the 2012 Northeast Society of Toxicology meeting titled ‘Translational Biomarkers in Toxicology.’ The areas covered in this meeting are summarized and include biomarkers of testicular injury and dysfunction, emerging biomarkers of kidney injury and translation of emerging biomarkers from preclinical species to human populations. The authors also provide a discussion about the biomarker qualification process and possible improvements to this process. Expert opinion There is currently a gap between the scientific work in the development and qualification of novel biomarkers for nonclinical drug safety assessment and how these biomarkers are actually used in drug safety assessment. A clear and efficient path to regulatory acceptance is needed so that breakthroughs in the biomarker toolkit for nonclinical drug safety assessment can be utilized to aid in the drug development process. PMID:23961847

  10. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. | Office of Cancer Genomics

    Cancer.gov

    T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs).

  11. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-1038] Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products... regulation (21 CFR 10.115). The guidance represents FDA's current thinking on this topic. It does not create...

  12. Preclinical Torsades-de-Pointes screens: advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk.

    PubMed

    Gintant, Gary A

    2008-08-01

    The successful development of novel drugs requires the ability to detect (and avoid) compounds that may provoke Torsades-de-Pointes (TdeP) arrhythmia while endorsing those compounds with minimal torsadogenic risk. As TdeP is a rare arrhythmia not readily observed during clinical or post-marketing studies, numerous preclinical models are employed to assess delayed or altered ventricular repolarization (surrogate markers linked to enhanced proarrhythmic risk). This review evaluates the advantages and limitations of selected preclinical models (ranging from the simplest cellular hERG current assay to the more complex in vitro perfused ventricular wedge and Langendorff heart preparations and in vivo chronic atrio-ventricular (AV)-node block model). Specific attention is paid to the utility of concentration-response relationships and "risk signatures" derived from these studies, with the intention of moving beyond predicting clinical QT prolongation and towards prediction of TdeP risk. While the more complex proarrhythmia models may be suited to addressing questionable or conflicting proarrhythmic signals obtained with simpler preclinical assays, further benchmarking of proarrhythmia models is required for their use in the robust evaluation of safety margins. In the future, these models may be able to reduce unwarranted attrition of evolving compounds while becoming pivotal in the balanced integrated risk assessment of advancing compounds.

  13. Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury

    PubMed Central

    Walker, Peter A.; Aroom, Kevin R.; Jimenez, Fernando; Shah, Shinil K.; Harting, Matthew T.; Gill, Brijesh S.

    2010-01-01

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods. PMID:19644777

  14. Preclinical Magnetic Resonance Imaging and Systems Biology in Cancer Research

    PubMed Central

    Albanese, Chris; Rodriguez, Olga C.; VanMeter, John; Fricke, Stanley T.; Rood, Brian R.; Lee, YiChien; Wang, Sean S.; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F.; Wang, Yue

    2014-01-01

    Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy. PMID:23219428

  15. Preclinical pharmacokinetic/pharmacodynamic modeling and simulation in the pharmaceutical industry: an IQ consortium survey examining the current landscape.

    PubMed

    Schuck, Edgar; Bohnert, Tonika; Chakravarty, Arijit; Damian-Iordache, Valeriu; Gibson, Christopher; Hsu, Cheng-Pang; Heimbach, Tycho; Krishnatry, Anu Shilpa; Liederer, Bianca M; Lin, Jing; Maurer, Tristan; Mettetal, Jerome T; Mudra, Daniel R; Nijsen, Marjoleen Jma; Raybon, Joseph; Schroeder, Patricia; Schuck, Virna; Suryawanshi, Satyendra; Su, Yaming; Trapa, Patrick; Tsai, Alice; Vakilynejad, Majid; Wang, Shining; Wong, Harvey

    2015-03-01

    The application of modeling and simulation techniques is increasingly common in preclinical stages of the drug discovery and development process. A survey focusing on preclinical pharmacokinetic/pharmacodynamics (PK/PD) analysis was conducted across pharmaceutical companies that are members of the International Consortium for Quality and Innovation in Pharmaceutical Development. Based on survey responses, ~68% of companies use preclinical PK/PD analysis in all therapeutic areas indicating its broad application. An important goal of preclinical PK/PD analysis in all pharmaceutical companies is for the selection/optimization of doses and/or dose regimens, including prediction of human efficacious doses. Oncology was the therapeutic area with the most PK/PD analysis support and where it showed the most impact. Consistent use of more complex systems pharmacology models and hybrid physiologically based pharmacokinetic models with PK/PD components was less common compared to traditional PK/PD models. Preclinical PK/PD analysis is increasingly being included in regulatory submissions with ~73% of companies including these data to some degree. Most companies (~86%) have seen impact of preclinical PK/PD analyses in drug development. Finally, ~59% of pharmaceutical companies have plans to expand their PK/PD modeling groups over the next 2 years indicating continued growth. The growth of preclinical PK/PD modeling groups in pharmaceutical industry is necessary to establish required resources and skills to further expand use of preclinical PK/PD modeling in a meaningful and impactful manner.

  16. Matrix metalloproteinase inhibitors as anticancer agents.

    PubMed

    Konstantinopoulos, Panagiotis A; Karamouzis, Michalis V; Papatsoris, Athanasios G; Papavassiliou, Athanasios G

    2008-01-01

    The important role of matrix metalloproteinases (MMPs) in the process of carcinogenesis is well established. However, despite very promising activity in a plethora of preclinical models, MMP inhibitors (MMPIs) failed to demonstrate a statistically significant survival advantage in advanced stage clinical trials in most human malignancies. Herein, we review the implication of MMPs in carcinogenesis, outline the pharmacology and current status of various MMPIs as anticancer agents and discuss the etiologies for the discrepancy between their preclinical and clinical evaluation. Finally, strategies for effective incorporation of MMPIs in current anticancer therapies are proposed.

  17. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  18. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review.

    PubMed

    Maze, Mervyn

    2016-02-01

    The purpose of this report is to facilitate an understanding of the possible application of xenon for neuroprotection in critical care settings. This narrative review appraises the literature assessing the efficacy and safety of xenon in preclinical models of acute ongoing neurologic injury. Databases of the published literature (MEDLINE® and EMBASE™) were appraised for peer-reviewed manuscripts addressing the use of xenon in both preclinical models and disease states of acute ongoing neurologic injury. For randomized clinical trials not yet reported, the investigators' declarations in the National Institutes of Health clinical trials website were considered. While not a primary focus of this review, to date, xenon cannot be distinguished as superior for surgical anesthesia over existing alternatives in adults. Nevertheless, studies in a variety of preclinical disease models from multiple laboratories have consistently shown xenon's neuroprotective properties. These properties are enhanced in settings where xenon is combined with hypothermia. Small randomized clinical trials are underway to explore xenon's efficacy and safety in clinical settings of acute neurologic injury where hypothermia is the current standard of care. According to the evidence to date, the neuroprotective efficacy of xenon in preclinical models and its safety in clinical anesthesia set the stage for the launch of randomized clinical trials to determine whether these encouraging neuroprotective findings can be translated into clinical utility.

  19. Alzheimer's disease prevention: from risk factors to early intervention.

    PubMed

    Crous-Bou, Marta; Minguillón, Carolina; Gramunt, Nina; Molinuevo, José Luis

    2017-09-12

    Due to the progressive aging of the population, Alzheimer's disease (AD) is becoming a healthcare burden of epidemic proportions for which there is currently no cure. Disappointing results from clinical trials performed in mild-moderate AD dementia combined with clear epidemiological evidence on AD risk factors are contributing to the development of primary prevention initiatives. In addition, the characterization of the long asymptomatic stage of AD is allowing the development of intervention studies and secondary prevention programmes on asymptomatic at-risk individuals, before substantial irreversible neuronal dysfunction and loss have occurred, an approach that emerges as highly relevant.In this manuscript, we review current strategies for AD prevention, from primary prevention strategies based on identifying risk factors and risk reduction, to secondary prevention initiatives based on the early detection of the pathophysiological hallmarks and intervention at the preclinical stage of the disease. Firstly, we summarize the evidence on several AD risk factors, which are the rationale for the establishment of primary prevention programmes as well as revising current primary prevention strategies. Secondly, we review the development of public-private partnerships for disease prevention that aim to characterize the AD continuum as well as serving as platforms for secondary prevention trials. Finally, we summarize currently ongoing clinical trials recruiting participants with preclinical AD or a higher risk for the onset of AD-related cognitive impairment.The growing body of research on the risk factors for AD and its preclinical stage is favouring the development of AD prevention programmes that, by delaying the onset of Alzheimer's dementia for only a few years, would have a huge impact on public health.

  20. Non-invasive molecular imaging for preclinical cancer therapeutic development

    PubMed Central

    O'Farrell, AC; Shnyder, SD; Marston, G; Coletta, PL; Gill, JH

    2013-01-01

    Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development. PMID:23488622

  1. (±)-MDMA and its enantiomers: potential therapeutic advantages of R(-)-MDMA.

    PubMed

    Pitts, Elizabeth G; Curry, Daniel W; Hampshire, Karly N; Young, Matthew B; Howell, Leonard L

    2018-02-01

    The use of (±)-3,4-methylenedioxymethamphetamine ((±)-MDMA) as an adjunct to psychotherapy in the treatment of psychiatric and behavioral disorders dates back over 50 years. Only in recent years have controlled and peer-reviewed preclinical and clinical studies lent support to (±)-MDMA's hypothesized clinical utility. However, the clinical utility of (±)-MDMA is potentially mitigated by a range of demonstrated adverse effects. One potential solution could lie in the individual S(+) and R(-) enantiomers that comprise (±)-MDMA. Individual enantiomers of racemic compounds have been employed in psychiatry to improve a drug's therapeutic index. Although no research has explored the individual effects of either S(+)-MDMA or R(-)-MDMA in humans in a controlled manner, preclinical research has examined similarities and differences between the two molecules and the racemic compound. This review addresses information related to the pharmacodynamics, neurotoxicity, physiological effects, and behavioral effects of S(+)-MDMA and R(-)-MDMA that might guide preclinical and clinical research. The current preclinical evidence suggests that R(-)-MDMA may provide an improved therapeutic index, maintaining the therapeutic effects of (±)-MDMA with a reduced side effect profile, and that future investigations should investigate the therapeutic potential of R(-)-MDMA.

  2. Use of Preclinical Drug vs. Food Choice Procedures to Evaluate Candidate Medications for Cocaine Addiction.

    PubMed

    Banks, Matthew L; Hutsell, Blake A; Schwienteck, Kathryn L; Negus, S Stevens

    2015-06-01

    Drug addiction is a disease that manifests as an inappropriate allocation of behavior towards the procurement and use of the abused substance and away from other behaviors that produce more adaptive reinforcers (e.g. exercise, work, family and social relationships). The goal of treating drug addiction is not only to decrease drug-maintained behaviors, but also to promote a reallocation of behavior towards alternative, nondrug reinforcers. Experimental procedures that offer concurrent access to both a drug reinforcer and an alternative, nondrug reinforcer provide a research tool for assessment of medication effects on drug choice and behavioral allocation. Choice procedures are currently the standard in human laboratory research on medications development. Preclinical choice procedures have been utilized in biomedical research since the early 1940's, and during the last 10-15 years, their use for evaluation of medications to treat drug addiction has increased. We propose here that parallel use of choice procedures in preclinical and clinical studies will facilitate translational research on development of medications to treat cocaine addiction. In support of this proposition, a review of the literature suggests strong concordance between preclinical effectiveness of candidate medications to modify cocaine choice in nonhuman primates and rodents and clinical effectiveness of these medications to modify either cocaine choice in human laboratory studies or metrics of cocaine abuse in patients with cocaine use disorder. The strongest evidence for medication effectiveness in preclinical choice studies has been obtained with maintenance on the monoamine releaser d -amphetamine, a candidate agonist medication for cocaine use analogous to use of methadone to treat heroin abuse or nicotine formulations to treat tobacco dependence.

  3. Use of Preclinical Drug vs. Food Choice Procedures to Evaluate Candidate Medications for Cocaine Addiction

    PubMed Central

    Banks, Matthew L; Hutsell, Blake A; Schwienteck, Kathryn L; Negus, S. Stevens

    2015-01-01

    Opinion Statement Drug addiction is a disease that manifests as an inappropriate allocation of behavior towards the procurement and use of the abused substance and away from other behaviors that produce more adaptive reinforcers (e.g. exercise, work, family and social relationships). The goal of treating drug addiction is not only to decrease drug-maintained behaviors, but also to promote a reallocation of behavior towards alternative, nondrug reinforcers. Experimental procedures that offer concurrent access to both a drug reinforcer and an alternative, nondrug reinforcer provide a research tool for assessment of medication effects on drug choice and behavioral allocation. Choice procedures are currently the standard in human laboratory research on medications development. Preclinical choice procedures have been utilized in biomedical research since the early 1940’s, and during the last 10–15 years, their use for evaluation of medications to treat drug addiction has increased. We propose here that parallel use of choice procedures in preclinical and clinical studies will facilitate translational research on development of medications to treat cocaine addiction. In support of this proposition, a review of the literature suggests strong concordance between preclinical effectiveness of candidate medications to modify cocaine choice in nonhuman primates and rodents and clinical effectiveness of these medications to modify either cocaine choice in human laboratory studies or metrics of cocaine abuse in patients with cocaine use disorder. The strongest evidence for medication effectiveness in preclinical choice studies has been obtained with maintenance on the monoamine releaser d-amphetamine, a candidate agonist medication for cocaine use analogous to use of methadone to treat heroin abuse or nicotine formulations to treat tobacco dependence. PMID:26009706

  4. A Multifaceted Approach to RSV Vaccination.

    PubMed

    Blanco, Jorge C G; Boukhvalova, Marina S; Morrison, Trudy G; Vogel, Stefanie N

    2018-05-17

    Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants, resulting in significant morbidity and mortality worldwide. In addition, RSV infections occur throughout different ages, thus, maintaining the virus in circulation, and increasing health risk to more susceptible populations such as infants, the elderly, and the immunocompromised. To date, there is no vaccine approved to prevent RSV infection or minimize symptoms of infection. Current clinical trials for vaccines against RSV are being carried out in four very different populations. There are vaccines that target two different pediatric populations, infants 2 to 6 month of age and seropositive children over 6 months of age, as well as women (non-pregnant or pregnant in their third trimester). There are vaccines that target adult and elderly populations. In this review, we will present and discuss RSV vaccine candidates currently in clinical trials. We will describe the preclinical studies instrumental for their advancement, with the goal of introducing new preclinical models that may more accurately predict the outcome of clinical vaccine studies.

  5. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges

    PubMed Central

    Chong, Mark Seow Khoon; Ng, Wei Kai

    2016-01-01

    Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Significant advances have been made in understanding the biology of EPCs, and preclinical studies have demonstrated the vasculogenic, angiogenic, and beneficial paracrine effects of transplanted EPCs in the treatment of ischemic diseases. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The present study provides a concise summary of the different EPC populations being studied for ischemic therapies and their known roles in the healing of ischemic tissues. The challenges and issues surrounding the use of EPCs and the current strategies being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. Significance Endothelial progenitor cells (EPCs) have immense clinical value for cardiovascular therapies. The present study provides a concise description of the EPC subpopulations being evaluated for clinical applications. The current major lines of investigation involving preclinical and clinical evaluations of EPCs are discussed, and significant gaps limiting the translation of EPCs are highlighted. The present report could be useful for clinicians and clinical researchers with interests in ischemic therapy and for basic scientists working in the related fields of tissue engineering and regenerative medicine. PMID:26956207

  6. An assessment of the utilization of the preclinical rodent model literature in clinical trials of putative therapeutics for the treatment of alcohol use disorders.

    PubMed

    Barajaz, Ashley M; Kliethermes, Christopher L

    2017-12-01

    Rodent models of Alcohol Use Disorders (AUD) are used extensively by preclinical researchers to develop new therapeutics for the treatment of AUD. Although these models play an important role in the development of novel, targeted therapeutics, their role in bringing therapeutics to clinical trials is unclear, as off-label use of existing medications not approved for the treatment of AUD is commonly seen in the clinic and clinical trials. In the current study, we used the Clinicaltrials.gov database to obtain a list of drugs that have been tested for efficacy in a clinical trial between 1997 and 2017. We then conducted a set of literature searches to determine which of the 98 unique drugs we identified had shown efficacy in a rodent model of an AUD prior to being tested in a clinical trial. We found that slightly less than half of the drugs tested in clinical trials (48%) had shown prior efficacy in any rodent model of an AUD, while the remaining 52% of drugs were used off-label, or in some cases, following non-published studies. This study raises the question of how clinical researchers incorporate results from preclinical studies in the decision to bring a drug to a clinical trial. Our results underscore the need for ongoing communication among preclinical and clinical researchers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Advances in Degradable Embolic Microspheres: A State of the Art Review

    PubMed Central

    Doucet, Jensen; Kiri, Lauren; O’Connell, Kathleen; Kehoe, Sharon; Lewandowski, Robert J.; Liu, David M.; Abraham, Robert J.; Boyd, Daniel

    2018-01-01

    Considerable efforts have been placed on the development of degradable microspheres for use in transarterial embolization indications. Using the guidance of the U.S. Food and Drug Administration (FDA) special controls document for the preclinical evaluation of vascular embolization devices, this review consolidates all relevant data pertaining to novel degradable microsphere technologies for bland embolization into a single reference. This review emphasizes intended use, chemical composition, degradative mechanisms, and pre-clinical safety, efficacy, and performance, while summarizing the key advantages and disadvantages for each degradable technology that is currently under development for transarterial embolization. This review is intended to provide an inclusive reference for clinicians that may facilitate an understanding of clinical and technical concepts related to this field of interventional radiology. For materials scientists, this review highlights innovative devices and current evaluation methodologies (i.e., preclinical models), and is designed to be instructive in the development of innovative/new technologies and evaluation methodologies. PMID:29373510

  8. Anticancer drug discovery from the marine environment.

    PubMed

    Nastrucci, Candida; Cesario, Alfredo; Russo, Patrizia

    2012-05-01

    Discovery, isolation, biochemical/pharmacological characterization, pre-clinical and clinical trials of drugs derived from the marine environment are continuously developing and increasing. One of the most promising area is cancer therapy. Currently, there are two drugs approved by the Food and Drug Administration (FDA) and European Agency for the Evaluation of Medicinal Products (EMA) in cancer treatment, namely Cytarabine (Cytosar-U1®) and Eribulin (E7389 or Halaven®). Trabectedin (ET-743 or Yondelis1®), approved by EMA, is completing key Phase III studies in the U.S. for final approval. It was estimated that 118 marine natural products (MNPs) are currently in preclinical trials, 22 MNPs in clinical trials and 3 MNPs on the market. The characteristics and selectivity profiles of new drugs for cancer therapy, as well as drugs disclosed in related patent applications, will be the focus of this review, providing a brief and ready to use reference.

  9. MIDG-Emerging grid technologies for multi-site preclinical molecular imaging research communities.

    PubMed

    Lee, Jasper; Documet, Jorge; Liu, Brent; Park, Ryan; Tank, Archana; Huang, H K

    2011-03-01

    Molecular imaging is the visualization and identification of specific molecules in anatomy for insight into metabolic pathways, tissue consistency, and tracing of solute transport mechanisms. This paper presents the Molecular Imaging Data Grid (MIDG) which utilizes emerging grid technologies in preclinical molecular imaging to facilitate data sharing and discovery between preclinical molecular imaging facilities and their collaborating investigator institutions to expedite translational sciences research. Grid-enabled archiving, management, and distribution of animal-model imaging datasets help preclinical investigators to monitor, access and share their imaging data remotely, and promote preclinical imaging facilities to share published imaging datasets as resources for new investigators. The system architecture of the Molecular Imaging Data Grid is described in a four layer diagram. A data model for preclinical molecular imaging datasets is also presented based on imaging modalities currently used in a molecular imaging center. The MIDG system components and connectivity are presented. And finally, the workflow steps for grid-based archiving, management, and retrieval of preclincial molecular imaging data are described. Initial performance tests of the Molecular Imaging Data Grid system have been conducted at the USC IPILab using dedicated VMware servers. System connectivity, evaluated datasets, and preliminary results are presented. The results show the system's feasibility, limitations, direction of future research. Translational and interdisciplinary research in medicine is increasingly interested in cellular and molecular biology activity at the preclinical levels, utilizing molecular imaging methods on animal models. The task of integrated archiving, management, and distribution of these preclinical molecular imaging datasets at preclinical molecular imaging facilities is challenging due to disparate imaging systems and multiple off-site investigators. A Molecular Imaging Data Grid design, implementation, and initial evaluation is presented to demonstrate the secure and novel data grid solution for sharing preclinical molecular imaging data across the wide-area-network (WAN).

  10. Nanotechnology and nuclear medicine; research and preclinical applications.

    PubMed

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  11. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements.

    PubMed

    Abdelgaied, A; Fisher, J; Jennings, L M

    2018-02-01

    A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active patients (National_Joint_Registry, 2016). The current study has developed and validated a comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements (TKR). The input mechanical (elastic modulus and Poisson's ratio) and wear parameters of the moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) bearing material were independently measured from experimental studies under realistic test conditions, similar to the loading conditions found in the total knee replacements. The wear predictions from the computational wear simulation were validated against the direct experimental wear measurements for size 3 Sigma curved total knee replacements (DePuy, UK) in an independent experimental wear simulation study under three different daily activities; walking, deep squat, and stairs ascending kinematic conditions. The measured compressive mechanical properties of the moderately cross-linked UHMWPE material were more than 20% lower than that reported in the literature under tensile test conditions. The pin-on-plate wear coefficient of moderately cross-linked UHMWPE was significantly dependant of the contact stress and the degree of cross-shear at the articulating surfaces. The computational wear predictions for the TKR from the current framework were consistent and in a good agreement with the independent full TKR experimental wear simulation measurements, with 0.94 coefficient of determination of the framework. In addition, the comprehensive combined experimental and computational framework was able to explain the complex experimental wear trends from the three different daily activities investigated. Therefore, such a framework can be adopted as a pre-clinical simulation approach to optimise different designs, materials, as well as patient's specific total knee replacements for a range of activities. Copyright © 2017. Published by Elsevier Ltd.

  12. Determinants of the Efficacy of Cardiac Ischemic Preconditioning: A Systematic Review and Meta-Analysis of Animal Studies

    PubMed Central

    Wever, Kimberley E.; Hooijmans, Carlijn R.; Riksen, Niels P.; Sterenborg, Thomas B.; Sena, Emily S.; Ritskes-Hoitinga, Merel; Warlé, Michiel C.

    2015-01-01

    Background Ischemic preconditioning (IPC) of the heart is a protective strategy in which a brief ischemic stimulus immediately before a lethal ischemic episode potently limits infarct size. Although very promising in animal models of myocardial infarction, IPC has not yet been successfully translated to benefit for patients. Objective To appraise all preclinical evidence on IPC for myocardial infarction and identify factors hampering translation. Methods and results Using systematic review and meta-analysis, we identified 503 animal studies reporting infarct size data from 785 comparisons between IPC-treated and control animals. Overall, IPC reduced myocardial infarction by 24.6% [95%CI 23.5, 25.6]. Subgroup analysis showed that IPC efficacy was reduced in comorbid animals and non-rodents. Efficacy was highest in studies using 2–3 IPC cycles applied <45 minutes before myocardial infarction. Local and remote IPC were equally effective. Reporting of study quality indicators was low: randomization, blinding and a sample size calculation were reported in 49%, 11% and 2% of publications, respectively. Conclusions Translation of IPC to the clinical setting may be hampered by the observed differences between the animals used in preclinical IPC studies and the patient population, regarding comorbidity, sex and age. Furthermore, the IPC protocols currently used in clinical trials could be optimized in terms of timing and the number of ischemic cycles applied. In order to inform future clinical trials successfully, future preclinical studies on IPC should aim to maximize both internal and external validity, since poor methodological quality may limit the value of the preclinical evidence. PMID:26580958

  13. Metabotropic Glutamate Receptors for Parkinson's Disease Therapy

    PubMed Central

    Gasparini, Fabrizio; Di Paolo, Thérèse; Gomez-Mancilla, Baltazar

    2013-01-01

    Excessive glutamatergic signalling within the basal ganglia is implicated in the progression of Parkinson's disease (PD) and inthe emergence of dyskinesia associated with long-term treatment with L-DOPA. There is considerable research focus on the discovery and development of compounds that modulate glutamatergic signalling via glutamate receptors, as treatments for PD and L-DOPA-induced dyskinesia (LID). Although initial preclinical studies with ionotropic glutamate receptor antagonists showed antiparkinsonian and antidyskinetic activity, their clinical use was limited due to psychiatric adverse effects, with the exception of amantadine, a weak N-methyl-d-aspartate (NMDA) antagonist, currently used to reduce dyskinesia in PD patients. Metabotropic receptor (mGlu receptor) modulators were considered to have a more favourable side-effect profile, and several agents have been studied in preclinical models of PD. The most promising results have been seen clinically with selective antagonists of mGlu5 receptor and preclinically with selective positive allosteric modulators of mGlu4 receptor. The growing understanding of glutamate receptor crosstalk also raises the possibility of more precise modulation of glutamatergic transmission, which may lead to the development of more effective agents for PD. PMID:23853735

  14. Safety of phase I clinical trials with monoclonal antibodies in Germany--the regulatory requirements viewed in the aftermath of the TGN1412 disaster.

    PubMed

    Liedert, B; Bassus, S; Schneider, C K; Kalinke, U; Löwer, J

    2007-01-01

    This review summarizes scientific, ethical and regulatory aspects of Phase I clinical trials with monoclonal antibodies. The current standard requirements for pre-clinical testing and for clinical study design are presented. The scientific considerations discussed herein are generally applicable, the view on legal requirements for clinical trials refer to the German jurisdiction only. The adverse effects associated with the TGN1412 Phase I trial indicate that the predictive value of pre-clinical animal models requires reevaluation and that, in certain cases, some issues of clinical trial protocols such as dose fixing may need refinement or redesign. Concrete safety measures, which have been proposed as a consequence of the TGN1412 event include introduction of criteria for high-risk antibodies, sequential inclusion of trial participants and implementation of pre-Phase I studies where dose calculation is based on the pre-clinical No Effect Level instead of the No Observed Adverse Effect Level. The recently established European clinical trials database (EUDRACT Database) is a further safety tool to expedite the sharing of relevant information between scientific authorities.

  15. Lessons from a pilot project in cognitive task analysis: the potential role of intermediates in preclinical teaching in dental education.

    PubMed

    Walker, Judith; von Bergmann, HsingChi

    2015-03-01

    The purpose of this study was to explore the use of cognitive task analysis to inform the teaching of psychomotor skills and cognitive strategies in clinical tasks in dental education. Methods used were observing and videotaping an expert at one dental school thinking aloud while performing a specific preclinical task (in a simulated environment), interviewing the expert to probe deeper into his thinking processes, and applying the same procedures to analyze the performance of three second-year dental students who had recently learned the analyzed task and who represented a spectrum of their cohort's ability to undertake the procedure. The investigators sought to understand how experts (clinical educators) and intermediates (trained students) overlapped and differed at points in the procedure that represented the highest cognitive load, known as "critical incidents." Findings from this study and previous research identified possible limitations of current clinical teaching as a result of expert blind spots. These findings coupled with the growing evidence of the effectiveness of peer teaching suggest the potential role of intermediates in helping novices learn preclinical dentistry tasks.

  16. Mexican medicinal plants with anxiolytic or antidepressant activity: Focus on preclinical research.

    PubMed

    López-Rubalcava, Carolina; Estrada-Camarena, Erika

    2016-06-20

    Anxiety and depression are considered the most prevalent psychiatric disorders worldwide. In Mexico, the use of medicinal plants to alleviate the symptoms associated with these psychiatric disorders is increasing. However, there is little scientific evidence that validates the efficacy of these plants. This evidence needs to be critically revised, and further studied to provided scientific support for their use. To identify the plants that are used in Mexico for the treatment of disorders related to anxiety and depression, and to review the current preclinical and when available, clinical information of these plants. We searched in scientific databases (Pubmed, Web of Science, Scopus and other web sources such as "Biblioteca digital de la medicina tradicional Mexicana" ) for Mexican plants used for the treatment of anxiety and depression that have been analyzed in preclinical studies. Additional information was obtained from published books. For this review, we also consider those plants used in Mexican traditional medicine for the treatment of "nervios," "susto" or "espanto;" common terms that describe symptoms related to anxiety and depression disorders. The bibliographic search identified 49 plants used in Mexican traditional medicine for the treatment of disorders related to anxiety and depression. From all these plants, 59% were analyzed in preclinical research, and only 8% were tested in clinical studies; only a few of these studies tried to elucidate their mechanism of action. In general, it is proposed that the plant extracts interact with the GABAergic system. However, only part of these studies attempted to analyze other neurotransmitter systems. Finally, in some cases, drug-herbal interactions were reported. There is a large number of Mexican medicinal plants used as a treatment for anxiety and depression disorders. Although some of these plants have been studied in preclinical research, in most cases these studies are preliminary, and the understanding of the mechanism of action is inconclusive. The need for systematic studies in preclinical and clinical research is evident, and efforts should be done to fulfill these research. Finally, it is important also to study possible drug-herbal interactions to establish specific recommendations for people that use these plants as anxiolytic or antidepressant treatments either alone or in combination with another type of medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Barriers to the Preclinical Development of Therapeutics that Target Aging Mechanisms

    PubMed Central

    Burd, Christin E.; Gill, Matthew S.; Niedernhofer, Laura J.; Robbins, Paul D.; Austad, Steven N.; Barzilai, Nir

    2016-01-01

    Through the progress of basic science research, fundamental mechanisms that contribute to age-related decline are being described with increasing depth and detail. Although these efforts have identified new drug targets and compounds that extend life span in model organisms, clinical trials of therapeutics that target aging processes remain scarce. Progress in aging research is hindered by barriers associated with the translation of basic science discoveries into the clinic. This report summarizes discussions held at a 2014 Geroscience Network retreat focused on identifying hurdles that currently impede the preclinical development of drugs targeting fundamental aging processes. From these discussions, it was evident that aging researchers have varied perceptions of the ideal preclinical pipeline. To forge a clear and cohesive path forward, several areas of controversy must first be resolved and new tools developed. Here, we focus on five key issues in preclinical drug development (drug discovery, lead compound development, translational preclinical biomarkers, funding, and integration between researchers and clinicians), expanding upon discussions held at the Geroscience Retreat and suggesting areas for further research. By bringing these findings to the attention of the aging research community, we hope to lay the foundation for a concerted preclinical drug development pipeline. PMID:27535964

  18. Multi-Center Trial of Baclofen for Abstinence Initiation in Severe Cocaine Dependent Individuals

    PubMed Central

    Kahn, Roberta; Biswas, Kousick; Childress, Anna-Rose; Shoptaw, Steve; Fudala, Paul J.; Gorgon, Liza; Montoya, Ivan; Collins, Joseph; McSherry, Frances; Li, Shou-Hua; Chiang, Nora; Alathari, Husam; Watson, Donnie; Liberto, Joseph; Beresford, Thomas; Stock, Christopher; Wallace, Christopher; Gruber, Valerie; Elkashef, Ahmed

    2009-01-01

    Background Cocaine dependence is a major public health problem for which there is no FDA-approved pharmacological treatment. Baclofen is a GABAB receptor agonist that in preclinical and early pilot clinical trials has shown promise for the treatment of cocaine dependence. The purpose of this multi-site, double-blind study, was to compare the safety and efficacy of baclofen (60 mg/day) versus placebo in an 8-week treatment of individuals with severe cocaine dependence. The primary outcome measure was subjects' self-reported cocaine use substantiated by urine benzoylecgonine (BE). Analysis of the data did not show a significant difference between the groups treated with baclofen and placebo. The current results do not support a role for 60mg baclofen in treating cocaine dependence in the population studied. The contrast of this result to earlier, preclinical and human pilot data with baclofen may reflect the trial's focus on severe cocaine-dependent users, and/or the need for a higher baclofen dose. Baclofen's potential as a relapse prevention agent was not tested by the current design, but may be a useful target for future studies. PMID:19414226

  19. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    PubMed Central

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  20. A Unique Automation Platform for Measuring Low Level Radioactivity in Metabolite Identification Studies

    PubMed Central

    Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet

    2012-01-01

    Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using 14C or 3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector. PMID:22723932

  1. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy

    USDA-ARS?s Scientific Manuscript database

    Recombinant Newcastle disease virus (rNDV) has shown oncolytic therapeutic efficacy in preclinical studies and are currently in clinical trials. In this study, we have evaluated the possibility to enhance the cancer therapeutic potential of NDV by means of inserting both interleukin-2 (IL-2) and tu...

  2. Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease virus (NDV) have shown oncolytic therapeutic efficacy in preclinical study and are currently approved for clinical trials. NDV Anhinga strain which is a mesogenic strain should be classified as lytic strain and has a therapeutic efficacy in hepatocellular cancer. In this study, we ...

  3. Improvement of preclinical animal models for autoimmune-mediated disorders via reverse translation of failed therapies.

    PubMed

    't Hart, Bert A; Jagessar, S Anwar; Kap, Yolanda S; Haanstra, Krista G; Philippens, Ingrid H C H M; Serguera, Che; Langermans, Jan; Vierboom, Michel

    2014-09-01

    The poor translational validity of autoimmune-mediated inflammatory disease (AIMID) models in inbred and specific pathogen-free (SPF) rodents underlies the high attrition of new treatments for the corresponding human disease. Experimental autoimmune encephalomyelitis (EAE) is a frequently used preclinical AIMID model. We discuss here how crucial information needed for the innovation of current preclinical models can be obtained from postclinical analysis of the nonhuman primate EAE model, highlighting the mechanistic reasons why some therapies fail and others succeed. These new insights can also help identify new targets for treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease virus (NDV) have shown oncolytic therapeutic efficacy in preclinical studies and are currently proved for clinical trials. We have previously reported, for the first time, NDV Anhinga strain has an efficient cancer therapeutic efficacy in hepatoma. Tumor necrosis factor-related apo...

  5. Targeting LKB1 in cancer – exposing and exploiting vulnerabilities

    PubMed Central

    Momcilovic, M; Shackelford, D B

    2015-01-01

    The LKB1 tumour suppressor is a serine/threonine kinase that functions as master regulator of cell growth, metabolism, survival and polarity. LKB1 is frequently mutated in human cancers and research spanning the last two decades have begun decoding the cellular pathways deregulated following LKB1 inactivation. This work has led to the identification of vulnerabilities present in LKB1-deficient tumour cells. Pre-clinical studies have now identified therapeutic strategies targeting this subset of tumours that promise to benefit this large patient population harbouring LKB1 mutations. Here, we review the current efforts that are underway to translate pre-clinical discovery of therapeutic strategies targeting LKB1 mutant cancers into clinical practice. PMID:26196184

  6. Baculovirus: an Insect-derived Vector for Diverse Gene Transfer Applications

    PubMed Central

    Airenne, Kari J; Hu, Yu-Chen; Kost, Thomas A; Smith, Richard H; Kotin, Robert M; Ono, Chikako; Matsuura, Yoshiharu; Wang, Shu; Ylä-Herttuala, Seppo

    2013-01-01

    Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered. PMID:23439502

  7. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity.

    PubMed

    Amacher, David E

    2010-05-15

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in biological fluids with varying immunoreactivity which can present bioanalytical challenges when first discovered. The potential success of these efforts is greatly enhanced by recent advances in two closely linked technologies, toxicoproteomics and targeted, quantitative mass spectrometry. This review focuses on the examination of the current status of these technologies as they relate to the discovery and development of novel preclinical biomarkers of hepatotoxicity. A critical assessment of the current literature reveals two distinct lines of safety biomarker investigation, (1) peripheral fluid biomarkers of organ toxicity and (2) tissue or cell-based toxicity signatures. Improved peripheral fluid biomarkers should allow the sensitive detection of potential organ toxicity prior to the onset of overt organ pathology. Advancements in tissue or cell-based toxicity biomarkers will provide sensitive in vitro or ex vivo screening systems based on toxicity pathway markers. An examination of the current practices in clinical pathology and the critical evaluation of some recently proposed biomarker candidates in comparison to the desired characteristics of an ideal toxicity biomarker lead this author to conclude that a combination of selected biomarkers will be more informative if not predictive of potential animal organ toxicity than any single biomarker, new or old. For the practical assessment of combinations of conventional and/or novel toxicity biomarkers in rodent and large animal preclinical species, mass spectrometry has emerged as the premier analytical tool compared to specific immunoassays or functional assays. Selected and multiple reaction monitoring mass spectrometry applications make it possible for this same basic technology to be used in the progressive stages of biomarker discovery, development, and more importantly, routine study applications without the use of specific antibody reagents. This technology combined with other "omics" technologies can provide added selectivity and sensitivity in preclinical drug safety testing.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amacher, David E.

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intendedmore » human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in biological fluids with varying immunoreactivity which can present bioanalytical challenges when first discovered. The potential success of these efforts is greatly enhanced by recent advances in two closely linked technologies, toxicoproteomics and targeted, quantitative mass spectrometry. This review focuses on the examination of the current status of these technologies as they relate to the discovery and development of novel preclinical biomarkers of hepatotoxicity. A critical assessment of the current literature reveals two distinct lines of safety biomarker investigation, (1) peripheral fluid biomarkers of organ toxicity and (2) tissue or cell-based toxicity signatures. Improved peripheral fluid biomarkers should allow the sensitive detection of potential organ toxicity prior to the onset of overt organ pathology. Advancements in tissue or cell-based toxicity biomarkers will provide sensitive in vitro or ex vivo screening systems based on toxicity pathway markers. An examination of the current practices in clinical pathology and the critical evaluation of some recently proposed biomarker candidates in comparison to the desired characteristics of an ideal toxicity biomarker lead this author to conclude that a combination of selected biomarkers will be more informative if not predictive of potential animal organ toxicity than any single biomarker, new or old. For the practical assessment of combinations of conventional and/or novel toxicity biomarkers in rodent and large animal preclinical species, mass spectrometry has emerged as the premier analytical tool compared to specific immunoassays or functional assays. Selected and multiple reaction monitoring mass spectrometry applications make it possible for this same basic technology to be used in the progressive stages of biomarker discovery, development, and more importantly, routine study applications without the use of specific antibody reagents. This technology combined with other 'omics' technologies can provide added selectivity and sensitivity in preclinical drug safety testing.« less

  9. Modulation of Epigenetic Targets for Anticancer Therapy: Clinicopathological Relevance, Structural Data and Drug Discovery Perspectives

    PubMed Central

    Andreol, Federico; Barbosa, Arménio Jorge Moura; Daniele Parenti, Marco; Rio, Alberto Del

    2013-01-01

    Research on cancer epigenetics has flourished in the last decade. Nevertheless growing evidence point on the importance to understand the mechanisms by which epigenetic changes regulate the genesis and progression of cancer growth. Several epigenetic targets have been discovered and are currently under validation for new anticancer therapies. Drug discovery approaches aiming to target these epigenetic enzymes with small-molecules inhibitors have produced the first pre-clinical and clinical outcomes and many other compounds are now entering the pipeline as new candidate epidrugs. The most studied targets can be ascribed to histone deacetylases and DNA methyltransferases, although several other classes of enzymes are able to operate post-translational modifications to histone tails are also likely to represent new frontiers for therapeutic interventions. By acknowledging that the field of cancer epigenetics is evolving with an impressive rate of new findings, with this review we aim to provide a current overview of pre-clinical applications of small-molecules for cancer pathologies, combining them with the current knowledge of epigenetic targets in terms of available structural data and drug design perspectives. PMID:23016851

  10. Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma.

    PubMed

    Dolman, M Emmy M; Poon, Evon; Ebus, Marli E; den Hartog, Ilona J M; van Noesel, Carel J M; Jamin, Yann; Hallsworth, Albert; Robinson, Simon P; Petrie, Kevin; Sparidans, Rolf W; Kok, Robbert J; Versteeg, Rogier; Caron, Huib N; Chesler, Louis; Molenaar, Jan J

    2015-11-15

    MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 μmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification. ©2015 American Association for Cancer Research.

  11. Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson's disease.

    PubMed

    Paris, Irmgard; Cardenas, Sergio; Lozano, Jorge; Perez-Pastene, Carolina; Graumann, Rebecca; Riveros, Alejandra; Caviedes, Pablo; Segura-Aguilar, Juan

    2007-09-01

    Four decades after L-dopa introduction to PD therapy, the cause of Parkinson's disease (PD) remains unknown despite the intensive research and the discovery of a number of gene mutations and deletions in the pathogenesis of familial PD. Different model neurotoxins have been used as preclinical experimental models to study the neurodegenerative process in PD, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and rotenone. The lack of success in identifying the molecular mechanism for the degenerative process in PD opens the question whether the current preclinical experimental models are suitable to understand the degeneration of neuromelanin-containing dopaminergic neurons in PD. We propose aminochrome as a model neurotoxin to study the neurodegenerative processes occurring in neuromelanin-containing dopaminergic neurons in PD. Aminochrome is an endogenous compound formed during dopamine oxidation and it is the precursor of neuromelanin, a substance whose formation is a normal process in mesencephalic dopaminergic neurons. However, aminochrome itself can induce neurotoxicity under certain aberrant conditions such as (i) one-electron reduction of aminochrome catalyzed by flavoenzymes to leukoaminochrome o-semiquinone radical, which is a highly reactive neurotoxin; or (ii) the formation of aminochrome adducts with alpha-synuclein, enhancing and stabilizing the formation of neurotoxic protofibrils. These two neurotoxic pathways of aminochrome are prevented by DT-diaphorase, an enzyme that effectively reduces aminochrome with two-electrons preventing both aminochrome one-electron reduction or formation alpha synuclein protofibrils. We propose to use aminochrome as a preclinical experimental model to study the neurodegenerative process of neuromelanin containing dopaminergic neurons in PD.

  12. Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism Phenotypes

    DTIC Science & Technology

    2015-11-01

    evaluated one synthetic oxytocin agonist, Compound 39, and one oxytocin metabolite, for efficacy against social deficits in BALB/cByJ mice, and we are...currently evaluating a second oxytocin metabolite for prosocial effects. Overall, we have successfully validated three mouse models as preclinical...to, first, prioritize synthetic compounds that activate the oxytocin receptor using cell-based assays, and secondly, evaluate the therapeutic efficacy

  13. Modeling mania in preclinical settings: a comprehensive review

    PubMed Central

    Sharma, Ajaykumar N.; Fries, Gabriel R.; Galvez, Juan F.; Valvassori, Samira S.; Soares, Jair C.; Carvalho, André F.; Quevedo, Joao

    2015-01-01

    The current pathophysiological understanding of mechanisms leading to onset and progression of bipolar manic episodes remains limited. At the same time, available animal models for mania have limited face, construct, and predictive validities. Additionally, these models fail to encompass recent pathophysiological frameworks of bipolar disorder (BD), e.g. neuroprogression. Therefore, there is a need to search for novel preclinical models for mania that could comprehensively address these limitations. Herein we review the history, validity, and caveats of currently available animal models for mania. We also review new genetic models for mania, namely knockout mice for genes involved in neurotransmission, synapse formation, and intracellular signaling pathways. Furthermore, we review recent trends in preclinical models for mania that may aid in the comprehension of mechanisms underlying the neuroprogressive and recurring nature of BD. In conclusion, the validity of animal models for mania remains limited. Nevertheless, novel (e.g. genetic) animal models as well as adaptation of existing paradigms hold promise. PMID:26545487

  14. Barriers to the Preclinical Development of Therapeutics that Target Aging Mechanisms.

    PubMed

    Burd, Christin E; Gill, Matthew S; Niedernhofer, Laura J; Robbins, Paul D; Austad, Steven N; Barzilai, Nir; Kirkland, James L

    2016-11-01

    Through the progress of basic science research, fundamental mechanisms that contribute to age-related decline are being described with increasing depth and detail. Although these efforts have identified new drug targets and compounds that extend life span in model organisms, clinical trials of therapeutics that target aging processes remain scarce. Progress in aging research is hindered by barriers associated with the translation of basic science discoveries into the clinic. This report summarizes discussions held at a 2014 Geroscience Network retreat focused on identifying hurdles that currently impede the preclinical development of drugs targeting fundamental aging processes. From these discussions, it was evident that aging researchers have varied perceptions of the ideal preclinical pipeline. To forge a clear and cohesive path forward, several areas of controversy must first be resolved and new tools developed. Here, we focus on five key issues in preclinical drug development (drug discovery, lead compound development, translational preclinical biomarkers, funding, and integration between researchers and clinicians), expanding upon discussions held at the Geroscience Retreat and suggesting areas for further research. By bringing these findings to the attention of the aging research community, we hope to lay the foundation for a concerted preclinical drug development pipeline. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

  15. Meniscal Scaffolds - Preclinical Evidence to Support their Use: A Systematic Review

    PubMed Central

    Di Matteo, Berardo; Perdisa, Francesco; Gostynska, Natalia; Kon, Elizaveta; Filardo, Giuseppe; Marcacci, Maurilio

    2015-01-01

    Arthroscopic meniscal treatment is the most common procedure performed in the orthopedic practice. Current management of meniscal pathology relies on different therapeutic options, ranging from selective meniscectomy, suturing, and to meniscal replacement by using either allografts or scaffolds. The progresses made in the field of regenerative medicine and biomaterials allowed to develop several meniscal substitutes, some of those currently used in the clinical practice. Before reaching the clinical application, these devices necessarily undergo accurate testing in the animal model: the aim of the present manuscript is to systematically review the scientific evidence derived by animal model results for the use of meniscal scaffolds, in order to understand the current state of research in this particular field and to identify the trends at preclinical level that may influence in the near future the clinical practice. Thirty-four papers were included in the present analysis. In 12 cases the meniscal scaffolds were used with cells to further stimulate tissue regeneration. With the exception of some negative reports regarding dacron-based scaffolds, the majority of the trials highlighted that biomaterials and bio-engineered scaffolds are safe and could play a beneficial role in stimulating meniscal healing and in chondral protection. With regard to the benefits of cell augmentation, the evidence is limited to a small number of studies and no conclusive evidence is available. However, preclinical evidence seems to suggest that cells could enhance tissue regeneration with respect to the use of biomaterials alone, and further research should confirm the translational potential of cell-based approach. PMID:26157531

  16. Preclinical evaluation of posterior spine stabilization devices: can the current standards represent basic everyday life activities?

    PubMed

    La Barbera, Luigi; Galbusera, Fabio; Wilke, Hans-Joachim; Villa, Tomaso

    2016-09-01

    To discuss whether the available standard methods for preclinical evaluation of posterior spine stabilization devices can represent basic everyday life activities and how to compare the results obtained with different procedures. A comparative finite element study compared ASTM F1717 and ISO 12189 standards to validated instrumented L2-L4 segments undergoing standing, upper body flexion and extension. The internal loads on the spinal rod and the maximum stress on the implant are analysed. ISO recommended anterior support stiffness and force allow for reproducing bending moments measured in vivo on an instrumented physiological segment during upper body flexion. Despite the significance of ASTM model from an engineering point of view, the overly conservative vertebrectomy model represents an unrealistic worst case scenario. A method is proposed to determine the load to apply on assemblies with different anterior support stiffnesses to guarantee a comparable bending moment and reproduce specific everyday life activities. The study increases our awareness on the use of the current standards to achieve meaningful results easy to compare and interpret.

  17. The case for introducing pre-registered confirmatory pharmacological pre-clinical studies.

    PubMed

    Kiwanuka, Olivia; Bellander, Bo-Michael; Hånell, Anders

    2018-05-01

    When evaluating the design of pre-clinical studies in the field of traumatic brain injury, we found substantial differences compared to phase III clinical trials, which in part may explain the difficulties in translating promising experimental drugs into approved treatments. By using network analysis, we also found cases where a large proportion of the studies evaluating a pre-clinical treatment was performed by inter-related researchers, which is potentially problematic. Subjecting all pre-clinical trials to the rigor of a phase III clinical trial is, however, likely not practically achievable. Instead, we repeat the call for a distinction to be made between exploratory and confirmatory pre-clinical studies.

  18. The prevalence and consequences of burnout on a group of preclinical dental students.

    PubMed

    Atalayin, Cigdem; Balkis, Murat; Tezel, Huseyin; Onal, Banu; Kayrak, Gul

    2015-01-01

    The aim of this study is to investigate the prevalence of burnout among a group of Turkish preclinical dental students, to compare the level of burnout and to determine the consequences in structural equation model. Preclinical dental students (n = 329, 50.5% of females and 49.5% of males) aged between 18 and 24 took part in the study. Maslach burnout inventory student version, academic satisfaction scale, and personal information sheet were used to gather data. Pearson correlation analyses, t-test, and one-way ANOVA were used for statistical analysis. The proposed theoretical model was tested via observed variable path analysis using maximum likelihood parameter estimation with AMOS 7.0. About 22.3% of students had high level of emotional exhaustion, 16.7% of students had high level of cynicism, and 17.9% of students suffered from high level of reduced academic efficacy. While the students attending the first grade reported higher level of reduced academic efficacy, the students in the third grade reported higher level of emotional exhaustion. Academic workload played an important role in the development of burnout. As consequences of burnout, students with high levels of burnout intended to change their current major and did not to plan to continue to postgraduate education. Students with high level of burnout reported less level of academic satisfaction and academic achievement. Creating awareness on the burnout of dental students from the preclinical period may be useful for prevention and more compatible dental education environment.

  19. Single vs. combination immunotherapeutic strategies for glioma

    PubMed Central

    Chandran, Mayuri; Candolfi, Marianela; Shah, Diana; Mineharu, Yohei; Yadav, Vivek; Koschmann, Carl; Asad, Antonela S.; Lowenstein, Pedro R.; Castro, Maria G.

    2017-01-01

    Introduction Malignant gliomas are highly invasive tumors, associated with a dismal survival rate despite standard of care, which includes surgical resection, radiotherapy and chemotherapy with temozolomide (TMZ). Precision immunotherapies or combinations of immunotherapies that target unique tumor-specific featuresmay substantially improve upon existing treatments. Areas covered Clinical trials of single immunotherapies have shown therapeutic potential in high-grade glioma patients, and emerging preclinical studies indicate that combinations of immunotherapies may be more effective than monotherapies. In this review we discuss emerging combinations of immunotherapies and compare efficacy of single vs. combined therapies tested in preclinical brain tumor models. Expert opinion Malignant gliomas are characterized by a number of factors which may limit the success of single immunotherapies including inter-tumor and intra-tumor heterogeneity, intrinsic resistance to traditional therapies, immunosuppression, and immune selection for tumor cells with low antigenicity. Combination of therapies which target multiple aspects of tumor physiology are likely to be more effective than single therapies. While we describe a limited number of combination immunotherapies which are currently being tested in preclinical and clinical studies, the field is expanding at an astounding rate, and endless combinations remain open for exploration. PMID:28286975

  20. Anti-EGFR monoclonal antibody in cancer treatment: in vitro and in vivo evidence

    PubMed

    Quatrale, Anna Elisa; Petriella, Daniela; Porcelli, Letizia; Tommasi, Stefania; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia

    2011-01-01

    The complexity of EGFR signaling network suggests that the receptor could be promising targets for new personalised therapy. In clinical practice two strategies targeting the receptor are available; they utilise monoclonal antibodies, directed towards the extracellular domain of EGFR, and small molecule tyrosine kinase inhibitors, which bind the catalytic kinase domain of the receptor. In this review, we summarise currently known pre-clinical data on the antitumor effects of monoclonal antibodies, which bind to EGFR in its inactive configuration, competing for ligand binding and thereby blocking ligand-induced EGFR tyrosine kinase activation. As a consequence of treatment, key EGFR-dependent intracellular signals in cancer cells are affected. Data explaining the mechanisms of action of anti-EGFR monoclonal antibodies, currently used in clinical setting and under development for the treatment of solid tumors, are revised with the aim to provide an overview of the most important preclinical studies showing the impact of this class of EGFR targeted agents on tumor biology.

  1. Developing Medications Targeting Glutamatergic Dysfunction in Autism: Progress to Date

    PubMed Central

    Fung, Lawrence K.; Hardan, Antonio Y.

    2015-01-01

    Pharmacologic treatments targeting specific molecular mechanisms relevant for autism spectrum disorder (ASD) are beginning to emerge in early drug development. This article reviews the evidence for the disruption of glutamatergic neurotransmission in animal models of social deficits and summarizes key pre-clinical and clinical efforts in developing pharmacologic interventions based on modulation of glutamatergic systems in individuals with ASD. Understanding the pathobiology of the glutamatergic system has led to the development of new investigational treatments for individuals with ASD. Specific examples of medications that modulate the glutamatergic system in preclinical and clinical studies are described. Finally, we will discuss the limitations of current strategies and future opportunities in developing medications targeting the glutamatergic system for treating individuals with ASD. PMID:26104862

  2. Theoretical Exploration of the Neural Bases of Behavioural Disinhibition, Apathy and Executive Dysfunction in Preclinical Alzheimer's Disease in People with Down's Syndrome: Potential Involvement of Multiple Frontal-Subcortical Neuronal Circuits

    ERIC Educational Resources Information Center

    Ball, S. L.; Holland, A. J.; Watson, P. C.; Huppert, F. A.

    2010-01-01

    Background: Recent research has suggested a specific impairment in frontal-lobe functioning in the preclinical stages of Alzheimer's disease (AD) in people with Down's syndrome (DS), characterised by prominent changes in personality or behaviour. The aim of the current paper is to explore whether particular kinds of change (namely executive…

  3. [Psychiatric Emergencies in the Preclinical Emergency Medicine Service in Ulm, Germany in 2000 and 2010, and Practical Consequences].

    PubMed

    Schönfeldt-Lecuona, Carlos; Gahr, Maximilian; Schütz, Stefan; Lang, Dirk; Pajonk, Frank Gerald Bernhard; Connemann, Bernhard J; Muth, Claus-Martin; Freudenmann, Roland W

    2017-07-01

    Background  Psychiatric emergencies (PE) in preclinical emergency medical services are about 5 - 10 % of all emergencies and represent often a source of difficulties in handling for the non-psychiatric professional helpers that deal with them. Studies informing about quantitative and qualitative changes of PEs in preclinical emergency medicine in Germany are scarce. Methods  Therefore, we conducted a retrospective cross-sectional study of PE in a preclinical emergency medical service based on the protocols of the emergency ambulance of the Section for Emergency Medicine at the University Hospital Ulm comparing the years 2000 and 2010. Results  We observed a significant increase of PEs from 8.8 % in the year 2000 (n = 285, from a total of n = 3227) to 10.3 % in 2010 (n = 454, from a total of n = 4425). In both years intoxications were the most common PE [2000: n = 116 (44.4 %); 2010: n = 171 (37.7 %)], followed by suicide-related behavior [2000: n = 59 (22.6 %); 2010: n = 78 (17.2 %)] and acute anxiety disorders [2000: n = 37 (13 %); 2010: n = 105 (23.1 %)]. The mentioned three conditions accounted for about 80 % of all PE. Most frequently PE occurred at the weekend and with the highest density in the evening and at night (18 - 24 h) in both years. Patients with PE were predominantly men, but the rate of women causing PE increased between 2000 and 2010. Discussion/Conclusion  This study provides preliminary data on current trends in PEs in preclinical emergency medicine in Germany and has implications for improving the medical care provided. © Georg Thieme Verlag KG Stuttgart · New York.

  4. The therapeutic potential of renin angiotensin aldosterone system (RAAS) in chronic pain: from preclinical studies to clinical trials.

    PubMed

    Bessaguet, Flavien; Magy, Laurent; Desmoulière, Alexis; Demiot, Claire

    2016-01-01

    The prevalence rate of chronic pain is 15% to 25% in adults while the therapeutic arsenal is still insufficient, especially in relieving neuropathic pain. Peripheral pain transmission is conducted by the small Aδ and C sensory nerve fibres. They express elements from the renin-angiotensin-aldosterone system (RAAS), a well-known blood pressure regulator. Recently, studies have demonstrated the role of angiotensin II, its derivatives and aldosterone in the modulation of pain perception, by interacting with receptors expressed by sensory nerve fibres or through the central nervous system. Here, we assess the effects of RAAS modulators in the conduction of pain with molecular, preclinical and clinical approaches, in normal or pathological conditions. Currently, some clinical studies have been carried out on the pain-relieving effect of RAAS modulators and suggest their potential in the management of chronic, inflammatory or neuropathic pain.

  5. Intravital microscopy in the study of the tumor microenvironment: from bench to human application.

    PubMed

    Gabriel, Emmanuel M; Fisher, Daniel T; Evans, Sharon; Takabe, Kazuaki; Skitzki, Joseph J

    2018-04-13

    Intravital microscopy (IVM) is a dynamic imaging modality that allows for the real time observation of biologic processes in vivo , including angiogenesis and immune cell interactions. In the setting of preclinical cancer models, IVM has facilitated an understanding of the tumor associated vasculature and the role of effector immune cells in the tumor microenvironment. Novel approaches to apply IVM to human malignancies have thus far focused on cancer diagnosis and tumor vessel characterization, but have the potential to provide advances in the field of personalized medicine by identifying individual patients who may respond to systemically delivered chemotherapeutic drugs or immunotherapeutic agents. In this review, we highlight the role that IVM has had in investigating tumor vasculature and the tumor microenvironment in preclinical studies and discuss its current and future applications to directly observe human tumors.

  6. An Economic Evaluation of Preclinical Testing Strategies Compared to the Compulsory Scrapie Flock Scheme in the Control of Classical Scrapie

    PubMed Central

    Hawkins, Neil; Houston, Fiona; Fryer, Helen; Kao, Rowland

    2012-01-01

    Cost-benefit is rarely combined with nonlinear dynamic models when evaluating control options for infectious diseases. The current strategy for scrapie in Great Britain requires that all genetically susceptible livestock in affected flocks be culled (Compulsory Scrapie Flock Scheme or CSFS). However, this results in the removal of many healthy sheep, and a recently developed pre-clinical test for scrapie now offers a strategy based on disease detection. We explore the flock level cost-effectiveness of scrapie control using a deterministic transmission model and industry estimates of costs associated with genotype testing, pre-clinical tests and the value of a sheep culled. Benefit was measured in terms of the reduction in the number of infected sheep sold on, compared to a baseline strategy of doing nothing, using Incremental Cost Effectiveness analysis to compare across strategies. As market data was not available for pre-clinical testing, a threshold analysis was used to set a unit-cost giving equal costs for CSFS and multiple pre-clinical testing (MT, one test each year for three consecutive years). Assuming a 40% within-flock proportion of susceptible genotypes and a test sensitivity of 90%, a single test (ST) was cheaper but less effective than either the CSFS or MT strategies (30 infected-sales-averted over the lifetime of the average epidemic). The MT strategy was slightly less effective than the CSFS and would be a dominated strategy unless preclinical testing was cheaper than the threshold price of £6.28, but may be appropriate for flocks with particularly valuable livestock. Though the ST is not currently recommended, the proportion of susceptible genotypes in the national flock is likely to continue to decrease; this may eventually make it a cost-effective alternative to the MT or CSFS. PMID:22412943

  7. Melatonin and breast cancer: Evidences from preclinical and human studies.

    PubMed

    Kubatka, Peter; Zubor, Pavol; Busselberg, Dietrich; Kwon, Taeg Kyu; Adamek, Mariusz; Petrovic, Daniel; Opatrilova, Radka; Gazdikova, Katarina; Caprnda, Martin; Rodrigo, Luis; Danko, Jan; Kruzliak, Peter

    2018-02-01

    The breast cancer affects women with high mortality and morbidity worldwide. The risk is highest in the most developed world but also is markedly rising in the developing countries. It is well documented that melatonin has a significant anti-tumor activities demonstrated on various cancer types in a plethora of preclinical studies. In breast cancer, melatonin is capable to disrupt estrogen-dependent cell signaling, resulting in a reduction of estrogen-stimulated cells, moreover, it's obvious neuro-immunomodulatory effect in organism was described. Several prospective studies have demonstrated the inverse correlation between melatonin metabolites and the risk of breast cancer. This correlation was confirmed by observational studies that found lower melatonin levels in breast cancer patients. Moreover, clinical studies have showed that circadian disruption of melatonin synthesis, specifically night shift work, is linked to increased breast cancer risk. In this regard, proper light/dark exposure with more selective use of light at night along with oral supplementation of melatonin may have benefits for high-risk women. The results of current preclinical studies, the mechanism of action, and clinical efficacy of melatonin in breast cancer are reviewed in this paper. Melatonin alone or in combined administration seems to be appropriate drug for the treatment of early stages of breast cancer with documented low toxicity over a wide range of doses. These and other issues are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current

    PubMed Central

    Kilgore, Kevin L.; Bhadra, Niloy

    2013-01-01

    Objectives The features and clinical applications of balanced-charge kilohertz frequency alternating currents (KHFAC) are reviewed. Preclinical studies of KHFAC block have demonstrated that it can produce an extremely rapid and reversible block of nerve conduction. Recent systematic analysis and experimentation utilizing KHFAC block has resulted in a significant increase in interest in KHFAC block, both scientifically and clinically. Materials and Methods We review the history and characteristics of KHFAC block, the methods used to investigate this type of block, the experimental evaluation of block, and the electrical parameters and electrode designs needed to achieve successful block. We then analyze the existing clinical applications of high frequency currents, comparing the early results with the known features of KHFAC block. Results Although many features of KHFAC block have been characterized, there is still much that is unknown regarding the response of neural structures to rapidly fluctuating electrical fields. The clinical reports to date do not provide sufficient information to properly evaluate the mechanisms that result in successful or unsuccessful treatment. Conclusions KHFAC nerve block has significant potential as a means of controlling nerve activity for the purpose of treating disease. However, early clinical studies in the use of high frequency currents for the treatment of pain have not been designed to elucidate mechanisms or allow direct comparisons to preclinical data. We strongly encourage the careful reporting of the parameters utilized in these clinical studies, as well as the development of outcome measures that could illuminate the mechanisms of this modality. PMID:23924075

  9. Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study

    PubMed Central

    Wei, Kuo-Chen; Chu, Po-Chun; Wang, Hay-Yan Jack; Huang, Chiung-Yin; Chen, Pin-Yuan; Tsai, Hong-Chieh; Lu, Yu-Jen; Lee, Pei-Yun; Tseng, I-Chou; Feng, Li-Ying; Hsu, Peng-Wei; Yen, Tzu-Chen; Liu, Hao-Li

    2013-01-01

    The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment. PMID:23527068

  10. Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside.

    PubMed

    Shabbir, Munira; Stuart, Robert

    2010-03-01

    Internal tandem duplication of the fms-like tyrosine kinase 3 (FLT3) gene (FLT3-ITD) is a common recurring mutation in acute myeloid leukemia (AML) with normal karyotype, and the presence of FLT3-ITD confers a poor prognosis on this large subgroup of AML patients. Since the discovery of lestaurtinib as a potent FLT3 inhibitor, in 1985, there has been considerable interest in the development of this agent (CEP-701, Cephalon, Frazer, PA, USA) for treatment of this population. An extensive literature search was conducted that included published articles and abstracts on the preclinical and clinical development of this agent spanning the last decade. The review describes the historical development of this agent and reviews the available preclinical and clinical data on lestaurtinib and expands on potential future directions in development of this agent. Lestaurtinib is a multi targeted tyrosine kinase inhibitor which has been shown to potently inhibit FLT3 at nanomolar concentrations in preclinical studies, leading to its rapid development as a potential targeted agent for treatment of AML. Phase I studies have shown lestaturtinib to be an active agent particularly when used in combination with cytotoxic drugs. Currently, Phase II and Phase III studies are underway aiming to establish the future of this agent as a treatment option for patients with FLT3-ITD AML.

  11. Antitumor Efficacy Testing in Rodents

    PubMed Central

    2008-01-01

    The preclinical research and human clinical trials necessary for developing anticancer therapeutics are costly. One contributor to these costs is preclinical rodent efficacy studies, which, in addition to the costs associated with conducting them, often guide the selection of agents for clinical development. If inappropriate or inaccurate recommendations are made on the basis of these preclinical studies, then additional costs are incurred. In this commentary, I discuss the issues associated with preclinical rodent efficacy studies. These include the identification of proper preclinical efficacy models, the selection of appropriate experimental endpoints, and the correct statistical evaluation of the resulting data. I also describe important experimental design considerations, such as selecting the drug vehicle, optimizing the therapeutic treatment plan, properly powering the experiment by defining appropriate numbers of replicates in each treatment arm, and proper randomization. Improved preclinical selection criteria can aid in reducing unnecessary human studies, thus reducing the overall costs of anticancer drug development. PMID:18957675

  12. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury

    PubMed Central

    Robertson, Courtney L.; Fidan, Emin; Stanley, Rachel M.; MHSA; Noje, Corina; Bayir, Hülya

    2016-01-01

    Objective To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury (TBI), and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric TBI. Data Sources National Library of Medicine PubMed literature review. Data Selection The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of TBI are summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult TBI is reviewed. Data Extraction and Synthesis Progesterone is a pleotropic agent with beneficial effects on secondary injury cascades that occur after TBI, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after TBI in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human Phase II trials of progesterone for adult TBI have been published, and two multi-center Phase III trials are underway. Conclusions The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of TBI. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children, and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, statue epilepticus). PMID:25581631

  13. The Devil Is in the Details: Incomplete Reporting in Preclinical Animal Research.

    PubMed

    Avey, Marc T; Moher, David; Sullivan, Katrina J; Fergusson, Dean; Griffin, Gilly; Grimshaw, Jeremy M; Hutton, Brian; Lalu, Manoj M; Macleod, Malcolm; Marshall, John; Mei, Shirley H J; Rudnicki, Michael; Stewart, Duncan J; Turgeon, Alexis F; McIntyre, Lauralyn

    2016-01-01

    Incomplete reporting of study methods and results has become a focal point for failures in the reproducibility and translation of findings from preclinical research. Here we demonstrate that incomplete reporting of preclinical research is not limited to a few elements of research design, but rather is a broader problem that extends to the reporting of the methods and results. We evaluated 47 preclinical research studies from a systematic review of acute lung injury that use mesenchymal stem cells (MSCs) as a treatment. We operationalized the ARRIVE (Animal Research: Reporting of In Vivo Experiments) reporting guidelines for pre-clinical studies into 109 discrete reporting sub-items and extracted 5,123 data elements. Overall, studies reported less than half (47%) of all sub-items (median 51 items; range 37-64). Across all studies, the Methods Section reported less than half (45%) and the Results Section reported less than a third (29%). There was no association between journal impact factor and completeness of reporting, which suggests that incomplete reporting of preclinical research occurs across all journals regardless of their perceived prestige. Incomplete reporting of methods and results will impede attempts to replicate research findings and maximize the value of preclinical studies.

  14. Prevention or treatment of ARDS with aspirin: a review of preclinical models and meta- analysis of clinical studies

    PubMed Central

    Panka, Bernardo Amisa; de Grooth, Harm-Jan; Spoelstra–de Man, Angeliquè; Looney, Mark; Tuinman, Pieter-Roel

    2016-01-01

    Background The acute respiratory distress syndrome (ARDS) is a life-threating disorder that contributes significantly to critical illness. No specific pharmacological interventions directed at lung injury itself, have proven effective in improving outcome of patients with ARDS. Platelet activation was identified as a key component in ARDS pathophysiology and may provide an opportunity for preventive and therapeutic strategies. We hypothesize that use of acetyl salicylic acid (ASA) may prevent and/or attenuate lung injury. Methods We conducted a systematic review of preclinical studies and meta-analysis of clinical studies investigating the efficacy of ASA in the setting of lung injury. MEDLINE, EMBASE AND COCHRANE databases were searched. Results The literature search yielded 1314 unique articles. Fifteen pre-clinical studies and eight clinical studies fulfilled the in- and exclusion criteria. In the animal studies, the overall effect of ASA was positive, e.g. ASA improved survival and attenuated inflammation and pulmonary edema. Mechanisms of actions involved, among others, are interference with the neutrophil-platelets interaction, reduction of leukotrienes, neutrophil extracellular traps and prostaglandins. High dose ASA may be the drug of choice. A meta-analysis of 3 clinical studies showed an association between ASA use and a reduced incidence of ARDS (OR 0.59, 95% CI 0.36–0.98), albeit with substantial between-study heterogeneity. All studies had their own shortcomings in methodological quality. Conclusion This systematic review of preclinical studies and meta-analysis of clinical studies suggests a beneficial role for ASA in ARDS prevention and treatment. However, the currently available data is insufficient to justify an indication for ASA in ARDS. The body of literature does support further studies in humans. We suggest clinical trials in which the mechanisms of action of ASA in lung injury models is being evaluated to guide optimal timing and dose, before prospective randomized trials. PMID:27984533

  15. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance?

    PubMed

    Choy, Hak; Milas, Luka

    2003-10-01

    Results of preclinical studies suggesting that the efficacy of molecular therapies is enhanced when they are combined with radiation have generated a surge of clinical trials combining these modalities. We reviewed the literature to identify the rationale and experimental foundation supporting the use of cyclooxygenase-2 (COX-2) inhibitors with standard radiotherapy regimens in current clinical trials. Radiation affects the ability of cells to divide and proliferate and induces the expression of genes involved in signaling pathways that promote cell survival or trigger cell death. Future advances in radiotherapy will hinge on understanding mechanisms by which radiation-induced transcription of genes governs cell death and survival, the selective control of this process, and the optimal approaches to combining this knowledge with existing therapeutic modalities. COX-2 is expressed in all stages of cancer, and in several cancers its overexpression is associated with poor prognosis. Evidence from clinical and preclinical studies indicates that COX-2-derived prostaglandins participate in carcinogenesis, inflammation, immune response suppression, apoptosis inhibition, angiogenesis, and tumor cell invasion and metastasis. Clinical trial results have demonstrated that selective inhibition of COX-2 can alter the development and the progression of cancer. In animal models, selective inhibition of COX-2 activity is associated with the enhanced radiation sensitivity of tumors without appreciably increasing the effects of radiation on normal tissue, and preclinical evidence suggests that the principal mechanism of radiation potentiation through selective COX-2 inhibition is the direct increase in cellular radiation sensitivity and the direct inhibition of tumor neovascularization. Results of current early-phase studies of non-small-cell lung, esophageal, cervical, and brain cancers will determine whether therapies that combine COX-2 inhibitors and radiation will enter randomized clinical trials.

  16. Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassirpour, Rounak, E-mail: Rounak.nassirpour@pfiz

    Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well asmore » their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules. - Highlights: • miRNAs are promising biomarkers of drug-induced kidney injury. • Summarized pre-clinical miRNA biomarkers of drug-induced nephrotoxicity. • Described the strengths and challenges associated with miRNAs as biomarkers.« less

  17. Pre-admission criteria and pre-clinical achievement: Can they predict medical students performance in the clinical phase?

    PubMed

    Salem, Raneem O; Al-Mously, Najwa; AlFadil, Sara; Baalash, Amal

    2016-01-01

    Various factors affect medical students' performance during clinical phase. Identifying these factors would help in mentoring weak students and help in selection process for residency programmes. Our study objective is to evaluate the impact of pre-admission criteria, and pre-clinical grade point average (GPA) on undergraduate medical students' performance during clinical phase. This study has a cross-sectional design that includes fifth- and sixth-year female medical students (71). Data of clinical and pre-clinical GPA in medical school and pre-admission to medical school tests scores were collected. A significant correlation between clinical GPA with the pre-clinical GPA was observed (p < 0.05). Such significant correlation was not seen with other variables under study. A regression analysis was performed, and the only significant predictor of students clinical performance was the pre-clinical GPA (p < 0.001). However, no significant difference between students' clinical and pre-clinical GPA for both cohorts was observed (p > 0.05). Pre-clinical GPA is strongly correlated with and can predict medical students' performance during clinical years. Our study highlighted the importance of evaluating the academic performances of students in pre-clinical years before they move into clinical years in order to identify weak students to mentor them and monitor their progress.

  18. Plant-based medicines for anxiety disorders, part 2: a review of clinical studies with supporting preclinical evidence.

    PubMed

    Sarris, Jerome; McIntyre, Erica; Camfield, David A

    2013-04-01

    Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. Thus, our aim was to provide a comprehensive narrative review of plant-based medicines that have clinical and/or preclinical evidence of anxiolytic activity. We present the article in two parts. In part one, we reviewed herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In this current article (part two), we review herbal medicines for which there have been both preclinical and clinical investigations of anxiolytic activity. A search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) for English language papers using the search terms 'anxiety' OR 'anxiety disorder' OR 'generalized anxiety disorder' OR 'social phobia' OR 'post-traumatic stress disorder' OR 'panic disorder' OR 'agoraphobia' OR 'obsessive compulsive disorder' in combination with the search terms 'Herb*' OR 'Medicinal Plants' OR 'Botanical Medicine' OR 'Chinese herb*', in addition to individual herbal medicines. This search of the literature revealed 1,525 papers, of which 53 plants were included in the review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed here in part two), with the other 32 having solely preclinical evidence (reviewed in part one). Support for efficacy was found for chronic use (i.e. greater than one day) of the following herbs in treating a range of anxiety disorders in human clinical trials: Piper methysticum, Matricaria recutita, Ginkgo biloba, Scutellaria lateriflora, Silybum marianum, Passiflora incarnata, Withania somniferum, Galphimia glauca, Centella asiatica, Rhodiola rosea, Echinacea spp., Melissa officinalis and Echium amoenum. For several of the plants studied, conclusions need to be tempered due to methodological issues such as small sample sizes, brief intervention durations and non-replication. Current evidence does not support Hypericum perforatum or Valeriana spp. for any anxiety disorder. Acute anxiolytic activity was found for Centella asiatica, Salvia spp., Melissa officinalis, Passiflora incarnata and Citrus aurantium. Bacopa monnieri has shown anxiolytic effects in people with cognitive decline. The therapeutic application of psychotropic plant-based treatments for anxiety disorders is also discussed, specifically Psychotria viridis and Banisteriopsis caarti (ayahuasca), Psilocybe spp. and cannabidiol-enriched (low tetrahydrocannabinol (Δ(9)-THC)) Cannabis spp.

  19. Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: promoting preclinical applications

    PubMed Central

    Lee, Keon Yong; Jang, Gun Hyuk; Byun, Cho Hyun; Jeun, Minhong

    2017-01-01

    Preclinical screening with animal models is an important initial step in clinical translation of new drug delivery systems. However, establishing efficacy, biodistribution, and biotoxicity of complex, multicomponent systems in small animal models can be expensive and time-consuming. Zebrafish models represent an alternative for preclinical studies for nanoscale drug delivery systems. These models allow easy optical imaging, large sample size, and organ-specific studies, and hence an increasing number of preclinical studies are employing zebrafish models. In this review, we introduce various models and discuss recent studies of nanoscale drug delivery systems in zebrafish models. Also in the end, we proposed a guideline for the preclinical trials to accelerate the progress in this field. PMID:28515222

  20. Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: promoting preclinical applications.

    PubMed

    Lee, Keon Yong; Jang, Gun Hyuk; Byun, Cho Hyun; Jeun, Minhong; Searson, Peter C; Lee, Kwan Hyi

    2017-06-30

    Preclinical screening with animal models is an important initial step in clinical translation of new drug delivery systems. However, establishing efficacy, biodistribution, and biotoxicity of complex, multicomponent systems in small animal models can be expensive and time-consuming. Zebrafish models represent an alternative for preclinical studies for nanoscale drug delivery systems. These models allow easy optical imaging, large sample size, and organ-specific studies, and hence an increasing number of preclinical studies are employing zebrafish models. In this review, we introduce various models and discuss recent studies of nanoscale drug delivery systems in zebrafish models. Also in the end, we proposed a guideline for the preclinical trials to accelerate the progress in this field. © 2017 The Author(s).

  1. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models.

    PubMed

    Ng, Samuel Y; Yoshida, Noriaki; Christie, Amanda L; Ghandi, Mahmoud; Dharia, Neekesh V; Dempster, Joshua; Murakami, Mark; Shigemori, Kay; Morrow, Sara N; Van Scoyk, Alexandria; Cordero, Nicolas A; Stevenson, Kristen E; Puligandla, Maneka; Haas, Brian; Lo, Christopher; Meyers, Robin; Gao, Galen; Cherniack, Andrew; Louissaint, Abner; Nardi, Valentina; Thorner, Aaron R; Long, Henry; Qiu, Xintao; Morgan, Elizabeth A; Dorfman, David M; Fiore, Danilo; Jang, Julie; Epstein, Alan L; Dogan, Ahmet; Zhang, Yanming; Horwitz, Steven M; Jacobsen, Eric D; Santiago, Solimar; Ren, Jian-Guo; Guerlavais, Vincent; Annis, D Allen; Aivado, Manuel; Saleh, Mansoor N; Mehta, Amitkumar; Tsherniak, Aviad; Root, David; Vazquez, Francisca; Hahn, William C; Inghirami, Giorgio; Aster, Jon C; Weinstock, David M; Koch, Raphael

    2018-05-22

    T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models.

  2. Individual differences in the behavioral effects of nicotine: A review of the preclinical animal literature

    PubMed Central

    Falco, Adriana M.; Bevins, Rick A.

    2015-01-01

    Not everyone who tries tobacco or other nicotine-containing products becomes a long-term user. Certain traits or factors that are differentially present in these individuals must be able to help health care providers and researchers determine who is more likely to become chronic users of nicotine-containing products. Some of these factors, particularly sensation-seeking/novelty, impulsivity, and anxiety, lend themselves to the creation of animal models of reactivity to nicotine. These models of reactivity to nicotine can improve the translational aspects of preclinical animal research on nicotine-induced behaviors and treatments in order to help reduce negative outcomes in human populations. The goal of this review is to evaluate the current status of animal models of individual differences that serve to predict the later behavioral effects of nicotine. The limited utility and inconsistency of existing novelty models is considered, as well as the promise of impulsivity and anxiety models in preclinical animal populations. Finally, other models that could be employed to extend the benefit of the current research are examined. PMID:26410616

  3. [The role of biotechnology in pharmaceutical drug design].

    PubMed

    Gaisser, Sibylle; Nusser, Michael

    2010-01-01

    Biotechnological methods have become an important tool in pharmaceutical drug research and development. Today approximately 15 % of drug revenues are derived from biopharmaceuticals. The most relevant indications are oncology, metabolic disorders and disorders of the musculoskeletal system. For the future it can be expected that the relevance of biopharmaceuticals will further increase. Currently, the share of substances in preclinical testing that rely on biotechnology is more than 25 % of all substances in preclinical testing. Products for the treatment of cancer, metabolic disorders and infectious diseases are most important. New therapeutic approaches such as RNA interference only play a minor role in current commercial drug research and development with 1.5 % of all biological preclinical substances. Investments in sustainable high technology such as biotechnology are of vital importance for a highly developed country like Germany because of its lack of raw materials. Biotechnology helps the pharmaceutical industry to develop new products, new processes, methods and services and to improve existing ones. Thus, international competitiveness can be strengthened, new jobs can be created and existing jobs preserved.

  4. Human Growth Hormone Delivery with a Microneedle Transdermal System: Preclinical Formulation, Stability, Delivery and PK of Therapeutically Relevant Doses

    PubMed Central

    Ameri, Mahmoud; Kadkhodayan, Miryam; Nguyen, Joe; Bravo, Joseph A.; Su, Rebeca; Chan, Kenneth; Samiee, Ahmad; Daddona, Peter E.

    2014-01-01

    This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH) on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP)-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP) using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables. PMID:24838219

  5. Effect of second-generation antipsychotics on cognition: current issues and future challenges

    PubMed Central

    Hill, S Kristian; Bishop, Jeffrey R; Palumbo, Donna; Sweeney, John A.

    2010-01-01

    Generalized cognitive impairments are stable deficits linked to schizophrenia and key factors associated with functional disability in the disorder. Preclinical data suggest that second-generation antipsychotics could potentially reduce cognitive impairments; however, recent large clinical trials indicate only modest cognitive benefits relative to first-generation antipsychotics. This might reflect a limited drug effect in humans, a differential drug effect due to brain alterations associated with schizophrenia, or limited sensitivity of the neuropsychological tests for evaluating cognitive outcomes. New adjunctive procognitive drugs may be needed to achieve robust cognitive and functional improvement. Drug discovery may benefit from greater utilization of translational neurocognitive biomarkers to bridge preclinical and clinical proof-of-concept studies, to optimize assay sensitivity, enhance cost efficiency, and speed progress in drug development. PMID:20021320

  6. Interactions between nicotine and drugs of abuse: A review of preclinical findings

    PubMed Central

    Kohut, Stephen J.

    2017-01-01

    Polysubstance abuse is common among substance use disorder patients and nicotine is one of the most commonly co-used substances. Epidemiological and clinical laboratory studies suggest that nicotine, when combined with other drugs of abuse, increases intake of one or both substances. This review focuses on the preclinical literature regarding nicotine’s interaction with alcohol, stimulants (i.e., cocaine, amphetamines), opioids (i.e., morphine, heroin) and Δ9-tetrahydrocannabinol (THC). The current understanding of how these various classes of abused drugs may interact with nicotine on behavioral, physiological, and pharmacological indices that may be important in maintaining co-use of one or both substances in human populations are highlighted. Suggestions as to future areas of research and gaps in knowledge are offered. PMID:27589579

  7. Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis: A Systematic Review

    PubMed Central

    Kroesen, Vera M.; Gröschel, Matthias I.; Martinson, Neil; Zumla, Alimuddin; Maeurer, Markus; van der Werf, Tjip S.; Vilaplana, Cristina

    2017-01-01

    Lengthy, antimicrobial therapy targeting the pathogen is the mainstay of conventional tuberculosis treatment, complicated by emerging drug resistances. Host-directed therapies, including non-steroidal anti-inflammatory drugs (NSAIDs), in contrast, target host factors to mitigate disease severity. In the present Systematic Review, we investigate whether NSAIDs display any effects as therapy of TB and discuss possible mechanisms of action of NSAIDs as adjunctive therapy of TB. Ten studies, seven preclinical studies in mice and three clinical trials, were included and systematically reviewed. Our results point toward a beneficial effect of NSAIDs as adjunct to current TB therapy regimens, mediated by decreased lung pathology balancing host-immune reaction. The determination of the best timing for their administration in order to obtain the potential beneficial effects needs further investigation. Even if the preclinical evidence requires clinical evaluation, NSAIDs might represent a potential safe, simple, and cheap improvement in therapy of TB. PMID:28713389

  8. Preclinical pharmacokinetics of the novel PI3K inhibitor GDC-0941 and prediction of its pharmacokinetics and efficacy in human.

    PubMed

    Salphati, Laurent; Pang, Jodie; Plise, Emile G; Chou, Bilin; Halladay, Jason S; Olivero, Alan G; Rudewicz, Patrick J; Tian, Qingping; Wong, Susan; Zhang, Xiaolin

    2011-12-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is a major determinant of cell cycling and proliferation. Its deregulation is associated with the development of many cancers. GDC-0941, a potent and selective inhibitor of PI3K, was characterised preclinically in in vitro and in vivo studies. Plasma protein binding was extensive, with free fraction less than 7%, and blood-to-plasma ratio ranged from 0.6 to 1.2 among the species tested. GDC-0941 human hepatic clearance was predicted to be moderate by liver microsomal incubations. GDC-0941 had high permeability in Madin-Darby canine kidney cells. The clearance of GDC-0941 was high in mouse (63.7 mL/min/kg), rat (49.3 mL/min/kg) and cynomolgus monkey (58.6 mL/min/kg), and moderate in dog (11.9 mL/min/kg). The volume of distribution ranged from 2.52 L/kg in rat to 2.94 L/kg in monkey. Oral bioavailability ranged from 18.6% in monkey to 77.9% in mouse. Predicted human clearance and volume of distribution using allometry were 6 mL/min/kg and 2.9 L/kg, respectively. The human efficacious doses were predicted based on results from preclinical pharmacokinetic studies and xenograft models. GDC-0941 preclinical characterisation and predictions of its properties in human supported its progression towards clinical development. GDC-0941 is currently in phase II clinical trials.

  9. The prevalence and consequences of burnout on a group of preclinical dental students

    PubMed Central

    Atalayin, Cigdem; Balkis, Murat; Tezel, Huseyin; Onal, Banu; Kayrak, Gul

    2015-01-01

    Objective: The aim of this study is to investigate the prevalence of burnout among a group of Turkish preclinical dental students, to compare the level of burnout and to determine the consequences in structural equation model. Materials and Methods: Preclinical dental students (n = 329, 50.5% of females and 49.5% of males) aged between 18 and 24 took part in the study. Maslach burnout inventory student version, academic satisfaction scale, and personal information sheet were used to gather data. Pearson correlation analyses, t-test, and one-way ANOVA were used for statistical analysis. The proposed theoretical model was tested via observed variable path analysis using maximum likelihood parameter estimation with AMOS 7.0. Results: About 22.3% of students had high level of emotional exhaustion, 16.7% of students had high level of cynicism, and 17.9% of students suffered from high level of reduced academic efficacy. While the students attending the first grade reported higher level of reduced academic efficacy, the students in the third grade reported higher level of emotional exhaustion. Academic workload played an important role in the development of burnout. As consequences of burnout, students with high levels of burnout intended to change their current major and did not to plan to continue to postgraduate education. Students with high level of burnout reported less level of academic satisfaction and academic achievement. Conclusions: Creating awareness on the burnout of dental students from the preclinical period may be useful for prevention and more compatible dental education environment. PMID:26430363

  10. Biopsychosocial influence on shoulder pain: risk subgroups translated across preclinical and clinical prospective cohorts

    PubMed Central

    George, Steven Z.; Wallace, Margaret R.; Wu, Samuel S.; Moser, Michael W.; Wright, Thomas W.; Farmer, Kevin W.; Borsa, Paul A.; Parr, Jeffrey J.; Greenfield, Warren H.; Dai, Yunfeng; Li, Hua; Fillingim, Roger B.

    2016-01-01

    Tailored treatment based on individual risk factors is an area with promise to improve options for pain relief. Musculoskeletal pain has a biopsychosocial nature, and multiple factors should be considered when determining risk for chronic pain. This study investigated whether subgroups comprised genetic and psychological factors predicted outcomes in preclinical and clinical models of shoulder pain. Classification and regression tree analysis was performed for an exercise-induced shoulder injury cohort (n = 190) to identify high-risk subgroups, and a surgical pain cohort (n = 150) was used for risk validation. Questionnaires for fear of pain and pain catastrophizing were administered before injury and preoperatively. DNA collected from saliva was genotyped for a priori selected genes involved with pain modulation (COMT and AVPR1A) and inflammation (IL1B and TNF/LTA). Recovery was operationalized as a brief pain inventory rating of 0/10 for current pain intensity and <2/10 for worst pain intensity. Follow-up for the preclinical cohort was in daily increments, whereas follow-up for the clinical cohort was at 3, 6, and 12 months postoperatively. Risk subgroups comprised the COMT high pain sensitivity variant and either pain catastrophizing or fear of pain were predictive of heightened shoulder pain responses in the preclinical model. Further analysis in the clinical model identified the COMT high pain sensitivity variant and pain catastrophizing subgroup as the better predictor. Future studies will determine whether these findings can be replicated in other anatomical regions and whether personalized medicine strategies can be developed for this risk subgroup. PMID:25599310

  11. Challenges for Preclinical Investigations of Human Biofield Modalities

    PubMed Central

    Gronowicz, Gloria; Bengston, William

    2015-01-01

    Preclinical models for studying the effects of the human biofield have great potential to advance our understanding of human biofield modalities, which include external qigong, Johrei, Reiki, therapeutic touch, healing touch, polarity therapy, pranic healing, and other practices. A short history of Western biofield studies using preclinical models is presented and demonstrates numerous and consistent examples of human biofields significantly affecting biological systems both in vitro and in vivo. Methodological issues arising from these studies and practical solutions in experimental design are presented. Important questions still left unanswered with preclinical models include variable reproducibility, dosing, intentionality of the practitioner, best preclinical systems, and mechanisms. Input from the biofield practitioners in the experimental design is critical to improving experimental outcomes; however, the development of standard criteria for uniformity of practice and for inclusion of multiple practitioners is needed. Research in human biofield studies involving preclinical models promises a better understanding of the mechanisms underlying the efficacy of biofield therapies and will be important in guiding clinical protocols and integrating treatments with conventional medical therapies. PMID:26665042

  12. Safety assessment of biotechnology-derived pharmaceuticals: ICH and beyond.

    PubMed

    Serabian, M A; Pilaro, A M

    1999-01-01

    Many scientific discussions, especially in the past 8 yr, have focused on definition of criteria for the optimal assessment of the preclinical toxicity of pharmaceuticals. With the current overlap of responsibility among centers within the Food and Drug Administration (FDA), uniformity of testing standards, when appropriate, would be desirable. These discussions have extended beyond the boundaries of the FDA and have culminated in the acceptance of formalized, internationally recognized guidances. The work of the International Committee on Harmonisation (ICH) and the initiatives developed by the FDA are important because they (a) represent a consensus scientific opinion, (b) promote consistency, (c) improve the quality of the studies performed, (d) assist the public sector in determining what may be generally acceptable to prepare product development plans, and (e) provide guidance for the sponsors in the design of preclinical toxicity studies. Disadvantages associated with such initiatives include (a) the establishment of a historical database that is difficult to relinquish, (b) the promotion of a check-the-box approach, i.e., a tendancy to perform only the minimum evaluation required by the guidelines, (c) the creation of a disincentive for industry to develop and validate new models, and (d) the creation of state-of-the-art guidances that may not allow for appropriate evaluation of novel therapies. The introduction of biotechnology-derived pharmaceuticals for clinical use has often required the application of unique approaches to assessing their safety in preclinical studies. There is much diversity among these products, which include the gene and cellular therapies, monoclonal antibodies, human-derived recombinant regulatory proteins, blood products, and vaccines. For many of the biological therapies, there will be unique product issues that may require specific modifications to protocol design and may raise additional safety concerns (e.g., immunogenicity). Guidances concerning the design of preclinical studies for such therapies are generally based on the clinical indication. Risk versus benefit decisions are made with an understanding of the nature of the patient population, the severity of disease, and the availability of alternative therapies. Key components of protocol design for preclinical studies addressing the risks of these agents include (a) a safe starting dose in humans, (b) identification of potential target organs, (c) identification of clinical parameters that should be monitored in humans, and (d) identification of at-risk populations. One of the distinct aspects of the safety evaluation of biotechnology-derived pharmaceuticals is the use of relevant and often nontraditional species and the use of animal models of disease in preclinical safety evaluation. Extensive contributions were made by the Center for Biologics Evaluation and Research to the ICH document on the safety of biotherapeutics, which is intended to provide worldwide guidance for a framework approach to the design and review of preclinical programs. Rational, scientifically sound study design and early identification of the potential safety concerns that may be anticipated in the clinical trial can result in preclinical data that facilitate use of these novel therapies for use in humans without duplication of effort or the unnecessary use of animals.

  13. Methodological issues associated with preclinical drug development and increased placebo effects in schizophrenia clinical trials.

    PubMed

    Brown, Matt A; Bishnoi, Ram J; Dholakia, Sara; Velligan, Dawn I

    2016-01-20

    Recent failures to detect efficacy in clinical trials investigating pharmacological treatments for schizophrenia raise concerns regarding the potential contribution of methodological shortcomings to this research. This review provides an examination of two key methodological issues currently suspected of playing a role in hampering schizophrenia drug development; 1) limitations on the translational utility of preclinical development models, and 2) methodological challenges posed by increased placebo effects. Recommendations for strategies to address these methodological issues are addressed.

  14. Memantine for the Treatment of Dementia: A Review on its Current and Future Applications

    PubMed Central

    Folch, Jaume; Busquets, Oriol; Ettcheto, Miren; Sánchez-López, Elena; Castro-Torres, Ruben Dario; Verdaguer, Ester; Garcia, Maria Luisa; Olloquequi, Jordi; Casadesús, Gemma; Beas-Zarate, Carlos; Pelegri, Carme; Vilaplana, Jordi; Auladell, Carme; Camins, Antoni

    2017-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of extracellular amyloid-β protein (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. The N-Methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptor, are essential for processes like learning and memory. An excessive activation of NMDARs has been associated with neuronal loss. The discovery of extrasynaptic NMDARs provided a rational and physiological explanation between physiological and excitotoxic actions of glutamate. Memantine (MEM), an antagonist of extrasynaptic NMDAR, is currently used for the treatment of AD jointly with acetylcholinesterase inhibitors. It has been demonstrated that MEM preferentially prevents the excessive continuous extrasynaptic NMDAR disease activation and therefore prevents neuronal cell death induced by excitotoxicity without disrupting physiological synaptic activity. The problem is that MEM has shown no clear positive effects in clinical applications while, in preclinical stages, had very promising results. The data in preclinical studies suggests that MEM has a positive impact on improving AD brain neuropathology, as well as in preventing Aβ production, aggregation, or downstream neurotoxic consequences, in part through the blockade of extrasynaptic NMDAR. Thus, the focus of this review is primarily to discuss the efficacy of MEM in preclinical models of AD, consider possible combinations of this drug with others, and then evaluate possible reasons for its lack of efficacy in clinical trials. Finally, applications in other pathologies are also considered. PMID:29254093

  15. Amyloid-β, anxiety, and cognitive decline in preclinical Alzheimer disease: a multicenter, prospective cohort study.

    PubMed

    Pietrzak, Robert H; Lim, Yen Ying; Neumeister, Alexander; Ames, David; Ellis, Kathryn A; Harrington, Karra; Lautenschlager, Nicola T; Restrepo, Carolina; Martins, Ralph N; Masters, Colin L; Villemagne, Victor L; Rowe, Christopher C; Maruff, Paul

    2015-03-01

    Alzheimer disease (AD) is now known to have a long preclinical phase in which pathophysiologic processes develop many years, even decades, before the onset of clinical symptoms. Although the presence of abnormal levels of amyloid-β (Aβ) is associated with higher rates of progression to clinically classified mild cognitive impairment or dementia, little research has evaluated potentially modifiable moderators of Aβ-related cognitive decline, such as anxiety and depressive symptoms. To evaluate the association between Aβ status and cognitive changes, and the role of anxiety and depressive symptoms in moderating Aβ-related cognitive changes in the preclinical phase of AD. In this multicenter, prospective cohort study with baseline and 18-, 36-, and 54-month follow-up assessments, we studied 333 healthy, older adults at hospital-based research clinics. Carbon 11-labeled Pittsburgh Compound B (PiB)-, florbetapir F 18-, or flutemetamol F 18-derived measures of Aβ, Hospital Anxiety and Depression Scale scores, and comprehensive neuropsychological evaluation that yielded measures of global cognition, verbal memory, visual memory, attention, language, executive function, and visuospatial ability. A positive Aβ (Aβ+) status at baseline was associated with a significant decline in global cognition, verbal memory, language, and executive function, and elevated anxiety symptoms moderated these associations. Compared with the Aβ+, low-anxiety group, slopes of cognitive decline were significantly more pronounced in the Aβ+, high-anxiety group, with Cohen d values of 0.78 (95% CI, 0.33-1.23) for global cognition, 0.54 (95% CI, 0.10-0.98) for verbal memory, 0.51 (95% CI, 0.07-0.96) for language, and 0.39 (95% CI, 0.05-0.83) for executive function. These effects were independent of age, educational level, IQ, APOE genotype, subjective memory complaints, vascular risk factors, and depressive symptoms; furthermore, depressive symptoms and subjective memory complaints did not moderate the association between Aβ and cognitive decline. These results provide additional support for the deleterious effect of elevated Aβ levels on cognitive function in preclinical AD. They further suggest that elevated anxiety symptoms moderate the effect of Aβ on cognitive decline in preclinical AD, resulting in more rapid decline in several cognitive domains. Given that there is currently no standard antiamyloid therapy and that anxiety symptoms are amenable to treatment, these findings may help inform risk stratification and management of the preclinical phase of AD.

  16. A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism.

    PubMed

    Mauvais-Jarvis, Franck; Arnold, Arthur P; Reue, Karen

    2017-06-06

    In animal models, the physiological systems involved in metabolic homeostasis exhibit a sex difference. Investigators often use male rodents because they show metabolic disease better than females. Thus, females are not used precisely because of an acknowledged sex difference that represents an opportunity to understand novel factors reducing metabolic disease more in one sex than the other. The National Institutes of Health (NIH) mandate to consider sex as a biological variable in preclinical research places new demands on investigators and peer reviewers who often lack expertise in model systems and experimental paradigms used in the study of sex differences. This Perspective discusses experimental design and interpretation in studies addressing the mechanisms of sex differences in metabolic homeostasis and disease, using animal models and cells. We also highlight current limitations in research tools and attitudes that threaten to delay progress in studies of sex differences in basic animal research. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Targeted Nanoparticles for Image-guided Treatment of Triple Negative Breast Cancer: Clinical Significance and Technological Advances

    PubMed Central

    Miller-Kleinhenz, Jasmine M.; Bozeman, Erica N.

    2015-01-01

    Effective treatment of triple negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and non-invasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise towards the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug-resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention (EPR) effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor associated endothelial cells, stromal fibroblasts and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as others and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic. PMID:25966677

  18. Harnessing the potential of noninvasive in vivo preclinical imaging of the immune system: challenges and prospects.

    PubMed

    Diken, Mustafa; Pektor, Stefanie; Miederer, Matthias

    2016-10-01

    Preclinical imaging has become a powerful method for investigation of in vivo processes such as pharmacokinetics of therapeutic substances and visualization of physiologic and pathophysiological mechanisms. These are important aspects to understand diseases and develop strategies to modify their progression with pharmacologic interventions. One promising intervention is the application of specifically tailored nanoscale particles that modulate the immune system to generate a tumor targeting immune response. In this complex interaction between immunomodulatory therapies, the immune system and malignant disease, imaging methods are expected to play a key role on the way to generate new therapeutic strategies. Here, we summarize examples which demonstrate the current potential of imaging methods and develop a perspective on the future value of preclinical imaging of the immune system.

  19. Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Acute Lung Injury and Other Inflammatory Lung Diseases

    PubMed Central

    Monsel, Antoine; Zhu, Ying-gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W.

    2017-01-01

    Introduction Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. Areas covered The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. Expert opinion While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification. PMID:27011289

  20. Therapeutic potential of TDT 067 (terbinafine in Transfersome): a carrier-based dosage form of terbinafine for onychomycosis.

    PubMed

    Sigurgeirsson, Bárdur; Ghannoum, Mahmoud

    2012-10-01

    Current topical treatments for onychomycosis are unsatisfactory. New topical agents that offer efficacy without the potential adverse effects of oral antifungal therapy would benefit patients with this condition and encourage a greater treatment rate. Currently available topical therapies are reviewed, and new approaches for enhancing delivery of the established antifungal terbinafine through the nail are summarized. We focus on the use of ultra-deformable lipid vesicles to facilitate delivery of terbinafine to the nail and surrounding tissue. TDT 067 (terbinafine in Transfersome) is the only such therapy in development for onychomycosis, and we review published preclinical and clinical studies on this formulation. TDT 067 offers the use of new technology to deliver an established antifungal, terbinafine. Preclinical data suggest that the Transfersome accelerates entry of terbinafine released from TDT 067 into fungi and potentiates its antifungal effects, resulting in enhanced activity, compared with conventional terbinafine. This translated into high rates of mycological cure and evidence of clinical effect in a study of TDT 067 administered twice daily for 12 weeks in patients with onychomycosis. An ongoing Phase-III trial involving more than 700 patients treated for 48 weeks is investigating the efficacy and safety of TDT 067.

  1. Molecular Targeted Intervention for Pancreatic Cancer

    PubMed Central

    Mohammed, Altaf; Janakiram, Naveena B.; Pant, Shubham; Rao, Chinthalapally V.

    2015-01-01

    Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies. PMID:26266422

  2. [Adipose-derived stromal cells (ASC) - basics and therapeutic approaches in otorhinolaryngology].

    PubMed

    Frölich, K; Hagen, R; Kleinsasser, N

    2014-06-01

    Adipose-derived Stromal Cells (ASC) - Basics and Therapeutic Approaches in Otorhinolaryngology Mesenchymal stem cells from adipose tissue can be easily harvested with less discomfort, low donor-site morbidity and high amount compared to bone marrow-derived stem cells. Due to their multilineage differentiation potential in various cell types, immunmodulatory properties and their capability to enhance wound healing, ASC are a promising cell source for tissue engineering approaches and regenerative medicine. They are characterized by the expression of specific surface marker proteins and their differentiation potential into the mesenchymal lineages. Whereas only preclinical studies are published for otorhinolaryngology-related therapeutic options using ASC, various diseases, for instance graft-versus-host disease, have already been treated with ASC in single cases or clinical trials. Safety and genomic stability of ASC as well as the risk of spontaneous malignant transformation are still disputed. This review summarizes the current literature on characterization and anatomic localization of ASC. In addition, beside the presentation of preclinical studies concerning therapeutic approaches in otorhinolaryngology as well as of current clinical applications, the issue of safety of ASC in human stem cell therapy is discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine

    PubMed Central

    Rongvaux, Anthony; Takizawa, Hitoshi; Strowig, Till; Willinger, Tim; Eynon, Elizabeth E.

    2014-01-01

    To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies. PMID:23330956

  4. Issues related to development of antiepileptogenic therapies.

    PubMed

    Pitkänen, Asla; Nehlig, Astrid; Brooks-Kayal, Amy R; Dudek, F Edward; Friedman, Daniel; Galanopoulou, Aristea S; Jensen, Frances E; Kaminski, Rafal M; Kapur, Jaideep; Klitgaard, Henrik; Löscher, Wolfgang; Mody, Istvan; Schmidt, Dieter

    2013-08-01

    Several preclinical proof-of-concept studies have provided evidence for positive treatment effects on epileptogenesis. However, none of these hypothetical treatments has advanced to the clinic. The experience in other fields of neurology such as stroke, Alzheimer's disease, or amyotrophic lateral sclerosis has indicated several problems in the design of preclinical studies, which likely contribute to failures in translating the positive preclinical data to the clinic. The Working Group on "Issues related to development of antiepileptogenic therapies" of the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES) has considered the possible problems that arise when moving from proof-of-concept antiepileptogenesis (AEG) studies to preclinical AEG trials, and eventually to clinical AEG trials. This article summarizes the discussions and provides recommendations on how to design a preclinical AEG monotherapy trial in adult animals. We specifically address study design, animal and model selection, number of studies needed, issues related to administration of the treatment, outcome measures, statistics, and reporting. In addition, we give recommendations for future actions to advance the preclinical AEG testing. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  5. QT prolongation and proarrhythmia by moxifloxacin: concordance of preclinical models in relation to clinical outcome

    PubMed Central

    Chen, Xian; Cass, Jessica D; Bradley, Jenifer A; Dahm, Corinn M; Sun, Zhuoqian; Kadyszewski, Edmund; Engwall, Michael J; Zhou, Jun

    2005-01-01

    Moxifloxacin, a fluoroquinolone antibiotic associated with QT prolongation, has been recommended as a positive control by regulatory authorities to evaluate the sensitivity of both clinical and preclinical studies to detect small but significant increases in QT interval measurements. In this study, we investigated effects of moxifloxacin on the hERG current in HEK-293 cells, electrocardiograms in conscious telemetered dogs, and repolarization parameters and arrhythmogenic potentials in the arterially perfused rabbit ventricular wedge model. Moxifloxacin inhibited the hERG current with an IC50 of 35.7 μM. In conscious telemetered dogs, moxifloxacin significantly prolonged QTc at 30 and 90 mg kg−1, with mean serum Cmax of 8.52 and 22.3 μg ml−1, respectively. In the wedge preparation, moxifloxacin produced a concentration-dependent prolongation of the action potential duration, QT interval, and the time between peak and end of the T wave, an indicator for transmural dispersion of repolarization. Phase 2 early after-depolarizations were observed in one of five experiments at 30 μM and five of five experiments at 100 μM. The arrhythmogenic potential was also concentration-dependent, and 100 μM (∼18-fold above the typical unbound Cmax exposure in clinical usage) appeared to have a high risk of inducing torsade de pointes (TdP). Our data indicated a good correlation among the concentration–response relationships in the three preclinical models and with the available clinical data. The lack of TdP report by moxifloxacin in patients without other risk factors might be attributable to its well-behaved pharmacokinetic profile and other dose-limiting effects. PMID:16158069

  6. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism.

    PubMed

    Hansen, Morten S S; Tencerova, Michaela; Frølich, Jacob; Kassem, Moustapha; Frost, Morten

    2018-01-01

    The relationship between gut and skeleton is increasingly recognized as part of the integrated physiology of the whole organism. The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestine in response to nutrient intake and exhibit several physiological functions including regulation of islet hormone secretion and glucose levels. A number of GLP-1 receptor agonists (GLP-1RAs) are currently used in treatment of type 2 diabetes and obesity. However, GIP and GLP-1 cognate receptors are widely expressed suggesting that incretin hormones mediate effects beyond control of glucose homeostasis, and reports on associations between incretin hormones and bone metabolism have emerged. The aim of this MiniReview was to provide an overview of current knowledge regarding the in vivo and in vitro effects of GIP and GLP-1 on bone metabolism. We identified a total of 30 pre-clinical and clinical investigations of the effects of GIP, GLP-1 and GLP-1RAs on bone turnover markers, bone mineral density (BMD), bone microarchitecture and fracture risk. Studies conducted in cell cultures and rodents demonstrated that GIP and GLP-1 play a role in regulating skeletal homeostasis, with pre-clinical data suggesting that GIP inhibits bone resorption whereas GLP-1 may promote bone formation and enhance bone material properties. These effects are not corroborated by clinical studies. While there is evidence of effects of GIP and GLP-1 on bone metabolism in pre-clinical investigations, clinical trials are needed to clarify whether similar effects are present and clinically relevant in humans. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative.

    PubMed

    Galanopoulou, Aristea S; French, Jacqueline A; O'Brien, Terence; Simonato, Michele

    2017-11-01

    Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent video-electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  8. C-Abl Inhibition; A Novel Therapeutic Target for Parkinson's Disease.

    PubMed

    Abushouk, Abdelrahman Ibrahim; Negida, Ahmed; Elshenawy, Rasha Abdelsalam; Zein, Hossam; Hammad, Ali M; Menshawy, Ahmed; Mohamed, Wael M Y

    2018-04-26

    Parkinson's disease (PD) is the most prevalent movement disorder in the world. The major pathological hallmarks of PD are death of dopaminergic neurons and the formation of Lewy bodies. At the moment, there is no cure for PD; current treatments are symptomatic. Investigators are searching for neuroprotective agents and disease modifying strategies to slow the progress of neurodegeneration. However, due to lack of data about the main pathological sequence of PD, many drug targets failed to provide neuroprotective effects in human trials. Recent evidence suggests the involvement of C-Abelson (c-Abl) tyrosine kinase enzyme in the pathogenesis of PD. Through parkin inactivation, alpha synuclein aggregation, and impaired autophagy of toxic elements. Experimental studies showed that (1) c-Abl activation is involved in neurodegeneration and (2) c-Abl inhibition shows neuroprotective effects and prevents dopaminergic neuronal' death. Current evidence from experimental studies and the first in-human trial shows that c-Abl inhibition holds the promise for neuroprotection against PD and therefore, justifies the movement towards larger clinical trials. In this review article, we discussed the role of c-Abl in PD pathogenesis and the findings of preclinical experiments and the first in-human trial. In addition, based on lessons from the last decade and current preclinical evidence, we provide recommendations for future research in this area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Discovery and preclinical development of dasabuvir for the treatment of hepatitis C infection.

    PubMed

    El Kassas, Mohamed; Elbaz, Tamer; Hafez, Enas; Wifi, Mohamed Naguib; Esmat, Gamal

    2017-06-01

    Hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality. Positively, the introduction of new directly-acting antivirals (DAAs) have led to dramatic improvements in response rates to antiviral therapy. Furthermore, newer generations of DAAs have demonstrated better safety profiles as well as efficacy than older generations. Current treatment recommendations are based on different combinations of DAAs. Current combination therapies rely on agents that target the different steps of viral replication by using different molecules from various DAAs families. Areas covered: In this review, the authors summarize data from of one of the recently developed NS5B polymerase inhibitors, dasabuvir, formerly known as ABT-333. Herein, the authors discuss the drug discovery data for dasabuvir including data from preclinical, toxicological resistance studies. The authors also review dasabuvir's clinical efficacy across various clinical challenges, in addition to its limitations in clinical practice. Expert opinion: Dasabuvir represents an important medical advance when used as a combination therapy for HCV. Unfortunately, it does present limitations like low genotypic coverage and further research is still required to address some of the lingering issues.

  10. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer's disease.

    PubMed

    Carman, A J; Dacks, P A; Lane, R F; Shineman, D W; Fillit, H M

    2014-04-01

    Although nothing has been proven conclusively to protect against cognitive aging, Alzheimer's disease or related dementias, decades of research suggest that specific approaches including the consumption of coffee may be effective. While coffee and caffeine are known to enhance short-term memory and cognition, some limited research also suggests that long-term use may protect against cognitive decline or dementia. In vitro and pre-clinical animal models have identified plausible neuroprotective mechanisms of action of both caffeine and other bioactive components of coffee, though epidemiology has produced mixed results. Some studies suggest a protective association while others report no benefit. To our knowledge, no evidence has been gathered from randomized controlled trials. Although moderate consumption of caffeinated coffee is generally safe for healthy people, it may not be for everyone, since comorbidities and personal genetics influence potential benefits and risks. Future studies could include short-term clinical trials with biomarker outcomes to validate findings from pre-clinical models and improved epidemiological studies that incorporate more standardized methods of data collection and analysis. Given the enormous economic and emotional toll threatened by the current epidemic of Alzheimer's disease and other dementias, it is critically important to validate potential prevention strategies such as coffee and caffeine.

  11. Exploring the Neuroimmunopharmacology of Opioids: An Integrative Review of Mechanisms of Central Immune Signaling and Their Implications for Opioid Analgesia

    PubMed Central

    Shavit, Yehuda; Grace, Peter M.; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.

    2011-01-01

    Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical. PMID:21752874

  12. At the Crossroads of Clinical and Preclinical Research for Muscular Dystrophy-Are We Closer to Effective Treatment for Patients?

    PubMed

    Gawlik, Kinga I

    2018-05-16

    Among diseases affecting skeletal muscle, muscular dystrophy is one of the most devastating and complex disorders. The term 'muscular dystrophy' refers to a heterogeneous group of genetic diseases associated with a primary muscle defect that leads to progressive muscle wasting and consequent loss of muscle function. Muscular dystrophies are accompanied by numerous clinical complications and abnormalities in other tissues that cause extreme discomfort in everyday life. The fact that muscular dystrophy often takes its toll on babies and small children, and that many patients die at a young age, adds to the cruel character of the disease. Clinicians all over the world are facing the same problem: they have no therapy to offer except for symptom-relieving interventions. Patients, their families, but also clinicians, are in urgent need of an effective cure. Despite advances in genetics, increased understanding of molecular mechanisms underlying muscle disease, despite a sweeping range of successful preclinical strategies and relative progress of their implementation in the clinic, therapy for patients is currently out of reach. Only a greater comprehension of disease mechanisms, new preclinical studies, development of novel technologies, and tight collaboration between scientists and physicians can help improve clinical treatment. Fortunately, inventiveness in research is rapidly extending the limits and setting new standards for treatment design. This review provides a synopsis of muscular dystrophy and considers the steps of preclinical and clinical research that are taking the muscular dystrophy community towards the fundamental goal of combating the traumatic disease.

  13. Preclinical cerebrospinal fluid and volumetric magnetic resonance imaging biomarkers in Swedish familial Alzheimer's disease.

    PubMed

    Thordardottir, Steinunn; Ståhlbom, Anne Kinhult; Ferreira, Daniel; Almkvist, Ove; Westman, Eric; Zetterberg, Henrik; Eriksdotter, Maria; Blennow, Kaj; Graff, Caroline

    2015-01-01

    It is currently believed that therapeutic interventions will be most effective when introduced at the preclinical stage of Alzheimer's disease (AD). This underlines the importance of biomarkers to detect AD pathology in vivo before clinical disease onset. To examine the evolution of cerebrospinal fluid (CSF) biomarker and brain structure changes in the preclinical phase of familial AD. The study included members from four Swedish families at risk for carrying an APPswe, APParc, PSEN1 H163Y, or PSEN1 I143T mutation. Magnetic resonance imaging (MRI) scans were obtained from 13 mutation carriers (MC) and 20 non-carriers (NC) and analyzed using vertex-based analyses of cortical thickness and volume. CSF was collected from 10 MC and 12 NC from familial AD families and analyzed for Aβ42, total tau (T-tau) and phospho-tau (P-tau). The MC had significantly lower levels of CSF Aβ42 and higher levels T-tau and P-tau than the NC. There was a trend for a decrease in Aβ42 15-20 years before expected onset of clinical symptoms, while increasing T-tau and P-tau was not found until close to the expected clinical onset. The MC had decreased volume on MRI in the left precuneus, superior temporal gyrus, and fusiform gyrus. Aberrant biomarker levels in CSF as well as regional brain atrophy are present in preclinical familial AD, several years before the expected onset of clinical symptoms.

  14. Imaging technologies for preclinical models of bone and joint disorders

    PubMed Central

    2011-01-01

    Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy. PMID:22214535

  15. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality.

    PubMed

    Ishida, Kazuyoshi; Berger, Miles; Nadler, Jacob; Warner, David S

    2014-01-01

    Anesthetics have been studied for nearly fifty years as potential neuroprotective compounds in both perioperative and resuscitation medicine. Although anesthetics present pharmacologic properties consistent with preservation of brain viability in the context of an ischemic insult, no anesthetic has been proven efficacious for neuroprotection in humans. After such effort, it could be concluded that anesthetics are simply not neuroprotective in humans. Moreover, pharmacologic neuroprotection with non-anesthetic drugs has also repeatedly failed to be demonstrated in human acute brain injury. Recent focus has been on rectification of promising preclinical neuroprotection data and subsequent failed clinical trials. This has led to consensus guidelines for the process of transferring purported therapeutics from bench to bedside. In this review we first examined the history of anesthetic neuroprotection research. Then, a systematic review was performed to identify major clinical trials of anesthetic neuroprotection. Both the preclinical neuroprotection portfolio cited to justify a clinical trial and the design and conduct of that clinical trial were evaluated using modern standards that include the Stroke Therapy Academic Industry Roundtable (STAIR) and Consolidated Standards of Reporting Trials (CONSORT) guidelines. In publications intended to define anesthetic neuroprotection, we found overall poor quality of both preclinical efficacy analysis portfolios and clinical trial designs and conduct. Hence, using current translational research standards, it was not possible to conclude from existing data whether anesthetics ameliorate perioperative ischemic brain injury. Incorporation of advances in translational neuroprotection research conduct may provide a basis for more definitive and potentially successful clinical trials of anesthetics as neuroprotectants.

  16. [Preclinical evaluation of the safety of biotechnology products: specific aspects].

    PubMed

    Descotes, Jacques; Ravel, Guillaume; Vial, Thierry

    2003-01-01

    Biotechnology-derived products represent a class of increasingly numerous drugs. One of their major characteristics is extreme diversity, which requires specific approaches for the preclinical evaluation of their safety. The selection of relevant animal species is not easy, as most of these products are human-specific. Thus, only one species will often be used, i.e. primates. As most of these products are large molecules, they can be directly immunogenic. When they are human-specific, no animal model is available to predict the risk. Many biotechnology-derived products have an expected influence on the immune system. This must be taken into account in the preclinical strategy of immunotoxicity evaluation that is now required for every new drug. As conventional toxicity testing is generally limited, safety pharmacology studies should include more than the core battery of assays required by current guidelines in order to complement missing data as much as possible. Because of these particularities, a comprehensive investigation of metabolism and pharmacokinetics is not usually needed. Some products can cross-react with cellular components not intended as therapeutic targets. It is, therefore, essential to rule out the risk of possible cross-reactions that can result in adverse effects. Finally, viral safety is a crucial component of the preclinical safety evaluation of these products. Overall, biotechnology-derived products raise specific issues because of their innovative and original characteristics, and it is difficult to address all these issues if not by using a case-by-case approach.

  17. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells.

    PubMed

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2015-04-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

  18. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2015-01-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity. PMID:25922594

  19. [Articular cartilage regenerative therapy with synovial mesenchymal stem cells in a pig model].

    PubMed

    Nakamura, Tomomasa; Sekiya, Ichiro; Muneta, Takeshi; Kobayashi, Eiji

    2013-12-01

    Current therapies for cartilage injury remain some issues such as the quality of regenerated cartilage and its invasiveness. We have been trying to develop a low invasive treatment for cartilage regeneration with synovial mesenchymal stem cells (MSCs) . Here we introduce our preclinical study with miniature pigs whose knee joints are similar to those of humans in terms of size and cartilage metabolism. Cartilage defect was created at the weight bearing area of both porcine knee joints. Synovial MSCs were transplanted by delivering a synovial MSC suspension onto the cartilage defect of the one side and the knee was kept immobilized for 10 minutes. Sequential arthroscopic and histological observations showed the contribution of synovial MSCs after transplantation, and a better hyaline cartilaginous-tissue regeneration in the MSC-treated knees than in the non-treated control knees at 12 weeks. Based on this and other preclinical studies, we have started a clinical study for cartilage regeneration with autologous synovial MSCs.

  20. Deriving Therapies for Children with Primary CNS Tumors Using Pharmacokinetic Modeling and Simulation of Cerebral Microdialysis Data

    PubMed Central

    Jacus, M.O.; Throm, S.L.; Turner, D.C.; Patel, Y.T.; Freeman, B.B.; Morfouace, M.; Boulos, N.; Stewart, C. F.

    2014-01-01

    The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to support the rational testing and usage of innovative therapies in children with CNS tumors. PMID:24269626

  1. Systematic approaches to toxicology in the zebrafish.

    PubMed

    Peterson, Randall T; Macrae, Calum A

    2012-01-01

    As the current paradigms of drug discovery evolve, it has become clear that a more comprehensive understanding of the interactions between small molecules and organismal biology will be vital. The zebrafish is emerging as a complement to existing in vitro technologies and established preclinical in vivo models that can be scaled for high-throughput. In this review, we highlight the current status of zebrafish toxicology studies, identify potential future niches for the model in the drug development pipeline, and define the hurdles that must be overcome as zebrafish technologies are refined for systematic toxicology.

  2. Patient-derived xenografts as preclinical neuroblastoma models.

    PubMed

    Braekeveldt, Noémie; Bexell, Daniel

    2018-05-01

    The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.

  3. Perspective: moving students beyond an organ-based approach when teaching medical interviewing and physical examination skills.

    PubMed

    Alexander, Erik K

    2008-10-01

    Medical interviewing and physical examination skills are core pillars of clinical medicine. Though nearly all U.S. medical students participate in preclinical courses designed to teach these skills, medical school faculty often comment that students' abilities remain limited on entering their clinical clerkships. The reason for this contention is not clear.The author briefly describes the current preclinical curricula at most medical schools that are designed to teach patient interviewing and examination. An organ-based curriculum is commonly employed, although the limitations of such an approach readily become apparent. For example, many hospitalized patients do not suffer from single-organ illnesses, but rather from infections or metabolic derangements, which cause numerous abnormalities to several body systems. Furthermore, clinical reasoning skills are rarely taught in such preclinical courses, though these abilities form the foundation for effective doctoring. These findings suggest an opportunity for content development surrounding patient interviewing and examination. The author proposes an educational approach that depicts how the confluence of both content knowledge skills and clinical reasoning skills can work synergistically to enhance preclinical teaching of the medical interview and physical examination.

  4. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders.

    PubMed

    Nguyen, Linda; Thomas, Kelan L; Lucke-Wold, Brandon P; Cavendish, John Z; Crowe, Molly S; Matsumoto, Rae R

    2016-03-01

    Dextromethorphan (DM) is a commonly used antitussive and is currently the only FDA-approved pharmaceutical treatment for pseudobulbar affect. Its safety profile and diverse pharmacologic actions in the central nervous system have stimulated new interest for repurposing it. Numerous preclinical investigations and many open-label or blinded clinical studies have demonstrated its beneficial effects across a variety of neurological and psychiatric disorders. However, the optimal dose and safety of chronic dosing are not fully known. This review summarizes the preclinical and clinical effects of DM and its putative mechanisms of action, focusing on depression, stroke, traumatic brain injury, seizure, pain, methotrexate neurotoxicity, Parkinson's disease and autism. Moreover, we offer suggestions for future research with DM to advance the treatment for these and other neurological and psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Development and verification of a cementless novel tapered wedge stem for total hip arthroplasty.

    PubMed

    Faizan, Ahmad; Wuestemann, Thies; Nevelos, Jim; Bastian, Adam C; Collopy, Dermot

    2015-02-01

    Most current tapered wedge hip stems were designed based upon the original Mueller straight stem design introduced in 1977. These stems were designed to have a single medial curvature and grew laterally to accommodate different sizes. In this preclinical study, the design and verification of a tapered wedge stem using computed tomography scans of 556 patients are presented. The computer simulation demonstrated that the novel stem, designed for proximal engagement, allowed for reduced distal fixation, particularly in the 40-60 year male population. Moreover, the physical micromotion testing and finite element analysis demonstrated that the novel stem allowed for reduced micromotion. In summary, preclinical data suggest that the computed tomography based stem design described here may offer enhanced implant fit and reduced micromotion. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Revisiting Antipsychotic-induced Akathisia: Current Issues and Prospective Challenges

    PubMed Central

    Salem, Haitham; Nagpal, Caesa; Pigott, Teresa; Teixeira, Antonio Lucio

    2017-01-01

    Background: Akathisia continues to be a significant challenge in current neurological and psychiatric practice. Prompt and accurate detection is often difficult and there is a lack of consensus concerning the neurobiological basis of akathisia. No definitive treatment has been established for akathisia despite numerous preclinical and clinical studies. Method: We reviewed antipsychotic-induced akathisia including its clinical presentation, proposed underlying pathophysiology, current and under investigation therapeutic strategies. Conclusion: Despite the initial promise that second generation antipsychotics would be devoid of akathisia effects, this has not been confirmed. Currently, there are limited therapeutic options for the clinical practice and the evidence supporting the most widely used treatments (beta blockers, anticholinergic drugs) is still absent or inconsistent. PMID:27928948

  7. The therapeutic impact of new migraine discoveries.

    PubMed

    Vécsei, Laszlo; Lukács, Melinda; Tajti, Janos; Fülöp, Ferenc; Toldi, Jozsef; Edvinsson, Lars

    2018-05-29

    Migraine is one the most disabling neurological conditions and associates with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. The present study is a review of the current literature regarding new therapeutic lines in migraine research. A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in migraine published until July 2017. Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Preclinical Mouse Models of Neurofibromatosis

    DTIC Science & Technology

    2004-10-01

    collaborated closely and have shared expertise and reagents extensively. This NF Consortium is a member of the Moue Models of Human Cancer Consortium...of the National Cancer Institute and is participating fully in the activities of the group. The current award will support these collaborative...studies through 2005. 14. SUBJECT TERMS 15. NUMBER OF PAGES Neurofibromatosis, cancer , mouse models 48 16. PRICE CODE 17. SECURITY CLASSIFICATION 78

  9. Growth factor delivery vehicles for tendon injuries: Mesenchymal stem cells and Platelet Rich Plasma

    PubMed Central

    Guevara-Alvarez, Alberto; Schmitt, Andreas; Russell, Ryan P.; Imhoff, Andreas B.; Buchmann, Stefan

    2014-01-01

    Summary Background: tendon tissue shows limited regeneration potential with formation of scar tissue and inferior mechanical properties. The capacity of several growth factors to improve the healing response and decrease scar formation is described in different preclinical studies. Besides the application of isolated growth factors, current research focuses on two further strategies to improve the healing response in tendon injuries: platelet rich plasma (PRP) and mesenchymal stem cells (MSCs). Objective: the present review focuses on these two options and describes their potential to improve tendon healing. Results: in vitro experiments and animal studies showed promising results for the use of PRP, however clinical controlled studies have shown a tendency of reduced pain related symptoms but no significant differences in overall clinical scores. On the other hand MSCs are not totally arrived in clinical use so that there is still a lack of randomized controlled trials. In basic research experiments they show an extraordinary paracrine activity, anti-inflammatory effect and the possibility to differentiate in tenocytes when different activating-factors are added. Conclusion: preclinical studies have shown promising results in improving tendon remodeling but the comparability of current literature is difficult due to different compositions. PRP and MSCs can act as efficient growth factor vehicles, however further studies should be performed in order to adequate investigate their clinical benefits in different tendon pathologies. PMID:25489557

  10. Vitamins in Pancreatic Cancer: A Review of Underlying Mechanisms and Future Applications12

    PubMed Central

    Davis-Yadley, Ashley H; Malafa, Mokenge P

    2015-01-01

    Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer. PMID:26567201

  11. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research.

    PubMed

    Disma, Nicola; Mondardini, Maria C; Terrando, Niccolò; Absalom, Anthony R; Bilotta, Federico

    2016-01-01

    Preclinical evidence suggests that anesthetic agents harm the developing brain thereby causing long-term neurocognitive impairments. It is not clear if these findings apply to humans, and retrospective epidemiological studies thus far have failed to show definitive evidence that anesthetic agents are harmful to the developing human brain. The aim of this systematic review was to summarize the preclinical studies published over the past decade, with a focus on methodological issues, to facilitate the comparison between different preclinical studies and inform better design of future trials. The literature search identified 941 articles related to the topic of neurotoxicity. As the primary aim of this systematic review was to compare methodologies applied in animal studies to inform future trials, we excluded a priori all articles focused on putative mechanism of neurotoxicity and the neuroprotective agents. Forty-seven preclinical studies were finally included in this review. Methods used in these studies were highly heterogeneous-animals were exposed to anesthetic agents at different developmental stages, in various doses and in various combinations with other drugs, and overall showed diverse toxicity profiles. Physiological monitoring and maintenance of physiological homeostasis was variable and the use of cognitive tests was generally limited to assessment of specific brain areas, with restricted translational relevance to humans. Comparison between studies is thus complicated by this heterogeneous methodology and the relevance of the combined body of literature to humans remains uncertain. Future preclinical studies should use better standardized methodologies to facilitate transferability of findings from preclinical into clinical science. © 2015 John Wiley & Sons Ltd.

  12. Vitamins in pancreatic cancer: a review of underlying mechanisms and future applications.

    PubMed

    Davis-Yadley, Ashley H; Malafa, Mokenge P

    2015-11-01

    Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer. © 2015 American Society for Nutrition.

  13. Enhancing the Alignment of the Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core Recommendations From the Stroke Recovery and Rehabilitation Roundtable Translational Working Group.

    PubMed

    Corbett, Dale; Carmichael, S Thomas; Murphy, Timothy H; Jones, Theresa A; Schwab, Martin E; Jolkkonen, Jukka; Clarkson, Andrew N; Dancause, Numa; Weiloch, Tadeusz; Johansen-Berg, Heidi; Nilsson, Michael; McCullough, Louise D; Joy, Mary T

    2017-08-01

    Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.

  14. Human engineered heart tissue as a model system for drug testing.

    PubMed

    Eder, Alexandra; Vollert, Ingra; Hansen, Arne; Eschenhagen, Thomas

    2016-01-15

    Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Methodological Rigor in Preclinical Cardiovascular Studies

    PubMed Central

    Ramirez, F. Daniel; Motazedian, Pouya; Jung, Richard G.; Di Santo, Pietro; MacDonald, Zachary D.; Moreland, Robert; Simard, Trevor; Clancy, Aisling A.; Russo, Juan J.; Welch, Vivian A.; Wells, George A.

    2017-01-01

    Rationale: Methodological sources of bias and suboptimal reporting contribute to irreproducibility in preclinical science and may negatively affect research translation. Randomization, blinding, sample size estimation, and considering sex as a biological variable are deemed crucial study design elements to maximize the quality and predictive value of preclinical experiments. Objective: To examine the prevalence and temporal patterns of recommended study design element implementation in preclinical cardiovascular research. Methods and Results: All articles published over a 10-year period in 5 leading cardiovascular journals were reviewed. Reports of in vivo experiments in nonhuman mammals describing pathophysiology, genetics, or therapeutic interventions relevant to specific cardiovascular disorders were identified. Data on study design and animal model use were collected. Citations at 60 months were additionally examined as a surrogate measure of research impact in a prespecified subset of studies, stratified by individual and cumulative study design elements. Of 28 636 articles screened, 3396 met inclusion criteria. Randomization was reported in 21.8%, blinding in 32.7%, and sample size estimation in 2.3%. Temporal and disease-specific analyses show that the implementation of these study design elements has overall not appreciably increased over the past decade, except in preclinical stroke research, which has uniquely demonstrated significant improvements in methodological rigor. In a subset of 1681 preclinical studies, randomization, blinding, sample size estimation, and inclusion of both sexes were not associated with increased citations at 60 months. Conclusions: Methodological shortcomings are prevalent in preclinical cardiovascular research, have not substantially improved over the past 10 years, and may be overlooked when basing subsequent studies. Resultant risks of bias and threats to study validity have the potential to hinder progress in cardiovascular medicine as preclinical research often precedes and informs clinical trials. Stroke research quality has uniquely improved in recent years, warranting a closer examination for interventions to model in other cardiovascular fields. PMID:28373349

  16. Methodological Rigor in Preclinical Cardiovascular Studies: Targets to Enhance Reproducibility and Promote Research Translation.

    PubMed

    Ramirez, F Daniel; Motazedian, Pouya; Jung, Richard G; Di Santo, Pietro; MacDonald, Zachary D; Moreland, Robert; Simard, Trevor; Clancy, Aisling A; Russo, Juan J; Welch, Vivian A; Wells, George A; Hibbert, Benjamin

    2017-06-09

    Methodological sources of bias and suboptimal reporting contribute to irreproducibility in preclinical science and may negatively affect research translation. Randomization, blinding, sample size estimation, and considering sex as a biological variable are deemed crucial study design elements to maximize the quality and predictive value of preclinical experiments. To examine the prevalence and temporal patterns of recommended study design element implementation in preclinical cardiovascular research. All articles published over a 10-year period in 5 leading cardiovascular journals were reviewed. Reports of in vivo experiments in nonhuman mammals describing pathophysiology, genetics, or therapeutic interventions relevant to specific cardiovascular disorders were identified. Data on study design and animal model use were collected. Citations at 60 months were additionally examined as a surrogate measure of research impact in a prespecified subset of studies, stratified by individual and cumulative study design elements. Of 28 636 articles screened, 3396 met inclusion criteria. Randomization was reported in 21.8%, blinding in 32.7%, and sample size estimation in 2.3%. Temporal and disease-specific analyses show that the implementation of these study design elements has overall not appreciably increased over the past decade, except in preclinical stroke research, which has uniquely demonstrated significant improvements in methodological rigor. In a subset of 1681 preclinical studies, randomization, blinding, sample size estimation, and inclusion of both sexes were not associated with increased citations at 60 months. Methodological shortcomings are prevalent in preclinical cardiovascular research, have not substantially improved over the past 10 years, and may be overlooked when basing subsequent studies. Resultant risks of bias and threats to study validity have the potential to hinder progress in cardiovascular medicine as preclinical research often precedes and informs clinical trials. Stroke research quality has uniquely improved in recent years, warranting a closer examination for interventions to model in other cardiovascular fields. © 2017 The Authors.

  17. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies.

    PubMed

    Lesueur, Paul; Chevalier, François; Austry, Jean-Baptiste; Waissi, Waisse; Burckel, Hélène; Noël, Georges; Habrand, Jean-Louis; Saintigny, Yannick; Joly, Florence

    2017-09-15

    Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors are becoming important actors of anti-neoplasic agents landscape, with recent but narrow FDA's approvals for ovarian BRCA mutated cancers and prostatic cancer. Nevertheless, PARP inhibitors are also promising drugs for combined treatments particularly with radiotherapy. More than seven PARP inhibitors have been currently developed. Central Role of PARP in DNA repair, makes consider PARP inhibitor as potential radiosensitizers, especially for tumors with DNA repair defects, such as BRCA mutation, because of synthetic lethality. Furthermore the replication-dependent activity of PARP inhibitor helps to maintain the differential effect between tumoral and healthy tissues. Inhibition of chromatin remodeling, G2/M arrest, vasodilatory effect induced by PARP inhibitor, also participate to their radio-sensitization effect. Here, after highlighting mechanisms of PARP inhibitors radiosensitization we methodically searched PubMed, Google Scholar, Cochrane Databases and meeting proceedings for human pre-clinical and clinical studies that evaluated PARP inhibitor radiosensitizing effect. Enhancement ratio, when available, was systematically reported. Sixty four studies finally met our selection criteria and were included in the analysis. Only three pre-clinical studies didn't find any radiosensitizing effect. Median enhancement ratio vary from 1,3 for prostate tumors to 1,5 for lung cancers. Nine phase I or II trials assessed safety data. PARP inhibitors are promising radiosensitizers, but need more clinical investigation. The next ten years will be determining for judging their real potential.

  18. Potential Role of N-Acetylcysteine in the Management of Substance Use Disorders

    PubMed Central

    Gipson, Cassandra D.; Malcolm, Robert J.; Kalivas, Peter W.; Gray, Kevin M.

    2014-01-01

    There is a clear and pressing need to expand pharmacotherapy options for substance use disorders (SUDs) in order to improve sustained abstinence outcomes. Preclinical literature has demonstrated the role of glutamate in addiction, suggesting that new targets for pharmacotherapy should focus on the restoration of glutamatergic function. Glutamatergic agents for SUDs may span multiple addictive behaviors and help demonstrate potentially overlapping mechanisms in addiction. The current review will focus specifically on N-acetylcysteine (NAC), a safe and well-tolerated glutamatergic agent, as a promising potential pharmacotherapy for the treatment of SUDs across several substances of abuse. Building on recently published reviews of the clinical efficacy of NAC across a broad range of conditions, this review will more specifically discuss NAC as a pharmacotherapy for SUDs, devoting particular attention to the safety and tolerability profile of NAC, the wealth of preclinical evidence that has demonstrated the role of glutamate dysregulation in addiction, and the limited but growing clinical literature that has assessed the efficacy of NAC across multiple substances of abuse. Preliminary clinical studies show the promise of NAC in terms of safety, tolerability, and potential efficacy for promoting abstinence from cocaine, nicotine, and cannabis. Results from randomized clinical trials have been mixed, but several mechanistic and methodological factors are discussed to refine the use of NAC in promoting abstinence and relapse prevention across several substances of abuse. Further preclinical and clinical investigation into the use of NAC for SUDs will be vital in addressing current deficits in the treatment of SUDs. PMID:24442756

  19. Evaluation of the appropriateness of the preclinical phase (stage A and stage B) of heart failure Management in Outpatient clinics in Italy rationale and design of the 'VASTISSIMO' study.

    PubMed

    Mureddu, Gian F; Nistri, Stefano; Faggiano, Pompilio; Fimiani, Biagio; Misuraca, Gianfranco; Maggi, Antonio; Gori, Anna M; Uguccioni, Massimo; Tavazzi, Luigi; Zito, Giovanni B

    2016-07-01

    Early detection of heart failure, when still preclinical, is fundamental. Therefore, it is important to assess whether preclinical heart failure management by cardiologists is adequate. The VASTISSIMO study ('EValuation of the AppropriateneSs of The preclInical phase (Stage A and Stage B) of heart failure Management in Outpatient clinics in Italy') is a prospective nationwide study aimed to evaluate the appropriateness of diagnosis and management of preclinical heart failure (stages A and B) by cardiologists working in outpatient clinics in Italy. Secondary goals are to verify if an online educational course for cardiologists can improve management of preclinical heart failure, and evaluate how well cardiologists are aware of patients' adherence to medications. The study involves 80 outpatient cardiology clinics distributed throughout Italy, affiliated either to the Hospital Cardiologists Association or to the Regional Association of Outpatient Cardiologists, and is designed with two phases of consecutive outpatient enrolment each lasting 1 month. In phase 1, physicians' awareness of the risk of heart failure and their decision-making process are recorded. Subsequently, half of the cardiologists are randomized to undergo an online educational course aimed to improve preclinical heart failure management through implementation of guideline recommendations. At the end of the course, all cardiologists are evaluated (phase 2) to see whether changes in clinical management have occurred in those who underwent the educational program versus those who did not. Patients' adherence to prescribed medications will be assessed through the Morisky Self-report Questionnaire. This study should provide valuable information about cardiologists' awareness of preclinical heart failure and the appropriateness of clinical practice in outpatient cardiology clinics in Italy.

  20. Threats to validity in the design and conduct of preclinical efficacy studies: a systematic review of guidelines for in vivo animal experiments.

    PubMed

    Henderson, Valerie C; Kimmelman, Jonathan; Fergusson, Dean; Grimshaw, Jeremy M; Hackam, Dan G

    2013-01-01

    The vast majority of medical interventions introduced into clinical development prove unsafe or ineffective. One prominent explanation for the dismal success rate is flawed preclinical research. We conducted a systematic review of preclinical research guidelines and organized recommendations according to the type of validity threat (internal, construct, or external) or programmatic research activity they primarily address. We searched MEDLINE, Google Scholar, Google, and the EQUATOR Network website for all preclinical guideline documents published up to April 9, 2013 that addressed the design and conduct of in vivo animal experiments aimed at supporting clinical translation. To be eligible, documents had to provide guidance on the design or execution of preclinical animal experiments and represent the aggregated consensus of four or more investigators. Data from included guidelines were independently extracted by two individuals for discrete recommendations on the design and implementation of preclinical efficacy studies. These recommendations were then organized according to the type of validity threat they addressed. A total of 2,029 citations were identified through our search strategy. From these, we identified 26 guidelines that met our eligibility criteria--most of which were directed at neurological or cerebrovascular drug development. Together, these guidelines offered 55 different recommendations. Some of the most common recommendations included performance of a power calculation to determine sample size, randomized treatment allocation, and characterization of disease phenotype in the animal model prior to experimentation. By identifying the most recurrent recommendations among preclinical guidelines, we provide a starting point for developing preclinical guidelines in other disease domains. We also provide a basis for the study and evaluation of preclinical research practice. Please see later in the article for the Editors' Summary.

  1. A De Novo Tool to Measure the Preclinical Learning Climate of Medical Faculties in Turkey

    ERIC Educational Resources Information Center

    Yilmaz, Nilufer Demiral; Velipasaoglu, Serpil; Sahin, Hatice; Basusta, Bilge Uzun; Midik, Ozlem; Coskun, Ozlem; Budakoglu, Isil Irem; Mamakli, Sumer; Tengiz, Funda Ifakat; Durak, Halil Ibrahim; Ozan, Sema

    2015-01-01

    Although several scales are used to measure general and clinical learning climates, there are no scales that assess the preclinical learning climate. Therefore, the purpose of this study was to develop an effective measurement tool in order to assess the preclinical learning climate. In this cross-sectional study, data were collected from 3,540…

  2. Study partners should be required in preclinical Alzheimer's disease trials.

    PubMed

    Grill, Joshua D; Karlawish, Jason

    2017-12-06

    In an effort to intervene earlier in Alzheimer's disease (AD), clinical trials are testing promising candidate therapies in preclinical disease. Preclinical AD trial participants are cognitively normal, functionally independent, and autonomous decision-makers. Yet, like AD dementia trials, preclinical trials require dual enrollment of a participant and a knowledgeable informant, or study partner. The requirement of dyadic enrollment is a barrier to recruitment and may present unique ethical challenges. Despite these limitations, the requirement should continue. Study partners may be essential to ensure participant safety and wellbeing, including overcoming distress related to biomarker disclosure and minimizing risk for catastrophic reactions and suicide. The requirement may maximize participant retention and ensure data integrity, including that study partners are the source of data that will ultimately instruct whether a new treatment has a clinical benefit and meaningful impact on the population health burden associated with AD. Finally, study partners are needed to ensure the scientific and clinical value of trials. Preclinical AD will represent a new model of care, in which persons with no symptoms are informed of probable cognitive decline and eventual dementia. The rationale for early diagnosis in symptomatic AD is equally applicable in preclinical AD-to minimize risk, maximize quality of life, and ensure optimal planning and communication. Family members and other sources of support will likely be essential to the goals of this new model of care for preclinical AD patients and trials must instruct this clinical practice.

  3. Advances of high intensity focused ultrasound (HIFU) for pancreatic cancer.

    PubMed

    Xiaoping, Li; Leizhen, Zheng

    2013-11-01

    High intensity focused ultrasound (HIFU) is a novel therapeutic modality. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumours, including pancreatic cancer. Preliminary studies suggest that HIFU may be useful for the palliative therapy of cancer-related pain in patients with unresectable pancreatic cancer. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.

  4. Recent Progress in Cell Therapy in Solid Organ Transplantation

    PubMed Central

    Garakani, R.; Saidi, R. F.

    2017-01-01

    There has been ample of preclinical and animal studies showing efficacy and safety of using various cells, such as stem cells or T regulatory cells, after transplantation for tissue repair, immunosuppression or tolerance induction. However, there has been a significant progress recently using cell therapy in solid organ transplantation in small clinical trials. Recent results have been promising and using cell therapy in solid organ transplantation seems feasible and safe. However, there are more hurdles to overcome such as dose and timing of the infusions. Current studies mainly focused on live donor kidney transplantation. Expansion of current regimes to other organs and deceased donor transplantation would be crucial. PMID:28924460

  5. Current siRNA Targets in Atherosclerosis and Aortic Aneurysm

    PubMed Central

    Pradhan-Nabzdyk, Leena; Huang, Chenyu; Logerfo, Frank W.; Nabzdyk, Christoph S.

    2014-01-01

    Atherosclerosis (ATH) and aortic aneurysms (AA) remain challenging chronic diseases that confer high morbidity and mortality despite advances in medical, interventional, and surgical care. RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH and AA. Despite positive results in preclinical and some clinical feasibility studies, challenges such as target/sequence validation, tissue specificity, transfection efficiency, and mitigation of unwanted off-target effects remain to be addressed. In this review the most current targets and some novel approaches in siRNA delivery are being discussed. Due to the plethora of investigated targets, only studies published between 2010 and 2014 were included. PMID:24882715

  6. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances.

    PubMed

    Miller-Kleinhenz, Jasmine M; Bozeman, Erica N; Yang, Lily

    2015-01-01

    Effective treatment of triple-negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and noninvasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise toward the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle-based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor-associated endothelial cells, stromal fibroblasts, and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in-depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as by others, and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic. © 2015 Wiley Periodicals, Inc.

  7. Targeted Therapy for Breast Cancer Prevention

    PubMed Central

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  8. Hypolipidemic, Antioxidant and Antiinflammatory Activities of Microalgae Spirulina

    PubMed Central

    Deng, Ruitang; Chow, Te-Jin

    2010-01-01

    Spirulina is free-floating filamentous microalgae growing in alkaline water bodies. With its high nutritional value, Spirulina has been consumed as food for centuries in Central Africa. It is now widely used as nutraceutical food supplement worldwide. Recently, great attention and extensive studies have been devoted to evaluate its therapeutic benefits on an array of diseased conditions including hypercholesterolemia, hyperglycerolemia, cardiovascular diseases, inflammatory diseases, cancer and viral infections. The cardiovascular benefits of Spirulina are primarily resulted from its hypolipidemic, antioxidant and antiinflammatory activities. Data from preclinical studies with various animal models consistently demonstrate the hypolipidemic activity of Spirulina. Although differences in study design, sample size and patient conditions resulting in minor inconsistency in response to Spirulina supplementation, the findings from human clinical trials are largely consistent with the hypolipidemic effects of Spirulina observed in the preclinical studies. However, most of the human clinical trials are suffered with limited sample size and some with poor experimental design. The antioxidant and/or antiinflammatory activities of Spirulina were demonstrated in a large number of preclinical studies. However, a limited number of clinical trials have been carried out so far to confirm such activities in human. Currently, our understanding on the underlying mechanisms for Spirulina’s activities, especially the hypolipidemic effect, is limited. Spirulina is generally considered safe for human consumption supported by its long history of use as food source and its favorable safety profile in animal studies. However, rare cases of side-effects in human have been reported. Quality control in the growth and process of Spirulina to avoid contamination is mandatory to guarantee the safety of Spirulina products. PMID:20633020

  9. Tissue engineering of ligaments for reconstructive surgery.

    PubMed

    Hogan, MaCalus V; Kawakami, Yohei; Murawski, Christopher D; Fu, Freddie H

    2015-05-01

    The use of musculoskeletal bioengineering and regenerative medicine applications in orthopaedic surgery has continued to evolve. The aim of this systematic review was to address tissue-engineering strategies for knee ligament reconstruction. A systematic review of PubMed/Medline using the terms "knee AND ligament" AND "tissue engineering" OR "regenerative medicine" was performed. Two authors performed the search, independently assessed the studies for inclusion, and extracted the data for inclusion in the review. Both preclinical and clinical studies were reviewed, and the articles deemed most relevant were included in this article to provide relevant basic science and recent clinical translational knowledge concerning "tissue-engineering" strategies currently used in knee ligament reconstruction. A total of 224 articles were reviewed in our initial PubMed search. Non-English-language studies were excluded. Clinical and preclinical studies were identified, and those with a focus on knee ligament tissue-engineering strategies including stem cell-based therapies, growth factor administration, hybrid biomaterial, and scaffold development, as well as mechanical stimulation modalities, were reviewed. The body of knowledge surrounding tissue-engineering strategies for ligament reconstruction continues to expand. Presently, various tissue-engineering techniques have some potential advantages, including faster recovery, better ligamentization, and possibly, a reduction of recurrence. Preclinical research of these novel therapies continues to provide promising results. There remains a need for well-designed, high-powered comparative clinical studies to serve as a foundation for successful translation into the clinical setting going forward. Level IV, systematic review of Level IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines?

    PubMed Central

    Laverty, HG; Benson, C; Cartwright, EJ; Cross, MJ; Garland, C; Hammond, T; Holloway, C; McMahon, N; Milligan, J; Park, BK; Pirmohamed, M; Pollard, C; Radford, J; Roome, N; Sager, P; Singh, S; Suter, T; Suter, W; Trafford, A; Volders, PGA; Wallis, R; Weaver, R; York, M; Valentin, JP

    2011-01-01

    Given that cardiovascular safety liabilities remain a major cause of drug attrition during preclinical and clinical development, adverse drug reactions, and post-approval withdrawal of medicines, the Medical Research Council Centre for Drug Safety Science hosted a workshop to discuss current challenges in determining, understanding and addressing ‘Cardiovascular Toxicity of Medicines’. This article summarizes the key discussions from the workshop that aimed to address three major questions: (i) what are the key cardiovascular safety liabilities in drug discovery, drug development and clinical practice? (ii) how good are preclinical and clinical strategies for detecting cardiovascular liabilities? and (iii) do we have a mechanistic understanding of these liabilities? It was concluded that in order to understand, address and ultimately reduce cardiovascular safety liabilities of new therapeutic agents there is an urgent need to: Fully characterize the incidence, prevalence and impact of drug-induced cardiovascular issues at all stages of the drug development process. Ascertain the predictive value of existing non-clinical models and assays towards the clinical outcome. Understand the mechanistic basis of cardiovascular liabilities; by addressing areas where it is currently not possible to predict clinical outcome based on preclinical safety data. Provide scientists in all disciplines with additional skills to enable them to better integrate preclinical and clinical data and to better understand the biological and clinical significance of observed changes. Develop more appropriate, highly relevant and predictive tools and assays to identify and wherever feasible to eliminate cardiovascular safety liabilities from molecules and wherever appropriate to develop clinically relevant and reliable safety biomarkers. PMID:21306581

  11. Dissemination Bias in Systematic Reviews of Animal Research: A Systematic Review

    PubMed Central

    Mueller, Katharina F.; Briel, Matthias; Strech, Daniel; Meerpohl, Joerg J.; Lang, Britta; Motschall, Edith; Gloy, Viktoria; Lamontagne, Francois; Bassler, Dirk

    2014-01-01

    Background Systematic reviews of preclinical studies, in vivo animal experiments in particular, can influence clinical research and thus even clinical care. Dissemination bias, selective dissemination of positive or significant results, is one of the major threats to validity in systematic reviews also in the realm of animal studies. We conducted a systematic review to determine the number of published systematic reviews of animal studies until present, to investigate their methodological features especially with respect to assessment of dissemination bias, and to investigate the citation of preclinical systematic reviews on clinical research. Methods Eligible studies for this systematic review constitute systematic reviews that summarize in vivo animal experiments whose results could be interpreted as applicable to clinical care. We systematically searched Ovid Medline, Embase, ToxNet, and ScienceDirect from 1st January 2009 to 9th January 2013 for eligible systematic reviews without language restrictions. Furthermore we included articles from two previous systematic reviews by Peters et al. and Korevaar et al. Results The literature search and screening process resulted in 512 included full text articles. We found an increasing number of published preclinical systematic reviews over time. The methodological quality of preclinical systematic reviews was low. The majority of preclinical systematic reviews did not assess methodological quality of the included studies (71%), nor did they assess heterogeneity (81%) or dissemination bias (87%). Statistics quantifying the importance of clinical research citing systematic reviews of animal studies showed that clinical studies referred to the preclinical research mainly to justify their study or a future study (76%). Discussion Preclinical systematic reviews may have an influence on clinical research but their methodological quality frequently remains low. Therefore, systematic reviews of animal research should be critically appraised before translating them to a clinical context. PMID:25541734

  12. Experimental design and reporting standards for improving the internal validity of pre-clinical studies in the field of pain: Consensus of the IMI-Europain consortium.

    PubMed

    Knopp, K L; Stenfors, C; Baastrup, C; Bannon, A W; Calvo, M; Caspani, O; Currie, G; Finnerup, N B; Huang, W; Kennedy, J D; Lefevre, I; Machin, I; Macleod, M; Rees, H; Rice, A S C; Rutten, K; Segerdahl, M; Serra, J; Wodarski, R; Berge, O-G; Treedef, R-D

    2017-12-29

    Background and aims Pain is a subjective experience, and as such, pre-clinical models of human pain are highly simplified representations of clinical features. These models are nevertheless critical for the delivery of novel analgesics for human pain, providing pharmacodynamic measurements of activity and, where possible, on-target confirmation of that activity. It has, however, been suggested that at least 50% of all pre-clinical data, independent of discipline, cannot be replicated. Additionally, the paucity of "negative" data in the public domain indicates a publication bias, and significantly impacts the interpretation of failed attempts to replicate published findings. Evidence suggests that systematic biases in experimental design and conduct and insufficiencies in reporting play significant roles in poor reproducibility across pre-clinical studies. It then follows that recommendations on how to improve these factors are warranted. Methods Members of Europain, a pain research consortium funded by the European Innovative Medicines Initiative (IMI), developed internal recommendations on how to improve the reliability of pre-clinical studies between laboratories. This guidance is focused on two aspects: experimental design and conduct, and study reporting. Results Minimum requirements for experimental design and conduct were agreed upon across the dimensions of animal characteristics, sample size calculations, inclusion and exclusion criteria, random allocation to groups, allocation concealment, and blinded assessment of outcome. Building upon the Animals in Research: Reportingin vivo Experiments (ARRIVE) guidelines, reporting standards were developed for pre-clinical studies of pain. These include specific recommendations for reporting on ethical issues, experimental design and conduct, and data analysis and interpretation. Key principles such as sample size calculation, a priori definition of a primary efficacy measure, randomization, allocation concealments, and blinding are discussed. In addition, considerations of how stress and normal rodent physiology impact outcome of analgesic drug studies are considered. Flow diagrams are standard requirements in all clinical trials, and flow diagrams for preclinical trials, which describe number of animals included/excluded, and reasons for exclusion are proposed. Creation of a trial registry for pre-clinical studies focused on drug development in order to estimate possible publication bias is discussed. Conclusions More systematic research is needed to analyze how inadequate internal validity and/or experimental bias may impact reproducibility across pre-clinical pain studies. Addressing the potential threats to internal validity and the sources of experimental biases, as well as increasing the transparency in reporting, are likely to improve preclinical research broadly by ensuring relevant progress is made in advancing the knowledge of chronic pain pathophysiology and identifying novel analgesics. Implications We are now disseminating these Europain processes for discussion in the wider pain research community. Any benefit from these guidelines will be dependent on acceptance and disciplined implementation across pre-clinical laboratories, funding agencies and journal editors, but it is anticipated that these guidelines will be a first step towards improving scientific rigor across the field of pre-clinical pain research.

  13. Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney Injury in Multi-site Preclinical Biomarker Qualification Studies

    PubMed Central

    Vaidya, Vishal S.; Ozer, Josef S.; Frank, Dieterle; Collings, Fitz B.; Ramirez, Victoria; Troth, Sean; Muniappa, Nagaraja; Thudium, Douglas; Gerhold, David; Holder, Daniel J.; Bobadilla, Norma A.; Marrer, Estelle; Perentes, Elias; Cordier, André; Vonderscher, Jacky; Maurer, Gérard; Goering, Peter L.; Sistare, Frank D.; Bonventre, Joseph V.

    2010-01-01

    Kidney toxicity accounts for a significant percentage of morbidity and drug candidate failure. Serum creatinine (SCr) and blood urea nitrogen (BUN) have been used to monitor kidney dysfunction for over a century but these markers are insensitive and non-specific. In multi-site preclinical rat toxicology studies the diagnostic performance of urinary kidney injury molecule-1 (Kim-1) was compared to traditional biomarkers as predictors of kidney tubular histopathologic changes, currently considered the “gold standard” of nephrotoxicity. In multiple models of kidney injury, urinary Kim-1 significantly outperformed SCr and BUN. The area under the receiver operating characteristic curve for Kim-1 was between 0.91 and 0.99 as compared to 0.79 to 0.9 for BUN and 0.73 to 0.85 for SCr. Thus urinary Kim-1 is the first injury biomarker of kidney toxicity qualified by the FDA and EMEA and is expected to significantly improve kidney safety monitoring. PMID:20458318

  14. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson’s Disease

    DTIC Science & Technology

    2008-10-30

    these have advanced molecules to clinical studies.2,3 Thus, the NIH clinical trial registry lists over a dozen actively recruiting or completed trials ...into clinical trials ,4 and multiple other preclinical programs are apparently progressing (including publicly announced programs at Neurocrine5 and...unpublished results). Adenosine A2AR antagonists are currently in clinical trials for PD because of their symptom- improving abilities. The

  15. Effects of Dental 3D Multimedia System on the Performance of Junior Dental Students in Preclinical Practice: A Report from China

    ERIC Educational Resources Information Center

    Hu, Jian; Yu, Hao; Shao, Jun; Li, Zhiyong; Wang, Jiawei; Wang, Yining

    2009-01-01

    Background: Computer-assisted tools are rarely adopted for dental education in China. In China, 3D digital technology, such as Virtual Reality Systems, are often rejected in the dental field due to prohibitive pricing. There is also a reluctance to move away from traditional patterns of dental education. Objective: The current study is one of a…

  16. Simultaneous wood and metal particle detection on dark-field radiography.

    PubMed

    Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela

    2018-01-01

    Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.

  17. Ibandronate treatment for osteoporosis: rationale, preclinical, and clinical development of extended dosing regimens.

    PubMed

    Epstein, Solomon

    2006-03-01

    Ibandronate is a potent nitrogen-containing bisphosphonate available as a once-monthly oral formulation for the treatment and prevention of osteoporosis. Preclinical experiments with estrogen-depleted rats, dogs, and monkeys demonstrated the efficacy of daily and intermittent ibandronate dosing. Initial clinical trials explored the optimal dosing regimens for oral administration in humans. The Oral Ibandronate Osteoporosis Vertebral Fracture Trial in North America and Europe (BONE) and Monthly Oral Ibandronate in Ladies (MOBILE) trials demonstrated that long-term daily and intermittent administration of ibandronate was efficacious for increasing bone mineral density, reducing markers of bone turnover, and preventing fractures, while maintaining bone quality. These preclinical and clinical ibandronate trials provided progressive evidence that a simple, long interval dosing regimen could offer efficacy and safety comparable with currently available bisphosphonates. It is anticipated that once-monthly ibandronate may have a positive impact on patient adherence, and ultimately, on fracture protection in osteoporotic women.

  18. Stem Cell Therapies for Knee Cartilage Repair: The Current Status of Preclinical and Clinical Studies

    PubMed Central

    Anderson, John A.; Little, Dianne; Toth, Alison P.; Moorman, Claude T.; Tucker, Bradford S.; Ciccotti, Michael G.; Guilak, Farshid

    2014-01-01

    Background Articular cartilage damage of the knee is common, causing significant morbidity worldwide. Many adult tissues contain cells that are able to differentiate into multiple cell types, including chondrocytes. These stem cells have gained significant attention over the past decade and may become frontline management for cartilage defects in the very near future. Purpose The role of stem cells in the treatment of knee osteochondral defects was reviewed. Recent animal and clinical studies were reviewed to determine the benefits and potential outcomes of using stem cells for cartilage defects. Study Design Literature review. Methods A PubMed search was undertaken. The key phrase “stem cells and knee” was used. The search included reviews and original articles over an unlimited time period. From this search, articles outlining animal and clinical trials were selected. A search of current clinical trials in progress was performed on the clinicaltrials.gov website, and “stem cells and knee” was used as the search phrase. Results Stem cells have been used in many recent in vitro and animal studies. A number of cell-based approaches for cartilage repair have progressed from preclinical animal studies into clinical trials. Conclusion The use of stem cells for the treatment of cartilage defects is increasing in animal and clinical studies. Methods of delivery of stem cells to the knee’s cartilage vary from direct injection to implantation with scaffolds. While these approaches are highly promising, there is currently limited evidence of a direct clinical benefit, and further research is required to assess the overall outcome of stem cell therapies for knee cartilage repair. PMID:24220016

  19. Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems.

    PubMed

    Liptrott, Neill J; Giardiello, Marco; McDonald, Tom O; Rannard, Steve P; Owen, Andrew

    2018-03-15

    Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety.

  20. Molecular Pharmacology of Malignant Pleural Mesothelioma: Challenges and Perspectives From Preclinical and Clinical Studies.

    PubMed

    Thellung, Stefano; Favoni, Roberto E; Würth, Roberto; Nizzari, Mario; Pattarozzi, Alessandra; Daga, Antonio; Florio, Tullio; Barbieri, Federica

    2016-01-01

    Malignant pleural mesothelioma (MPM) is one of the deadliest and most heterogeneous tumors, highly refractory to multimodal therapeutic approach, including surgery, chemo- and radiotherapy. Preclinical and clinical studies exploring the efficacy of drugs targeting tyrosine kinases, angiogenesis and histone deacetylases, did not fulfil the expected clinical benefits. Thus, novel molecular targets should be identified from a definite knowledge of the unique biology and most relevant transduction pathways of MPM cells. Cancer stem cells (CSCs) are a subset of malignant precursors responsible for initiation, progression, resistance to cytotoxic drugs, recurrence and metastatic diffusion of tumor cells. CSCs are putative driving factors for MPM development and contribute to its clinical and biological heterogeneity; hence, targeted eradication of CSCs represents an ineludible goal to counteract MPM aggressiveness. In this context, innovative preclinical models could be exploited to identify novel intracellular pathway inhibitors able to target CSC viability. Novel drug targets have been identified among key factors responsible for the oncogenic transformation of mesothelial cells, often directly induced by asbestos. These include mitogenic and anti-apoptotic signaling that may also be activated by autocrine and paracrine cytokine pathways controlling cell plasticity. Both signaling pathways affecting proto-oncogene and transcription factor expression, or genetic and epigenetic alterations, such as mutations in cell cycle genes and silencing of tumor suppressor genes, represent promising disease-specific targets. In this review we describe current knowledge of MPM cell biology, focusing on potential targets to be tested in pharmacological studies, and highlighting results and challenges of clinical translation.

  1. Use of Statins to Augment Progenitor Cell Function in Preclinical and Clinical Studies of Regenerative Therapy: a Systematic Review.

    PubMed

    Park, Angela; Barrera-Ramirez, Juliana; Ranasinghe, Indee; Pilon, Sophie; Sy, Richmond; Fergusson, Dean; Allan, David S

    2016-06-01

    Mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) are used in cell-based regenerative therapy. HMG CoA reductase inhibitors (statins) appear promising in blocking apoptosis, prolonging progenitor cell survival and improving their capacity to repair organ function. We performed a systematic review of preclinical and clinical studies to clarify whether statins can improve cell-based repair of organ injury. MEDLINE, EMBASE, and PUBMED databases were searched (1947 to June 25, 2013). Controlled clinical and pre-clinical studies were included that evaluated statin therapy used alone or in combination with MSCs or EPCs in patients or animals with organ injury. After screening 771 citations, 100 records underwent full eligibility screening of which 38 studies met eligibility and were included in the review: Studies were grouped into pre-clinical studies that involved statin treatment in combination with cell therapy (18 studies), preclinical studies of statin therapy alone (13 studies) and clinical studies of statin therapy (7 studies). Studies addressed cardiac injury (14 studies), vascular disorders (15 studies), neurologic conditions (8 studies) and bone fractures (1 study). Pre-clinical studies of statins in combination with MSC infusion (15 studies) or EPC therapy (3 studies) were described and despite marked heterogeneity in reporting outcomes of cellular analysis and organ function, all of these cell-based pre-clinical studies reported improved organ recovery with the addition of statin therapy. Moreover, 13 pre-clinical studies involved the administration of a statin drug alone to animals. An increase in EPC number and/or function (no studies of MSCs) was reported in 11 of these studies (85 %) and improved organ function in 12 studies (92 %). We also identified 7 clinical studies and none involved the administration of cells but described an increased number and/or function of EPCs (no studies of MSCs) and improved organ function with statin therapy (1.2-fold to 35-fold improvement over controls) in all 7 studies. Our systematic review provides a foundation of encouraging results that support further study of statins in regenerative therapy to augment the number and/or function of MSCs used in cell-based repair and to augment the number and function of EPCs in vivo to repair damaged tissues. Larger studies are needed to ensure safety and confirm clinical benefits.

  2. Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives

    PubMed Central

    Ngen, Ethel J.; Artemov, Dmitri

    2017-01-01

    Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions. PMID:28106829

  3. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  4. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice

    PubMed Central

    Stirland, Darren Lars; Nichols, Joseph W.; Miura, Seiji; Bae, You Han

    2013-01-01

    With countless research papers using preclinical models and showing the superiority of nanoparticle design over current drug therapies used to treat cancers, it is surprising how deficient the translation of these nano-sized drug carriers into the clinical setting is. This review article seeks to compare the preclinical and clinical results for Doxil®, PK1, Abraxane®, Genexol-PM®, Xyotax™, NC-6004, Mylotarg®, PK2, and CALAA-01. While not comprehensive, it covers nano-sized drug carriers designed to improve the efficacy of common drugs used in chemotherapy. While not always available or comparable, effort was made to compare the pharmacokinetics, toxicity, and efficacy between the animal and human studies. Discussion is provided to suggest what might be causing the gap. Finally, suggestions and encouragement are dispensed for the potential that nano-sized drug carriers hold. PMID:24096014

  5. Glutamate Receptor Antagonists as Fast-Acting Therapeutic Alternatives for the Treatment of Depression: Ketamine and Other Compounds

    PubMed Central

    Niciu, Mark J.; Henter, Ioline D.; Luckenbaugh, David A.; Zarate, Carlos A.; Charney, Dennis S.

    2014-01-01

    The N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has rapid and potent antidepressant effects in treatment-resistant major depressive disorder and bipolar depression. These effects are in direct contrast to the more modest effects seen after weeks of treatment with classic monoaminergic antidepressants. Numerous open-label and case studies similarly validate ketamine’s antidepressant properties. These clinical findings have been reverse-translated into preclinical models in an effort to elucidate ketamine’s antidepressant mechanism of action, and three important targets have been identified: mammalian target of rapamycin (mTOR), eukaryotic elongation factor 2 (eEF2), and glycogen synthase kinase-3 (GSK-3). Current clinical and preclinical research is focused on (a) prolonging/maintaining ketamine’s antidepressant effects, (b) developing more selective NMDA receptor antagonists free of ketamine’s adverse effects, and (c) identifying predictor, mediator/moderator, and treatment response biomarkers of ketamine’s antidepressant effects. PMID:24392693

  6. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    PubMed Central

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  7. The fruit fly Drosophila melanogaster as an innovative preclinical ADME model for solute carrier membrane transporters, with consequences for pharmacology and drug therapy.

    PubMed

    Wang, Yiwen; Moussian, Bernard; Schaeffeler, Elke; Schwab, Matthias; Nies, Anne T

    2018-06-08

    Solute carrier membrane transporters (SLCs) control cell exposure to small-molecule drugs, thereby contributing to drug efficacy and failure and/or adverse effects. Moreover, SLCs are genetically linked to various diseases. Hence, in-depth knowledge of SLC function is fundamental for a better understanding of disease pathophysiology and the drug development process. Given that the model organism Drosophila melanogaster (fruit fly) expresses SLCs, such as for the excretion of endogenous and toxic compounds by the hindgut and Malpighian tubules, equivalent to human intestine and kidney, this system appears to be a promising preclinical model to use to study human SLCs. Here, we systematically compare current knowledge of SLCs in Drosophila and humans and describe the Drosophila model as an innovative tool for drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A human microdose study of the antimalarial drug GSK3191607 in healthy volunteers.

    PubMed

    Okour, Malek; Derimanov, Geo; Barnett, Rodger; Fernandez, Esther; Ferrer, Santiago; Gresham, Stephanie; Hossain, Mohammad; Gamo, Francisco-Javier; Koh, Gavin; Pereira, Adrian; Rolfe, Katie; Wong, Deborah; Young, Graeme; Rami, Harshad; Haselden, John

    2018-03-01

    GSK3191607, a novel inhibitor of the Plasmodium falciparum ATP4 (PfATP4) pathway, is being considered for development in humans. However, a key problem encountered during the preclinical evaluation of the compound was its inconsistent pharmacokinetic (PK) profile across preclinical species (mouse, rat and dog), which prevented reliable prediction of PK parameters in humans and precluded a well-founded assessment of the potential for clinical development of the compound. Therefore, an open-label microdose (100 μg, six subjects) first time in humans study was conducted to assess the human PK of GSK3191607 following intravenous administration of [14C]-GSK3191607. A human microdose study was conducted to investigate the clinical PK of GSK3191607 and enable a Go/No Go decision on further progression of the compound. The PK disposition parameters estimated from the microdose study, combined with preclinical in vitro and in vivo pharmacodynamic parameters, were all used to estimate the potential efficacy of various oral dosing regimens in humans. The PK profile, based on the microdose data, demonstrated a half-life (~17 h) similar to other antimalarial compounds currently in clinical development. However, combining the microdose data with the pharmacodynamic data provided results that do not support further clinical development of the compound for a single dose cure. The information generated by this study provides a basis for predicting the expected oral PK profiles of GSK3191607 in man and supports decisions on the future clinical development of the compound. © 2017 The British Pharmacological Society.

  9. At the Crossroads of Clinical and Preclinical Research for Muscular Dystrophy—Are We Closer to Effective Treatment for Patients?

    PubMed Central

    Gawlik, Kinga I.

    2018-01-01

    Among diseases affecting skeletal muscle, muscular dystrophy is one of the most devastating and complex disorders. The term ‘muscular dystrophy’ refers to a heterogeneous group of genetic diseases associated with a primary muscle defect that leads to progressive muscle wasting and consequent loss of muscle function. Muscular dystrophies are accompanied by numerous clinical complications and abnormalities in other tissues that cause extreme discomfort in everyday life. The fact that muscular dystrophy often takes its toll on babies and small children, and that many patients die at a young age, adds to the cruel character of the disease. Clinicians all over the world are facing the same problem: they have no therapy to offer except for symptom-relieving interventions. Patients, their families, but also clinicians, are in urgent need of an effective cure. Despite advances in genetics, increased understanding of molecular mechanisms underlying muscle disease, despite a sweeping range of successful preclinical strategies and relative progress of their implementation in the clinic, therapy for patients is currently out of reach. Only a greater comprehension of disease mechanisms, new preclinical studies, development of novel technologies, and tight collaboration between scientists and physicians can help improve clinical treatment. Fortunately, inventiveness in research is rapidly extending the limits and setting new standards for treatment design. This review provides a synopsis of muscular dystrophy and considers the steps of preclinical and clinical research that are taking the muscular dystrophy community towards the fundamental goal of combating the traumatic disease. PMID:29772730

  10. Recent developments in the behavioural and pharmacological enhancement of extinction of drug seeking.

    PubMed

    Chesworth, Rose; Corbit, Laura H

    2017-01-01

    One of the principal barriers to overcoming addiction is the propensity to relapse, even after months or years of abstinence. Relapse can be precipitated by cues and contexts associated with drug use; thus, decreasing the conditioned properties of these cues and contexts may assist in preventing relapse. The predictive power of drug cues and contexts can be reduced by repeatedly presenting them in the absence of the drug reinforcer, a process known as extinction. The potential of extinction to limit relapse has generated considerable interest and research over the past few decades. While pre-clinical animal models suggest extinction learning assists relapse prevention, treatment efficacy is often lacking when extinction learning principles are translated into clinical trials. Conklin and Tiffany (Addiction, 2002) suggest the lack of efficacy in clinical practice may be due to limited translation of procedures demonstrated through animal research and propose several methodological improvements to enhance extinction learning for drug addiction. This review will examine recent advances in the behavioural and pharmacological manipulation of extinction learning, based on research from pre-clinical models. In addition, the translation of pre-clinical findings-both those suggested by Conklin and Tiffany () and novel demonstrations from the past 13 years-into clinical trials and the efficacy of these methods in reducing craving and relapse, where available, will be discussed. Finally, we highlight areas where promising pre-clinical models have not yet been integrated into current clinical practice but, if applied, could improve upon existing behavioural and pharmacological methods. © 2015 Society for the Study of Addiction.

  11. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Improving Translation from Preclinical Studies to Clinical Trials in Acute Kidney Injury.

    PubMed

    Fiorentino, Marco; Kellum, John A

    2018-05-23

    Several cellular and molecular targets and mechanisms have been investigated in preclinical studies of acute kidney injury (AKI), but translation in successful clinical studies has failed to date. This article reviews many issues that have limited this and the potential future perspectives in AKI prevention and treatment. Preclinical models of AKI should closely mimic the complexity of human AKI, considering the importance of several comorbidities in determining the clinical course and outcomes in the human disease. Moreover, studies should test novel interventions in models where AKI is already established, instead of focusing only at primary prevention. AKI definitions and endpoints in animal studies should be similar to those applied in clinical studies; in particular, AKI biomarkers should be implemented to guide patient selection for clinical trials and monitor intervention efficacy. In this scenario, cell-cycle arrest biomarkers have been widely investigated as AKI predictors in both preclinical and clinical studies and they serve as useful tools for future interventional studies. A better understanding of human AKI through a large collection of biological samples and kidney biopsies and omics applications, and an iterative relationship between preclinical and clinical studies are critical steps to improve future preclinical models and clinical trials. Finally, given the great variability in clinical manifestation of AKI, a strong collaboration between research centers and industry is recommended. Key messages: Several methodological issues have hampered the translation of basic research findings in clinical studies, and overcoming these obstacles is necessary to achieve success. © 2018 S. Karger AG, Basel.

  13. The effect of learning styles and study behavior on success of preclinical students in pharmacology.

    PubMed

    Asci, Halil; Kulac, Esin; Sezik, Mekin; Cankara, F Nihan; Cicek, Ekrem

    2016-01-01

    To evaluate the effect of learning styles and study behaviors on preclinical medical students' pharmacology exam scores in a non-Western setting. Grasha-Reichmann Student Learning Study Scale and a modified Study Behavior Inventory were used to assess learning styles and study behaviors of preclinical medical students (n = 87). Logistic regression models were used to evaluate the independent effect of gender, age, learning style, and study behavior on pharmacology success. Collaborative (40%) and competitive (27%) dominant learning styles were frequent in the cohort. The most common study behavior subcategories were study reading (40%) and general study habits (38%). Adequate listening and note-taking skills were associated with pharmacology success, whereas students with adequate writing skills had lower exam scores. These effects were independent of gender. Preclinical medical students' study behaviors are independent predictive factors for short-term pharmacology success.

  14. Terminal-decline effects for select cognitive tasks after controlling for preclinical dementia.

    PubMed

    Laukka, Erika J; MacDonald, Stuart W S; Bäckman, Lars

    2008-05-01

    In a previous study, the authors found no accelerated decline in close proximity to death for a measure of global cognitive functioning, after excluding persons in a preclinical phase of dementia. However, specific cognitive tasks might be more sensitive to terminal-decline effects. The purpose of this study was to explore possible terminal-decline effects for a range of cognitive tasks after controlling for preclinical dementia. Community-based cohort study. The Kungsholmen district of Stockholm. A total of 585 persons (75+ years) were repeatedly assessed over an 11-year period. Level and change in cognitive performance were compared for three groups: persons in close proximity to death, persons in a preclinical phase of dementia, and persons who remained alive and nondemented throughout the study. Tasks assessing primary and episodic memory, verbal ability, and visuospatial skill. Compared with an analysis where all dead subjects were included in the impending-death group, removing the preclinical dementia cases resulted in markedly attenuated mortality-related effects. However, the impending-death group still declined at a faster rate relative to the comparison group on Digit Span-forward, word recognition, and category fluency. Notably, these were tasks for which the comparison group showed no significant decline. A considerable proportion of the terminal-decline effect is accounted for by the impact of preclinical dementia. However, for tasks that are relatively resistant to age-related change, such effects might be detected independently of preclinical dementia.

  15. Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study.

    PubMed

    Bourfiss, Mimount; Vigneault, Davis M; Aliyari Ghasebeh, Mounes; Murray, Brittney; James, Cynthia A; Tichnell, Crystal; Mohamed Hoesein, Firdaus A; Zimmerman, Stefan L; Kamel, Ihab R; Calkins, Hugh; Tandri, Harikrishna; Velthuis, Birgitta K; Bluemke, David A; Te Riele, Anneline S J M

    2017-09-01

    Regional right ventricular (RV) dysfunction is the hallmark of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C), but is currently only qualitatively evaluated in the clinical setting. Feature Tracking Cardiovascular Magnetic Resonance (FT-CMR) is a novel quantitative method that uses cine CMR to calculate strain values. However, most prior FT-CMR studies in ARVD/C have focused on global RV strain using different software methods, complicating implementation of FT-CMR in clinical practice. We aimed to assess the clinical value of global and regional strain using FT-CMR in ARVD/C and to determine differences between commercially available FT-CMR software packages. We analyzed cine CMR images of 110 subjects (39 overt ARVD/C [mutation+/phenotype+], 40 preclinical ARVD/C [mutation+/phenotype-] and 31 control) for global and regional (subtricuspid, anterior, apical) RV strain in the horizontal longitudinal axis using four FT-CMR software methods (Multimodality Tissue Tracking, TomTec, Medis and Circle Cardiovascular Imaging). Intersoftware agreement was assessed using Bland Altman plots. For global strain, all methods showed reduced strain in overt ARVD/C patients compared to control subjects (p < 0.041), whereas none distinguished preclinical from control subjects (p > 0.275). For regional strain, overt ARVD/C patients showed reduced strain compared to control subjects in all segments which reached statistical significance in the subtricuspid region for all software methods (p < 0.037), in the anterior wall for two methods (p < 0.005) and in the apex for one method (p = 0.012). Preclinical subjects showed abnormal subtricuspid strain compared to control subjects using one of the software methods (p = 0.009). Agreement between software methods for absolute strain values was low (Intraclass Correlation Coefficient = 0.373). Despite large intersoftware variability of FT-CMR derived strain values, all four software methods distinguished overt ARVD/C patients from control subjects by both global and subtricuspid strain values. In the subtricuspid region, one software package distinguished preclinical from control subjects, suggesting the potential to identify early ARVD/C prior to overt disease expression.

  16. The study design elements employed by researchers in preclinical animal experiments from two research domains and implications for automation of systematic reviews.

    PubMed

    O'Connor, Annette M; Totton, Sarah C; Cullen, Jonah N; Ramezani, Mahmood; Kalivarapu, Vijay; Yuan, Chaohui; Gilbert, Stephen B

    2018-01-01

    Systematic reviews are increasingly using data from preclinical animal experiments in evidence networks. Further, there are ever-increasing efforts to automate aspects of the systematic review process. When assessing systematic bias and unit-of-analysis errors in preclinical experiments, it is critical to understand the study design elements employed by investigators. Such information can also inform prioritization of automation efforts that allow the identification of the most common issues. The aim of this study was to identify the design elements used by investigators in preclinical research in order to inform unique aspects of assessment of bias and error in preclinical research. Using 100 preclinical experiments each related to brain trauma and toxicology, we assessed design elements described by the investigators. We evaluated Methods and Materials sections of reports for descriptions of the following design elements: 1) use of comparison group, 2) unit of allocation of the interventions to study units, 3) arrangement of factors, 4) method of factor allocation to study units, 5) concealment of the factors during allocation and outcome assessment, 6) independence of study units, and 7) nature of factors. Many investigators reported using design elements that suggested the potential for unit-of-analysis errors, i.e., descriptions of repeated measurements of the outcome (94/200) and descriptions of potential for pseudo-replication (99/200). Use of complex factor arrangements was common, with 112 experiments using some form of factorial design (complete, incomplete or split-plot-like). In the toxicology dataset, 20 of the 100 experiments appeared to use a split-plot-like design, although no investigators used this term. The common use of repeated measures and factorial designs means understanding bias and error in preclinical experimental design might require greater expertise than simple parallel designs. Similarly, use of complex factor arrangements creates novel challenges for accurate automation of data extraction and bias and error assessment in preclinical experiments.

  17. Achondroplasia: pathogenesis and implications for future treatment.

    PubMed

    Laederich, Melanie B; Horton, William A

    2010-08-01

    Although the genetic defect underlying achondroplasia has been known for over a decade, no effective therapies to stimulate bone growth have emerged. Here we review the recent literature and summarize the molecular mechanisms underlying disease pathology and examine their potential as therapeutic targets. Currently used preclinical models are discussed in the context of recent advances with a special focus on C-type natriuretic peptide. Research on the mutation in Fibroblast Growth Factor Receptor 3 (FGFR3) that causes achondroplasia suggests that disease results from increased signal transduction from the mutant receptor. Thus, current therapeutic strategies have focused on reducing signals emanating from FGFR3. First-generation therapies directly targeting FGFR3, such as kinase inhibitors and neutralizing antibodies, designed for targeting FGFR3 in cancer, are still in the preclinical phase and have yet to translate into the management of achondroplasia. Counteracting signal transduction pathways downstream of FGFR3 holds promise with the discovery that administration of C-type natriuretic peptide to achondroplastic mice ameliorates their clinical phenotype. However, more research into long-term effectiveness and safety of this strategy is needed. Direct targeting of therapeutic agents to growth plate cartilage may enhance efficacy and minimize side effects of these and future therapies. Current research into the pathogenesis of achondroplasia has expanded our understanding of the mechanisms of FGFR3-induced disease and has increased the number of approaches that we may use to potentially correct it. Further research is needed to validate these approaches in preclinical models of achondroplasia.

  18. Pathogenesis and prevention of rheumatic disease: focus on preclinical RA and SLE

    PubMed Central

    and, Kevin D. Deane; El-Gabalawy, Hani

    2014-01-01

    Established and emerging data demonstrate that a ‘preclinical’ period of disease precedes the onset of clinical rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), as well as other autoimmune rheumatic diseases (ARDs).This preclinical stage of development of disease is characterized by abnormalities in disease-related biomarkers before the onset of the clinically apparent signs and symptoms. Numerous genetic and environmental risk factors for ARDs have also been identified, and many of these factors are likely to act before the clinical appearance of tissue injury to initiate and/or propagate autoimmunity and autoimmune disease. Thus, biomarkers representative of these autoimmune processes could potentially be used in conjunction with other clinical parameters during the preclinical period of ARDs to predict the future development of clinically apparent disease. This Review focuses on the preclinical stages of RA and SLE, as our current understanding of these diseases can be used to present an overall model of the development of ARDs that might ultimately be used to develop screening programmes and preventive strategies. Important considerations for the future development of such approaches, in particular, the issues that require additional research and how they might be addressed, are also discussed. PMID:24514912

  19. Current state and future prospects of immunotherapy for glioma.

    PubMed

    Kamran, Neha; Alghamri, Mahmoud S; Nunez, Felipe J; Shah, Diana; Asad, Antonela S; Candolfi, Marianela; Altshuler, David; Lowenstein, Pedro R; Castro, Maria G

    2018-02-01

    There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.

  20. Addressing endotoxin issues in bioengineered heparin.

    PubMed

    Suwan, Jiraporn; Torelli, Amanda; Onishi, Akihiro; Dordick, Jonathan S; Linhardt, Robert J

    2012-01-01

    Heparin is a widely used clinical anticoagulant that is prepared from pig intestine. A contamination of heparin in 2008 has led to a reexamination of animal-derived pharmaceuticals. A bioengineered heparin prepared by bacterial fermentation and chemical and enzymatic processing is currently under development. This study examines the challenges of reducing or removing endotoxins associated with this process that are necessary to proceed with preclinical in vivo evaluation of bioengineered heparin. The current process is assessed for endotoxin levels, and strategies are examined for endotoxin removal from polysaccharides and enzymes involved in this process. © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  1. New viruses for cancer therapy: meeting clinical needs

    PubMed Central

    Miest, Tanner S.; Cattaneo, Roberto

    2014-01-01

    Early-stage clinical trials of oncolytic virotherapy have reported the safety of several virus platforms, and viruses from three families have progressed to advanced efficacy trials. In addition, preclinical studies have established proof-of-principle for many new genetic engineering strategies. Thus, the virotherapy field now has available a diverse collection of viruses that are equipped to address unmet clinical needs owing to improved systemic administration, greater tumour specificity and enhanced oncolytic efficacy. The current key challenge for the field is to develop viruses that replicate with greater efficiency within tumours while achieving therapeutic synergy with currently available treatments. PMID:24292552

  2. Bioengineered Temporomandibular Joint Disk Implants: Study Protocol for a Two-Phase Exploratory Randomized Preclinical Pilot Trial in 18 Black Merino Sheep (TEMPOJIMS)

    PubMed Central

    Monje, Florencio Gil; González-García, Raúl; Little, Christopher B; Mónico, Lisete; Pinho, Mário; Santos, Fábio Abade; Carrapiço, Belmira; Gonçalves, Sandra Cavaco; Morouço, Pedro; Alves, Nuno; Moura, Carla; Wang, Yadong; Jeffries, Eric; Gao, Jin; Sousa, Rita; Neto, Lia Lucas; Caldeira, Daniel; Salvado, Francisco

    2017-01-01

    Background Preclinical trials are essential to test efficacious options to substitute the temporomandibular joint (TMJ) disk. The contemporary absence of an ideal treatment for patients with severe TMJ disorders can be related to difficulties concerning the appropriate study design to conduct preclinical trials in the TMJ field. These difficulties can be associated with the use of heterogeneous animal models, the use of the contralateral TMJ as control, the absence of rigorous randomized controlled preclinical trials with blinded outcomes assessors, and difficulties involving multidisciplinary teams. Objective This study aims to develop a new, reproducible, and effective study design for preclinical research in the TMJ domain, obtaining rigorous data related to (1) identify the impact of bilateral discectomy in black Merino sheep, (2) identify the impact of bilateral discopexy in black Merino sheep, and (3) identify the impact of three different bioengineering TMJ discs in black Merino sheep. Methods A two-phase exploratory randomized controlled preclinical trial with blinded outcomes is proposed. In the first phase, nine sheep are randomized into three different surgical bilateral procedures: bilateral discectomy, bilateral discopexy, and sham surgery. In the second phase, nine sheep are randomized to bilaterally test three different TMJ bioengineering disk implants. The primary outcome is the histological gradation of TMJ. Secondary outcomes are imaging changes, absolute masticatory time, ruminant time per cycle, ruminant kinetics, ruminant area, and sheep weight. Results Previous preclinical studies in this field have used the contralateral unoperated side as a control, different animal models ranging from mice to a canine model, with nonrandomized, nonblinded and uncontrolled study designs and limited outcomes measures. The main goal of this exploratory preclinical protocol is to set a new standard for future preclinical trials in oromaxillofacial surgery, particularly in the TMJ field, by proposing a rigorous design in black Merino sheep. The authors also intend to test the feasibility of pilot outcomes. The authors expect to increase the quality of further studies in this field and to progress in future treatment options for patients undergoing surgery for TMJ disk replacement. Conclusions The study has commenced, but it is too early to provide results or conclusions. PMID:28254733

  3. Profile of neratinib and its potential in the treatment of breast cancer

    PubMed Central

    Feldinger, Katharina; Kong, Anthony

    2015-01-01

    The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s). PMID:26089701

  4. Profile of neratinib and its potential in the treatment of breast cancer.

    PubMed

    Feldinger, Katharina; Kong, Anthony

    2015-01-01

    The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s).

  5. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection.

    PubMed

    Sack, Brandon; Kappe, Stefan H I; Sather, D Noah

    2017-05-01

    An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.

  6. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.

    PubMed

    Schrantee, A; Reneman, L

    2014-09-01

    Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Cachexia and pancreatic cancer: Are there treatment options?

    PubMed Central

    Mueller, Tara C; Burmeister, Marc A; Bachmann, Jeannine; Martignoni, Marc E

    2014-01-01

    Cachexia is frequently described in patients with pancreatic ductal adenocarcinoma (PDAC) and is associated with reduced survival and quality of life. Unfortunately, the therapeutic options of this multi-factorial and complex syndrome are limited. This is due to the fact that, despite extensive preclinical and clinical research, the underlying pathological mechanisms leading to PDAC-associated cachexia are still not fully understood. Furthermore, there is still a lack of consensus on the definition of cachexia, which complicates the standardization of diagnosis and treatment as well as the analysis of the current literature. In order to provide an efficient therapy for cachexia, an early and reliable diagnosis and consistent monitoring is required, which can be challenging especially in obese patients. Although many substances have been tested in clinical and preclinical settings, so far none of them have been proven to have a long-term effect in ameliorating cancer-associated cachexia. However, recent studies have demonstrated that multidimensional therapeutic modalities are able to alleviate pancreatic cancer-associated cachexia and ultimately improve patients’ outcome. In this current review, we propose a stepwise and pragmatic approach to facilitate and standardize the treatment of cachexia in pancreatic cancer patients. This strategy consists of nutritional, dietary, pharmacological, physical and psychological methods. PMID:25071331

  8. Biomimetic three-dimensional tissue models for advanced high-throughput drug screening

    PubMed Central

    Nam, Ki-Hwan; Smith, Alec S.T.; Lone, Saifullah; Kwon, Sunghoon; Kim, Deok-Ho

    2015-01-01

    Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately recreate the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when utilizing such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models which accurately mimic the physiological properties of native tissue samples, and highlight the advantages of using such 3D micro-tissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based-on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models. PMID:25385716

  9. Translating scientific discovery: the need for preclinical models of nonalcoholic steatohepatitis

    PubMed Central

    Cole, Banumathi K.; Issa, Danny; Feaver, Ryan E.

    2018-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the Western world, affecting about 1/3 of the US general population and remaining as a significant cause of morbidity and mortality. The hallmark of the disease is the excessive accumulation of fat within the liver cells (hepatocytes), which eventually paves the way to cellular stress, injury and apoptosis. NAFLD is strongly associated with components of the metabolic syndrome and is fast emerging as a leading cause of liver transplant in the USA. Based on clinico-pathologic classification, NAFLD may present as isolated lipid collection (steatosis) within the hepatocytes (referred to as non-alcoholic fatty liver; NAFL); or as the more aggressive phenotype (known as non-alcoholic steatohepatitis; NASH). There are currently no regulatory agency-approved medication for NAFLD, despite the enormous work and resources that have gone into the study of this condition. Therefore, there remains a huge unmet need in developing and utilizing pre-clinical models that will recapitulate the disease condition in humans. In line with progress being made in developing appropriate disease models, this review highlights the cutting-edge preclinical in vitro and animal models that try to recapitulate the human disease pathophysiology and/or clinical manifestations. PMID:29299759

  10. Reproducibility of preclinical animal research improves with heterogeneity of study samples

    PubMed Central

    Vogt, Lucile; Sena, Emily S.; Würbel, Hanno

    2018-01-01

    Single-laboratory studies conducted under highly standardized conditions are the gold standard in preclinical animal research. Using simulations based on 440 preclinical studies across 13 different interventions in animal models of stroke, myocardial infarction, and breast cancer, we compared the accuracy of effect size estimates between single-laboratory and multi-laboratory study designs. Single-laboratory studies generally failed to predict effect size accurately, and larger sample sizes rendered effect size estimates even less accurate. By contrast, multi-laboratory designs including as few as 2 to 4 laboratories increased coverage probability by up to 42 percentage points without a need for larger sample sizes. These findings demonstrate that within-study standardization is a major cause of poor reproducibility. More representative study samples are required to improve the external validity and reproducibility of preclinical animal research and to prevent wasting animals and resources for inconclusive research. PMID:29470495

  11. From Theory to Application: A Study of Knowledge Transfer in Dental Education

    ERIC Educational Resources Information Center

    Peltz, Ivy D.

    2014-01-01

    Traditionally, dental education is divided into two phases: pre-clinical and clinical education. The pre-clinical phase of dental education includes the assimilation of theoretical topical knowledge in addition to the completion of simulated exercises. Upon completion of and demonstration of competency in their pre-clinical courses, students begin…

  12. Resistance vs resilience to Alzheimer disease: Clarifying terminology for preclinical studies.

    PubMed

    Arenaza-Urquijo, Eider M; Vemuri, Prashanthi

    2018-04-10

    Preventing or delaying Alzheimer disease (AD) through lifestyle interventions will come from a better understanding of the mechanistic underpinnings of (1) why a significant proportion of elderly remain cognitively normal with AD pathologies (ADP), i.e., amyloid or tau; and (2) why some elderly individuals do not have significant ADP. In the last decades, concepts such as brain reserve, cognitive reserve, and more recently brain maintenance have been proposed along with more general notions such as (neuro)protection and compensation. It is currently unclear how to effectively apply these concepts in the new field of preclinical AD specifically separating the 2 distinct mechanisms of coping with pathology vs avoiding pathology. We propose a simplistic conceptual framework that builds on existing concepts using the nomenclature of resistance in the context of avoiding pathology, i.e., remaining cognitively normal without significant ADP, and resilience in the context of coping with pathology, i.e., remaining cognitively normal despite significant ADP. In the context of preclinical AD studies, we (1) define these concepts and provide recommendations (and common scenarios) for their use; (2) discuss how to employ this terminology in the context of investigating mechanisms and factors; (3) highlight the complementarity and clarity they provide to existing concepts; and (4) discuss different study designs and methodologies. The application of the proposed framework for framing hypotheses, study design, and interpretation of results and mechanisms can provide a consistent framework and nomenclature for researchers to reach consensus on identifying factors that may prevent ADP or delay the onset of cognitive impairment. © 2018 American Academy of Neurology.

  13. Role of Interleukin-10 in Acute Brain Injuries

    PubMed Central

    Garcia, Joshua M.; Stillings, Stephanie A.; Leclerc, Jenna L.; Phillips, Harrison; Edwards, Nancy J.; Robicsek, Steven A.; Hoh, Brian L.; Blackburn, Spiros; Doré, Sylvain

    2017-01-01

    Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation. PMID:28659854

  14. Does physical activity protect against drug abuse vulnerability?

    PubMed

    Bardo, Michael T; Compton, Wilson M

    2015-08-01

    The current review examined recent literature to determine our state of knowledge about the potential ability of physical activity serve as a protectant against drug abuse vulnerability. Both preclinical and clinical studies were examined using either associational or random assignment study designs. In addition to examining drug use as an outcome variable, the potential neural mediators linking physical activity and drug abuse vulnerability were examined. Several important conclusions may be drawn. First, the preclinical evidence is solid in showing that physical activity in various forms is able to serve as both a preventive and treatment intervention that reduces drug use, although voluntary alcohol drinking appears to be an exception to this conclusion. Second, the clinical evidence provides some evidence, albeit mixed, to suggest a beneficial effect of physical activity on tobacco dependent individuals. In contrast, there exists only circumstantial evidence that physical activity may reduce use of drugs other than nicotine, and there is essentially no solid information from random control studies to know if physical activity may prevent initiation of problem use. Finally, both preclinical and clinical evidence shows that various brain systems are altered by physical activity, with the medial prefrontal cortex (mPFC) serving as one potential node that may mediate the putative link between physical activity and drug abuse vulnerability. It is concluded that novel neurobehavioral approaches taking advantage of novel techniques for assessing the physiological impact of physical activity are needed and can be used to inform the longitudinal random control studies that will answer definitively the question posed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Standard Operating Procedures (SOPs) for Evaluating the Heart in Preclinical Studies of Duchenne Muscular Dystrophy.

    PubMed

    Duan, Dongsheng; Rafael-Fortney, Jill A; Blain, Alison; Kass, David A; McNally, Elizabeth M; Metzger, Joseph M; Spurney, Christopher F; Kinnett, Kathi

    2016-02-01

    A recent working group meeting focused on contemporary cardiac issues in Duchenne muscular dystrophy (DMD) was hosted by the National Heart, Lung, and Blood Institute in collaboration with the Parent Project Muscular Dystrophy. An outcome of this meeting was to provide freely available detailed protocols for preclinical animal studies. The goal of these protocols is to improve the quality and reproducibility of cardiac preclinical studies aimed at developing new therapeutics for the prevention and treatment of DMD cardiomyopathy.

  16. Preclinical studies of alcohol binge drinking

    PubMed Central

    Crabbe, John C.; Harris, R. Adron; Koob, George F.

    2011-01-01

    Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans. PMID:21272009

  17. Research progress of hydroxychloroquine and autophagy inhibitors on cancer.

    PubMed

    Shi, Ting-Ting; Yu, Xiao-Xu; Yan, Li-Jun; Xiao, Hong-Tao

    2017-02-01

    Hydroxychloroquine (HCQ), the analog of chloroquine, augments the effect of chemotherapies and radiotherapy on various tumors identified in the current clinical trials. Meanwhile, the toxicity of HCQ retinopathy raises concern worldwide. Thus, the potent autophagy inhibitors are urgently needed. A systematic review was related to 'hydroxychloroquine' or 'chloroquine' with 'clinical trials,' 'retinopathy' and 'new autophagy inhibitors.' This led to many cross-references involving HCQ, and these data have been incorporated into the following study. Many preclinical studies indicate that the combination of HCQ with chemotherapies or radiotherapies may enhance the effect of anticancer, providing base for launching cancer clinical trials involving HCQ. The new and more sensitive diagnostic techniques report a prevalence of HCQ retinopathy up to 7.5%. Lys05, SAR405, verteporfin, VATG-027, mefloquine and spautin-1 may be potent autophagy inhibitors. Additional mechanistic studies of HCQ in preclinical models are still required in order to answer these questions whether HCQ actually inhibits autophagy in non-selective tumors and whether the extent of inhibition would be sufficient to alter chemotherapy or radiotherapy sensitivity.

  18. Current Status and Clinical Studies of Oriental Herbs in Sexual Medicine in Korea

    PubMed Central

    Shin, Yu Seob; Zhao, Chen; Zhang, Li Tao

    2015-01-01

    Erectile dysfunction (ED) is one of the most common diseases among aging men. Although previous studies have shown that type 5 phosphodiesterase inhibitors (PDE5-Is) are very effective for the treatment of ED, many researchers are currently attempting to identify therapeutic agents from natural sources with comparable or better effects than PDE5-Is. Herbal medicine is thought to be advantageous because it is natural; moreover, it not only treats isolated symptoms, but also maintains general well-being. Furthermore, since newly created chemical compound libraries have limited structural diversity with regard to pharmaceutical agents, more attention has recently been paid to the ability of oriental herbs to enhance physical health, including sexual function. Herein, we review the current status of Korean preclinical or clinical studies of the application of oriental herbs to sexual medicine. PMID:26331122

  19. Preclinical Validation of Novel Fluorescently Labeled Compounds to Treat Neurodegenerative Hearing Loss

    DTIC Science & Technology

    2016-10-01

    evaluated using 209, 639, and 1269 magnification. For repre- sentative documentation of the morphology of each specimen, the photographs were taken from the...Holmes SJ, Kaplan SL, Jubelirer DP, Stechenberg BW, Hirsh SK (1984) Prospective evaluation of hearing impairment as a sequela of acute bacterial...enters the field of gene therapy and human studies commence, the question arises whether audiograms e the current gold standard for the evaluation of

  20. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    PubMed

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  1. Assessing Risk/Benefit for Trials Using Preclinical Evidence: A Proposal

    PubMed Central

    Kimmelman, Jonathan; Henderson, Valerie C.

    2015-01-01

    Abstract Moral evaluation of risk/benefit in early phase studies requires assessing the clinical promise of a candidate intervention using preclinical evidence. Yet there is little to guide ethics committees, investigators, sponsors or other stakeholders morally charged with making these assessments (“evaluators”). In what follows, we draw on published guidelines for preclinical study design to develop a structured process for assessing the clinical promise of new interventions. In the first step, evaluators gather all relevant preclinical studies, assess the magnitude of treatment effects, and determine clinical promise in light of various threats to valid clinical inference. In the second step, evaluators adjust assessments of clinical promise from preclinical studies by examining how other agents in the same reference class-and supported by similar evidence- have fared in clinical development. Assessments of clinical promise can then be fed into moral evaluation of risk and benefit in early phase trials. Though our approach has limitations, it offers a systematic and transparent method for assessing risk/benefit in early phase trials of novel interventions. PMID:26463620

  2. Stroke Lesions in a Large Upper Limb Rehabilitation Trial Cohort Rarely Match Lesions in Common Preclinical Models

    PubMed Central

    Edwardson, Matthew A.; Wang, Ximing; Liu, Brent; Ding, Li; Lane, Christianne J.; Park, Caron; Nelsen, Monica A.; Jones, Theresa A; Wolf, Steven L; Winstein, Carolee J; Dromerick, Alexander W.

    2017-01-01

    Background Stroke patients with mild-moderate upper extremity (UE) motor impairments and minimal sensory and cognitive deficits provide a useful model to study recovery and improve rehabilitation. Laboratory-based investigators use lesioning techniques for similar goals. Objective Determine whether stroke lesions in an UE rehabilitation trial cohort match lesions from the preclinical stroke recovery models used to drive translational research. Methods Clinical neuroimages from 297 participants enrolled in the Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) study were reviewed. Images were characterized based on lesion type (ischemic or hemorrhagic), volume, vascular territory, depth (cortical gray matter, cortical white matter, subcortical), old strokes, and leukoaraiosis. Lesions were compared with those of preclinical stroke models commonly used to study upper limb recovery. Results Among the ischemic stroke participants, median infarct volume was 1.8 mL, with most lesions confined to subcortical structures (61%) including the anterior choroidal artery territory (30%) and the pons (23%). Of ICARE participants, <1 % had lesions resembling proximal MCA or surface vessel occlusion models. Preclinical models of subcortical white matter injury best resembled the ICARE population (33%). Intracranial hemorrhage participants had small (median 12.5 mL) lesions that best matched the capsular hematoma preclinical model. Conclusions ICARE subjects are not representative of all stroke patients, but they represent a clinically and scientifically important subgroup. Compared to lesions in general stroke populations and widely-studied animal models of recovery, ICARE participants had smaller, more subcortically-based strokes. Improved preclinical-clinical translational efforts may require better alignment of lesions between preclinical and human stroke recovery models. PMID:28337932

  3. Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial

    PubMed Central

    Lalu, Manoj M; Sullivan, Katrina J; Mei, Shirley HJ; Moher, David; Straus, Alexander; Fergusson, Dean A; Stewart, Duncan J; Jazi, Mazen; MacLeod, Malcolm; Winston, Brent; Marshall, John; Hutton, Brian; Walley, Keith R; McIntyre, Lauralyn

    2016-01-01

    Evaluation of preclinical evidence prior to initiating early-phase clinical studies has typically been performed by selecting individual studies in a non-systematic process that may introduce bias. Thus, in preparation for a first-in-human trial of mesenchymal stromal cells (MSCs) for septic shock, we applied systematic review methodology to evaluate all published preclinical evidence. We identified 20 controlled comparison experiments (980 animals from 18 publications) of in vivo sepsis models. Meta-analysis demonstrated that MSC treatment of preclinical sepsis significantly reduced mortality over a range of experimental conditions (odds ratio 0.27, 95% confidence interval 0.18–0.40, latest timepoint reported for each study). Risk of bias was unclear as few studies described elements such as randomization and no studies included an appropriately calculated sample size. Moreover, the presence of publication bias resulted in a ~30% overestimate of effect and threats to validity limit the strength of our conclusions. This novel prospective application of systematic review methodology serves as a template to evaluate preclinical evidence prior to initiating first-in-human clinical studies. DOI: http://dx.doi.org/10.7554/eLife.17850.001 PMID:27870924

  4. Stem Cells in Spinal Fusion

    PubMed Central

    Haudenschild, Dominik R.; Wegner, Adam M.; Klineberg, Eric O.

    2017-01-01

    Study Design: Review of literature. Objectives: This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. Methods: A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. Results: Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell–based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro–computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. Conclusions: It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion. PMID:29238646

  5. Update on the current status of cytomegalovirus vaccines

    PubMed Central

    Sung, Heungsup; Schleiss, Mark R

    2013-01-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design. PMID:21087108

  6. Update on the current status of cytomegalovirus vaccines.

    PubMed

    Sung, Heungsup; Schleiss, Mark R

    2010-11-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design.

  7. Extracurricular activities associated with stress and burnout in preclinical medical students.

    PubMed

    Fares, Jawad; Saadeddin, Zein; Al Tabosh, Hayat; Aridi, Hussam; El Mouhayyar, Christopher; Koleilat, Mohamad Karim; Chaaya, Monique; El Asmar, Khalil

    2016-09-01

    This study aims to assess the prevalence of stress and burnout among preclinical medical students in a private university in Beirut, Lebanon, and evaluate the association between extracurricular involvement and stress and burnout relief in preclinical medical students. A cross-sectional survey was conducted on a random sample of 165 preclinical medical students. Distress level was measured using the 12-item General Health Questionnaire (GHQ-12) while that of burnout was measured through the Maslach Burnout Inventory-Student Survey (MBI-SS). The MBI-SS assesses three interrelated dimensions: emotional exhaustion, cynicism, and academic efficacy. Extracurricular activities were divided into four categories: physical exercise, music, reading, and social activities. All selected participants responded. A substantial proportion of preclinical medical students suffered from stress (62%) and burnout (75%). Bivariate and multivariate regression analyses revealed that being a female or a 1st year medical student correlated with higher stress and burnout. Music-related activities were correlated with lower burnout. Social activities or living with parents were associated with lower academic efficacy. The high stress and burnout levels call for action. Addressing the studying conditions and attending to the psychological wellbeing of preclinical medical students are recommendations made in the study. Copyright © 2015 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  8. Current Status of Immunomodulatory and Cellular Therapies in Preclinical and Clinical Islet Transplantation

    PubMed Central

    Chhabra, Preeti; Brayman, Kenneth L.

    2011-01-01

    Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells. PMID:22046502

  9. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    PubMed Central

    Nakayama, Yoshikazu; Aruga, Atsushi

    2015-01-01

    Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region. PMID:26344953

  10. Rigor or mortis: best practices for preclinical research in neuroscience.

    PubMed

    Steward, Oswald; Balice-Gordon, Rita

    2014-11-05

    Numerous recent reports document a lack of reproducibility of preclinical studies, raising concerns about potential lack of rigor. Examples of lack of rigor have been extensively documented and proposals for practices to improve rigor are appearing. Here, we discuss some of the details and implications of previously proposed best practices and consider some new ones, focusing on preclinical studies relevant to human neurological and psychiatric disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Assessment of the knowledge and attitudes regarding HIV/AIDS among pre-clinical medical students in Israel

    PubMed Central

    2014-01-01

    Background Today’s medical students are the future physicians of people living with HIV/AIDS (PLWHA). It is therefore essential that medical students possess the appropriate knowledge and attitudes regarding PLWHA. This study aims to evaluate knowledge and attitudes of pre-clinical Israeli medical students and to assess whether their knowledge and attitudes change throughout their pre-clinical studies. Methods A cross-sectional study was conducted among all pre-clinical medical students from the four medical schools in Israel during the academic year of 2010/2011 (a total of 1,470 students). A self-administered questionnaire was distributed. The questionnaire sought student responses pertaining to knowledge of HIV transmission and non-transmission routes, basic knowledge of HIV/AIDS treatment and attitudes towards HIV/AIDS. Results The study’s response rate was 62.24 percent. Knowledge among pre-clinical medical students was generally high and showed a statistically significant improvement as students progressed through their pre-clinical studies. However, there were some misconceptions, mostly regarding HIV transmission via breastfeeding and knowledge of HIV prevention after exposure to the virus. Students’ attitudes were found to include stigmatizing notions. Furthermore, the majority of medical students correlated HIV with shame and fear. In addition, students’ attitudes toward HIV testing and providing confidential medical information were contradictory to health laws, protocols and guidelines. Overall, no positive changes in students’ attitudes were observed during the pre-clinical years of medical school. Conclusion The knowledge of pre-clinical medical students in Israel is generally high, although there are some knowledge inadequacies that require more emphasis in the curricula of the medical schools. Contrary to HIV-related knowledge, medical students’ attitudes are unaffected by their progression through medical school. Therefore, medical schools in Israel should modify their curricula to include teaching methods aimed at improving HIV-related attitudes and adherence to medical professionalism. PMID:24650351

  12. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    PubMed

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  13. IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease?

    PubMed

    Zheng, Ping; Tong, Wusong

    2017-08-01

    There is a growing body of evidence that the insulin-like growth factor-1 (IGF-1) is dynamically involved in the regulation of body homeostasis and glucose regulation. Traumatic brain injury (TBI) is considered to be a risk factor for Alzheimer's disease (AD). As alterations of IGF-1 have been implicated in both TBI and AD and the IGF-1 signaling also mediates the neuronal excitability and synaptic plasticity in both diseases, we propose that IGF-1 may act as the endogenous connection between TBI and AD. Growing evidence suggests that dysfunction of this pathway contributes to the progressive loss of neurons in Alzheimer's disease (AD), one of the most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting IGF-1 signaling with currently available antidiabetics. These studies have shown that exogenous administration of IGF-1 reverses signaling abnormalities and has neuroprotective effects. In the first part of this review, we discuss physiological functions of IGF-1 signaling pathway including its distribution within the brain and its relationship with TBI and AD. In the second part, we undertake a comprehensive overview of IGF-1 signaling in TBI and AD, respectively. We then detail targeted IGF-1 in preclinical models of neurodegeneration and the design of clinical trials that have used anti-diabetics for treating AD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into clinical sessions.

  14. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma.

    PubMed

    Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F

    2017-08-01

    Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G 2 -M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Psychiatric symptoms in preclinical behavioural-variant frontotemporal dementia in MAPT mutation carriers.

    PubMed

    Cheran, Gayathri; Silverman, Hannah; Manoochehri, Masood; Goldman, Jill; Lee, Seonjoo; Wu, Liwen; Cines, Sarah; Fallon, Emer; Kelly, Brendan Desmond; Olszewska, Diana Angelika; Heidebrink, Judith; Shair, Sarah; Campbell, Stephen; Paulson, Henry; Lynch, Timothy; Cosentino, Stephanie; Huey, Edward D

    2018-05-01

    To characterise psychiatric symptoms in preclinical and early behavioural-variant frontotemporal dementia (bvFTD), a neurodegenerative disorder whose symptoms overlap with and are often mistaken for psychiatric illness. The present study reports findings from a systematic, global, prospective evaluation of psychiatric symptoms in 12 preclinical carriers of pathogenic MAPT mutations, not yet meeting bvFTD diagnostic criteria, and 46 familial non-carrier controls. Current psychiatric symptoms, informant-reported symptoms and lifetime prevalence of psychiatric disorders were assessed with The Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and the Neuropsychiatric Inventory Questionnaire. Fisher exact test was used to compare carriers and non-carriers' lifetime prevalence of six DSM-IV disorders: major depressive disorder, panic attacks, alcohol abuse, generalised anxiety disorder, panic disorder, and depressive disorder not otherwise specified. Other DSM-IV disorders had insufficient prevalence across our sample for between-group comparisons, but are reported. Non-carriers had greater prevalence of mood and anxiety disorders than has been reported for a general reference population. Preclinical carriers had lower lifetime prevalence of mood and anxiety disorders than non-carriers, except for depressive disorder not otherwise specified, an atypical syndrome comprising clinically significant depressive symptoms which fail to meet criteria for major depressive disorder. Findings suggest that early psychiatric symptoms of emergent bvFTD may manifest as emotional blunting or mood changes not cleanly conforming to criteria for a DSM-defined mood disorder. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. The value of the UK Clinical Aptitude Test in predicting pre-clinical performance: a prospective cohort study at Nottingham Medical School.

    PubMed

    Yates, Janet; James, David

    2010-07-28

    The UK Clinical Aptitude Test (UKCAT) was introduced in 2006 as an additional tool for the selection of medical students. It tests mental ability in four distinct domains (Quantitative Reasoning, Verbal Reasoning, Abstract Reasoning, and Decision Analysis), and the results are available to students and admissions panels in advance of the selection process. As yet the predictive validity of the test against course performance is largely unknown.The study objective was to determine whether UKCAT scores predict performance during the first two years of the 5-year undergraduate medical course at Nottingham. We studied a single cohort of students, who entered Nottingham Medical School in October 2007 and had taken the UKCAT. We used linear regression analysis to identify independent predictors of marks for different parts of the 2-year preclinical course. Data were available for 204/260 (78%) of the entry cohort. The UKCAT total score had little predictive value. Quantitative Reasoning was a significant independent predictor of course marks in Theme A ('The Cell'), (p = 0.005), and Verbal Reasoning predicted Theme C ('The Community') (p < 0.001), but otherwise the effects were slight or non-existent. This limited study from a single entry cohort at one medical school suggests that the predictive value of the UKCAT, particularly the total score, is low. Section scores may predict success in specific types of course assessment.The ultimate test of validity will not be available for some years, when current cohorts of students graduate. However, if this test of mental ability does not predict preclinical performance, it is arguably less likely to predict the outcome in the clinical years. Further research from medical schools with different types of curriculum and assessment is needed, with longitudinal studies throughout the course.

  17. [Preclinical treatment of multiple trauma : what is important?].

    PubMed

    Schweigkofler, U; Hoffmann, R

    2013-09-01

    Multiple trauma is still the most common cause of death in the age group below 40 years but rarely occurs in prehospital emergencies in Germany. Therefore, personal experience of emergency physicians in prehospital treatment of multiple trauma is often limited. Priority-based therapy according to standardized algorithms and advances in clinical and intensive care have reduced hospital mortality down to 13 %. Time factors, treatment and transport by Helicopter Emergency Medical Services seem to have had a significant impact on the outcome. The current German multiple trauma S3 guidelines provide algorithms for preclinical treatment. The underlying scientific evidence in this respect is, however, low.

  18. Laboratory animals as surrogate models of human obesity

    PubMed Central

    Nilsson, Cecilia; Raun, Kirsten; Yan, Fei-fei; Larsen, Marianne O; Tang-Christensen, Mads

    2012-01-01

    Obesity and obesity-related metabolic diseases represent a growing socioeconomic problem throughout the world. Great emphasis has been put on establishing treatments for this condition, including pharmacological intervention. However, there are many obstacles and pitfalls in the development process from pre-clinical research to the pharmacy counter, and there is no certainty that what has been observed pre-clinically will translate into an improvement in human health. Hence, it is important to test potential new drugs in a valid translational model early in their development. In the current mini-review, a number of monogenetic and polygenic models of obesity will be discussed in view of their translational character. PMID:22301857

  19. Pre-Clinical Studies with D-Penicillamine as a Novel Pharmacological Strategy to Treat Alcoholism: Updated Evidences.

    PubMed

    Orrico, Alejandro; Martí-Prats, Lucía; Cano-Cebrián, María J; Granero, Luis; Polache, Ana; Zornoza, Teodoro

    2017-01-01

    Ethanol, as other drugs of abuse, is able to activate the ventral tegmental area dopamine (VTA-DA) neurons leading to positively motivational alcohol-seeking behavior and use, and, ultimately to ethanol addiction. In the last decades, the involvement of brain-derived acetaldehyde (ACD) in the ethanol actions in the mesolimbic pathway has been widely demonstrated. Consistent published results have provided a mechanistic support to the use of ACD inactivating agents to block the motivational and reinforcing properties of ethanol. Hence, in the last years, several pre-clinical studies have been performed in order to analyze the effects of the sequestering ACD agents in the prevention of ethanol relapse-like drinking behavior as well as in chronic alcohol consumption. In this sense, one of the most explored interventions has been the administration of D-Penicillamine (DP). These pre-clinical studies, that we critically summarize in this article, are considered a critical step for the potential development of a novel pharmacotherapeutic strategy for alcohol addiction treatment that could improve the outcomes of current ones. Thus, on one hand, several experimental findings provide the rationale for using DP as a novel therapeutic intervention alone and/or in combination to prevent relapse into alcohol seeking and consumption. On the other hand, its effectiveness in reducing voluntary ethanol consumption in long-term experienced animals still remains unclear. Finally, this drug offers the additional advantage that has already been approved for use in humans, hence it could be easily implemented as a new therapeutic intervention for relapse prevention in alcoholism.

  20. Pre-Clinical Studies with D-Penicillamine as a Novel Pharmacological Strategy to Treat Alcoholism: Updated Evidences

    PubMed Central

    Orrico, Alejandro; Martí-Prats, Lucía; Cano-Cebrián, María J.; Granero, Luis; Polache, Ana; Zornoza, Teodoro

    2017-01-01

    Ethanol, as other drugs of abuse, is able to activate the ventral tegmental area dopamine (VTA-DA) neurons leading to positively motivational alcohol-seeking behavior and use, and, ultimately to ethanol addiction. In the last decades, the involvement of brain-derived acetaldehyde (ACD) in the ethanol actions in the mesolimbic pathway has been widely demonstrated. Consistent published results have provided a mechanistic support to the use of ACD inactivating agents to block the motivational and reinforcing properties of ethanol. Hence, in the last years, several pre-clinical studies have been performed in order to analyze the effects of the sequestering ACD agents in the prevention of ethanol relapse-like drinking behavior as well as in chronic alcohol consumption. In this sense, one of the most explored interventions has been the administration of D-Penicillamine (DP). These pre-clinical studies, that we critically summarize in this article, are considered a critical step for the potential development of a novel pharmacotherapeutic strategy for alcohol addiction treatment that could improve the outcomes of current ones. Thus, on one hand, several experimental findings provide the rationale for using DP as a novel therapeutic intervention alone and/or in combination to prevent relapse into alcohol seeking and consumption. On the other hand, its effectiveness in reducing voluntary ethanol consumption in long-term experienced animals still remains unclear. Finally, this drug offers the additional advantage that has already been approved for use in humans, hence it could be easily implemented as a new therapeutic intervention for relapse prevention in alcoholism. PMID:28326026

  1. Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development.

    PubMed

    Pop, Andreea S; Gomez-Mancilla, Baltazar; Neri, Giovanni; Willemsen, Rob; Gasparini, Fabrizio

    2014-03-01

    Fragile X syndrome (FXS) is considered the leading inherited cause of intellectual disability and autism. In FXS, the fragile X mental retardation 1 (FMR1) gene is silenced and the fragile X mental retardation protein (FMRP) is not expressed, resulting in the characteristic features of the syndrome. Despite recent advances in understanding the pathophysiology of FXS, there is still no cure for this condition; current treatment is symptomatic. Preclinical research is essential in the development of potential therapeutic agents. This review provides an overview of the preclinical evidence supporting metabotropic glutamate receptor 5 (mGluR5) antagonists as therapeutic agents for FXS. According to the mGluR theory of FXS, the absence of FMRP leads to enhanced glutamatergic signaling via mGluR5, which leads to increased protein synthesis and defects in synaptic plasticity including enhanced long-term depression. As such, efforts to develop agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. Animal models, particularly the Fmr1 knockout mouse model, have become invaluable in exploring therapeutic approaches on an electrophysiological, behavioral, biochemical, and neuroanatomical level. Two direct approaches are currently being investigated for FXS treatment: reactivating the FMR1 gene and compensating for the lack of FMRP. The latter approach has yielded promising results, with mGluR5 antagonists showing efficacy in clinical trials. Targeting mGluR5 is a valid approach for the development of therapeutic agents that target the underlying pathophysiology of FXS. Several compounds are currently in development, with encouraging results.

  2. Medications Development for the Treatment of Alcohol Use Disorder: Insights into the Predictive Value of Animal and Human Laboratory Models

    PubMed Central

    Yardley, Megan M.; Ray, Lara A.

    2016-01-01

    Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research. PMID:26833803

  3. A Naturalistic Study of Driving Behavior in Older Adults and Preclinical Alzheimer Disease.

    PubMed

    Babulal, Ganesh M; Stout, Sarah H; Benzinger, Tammie L S; Ott, Brian R; Carr, David B; Webb, Mollie; Traub, Cindy M; Addison, Aaron; Morris, John C; Warren, David K; Roe, Catherine M

    2017-01-01

    A clinical consequence of symptomatic Alzheimer's disease (AD) is impaired driving performance. However, decline in driving performance may begin in the preclinical stage of AD. We used a naturalistic driving methodology to examine differences in driving behavior over one year in a small sample of cognitively normal older adults with ( n = 10) and without ( n = 10) preclinical AD. As expected with a small sample size, there were no statistically significant differences between the two groups, but older adults with preclinical AD drove less often, were less likely to drive at night, and had fewer aggressive behaviors such as hard braking, speeding, and sudden acceleration. The sample size required to power a larger study to determine differences was calculated.

  4. Cardiac AAV9-S100A1 gene therapy rescues postischemic heart failure in a preclinical large animal model

    PubMed Central

    Pleger, Sven T.; Shan, Changguang; Ksienzyk, Jan; Bekeredjian, Raffi; Boekstegers, Peter; Hinkel, Rabea; Schinkel, Stefanie; Leuchs, Barbara; Ludwig, Jochen; Qiu, Gang; Weber, Christophe; Kleinschmidt, Jürgen A.; Raake, Philip; Koch, Walter J.; Katus, Hugo A.; Müller, Oliver J.; Most, Patrick

    2014-01-01

    As a prerequisite to clinical application, we determined the long-term therapeutic effectiveness and safety of adeno-associated viral (AAV) S100A1 gene therapy in a preclinical, large animal model of heart failure. S100A1, a positive inotropic regulator of myocardial contractility, becomes depleted in failing cardiomyocytes in humans and various animal models, and myocardial-targeted S100A1 gene transfer rescues cardiac contractile function by restoring sarcoplasmic reticulum calcium Ca2+ handling in acutely and chronically failing hearts in small animal models. We induced heart failure in domestic pigs by balloon-occlusion of the left circumflex coronary artery, resulting in myocardial infarction. After 2 weeks, when the pigs displayed significant left ventricular contractile dysfunction, we administered through retrograde coronary venous delivery, AAV9-S100A1 to the left ventricular non-infarcted myocardium. AAV9-luciferase and saline treatment served as control. At 14 weeks, both control groups showed significantly decreased myocardial S100A1 protein expression along with progressive deterioration of cardiac performance and left ventricular remodeling. AAV9-S100A1 treatment prevented and reversed this phenotype by restoring cardiac S100A1 protein levels. S100A1 treatment normalized cardiomyocyte Ca2+ cycling, sarcoplasmic reticulum calcium handling and energy homeostasis. Transgene expression was restricted to cardiac tissue and extra-cardiac organ function was uncompromised indicating a favorable safety profile. This translational study shows the pre-clinical feasibility, long-term therapeutic effectiveness and a favorable safety profile of cardiac AAV9-S100A1 gene therapy in a preclinical model of heart failure. Our study presents a strong rational for a clinical trial of S100A1 gene therapy for human heart failure that could potentially complement current strategies to treat end-stage heart failure. PMID:21775667

  5. Obesity and stroke: Can we translate from rodents to patients?

    PubMed Central

    Haley, Michael J

    2016-01-01

    Obesity is a risk factor for stroke and is consequently one of the most common co-morbidities found in patients. There is therefore an identified need to model co-morbidities preclinically to allow better translation from bench to bedside. In preclinical studies, both diet-induced and genetically obese rodents have worse stroke outcome, characterised by increased ischaemic damage and an altered inflammatory response. However, clinical studies have reported an ‘obesity paradox’ in stroke, characterised by reduced mortality and morbidity in obese patients. We discuss the potential reasons why the preclinical and clinical studies may not agree, and review the mechanisms identified in preclinical studies through which obesity may affects stroke outcome. We suggest inflammation plays a central role in this relationship, as obesity features increases in inflammatory mediators such as C-reactive protein and interleukin-6, and chronic inflammation has been linked to worse stroke risk and outcome. PMID:27655337

  6. Models for preclinical studies in aging-related disorders: One is not for all

    PubMed Central

    Santulli, Gaetano; Borras, Consuelo; Bousquet, Jean; Calzà, Laura; Cano, Antonio; Illario, Maddalena; Franceschi, Claudio; Liotta, Giuseppe; Maggio, Marcello; Molloy, William D.; Montuori, Nunzia; O’Caoimh, Rónán; Orfila, Francesc; Rauter, Amelia P.; Santoro, Aurelia; Iaccarino, Guido

    2015-01-01

    Preclinical studies are essentially based on animal models of a particular disease. The primary purpose of preclinical efficacy studies is to support generalization of treatment–effect relationships to human subjects. Researchers aim to demonstrate a causal relationship between an investigational agent and a disease-related phenotype in such models. Numerous factors can muddle reliable inferences about such cause-effect relationships, including biased outcome assessment due to experimenter expectations. For instance, responses in a particular inbred mouse might be specific to the strain, limiting generalizability. Selecting well-justified and widely acknowledged model systems represents the best start in designing preclinical studies, especially to overcome any potential bias related to the model itself. This is particularly true in the research that focuses on aging, which carries unique challenges, mainly attributable to the fact that our already long lifespan makes designing experiments that use people as subjects extremely difficult and largely impractical. PMID:27042427

  7. In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models.

    PubMed

    Ogunlade, Olumide; Connell, John J; Huang, Jennifer L; Zhang, Edward; Lythgoe, Mark F; Long, David A; Beard, Paul

    2018-06-01

    Noninvasive imaging of the kidney vasculature in preclinical murine models is important for the assessment of renal development, studying diseases and evaluating new therapies but is challenging to achieve using existing imaging modalities. Photoacoustic imaging is a promising new technique that is particularly well suited to visualizing the vasculature and could provide an alternative to existing preclinical imaging methods for studying renal vascular anatomy and function. To investigate this, an all-optical Fabry-Perot-based photoacoustic scanner was used to image the abdominal region of mice. High-resolution three-dimensional, noninvasive, label-free photoacoustic images of the mouse kidney and renal vasculature were acquired in vivo. The scanner was also used to visualize and quantify differences in the vascular architecture of the kidney in vivo due to polycystic kidney disease. This study suggests that photoacoustic imaging could be utilized as a novel preclinical imaging tool for studying the biology of renal disease.

  8. Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study.

    PubMed

    Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2013-01-01

    This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.

  9. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  10. From bench to almost bedside: the long road to a licensed Ebola virus vaccine.

    PubMed

    Wong, Gary; Mendoza, Emelissa J; Plummer, Francis A; Gao, George F; Kobinger, Gary P; Qiu, Xiangguo

    2018-02-01

    The Ebola virus (EBOV) disease epidemic during 2014-16 in West Africa has accelerated the clinical development of several vaccine candidates that have demonstrated efficacy in the gold standard nonhuman primate (NHP) model, namely cynomolgus macaques. Areas covered: This review discusses the pre-clinical research and if available, clinical evaluation of the currently available EBOV vaccine candidates, while emphasizing the translatability of pre-clinical data generated in the NHP model to clinical data in humans. Expert opinion: Despite the existence of many successful EBOV vaccine candidates in the pre-clinical stages, only two platforms became the focus of Phase 2/3 efficacy trials in Liberia, Sierra Leone, and Guinea near the peak of the epidemic: the Vesicular stomatitis virus (VSV)-vectored vaccine and the chimpanzee adenovirus type 3 (ChAd3)-vectored vaccine. The results of three distinct clinical trials involving these candidates may soon pave the way for a licensed, safe and efficacious EBOV vaccine to help combat future epidemics.

  11. From bench to almost bedside: The long road to a licensed Ebola virus vaccine

    PubMed Central

    Wong, Gary; Mendoza, Emelissa J.; Plummer, Francis A.; Gao, George F.; Kobinger, Gary P.; Qiu, Xiangguo

    2018-01-01

    Introduction The Ebola virus (EBOV) disease epidemic during 2014-16 in West Africa has accelerated the clinical development of several vaccine candidates that have demonstrated efficacy in the gold standard nonhuman primate (NHP) model, namely cynomolgus macaques. Areas covered This review discusses the pre-clinical research and if available, clinical evaluation of the currently available EBOV vaccine candidates, while emphasizing the translatability of pre-clinical data generated in the NHP model to clinical data in humans. Expert opinion Despite the existence of many successful EBOV vaccine candidates in the pre-clinical stages, only two platforms became the focus of Phase 2/3 efficacy trials in Liberia, Sierra Leone, and Guinea near the peak of the epidemic: the Vesicular stomatitis virus (VSV)-vectored vaccine and the chimpanzee adenovirus type 3 (ChAd3)-vectored vaccine. The results of three distinct clinical trials involving these candidates may soon pave the way for a licensed, safe and efficacious EBOV vaccine to help combat future epidemics. PMID:29148858

  12. USHERING IN THE STUDY AND TREATMENT OF PRECLINICAL ALZHEIMER DISEASE

    PubMed Central

    Langbaum, Jessica B.S.; Fleisher, Adam S.; Chen, Kewei; Ayutyanont, Napatkamon; Lopera, Francisco; Quiroz, Yakeel T.; Caselli, Richard J.; Tariot, Pierre N.; Reiman, Eric M.

    2014-01-01

    Researchers have begun to characterize the subtle biological and cognitive processes that precede the clinical onset of Alzheimer disease (AD), and to set the stage for accelerated evaluation of experimental treatments to delay the onset, reduce the risk of or completely prevent clinical decline. Here, we provide an overview of the experimental strategies, and brain imaging and cerebrospinal fluid biomarker measures that are used in early detection and tracking of AD, highlighting at-risk individuals who could be suitable for preclinical monitoring. We discuss how these advances have contributed to reconceptualization of AD as a sequence of biological changes that occur during progression from preclinical AD, to mild cognitive impairment and finally dementia, and we review recently proposed research criteria for preclinical AD. Advances in the study of preclinical AD have driven the recognition that efficacy of at least some AD therapies may depend on initiation of treatment before clinical manifestation of disease, leading to a new era of AD prevention research. PMID:23752908

  13. Ushering in the study and treatment of preclinical Alzheimer disease.

    PubMed

    Langbaum, Jessica B; Fleisher, Adam S; Chen, Kewei; Ayutyanont, Napatkamon; Lopera, Francisco; Quiroz, Yakeel T; Caselli, Richard J; Tariot, Pierre N; Reiman, Eric M

    2013-07-01

    Researchers have begun to characterize the subtle biological and cognitive processes that precede the clinical onset of Alzheimer disease (AD), and to set the stage for accelerated evaluation of experimental treatments to delay the onset, reduce the risk of, or completely prevent clinical decline. In this Review, we provide an overview of the experimental strategies, and brain imaging and cerebrospinal fluid biomarker measures that are used in early detection and tracking of AD, highlighting at-risk individuals who could be suitable for preclinical monitoring. We discuss how advances in the field have contributed to reconceptualization of AD as a sequence of biological changes that occur during progression from preclinical AD, to mild cognitive impairment and finally dementia, and we review recently proposed research criteria for preclinical AD. Advances in the study of preclinical AD have driven the recognition that efficacy of at least some AD therapies may depend on initiation of treatment before clinical manifestation of disease, leading to a new era of AD prevention research.

  14. Recommendations for Benchmarking Preclinical Studies of Nanomedicines.

    PubMed

    Dawidczyk, Charlene M; Russell, Luisa M; Searson, Peter C

    2015-10-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small-molecule drug therapy for cancer and to achieve both therapeutic and diagnostic functions in the same platform. Preclinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of preclinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of preclinical trials and propose a protocol for benchmarking that we recommend be included in in vivo preclinical studies of drug-delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. ©2015 American Association for Cancer Research.

  15. Perspective: Recommendations for benchmarking pre-clinical studies of nanomedicines

    PubMed Central

    Dawidczyk, Charlene M.; Russell, Luisa M.; Searson, Peter C.

    2015-01-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small molecule drug therapy for cancer, and to achieve both therapeutic and diagnostic functions in the same platform. Pre-clinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of pre-clinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of pre-clinical trials and propose a protocol for benchmarking that we recommend be included in in vivo pre-clinical studies of drug delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. PMID:26249177

  16. Institute for Molecular Medicine Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Michael E

    2012-12-14

    The objectives of the project are the development of new Positron Emission Tomography (PET) imaging instrumentation, chemistry technology platforms and new molecular imaging probes to examine the transformations from normal cellular and biological processes to those of disease in pre-clinical animal models. These technology platforms and imaging probes provide the means to: 1. Study the biology of disease using pre-clinical mouse models and cells. 2. Develop molecular imaging probes for imaging assays of proteins in pre-clinical models. 3. Develop imaging assays in pre-clinical models to provide to other scientists the means to guide and improve the processes for discovering newmore » drugs. 4. Develop imaging assays in pre-clinical models for others to use in judging the impact of drugs on the biology of disease.« less

  17. Magnetic Resonance Guided Focused Ultrasound Surgery: Part 2 – A Review of Current and Future Applications

    PubMed Central

    Medel, Ricky; Monteith, Stephen J.; Elias, W. Jeffrey; Eames, Matthew; Snell, John; Sheehan, Jason P.; Wintermark, Max; Jolesz, Ferenc A.; Kassell, Neal F.

    2014-01-01

    Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS) represents a novel combination of technologies that is actively being realized as a non-invasive therapeutic tool for a myriad of conditions. These applications are reviewed with a focus on neurological utilization. A combined search of Pubmed and Medline was performed to identify the key events and current status of MRgFUS, with a focus on neurological applications. MRgFUS signifies a potentially ideal device for the treatment of neurological diseases. As it is nearly real-time, it allows monitored provision of treatment location and energy deposition, is noninvasive, thereby limiting or eliminating disruption of normal tissue, provides focal delivery of therapeutic agents, enhances radiation delivery, and permits modulation of neural function. Multiple clinical applications are currently in clinical use and many more are under active preclinical investigation. The therapeutic potential of MRgFUS is expanding rapidly. Although clinically in its infancy, preclinical and early phase I clinical trials in neurosurgery suggest a promising future for MRgFUS. Further investigation is necessary to define its true potential and impact. PMID:22791029

  18. Recent technological advances in using mouse models to study ovarian cancer.

    PubMed

    House, Carrie Danielle; Hernandez, Lidia; Annunziata, Christina Messineo

    2014-01-01

    Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.

  19. Recent Technological Advances in Using Mouse Models to Study Ovarian Cancer

    PubMed Central

    House, Carrie Danielle; Hernandez, Lidia; Annunziata, Christina Messineo

    2014-01-01

    Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC. PMID:24592355

  20. Influence of Bisphenol A on Type 2 Diabetes Mellitus

    PubMed Central

    Provvisiero, Donatella Paola; Pivonello, Claudia; Muscogiuri, Giovanna; Negri, Mariarosaria; de Angelis, Cristina; Simeoli, Chiara; Pivonello, Rosario; Colao, Annamaria

    2016-01-01

    Bisphenol A (BPA) is an organic synthetic compound employed to produce plastics and epoxy resins. It is used as a structural component in polycarbonate beverage bottles and as coating for metal surface in food containers and packaging. The adverse effects of BPA on human health are widely disputed. BPA has been recently associated with a wide variety of medical disorders and, in particular, it was identified as potential endocrine-disrupting compound with diabetogenic action. Most of the clinical observational studies in humans reveal a positive link between BPA exposure, evaluated by the measurement of urinary BPA levels, and the risk of developing type 2 diabetes mellitus. Clinical studies on humans and preclinical studies on in vivo, ex vivo, and in vitro models indicate that BPA, mostly at low doses, may have a role in increasing type 2 diabetes mellitus developmental risk, directly acting on pancreatic cells, in which BPA induces the impairment of insulin and glucagon secretion, triggers inhibition of cell growth and apoptosis, and acts on muscle, hepatic, and adipose cell function, triggering an insulin-resistant state. The current review summarizes the available evidences regarding the association between BPA and type 2 diabetes mellitus, focusing on both clinical and preclinical studies. PMID:27782064

  1. Concise Review: Mesenchymal Stromal Cell‐Based Approaches for the Treatment of Acute Respiratory Distress and Sepsis Syndromes

    PubMed Central

    Soeder, Yorick; Dahlke, Marc H.

    2017-01-01

    Abstract Despite extensive research on candidate pharmacological treatments and a significant and increasing prevalence, sepsis syndrome, and acute respiratory distress syndrome (ARDS) remain areas of unmet clinical need. Preclinical studies examining mesenchymal stromal cell (MSCs) based‐therapies have provided compelling evidence of potential benefit; however, the precise mechanism by which MSCs exert a therapeutic influence, and whether MSC application is efficacious in humans, remains unknown. Detailed evaluation of the limited number of human trials so far completed is further hampered as a result of variations in trial design and biomarker selection. This review provides a concise summary of current preclinical and clinical knowledge of MSCs as a cell therapy for sepsis syndrome and ARDS. The challenges of modeling such heterogeneous and rapidly progressive disease states are considered and we discuss how lessons from previous studies of pharmacological treatments for sepsis syndrome and ARDS might be used to inform and refine the design of the next generation of MSC clinical trials. Stem Cells Translational Medicine 2017;6:1141–1151 PMID:28186706

  2. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity.

    PubMed

    Den Hartogh, Sabine C; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC) reporter lines have been valuable for the identification, selection, and expansion of cardiac progenitor cells and their derivatives, and for our current understanding of the underlying molecular mechanisms. In order to further advance the use of hPSCs in the fields of regenerative medicine, disease modeling, and preclinical drug development in cardiovascular research, it is crucial to identify functionally distinct cardiac subtypes and to study their biological signaling events and functional aspects in healthy and diseased conditions. In this review, we discuss the various strategies that have been followed to generate and study fluorescent reporter lines in hPSCs and provide insights how these reporter lines contribute to a better understanding and improvement of cell-based therapies and preclinical drug and toxicity screenings in the cardiac field. © AlphaMed Press.

  3. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds.

    PubMed

    Voorhees, Jaymie R; Rohlman, Diane S; Lein, Pamela J; Pieper, Andrew A

    2016-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.

  4. Mesenchymal stem cell therapy promotes the improvement and recovery of renal function in a preclinical model

    PubMed Central

    Urt-Filho, Antônio; Oliveira, Rodrigo Juliano; Hermeto, Larissa Correa; Pesarini, João Renato; de David, Natan; Cantero, Wilson de Barros; Falcão, Gustavo; Marks, Guido; Antoniolli-Silva, Andréia Conceição Milan Brochado

    2016-01-01

    Abstract Acute renal failure (ARF) is an extremely important public health issue in need of novel therapies. The present study aimed to evaluate the capacity of mesenchymal stem cell (MSC) therapy to promote the improvement and recovery of renal function in a preclinical model. Wistar rats were used as the experimental model, and our results show that cisplatin (5mg/kg) can efficiently induce ARF, as measured by changes in biochemical (urea and creatinine) and histological parameters. MSC therapy performed 24h after the administration of chemotherapy resulted in normalized plasma urea and creatinine levels 30 and 45d after the onset of kidney disease. Furthermore, MSC therapy significantly reduced histological changes (intratubular cast formation in protein overload nephropathy and tubular hydropic degeneration) in this ARF model. Thus, considering that current therapies for ARF are merely palliative and that MSC therapy can promote the improvement and recovery of renal function in this model system, we suggest that innovative/alternative therapies involving MSCs should be considered for clinical studies in humans to treat ARF. PMID:27275667

  5. Abdominal aortic aneurysm: novel mechanisms and therapies.

    PubMed

    Davis, Frank M; Rateri, Debra L; Daugherty, Alan

    2015-11-01

    Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, matrix metalloproteinase (MMP)-3, TGFBR2, and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β, and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight into the roles of microRNAs in regulating many pathological pathways in AAA development. Several large clinical trials are ongoing, seeking to translate preclinical findings into therapeutic options. Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight into the development of a medical treatment for this disease.

  6. Role of Corticotropin Releasing Factor in Anxiety Disorders: A Translational Research Perspective

    PubMed Central

    Risbrough, Victoria B.; Stein, Murray B.

    2007-01-01

    Anxiety disorders are a group of mental disorders that include generalized anxiety disorder (GAD), panic disorder, phobic disorders (e.g., specific phobias, agoraphobia, social phobia) and posttraumatic stress disorder (PTSD). Anxiety disorders are among the most common of all mental disorders and, when coupled with an awareness of the disability and reduced quality of life they convey, they must be recognized as a serious public health problem. Over 20 years of preclinical studies point to a role for the CRF system in anxiety and stress responses. Clinical studies have supported a model of CRF dysfunction in depression and more recently a potential contribution to specific anxiety disorders (i.e., panic disorder and PTSD). Much work remains in both the clinical and preclinical fields to inform models of CRF function and its contribution to anxiety. First, we will review the current findings of CRF and HPA axis abnormalities in anxiety disorders. Second, we will discuss startle reflex measures as a tool for translational research to determine the role of the CRF system in development and maintenance of clinical anxiety. PMID:16870185

  7. Cocaine-Induced Neurodevelopmental Deficits and Underlying Mechanisms

    PubMed Central

    Martin, Melissa M.; Graham, Devon L.; McCarthy, Deirdre M.; Bhide, Pradeep G.; Stanwood, Gregg D.

    2017-01-01

    Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. PMID:27345015

  8. Targeting oncogenic vulnerabilities in triple negative breast cancer: biological bases and ongoing clinical studies

    PubMed Central

    Ocana, Alberto; Pandiella, Atanasio

    2017-01-01

    Triple negative breast cancer (TNBC) is still an incurable disease despite the great scientific effort performed during the last years. The huge heterogeneity of this disease has motivated the evaluation of a great number of therapies against different molecular alterations. In this article, we review the biological bases of this entity and how the known molecular evidence supports the current preclinical and clinical development of new therapies. Special attention will be given to ongoing clinical studies and potential options for future drug combinations. PMID:28108739

  9. Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands.

    PubMed

    van Putten, Maaike; Aartsma-Rus, Annemieke; Grounds, Miranda D; Kornegay, Joe N; Mayhew, Anna; Gillingwater, Thomas H; Takeda, Shin'ichi; Rüegg, Markus A; De Luca, Annamaria; Nagaraju, Kanneboyina; Willmann, Raffaella

    A workshop took place in 2015 to follow up TREAT-NMD activities dedicated to improving quality in the preclinical phase of drug development for neuromuscular diseases. In particular, this workshop adressed necessary future steps regarding common standard experimental protocols and the issue of improving the translatability of preclinical efficacy studies.

  10. The basics of preclinical drug development for neurodegenerative disease indications.

    PubMed

    Steinmetz, Karen L; Spack, Edward G

    2009-06-12

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial.

  11. The basics of preclinical drug development for neurodegenerative disease indications

    PubMed Central

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial. PMID:19534731

  12. An interlaboratory transfer of a multi-analyte assay between continents.

    PubMed

    Georgiou, Alexandra; Dong, Kelly; Hughes, Stephen; Barfield, Matthew

    2015-01-01

    Alex has worked at GlaxoSmithKline for the past 15 years and currently works within the bioanalytical and toxicokinetic group in the United Kingdom. Alex's role in previous years has been the in-house support of preclinical and clinical bioanalysis, from method development through to sample analysis activities as well as acting as PI for GLP bioanalysis and toxicokinetics. For the past two years, Alex has applied this analytical and regulatory experience to focus on the outsourcing of preclinical bioanalysis, toxicokinetics and clinical bioanalysis, working closely with multiple bioanalytical and in-life CRO partners worldwide. Alex works to support DMPK and Safety Assessment outsourcing activities for GSK across multiple therapeutic areas, from the first GLP study through to late stage clinical PK studies. Transfer and cross-validation of an existing analytical assay between a laboratory providing current analytical support, and a laboratory needed for new or additional support, can present the bioanalyst with numerous challenges. These challenges can be technical or logistical in nature and may prove to be significant when transferring an assay between laboratories in different continents. Part of GlaxoSmithKline's strategy to improve confidence in providing quality data, is to cross-validate between laboratories. If the cross-validation fails predefined acceptance criteria, then a subsequent investigation would follow. This may also prove to be challenging. The importance of thorough planning and good communication throughout assay transfer, cross-validation and any subsequent investigations is illustrated in this case study.

  13. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science?

    PubMed

    Bespalov, Anton; Steckler, Thomas

    2018-04-15

    There are many reasons why novel therapeutics fail in clinical trials but these failures are often attributed to lacking quality of preclinical data. These problems are not limited to any specific therapeutic area, academic or industrial research and are due in large part to several generic factors influencing research quality (e.g., related to definition of pre-specified endpoints, principles of study design and analysis, biased reporting, and lack of proper training). Yet, neuroscience drug discovery is often said to be affected more than the other fields. Within neuroscience, behavioral studies are the most blamed for being poorly designed, underpowered and mis-reported and there are indeed several factors that may be rather unique for behavioral research, such as a multitude of environmental conditions that are difficult to control and that are often not reported, ethical concerns about in vivo research and the pressure to reduce animal numbers, contributing to under-powered studies, and the complexity of study design and analysis, creating too much room for post hoc data massaging and selective reporting. Also, the blood-brain barrier as a frequently neglected complicating factor has to be considered in CNS research. The importance of these factors is increasingly recognized and urgent efforts are needed to demonstrate that behavioral methods of preclinical neuroscience research deliver results that can be as robust as with the non-behavioral methods Until this goal is achieved, behavioral neuroscience and neuroscience in general may be losing young talent, CNS drug discovery may lack the needed investment and this field may indeed be amongst the most affected by the current preclinical data quality crisis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Buprenorphine-naloxone buccal soluble film for the treatment of opioid dependence: current update.

    PubMed

    Soyka, Michael

    2015-02-01

    Opioid dependence is a severe medical disorder with a high psychiatric and somatic comorbidity and mortality rate. The opioid agonist methadone, mixed agonist-antagonist buprenorphine and the combination of buprenorphine with the opioid antagonist naloxone are the first-line maintenance treatments for opioid dependence. Risk of diversion and accidental intoxications, especially in children, are of great concern. To lower these risks, a novel buprenorphine-naloxone film has been developed and introduced in the USA and Australia. This review evaluates the available preclinical and clinical data on the novel buprenorphine-naloxone film for treatment of opioid dependence. Literature was identified through a comprehensive PubMed search. Data sources also included official FDA information and material made public by the manufacturer. Few preclinical and clinical data on safety and efficacy have been published. The pharmacological differences between the novel film and the conventional buprenorphine/naloxone are small. In an experimental study, the new formulation suppressed symptoms of opioid withdrawal. The spectrum of adverse events seems to be similar to that of the conventional sublingual tablet. Recent data show that patients prefer the novel film over the conventional sublingual tablet. Emerging surveillance data indicate a lower risk of accidental poisoning in children compared with the conventional formulation. Further clinical and preclinical data are needed to explore additional possible advantages of the new formulation.

  16. Stress-based animal models of depression: Do we actually know what we are doing?

    PubMed

    Yin, Xin; Guven, Nuri; Dietis, Nikolas

    2016-12-01

    Depression is one of the leading causes of disability and a significant health-concern worldwide. Much of our current understanding on the pathogenesis of depression and the pharmacology of antidepressant drugs is based on pre-clinical models. Three of the most popular stress-based rodent models are the forced swimming test, the chronic mild stress paradigm and the learned helplessness model. Despite their recognizable advantages and limitations, they are associated with an immense variability due to the high number of design parameters that define them. Only few studies have reported how minor modifications of these parameters affect the model phenotype. Thus, the existing variability in how these models are used has been a strong barrier for drug development as well as benchmark and evaluation of these pre-clinical models of depression. It also has been the source of confusing variability in the experimental outcomes between research groups using the same models. In this review, we summarize the known variability in the experimental protocols, identify the main and relevant parameters for each model and describe the variable values using characteristic examples. Our view of depression and our efforts to discover novel and effective antidepressants is largely based on our detailed knowledge of these testing paradigms, and requires a sound understanding around the importance of individual parameters to optimize and improve these pre-clinical models. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    EPA Science Inventory

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  18. Breast cancer: the role of angiogenesis and antiangiogenic therapy.

    PubMed

    Miller, Kathy D; Dul, Carrie L

    2004-10-01

    Angiogenesis plays a role in breast cancer development. Preclinical and clinical evidence is reviewed. Development of targeted antiangiogenic agents provides new challenges to clinical trial design. Current antiangiogenic therapy with traditional agents and novel agents are classified and reviewed.

  19. Pre-clinical and clinical development of the first placental malaria vaccine.

    PubMed

    Pehrson, Caroline; Salanti, Ali; Theander, Thor G; Nielsen, Morten A

    2017-06-01

    Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.

  20. Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds.

    PubMed

    Neelkantan, Nikhil; Mikhaylova, Alina; Stewart, Adam Michael; Arnold, Raymond; Gjeloshi, Visar; Kondaveeti, Divya; Poudel, Manoj K; Kalueff, Allan V

    2013-08-21

    Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs' action. The utility of zebrafish ( Danio rerio ) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans.

  1. Modelling and Dosimetry for Alpha-Particle Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.; Song, Hong

    2015-01-01

    As a consequence of the high potency and short range of alpha-particles, radiopharmaceutical therapy with alpha-particle emitting radionuclides is a promising treatment approach that is under active pre-clinical and clinical investigation. To understand and predict the biological effects of alpha-particle radiopharmaceuticals, dosimetry is required at the micro or multi-cellular scale level. At such a scale, highly non-uniform irradiation of the target volume may be expected and the utility of a single absorbed dose value to predict biological effects comes into question. It is not currently possible to measure the pharmacokinetic input required for micro scale dosimetry in humans. Accordingly, pre-clinical studies are required to provide the pharmacokinetic data for dosimetry calculations. The translation of animal data to the human requires a pharmacokinetic model that links macro- and micro-scale pharmacokinetics thereby enabling the extrapolation of micro-scale kinetics from macroscopic measurements. These considerations along with a discussion of the appropriate physical quantity and related units for alpha-particle radiopharmaceutical therapy are examined in this review. PMID:22201712

  2. Synthesis and Preclinical Evaluation of QS-21 Variants Leading to Simplified Vaccine Adjuvants and Mechanistic Probes

    PubMed Central

    Chea, Eric K.; Fernández-Tejada, Alberto; Damani, Payal; Adams, Michelle M.; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Gin, David Y.

    2012-01-01

    QS-21 is a potent immunostimulatory saponin that is currently under clinical investigation as an adjuvant in various vaccines to treat infectious diseases, cancers, and congnitive disorders. Herein we report the design, synthesis, and preclinical evaluation of simplified QS-21 congeners to define key structural features that are critical for adjuvant activity. Truncation of the linear tetrasaccharide domain revealed that a trisaccharide variant is equipotent to QS-21 while the corresponding disaccharide and monosaccharide congeners are more toxic or less potent, respectively. Modification of the acyl domain in the trisaccharide series revealed that a terminal carboxylic acid is well-tolerated while a terminal amine results in reduced adjuvant activity. Acylation of the terminal amine can restore adjuvant activity and enables the synthesis of fluorescently-labeled QS-21 variants. Cellular studies with these probes revealed that, contrary to conventional wisdom, the most highly adjuvant active of these fluorescently-labeled saponins does not simply associate with the plasma membrane, but rather is internalized by dendritic cells. PMID:22866694

  3. Perspectives on Zebrafish Models of Hallucinogenic Drugs and Related Psychotropic Compounds

    PubMed Central

    2013-01-01

    Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs’ action. The utility of zebrafish (Danio rerio) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans. PMID:23883191

  4. Garlic-Derived Organic Polysulfides and Myocardial Protection123

    PubMed Central

    Bradley, Jessica M; Organ, Chelsea L; Lefer, David J

    2016-01-01

    For centuries, garlic has been shown to exert substantial medicinal effects and is considered to be one of the best disease-preventative foods. Diet is important in the maintenance of health and prevention of many diseases including cardiovascular disease (CVD). Preclinical and clinical evidence has shown that garlic reduces risks associated with CVD by lowering cholesterol, inhibiting platelet aggregation, and lowering blood pressure. In recent years, emerging evidence has shown that hydrogen sulfide (H2S) has cardioprotective and cytoprotective properties. The active metabolite in garlic, allicin, is readily degraded into organic diallyl polysulfides that are potent H2S donors in the presence of thiols. Preclinical studies have shown that enhancement of endogenous H2S has an impact on vascular reactivity. In CVD models, the administration of H2S prevents myocardial injury and dysfunction. It is hypothesized that these beneficial effects of garlic may be mediated by H2S-dependent mechanisms. This review evaluates the current knowledge concerning the cardioprotective effects of garlic-derived diallyl polysulfides. PMID:26764335

  5. At the bench: adoptive cell therapy for melanoma.

    PubMed

    Urba, Walter J

    2014-06-01

    The cellular and molecular principles that furnish the foundation for ACT of melanoma and their implications for further clinical research are reviewed. The parallel advances in basic immunology, preclinical animal studies, and clinical trials over the last two decades have been integrated successfully with improvements in technology to produce an effective ACT strategy for patients with melanoma. From the initial observation that tumors could be treated effectively by the transfer of immune cells to current strategies using preconditioning with myeloablative therapy before adoptive transfer of native or genetically altered T cells, the role of preclinical animal models is discussed. The importance of the pmel transgenic mouse model in the determination of the mechanisms of lymphodepletion, the ongoing work to identify the optimal T cells for adoptive immunotherapy, and the early impact of the emerging discipline of synthetic biology are highlighted. The clinical consequences of the research described herein are reviewed in the companion manuscript. © 2014 Society for Leukocyte Biology.

  6. Biology and clinical application of CAR T cells for B cell malignancies.

    PubMed

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  7. Silibinin and STAT3: A natural way of targeting transcription factors for cancer therapy.

    PubMed

    Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-06-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many different types of cancer and plays a pivotal role in tumor growth and metastasis. Retrospective studies have established that STAT3 expression or phospho-STAT3 (pSTAT3 or activated STAT3) are poor prognostic markers for breast, colon, prostate and non-small cell lung cancer. Silibinin or silybin is a natural polyphenolic flavonoid which is present in seed extracts of milk thistle (Silybum marianum). Silibinin has been shown to inhibit multiple cancer cell signaling pathways in preclinical models, demonstrating promising anticancer effects in vitro and in vivo. This review summarizes evidence suggesting that silibinin can inhibit pSTAT3 in preclinical cancer models. We also discuss current strategies to overcome the limitations of oral administration of silibinin to cancer patients to translate the bench results to the bed side. Finally, we review the ongoing clinical trials exploring the role of silibinin in cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development

    PubMed Central

    Ribas, João; Sadeghi, Hossein; Manbachi, Amir; Leijten, Jeroen; Brinegar, Katelyn; Zhang, Yu Shrike; Ferreira, Lino

    2016-01-01

    Abstract Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system—in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development. PMID:28971113

  9. Biology and clinical application of CAR T Cells for B cell malignancies

    PubMed Central

    Davila, Marco L; Sadelain, Michel

    2017-01-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma (NHL) and B cell acute lymphoblastic leukemia (B-ALL), including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors. PMID:27262700

  10. Current status of endovascular catheter robotics.

    PubMed

    Lumsden, Alan B; Bismuth, Jean

    2018-06-01

    In this review, we will detail the evolution of endovascular therapy as the basis for the development of catheter-based robotics. In parallel, we will outline the evolution of robotics in the surgical space and how the convergence of technology and the entrepreneurs who push this evolution have led to the development of endovascular robots. The current state-of-the-art and future directions and potential are summarized for the reader. Information in this review has been drawn primarily from our personal clinical and preclinical experience in use of catheter robotics, coupled with some ground-breaking work reported from a few other major centers who have embraced the technology's capabilities and opportunities. Several case studies demonstrating the unique capabilities of a precisely controlled catheter are presented. Most of the preclinical work was performed in the advanced imaging and navigation laboratory. In this unique facility, the interface of advanced imaging techniques and robotic guidance is being explored. Although this procedure employs a very high-tech approach to navigation inside the endovascular space, we have conveyed the kind of opportunities that this technology affords to integrate 3D imaging and 3D control. Further, we present the opportunity of semi-autonomous motion of these devices to a target. For the interventionist, enhanced precision can be achieved in a nearly radiation-free environment.

  11. [Preclinical safety evaluation of chloral hydrate after topical application using the example of psoriatic itch].

    PubMed

    Wohlrab, J; Gilbrich, F; Wolff, L; Fischer, M; Philipp, S

    2017-03-01

    Psoriasis is known today as a T‑cell-mediated autoimmunological systemic disease. The chronic inflammatory processes involve neuroimmunological factors that are held responsible not only for various aspects of psychiatric-neurological comorbidities but also for neurosensory problems, primarily itching. Amongst other things, the significance of GABA A receptors are often discussed in this context. The topical use of chloral hydrate in semisolid preparations for antipruritic therapy goes back to Neisser and is currently experiencing a revival in individually manufactured formulations. However, it is currently unknown whether the unwanted side effects that are described for systemic use of chloral hydrate are also relevant for topical application. For lack of clinical safety data, preclinical tests for cutaneous cytotoxicity and calculations for systemic bioavailability after topical application have been performed. The present data cannot fully remove safety concerns for topical application of chloral hydrate in the formulation favoured by the NRF (Neues Rezepturformularium)-the so-called 1‑2-3-cream. A twice daily use of the 1‑2-3-cream on a maximum of 10% of the body surface can be regarded as safe. For a better assessment of harmlessness, tests for cutaneous bioavailability (concentration-time profile) on human skin and clinical studies would be necessary.

  12. Pre-Clinical Medical Students' Exposure to and Attitudes Toward Pharmaceutical Industry Marketing.

    PubMed

    Fein, Eric H; Vermillion, Michelle L; Uijtdehaage, Sebastian H J

    2007-12-01

    Background - Recent studies have examined the exposures and attitudes of physicians and third- and fourth-year medical students toward pharmaceutical industry marketing, but fewer studies have addressed these topics among pre-clinical medical students. Thus, the purpose of this study was to assess pre-clinical students' level of exposure to the pharmaceutical industry and their attitudes toward marketing. Method - First and second-year medical students at UCLA completed a 40-item survey based on previous studies. Results - Over three quarters of pre-clinical students (78.5% or 226 of 288) responded to the survey. Exposure to pharmaceutical industry marketing started very early in medical school. Most second-year students (77%) had received gifts including drug samples after three semesters. Most felt that this would not affect their future prescribing behavior. Conclusions - These findings and findings from related studies, coupled with the students' desire to learn more about the issue, suggest that an early educational intervention addressing this topic may be warranted in American medical schools.

  13. Pathogenesis and Prediction of Future Rheumatoid Arthritis

    DTIC Science & Technology

    2014-10-01

    characterized by abnormalities of the immune system prior to the onset of the clinically apparent inflammatory joint disease that currently defines RA. The...the clinically apparent inflammatory joint disease that currently defines RA. The primary goal of this project is to investigate this preclinical...environmental exposures such as smoking, periodontal disease were ascertained. Goal 2. Local and governmental IRB approvals, and HRPO approval, were obtained

  14. Preclinical QT safety assessment: cross-species comparisons and human translation from an industry consortium.

    PubMed

    Holzgrefe, Henry; Ferber, Georg; Champeroux, Pascal; Gill, Michael; Honda, Masaki; Greiter-Wilke, Andrea; Baird, Theodore; Meyer, Olivier; Saulnier, Muriel

    2014-01-01

    In vivo models have been required to demonstrate relative cardiac safety, but model sensitivity has not been systematically investigated. Cross-species and human translation of repolarization delay, assessed as QT/QTc prolongation, has not been compared employing common methodologies across multiple species and sites. Therefore, the accurate translation of repolarization results within and between preclinical species, and to man, remains problematic. Six pharmaceutical companies entered into an informal consortium designed to collect high-resolution telemetered data in multiple species (dog; n=34, cynomolgus; n=37, minipig; n=12, marmoset; n=14, guinea pig; n=5, and man; n=57). All animals received vehicle and varying doses of moxifloxacin (3-100 mg/kg, p.o.) with telemetered ECGs (≥500 Hz) obtained for 20-24h post-dose. Individual probabilistic QT-RR relationships were derived for each subject. The rate-correction efficacies of the individual (QTca) and generic correction formulae (Bazett, Fridericia, and Van de Water) were objectively assessed as the mean squared slopes of the QTc-RR relationships. Normalized moxifloxacin QTca responses (Veh Δ%/μM) were derived for 1h centered on the moxifloxacin Tmax. All QT-RR ranges demonstrated probabilistic uncertainty; slopes varied distinctly by species where dog and human exhibited the lowest QT rate-dependence, which was much steeper in the cynomolgus and guinea pig. Incorporating probabilistic uncertainty, the normalized QTca-moxifloxacin responses were similarly conserved across all species, including man. The current results provide the first unambiguous evidence that all preclinical in vivo repolarization assays, when accurately modeled and evaluated, yield results that are consistent with the conservation of moxifloxacin-induced QT prolongation across all common preclinical species. Furthermore, these outcomes are directly transferable across all species including man. The consortium results indicate that the implementation of standardized QTc data presentation, QTc reference cycle lengths, and rate-correction coefficients can markedly improve the concordance of preclinical and clinical outcomes in most preclinical species. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    PubMed

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  16. Novel glutamatergic drugs for the treatment of mood disorders

    PubMed Central

    Lapidus, Kyle AB; Soleimani, Laili; Murrough, James W

    2013-01-01

    Mood disorders are common and debilitating, resulting in a significant public health burden. Current treatments are only partly effective and patients who have failed to respond to trials of existing antidepressant agents (eg, those who suffer from treatment-resistant depression [TRD]) require innovative therapeutics with novel mechanisms of action. Although neuroscience research has elucidated important aspects of the basic mechanisms of antidepressant action, most antidepressant drugs target monoaminergic mechanisms identified decades ago. Glutamate, the major excitatory neurotransmitter in the central nervous system, and glutamatergic dysfunction has been implicated in mood disorders. These data provide a rationale for the pursuit of glutamatergic agents as novel therapeutic agents. Here, we review preclinical and clinical investigations of glutamatergic agents in mood disorders with a focus on depression. We begin with discussion of evidence for the rapid antidepressant effects of ketamine, followed by studies of the antidepressant efficacy of the currently marketed drugs riluzole and lamotrigine. Promising novel agents currently in development, including N-methyl-D-aspartate (NMDA) receptor modulators, 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor modulators, and drugs with activity at the metabotropic glutamate (mGlu) receptors are then reviewed. Taken together, both preclinical and clinical evidence exists to support the pursuit of small molecule modulators of the glutamate system as novel therapeutic agents in mood disorders. It is hoped that by targeting neural systems outside of the monoamine system, more effective and perhaps faster acting therapeutics can be developed for patients suffering from these disabling disorders. PMID:23976856

  17. Not lost in translation: how study of diseases in our pets can benefit them and us.

    PubMed

    Henry, Carolyn J; Bryan, Jeffrey N

    2013-01-01

    Practice-changing medical discovery requires preclinical and clinical assessment be carried out using appropriate disease models. There is growing awareness of companion animals with naturally-occurring disease as such models. They offer significant advantages over more traditional in vivo models of induced disease. This review describes current efforts to promote translation of discoveries between human and veterinary medicine in order to more rapidly and efficiently make progress in improving the health of all human and animal patients.

  18. Efficacy and safety of selective glucocorticoid receptor modulators in comparison to glucocorticoids in arthritis, a systematic review.

    PubMed

    Safy, M; de Hair, M J H; Jacobs, J W G; Buttgereit, F; Kraan, M C; van Laar, J M

    2017-01-01

    Long-term treatment with glucocorticoids (GCs) plays an important role in the management of arthritis patients, although the efficacy/safety balance is unfavorable. Alternatives with less (severe) adverse effects but with good efficacy are needed. Selective GC receptor modulators (SGRMs) are designed to engage the GC receptor with dissociative characteristics: transactivation of genes, which is mainly responsible for unwanted effects, is less strong while trans-repression of genes, reducing inflammation, is maintained. It is expected that SGRMs thus have a better efficacy/safety balance than GCs. A systematic review providing an overview of the evidence in arthritis is lacking. To systematically review the current literature on efficacy and safety of oral SGRMs in comparison to GCs in arthritis. A search was performed in Medline, Embase and the Cochrane Library, from inception dates of databases until May 2017. Experimental studies involving animal arthritis models or human material of arthritis patients, as well as clinical studies in arthritis patients were included, provided they reported original data. All types of arthritis were included. Data was extracted on the SGRM studied and on the GC used as reference standard; the design or setting of the study was extracted as well as the efficacy and safety results. A total of 207 articles was retrieved of which 17 articles were eligible for our analysis. Two studies concerned randomized controlled trials (RCT), five studies were pre-clinical studies using human material, and 10 studies involved pre-clinical animal models (acute and/or chronic arthritis induced in mice or rats). PF-04171327, the only compound investigated in a clinical trial setting, had a better efficacy/safety balance compared to GCs: better clinical anti-inflammatory efficacy and similar safety. Studies assessing both efficacy and safety of SGRMs are scarce. There is limited evidence for dissociation of anti-inflammatory and metabolic effects of the SGRMs studied. Development of many SGRMs is haltered in a preclinical phase. One SGRM showed a better clinical efficacy/safety balance.

  19. Prediction of practical performance in preclinical laboratory courses - the return of wire bending for admission of dental students in Hamburg.

    PubMed

    Kothe, Christian; Hissbach, Johanna; Hampe, Wolfgang

    2014-01-01

    Although some recent studies concluded that dexterity is not a reliable predictor of performance in preclinical laboratory courses in dentistry, they could not disprove earlier findings which confirmed the worth of manual dexterity tests in dental admission. We developed a wire bending test (HAM-Man) which was administered during dental freshmen's first week in 2008, 2009, and 2010. The purpose of our study was to evaluate if the HAM-Man is a useful selection criterion additional to the high school grade point average (GPA) in dental admission. Regression analysis revealed that GPA only accounted for a maximum of 9% of students' performance in preclinical laboratory courses, in six out of eight models the explained variance was below 2%. The HAM-Man incrementally explained up to 20.5% of preclinical practical performance over GPA. In line with findings from earlier studies the HAM-Man test of manual dexterity showed satisfactory incremental validity. While GPA has a focus on cognitive abilities, the HAM-Man reflects learning of unfamiliar psychomotor skills, spatial relationships, and dental techniques needed in preclinical laboratory courses. The wire bending test HAM-Man is a valuable additional selection instrument for applicants of dental schools.

  20. Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures.

    PubMed

    Lo Monaco, Melissa; Merckx, Greet; Ratajczak, Jessica; Gervois, Pascal; Hilkens, Petra; Clegg, Peter; Bronckaers, Annelies; Vandeweerd, Jean-Michel; Lambrichts, Ivo

    2018-01-01

    Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.

  1. Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures

    PubMed Central

    Ratajczak, Jessica; Gervois, Pascal; Clegg, Peter; Bronckaers, Annelies; Vandeweerd, Jean-Michel; Lambrichts, Ivo

    2018-01-01

    Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair. PMID:29535784

  2. RNA interference: ready to silence cancer?

    PubMed

    Mocellin, Simone; Costa, Rodolfo; Nitti, Donato

    2006-01-01

    RNA interference (RNAi) is considered the most promising functional genomics tool recently developed. As in other medical fields, this biotechnology might revolutionize the approach to dissecting the biology of cancer, ultimately speeding up the discovery pace of novel targets suitable for molecularly tailored antitumor therapies. In addition, preclinical results suggest that RNAi itself might be used as a therapeutic weapon. With the aim of illustrating not only the potentials but also the current limitations of RNAi as a tool in the fight against cancer, here we summarize the physiology of RNAi, discuss the main technical issues of RNAi-based gene silencing, and review some of the most interesting preclinical results obtained so far with its implementation in the field of oncology.

  3. Frugal Chemoprevention: Targeting Nrf2 with Foods Rich in Sulforaphane

    PubMed Central

    Yang, Li; Palliyaguru, Dushani L.; Kensler, Thomas W.

    2015-01-01

    With the properties of efficacy, safety, tolerability, practicability and low cost, foods containing bioactive phytochemicals are gaining significant attention as elements of chemoprevention strategies against cancer. Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane], a naturally occurring isothiocyanate produced by cruciferous vegetables such as broccoli, is found to be a highly promising chemoprevention agent against not only variety of cancers such as breast, prostate, colon, skin, lung, stomach or bladder carcinogenesis, but also cardiovascular disease, neurodegenerative diseases, and diabetes. For reasons of experimental exigency, pre-clinical studies have focused principally on sulforaphane itself, while clinical studies have relied on broccoli sprout preparations rich in either sulforaphane or its biogenic precursor, glucoraphanin. Substantive subsequent evaluation of sulforaphane pharmacokinetics and pharmacodynamics has been undertaken using either pure compound or food matrices. Sulforaphane affects multiple targets in cells. One key molecular mechanism of action for sulforaphane entails activation of the Nrf2- Keap1 signaling pathway although other actions contribute to the broad spectrum of efficacy in different animal models. This review summarizes the current status of pre-clinical chemoprevention studies with sulforaphane and highlights the progress and challenges for the application of foods rich in sulforaphane and/or glucoraphanin in the arena of clinical chemoprevention. PMID:26970133

  4. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    PubMed

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  5. Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis.

    PubMed

    Matthay, Michael A; Pati, Shibani; Lee, Jae-Woo

    2017-02-01

    Several experimental studies have provided evidence that bone-marrow derived mesenchymal stem (stromal) cells (MSC) may be effective in treating critically ill surgical patients who develop traumatic brain injury, acute renal failure, or the acute respiratory distress syndrome. There is also preclinical evidence that MSC may be effective in treating sepsis-induced organ failure, including evidence that MSC have antimicrobial properties. This review considers preclinical studies with direct relevance to organ failure following trauma, sepsis or major infections that apply to critically ill patients. Progress has been made in understanding the mechanisms of benefit, including MSC release of paracrine factors, transfer of mitochondria, and elaboration of exosomes and microvesicles. Regardless of how well they are designed, preclinical studies have limitations in modeling the complexity of clinical syndromes, especially in patients who are critically ill. In order to facilitate translation of the preclinical studies of MSC to critically ill patients, there will need to be more standardization regarding MSC production with a focus on culture methods and cell characterization. Finally, well designed clinical trials will be needed in critically ill patient to assess safety and efficacy. Stem Cells 2017;35:316-324. © 2016 AlphaMed Press.

  6. Preclinical carotid atherosclerosis in patients with rheumatoid arthritis.

    PubMed

    Roman, Mary J; Moeller, Elfi; Davis, Adrienne; Paget, Stephen A; Crow, Mary K; Lockshin, Michael D; Sammaritano, Lisa; Devereux, Richard B; Schwartz, Joseph E; Levine, Daniel M; Salmon, Jane E

    2006-02-21

    Rheumatoid arthritis is associated with increased morbidity and mortality because of cardiovascular disease, independent of traditional risk factors. To determine the prevalence of preclinical atherosclerosis in patients with rheumatoid arthritis and to identify clinical and biological markers for atherosclerotic disease in this patient population. Matched, cross-sectional study. Hospital for Special Surgery in New York City. 98 consecutive outpatients with rheumatoid arthritis who were followed by rheumatologists and 98 controls matched on age, sex, and ethnicity. Cardiovascular risk factor ascertainment and carotid ultrasonography in all participants; disease severity, disease treatment, and inflammatory markers in patients with rheumatoid arthritis. Despite a more favorable risk factor profile, patients with rheumatoid arthritis had a 3-fold increase in carotid atherosclerotic plaque (44% vs. 15%; P < 0.001). The relationship between rheumatoid arthritis and carotid atherosclerotic plaque remained after accounting for age, serum cholesterol levels, smoking history, and hypertensive status; adjusted predicted prevalence was 7.4% (95% CI, 3.4% to 15.2%) for the control group and 38.5% (CI, 25.4% to 53.5%) for patients with rheumatoid arthritis. Age (P < 0.001) and current cigarette use (P < 0.014) were also significantly associated with carotid atherosclerotic plaque. Among patients with rheumatoid arthritis, atherosclerosis was related to age, hypertension status, and use of tumor necrosis factor-alpha inhibitors (a possible marker of disease severity). The study had a cross-sectional design, and inflammatory markers were determined only once. Patients with rheumatoid arthritis have a high prevalence of preclinical atherosclerosis independent of traditional risk factors, suggesting that chronic inflammation and, possibly, disease severity are atherogenic in this population.

  7. Evaluating the Impact of Naltrexone on the Rat Gambling Task to Test Its Predictive Validity for Gambling Disorder.

    PubMed

    Di Ciano, Patricia; Le Foll, Bernard

    2016-01-01

    Gambling Disorder has serious consequences and no medications are currently approved for the treatment of this disorder. One factor that may make medication development difficult is the lack of animal models of gambling that would allow for the pre-clinical screening of efficacy. Despite this, there is evidence from clinical trials that opiate antagonists, in particular naltrexone, may be useful in treating gambling disorder. To-date, the effects of naltrexone on pre-clinical models of gambling have not been evaluated. The purpose of the present study was to evaluate the effects of naltrexone in an animal model of gambling, the rat gambling task (rGT), to determine whether this model has some predictive validity. The rGT is a model in which rats are given a choice of making either a response that produces a large reward or a small reward. The larger the reward, the greater the punishment, and thus this task requires that the animal inhibit the 'tempting' choice, as the smaller reward option produces overall the most number of rewards per session. People with gambling disorder chose the tempting option more, thus the rGT may provide a model of problem gambling. It was found that naltrexone improved performance on this task in a subset of animals that chose the 'tempting', disadvantageous choice, more at baseline. Thus, the results of this study suggest that the rGT should be further investigated as a pre-clinical model of gambling disorder and that further investigation into whether opioid antagonists are effective in treating Gambling Disorder may be warranted.

  8. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies.

    PubMed

    Reichert, Johannes C; Epari, Devakara R; Wullschleger, Martin E; Saifzadeh, Siamak; Steck, Roland; Lienau, Jasmin; Sommerville, Scott; Dickinson, Ian C; Schütz, Michael A; Duda, Georg N; Hutmacher, Dietmar W

    2010-02-01

    Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties; however, they are limited in access and availability and associated with donor-site morbidity, hemorrhage, risk of infection, insufficient transplant integration, graft devitalization, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench-to-bedside translations are still infrequent as the process toward approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence, commercialization, is referred to as the "Valley of Death" and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes and scalable designs and to apply these in preclinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopedic bone engineering from bench to bedside by establishing a preclinical ovine critical-sized tibial segmental bone defect model, and we discuss our preliminary data relating to this decisive step.

  9. Cannabinoids and Epilepsy.

    PubMed

    Rosenberg, Evan C; Tsien, Richard W; Whalley, Benjamin J; Devinsky, Orrin

    2015-10-01

    Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.

  10. Preventing Electromagnetic Pulse Irradiation Damage on Testis Using Selenium-rich Cordyceps Fungi. A Preclinical Study in Young Male Mice.

    PubMed

    Miao, Xia; Wang, Yafeng; Lang, Haiyang; Lin, Yanyun; Guo, Qiyan; Yang, Mingjuan; Guo, Juan; Zhang, Yanjun; Zhang, Jie; Liu, Junye; Liu, Yaning; Zeng, Lihua; Guo, Guozhen

    2017-02-01

    Networked 21st century society, globalization, and communications technologies are paralleled by the rise of electromagnetic energy intensity in our environments and the growing pressure of the environtome on human biology and health. The latter is the entire complement of environmental factors, including the electromagnetic energy and the technologies that generate them, enacting on the digital citizen in the new century. Electromagnetic pulse (EMP) irradiation might have serious damaging effects not only on electronic equipment but also in the whole organism and reproductive health, through nonthermal effects and oxidative stress. We sought to determine whether EMP exposure (1) induces biological damage on reproductive health and (2) the extent to which selenium-rich Cordyceps fungi (daily coadministration) offer protection on the testicles and spermatozoa. In a preclinical randomized study, 3-week-old male BALB/c mice were repeatedly exposed to EMP (peak intensity 200 kV/m, pulse edge 3.5 ns, pulse width 15 ns, 0.1 Hz, and 400 pulses/day) 5 days per week for four consecutive weeks, with or without coadministration of daily selenium-rich Cordyceps fungi (100 mg/kg). Testicular index and spermatozoa formation were measured at baseline and 1, 7, 14, 28, and 60 day time points after EMP exposure. The group without Cordyceps cotreatment displayed decreased spermatozoa formation, shrunk seminiferous tubule diameters, and diminished antioxidative capacity at 28 and 60 days after exposure (p < 0.05). The Cordyceps daily cotreatment alleviated the testicular damage by EMP exposure, increased spermatozoa formation, and reduced apoptotic spermatogenic cells. These observations warrant further preclinical and clinical studies as an innovative approach for potential protection against electromagnetic radiation in the current age of networked society and digital citizenship.

  11. Micro-Dose Calibrator for Pre-clinical Radiotracer Assays | NCI Technology Transfer Center | TTC

    Cancer.gov

    Pre-clinical radiotracer biomedical research involves the use of compounds labeled with radioisotopes, including cell binding studies, immune cell labeling techniques, and radio-ligand bio-distribution studies. Before this Micro-Dose Calibrator, measurement of pre-clinical level dosage for small animal studies was inaccurate and unreliable. This dose calibrator is a prototype ready for manufacturing. It is designed to accurately measure radioactive doses in the range of 50 nCi (1.8 kBq) to 100 µCi (3.7 MBq) with 1% precision. The NCI seeks co-development or licensing to commercialize it. Alternative uses will be considered.

  12. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives.

    PubMed

    Lazarević, Tatjana; Rilak, Ana; Bugarčić, Živadin D

    2017-12-15

    Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. “Glowing Head” Mice: A Genetic Tool Enabling Reliable Preclinical Image-Based Evaluation of Cancers in Immunocompetent Allografts

    PubMed Central

    Day, Chi-Ping; Carter, John; Ohler, Zoe Weaver; Bonomi, Carrie; El Meskini, Rajaa; Martin, Philip; Graff-Cherry, Cari; Feigenbaum, Lionel; Tüting, Thomas; Van Dyke, Terry; Hollingshead, Melinda; Merlino, Glenn

    2014-01-01

    Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM)-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate analysis of clinically promising immunomodulatory agents. Imageable reporters are essential for accurately tracking tumor growth and response, particularly for metastases. Unfortunately, reporters such as luciferase and GFP are foreign antigens in immunocompetent mice, potentially hindering tumor growth and confounding therapeutic responses. Here we assessed the value of reporter-tolerized GEMs as allograft recipients by targeting minimal expression of a luciferase-GFP fusion reporter to the anterior pituitary gland (dubbed the “Glowing Head” or GH mouse). The luciferase-GFP reporter expressed in tumor cells induced adverse immune responses in wildtype mouse, but not in GH mouse, as transplantation hosts. The antigenicity of optical reporters resulted in a decrease in both the growth and metastatic potential of the labeled tumor in wildtype mice as compared to the GH mice. Moreover, reporter expression can also alter the tumor response to chemotherapy or targeted therapy in a context-dependent manner. Thus the GH mice and experimental approaches vetted herein provide concept validation and a strategy for effective, reproducible preclinical evaluation of growth and response kinetics for traceable tumors. PMID:25369133

  14. EU-approved rapid tests might underestimate bovine spongiform encephalopathy infection in goats.

    PubMed

    Meloni, Daniela; Bozzetta, Elena; Langeveld, Jan P M; Groschup, Martin H; Goldmann, Wilfred; Andrèoletti, Olivier; Lantier, Isabelle; Van Keulen, Lucien; Bossers, Alex; Pitardi, Danilo; Nonno, Romolo; Sklaviadis, Theodoros; Ingravalle, Francesco; Peletto, Simone; Colussi, Silvia; Acutis, Pier Luigi

    2017-03-01

    We report the diagnostic sensitivity of 3 EU-approved rapid tests (ELISAs; 1 from IDEXX and 2 from Bio-Rad) for the detection of transmissible spongiform encephalopathy diseases in goats. Ninety-eight goat brainstem samples were tested. All the rapid tests had 100% specificity and ≥80% sensitivity, with the IDEXX test significantly more sensitive than the 2 Bio-Rad tests. All tests detected 100% of samples from goats with clinical scrapie, but missed 8% (IDEXX) to 33% (Bio-Rad SG) of samples from preclinical goats. Importantly, only IDEXX picked up all samples from clinical bovine spongiform encephalopathy (BSE)-infected goats, whereas the other 2 rapid tests missed 15% (Bio-Rad SG) to 25% (Bio-Rad SAP). These results show that a fraction of preclinical scrapie infections are likely missed by EU surveillance, with sensitivity of detection strongly dependent on the choice of the rapid test. Moreover, a significant proportion of clinical BSE infections are underestimated by using either Bio-Rad test. Assuming that the same sensitivity on preclinical goats would also occur in BSE-infected goats, our data suggest that IDEXX is likely the most sensitive test for detecting preclinical field cases of BSE infection in goats, although with an 8% failure rate. These results raise some concerns about the reliability of current EU surveillance figures on BSE infection in goats.

  15. The utility of micro-CT and MRI in the assessment of longitudinal growth of liver metastases in a preclinical model of colon carcinoma.

    PubMed

    Pandit, Prachi; Johnston, Samuel M; Qi, Yi; Story, Jennifer; Nelson, Rendon; Johnson, G Allan

    2013-04-01

    Liver is a common site for distal metastases in colon and rectal cancer. Numerous clinical studies have analyzed the relative merits of different imaging modalities for detection of liver metastases. Several exciting new therapies are being investigated in preclinical models. But, technical challenges in preclinical imaging make it difficult to translate conclusions from clinical studies to the preclinical environment. This study addresses the technical challenges of preclinical magnetic resonance imaging (MRI) and micro-computed tomography (CT) to enable comparison of state-of-the-art methods for following metastatic liver disease. We optimized two promising preclinical protocols to enable a parallel longitudinal study tracking metastatic human colon carcinoma growth in a mouse model: T2-weighted MRI using two-shot PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and contrast-enhanced micro-CT using a liposomal contrast agent. Both methods were tailored for high throughput with attention to animal support and anesthesia to limit biological stress. Each modality has its strengths. Micro-CT permitted more rapid acquisition (<10 minutes) with the highest spatial resolution (88-micron isotropic resolution). But detection of metastatic lesions requires the use of a blood pool contrast agent, which could introduce a confound in the evaluation of new therapies. MRI was slower (30 minutes) and had lower anisotropic spatial resolution. But MRI eliminates the need for a contrast agent and the contrast-to-noise between tumor and normal parenchyma was higher, making earlier detection of small lesions possible. Both methods supported a relatively high-throughput, longitudinal study of the development of metastatic lesions. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  16. Mesenchymal stem cells for acute lung injury: Preclinical evidence

    PubMed Central

    Matthay, Michael A.; Goolaerts, Arnaud; Howard, James P.; Lee, Jae Woo

    2013-01-01

    Several experimental studies have suggested that mesenchymal stem cells may have value for the treatment of clinical disorders, including myocardial infarction, diabetes, acute renal failure, sepsis, and acute lung injury. In preclinical studies, mesenchymal stem cells have been effective in reducing lung injury from endotoxin, live bacteria, bleomycin, and hyperoxia. In some studies, the cultured medium from mesenchymal stem cells has been as effective as the mesenchymal stem cells themselves. Several paracrine mediators that can mediate the effect of mesenchymal stem cells have been identified, including interleukin-10, interleukin-1ra, keratinocyte growth factor, and prostaglandin E2. Further preclinical studies are needed, as is planning for clinical trials for acute lung injury. PMID:21164399

  17. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies

    NASA Astrophysics Data System (ADS)

    Scarfe, Lauren; Brillant, Nathalie; Kumar, J. Dinesh; Ali, Noura; Alrumayh, Ahmed; Amali, Mohammed; Barbellion, Stephane; Jones, Vendula; Niemeijer, Marije; Potdevin, Sophie; Roussignol, Gautier; Vaganov, Anatoly; Barbaric, Ivana; Barrow, Michael; Burton, Neal C.; Connell, John; Dazzi, Francesco; Edsbagge, Josefina; French, Neil S.; Holder, Julie; Hutchinson, Claire; Jones, David R.; Kalber, Tammy; Lovatt, Cerys; Lythgoe, Mark F.; Patel, Sara; Patrick, P. Stephen; Piner, Jacqueline; Reinhardt, Jens; Ricci, Emanuelle; Sidaway, James; Stacey, Glyn N.; Starkey Lewis, Philip J.; Sullivan, Gareth; Taylor, Arthur; Wilm, Bettina; Poptani, Harish; Murray, Patricia; Goldring, Chris E. P.; Park, B. Kevin

    2017-10-01

    Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.

  18. Targeting Hsp90 in urothelial carcinoma

    PubMed Central

    Skotnicki, Kamil; Landas, Steve; Bratslavsky, Gennady; Bourboulia, Dimitra

    2015-01-01

    Urothelial carcinoma, or transitional cell carcinoma, is the most common urologic malignancy that carries significant morbidity, mortality, recurrence risk and associated health care costs. Despite use of current chemotherapies and immunotherapies, long-term remission in patients with muscle-invasive or metastatic disease remains low, and disease recurrence is common. The molecular chaperone Heat Shock Protein-90 (Hsp90) may offer an ideal treatment target, as it is a critical signaling hub in urothelial carcinoma pathogenesis and potentiates chemoradiation. Preclinical testing with Hsp90 inhibitors has demonstrated reduced proliferation, enhanced apoptosis and synergism with chemotherapies and radiation. Despite promising preclinical data, clinical trials utilizing Hsp90 inhibitors for other malignancies had modest efficacy. Therefore, we propose that Hsp90 inhibition would best serve as an adjuvant treatment in advanced muscle-invasive or metastatic bladder cancers to potentiate other therapies. An overview of bladder cancer biology, current treatments, molecular targeted therapies, and the role for Hsp90 inhibitors in the treatment of urothelial carcinoma is the focus of this review. PMID:25909217

  19. Neuromodulation for the treatment of eating disorders and obesity

    PubMed Central

    Lee, Darrin J.; Elias, Gavin J.B.; Lozano, Andres M.

    2017-01-01

    Eating disorders and obesity adversely affect individuals both medically and psychologically, leading to reduced life expectancy and poor quality of life. While there exist a number of treatments for anorexia, morbid obesity and bulimia, many patients do not respond favorably to current behavioral, medical or bariatric surgical management. Neuromodulation has been postulated as a potential treatment for eating disorders and obesity. In particular, deep brain stimulation and transcranial non-invasive brain stimulation have been studied for these indications across a variety of brain targets. Here, we review the neurobiology behind eating and eating disorders as well as the current status of preclinical and clinical neuromodulation trials for eating disorders and obesity. PMID:29399320

  20. Predictors of chemotherapy efficacy in non-small-cell lung cancer: a challenging landscape.

    PubMed

    Olaussen, K A; Postel-Vinay, S

    2016-11-01

    Conventional cytotoxic chemotherapy (CCC) is the backbone of non-small-cell lung cancer (NSCLC) treatment since decades and still represents a key element of the therapeutic armamentarium. Contrary to molecularly targeted therapies and immune therapies, for which predictive biomarkers of activity have been actively looked for and developed in parallel to the drug development process ('companion biomarkers'), no patient selection biomarker is currently available for CCC, precluding customizing treatment. We reviewed preclinical and clinical studies that assessed potential predictive biomarkers of CCC used in NSCLC (platinum, antimetabolites, topoisomerase inhibitors, and spindle poisons). Biomarker evaluation method, analytical validity, and robustness are described and challenged for each biomarker. The best-validated predictive biomarkers for efficacy are currently ERCC1, RRM1, and TS for platinum agents, gemcitabine and pemetrexed, respectively. Other potential biomarkers include hENT1 for gemcitabine, class III β-tubulin for spindle poisons, TOP2A expression and CEP17 duplication (mostly studied for predicting anthracyclines efficacy) whose applicability concerning etoposide would deserve further evaluation. However, none of these biomarkers has till now been validated prospectively in an appropriately designed and powered randomised trial, and none of them is currently ready for implementation in routine clinical practice. The search for predictive biomarkers to CCC has been proven challenging. If a plethora of biomarkers have been evaluated either in the preclinical or in the clinical setting, none of them is ready for clinical implementation yet. Considering that most mechanisms of resistance or sensitivity to CCC are multifactorial, a combinatorial approach might be relevant and further efforts are required. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction.

    PubMed

    Belin-Rauscent, Aude; Fouyssac, Maxime; Bonci, Antonello; Belin, David

    2016-01-01

    Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. The pathophysiology and etiology of addiction is only partially understood despite extensive research because of the gap between current preclinical models of addiction and the clinical criteria of the disorder. This review presents a brief overview, based on selected methodologies, of how behavioral models have evolved over the last 50 years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. It is hoped that these new models will increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additionally, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction. Published by Elsevier Inc.

  2. How preclinical models evolved to resemble the diagnostic criteria of drug addiction

    PubMed Central

    Belin-Rauscent, Aude; Fouyssac, Maxime; Bonci, Antonello; Belin, David

    2015-01-01

    Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. Despite extensive research, the pathophysiology and aetiology of addiction is only partially understood, due to the gap between current preclinical models of addiction and the clinical criteria of the disorder. Here we give a brief overview, based on selected methodologies, of how behavioral models have evolved over the last fifty years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. These new models will hopefully increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additional, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction. PMID:25747744

  3. The Role of Tinzaparin in Oncology.

    PubMed

    Dimakakos, Evangelos P; Vathiotis, Ioannis; Syrigos, Konstantinos

    2018-07-01

    Current guidelines recommend low-molecular-weight heparin treatment in patients with cancer with established venous thromboembolism (VTE). The aim of this article was to study the pharmacological properties and effectiveness of tinzaparin in patients with cancer as well as its potential anticancer properties. A search of PubMed and ScienceDirect databases up to March 2016 was carried out to identify published studies that detect the properties and use of tinzaparin in oncology. Protamine sulfate partially (60% to 65%) neutralized tinzaparin's anti-Xa activity. No dose adjustment of tinzaparin is needed even in patients with severe renal impairment and Creatinine Clearance ≥20 mL/min. Tinzaparin demonstrated a statistically significant decline in VTE recurrence at 1 year post the index thromboembolic event. A statistically significant reduction in minor bleeding rates was also described, whereas major bleeding events did not decrease in patients with cancer treated with tinzaparin versus those who received vitamin K antagonists. Tinzaparin treatment in patients suffering from deep vein thrombosis reduced the incidence of postthrombotic syndrome and venous ulcers. Tinzaparin's ability to prevent both metastatic dissemination of cancer cells and tumor angiogenesis has been delineated in preclinical research. Current data show that tinzaparin is safe and efficacious either for short-term or for long-term treatment of VTE in patients with cancer. Clinical trials are needed in order to examine the utility of tinzaparin in primary prevention of VTE and validate its potential anticancer advantages exhibited in preclinical research.

  4. Mouse Model for the Preclinical Study of Metastatic Disease | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Laboratory of Cancer Biology and Genetics, National Cancer Institute seeks partners for collaborative research to co-develop a mouse model that shows preclinical therapeutic response of residual metastatic disease.

  5. Stakeholders' Perspectives on Preclinical Testing for Alzheimer's Disease.

    PubMed

    Arias, Jalayne J; Cummings, Jeffrey; Grant, Alexander Rae; Ford, Paul J

    2015-01-01

    Progress towards validating amyloid beta as an early indicator of Alzheimer's disease (AD) heightens the need for evaluation of stakeholders' perspectives of the benefits and harms of preclinical testing in asymptomatic individuals. Investigators conducted and analyzed 14 semi-structured interviews with family members of patients diagnosed with AD. Participants reported benefits, including the potential to seek treatment, make lifestyle changes, and prepare for cognitive impairment. Participants identified harms, including social harms, adverse life decisions, and psychological harms. Nine participants reported either a "positive global perspective" or a "positive global perspective (qualified)." Results from this study characterized stakeholders' perspectives on the potential benefits and harms of clinical use of preclinical testing for AD. Investigators used data from this study to develop a framework that contributes to ongoing discussions that will evaluate widespread adoption of preclinical testing and will inform future research. Copyright 2015 The Journal of Clinical Ethics. All rights reserved.

  6. Coronary artery wall imaging.

    PubMed

    Keegan, Jennifer

    2015-05-01

    Like X-Ray contrast angiography, MR coronary angiograms show the vessel lumens rather than the vessels themselves. Consequently, outward remodeling of the vessel wall, which occurs in subclinical coronary disease before luminal narrowing, cannot be seen. The current gold standard for assessing the coronary vessel wall is intravascular ultrasound, and more recently, optical coherence tomography, both of which are invasive and use ionizing radiation. A noninvasive, low-risk technique for assessing the vessel wall would be beneficial to cardiologists interested in the early detection of preclinical disease and for the safe monitoring of the progression or regression of disease in longitudinal studies. In this review article, the current state of the art in MR coronary vessel wall imaging is discussed, together with validation studies and recent developments. © 2014 Wiley Periodicals, Inc.

  7. Ethical challenges in preclinical Alzheimer’s disease observational studies and trials: results of the Barcelona summit

    PubMed Central

    Molinuevo, José L.; Cami, Jordi; Carné, Xavier; Carrillo, Maria C.; Georges, Jean; Isaac, Maria B.; Khachaturian, Zaven; Kim, Scott Y. H.; Morris, John C.; Pasquier, Florence; Ritchie, Craig; Sperling, Reisa; Karlawish, Jason

    2016-01-01

    Alzheimer’s disease (AD) is among the most significant healthcare burdens. Disappointing results from clinical trials in late-stage AD persons combined with hopeful results from trials in persons with early-stage suggest that research in the preclinical stage of AD is necessary to define an optimal therapeutic success window. We review the justification for conducting trials in the preclinical stage and highlight novel ethical challenges that arise and are related to determining appropriate risk-benefit ratios and disclosing individuals’ biomarker status. We propose that to conduct clinical trials with these participants, we need to improve public understanding of AD using unified vocabulary, resolve the acceptable risk-benefit ratio in asymptomatic participants and disclose or not biomarker status with attention to study type (observational studies versus clinical trials). Overcoming these challenges will justify clinical trials in preclinical AD at the societal level and aid to the development of societal and legal support for trial participants. PMID:26988427

  8. Drugs in development for toxoplasmosis: advances, challenges, and current status.

    PubMed

    Alday, P Holland; Doggett, Joseph Stone

    2017-01-01

    Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.

  9. Drugs in development for toxoplasmosis: advances, challenges, and current status

    PubMed Central

    Alday, P Holland; Doggett, Joseph Stone

    2017-01-01

    Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis. PMID:28182168

  10. 77 FR 18831 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... current agents Experimental therapeutic to reduce inflammation systematically and within the brain... Tweedie, Harold W. Holloway, Qian-sheng Yu (all of NIA). Publication: Luo W, et al. Design, synthesis and... cancer peptide recognized by the T cell receptor of each clone. Development Stage: Pre-clinical Clinical...

  11. Tailoring Medulloblastoma Treatment Through Genomics: Making a Change, One Subgroup at a Time.

    PubMed

    Holgado, Borja L; Guerreiro Stucklin, Ana; Garzia, Livia; Daniels, Craig; Taylor, Michael D

    2017-08-31

    After more than a decade of genomic studies in medulloblastoma, the time has come to capitalize on the knowledge gained and use it to directly improve patient care. Although metastatic and relapsed disease remain poorly understood, much has changed in how we define medulloblastoma, and it has become evident that with conventional therapies, specific groups of patients are currently under- or overtreated. In this review, we summarize the latest insights into medulloblastoma biology, focusing on how genomics is affecting patient stratification, informing preclinical studies of targeted therapies, and shaping the new generation of clinical trials.

  12. Prediction of practical performance in preclinical laboratory courses – the return of wire bending for admission of dental students in Hamburg

    PubMed Central

    Kothe, Christian; Hissbach, Johanna; Hampe, Wolfgang

    2014-01-01

    Although some recent studies concluded that dexterity is not a reliable predictor of performance in preclinical laboratory courses in dentistry, they could not disprove earlier findings which confirmed the worth of manual dexterity tests in dental admission. We developed a wire bending test (HAM-Man) which was administered during dental freshmen’s first week in 2008, 2009, and 2010. The purpose of our study was to evaluate if the HAM-Man is a useful selection criterion additional to the high school grade point average (GPA) in dental admission. Regression analysis revealed that GPA only accounted for a maximum of 9% of students’ performance in preclinical laboratory courses, in six out of eight models the explained variance was below 2%. The HAM-Man incrementally explained up to 20.5% of preclinical practical performance over GPA. In line with findings from earlier studies the HAM-Man test of manual dexterity showed satisfactory incremental validity. While GPA has a focus on cognitive abilities, the HAM-Man reflects learning of unfamiliar psychomotor skills, spatial relationships, and dental techniques needed in preclinical laboratory courses. The wire bending test HAM-Man is a valuable additional selection instrument for applicants of dental schools. PMID:24872857

  13. Decreased body mass index in the preclinical stage of autosomal dominant Alzheimer's disease.

    PubMed

    Müller, Stephan; Preische, Oliver; Sohrabi, Hamid R; Gräber, Susanne; Jucker, Mathias; Dietzsch, Janko; Ringman, John M; Martins, Ralph N; McDade, Eric; Schofield, Peter R; Ghetti, Bernardino; Rossor, Martin; Graff-Radford, Neill R; Levin, Johannes; Galasko, Douglas; Quaid, Kimberly A; Salloway, Stephen; Xiong, Chengjie; Benzinger, Tammie; Buckles, Virginia; Masters, Colin L; Sperling, Reisa; Bateman, Randall J; Morris, John C; Laske, Christoph

    2017-04-27

    The relationship between body-mass index (BMI) and Alzheimer´s disease (AD) has been extensively investigated. However, BMI alterations in preclinical individuals with autosomal dominant AD (ADAD) have not yet been investigated. We analyzed cross-sectional data from 230 asymptomatic members of families with ADAD participating in the Dominantly Inherited Alzheimer Network (DIAN) study including 120 preclinical mutation carriers (MCs) and 110 asymptomatic non-carriers (NCs). Differences in BMI and their relation with cerebral amyloid load and episodic memory as a function of estimated years to symptom onset (EYO) were analyzed. Preclinical MCs showed significantly lower BMIs compared to NCs, starting 11.2 years before expected symptom onset. However, the BMI curves begun to diverge already at 17.8 years before expected symptom onset. Lower BMI in preclinical MCs was significantly associated with less years before estimated symptom onset, higher global Aβ brain burden, and with lower delayed total recall scores in the logical memory test. The study provides cross-sectional evidence that weight loss starts one to two decades before expected symptom onset of ADAD. Our findings point toward a link between the pathophysiology of ADAD and disturbance of weight control mechanisms. Longitudinal follow-up studies are warranted to investigate BMI changes over time.

  14. The development of neural stimulators: a review of preclinical safety and efficacy studies.

    PubMed

    Shepherd, Robert K; Villalobos, Joel; Burns, Owen; Nayagam, David

    2018-05-14

    Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess safety and, given an appropriate animal model, the efficacy of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator. © 2018 IOP Publishing Ltd.

  15. A checklist is associated with increased quality of reporting preclinical biomedical research: A systematic review

    PubMed Central

    Olonisakin, Tolani F.; Pribis, John P.; Zupetic, Jill; Yoon, Joo Heung; Holleran, Kyle M.; Jeong, Kwonho; Shaikh, Nader; Rubio, Doris M.; Lee, Janet S.

    2017-01-01

    Irreproducibility of preclinical biomedical research has gained recent attention. It is suggested that requiring authors to complete a checklist at the time of manuscript submission would improve the quality and transparency of scientific reporting, and ultimately enhance reproducibility. Whether a checklist enhances quality and transparency in reporting preclinical animal studies, however, has not been empirically studied. Here we searched two highly cited life science journals, one that requires a checklist at submission (Nature) and one that does not (Cell), to identify in vivo animal studies. After screening 943 articles, a total of 80 articles were identified in 2013 (pre-checklist) and 2015 (post-checklist), and included for the detailed evaluation of reporting methodological and analytical information. We compared the quality of reporting preclinical animal studies between the two journals, accounting for differences between journals and changes over time in reporting. We find that reporting of randomization, blinding, and sample-size estimation significantly improved when comparing Nature to Cell from 2013 to 2015, likely due to implementation of a checklist. Specifically, improvement in reporting of the three methodological information was at least three times greater when a mandatory checklist was implemented than when it was not. Reporting the sex of animals and the number of independent experiments performed also improved from 2013 to 2015, likely from factors not related to a checklist. Our study demonstrates that completing a checklist at manuscript submission is associated with improved reporting of key methodological information in preclinical animal studies. PMID:28902887

  16. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    PubMed

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation. © 2015 AlphaMed Press.

  17. Genome editing systems in novel therapies.

    PubMed

    Jang, Yoon-Young; Cai, Liuhong; Ye, Zhaohui

    2016-01-01

    Genome editing is the process in which DNA sequences at precise genomic locations are modified. In the past three decades, genome editing by homologous recombination has been successfully performed in mouse for generating genetic models. The low efficiency of this process in human cells, however, had prevented its clinical application until the recent advancements in designer endonuclease technologies. The significantly improved genome editing efficiencies aided by ZFN, TALEN, and CRISPR systems provide unprecedented opportunities not only for biomedical research, but also for developing novel therapies. Applications based on these genome editing tools to disrupt deleterious genes, correct genetic mutations, deliver functional transgenes more effectively or even modify the epigenetic landscape are being actively investigated for gene and cell therapy purposes. Encouraging results have been obtained in limited clinical trials in the past two years. While most of the applications are still in proof-of-principle or preclinical development stages, it is anticipated that the coming years will see increasing clinical success in novel therapies based on the modern genome editing technologies. It should be noted that critical issues still remain before the technologies can be translated into more reliable therapies. These key issues include off-target evaluation, establishing appropriate preclinical models and improving the currently low efficiency of homology-based precise gene replacement. In this review we discuss the preclinical and clinical studies aiming at translating the genome editing technologies as well as the issues that are important for more successful translation.

  18. Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease

    PubMed Central

    Pan, Lin; Schaefer, Caralee; Nicholas, John; Lim, Sharlene; Misialek, Shawn; Stevens, Sarah; Hooi, Lisa; Aleskovski, Natalia; Ruhrmund, Donald; Kossen, Karl; Huang, Lea; Yap, Sophia; Beigelman, Leonid; Serebryany, Vladimir; Liu, Jyanwei; Sastry, Srikonda; Seiwert, Scott; Buckman, Brad

    2016-01-01

    Abstract The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection. PMID:27795376

  19. A low-cost, high-quality new drug discovery process using patient-derived induced pluripotent stem cells.

    PubMed

    Giri, Shibashish; Bader, Augustinus

    2015-01-01

    Knockout, knock-in and conditional mutant gene-targeted mice are routinely used for disease modeling in the drug discovery process, but the human response is often difficult to predict from these models. It is believed that patient-derived induced pluripotent stem cells (iPSCs) could replace millions of animals currently sacrificed in preclinical testing and provide a route to new safer pharmaceutical products. In this review, we discuss the use of IPSCs in the drug discovery process. We highlight how they can be used to assess the toxicity and clinical efficacy of drug candidates before the latter are moved into costly and lengthy preclinical and clinical trials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. DNA vaccination for prostate cancer, from preclinical to clinical trials - where we stand?

    PubMed Central

    2012-01-01

    Development of various vaccines for prostate cancer (PCa) is becoming an active research area. PCa vaccines are perceived to have less toxicity compared with the available cytotoxic agents. While various immune-based strategies can elicit anti-tumour responses, DNA vaccines present increased efficacy, inducing both humoural and cellular immunity. This immune activation has been proven effective in animal models and initial clinical trials are encouraging. However, to validate the role of DNA vaccination in currently available PCa management paradigms, strong clinical evidence is still lacking. This article provides an overview of the basic principles of DNA vaccines and aims to provide a summary of preclinical and clinical trials outlining the benefits of this immunotherapy in the management of PCa. PMID:23046944

  1. Quantifying lead-time bias in risk factor studies of cancer through simulation.

    PubMed

    Jansen, Rick J; Alexander, Bruce H; Anderson, Kristin E; Church, Timothy R

    2013-11-01

    Lead-time is inherent in early detection and creates bias in observational studies of screening efficacy, but its potential to bias effect estimates in risk factor studies is not always recognized. We describe a form of this bias that conventional analyses cannot address and develop a model to quantify it. Surveillance Epidemiology and End Results (SEER) data form the basis for estimates of age-specific preclinical incidence, and log-normal distributions describe the preclinical duration distribution. Simulations assume a joint null hypothesis of no effect of either the risk factor or screening on the preclinical incidence of cancer, and then quantify the bias as the risk-factor odds ratio (OR) from this null study. This bias can be used as a factor to adjust observed OR in the actual study. For this particular study design, as average preclinical duration increased, the bias in the total-physical activity OR monotonically increased from 1% to 22% above the null, but the smoking OR monotonically decreased from 1% above the null to 5% below the null. The finding of nontrivial bias in fixed risk-factor effect estimates demonstrates the importance of quantitatively evaluating it in susceptible studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies.

    PubMed

    Sarker, Marjana Rahman; Franks, Susan F

    2018-04-21

    Processes such as aberrant redox signaling and chronic low-grade systemic inflammation have been reported to modulate age-associated pathologies such as cognitive impairment. Curcumin, the primary therapeutic component of the Indian spice, Turmeric (Curcuma longa), has long been known for its strong anti-inflammatory and antioxidant activity attributable to its unique molecular structure. Recently, an interest in this polyphenol as a cognitive therapeutic for the elderly has emerged. The purpose of this paper is to critically review preclinical and clinical studies that have evaluated the efficacy of curcumin in ameliorating and preventing age-associated cognitive decline and address the translational progress of preclinical to clinical efficacy. PubMed, semantic scholar, and Google scholar searches were used for preclinical studies; and clinicaltrials.gov , the Australian and New Zealand clinical trials registry, and PubMed search were used to select relevant completed clinical studies. Results from preclinical studies consistently demonstrate curcumin and its analogues to be efficacious for various aspects of cognitive impairment and processes that contribute to age-associated cognitive impairment. Results of published clinical studies, while mixed, continue to show promise for curcumin's use as a therapeutic for cognitive decline but overall remain inconclusive at this time. Both in vitro and in vivo studies have found that curcumin can significantly decrease oxidative stress, systemic inflammation, and obstruct pathways that activate transcription factors that augment these processes. Future clinical studies would benefit from including evaluation of peripheral and cerebrospinal fluid biomarkers of dementia and behavioral markers of cognitive decline, as well as targeting the appropriate population.

  3. Exploratory Study of Factors Related to Educational Scores of First Preclinical Year Medical Students

    ERIC Educational Resources Information Center

    Sitticharoon, Chantacha; Srisuma, Sorachai; Kanavitoon, Sawita; Summachiwakij, Sarawut

    2014-01-01

    The relationships among the scores of major subjects taught in the first preclinical year of a Thai medical school, previous academic achievements, and daily life activities are rarely explored. We therefore performed an exploratory study identifying various factors possibly related to the educational scores of these medical students.…

  4. The Impact of Interactive, Computerized Educational Modules on Preclinical Medical Education

    ERIC Educational Resources Information Center

    Bryner, Benjamin S.; Saddawi-Konefka, Daniel; Gest, Thomas R.

    2008-01-01

    Interactive computerized modules have been linked to improved retention of material in clinical medicine. This study examined the effects of a new series of interactive learning modules for preclinical medical education, specifically in the areas of quiz performance, perceived difficulty of concepts, study time, and perceived stress level. We…

  5. Preclinical discovery and development of maraviroc for the treatment of HIV.

    PubMed

    Veljkovic, Nevena; Vucicevic, Jelica; Tassini, Sabrina; Glisic, Sanja; Veljkovic, Veljko; Radi, Marco

    2015-06-01

    Maraviroc is a first-in-class antiretroviral (ARV) drug acting on a host cell target (CCR5), which blocks the entry of the HIV virus into the cell. Maraviroc is currently indicated for combination ARV treatment in adults infected only with CCR5-tropic HIV-1. This drug discovery case history focuses on the key studies that led to the discovery and approval of maraviroc, as well as on post-launch clinical reports. The article is based on the data reported in published preclinical and clinical studies, conference posters and on drug package data. The profound understanding of HIV's entry mechanisms has provided a strong biological rationale for targeting the chemokine receptor CCR5. The CCR5-antagonist mariviroc, with its unique mode of action and excellent safety profile, is an important therapeutic option for HIV patients. In general, the authors believe that targeting host factors is a useful approach for combating new and re-emerging transmissible diseases, as well as pathogens that easily become resistant to common antiviral drugs. Maraviroc, offering a potent and safe cellular receptor-mediated pharmacological response to HIV, has paved the way for the development of a new generation of host-targeting antivirals.

  6. Preclinical drug development.

    PubMed

    Brodniewicz, Teresa; Grynkiewicz, Grzegorz

    2010-01-01

    Life sciences provide reasonably sound prognosis for a number and nature of therapeutic targets on which drug design could be based, and search for new chemical entities--future new drugs, is now more than ever based on scientific principles. Nevertheless, current very long and incredibly costly drug discovery and development process is very inefficient, with attrition rate spanning from many thousands of new chemical structures, through a handful of validated drug leads, to single successful new drug launches, achieved in average after 13 years, with compounded cost estimates from hundreds of thousands to over one billion US dollars. Since radical pharmaceutical innovation is critically needed, number of new research projects concerning this area is steeply rising outside of big pharma industry--both in academic environment and in small private companies. Their prospective success will critically depend on project management, which requires combined knowledge of scientific, technical and legal matters, comprising regulations concerning admission of new drug candidates to be subjects of clinical studies. This paper attempts to explain basic rules and requirements of drug development within preclinical study period, in case of new chemical entities of natural or synthetic origin, which belong to low molecular weight category.

  7. Abdominal Aortic Aneurysm: Novel Mechanisms and Therapies

    PubMed Central

    Davis, Frank M.; Rateri, Debra L.; Daugherty, Alan

    2015-01-01

    Purpose of review Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. Recent Findings An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, MMP3, TGFβR2 and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Recent preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight for roles of microRNAs to regulate many pathological pathways in AAA development. Several large clinical trials are ongoing seeking to translate preclinical findings into therapeutic options. Summary Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight for the development of a medical treatment for this disease. PMID:26352243

  8. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds

    PubMed Central

    Voorhees, Jaymie R.; Rohlman, Diane S.; Lein, Pamela J.; Pieper, Andrew A.

    2017-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally. PMID:28149268

  9. Therapeutic Vaccination for HPV Induced Cervical Cancers

    PubMed Central

    Brinkman, Joeli A.; Hughes, Sarah H.; Stone, Pamela; Caffrey, Angela S.; Muderspach, Laila I.; Roman, Lynda D.; Weber, Jeffrey S.; Kast, W. Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence. PMID:17627067

  10. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar

    PubMed Central

    Jevtovic-Todorovic, V.; Absalom, A. R.; Blomgren, K.; Brambrink, A.; Crosby, G.; Culley, D. J.; Fiskum, G.; Giffard, R. G.; Herold, K. F.; Loepke, A. W.; Ma, D.; Orser, B. A.; Planel, E.; Slikker, W.; Soriano, S. G.; Stratmann, G.; Vutskits, L.; Xie, Z.; Hemmings, H. C.

    2013-01-01

    Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young subjects, and might also contribute to accelerated cognitive decline in the elderly. A group of experts in anaesthetic neuropharmacology and neurotoxicity convened in Salzburg, Austria for the BJA Salzburg Seminar on Anaesthetic Neurotoxicity and Neuroplasticity. This focused workshop was sponsored by the British Journal of Anaesthesia to review and critically assess currently available evidence from animal and human studies, and to consider the direction of future research. It was concluded that mounting evidence from preclinical studies reveals general anaesthetics to be powerful modulators of neuronal development and function, which could contribute to detrimental behavioural outcomes. However, definitive clinical data remain elusive. Since general anaesthesia often cannot be avoided regardless of patient age, it is important to understand the complex mechanisms and effects involved in anaesthesia-induced neurotoxicity, and to develop strategies for avoiding or limiting potential brain injury through evidence-based approaches. PMID:23722106

  11. Stress-Induced Visceral Pain: Toward Animal Models of Irritable-Bowel Syndrome and Associated Comorbidities

    PubMed Central

    Moloney, Rachel D.; O’Mahony, Siobhain M.; Dinan, Timothy G.; Cryan, John F.

    2015-01-01

    Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent. PMID:25762939

  12. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review.

    PubMed

    Wang, Yuchen; Newman, Maureen R; Benoit, Danielle S W

    2018-06-01

    Impaired fracture healing is a major clinical problem that can lead to patient disability, prolonged hospitalization, and significant financial burden. Although the majority of fractures heal using standard clinical practices, approximately 10% suffer from delayed unions or non-unions. A wide range of factors contribute to the risk for nonunions including internal factors, such as patient age, gender, and comorbidities, and external factors, such as the location and extent of injury. Current clinical approaches to treat nonunions include bone grafts and low-intensity pulsed ultrasound (LIPUS), which realizes clinical success only to select patients due to limitations including donor morbidities (grafts) and necessity of fracture reduction (LIPUS), respectively. To date, therapeutic approaches for bone regeneration rely heavily on protein-based growth factors such as INFUSE, an FDA-approved scaffold for delivery of bone morphogenetic protein 2 (BMP-2). Small molecule modulators and RNAi therapeutics are under development to circumvent challenges associated with traditional growth factors. While preclinical studies has shown promise, drug delivery has become a major hurdle stalling clinical translation. Therefore, this review overviews current therapies employed to stimulate fracture healing pre-clinically and clinically, including a focus on drug delivery systems for growth factors, parathyroid hormone (PTH), small molecules, and RNAi therapeutics, as well as recent advances and future promise of fracture-targeted drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Tomuleasa, Ciprian; Fuji, Shigeo; Berce, Cristian; Onaciu, Anca; Chira, Sergiu; Petrushev, Bobe; Micu, Wilhelm-Thomas; Moisoiu, Vlad; Osan, Ciprian; Constantinescu, Catalin; Pasca, Sergiu; Jurj, Ancuta; Pop, Laura; Berindan-Neagoe, Ioana; Dima, Delia; Kitano, Shigehisa

    2018-01-01

    Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects. PMID:29515572

  14. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Tomuleasa, Ciprian; Fuji, Shigeo; Berce, Cristian; Onaciu, Anca; Chira, Sergiu; Petrushev, Bobe; Micu, Wilhelm-Thomas; Moisoiu, Vlad; Osan, Ciprian; Constantinescu, Catalin; Pasca, Sergiu; Jurj, Ancuta; Pop, Laura; Berindan-Neagoe, Ioana; Dima, Delia; Kitano, Shigehisa

    2018-01-01

    Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.

  15. Opioid-Sparing Effect of Cannabinoids: A Systematic Review and Meta-Analysis.

    PubMed

    Nielsen, Suzanne; Sabioni, Pamela; Trigo, Jose M; Ware, Mark A; Betz-Stablein, Brigid D; Murnion, Bridin; Lintzeris, Nicholas; Khor, Kok Eng; Farrell, Michael; Smith, Andrew; Le Foll, Bernard

    2017-08-01

    Cannabinoids, when co-administered with opioids, may enable reduced opioid doses without loss of analgesic efficacy (ie, an opioid-sparing effect). The aim of this study was to conduct a systematic review to determine the opioid-sparing potential of cannabinoids. Eligible studies included pre-clinical and clinical studies for which the outcome was either analgesia or opioid dose requirements. Clinical studies included controlled studies and case series. We searched Scopus, Cochrane Database of Systematic Reviews, Medline, and Embase. Nineteen pre-clinical and nine clinical studies met the search criteria. Seventeen of the 19 pre-clinical studies provided evidence of synergistic effects from opioid and cannabinoid co-administration. Our meta-analysis of pre-clinical studies indicated that the median effective dose (ED 50 ) of morphine administered in combination with delta-9-tetrahydrocannabinol (delta-9-THC) is 3.6 times lower (95% confidence interval (CI) 1.95, 6.76; n=6) than the ED 50 of morphine alone. In addition, the ED 50 for codeine administered in combination with delta-9-THC was 9.5 times lower (95% CI 1.6, 57.5, n=2) than the ED 50 of codeine alone. One case series (n=3) provided very-low-quality evidence of a reduction in opioid requirements with cannabinoid co-administration. Larger controlled clinical studies showed some clinical benefits of cannabinoids; however, opioid dose changes were rarely reported and mixed findings were observed for analgesia. In summary, pre-clinical studies provide robust evidence of the opioid-sparing effect of cannabinoids, whereas one of the nine clinical studies identified provided very-low-quality evidence of such an effect. Prospective high-quality-controlled clinical trials are required to determine the opioid-sparing effect of cannabinoids.

  16. Assessment of the clinical cardiac drug-drug interaction associated with the combination of hepatitis C virus nucleotide inhibitors and amiodarone in guinea pigs and rhesus monkeys.

    PubMed

    Regan, Christopher P; Morissette, Pierre; Regan, Hillary K; Travis, Jeffery J; Gerenser, Pamela; Wen, Jianzhong; Fitzgerald, Kevin; Gruver, Shaun; DeGeorge, Joseph J; Sannajust, Frederick J

    2016-11-01

    In 2015, European and U.S. health agencies issued warning letters in response to 9 reported clinical cases of severe bradycardia/bradyarrhythmia in hepatitis C virus (HCV)-infected patients treated with sofosbuvir (SOF) in combination with other direct acting antivirals (DAAs) and the antiarrhythmic drug, amiodarone (AMIO). We utilized preclinical in vivo models to better understand this cardiac effect, the potential pharmacological mechanism(s), and to identify a clinically translatable model to assess the drug-drug interaction (DDI) cardiac risk of current and future HCV inhibitors. An anesthetized guinea pig model was used to elicit a SOF+AMIO-dependent bradycardia. Detailed cardiac electrophysiological studies in this species revealed SOF+AMIO-dependent selective nodal dysfunction, with initial, larger effects on the sinoatrial node. Further studies in conscious, rhesus monkeys revealed an emergent bradycardia and bradyarrhythmia in 3 of 4 monkeys administered SOF+AMIO, effects not observed with either agent alone. Morever, bradycardia and bradyarrhythmia were not observed in rhesus monkeys when intravenous infusion of MK-3682 was completed after AMIO pretreatment. These are the first preclinical in vivo experiments reported to replicate the severe clinical SOF+AMIO cardiac DDI and provide potential in vivo mechanism of action. As such, these data provide a preclinical risk assessment paradigm, including a clinically relevant nonhuman primate model, with which to better understand cardiovascular DDI risk for this therapeutic class. Furthermore, these studies suggest that not all HCV DAAs and, in particular, not all HCV nonstructural protein 5B inhibitors may exhibit this cardiac DDI with amiodarone. Given the selective in vivo cardiac electrophysiological effect, these data enable targeted cellular/molecular mechanistic studies to more precisely identify cell types, receptors, and/or ion channels responsible for the clinical DDI. (Hepatology 2016;64:1430-1441). © 2016 by the American Association for the Study of Liver Diseases.

  17. Nanoparticle Delivery Enhancement With Acoustically Activated Microbubbles

    PubMed Central

    Mullin, Lee B; Phillips, Linsey C; Dayton, Paul A

    2013-01-01

    The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble-based approach to nanoparticle delivery are reviewed. PMID:23287914

  18. Spinal Cord Stimulation for Treating Chronic Pain: Reviewing Preclinical and Clinical Data on Paresthesia-Free High-Frequency Therapy.

    PubMed

    Chakravarthy, Krishnan; Richter, Hira; Christo, Paul J; Williams, Kayode; Guan, Yun

    2018-01-01

    Traditional spinal cord stimulation (SCS) requires that paresthesia overlaps chronic painful areas. However, the new paradigm high-frequency SCS (HF-SCS) does not rely on paresthesia. A review of preclinical and clinical studies regarding the use of paresthesia-free HF-SCS for various chronic pain states. We reviewed available literatures on HF-SCS, including Nevro's paresthesia-free ultra high-frequency 10 kHz therapy (HF10-SCS). Data sources included relevant literature identified through searches of PubMed, MEDLINE/OVID, and SCOPUS, and manual searches of the bibliographies of known primary and review articles. The primary goal is to describe the present developing conceptions of preclinical mechanisms of HF-SCS and to review clinical efficacy on paresthesia-free HF10-SCS for various chronic pain states. HF10-SCS offers a novel pain reduction tool without paresthesia for failed back surgery syndrome and chronic axial back pain. Preclinical findings indicate that potential mechanisms of action for paresthesia-free HF-SCS differ from those of traditional SCS. To fully understand and utilize paresthesia-free HF-SCS, mechanistic study and translational research will be very important, with increasing collaboration between basic science and clinical communities to design better trials and optimize the therapy based on mechanistic findings from effective preclinical models and approaches. Future research in these vital areas may include preclinical and clinical components conducted in parallel to optimize the potential of this technology. © 2017 International Neuromodulation Society.

  19. Tissue engineering of the bladder--reality or myth? A systematic review.

    PubMed

    Sloff, Marije; Simaioforidis, Vasileios; de Vries, Rob; Oosterwijk, Egbert; Feitz, Wout

    2014-10-01

    We systematically reviewed preclinical studies in the literature to evaluate the potential of tissue engineering of the bladder. Study outcomes were compared to the available clinical evidence to assess the feasibility of tissue engineering for future clinical use. Preclinical studies of tissue engineering for bladder augmentation were identified through a systematic search of PubMed and Embase™ from January 1, 1980 to January 1, 2014. Primary studies in English were included if bladder reconstruction after partial cystectomy was performed using a tissue engineered biomaterial in any animal species, with cystometric bladder capacity as an outcome measure. Outcomes were compared to clinical studies available at http://www.clinicaltrials.gov and published clinical studies. A total of 28 preclinical studies are included, demonstrating remarkable heterogeneity in study characteristics and design. Studies in which preoperative bladder volumes were compared to postoperative volumes were considered the most clinically relevant (18 studies). Bladder augmentation through tissue engineering resulted in a normal bladder volume in healthy animals, with the influence of a cellular component being negligible. Furthermore, experiments in large animal models (pigs and dogs) approximated the desired bladder volume more accurately than in smaller species. The initial clinical experience was based on seemingly predictive healthy animal models with a promising outcome. Unfortunately these results were not substantiated in all clinical trials, revealing dissimilar outcomes in different clinical/disease backgrounds. Thus, the translational predictability of a model using healthy animals might be questioned. Through this systematic approach we present an unbiased overview of all published preclinical studies investigating the effect of bladder tissue engineering on cystometric bladder capacity. Preclinical research in healthy animals appears to show the feasibility of bladder augmentation by tissue engineering. However, in view of the disappointing clinical results based on healthy animal models new approaches should also be evaluated in preclinical models using dysfunctional/diseased bladders. This endeavor may aid in the development of clinically applicable tissue engineered bladder augmentation with satisfactory long-term outcome. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Neurovirulence safety testing of mumps vaccines--historical perspective and current status.

    PubMed

    Rubin, S A; Afzal, M A

    2011-04-05

    Many live, attenuated viral vaccines are derived from wild type viruses with known neurovirulent properties. To assure the absence of residual neurotoxicity, pre-clinical neurovirulence safety testing of candidate vaccines is performed. For mumps virus, a highly neurotropic virus, neurovirulence safety testing is performed in monkeys. However, laboratory studies suggest an inability of this test to correctly discern among virus strains of varying neurovirulence potential in man, and, further, some vaccines found to be neuroattenuated in monkeys were later found to be neurovirulent in humans when administered in large numbers. Over the past decade, concerted efforts have been made to replace monkey-based neurovirulence safety testing with more informative, alternative methods. This review summarizes the current status of mumps vaccine neurovirulence safety testing and insights into models currently approved and those under development. Published by Elsevier Ltd.

  1. Preclinical Alzheimer's Disease: Implications for Refinement of the Concept.

    PubMed

    Vos, Stephanie J B; Visser, Pieter Jelle

    2018-05-23

    Increasing interest in clinical trials and clinical research settings to identify Alzheimer's disease (AD) in the earliest stages of the disease has led to the concept of preclinical AD. Individuals with preclinical AD have AD pathology without clinical symptoms yet. Accumulating evidence has shown that biomarkers can identify preclinical AD and that preclinical AD is associated with a poor clinical outcome. Little is known yet about the role of vascular and lifestyle risk factors in the development of preclinical AD. In order to better understand preclinical AD pathology and clinical progression rates, there is a need to refine the concept of preclinical AD. This will be of great value for advancements in future research, clinical trials, and eventually clinical practice.

  2. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders

    PubMed Central

    Heidbreder, Christian A.; Newman, Amy H.

    2011-01-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed. PMID:20201845

  3. Adiposity Indexes as Phenotype-Specific Markers of Preclinical Metabolic Alterations and Cardiovascular Risk in Polycystic Ovary Syndrome: A Cross-Sectional Study.

    PubMed

    Mario, Fernanda Missio; Graff, Scheila Karen; Spritzer, Poli Mara

    2017-05-01

    Polycystic ovary syndrome (PCOS) is a common condition in women of reproductive age. 2 PCOS phenotypes (classic and ovulatory) are currently recognized as the most prevalent, with important differences in terms of cardiometabolic features. We studied the performance of different adiposity indexes to predict preclinical metabolic alterations and cardiovascular risk in 234 women with PCOS (173 with classic and 61 with ovulatory PCOS) and 129 controls. Performance of waist circumference, waist-to-height ratio, conicity index, lipid accumulation product, and visceral adiposity index was assessed based on HOMA-IR ≥ 3.8 as reference standard for screening preclinical metabolic alterations and cardiovascular risk factors in each group. Lipid accumulation product had the best accuracy for classic PCOS, and visceral adiposity index had the best accuracy for ovulatory PCOS. By applying the cutoff point of lipid accumulation product<34, we identified a subgroup of patients without cardiometabolic alterations (P<0.05) in the group with classic PCOS, a population at higher risk for hypertension, dyslipidemia, and impaired glucose tolerance. In ovulatory PCOS, visceral adiposity index ≥ 1.32 was capable of detecting women with significantly higher blood pressure and less favorable glycemic and lipid variables as compared to ovulatory PCOS with lower visceral adiposity index (P<0.05). These results suggest LAP ≥ 34 as the best marker for classic PCOS, and VAI ≥ 1.32 for ovulatory PCOS women. Both indexes can be easily calculated with measures obtained in routine clinical practice and may be useful to detect cardiometabolic risk and secure early interventions. © Georg Thieme Verlag KG Stuttgart · New York.

  4. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaifeng, E-mail: kaifeng_wangdr@sina.com; Fan, Yaohua; Chen, Gongying

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway inmore » HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. -- Highlights: •WAY-600 inhibits HCC cell survival and proliferation in vitro. •WAY-600 activates caspase-dependent apoptosis in HCC cells. •WAY-600 blocks mTORC1/2 activation, but activates MEK-ERK in HCC cells. •MEK-ERK inhibitors or MEK1/2 shRNA enhances WAY-600's cytotoxicity against HCC cells. •MEK-162 co-administration potentiates WAY-600-induced the anti-HepG2 tumor efficacy.« less

  5. Vaccines for Leprosy and Tuberculosis: Opportunities for Shared Research, Development, and Application

    PubMed Central

    Coppola, Mariateresa; van den Eeden, Susan J. F.; Robbins, Naoko; Wilson, Louis; Franken, Kees L. M. C.; Adams, Linda B.; Gillis, Tom P.; Ottenhoff, Tom H. M.; Geluk, Annemieke

    2018-01-01

    Tuberculosis (TB) and leprosy still represent significant public health challenges, especially in low- and lower middle-income countries. Both poverty-related mycobacterial diseases require better tools to improve disease control. For leprosy, there has been an increased emphasis on developing tools for improved detection of infection and early diagnosis of disease. For TB, there has been a similar emphasis on such diagnostic tests, while increased research efforts have also focused on the development of new vaccines. Bacille Calmette–Guérin (BCG), the only available TB vaccine, provides insufficient and inconsistent protection to pulmonary TB in adults. The impact of BCG on leprosy, however, is significant, and the introduction of new TB vaccines that might replace BCG could, therefore, have serious impact also on leprosy. Given the similarities in antigenic makeup between the pathogens Mycobacterium tuberculosis (Mtb) and M. leprae, it is well possible, however, that new TB vaccines could cross-protect against leprosy. New TB subunit vaccines currently evaluated in human phase I and II studies indeed often contain antigens with homologs in M. leprae. In this review, we discuss pre-clinical studies and clinical trials of subunit or whole mycobacterial vaccines for TB and leprosy and reflect on the development of vaccines that could provide protection against both diseases. Furthermore, we provide the first preclinical evidence of such cross-protection by Mtb antigen 85B (Ag85B)-early secretory antigenic target (ESAT6) fusion recombinant proteins in in vivo mouse models of Mtb and M. leprae infection. We propose that preclinical integration and harmonization of TB and leprosy research should be considered and included in global strategies with respect to cross-protective vaccine research and development. PMID:29535713

  6. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders.

    PubMed

    Heidbreder, Christian A; Newman, Amy H

    2010-02-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.

  7. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma.

    PubMed

    Kearney, Sean Christopher; Dziekiewicz, Marcin; Feleszko, Wojciech

    2015-05-01

    This review focuses on the current understanding of the molecular mechanisms of bacterial lysates, evidence of an induction of innate immunity, and the interaction with immunoregulators, dendritic cells, and regulatory T cells. Clinical relevance is summarized based on the observed mechanisms of action of bacterial lysates. Academic Search Complete, CENTRAL, Health Source: Nursing/Academic Edition, MEDLINE, and Cochrane databases. Three independent researchers focused on primary and secondary end points in systematic reviews, meta-analyses, and randomized controlled trials using bacterial lysates as a verum group or within a subpopulation of larger studies. Interventional and observational studies on novel applications also were included. Preclinical studies included murine models focusing on toll-like receptors (TLRs) and regulatory T cells and on the relation with asthma and respiratory immunity. Bacterial lysates have been observed to induce synergistic TLR-2/6- and TLR-9-dependent innate immunity. It has positive outcomes in decreasing recurrent respiratory tract infections in childhood and adult chronic obstructive pulmonary disease. This class of immunostimulants shows some evidence of mitigating infection morbidity in children and decreasing the frequency of inflammatory episodes (ie, wheezing exacerbations) in children with asthma. Preclinical studies suggest that regulatory T cells can be induced by bacterial lysates and might attenuate T-helper cell type 2 allergic responses. Although successful prevention against all common respiratory pathogens is not possible, bacterial lysates seem capable of targeting specific immunocompetent cells through pathogen recognition receptor activation. Current challenges include clarifying the duality of immunoregulatory and immunostimulatory responses in children at risk for allergy. Larger clinical trials are required to elicit efficacy in allergy prevention. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Tracking stem cell migration and survival in brain injury: current approaches and future prospects.

    PubMed

    Darkazalli, Ali; Levenson, Cathy W

    2012-10-01

    In recent years, stem cell-mediated therapies have gained considerable ground as potential treatments for a wide variety of brain pathologies including traumatic brain injury, stroke and neurodegenerative diseases. Despite extensive preclinical studies, many of these therapies have not been fully translated into viable clinical approaches. This is partly due to our inability to reliably track and monitor transplanted stem cells longitudinally over long periods of time in vivo. In this review, we discuss the predominant histological cell tracing methodologies, such as immunohistochemistry, and fluorescent cellular dyes and proteins, and compare them to emerging cellular imaging technologies. We show that advances in magnetic resonance imaging (MRI) have resulted in opportunities to use this technology to further our understanding of stem cell characteristics and behaviors in vivo. While MRI may not completely replace conventional cell tracking methods in pre-clinical, mechanistic work, it is clear that it has the potential to function as a powerful diagnostic tool for tracking stem cell migration and survival as well as for evaluating the efficacy of stem cell-mediated therapies.

  9. Insights from animal models of bladder cancer: recent advances, challenges, and opportunities

    PubMed Central

    John, Bincy Anu; Said, Neveen

    2017-01-01

    Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with increasing incidence and mortality. Treatment of bladder cancer has not advanced in the past 30 years. Therefore, there is a crucial unmet need for novel therapies, especially for high grade/stage disease that can only be achieved by preclinical model systems that faithfully recapitulate the human disease. Animal models are essential elements in bladder cancer research to comprehensively study the multistep cascades of carcinogenesis, progression and metastasis. They allow for the investigation of premalignant phases of the disease that are not clinically encountered. They can be useful for identification of diagnostic and prognostic biomarkers for disease progression and for preclinical identification and validation of therapeutic targets/candidates, advancing translation of basic research to clinic. This review summarizes the latest advances in the currently available bladder cancer animal models, their translational potential, merits and demerits, and the prevalent tumor evaluation modalities. Thereby, findings from these model systems would provide valuable information that can help researchers and clinicians utilize the model that best answers their research questions. PMID:28915710

  10. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary?

    PubMed Central

    Peeken, Jan C.; Vaupel, Peter; Combs, Stephanie E.

    2017-01-01

    Hyperthermia (HT) is one of the hot topics that have been discussed over decades. However, it never made its way into primetime. The basic biological rationale of heat to enhance the effect of radiation, chemotherapeutic agents, and immunotherapy is evident. Preclinical work has confirmed this effect. HT may trigger changes in perfusion and oxygenation as well as inhibition of DNA repair mechanisms. Moreover, there is evidence for immune stimulation and the induction of systemic immune responses. Despite the increasing number of solid clinical studies, only few centers have included this adjuvant treatment into their repertoire. Over the years, abundant prospective and randomized clinical data have emerged demonstrating a clear benefit of combined HT and radiotherapy for multiple entities such as superficial breast cancer recurrences, cervix carcinoma, or cancers of the head and neck. Regarding less investigated indications, the existing data are promising and more clinical trials are currently recruiting patients. How do we proceed from here? Preclinical evidence is present. Multiple indications benefit from additional HT in the clinical setting. This article summarizes the present evidence and develops ideas for future research. PMID:28713771

  11. PRP Augmentation for ACL Reconstruction

    PubMed Central

    Di Matteo, Berardo; Kon, Elizaveta; Marcacci, Maurilio

    2015-01-01

    Current research is investigating new methods to enhance tissue healing to speed up recovery time and decrease the risk of failure in Anterior Cruciate Ligament (ACL) reconstructive surgery. Biological augmentation is one of the most exploited strategies, in particular the application of Platelet Rich Plasma (PRP). Aim of the present paper is to systematically review all the preclinical and clinical papers dealing with the application of PRP as a biological enhancer during ACL reconstructive surgery. Thirty-two studies were included in the present review. The analysis of the preclinical evidence revealed that PRP was able to improve the healing potential of the tendinous graft both in terms of histological and biomechanical performance. Looking at the available clinical evidence, results were not univocal. PRP administration proved to be a safe procedure and there were some evidences that it could favor the donor site healing in case of ACL reconstruction with patellar tendon graft and positively contribute to graft maturation over time, whereas the majority of the papers did not show beneficial effects in terms of bony tunnels/graft area integration. Furthermore, PRP augmentation did not provide superior functional results at short term evaluation. PMID:26064903

  12. Maternal Embryonic Leucine-zipper Kinase: Key Kinase for Stem Cell Phenotype in Glioma and Other Cancers

    PubMed Central

    Ganguly, Ranjit; Hong, Christopher; Smith, Luke; Kornblum, Harley I; Nakano, Ichiro

    2014-01-01

    Maternal embryonic leucine zipper kinase (MELK) is a member of the snf1/AMPK family of protein Serine/Threonine kinases that has recently gained significant attention in the stem cell and cancer biology field. Recent studies suggest that activation of this kinase is tightly associated with extended survival and accelerated proliferation of cancer stem cells (CSCs) in various organs. Overexpression of MELK has been noted in various cancers, including colon, breast, ovaries, pancreas, prostate, and brain, making the inhibition of MELK an attractive therapeutic strategy for a variety of cancers. In the experimental cancer models, depletion of MELK by RNA interference or small molecule inhibitors induces apoptotic cell death of cancer stem cells derived from glioblastoma and breast cancer, both in vitro and in vivo. Mechanism of action of MELK includes, yet may not be restricted to, direct binding and activation of the oncogenic transcription factors c-JUN and FOXM1 in cancer cells but not in the normal counterparts. Following these pre-clinical studies, the Phase I clinical trial for advanced cancers with OTS167 started in 2013, as the first-in-class MELK inhibitor. This review summarizes the current molecular understanding of MELK and the recent pre-clinical studies about MELK as a cancer therapeutic target. PMID:24795222

  13. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane.

    PubMed

    Yang, Li; Palliyaguru, Dushani L; Kensler, Thomas W

    2016-02-01

    With the properties of efficacy, safety, tolerability, practicability and low cost, foods containing bioactive phytochemicals are gaining significant attention as elements of chemoprevention strategies against cancer. Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane], a naturally occurring isothiocyanate produced by cruciferous vegetables such as broccoli, is found to be a highly promising chemoprevention agent against not only a variety of cancers such as breast, prostate, colon, skin, lung, stomach or bladder, but also cardiovascular disease, neurodegenerative diseases, and diabetes. For reasons of experimental exigency, preclinical studies have focused principally on sulforaphane itself, while clinical studies have relied on broccoli sprout preparations rich in either sulforaphane or its biogenic precursor, glucoraphanin. Substantive subsequent evaluation of sulforaphane pharmacokinetics and pharmacodynamics has been undertaken using either pure compound or food matrices. Sulforaphane affects multiple targets in cells. One key molecular mechanism of action for sulforaphane entails activation of the Nrf2-Keap1 signaling pathway although other actions contribute to the broad spectrum of efficacy in different animal models. This review summarizes the current status of pre-clinical chemoprevention studies with sulforaphane and highlights the progress and challenges for the application of foods rich in sulforaphane and/or glucoraphanin in the arena of clinical chemoprevention. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Translation failure and medical reversal: Two sides to the same coin.

    PubMed

    Prasad, Vinay

    2016-01-01

    Translation failure occurs when the results of preclinical, observational and/or early phase studies fail to predict the results of well done (i.e. appropriately controlled, adequately powered, and properly conducted) phase III or randomised clinical trials. Some failures occur when promising basic science findings fail to replicate in human studies, while others happen when promising uncontrolled trial data show an exaggerated effect that vanishes in the setting of a randomised trial. Medical reversals occur when the results of preclinical, observational and/or early phase studies fail to predict the results of subsequent randomized clinical trials, but the practice has already gained widespread acceptance. Oncologic examples include bevacizumab and the use of autologous stem cell transplant in metastatic breast cancer. In a well-intentioned effort to reduce the rate of translation failure, oncologists must be careful that changes to regulatory processes and clinical trial design do not actually work to increase the approval of ineffective compounds. By trying to cure translation failure, we should be careful to avoid medical reversal. The rise of surrogate end-points and role of hard-wired bias in oncology trials suggest that we may be currently ignoring the simple fact that translation failure and medical reversal are two sides to the same coin. Published by Elsevier Ltd.

  15. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-01

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.

  16. Engineered cell and tissue models of pulmonary fibrosis.

    PubMed

    Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L

    2018-04-01

    Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.

  17. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities

    PubMed Central

    McNally, James M.; McCarley, Robert W.

    2016-01-01

    Purpose of review We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Recent findings Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Summary Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention. PMID:26900672

  18. Preclinical and Clinical Effects of Mistletoe against Breast Cancer

    PubMed Central

    Marvibaigi, Mohsen; Amini, Neda; Abdul Majid, Fadzilah Adibah; Jaganathan, Saravana Kumar

    2014-01-01

    Breast cancer is among the most frequent types of cancer in women worldwide. Current conventional treatment options are accompanied by side effects. Mistletoe is amongst the important herbal medicines traditionally used as complementary remedies. An increasing number of studies have reported anticancer activity of mistletoe extracts on breast cancer cells and animal models. Some recent evidence suggests that cytotoxic activity of mistletoe may be mediated through different mechanisms. These findings provide a good base for clinical trials. Various studies on mistletoe therapy for breast cancer patients revealed similar findings concerning possible benefits on survival time, health-related quality of life (HRQoL), remission rate, and alleviating adverse reactions to conventional therapy. This review provides an overview of the recent findings on preclinical experiments and clinical trials of mistletoe for its cytotoxic and antitumor activity and its effect on HRQoL in breast cancer patients. Moreover, studies investigating molecular and cellular mechanisms underlying antitumor activity of mistletoe are discussed in this paper. The analyzed trials provided evidence that there might be a combination of pharmacological and motivational aspects mediated by the mistletoe extract application which may contribute to the clinical benefit and positive outcome such as improved HRQoL and self-regulation in breast cancer patients. PMID:25136622

  19. Dexrazoxane use in the prevention of anthracycline extravasation injury.

    PubMed

    Hasinoff, Brian B

    2006-02-01

    Accidental extravasation injury from the use of the anthracycline anticancer drugs doxorubicin, daunorubicin, epirubicin and idarubicin can be a serious complication of their use. As yet, there is little consensus on the way that anthracycline extravasation injury should be clinically managed. Dexrazoxane, which is currently clinically used to reduce doxorubicin-induced cardiotoxicity, has also been shown in preclinical studies to be highly efficacious in preventing anthracycline-induced extravasation injury. Several clinical case reports of dexrazoxane for this use have also indicated positive outcomes. There are currently two multicenter Phase II/III clinical trials underway. Dexrazoxane is a prodrug analog of the metal chelator EDTA that most likely acts by removing iron from the iron-doxorubicin complex, thus preventing formation of damaging reactive oxygen species.

  20. Mesenchymal stem cells and immunomodulation: current status and future prospects

    PubMed Central

    Gao, F; Chiu, S M; Motan, D A L; Zhang, Z; Chen, L; Ji, H-L; Tse, H-F; Fu, Q-L; Lian, Q

    2016-01-01

    The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy. PMID:26794657

  1. Mechanisms and Mediators That Drive Arthritis Pain.

    PubMed

    Krustev, Eugene; Rioux, Danielle; McDougall, Jason J

    2015-08-01

    There are over 100 different types of arthritis and each can differ greatly in their aetiology and pathophysiology; however, one characteristic that is common to all arthritic conditions is joint pain. Musculoskeletal pain is the leading cause of disability in the world, and the number one reason arthritis patients visit their primary care physician. Despite the prevalence and burden of arthritis pain, current analgesics lack sufficient efficacy and are plagued by multiple adverse side effects. In this review, we outline the current landscape of research concerning joint pain, drawing from both preclinical and clinical studies. Specifically, this review is a discussion of the different neurophysiological processes that occur during joint disease and how inflammatory and neuropathic aspects contribute to the development of arthritis pain.

  2. Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements

    PubMed Central

    Sprouse, Alyssa A.

    2016-01-01

    The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug–botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John’s wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug–botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug–botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism. PMID:26438626

  3. Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements.

    PubMed

    Sprouse, Alyssa A; van Breemen, Richard B

    2016-02-01

    The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug-botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John's wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug-botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug-botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Improving the quality of preclinical research echocardiography: Observations, training and guidelines for measurement.

    PubMed

    Donner, Daniel G; Kiriazis, Helen; Du, Xiao-Jun; Marwick, Thomas H; McMullen, Julie R

    2018-04-20

    Informal training in preclinical research may be a contributor to the poor reproducibility of preclinical cardiology research and low rates of translation into clinical research and practice. Mouse echocardiography is a widely used technique to assess cardiac structure and function in drug intervention studies using disease models. The inter-observer variability (IOV) of clinical echocardiographic measurements has been shown to improve with formalized training, but preclinical echocardiography lacks similarly critical standardization of training. The aims of this investigation were to assess the IOV of echocardiographic measurements from studies in mice, and address any technical impediments to reproducibility by implementing standardized guidelines through formalized training. In this prospective, single-site, observational cohort study, 13 scientists performing preclinical echocardiographic image analysis were assessed for measurement of short-axis M-mode-derived dimensions and calculated left ventricular mass (LVMass). Ten M-mode images of mouse hearts acquired and analyzed by an expert researcher with a spectrum of LVMass were selected for assessment, and validated by autopsy weight. Following the initial observation, a structured formal training program was introduced, and accuracy and reproducibility were re-evaluated. Mean absolute percentage error (MAPE) for Expert-calculated LVMass was 6{plus minus}4% compared to autopsy LVMass, and 25{plus minus}21% for participants before training. Standardized formal training improved participant MAPE by approximately 30% relative to expert-calculated LVMass (p<0.001). Participants initially categorized with high-range error (25-45%) improved to low-moderate error ranges (<15-25%). This report reveals an example of technical skill training insufficiency likely endemic to preclinical research and provides validated guidelines for echocardiographic measurement for adaptation to formalized in-training programs.

  5. Insights from Preclinical Choice Models on Treating Drug Addiction

    PubMed Central

    Banks, Matthew L.; Negus, S. Stevens

    2016-01-01

    Substance-use disorders are a global public health problem that arises from behavioral misallocation between drug use and more adaptive behaviors maintained by nondrug alternatives (e.g., food or money). Preclinical drug self-administration procedures that incorporate a concurrently available nondrug reinforcer (e.g., food) provide translationally relevant and distinct dependent measures of behavioral allocation (i.e., to assess the relative reinforcing efficacy of the drug) and behavioral rate (i.e., to assess motor competence). In particular, preclinical drug versus food ‘choice’ procedures have produced increasingly concordant results with both human laboratory drug self-administration studies and double-blind placebo-controlled clinical trials. Accordingly, here we provide a heuristic framework of substance-use disorders based on a behavioral-centric perspective and recent insights from these preclinical choice procedures. PMID:27916279

  6. Characterization of novel preclinical dose distributions for micro irradiator

    NASA Astrophysics Data System (ADS)

    Kodra, J.; Miles, D.; Yoon, S. W.; Kirsch, D. G.; Oldham, M.

    2017-05-01

    This work explores and demonstrates the feasibility of utilizing new 3D printing techniques to implement advanced micro radiation therapy for pre-clinical small animal studies. 3D printed blocks and compensators were designed and printed from a strong x-ray attenuating material at sub-millimeter resolution. These techniques enable a powerful range of new preclinical treatment capabilities including grid therapy, lattice therapy, and IMRT treatment. At small scales, verification of these treatments is exceptionally challenging, and high resolution 3D dosimetry (0.5mm3) is an essential capability to characterize and verify these capabilities, Here, investigate the 2D and 3D dosimetry of several novel pre-clinical treatments using a combination of EBT film and Presage/optical-CT 3D dosimetry in rodent-morphic dosimeters.

  7. Adapting Preclinical Benchmarks for First-in-Human Trials of Human Embryonic Stem Cell-Based Therapies.

    PubMed

    Barazzetti, Gaia; Hurst, Samia A; Mauron, Alexandre

    2016-08-01

    : As research on human embryonic stem cell (hESC)-based therapies is moving from the laboratory to the clinic, there is an urgent need to assess when it can be ethically justified to make the step from preclinical studies to the first protocols involving human subjects. We examined existing regulatory frameworks stating preclinical requirements relevant to the move to first-in-human (FIH) trials and assessed how they may be applied in the context of hESC-based interventions to best protect research participants. Our findings show that some preclinical benchmarks require rethinking (i.e., identity, purity), while others need to be specified (i.e., potency, viability), owing to the distinctive dynamic heterogeneity of hESC-based products, which increases uncertainty and persistence of safety risks and allows for limited predictions of effects in vivo. Rethinking or adaptation of how to apply preclinical benchmarks in specific cases will be required repeatedly for different hESC-based products. This process would benefit from mutual learning if researchers included these components in the description of their methods in publications. To design translational research with an eye to protecting human participants in early trials, researchers and regulators need to start their efforts at the preclinical stage. Existing regulatory frameworks for preclinical research, however, are not really adapted to this in the case of stem cell translational medicine. This article reviews existing regulatory frameworks for preclinical requirements and assesses how their underlying principles may best be applied in the context of human embryonic stem cell-based interventions for the therapy of Parkinson's disease. This research will help to address the question of when it is ethically justified to start first-in-human trials in stem cell translational medicine. ©AlphaMed Press.

  8. Transparency in the reporting of in vivo pre-clinical pain research: The relevance and implications of the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines.

    PubMed

    Rice, Andrew S C; Morland, Rosemary; Huang, Wenlong; Currie, Gillian L; Sena, Emily S; Macleod, Malcolm R

    2017-12-29

    Clear reporting of research is crucial to the scientific process. Poorly designed and reported studies are damaging not only to the efforts of individual researchers, but also to science as a whole. Standardised reporting methods, such as those already established for reporting randomised clinical trials, have led to improved study design and facilitated the processes of clinical systematic review and meta-analysis. Such standards were lacking in the pre-clinical field until the development of the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines. These were prompted following a survey which highlighted a widespread lack of robust and consistent reporting of pre-clinical in vivo research, with reports frequently omitting basic information required for study replication and quality assessment. The resulting twenty item checklist in ARRIVE covers all aspects of experimental design with particular emphasis on bias reduction and methodological transparency. Influential publishers and research funders have already adopted ARRIVE. Further dissemination and acknowledgement of the importance of these guidelines is vital to their widespread implementation. Conclusions and implications Wide implementation of the ARRIVE guidelines for reporting of in vivo preclinical research, especially pain research, are essential for a much needed increased transparency and quality in publishing such research. ARRIVE will also positively influence improvements in experimental design and quality, assist the conduct of accurate replication studies of important new findings and facilitate meta-analyses of preclinical research.

  9. Modeling the Western Diet for Preclinical Investigations.

    PubMed

    Hintze, Korry J; Benninghoff, Abby D; Cho, Clara E; Ward, Robert E

    2018-05-01

    Rodent models have been invaluable for biomedical research. Preclinical investigations with rodents allow researchers to investigate diseases by using study designs that are not suitable for human subjects. The primary criticism of preclinical animal models is that results are not always translatable to humans. Some of this lack of translation is due to inherent differences between species. However, rodent models have been refined over time, and translatability to humans has improved. Transgenic animals have greatly aided our understanding of interactions between genes and disease and have narrowed the translation gap between humans and model animals. Despite the technological innovations of animal models through advances in genetics, relatively little attention has been given to animal diets. Namely, developing diets that replicate what humans eat will help make animal models more relevant to human populations. This review focuses on commonly used rodent diets that are used to emulate the Western dietary pattern in preclinical studies of obesity and type 2 diabetes, nonalcoholic liver disease, maternal nutrition, and colorectal cancer.

  10. In vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer Disease with magnetic resonance imaging.

    PubMed

    Zhao, Yue; Raichle, Marcus E; Wen, Jie; Benzinger, Tammie L; Fagan, Anne M; Hassenstab, Jason; Vlassenko, Andrei G; Luo, Jie; Cairns, Nigel J; Christensen, Jon J; Morris, John C; Yablonskiy, Dmitriy A

    2017-03-01

    Alzheimer disease (AD) affects at least 5 million individuals in the USA alone stimulating an intense search for disease prevention and treatment therapies as well as for diagnostic techniques allowing early identification of AD during a long pre-symptomatic period that can be used for the initiation of prevention trials of disease-modifying therapies in asymptomatic individuals. Our approach to developing such techniques is based on the Gradient Echo Plural Contrast Imaging (GEPCI) technique that provides quantitative in vivo measurements of several brain-tissue-specific characteristics of the gradient echo MRI signal (GEPCI metrics) that depend on the integrity of brain tissue cellular structure. Preliminary data were obtained from 34 participants selected from the studies of aging and dementia at the Knight Alzheimer's Disease Research Center at Washington University in St. Louis. Cognitive status was operationalized with the Clinical Dementia Rating (CDR) scale. The participants, assessed as cognitively normal (CDR=0; n=23) or with mild AD dementia (CDR=0.5 or 1; n=11) underwent GEPCI MRI, a collection of cognitive performance tests and CSF amyloid (Aβ) biomarker Aβ 42 . A subset of 19 participants also underwent PET PiB studies to assess their brain Aβ burden. According to the Aβ status, cognitively normal participants were divided into normal (Aβ negative; n=13) and preclinical (Aβ positive; n=10) groups. GEPCI quantitative measurements demonstrated significant differences between all the groups: normal and preclinical, normal and mild AD, and preclinical and mild AD. GEPCI quantitative metrics characterizing tissue cellular integrity in the hippocampus demonstrated much stronger correlations with psychometric tests than the hippocampal atrophy. Importantly, GEPCI-determined changes in the hippocampal tissue cellular integrity were detected even in the hippocampal areas not affected by the atrophy. Our studies also uncovered strong correlations between GEPCI brain tissue metrics and beta-amyloid (Aβ) burden defined by positron emission tomography (PET) - the current in vivo gold standard for detection of cortical Aβ, thus supporting GEPCI as a potential surrogate marker for Aβ imaging - a known biomarker of early AD. Remarkably, the data show significant correlations not only in the areas of high Aβ accumulation (e.g. precuneus) but also in some areas of medial temporal lobe (e.g. parahippocampal cortex), where Aβ accumulation is relatively low. We have demonstrated that GEPCI provides a new approach for the in vivo evaluation of AD-related tissue pathology in the preclinical and early symptomatic stages of AD. Since MRI is a widely available technology, the GEPCI surrogate markers of AD pathology have a potential for improving the quality of AD diagnostic, and the evaluation of new disease-modifying therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nanotechnology applications in urology: a review.

    PubMed

    Maddox, Michael; Liu, James; Mandava, Sree Harsha; Callaghan, Cameron; John, Vijay; Lee, Benjamin R

    2014-11-01

    The objectives of this review are to discuss the current literature and summarise some of the promising areas with which nanotechnology may improve urological care. A Medline literature search was performed to elucidate all relevant studies of nanotechnology with specific attention to its application in urology. Urological applications of nanotechnology include its use in medical imaging, gene therapy, drug delivery, and photothermal ablation of tumours. In vitro and animal studies have shown initial encouraging results. Further study of nanotechnology for urological applications is warranted to bridge the gap between preclinical studies and translation into clinical practice, but nanomedicine has shown significant potential to improve urological patient care. © 2014 The Authors. BJU International © 2014 BJU International.

  12. Ginkgo biloba Extract in Vascular Protection: Molecular Mechanisms and Clinical Applications.

    PubMed

    Tian, Jinfan; Liu, Yue; Chen, Keji

    2017-01-01

    Leaves of Ginkgo biloba, a "living fossil," have been used as traditional herbal medicine for hundreds of years in China. Currently, its application in vascular protection is garnering much attention. In this manuscript, preclinical studies were reviewed to discuss various mechanisms underlying the vascular protection by Ginkgo biloba extract (GBE). Additionally, we reviewed clinical studies to present the application of GBE in the ischaemic disease. GBE, a commonly used dietary supplement, has been shown to act as an antioxidant and freeradical scavenger, a membrane stabilizer, an inhibitor of the platelet-activating factor, a vasodilator, and a regulator of metabolism. Currently, there exist a growing number of clinical studies about GBE in the application of cardiovascular disease, peripheral vascular disease (PVD) and diabetic vascular complications. GBE, a promising therapeutic agent for cardiovascular and ischaemic diseases, exerts vascular- protection function by a comprehensive mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA.

    PubMed

    Canetta, Sarah E; Brown, Alan S

    2012-12-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed.

  14. Trial watch: Naked and vectored DNA-based anticancer vaccines

    PubMed Central

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm. PMID:26155408

  15. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    PubMed

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  16. How Can Gastric Cancer Molecular Profiling Guide Future Therapies?

    PubMed

    Corso, Simona; Giordano, Silvia

    2016-07-01

    Gastric cancer is the third greatest global cause of cancer-related deaths. Despite its high prevalence, only recently have comprehensive genomic surveys shed light on its molecular alterations. As surgery is the only curative treatment strategy and chemotherapy has shown limited efficacy, new treatments are urgently needed. Many molecular therapies for gastric cancer have entered clinical trials but-apart from Trastuzumab and Ramucirumab-all have failed. We analyze the current knowledge of the genetic 'landscape' of gastric cancers, elaborating on novel, preclinical approaches. We posit that this knowledge lays the basis for identifying bona fide molecular targets and developing solid therapeutic approaches, requiring accurate patient selection and taking advantage of preclinical models to assist clinical development of novel combination strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Utility of preclinical drug versus food choice procedures to evaluate candidate medications for methamphetamine use disorder.

    PubMed

    Banks, Matthew L

    2017-04-01

    Substance use disorders are diagnosed as a manifestation of inappropriate behavioral allocation toward abused drugs and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., money and social relationships). Substance use disorder treatment goals include not only decreasing drug-maintained behavior but also promoting behavioral reallocation toward these socially adaptive alternative reinforcers. Preclinical drug self-administration procedures that offer concurrent access to both drug and nondrug reinforcers provide a translationally relevant dependent measure of behavioral allocation that may be useful for candidate medication evaluation. In contrast to other abused drugs, such as heroin or cocaine, preclinical methamphetamine versus food choice procedures have been a more recent development. We hypothesize that preclinical to clinical translatability would be improved by the evaluation of repeated pharmacological treatment effects on methamphetamine self-administration under a methamphetamine versus food choice procedure. In support of this hypothesis, a literature review suggests strong concordance between preclinical pharmacological treatment effects on methamphetamine versus food choice in nonhuman primates and clinical medication treatment effects on methamphetamine self-administration in human laboratory studies or methamphetamine abuse metrics in clinical trials. In conclusion, this literature suggests preclinical methamphetamine versus food choice procedures may be useful in developing innovative pharmacotherapies for methamphetamine use disorder. © 2016 New York Academy of Sciences.

  18. Utility of preclinical drug versus food choice procedures to evaluate candidate medications for methamphetamine use disorder

    PubMed Central

    Banks, Matthew L.

    2016-01-01

    Substance use disorders are diagnosed as a manifestation of inappropriate behavioral allocation towards abused drugs and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., work and social relationships). Substance use disorder treatment goals include not only decreasing drug-maintained behavior but also promoting behavioral reallocation toward these socially adaptive alternative reinforcers. Preclinical drug self-administration procedures that offer concurrent access to both drug and nondrug reinforcers provide a translationally relevant dependent measure of behavioral allocation that may be useful for candidate medication evaluation. In contrast to other abused drugs, such as heroin or cocaine, preclinical methamphetamine versus food choice procedures have been a more recent development. We hypothesize that preclinical to clinical translatability would be improved by the evaluation of repeated pharmacological treatment effects on methamphetamine self-administration under a methamphetamine versus food choice procedure. In support of this hypothesis, a literature review suggests strong concordance between preclinical pharmacological treatment effects on methamphetamine versus food choice in nonhuman primates and clinical medication treatment effects on methamphetamine self-administration in human laboratory studies or methamphetamine abuse metrics in clinical trials. In conclusion, this literature suggests preclinical methamphetamine versus food choice procedures may be useful in developing innovative pharmacotherapies for methamphetamine use disorder. PMID:27936284

  19. Considering sex as a biological variable in preclinical research.

    PubMed

    Miller, Leah R; Marks, Cheryl; Becker, Jill B; Hurn, Patricia D; Chen, Wei-Jung; Woodruff, Teresa; McCarthy, Margaret M; Sohrabji, Farida; Schiebinger, Londa; Wetherington, Cora Lee; Makris, Susan; Arnold, Arthur P; Einstein, Gillian; Miller, Virginia M; Sandberg, Kathryn; Maier, Susan; Cornelison, Terri L; Clayton, Janine A

    2017-01-01

    In June 2015, the National Institutes of Health (NIH) released a Guide notice (NOT-OD-15-102) that highlighted the expectation of the NIH that the possible role of sex as a biologic variable be factored into research design, analyses, and reporting of vertebrate animal and human studies. Anticipating these guidelines, the NIH Office of Research on Women's Health, in October 2014, convened key stakeholders to discuss methods and techniques for integrating sex as a biologic variable in preclinical research. The workshop focused on practical methods, experimental design, and approaches to statistical analyses in the use of both male and female animals, cells, and tissues in preclinical research. Workshop participants also considered gender as a modifier of biology. This article builds on the workshop and is meant as a guide to preclinical investigators as they consider methods and techniques for inclusion of both sexes in preclinical research and is not intended to prescribe exhaustive/specific approaches for compliance with the new NIH policy.-Miller, L. R., Marks, C., Becker, J. B., Hurn, P. D., Chen, W.-J., Woodruff, T., McCarthy, M. M., Sohrabji, F., Schiebinger, L., Wetherington, C. L., Makris, S., Arnold, A. P., Einstein, G., Miller, V. M., Sandberg, K., Maier, S., Cornelison, T. L., Clayton, J. A. Considering sex as a biological variable in preclinical research. © FASEB.

  20. A comparative analysis of acute-phase proteins as inflammatory biomarkers in preclinical toxicology studies: implications for preclinical to clinical translation.

    PubMed

    Watterson, Claire; Lanevschi, Anne; Horner, Judith; Louden, Calvert

    2009-01-01

    Recently, in early clinical development, a few biologics and small molecules intended as antitumor or anti-inflammatory agents have caused a severe adverse pro-inflammatory systemic reaction also known as systemic inflammatory response syndrome (SIRS). This toxicity could result from expected pharmacological effects of a therapeutic antibody and/or from interaction with antigens expressed on cells/tissues other than the intended target. Clinical monitoring of SIRS is challenging because of the narrow diagnostic window to institute a successful intervening therapeutic strategy prior to acute circulatory collapse. Furthermore, for these classes of therapeutic agents, studies in animals have low predictive ability to identify potential human hazards. In vitro screens with human cells, though promising, need further development. Therefore, identification of improved preclinical diagnostic markers of SIRS will enable clinicians to select applicable markers for clinical testing and avoid potentially catastrophic events. There is limited preclinical toxicology data describing the interspecies performance of acute-phase proteins because the response time, type, and duration of major acute-phase proteins vary significantly between species. This review will attempt to address this intellectual gap, as well as the use and applicability of acute-phase proteins as preclinical to clinical translational biomarkers of SIRS.

  1. From Bench to Bedside: Utility of the Rabbit Elastase Aneurysm Model in Pre-Clinical Studies of Intracranial Aneurysm Treatment

    PubMed Central

    Brinjikji, Waleed; Ding, Yong H; Kallmes, David F; Kadirvel, Ramanathan

    2016-01-01

    Summary Pre-clinical studies are important in helping practitioners and device developers improve techniques and tools for endovascular treatment of intracranial aneurysms. Thus, an understanding of the major animal models used in such studies is important. The New Zealand rabbit elastase induced arterial aneurysm of the common carotid artery is one of the most commonly used models in testing the safety and efficacy of new endovascular devices. In this review we discuss 1) various techniques used to create the aneurysm, 2) complications of aneurysm creation, 3) natural history of the arterial aneurysm, 4) histopathologic and hemodynamic features of the aneurysm 5) devices tested using this model and 6) weaknesses of the model. We demonstrate how pre-clinical studies using this model are applied in treatment of intracranial aneurysms in humans. The model has a similar hemodynamic, morphological and histologic characteristics to human aneurysms and demonstrates similar healing responses to coiling as human aneurysms. Despite these strengths however, the model does have many weaknesses including the fact that the model does not emulate the complex inflammatory processes affecting growing and ruptured aneurysms. Furthermore the model’s extracranial location affects its ability to be used in preclinical safety assessments of new devices. We conclude that the rabbit elastase model has characteristics that make it a simple and effective model for preclinical studies on the endovascular treatment of intracranial aneurysms however further work is needed to develop aneurysm models that simulate the histopathologic and morphologic characteristics of growing and ruptured aneurysms. PMID:25904642

  2. [Evaluation of medication risk in pregnant women: methodology of evaluation and risk management].

    PubMed

    Eléfant, E; Sainte-Croix, A

    1997-01-01

    This round table discussion was devoted to the description of the tools currently available for the evaluation of drug risks and management during pregnancy. Five topics were submitted for discussion: pre-clinical data, methodological tools, benefit/risk ratio before prescription, teratogenic or fetal risk evaluation, legal comments.

  3. 'Muscle-sparing' statins: preclinical profiles and future clinical use.

    PubMed

    Pfefferkorn, Jeffrey A

    2009-03-01

    Coronary heart disease (CHD) is a leading cause of death in the US, and hypercholesterolemia is a key risk factor for this disease. The current standard of care for treating hypercholesterolemia is the use of HMG-CoA reductase inhibitors, also known as statins, which block the rate-limiting step of cholesterol biosynthesis. In widespread clinical use, statins have proven safe and effective for both primary prevention of CHD and secondary prevention of coronary events. Results from several recent clinical trials have demonstrated that increasingly aggressive cholesterol-lowering therapy might offer additional protection against CHD compared with less aggressive treatment standards. While higher doses of current statin therapies are capable of achieving these more aggressive treatment goals, in certain cases statin-induced myalgia, the muscle pain or weakness that sometimes accompanies high-dose statin therapy, limits patient compliance with a treatment regimen. To address this limitation, efforts have been undertaken to develop highly hepatoselective statins that are capable of delivering best-in-class efficacy with minimized risk of dose-limiting myalgia. In this review, the preclinical and early clinical data for these next generation statins are discussed.

  4. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials.

    PubMed

    Lin, Ann; Giuliano, Christopher J; Sayles, Nicole M; Sheltzer, Jason M

    2017-03-24

    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been reported to be a genetic dependency in several cancer types. MELK RNAi and small-molecule inhibitors of MELK block the proliferation of various cancer cell lines, and MELK knockdown has been described as particularly effective against the highly-aggressive basal/triple-negative subtype of breast cancer. Based on these preclinical results, the MELK inhibitor OTS167 is currently being tested as a novel chemotherapy agent in several clinical trials. Here, we report that mutagenizing MELK with CRISPR/Cas9 has no effect on the fitness of basal breast cancer cell lines or cell lines from six other cancer types. Cells that harbor null mutations in MELK exhibit wild-type doubling times, cytokinesis, and anchorage-independent growth. Furthermore, MELK-knockout lines remain sensitive to OTS167, suggesting that this drug blocks cell division through an off-target mechanism. In total, our results undermine the rationale for a series of current clinical trials and provide an experimental approach for the use of CRISPR/Cas9 in preclinical target validation that can be broadly applied.

  5. Discovery and safety profiling of a potent preclinical candidate, (4-[4-[[(3R)-3-(hydroxycarbamoyl)-8-azaspiro[4.5]decan-3-yl]sulfonyl]phenoxy]-N-methylbenzamide) (CM-352), for the prevention and treatment of hemorrhage.

    PubMed

    Orbe, Josune; Rodríguez, José A; Sánchez-Arias, Juan A; Salicio, Agustina; Belzunce, Miriam; Ugarte, Ana; Chang, Haisul C Y; Rabal, Obdulia; Oyarzabal, Julen; Páramo, José A

    2015-04-09

    Discovery of potent and safe therapeutics that improve upon currently available antifibrinolytics, e.g., tranexamic acid (TXA, 1) and aprotinin, has been challenging. Matrix metalloproteinases (MMPs) participate in thrombus dissolution. Then we designed a novel series of optimized MMP inhibitors that went through phenotypic screening consisting of thromboelastometry and mouse tail bleeding. Our optimized lead compound, CM-352 (2), inhibited fibrinolysis in human whole blood functional assays and was more effective than the current standard of care, 1, in the tail-bleeding model using a 30 000 times lower dose. Moreover, 2 reduced blood loss during liver hepatectomy, while 1 and aprotinin had no effect. Molecule 2 displayed optimal pharmacokinetic and safety profiles with no evidence of thrombosis or coagulation impairment. This novel mechanism of action, targeting MMP, defines a new class of antihemorrhagic agents without interfering with normal hemostatic function. Furthermore, 2 represents a preclinical candidate for the acute treatment of bleeding.

  6. The Role of Laser Speckle Imaging in Port-Wine Stain Research: Recent Advances and Opportunities

    PubMed Central

    Choi, Bernard; Tan, Wenbin; Jia, Wangcun; White, Sean M.; Moy, Wesley J.; Yang, Bruce Y.; Zhu, Jiang; Chen, Zhongping; Kelly, Kristen M.; Nelson, J. Stuart

    2016-01-01

    Here, we review our current knowledge on the etiology and treatment of port-wine stain (PWS) birthmarks. Current treatment options have significant limitations in terms of efficacy. With the combination of 1) a suitable preclinical microvascular model, 2) laser speckle imaging (LSI) to evaluate blood-flow dynamics, and 3) a longitudinal experimental design, rapid preclinical assessment of new phototherapies can be translated from the lab to the clinic. The combination of photodynamic therapy (PDT) and pulsed-dye laser (PDL) irradiation achieves a synergistic effect that reduces the required radiant exposures of the individual phototherapies to achieve persistent vascular shutdown. PDL combined with anti-angiogenic agents is a promising strategy to achieve persistent vascular shutdown by preventing reformation and reperfusion of photocoagulated blood vessels. Integration of LSI into the clinical workflow may lead to surgical image guidance that maximizes acute photocoagulation, is expected to improve PWS therapeutic outcome. Continued integration of noninvasive optical imaging technologies and biochemical analysis collectively are expected to lead to more robust treatment strategies. PMID:27013846

  7. A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections

    NASA Astrophysics Data System (ADS)

    Danis-Wlodarczyk, Katarzyna; Vandenheuvel, Dieter; Jang, Ho Bin; Briers, Yves; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Drabik, Marcin; Higgins, Gerard; Tyrrell, Jean; Harvey, Brian J.; Noben, Jean-Paul; Lavigne, Rob; Drulis-Kawa, Zuzanna

    2016-06-01

    Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications.

  8. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.

    PubMed

    Gómez-Lechón, María José; Tolosa, Laia

    2016-09-01

    Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages.

  9. Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery.

    PubMed

    Strebhardt, Klaus; Becker, Sven; Matthess, Yves

    2015-01-01

    The Polo-like kinase 1 (Plk1) plays a key role in regulating a broad spectrum of critical cell cycle events. Plk1 is a marker of cellular proliferation and has prognostic potential in different types of human tumors. In a series of preclinical studies, Plk1 has been validated as a cancer target. This prompted many pharmaceutical companies to develop small-molecule inhibitors targeting the classical ATP-binding site of Plk1 for anticancer drug development. Recently, FDA has granted a Breakthrough Therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. Remarkably, a new generation of Plk1 inhibitors that target the second druggable domain of Plk1, the Polo-box domain, is currently being tested preclinically. Since various ATP-competitive compounds of Plk1 inhibit also the activities of Plk2 and Plk3, which act as tumor suppressors, the roles of closely related Plk-family members in cancer cells need to be considered carefully. In this article, the authors highlight recent insights into the biology of Plks in cancer cells and discuss the progress in the development of small-molecule Plk1 inhibitors. The authors believe that the greatest therapeutic benefit might come through leukemic cells that are in direct contact with the inhibitor in the blood stream. The identification of biomarkers and studies that document Plk activities in treated patients would also be beneficial to better understand the role of Plk inhibition in tumor development and anticancer therapy.

  10. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma.

    PubMed

    Gump, Jacob M; Donson, Andrew M; Birks, Diane K; Amani, Vladimir M; Rao, Karun K; Griesinger, Andrea M; Kleinschmidt-DeMasters, B K; Johnston, James M; Anderson, Richard C E; Rosenfeld, Amy; Handler, Michael; Gore, Lia; Foreman, Nicholas; Hankinson, Todd C

    2015-05-21

    Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP. Using mRNA microarray gene expression analysis of 15 ACP patient samples, we have found several pharmaceutical targets that are significantly and consistently overexpressed in our panel of ACP relative to other pediatric brain tumors, pituitary tumors, normal pituitary and normal brain tissue. Among the most highly expressed are several targets of the kinase inhibitor dasatinib - LCK, EPHA2 and SRC; EGFR pathway targets - AREG, EGFR and ERBB3; and other potentially actionable cancer targets - SHH, MMP9 and MMP12. We confirm by western blot that a subset of these targets is highly expressed in ACP primary tumor samples. We report here the first published transcriptome for ACP and the identification of targets for rational therapy. Experimental drugs targeting each of these gene products are currently being tested clinically and pre-clinically for the treatment of other tumor types. This study provides a rationale for further pre-clinical and clinical studies of novel pharmacological treatments for ACP. Development of mouse and cell culture models for ACP will further enable the translation of these targets from the lab to the clinic, potentially ushering in a new era in the treatment of ACP.

  11. Preclinical and clinical properties of trimegestone: a potent and selective progestin.

    PubMed

    Sitruk-Ware, Regine; Bossemeyer, Ronald; Bouchard, Phillipe

    2007-06-01

    Trimegestone (TMG) is a novel, 19-norpregnane progestin with potent and selective properties. In preclinical studies, TMG has been shown to provide high endometrial selectivity. Further, TMG has high affinity and selectivity for the progesterone receptor and lacks the agonist effects of other steroid hormones. In clinical studies, TMG has been shown to have high endometrial safety and an improved bleeding profile along with improved tolerability compared with other progestins. In addition, TMG also does not impede the beneficial effects of estrogen, especially on bone, and does not compromise quality of life. The preclinical findings of lack of mineralocorticoid activity of TMG were supported in clinical findings, with neutral effect on body weight. Similarly, the smaller effect of TMG on the GABA-ergic (gamma-aminobutyric acid) system in preclinical studies is consistent with the improvement of central nervous system-related effects on depressed mood and sleep quality in clinical studies. Low-dose estradiol/TMG regimens provide rapid relief from menopausal symptoms, reducing the number and severity of hot flushes as effectively as 2 mg 17beta-estradiol/1 mg norethisterone acetate. Therefore, it may be concluded that TMG provides a clinically proven option in hormone therapy for both clinicians and patients.

  12. Preclinical safety testing for cell-based products using animals.

    PubMed

    McBlane, James W

    2015-09-01

    The objectives of preclinical testing include to show why there might be therapeutic benefit in patients and to provide information on the product's toxicity. For cell-based products, given even once, there may be long term exposure and this could imply, unlike for conventional drugs, that all preclinical studies may be needed prior to first human use. The duration of exposure to cells should be studied in animals to guide toxicity assessments. Distribution of cells after administration by a route resembling that intended in humans should be studied to understand potential risks. Risk of tumour formation with the product may also need to be characterised. To the extent that this information can be generated by in vitro testing, studies in animals may not be needed and limitations on the capability of preclinical data to predict human toxicity are recognised: species-specificity make some cell products act only in humans and a human cell-product might be expected to be rejected by immunocompetent animals. Does this suggest testing in immunosuppressed animals or of development of an animal-cell product supposedly similar to the human cell product? No single answer seems to fit every situation. Copyright © 2015.

  13. Preclinical Polymodal Hallucinations for 13 Years before Dementia with Lewy Bodies

    PubMed Central

    Abbate, Carlo; Trimarchi, Pietro Davide; Inglese, Silvia; Viti, Niccolò; Cantatore, Alessandra; De Agostini, Lisa; Pirri, Federico; Marino, Lorenza; Bagarolo, Renzo

    2014-01-01

    Objective. We describe a case of dementia with Lewy bodies (DLB) that presented long-lasting preclinical complex polymodal hallucinations. Background. Few studies have deeply investigated the characteristics of hallucinations in DLB, especially in the preclinical phase. Moreover, the clinical phenotype of mild cognitive impairment-(MCI-) DLB is poorly understood. Methods. The patient was followed for 4 years and a selective phenomenological and cognitive study was performed at the predementia stage. Results. The phenomenological study showed the presence of hypnagogic and hypnopompic hallucinations that allowed us to make a differential diagnosis between DLB and Charles Bonnet syndrome (CBS). The neuropsychological evaluation showed a multiple domain without amnesia MCI subtype with prefrontal dysexecutive, visuoperceptual, and visuospatial impairments and simultanagnosia, which has not previously been reported in MCI-DLB. Conclusions. This study extends the prognostic value of hallucinations for DLB to the preclinical phases. It supports and refines the MCI-DLB concept and identifies simultanagnosia as a possible early cognitive marker. Finally, it confirms an association between hallucinations and visuoperceptual impairments at an intermediate stage of the disease course and strongly supports the hypothesis that hallucinations in the earliest stages of DLB may reflect a narcolepsy-like REM-sleep disorder. PMID:24868122

  14. Reform in Teaching Preclinical Pathophysiology

    ERIC Educational Resources Information Center

    Li, Yong-Yu; Li, Kun; Yao, Hong; Xu, Xiao-Juan; Cai, Qiao-Lin

    2015-01-01

    Pathophysiology is a scientific discipline that studies the onset and progression of pathological conditions and diseases, and pathophysiology is one of the core courses in most preclinical medical curricula. In China, most medical schools house a Department of Pathophysiology, in contrast to medical schools in many developed countries. The staff…

  15. Dantrolene, a treatment for Alzheimer disease?

    PubMed

    Liang, Li; Wei, Huafeng

    2015-01-01

    Alzheimer disease (AD) is a fatal progressive disease and the most common form of dementia without effective treatments. Previous studies support that the disruption of endoplasmic reticulum Ca through overactivation of ryanodine receptors plays an important role in the pathogenesis of AD. Normalization of intracellular Ca homeostasis could be an effective strategy for AD therapies. Dantrolene, an antagonist of ryanodine receptors and an FDA-approved drug for clinical treatment of malignant hyperthermia and muscle spasms, exhibits neuroprotective effects in multiple models of neurodegenerative disorders. Recent preclinical studies consistently support the therapeutic effects of dantrolene in various types of AD animal models and were summarized in the current review.

  16. Automated location detection of injection site for preclinical stereotactic neurosurgery procedure

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Wu, Hemmings C. H.

    2017-03-01

    Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.

  17. Immunotherapy with Allergen Peptides

    PubMed Central

    2007-01-01

    Specific allergen immunotherapy (SIT) is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cross link IgE and activate mast cells and basophils, due to lack of tertiary structure. Murine pre-clinical studies have established the feasibility of this approach and clinical studies are currently in progress in both allergic and autoimmune diseases. PMID:20525144

  18. Effects of the Natural β-Carboline Alkaloid Harmine, a Main Constituent of Ayahuasca, in Memory and in the Hippocampus: A Systematic Literature Review of Preclinical Studies.

    PubMed

    Dos Santos, Rafael G; Hallak, Jaime E C

    2017-01-01

    Harmine is a natural β-carboline alkaloid found in several botanical species, such as the Banisteriopsis caapi vine used in the preparation of the hallucinogenic beverage ayahuasca and the seeds of Syrian rue (Peganum harmala). Preclinical studies suggest that harmine may have neuroprotective and cognitive-enhancing effects, and retrospective/observational investigations of the mental health of long-term ayahuasca users suggest that prolonged use of this harmine-rich hallucinogen is associated with better neuropsychological functioning. Thus, in order to better investigate these possibilities, we performed a systematic literature review of preclinical studies analyzing the effects of harmine on hippocampal neurons and in memory-related behavioral tasks in animal models. We found two studies involving hippocampal cell cultures and nine studies using animal models. Harmine administration was associated with neuroprotective effects such as reduced excitotoxicity, inflammation, and oxidative stress, and increased brain-derived neurotrophic factor (BDNF) levels. Harmine also improved memory/learning in several animal models. These effects seem be mediated by monoamine oxidase or acetylcholinesterase inhibition, upregulation of glutamate transporters, decreases in reactive oxygen species, increases in neurotrophic factors, and anti-inflammatory effects. The neuroprotective and cognitive-enhancing effects of harmine should be further investigated in both preclinical and human studies.

  19. Development of replication-deficient adenovirus malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  20. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) AGONISTS AS PROMISING NEW MEDICATIONS FOR DRUG ADDICTION: PRECLINICAL EVIDENCE

    PubMed Central

    Foll, Bernard Le; Ciano, Patricia Di; Panlilio, Leigh V.; Goldberg, Steven R.; Ciccocioppo, Roberto

    2013-01-01

    This review examines the growing literature on the role of peroxisome proliferator-activated receptors (PPARs) in addiction. There are two subtypes of PPAR receptors that have been studied in addiction: PPAR-α and PPAR-γ. The role of each PPAR subtype in common models of addictive behavior, mainly pre-clinical models, is summarized. In particular, studies are reviewed that investigated the effects of PPAR-α agonists on relapse, sensitization, conditioned place preference, withdrawal and drug intake, and effects of PPAR-γ agonists on relapse, withdrawal and drug intake. Finally, studies that investigated the effects of PPAR agonists on neural pathways of addiction are reviewed. Taken together this preclinical data indicates that PPAR agonists are promising new medications for drug addiction treatment. PMID:23614675

  1. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma.

    PubMed

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-05-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  2. Sleep timing is more important than sleep length or quality for medical school performance.

    PubMed

    Genzel, L; Ahrberg, K; Roselli, C; Niedermaier, S; Steiger, A; Dresler, M; Roenneberg, T

    2013-07-01

    Overwhelming evidence supports the importance of sleep for memory consolidation. Medical students are often deprived of sufficient sleep due to large amounts of clinical duties and university load, we therefore investigated how study and sleep habits influence university performance. We performed a questionnaire-based study with 31 medical students of the University of Munich (second and third clinical semesters; surgery and internal medicine). The students kept a diary (in 30-min bins) on their daily schedules (times when they studied by themselves, attended classes, slept, worked on their thesis, or worked to earn money). The project design involved three 2-wk periods (A: during the semester; B: directly before the exam period--pre-exam; C: during the subsequent semester break). Besides the diaries, students completed once questionnaires about their sleep quality (Pittsburgh Sleep Quality Index [PSQI]), their chronotype (Munich Chronotype Questionnaire [MCTQ]), and their academic history (previous grades, including the previously achieved preclinical board exam [PBE]). Analysis revealed significant correlations between the actual sleep behavior during the semester (MS(diary); mid-sleep point averaged from the sleep diaries) during the pre-exam period and the achieved grade (p = 0.002) as well as between the grades of the currently taken exam and the PBE (p = 0.002). A regression analysis with MS(diary) pre-exam and PBE as predictors in a model explained 42.7% of the variance of the exam grade (effect size 0.745). Interestingly, MS(diary)--especially during the pre-exam period-was the strongest predictor for the currently achieved grade, along with the preclinical board exam as a covariate, whereas the chronotype did not significantly influence the exam grade.

  3. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review.

    PubMed

    Roffi, Alice; Di Matteo, Berardo; Krishnakumar, Gopal Shankar; Kon, Elizaveta; Filardo, Giuseppe

    2017-02-01

    The treatment of large bone defects represents a significant challenge for orthopaedic surgeons. In recent years, biologic agents have also been used to further improve bone healing. Among these, platelet-rich plasma (PRP) is the most exploited strategy. The aim of the present study was to systematically review the available literature to identify: 1) preclinical in-vivo results supporting the rational of PRP use for bone healing; 2) evidence from the clinical practice on the actual clinical benefit of PRP for the treatment of fractures and complications such as delayed unions and non-unions. A systematic review of the literature was performed on the application of PRP in bone healing, using the following inclusion criteria: pre-clinical and clinical reports of any level of evidence, written in English language, published in the last 20 years (1996-2016), on the use of PRP to stimulate long-bone defect treatment, with focus on fracture and delayed/non-unions healing. The search in the Pubmed database identified 64 articles eligible for inclusion: 45 were preclinical in-vivo studies and 19 were clinical studies. Despite the fact that the overall pre-clinical results seem to support the benefit of PRP in 91.1 % of the studies, a more in depth analysis underlined a lower success rate, with a positive outcome of 84.4 % in terms of histological analysis, and even lower values considering radiological and biomechanical results (75.0 % and 72.7 % positive outcome respectively). This was also mirrored in the clinical literature, where the real benefit of PRP use to treat fractures and non-unions is still under debate. Overall, the available literature presents major limitations in terms of low quality and extreme heterogeneity, which hamper the possibility to optimize PRP treatment and translate it into a real clinical benefit despite positive preclinical findings on its biological potential to favour bone healing.

  4. Insights from Preclinical Choice Models on Treating Drug Addiction.

    PubMed

    Banks, Matthew L; Negus, S Stevens

    2017-02-01

    Substance-use disorders are a global public health problem that arises from behavioral misallocation between drug use and more adaptive behaviors maintained by nondrug alternatives (e.g., food or money). Preclinical drug self-administration procedures that incorporate a concurrently available nondrug reinforcer (e.g., food) provide translationally relevant and distinct dependent measures of behavioral allocation (i.e., to assess the relative reinforcing efficacy of the drug) and behavioral rate (i.e., to assess motor competence). In particular, preclinical drug versus food 'choice' procedures have produced increasingly concordant results with both human laboratory drug self-administration studies and double-blind placebo-controlled clinical trials. Accordingly, here we provide a heuristic framework of substance-use disorders based on a behavioral-centric perspective and recent insights from these preclinical choice procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Discovery and clinical introduction of first-in-class imipridone ONC201.

    PubMed

    Allen, Joshua E; Kline, C Leah B; Prabhu, Varun V; Wagner, Jessica; Ishizawa, Jo; Madhukar, Neel; Lev, Avital; Baumeister, Marie; Zhou, Lanlan; Lulla, Amriti; Stogniew, Martin; Schalop, Lee; Benes, Cyril; Kaufman, Howard L; Pottorf, Richard S; Nallaganchu, B Rao; Olson, Gary L; Al-Mulla, Fahd; Duvic, Madeleine; Wu, Gen Sheng; Dicker, David T; Talekar, Mala K; Lim, Bora; Elemento, Olivier; Oster, Wolfgang; Bertino, Joseph; Flaherty, Keith; Wang, Michael L; Borthakur, Gautam; Andreeff, Michael; Stein, Mark; El-Deiry, Wafik S

    2016-11-08

    ONC201 is the founding member of a novel class of anti-cancer compounds called imipridones that is currently in Phase II clinical trials in multiple advanced cancers. Since the discovery of ONC201 as a p53-independent inducer of TRAIL gene transcription, preclinical studies have determined that ONC201 has anti-proliferative and pro-apoptotic effects against a broad range of tumor cells but not normal cells. The mechanism of action of ONC201 involves engagement of PERK-independent activation of the integrated stress response, leading to tumor upregulation of DR5 and dual Akt/ERK inactivation, and consequent Foxo3a activation leading to upregulation of the death ligand TRAIL. ONC201 is orally active with infrequent dosing in animals models, causes sustained pharmacodynamic effects, and is not genotoxic. The first-in-human clinical trial of ONC201 in advanced aggressive refractory solid tumors confirmed that ONC201 is exceptionally well-tolerated and established the recommended phase II dose of 625 mg administered orally every three weeks defined by drug exposure comparable to efficacious levels in preclinical models. Clinical trials are evaluating the single agent efficacy of ONC201 in multiple solid tumors and hematological malignancies and exploring alternative dosing regimens. In addition, chemical analogs that have shown promise in other oncology indications are in pre-clinical development. In summary, the imipridone family that comprises ONC201 and its chemical analogs represent a new class of anti-cancer therapy with a unique mechanism of action being translated in ongoing clinical trials.

  6. Discovery and clinical introduction of first-in-class imipridone ONC201

    PubMed Central

    Allen, Joshua E.; Kline, C. Leah B.; Prabhu, Varun V.; Wagner, Jessica; Ishizawa, Jo; Madhukar, Neel; Lev, Avital; Baumeister, Marie; Zhou, Lanlan; Lulla, Amriti; Stogniew, Martin; Schalop, Lee; Benes, Cyril; Kaufman, Howard L.; Pottorf, Richard S.; Nallaganchu, B. Rao; Olson, Gary L.; Al-Mulla, Fahd; Duvic, Madeleine; Wu, Gen Sheng; Dicker, David T.; Talekar, Mala K.; Lim, Bora; Elemento, Olivier; Oster, Wolfgang; Bertino, Joseph; Flaherty, Keith; Wang, Michael L.; Borthakur, Gautam; Andreeff, Michael; Stein, Mark; El-Deiry, Wafik S.

    2016-01-01

    ONC201 is the founding member of a novel class of anti-cancer compounds called imipridones that is currently in Phase II clinical trials in multiple advanced cancers. Since the discovery of ONC201 as a p53-independent inducer of TRAIL gene transcription, preclinical studies have determined that ONC201 has anti-proliferative and pro-apoptotic effects against a broad range of tumor cells but not normal cells. The mechanism of action of ONC201 involves engagement of PERK-independent activation of the integrated stress response, leading to tumor upregulation of DR5 and dual Akt/ERK inactivation, and consequent Foxo3a activation leading to upregulation of the death ligand TRAIL. ONC201 is orally active with infrequent dosing in animals models, causes sustained pharmacodynamic effects, and is not genotoxic. The first-in-human clinical trial of ONC201 in advanced aggressive refractory solid tumors confirmed that ONC201 is exceptionally well-tolerated and established the recommended phase II dose of 625 mg administered orally every three weeks defined by drug exposure comparable to efficacious levels in preclinical models. Clinical trials are evaluating the single agent efficacy of ONC201 in multiple solid tumors and hematological malignancies and exploring alternative dosing regimens. In addition, chemical analogs that have shown promise in other oncology indications are in pre-clinical development. In summary, the imipridone family that comprises ONC201 and its chemical analogs represent a new class of anti-cancer therapy with a unique mechanism of action being translated in ongoing clinical trials. PMID:27602582

  7. Histological Characterization of the Irritative Zones in Focal Cortical Dysplasia Using a Preclinical Rat Model.

    PubMed

    Deshmukh, Abhay; Leichner, Jared; Bae, Jihye; Song, Yinchen; Valdés-Hernández, Pedro A; Lin, Wei-Chiang; Riera, Jorge J

    2018-01-01

    Current clinical practice in focal epilepsy involves brain source imaging (BSI) to localize brain areas where from interictal epileptiform discharges (IEDs) emerge. These areas, named irritative zones , have been useful to define candidate seizures-onset zones during pre-surgical workup. Since human histological data are mostly available from final resected zones, systematic studies characterizing pathophysiological mechanisms and abnormal molecular/cellular substrates in irritative zones-independent of them being epileptogenic-are challenging. Combining BSI and histological analysis from all types of irritative zones is only possible through the use of preclinical animal models. Here, we recorded 32-channel spontaneous electroencephalographic data from rats that have focal cortical dysplasia (FCD) and chronic seizures. BSI for different IED subtypes was performed using the methodology presented in Bae et al. (2015). Post-mortem brain sections containing irritative zones were stained to quantify anatomical, functional, and inflammatory biomarkers specific for epileptogenesis, and the results were compared with those obtained using the contralateral healthy brain tissue. We found abnormal anatomical structures in all irritative zones (i.e., larger neuronal processes, glioreactivity, and vascular cuffing) and larger expressions for neurotransmission (i.e., NR2B) and inflammation (i.e., ILβ1, TNFα and HMGB1). We conclude that irritative zones in this rat preclinical model of FCD comprise abnormal tissues disregarding whether they are actually involved in icto-genesis or not. We hypothesize that seizure perpetuation happens gradually; hence, our results could support the use of IED-based BSI for the early diagnosis and preventive treatment of potential epileptic foci. Further verifications in humans are yet needed.

  8. Alzheimer Disease: Scientific Breakthroughs and Translational Challenges.

    PubMed

    Caselli, Richard J; Beach, Thomas G; Knopman, David S; Graff-Radford, Neill R

    2017-06-01

    Alzheimer disease (AD) was originally conceived as a rare disease that caused presenile dementia but has come to be understood as the most prevalent cause of dementia at any age worldwide. It has an extended preclinical phase characterized by sequential changes in imaging and cerebrospinal fluid biomarkers with subtle memory decline beginning more than a decade before the emergence of symptomatic memory loss heralding the beginning of the mild cognitive impairment stage. The apolipoprotein E ε4 allele is a prevalent and potent risk factor for AD that has facilitated research into its preclinical phase. Cerebral Aβ levels build from preclinical through early dementia stages followed by hyperphosphorylated tau-related pathology, the latter driving cognitive deficits and dementia severity. Structural and molecular imaging can now recapitulate the neuropathology of AD antemortem. Autosomal dominant forms of early-onset familial AD gave rise to the amyloid hypothesis of AD, which, in turn, has led to therapeutic trials of immunotherapy designed to clear cerebral amyloid, but to date results have been disappointing. Genome-wide association studies have identified multiple additional risk factors, but to date none have yielded an effective alternate therapeutic target. Current and future trials aimed at presymptomatic individuals either harboring cerebral amyloid or at genetically high risk offer the hope that earlier intervention might yet succeed where trials in patients with established dementia have failed. A major looming challenge will be that of expensive, incompletely effective disease-modifying therapy: who and when to treat, and how to pay for it. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  9. The state of radiologic teaching practice in preclinical medical education: survey of American medical, osteopathic, and podiatric schools.

    PubMed

    Rubin, Zachary; Blackham, Kristine

    2015-04-01

    This study describes the state of preclinical radiology curricula in North American allopathic, osteopathic, and podiatric medical schools. An online survey of teaching methods, radiology topics, and future plans was developed. The Associations of American Medical Colleges, Colleges of Osteopathic Medicine, and Colleges of Podiatric Medicine listing for all US, Canadian, and Puerto Rican schools was used for contact information for directors of anatomy and/or radiology courses. Letters were sent via e-mail to 198 schools, with a link to the anonymous survey. Of 198 schools, 98 completed the survey (48%). Radiology curricula were integrated with other topics (91%), and taught by anatomists (42%) and radiologists (43%). The majority of time was spent on the topic of anatomy correlation (35%). Time spent teaching general radiology topics in the curriculum, such as physics (3%), modality differences (6%), radiation safety (2%), and contrast use (2%) was limited. Most schools had plans to implement an innovative teaching method in the near future (62%). The major challenges included limits on: time in the curriculum (73%); resources (32%); and radiology faculty participation (30%). A total of 82% reported that their curriculum did not model the suggestions made by the Alliance of Medical Student Educators in Radiology. This survey describes the current state of preclinical radiology teaching: curricula were nonstandard, integrated into other courses, and predominantly used for anatomy correlation. Other important contextual principles of the practice of radiology were seldom taught. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. National Cancer Institute Pediatric Preclinical Testing Program: Model Description for In Vitro Cytotoxicity Testing

    PubMed Central

    Kang, Min H.; Smith, Malcolm A.; Morton, Christopher L.; Keshelava, Nino; Houghton, Peter J.; Reynolds, C. Patrick

    2010-01-01

    Background The National Cancer Institute (NCI) has established the Pediatric Preclinical Testing Program (PPTP) for testing drugs against in vitro and in vivo childhood cancer models to aid in the prioritization of drugs considered for early phase pediatric clinical trials. Procedures In vitro cytotoxicity testing employs a semi-automated fluorescence-based digital imaging cytotoxicity assay (DIMSCAN) that has a 4-log dynamic range of detection. Curve fitting of the fractional survival data of the cell lines in response to various concentrations of the agents was used to calculate relative IC50, absolute IC50, and Ymin values The panel of 23 pediatric cancer cell lines included leukemia (n=6), lymphoma (n=2), rhabdomyosarcoma (n=4), brain tumors (n=3), Ewing family of tumors (EFT, n=4), and neuroblastoma (n=4). The doubling times obtained using DIMSCAN were incorporated into data analyses to estimate the relationship between input cell numbers and final cell number. Results We report in vitro activity data for three drugs (vincristine, melphalan, and etoposide) that are commonly used for pediatric cancer and for the mTOR inhibitor rapamycin, an agent that is currently under preclinical investigation for cancer. To date, the PPTP has completed in vitro testing of 39 investigational and approved agents for single drug activity and two investigational agents in combination with various “standard” chemotherapy drugs. Conclusions This robust in vitro cytotoxicity testing system for pediatric cancers will enable comparisons to response data for novel agents obtained from xenograft studies and from clinical trials. PMID:20922763

  11. A 3D-psoriatic skin model for dermatological testing: The impact of culture conditions.

    PubMed

    Duque-Fernandez, Alexandra; Gauthier, Lydia; Simard, Mélissa; Jean, Jessica; Gendreau, Isabelle; Morin, Alexandre; Soucy, Jacques; Auger, Michèle; Pouliot, Roxane

    2016-12-01

    Inadequate representation of the human tissue environment during a preclinical screen can result in inaccurate predictions of compound effects. Consequently, pharmaceutical investigators are searching for preclinical models that closely resemble original tissue for predicting clinical outcomes. The current research aims to compare the impact of using serum-free medium instead of complete culture medium during the last step of psoriatic skin substitute reconstruction. Skin substitutes were produced according to the self-assembly approach. Serum-free conditions have no negative impact on the reconstruction of healthy or psoriatic skin substitutes presented in this study regarding their macroscopic or histological appearances. ATR-FTIR results showed no significant differences in the CH 2 bands between psoriatic substitutes cultured with or without serum, thus suggesting that serum deprivation did not have a negative impact on the lipid organization of their stratum corneum . Serum deprivation could even lead to a better organization of healthy skin substitute lipids. Percutaneous analyses demonstrated that psoriatic substitutes cultured in serum-free conditions showed a higher permeability to hydrocortisone compared to controls, while no significant differences in benzoic acid and caffeine penetration profiles were observed. Results obtained with this 3D-psoriatic skin substitute demonstrate the potential and versatility of the model. It could offer good prediction of drug related toxicities at preclinical stages performed in order to avoid unexpected and costly findings in the clinic. Together, these findings offer a new approach for one of the most important challenges of the 21st century, namely, prediction of drug toxicity.

  12. Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease.

    PubMed

    Rajagopalan, Ravi; Pan, Lin; Schaefer, Caralee; Nicholas, John; Lim, Sharlene; Misialek, Shawn; Stevens, Sarah; Hooi, Lisa; Aleskovski, Natalia; Ruhrmund, Donald; Kossen, Karl; Huang, Lea; Yap, Sophia; Beigelman, Leonid; Serebryany, Vladimir; Liu, Jyanwei; Sastry, Srikonda; Seiwert, Scott; Buckman, Brad

    2017-01-01

    The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection. Copyright © 2016 American Society for Microbiology.

  13. Molecular and preclinical basis to inhibit PGE2 receptors EP2 and EP4 as a novel nonsteroidal therapy for endometriosis

    PubMed Central

    Arosh, Joe A.; Lee, JeHoon; Balasubbramanian, Dakshnapriya; Stanley, Jone A.; Long, Charles R.; Meagher, Mary W.; Osteen, Kevin G.; Bruner-Tran, Kaylon L.; Burghardt, Robert C.; Starzinski-Powitz, Anna; Banu, Sakhila K.

    2015-01-01

    Endometriosis is a debilitating, estrogen-dependent, progesterone-resistant, inflammatory gynecological disease of reproductive age women. Two major clinical symptoms of endometriosis are chronic intolerable pelvic pain and subfertility or infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent recurrence of disease. There is a fundamental need to identify nonestrogen or nonsteroidal targets for the treatment of endometriosis. Peritoneal fluid concentrations of prostaglandin E2 (PGE2) are higher in women with endometriosis, and this increased PGE2 plays important role in survival and growth of endometriosis lesions. The objective of the present study was to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on molecular and cellular aspects of the pathogenesis of endometriosis and associated clinical symptoms. Using human fluorescent endometriotic cell lines and chimeric mouse model as preclinical testing platform, our results, to our knowledge for the first time, indicate that selective inhibition of EP2/EP4: (i) decreases growth and survival of endometriosis lesions; (ii) decreases angiogenesis and innervation of endometriosis lesions; (iii) suppresses proinflammatory state of dorsal root ganglia neurons to decrease pelvic pain; (iv) decreases proinflammatory, estrogen-dominant, and progesterone-resistant molecular environment of the endometrium and endometriosis lesions; and (v) restores endometrial functional receptivity through multiple mechanisms. Our novel findings provide a molecular and preclinical basis to formulate long-term nonestrogen or nonsteroidal therapy for endometriosis. PMID:26199416

  14. Olfaction and color vision identify impending neurodegeneration in rapid eye movement sleep behavior disorder.

    PubMed

    Postuma, Ronald B; Gagnon, Jean-François; Vendette, Mélanie; Desjardins, Catherine; Montplaisir, Jacques Y

    2011-05-01

    For development of neuroprotective therapy, neurodegenerative disease must be identified as early as possible. However, current means of identifying "preclinical" neurodegeneration are limited. Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (RBD) are at >50% risk of synuclein-mediated neurodegenerative disease--this provides a unique opportunity to directly observe preclinical synucleinopathy and to test potential markers of preclinical disease. Patients with RBD without neurodegenerative disease were enrolled in a prospective cohort starting in 2004. Olfaction and color vision were tested at baseline, then annually for 5 years. Test results were compared between patients who developed neurodegenerative disease and those who remained disease-free. Out of 64 patients, 62 (97%) participated in annual follow-up. During follow-up, 21 developed disease, and 41 remained disease-free. Out of 21, 16 developed a combination of parkinsonism and dementia, 4 developed isolated parkinsonism (all with tremor), and 1 developed isolated dementia. Compared to those remaining disease-free, patients destined to develop disease had worse baseline olfaction (University of Pennsylvania Smell Identification Test [UPSIT] = 58.3 ± 27.0% age/sex-adjusted normal vs 80.2 ± 26.3%; p = 0.003) and color vision (Farnsworth-Munsell 100-Hue color test [FM-100] errors 153.0 ± 82.2% normal vs 120.2 ± 26.5%; p = 0.022). Kaplan-Meier 5-year-disease-free survival in those with normal olfaction was 86.0%, vs 35.4% with impaired olfaction (p = 0.029). Disease-free survival with normal color vision was 70.3%, vs 26.0% with impaired vision (p = 0.009). Both olfaction and color vision were reduced as much as 5 years before disease diagnosis, with only slight decline in preclinical stages. Olfaction and color vision identify early-stage synuclein-mediated neurodegenerative diseases. In most cases, abnormalities are measurable at least 5 years before disease onset, and progress slowly in the preclinical stages. Copyright © 2011 American Neurological Association.

  15. Preclinical dose number and its application in understanding drug absorption risk and formulation design for preclinical species.

    PubMed

    Wuelfing, W Peter; Daublain, Pierre; Kesisoglou, Filippos; Templeton, Allen; McGregor, Caroline

    2015-04-06

    In the drug discovery setting, the ability to rapidly identify drug absorption risk in preclinical species at high doses from easily measured physical properties is desired. This is due to the large number of molecules being evaluated and their high attrition rate, which make resource-intensive in vitro and in silico evaluation unattractive. High-dose in vivo data from rat, dog, and monkey are analyzed here, using a preclinical dose number (PDo) concept based on the dose number described by Amidon and other authors (Pharm. Res., 1993, 10, 264-270). PDo, as described in this article, is simply calculated as dose (mg/kg) divided by compound solubility in FaSSIF (mg/mL) and approximates the volume of biorelevant media per kilogram of animal that would be needed to fully dissolve the dose. High PDo values were found to be predictive of difficulty in achieving drug exposure (AUC)-dose proportionality in in vivo studies, as could be expected; however, this work analyzes a large data set (>900 data points) and provides quantitative guidance to identify drug absorption risk in preclinical species based on a single solubility measurement commonly carried out in drug discovery. Above the PDo values defined, >50% of all in vivo studies exhibited poor AUC-dose proportionality in rat, dog, and monkey, and these values can be utilized as general guidelines in discovery and early development to rapidly assess risk of solubility-limited absorption for a given compound. A preclinical dose number generated by biorelevant dilutions of formulated compounds (formulated PDo) was also evaluated and defines solubility targets predictive of suitable AUC-dose proportionality in formulation development efforts. Application of these guidelines can serve to efficiently identify compounds in discovery that are likely to present extreme challenges with respect to solubility-limited absorption in preclinical species as well as reduce the testing of poor formulations in vivo, which is a key ethical and resource matter.

  16. The value of integrating pre-clinical data to predict nausea and vomiting risk in humans as illustrated by AZD3514, a novel androgen receptor modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Claire, E-mail: claire.grant@astrazeneca.com; Ewart, Lorna; Muthas, Daniel

    Nausea and vomiting are components of a complex mechanism that signals food avoidance and protection of the body against the absorption of ingested toxins. This response can also be triggered by pharmaceuticals. Predicting clinical nausea and vomiting liability for pharmaceutical agents based on pre-clinical data can be problematic as no single animal model is a universal predictor. Moreover, efforts to improve models are hampered by the lack of translational animal and human data in the public domain. AZD3514 is a novel, orally-administered compound that inhibits androgen receptor signaling and down-regulates androgen receptor expression. Here we have explored the utility ofmore » integrating data from several pre-clinical models to predict nausea and vomiting in the clinic. Single and repeat doses of AZD3514 resulted in emesis, salivation and gastrointestinal disturbances in the dog, and inhibited gastric emptying in rats after a single dose. AZD3514, at clinically relevant exposures, induced dose-responsive “pica” behaviour in rats after single and multiple daily doses, and induced retching and vomiting behaviour in ferrets after a single dose. We compare these data with the clinical manifestation of nausea and vomiting encountered in patients with castration-resistant prostate cancer receiving AZD3514. Our data reveal a striking relationship between the pre-clinical observations described and the experience of nausea and vomiting in the clinic. In conclusion, the emetic nature of AZD3514 was predicted across a range of pre-clinical models, and the approach presented provides a valuable framework for predicition of clinical nausea and vomiting. - Highlights: • Integrated pre-clinical data can be used to predict clinical nausea and vomiting. • Data integrated from standard toxicology studies is sufficient to make a prediction. • The use of the nausea algorithm developed by Parkinson (2012) aids the prediction. • Additional pre-clinical studies can be used to confirm and quantify the risk.« less

  17. Therapeutic Applications of PARP Inhibitors: Anticancer Therapy and Beyond

    PubMed Central

    Curtin, Nicola; Szabo, Csaba

    2013-01-01

    The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination (HRR) repair is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well. PMID:23370117

  18. Human Milk Oligosaccharides and the Preterm Infant: A Journey in Sickness and in Health.

    PubMed

    Moukarzel, Sara; Bode, Lars

    2017-03-01

    Human milk oligosaccharides (HMOs) are a group of approximately 200 different unconjugated sugar structures in human milk proposed to support infant growth and development. Data from several preclinical animal studies and human cohort studies suggest HMOs reduce preterm infant mortality and morbidity by shaping the gut microbiome and protecting against necrotizing enterocolitis, candidiasis, and several other immune-related diseases. Current feeding practices and clinical algorithms do not consider infant HMO intake when assessing dietary adequacy or disease risk. Advancements in HMO analytical methodologies and HMO synthesis facilitate cohort and intervention studies to investigate which particular HMOs are most relevant in supporting preterm infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Can we prevent OA? Epidemiology and public health insights and implications.

    PubMed

    Runhaar, Jos; Zhang, Yuqing

    2018-05-01

    This narrative review discusses the potential of prevention of OA in different stages of the disease. The theoretical background for primary prevention (i.e. prevention of occurrence of definite structural or clinical OA in subjects free of the disease) and secondary prevention (i.e. prevention of progression of the disease in subjects with pre-clinical pathological changes to the joint) is provided and evidence for effective strategies is discussed. Since direct evidence for the prevention of OA development and progression is scarce, indirect evidence enhancing our current knowledge on the potential of OA prevention is additionally discussed. Also, implications of preventive strategies for study design and public health are considered. Prevention of OA has great potential, but as deliberated in the current review, there are still large gaps in our current knowledge and the implications of preventive strategies for the development and progression of OA require consideration.

  20. Tendinopathies and platelet-rich plasma (PRP): from pre-clinical experiments to therapeutic use

    PubMed Central

    Kaux, Jean-François; Drion, Pierre; Croisier, Jean-Louis; Crielaard, Jean-Michel

    2015-01-01

    Objectives: The restorative properties of platelets, through the local release of growth factors, are used in various medical areas. This article reviews fundamental and clinical research relating to platelet-rich plasma applied to tendinous lesions. Materials and method: Articles in French and English, published between 1 January 2012 and 31 December 2014. dealing with PRP and tendons were searched for using the Medline and Scopus data bases. Results: Forty-seven articles were identified which addressed pre-clinical and clinical studies: 27 relating to in vitro and in vivo animal studies and 20 relating to human studies. Of these, five addressed lateral epicondylitis, two addressed rotator cuff tendinopathies, ten dealt with patellar tendinopathies and three looked at Achilles tendinopathies. Conclusions: The majority of pre-clinical studies show that PRP stimulates the tendon’s healing process. However, clinical series remain more controversial and level 1, controlled, randomised studies are still needed. PMID:26195890

  1. The Potential of Adaptive Design in Animal Studies.

    PubMed

    Majid, Arshad; Bae, Ok-Nam; Redgrave, Jessica; Teare, Dawn; Ali, Ali; Zemke, Daniel

    2015-10-12

    Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research.

  2. The Potential of Adaptive Design in Animal Studies

    PubMed Central

    Majid, Arshad; Bae, Ok-Nam; Redgrave, Jessica; Teare, Dawn; Ali, Ali; Zemke, Daniel

    2015-01-01

    Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research. PMID:26473839

  3. Early bedside care during preclinical medical education: can technology-enhanced patient simulation advance the Flexnerian ideal?

    PubMed

    Gordon, James A; Hayden, Emily M; Ahmed, Rami A; Pawlowski, John B; Khoury, Kimberly N; Oriol, Nancy E

    2010-02-01

    Flexner wanted medical students to study at the patient bedside-a remarkable innovation in his time-so that they could apply science to clinical care under the watchful eye of senior physicians. Ever since his report, medical schools have reserved the latter years of their curricula for such an "advanced" apprenticeship, providing clinical clerkship experiences only after an initial period of instruction in basic medical sciences. Although Flexner codified the segregation of preclinical and clinical instruction, he was committed to ensuring that both domains were integrated into a modern medical education. The aspiration to fully integrate preclinical and clinical instruction continues to drive medical education reform even to this day. In this article, the authors revisit the original justification for sequential preclinical-clinical instruction and argue that modern, technology-enhanced patient simulation platforms are uniquely powerful for fostering simultaneous integration of preclinical-clinical content in a way that Flexner would have applauded. To date, medical educators tend to focus on using technology-enhanced medical simulation in clinical and postgraduate medical education; few have devoted significant attention to using immersive clinical simulation among preclinical students. The authors present an argument for the use of dynamic robot-mannequins in teaching basic medical science, and describe their experience with simulator-based preclinical instruction at Harvard Medical School. They discuss common misconceptions and barriers to the approach, describe their curricular responses to the technique, and articulate a unifying theory of cognitive and emotional learning that broadens the view of what is possible, feasible, and desirable with simulator-based medical education.

  4. Recommendations concerning the new U.S. National Institutes of Health initiative to balance the sex of cells and animals in preclinical research.

    PubMed

    Sandberg, Kathryn; Umans, Jason G

    2015-05-01

    The U.S. National Institutes of Health (NIH) announced last May that steps will be taken to address the over-reliance on male cells and animals in preclinical research. To further address this announcement, in September 2014, scientists with varying perspectives came together at Georgetown University to discuss the following questions. (1) What metrics should the NIH use to assess tangible progress on policy changes designed to address the over-reliance on male cells and animals in preclinical research? (2) How effective can education be in reducing the over-reliance on male cells and animals in preclinical research and what educational initiatives sponsored by the NIH would most likely effect change? (3) What criteria should the NIH use to determine rigorously defined exceptions to the future proposal requirement of a balance of male and female cells and animals in preclinical studies? (4) What additional strategies in addition to proposal requirements should NIH use to reduce the overreliance of male cells and animals in preclinical research? The resulting consensus presented herein includes input from researchers not only from diverse disciplines of basic and translational science including biology, cell and molecular biology, biochemistry, physiology, pharmacology, neuroscience, cardiology, endocrinology, nephrology, psychiatry, and obstetrics and gynecology, but also from recognized experts in publishing, industry, advocacy, science policy, clinical medicine, and population health. We offer our recommendations to aid the NIH as it selects, implements, monitors, and optimizes strategies to correct the over-reliance on male cells and animals in preclinical research. © FASEB.

  5. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems

    PubMed Central

    Raison, Charles L.; Hale, Matthew W.; Williams, Lawrence E.; Wager, Tor D.; Lowry, Christopher A.

    2015-01-01

    Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders. PMID:25628593

  6. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies.

    PubMed

    Barnes, Samuel R; Ng, Thomas S C; Santa-Maria, Naomi; Montagne, Axel; Zlokovic, Berislav V; Jacobs, Russell E

    2015-06-16

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI. A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP .

  7. From Molecular Biology to Clinical Trials: Toward Personalized Colorectal Cancer Therapy.

    PubMed

    Palma, Sabina; Zwenger, Ariel O; Croce, María V; Abba, Martín C; Lacunza, Ezequiel

    2016-06-01

    During the past years, molecular studies through high-throughput technologies have led to the confirmation of critical alterations in colorectal cancer (CRC) and the discovery of some new ones, including mutations, DNA methylations, and structural chromosomal changes. These genomic alterations might act in concert to dysregulate specific signaling pathways that normally exert their functions on critical cell phenotypes, including the regulation of cellular metabolism, proliferation, differentiation, and survival. Targeted therapy against key components of altered signaling pathways has allowed an improvement in CRC treatment. However, a significant percentage of patients with CRC and metastatic CRC will not benefit from these targeted therapies and will be restricted to systemic chemotherapy. Mechanisms of resistance have been associated with specific gene alterations. To fully understand the nature and significance of the genetic and epigenetic defects in CRC that might favor a tumor evading a given therapy, much work remains. Therefore, a dynamic link between basic molecular research and preclinical studies, which ultimately constitute the prelude to standardized therapies, is very important to provide better and more effective treatments against CRC. We present an updated revision of the main molecular features of CRC and their associated therapies currently under study in clinical trials. Moreover, we performed an unsupervised classification of CRC clinical trials with the aim of obtaining an overview of the future perspectives of preclinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes.

    PubMed

    Palleria, Caterina; Leporini, Christian; Maida, Francesca; Succurro, Elena; De Sarro, Giovambattista; Arturi, Franco; Russo, Emilio

    2016-07-01

    Type 2 diabetes mellitus is a complex metabolic disease that can cause serious damage to various organs. Among the best-known complications, an important role is played by cognitive impairment. Impairment of cognitive functioning has been reported both in type 1 and 2 diabetes mellitus. While this comorbidity has long been known, no major advances have been achieved in clinical research; it is clear that appropriate control of blood glucose levels represents the best current (although unsatisfactory) approach in the prevention of cognitive impairment. We have focused our attention on the possible effect on the brain of antidiabetic drugs, despite their effects on blood glucose levels, giving a brief rationale on the mechanisms (e.g. GLP-1, BDNF, ghrelin) that might be involved. Indeed, GLP-1 agonists are currently clinically studied in other neurodegenerative diseases (i.e. Parkinson's and Alzheimer's disease); furthermore, also other antidiabetic drugs have proven efficacy in preclinical studies. Overall, promising results are already available and finding new intervention strategies represents a current need in this field of research. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Longitudinal trends and subgroup analysis in publication patterns for preclinical data of newly approved drugs.

    PubMed

    Köster, Ursula; Nolte, Ingo; Michel, Martin C

    2016-02-01

    Having observed a large variation in the number and type of original preclinical publications for newly registered drugs, we have explored whether longitudinal trends and/or factors specific for certain drugs or their manufacturers may explain such variation. Our analysis is based on 1954 articles related to 170 newly approved drugs. The number of preclinical publications per compound declined from a median of 10.5 in 1991 to 3 in 2011. A similar trend was observed for the number of in vivo studies in general, but not in the subset of in vivo studies in animal models of disease. The percentage of compounds with studies using isolated human cells or cell lines almost doubled over time from 37 to 72%. Number of publications did not exhibit major differences between compounds intended for human versus veterinary use, therapeutic areas, small molecules versus biologicals, or innovator versus follow-up compounds; however, some companies may publish fewer studies per compound than others. However, there were qualitative differences in the types of models being used depending on the therapeutic area; specifically, compounds for use in oncology very often used isolated cells and cell lines, often from human origin. We conclude that the large variation in number and type of reported preclinical data is not easily explained. We propose that pharmaceutical companies should consistently provide a comprehensive documentation of the preclinical data they generate as part of their development programs in the public domain to enable a better understanding of the drugs they intend to market.

  10. Use of a collaborative tool to simplify the outsourcing of preclinical safety studies: an insight into the AstraZeneca-Charles River Laboratories strategic relationship.

    PubMed

    Martin, Frederic D C; Benjamin, Amanda; MacLean, Ruth; Hollinshead, David M; Landqvist, Claire

    2017-12-01

    In 2012, AstraZeneca entered into a strategic relationship with Charles River Laboratories whereby preclinical safety packages comprising safety pharmacology, toxicology, formulation analysis, in vivo ADME, bioanalysis and pharmacokinetics studies are outsourced. New processes were put in place to ensure seamless workflows with the aim of accelerating the delivery of new medicines to patients. Here, we describe in more detail the AstraZeneca preclinical safety outsourcing model and the way in which a collaborative tool has helped to translate the processes in AstraZeneca and Charles River Laboratories into simpler integrated workflows that are efficient and visible across the two companies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA

    PubMed Central

    Canetta, Sarah E.; Brown, Alan S.

    2013-01-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed. PMID:23956839

  12. Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury.

    PubMed

    Goldring, Christopher; Antoine, Daniel J; Bonner, Frank; Crozier, Jonathan; Denning, Chris; Fontana, Robert J; Hanley, Neil A; Hay, David C; Ingelman-Sundberg, Magnus; Juhila, Satu; Kitteringham, Neil; Silva-Lima, Beatriz; Norris, Alan; Pridgeon, Chris; Ross, James A; Young, Rowena Sison; Tagle, Danilo; Tornesi, Belen; van de Water, Bob; Weaver, Richard J; Zhang, Fang; Park, B Kevin

    2017-02-01

    Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721). © 2016 by the American Association for the Study of Liver Diseases.

  13. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations

    PubMed Central

    Gardiner, Katheleen J

    2015-01-01

    Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40–50. All individuals with DS will also develop the neuropathology of Alzheimer’s disease (AD) by the age of 30–40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700–1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies. PMID:25552901

  14. Cardiac PET perfusion tracers: current status and future directions.

    PubMed

    Maddahi, Jamshid; Packard, René R S

    2014-09-01

    PET myocardial perfusion imaging (MPI) is increasingly being used for noninvasive detection and evaluation of coronary artery disease. However, the widespread use of PET MPI has been limited by the shortcomings of the current PET perfusion tracers. The availability of these tracers is limited by the need for an onsite ((15)O water and (13)N ammonia) or nearby ((13)N ammonia) cyclotron or commitment to costly generators ((82)Rb). Owing to the short half-lives, such as 76 seconds for (82)Rb, 2.06 minutes for (15)O water, and 9.96 minutes for (13)N ammonia, their use in conjunction with treadmill exercise stress testing is either not possible ((82)Rb and (15)O water) or not practical ((13)N ammonia). Furthermore, the long positron range of (82)Rb makes image resolution suboptimal and its low myocardial extraction limits its defect resolution. In recent years, development of an (18)F-labeled PET perfusion tracer has gathered considerable interest. The longer half-life of (18)F (109 minutes) would make the tracer available as a unit dose from regional cyclotrons and allow use in conjunction with treadmill exercise testing. Furthermore, the short positron range of (18)F would result in better image resolution. Flurpiridaz F 18 is by far the most thoroughly studied in animal models and is the only (18)F-based PET MPI radiotracer currently undergoing clinical evaluation. Preclinical and clinical experience with Flurpiridaz F 18 demonstrated a high myocardial extraction fraction, high image and defect resolution, high myocardial uptake, slow myocardial clearance, and high myocardial-to-background contrast that was stable over time-important properties of an ideal PET MPI radiotracer. Preclinical data from other (18)F-labeled myocardial perfusion tracers are encouraging. Copyright © 2014. Published by Elsevier Inc.

  15. A DICOM-based 2nd generation Molecular Imaging Data Grid implementing the IHE XDS-i integration profile.

    PubMed

    Lee, Jasper; Zhang, Jianguo; Park, Ryan; Dagliyan, Grant; Liu, Brent; Huang, H K

    2012-07-01

    A Molecular Imaging Data Grid (MIDG) was developed to address current informatics challenges in archival, sharing, search, and distribution of preclinical imaging studies between animal imaging facilities and investigator sites. This manuscript presents a 2nd generation MIDG replacing the Globus Toolkit with a new system architecture that implements the IHE XDS-i integration profile. Implementation and evaluation were conducted using a 3-site interdisciplinary test-bed at the University of Southern California. The 2nd generation MIDG design architecture replaces the initial design's Globus Toolkit with dedicated web services and XML-based messaging for dedicated management and delivery of multi-modality DICOM imaging datasets. The Cross-enterprise Document Sharing for Imaging (XDS-i) integration profile from the field of enterprise radiology informatics was adopted into the MIDG design because streamlined image registration, management, and distribution dataflow are likewise needed in preclinical imaging informatics systems as in enterprise PACS application. Implementation of the MIDG is demonstrated at the University of Southern California Molecular Imaging Center (MIC) and two other sites with specified hardware, software, and network bandwidth. Evaluation of the MIDG involves data upload, download, and fault-tolerance testing scenarios using multi-modality animal imaging datasets collected at the USC Molecular Imaging Center. The upload, download, and fault-tolerance tests of the MIDG were performed multiple times using 12 collected animal study datasets. Upload and download times demonstrated reproducibility and improved real-world performance. Fault-tolerance tests showed that automated failover between Grid Node Servers has minimal impact on normal download times. Building upon the 1st generation concepts and experiences, the 2nd generation MIDG system improves accessibility of disparate animal-model molecular imaging datasets to users outside a molecular imaging facility's LAN using a new architecture, dataflow, and dedicated DICOM-based management web services. Productivity and efficiency of preclinical research for translational sciences investigators has been further streamlined for multi-center study data registration, management, and distribution.

  16. Transcleral delivery of triamcinolone acetonide and ranibizumab to retinal tissues using macroesis.

    PubMed

    Singh, Rishi P; Mathews, Michael Ellen; Kaufman, Michael; Riga, Alan

    2010-02-01

    To determine the feasibility of macroesis for the delivery of ranibizumab and triamcinolone acetonide via a transcleral route. Macroesis is a non-invasive method of drug delivery that uses alternating current (AC) to deliver drugs to target tissues. Two preclinical models of drug delivery were used for feasibility studies of delivering ranibizumab and triamcinolone acetonide to ocular tissues. In the first model, full-thickness sections of rabbit ocular tissue (conjunctiva to retina) were placed on an interdigitated electrode platform, and the drug was placed on the surface of the tissue. A non-uniform electrical field was applied to the ocular tissue, and electrical conductivity, a measurement of drug delivery, was monitored during the course of the experiment. In a second model, termed a 'simulated vitreous model,' the same full-thickness sections of rabbit ocular tissue were mounted below the electrode device, and the test compounds were placed on the electrodes. The fluid below the tissue, which simulated the vitreous cavity, was analysed using UV spectroscopy at the end of the study for the presence of drug. In the electrical conductivity studies, the electric characteristics of the tissue-drug system clearly showed movement of the drug through the tissue to the dielectric sensor based on changes in the electrical conductivity of the tissue sample with triamcinolone. No change in tissue conductivity was observed when no drug was placed. No heat generation occurred during the course of the study; nor was any gross tissue destruction noted. In the simulated vitreous model, studies using triamcinolone yielded concentrations ranging from 0.280 to 0.970 mg/ml, depending on the voltage, frequency and time applied. In as little as 6.7 min, clinically efficacious doses could be obtained in the preclinical system. Studies using ranibizumab yielded concentrations of 0.070-0.171 mg/ml, depending on the voltage, frequency, and time applied. In as little at 6.7 min, 92.8% throughput could be achieved. Successful delivery of ranibizumab and triamcinolone acetonide can be achieved with macroesis in preclinical studies.

  17. Cytomegalovirus Antivirals and Development of Improved Animal Models

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  18. Preclinical animal anxiety research - flaws and prejudices.

    PubMed

    Ennaceur, Abdelkader; Chazot, Paul L

    2016-04-01

    The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.

  19. Bronchial blood supply after lung transplantation without bronchial artery revascularization.

    PubMed

    Nicolls, Mark R; Zamora, Martin R

    2010-10-01

    This review discusses how the bronchial artery circulation is interrupted following lung transplantation and what may be the long-term complications of compromising systemic blood flow to allograft airways. Preclinical and clinical studies have shown that the loss of airway microcirculations is highly associated with the development of airway hypoxia and an increased susceptibility to chronic rejection. The bronchial artery circulation has been highly conserved through evolution. Current evidence suggests that the failure to routinely perform bronchial artery revascularization at the time of lung transplantation may predispose patients to develop the bronchiolitis obliterans syndrome.

  20. The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies.

    PubMed

    Kang, Chang Moo; Babicky, Michele L; Lowy, Andrew M

    2014-03-01

    Pancreatic cancer remains a devastating disease with a mortality rate that has not changed substantially in decades. Novel therapies are therefore desperately needed. The RON receptor tyrosine kinase has been identified as an important mediator of KRAS oncogene addiction and is overexpressed in the majority of pancreatic cancers. Preclinical studies show that inhibition of RON function decreases pancreatic cancer cell migration, invasion, and survival and can sensitize pancreatic cancer cells to chemotherapy. This article reviews the current state of knowledge regarding RON biology and pancreatic cancer and discusses its potential as a therapeutic target.

  1. A psychological approach to providing self-management education for people with type 2 diabetes: the Diabetes Manual

    PubMed Central

    Sturt, Jackie; Taylor, Hafrun; Docherty, Andrea; Dale, Jeremy; Louise, Taylor

    2006-01-01

    Background The objectives of this study were twofold (i) to develop the Diabetes Manual, a self-management educational intervention aimed at improving biomedical and psychosocial outcomes (ii) to produce early phase evidence relating to validity and clinical feasibility to inform future research and systematic reviews. Methods Using the UK Medical Research Council's complex intervention framework, the Diabetes Manual and associated self management interventions were developed through pre-clinical, and phase I evaluation phases guided by adult-learning and self-efficacy theories, clinical feasibility and health policy protocols. A qualitative needs assessment and an RCT contributed data to the pre-clinical phase. Phase I incorporated intervention development informed by the pre-clinical phase and a feasibility survey. Results The pre-clinical and phase I studies resulted in the production in the Diabetes Manual programme for trial evaluation as delivered within routine primary care consultations. Conclusion This complex intervention shows early feasibility and face validity for both diabetes health professionals and people with diabetes. Randomised trial will determine effectiveness against clinical and psychological outcomes. Further study of some component parts, delivered in alternative combinations, is recommended. PMID:17129376

  2. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests.

    USDA-ARS?s Scientific Manuscript database

    The current review is part of a special issue entitled “Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment”; it deals with the description of a pharmacological strategy aiming to actually determine the potential contribution of food-related com...

  3. Targeting the RAS oncogene

    PubMed Central

    Takashima, Asami

    2013-01-01

    Introduction The Ras proteins (K-Ras, N-Ras, H-Ras) are GTPases that function as molecular switches for a variety of critical cellular activities and their function is tightly and temporally regulated in normal cells. Oncogenic mutations in the RAS genes, which create constitutively-active Ras proteins, can result in uncontrolled proliferation or survival in tumor cells. Areas covered The paper discusses three therapeutic approaches targeting the Ras pathway in cancer: 1) Ras itself, 2) Ras downstream pathways, and 3) synthetic lethality. The most adopted approach is targeting Ras downstream signaling, and specifically the PI3K-AKT-mTOR and Raf-MEK pathways, as they are frequently major oncogenic drivers in cancers with high Ras signaling. Although direct targeting of Ras has not been successful clinically, newer approaches being investigated in preclinical studies, such as RNA interference-based and synthetic lethal approaches, promise great potential for clinical application. Expert opinion The challenges of current and emerging therapeutics include the lack of “tumor specificity” and their limitation to those cancers which are “dependent” upon aberrant Ras signaling for survival. While the newer approaches have the potential to overcome these limitations, they also highlight the importance of robust preclinical studies and bidirectional translational research for successful clinical development of Ras-related targeted therapies. PMID:23360111

  4. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  5. Noninvasive imaging of experimental lung fibrosis.

    PubMed

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  6. The Syk kinase as a therapeutic target in leukemia and lymphoma.

    PubMed

    Efremov, Dimitar G; Laurenti, Luca

    2011-05-01

    The B-cell receptor (BCR) delivers antigen-dependent and -independent signals that have been implicated in the pathogenesis of several common B-cell malignancies. Agents that can efficiently block BCR signaling have recently been developed and are currently being evaluated as novel targeted therapies. Among these, agents that inhibit the Syk kinase appear particularly promising in preclinical and early clinical studies. The manuscript provides an overview of recent findings that implicate Syk and the BCR signaling pathway in the pathogenesis of several common lymphoid malignancies. It outlines preclinical and early clinical experiences with the Syk inhibitor fostamatinib disodium (R788) and discusses various options for further clinical development of this compound. Inhibitors of Syk or other components of the BCR signaling pathway are emerging as an exciting novel class of agents for the treatment of common B-cell malignancies. Future efforts should focus on defining the disease entities that are most likely to benefit from these agents, although considerable evidence is already available to pursue such studies in patients with chronic lymphocytic leukemia. Combinations with chemo-immunotherapy, treatment of early-stage disease and consolidation therapy should all be explored and could lead to the development of novel therapeutic approaches with improved efficacy, tolerability and toxicity profiles.

  7. Trial Watch: Toll-like receptor agonists for cancer therapy.

    PubMed

    Vacchelli, Erika; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-08-01

    Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology , we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.

  8. Clinical and Preclinical Evidence for Functional Interactions of Cannabidiol and Δ9-Tetrahydrocannabinol.

    PubMed

    Boggs, Douglas L; Nguyen, Jacques D; Morgenson, Daralyn; Taffe, Michael A; Ranganathan, Mohini

    2018-01-01

    The plant Cannabis sativa, commonly called cannabis or marijuana, has been used for its psychotropic and mind-altering side effects for millennia. There has been growing attention in recent years on its potential therapeutic efficacy as municipalities and legislative bodies in the United States, Canada, and other countries grapple with enacting policy to facilitate the use of cannabis or its constituents for medical purposes. There are >550 chemical compounds and >100 phytocannabinoids isolated from cannabis, including Δ 9 -tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is thought to produce the main psychoactive effects of cannabis, while CBD does not appear to have similar effects. Studies conflict as to whether CBD attenuates or exacerbates the behavioral and cognitive effects of THC. This includes effects of CBD on THC-induced anxiety, psychosis, and cognitive deficits. In this article, we review the available evidence on the pharmacology and behavioral interactions of THC and CBD from preclinical and human studies, particularly with reference to anxiety and psychosis-like symptoms. Both THC and CBD, as well as other cannabinoid molecules, are currently being evaluated for medicinal purposes, separately and in combination. Future cannabis-related policy decisions should include consideration of scientific findings, including the individual and interactive effects of CBD and THC.

  9. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    PubMed Central

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M.; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed. PMID:26617515

  10. Actual concept of "probiotics": is it more functional to science or business?

    PubMed

    Caselli, Michele; Cassol, Francesca; Calò, Girolamo; Holton, John; Zuliani, Giovanni; Gasbarrini, Antonio

    2013-03-14

    It is our contention that the concept of a probiotic as a living bacterium providing unspecified health benefits is inhibiting the development and establishment of an evidence base for the growing field of pharmacobiotics. We believe this is due in part to the current regulatory framework, lack of a clear definition of a probiotic, the ease with which currently defined probiotics can be positioned in the market place, and the enormous profits earned for minimum investment in research. To avoid this, we believe the following two actions are mandatory: international guidelines by a forum of stakeholders made available to scientists and clinicians, patient organizations, and governments; public research funds made available to the scientific community for performing independent rigorous studies both at the preclinical and clinical levels.

  11. Actual concept of "probiotics": Is it more functional to science or business?

    PubMed Central

    Caselli, Michele; Cassol, Francesca; Calò, Girolamo; Holton, John; Zuliani, Giovanni; Gasbarrini, Antonio

    2013-01-01

    It is our contention that the concept of a probiotic as a living bacterium providing unspecified health benefits is inhibiting the development and establishment of an evidence base for the growing field of pharmacobiotics. We believe this is due in part to the current regulatory framework, lack of a clear definition of a probiotic, the ease with which currently defined probiotics can be positioned in the market place, and the enormous profits earned for minimum investment in research. To avoid this, we believe the following two actions are mandatory: international guidelines by a forum of stakeholders made available to scientists and clinicians, patient organizations, and governments; public research funds made available to the scientific community for performing independent rigorous studies both at the preclinical and clinical levels. PMID:23539674

  12. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy

    PubMed Central

    Grounds, Miranda D.; Radley, Hannah G.; Lynch, Gordon S.; Nagaraju, Kanneboyina; De Luca, Annamaria

    2008-01-01

    This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD. PMID:18499465

  13. Common data elements for preclinical epilepsy research: Standards for data collection and reporting. A TASK3 report of the AES/ILAE Translational Task Force of the ILAE.

    PubMed

    Harte-Hargrove, Lauren C; French, Jacqueline A; Pitkänen, Asla; Galanopoulou, Aristea S; Whittemore, Vicky; Scharfman, Helen E

    2017-11-01

    The major objective of preclinical translational epilepsy research is to advance laboratory findings toward clinical application by testing potential treatments in animal models of seizures and epilepsy. Recently there has been a focus on the failure of preclinical discoveries to translate reliably, or even to be reproduced in different laboratories. One potential cause is a lack of standardization in preclinical data collection. The resulting difficulties in comparing data across studies have led to high cost and missed opportunity, which in turn impede clinical trials and advances in medical care. Preclinical epilepsy research has successfully brought numerous antiseizure treatments into the clinical practice, yet the unmet clinical needs have prompted the reconsideration of research strategies to optimize epilepsy therapy development. In the field of clinical epilepsy there have been successful steps to improve such problems, such as generation of common data elements (CDEs) and case report forms (CRFs and standards of data collection and reporting) by a team of leaders in the field. Therefore, the Translational Task Force was appointed by the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES), in partnership with the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institutes of Health (NIH) to define CDEs for animal epilepsy research studies and prepare guidelines for data collection and experimental procedures. If adopted, the preclinical CDEs could facilitate collaborative epilepsy research, comparisons of data across different laboratories, and promote rigor, transparency, and impact, particularly in therapy development. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  14. First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready?

    PubMed

    Baylis, Francoise; McLeod, Marcus

    2017-01-01

    A prospective first-in-human Phase 1 CRISPR gene editing trial in the United States for patients with melanoma, synovial sarcoma, and multiple myeloma offers hope that gene editing tools may usefully treat human disease. An overarching ethical challenge with first-in-human Phase 1 clinical trials, however, is knowing when it is ethically acceptable to initiate such trials on the basis of safety and efficacy data obtained from pre-clinical studies. If the pre-clinical studies that inform trial design are themselves poorly designed - as a result of which the quality of pre-clinical evidence is deficient - then the ethical requirement of scientific validity for clinical research may not be satisfied. In turn, this could mean that the Phase 1 clinical trial will be unsafe and that trial participants will be exposed to risk for no potential benefit. To assist sponsors, researchers, clinical investigators and reviewers in deciding when it is ethically acceptable to initiate first-in-human Phase 1 CRISPR gene editing clinical trials, structured processes have been developed to assess and minimize translational distance between pre-clinical and clinical research. These processes draw attention to various features of internal validity, construct validity, and external validity. As well, the credibility of supporting evidence is to be critically assessed with particular attention to optimism bias, financial conflicts of interest and publication bias. We critically examine the pre-clinical evidence used to justify the first-inhuman Phase 1 CRISPR gene editing cancer trial in the United States using these tools. We conclude that the proposed trial cannot satisfy the ethical requirement of scientific validity because the supporting pre-clinical evidence used to inform trial design is deficient. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes

    PubMed Central

    Wang, Hansen; Pati, Sandipan; Pozzo-Miller, Lucas; Doering, Laurie C.

    2015-01-01

    Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases. PMID:25767435

  16. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models

    PubMed Central

    Finch, Paul W; Mark Cross, Lawrence J; McAuley, Daniel F; Farrell, Catherine L

    2013-01-01

    Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin. PMID:24151975

  17. Inflaming the Brain: CRPS a model disease to understand Neuroimmune interactions in Chronic Pain

    PubMed Central

    Linnman, C; Becerra, L; Borsook, D

    2012-01-01

    We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS. PMID:23188523

  18. Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain.

    PubMed

    Linnman, C; Becerra, L; Borsook, D

    2013-06-01

    We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS.

  19. Current status and future perspectives of sonodynamic therapy in glioma treatment.

    PubMed

    Wang, Xiaobing; Jia, Yali; Wang, Pan; Liu, Quanhon; Zheng, Hairong

    2017-07-01

    Malignant glioma is one of the most challenging central nervous system diseases to treat, and has high rates of recurrence and mortality. The current therapies include surgery, radiation therapy, and chemotherapy, although these approaches often failed to control tumor progression or improve patient survival. Sonodynamic therapy is a developing cancer treatment that uses ultrasound combined with a sonosensitizer to synergistically kill tumor cells, and has provided impressive results in both in vitro and in vivo studies. The ultrasound waves can penetrate deep tissues and reversibly open the blood-brain barrier to enhance drug delivery to the brain. Thus, sonodynamic therapy has a promising potential in glioma treatment. In this review, we summarize the studies that have confirmed the pre-clinical efficacy of sonodynamic therapy for glioma treatment, and discuss the future directions for this emerging treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Current and Future Clinical Applications of High-Intensity Focused Ultrasound (HIFU) for Pancreatic Cancer.

    PubMed

    Jang, Hyun Joo; Lee, Jae-Young; Lee, Don-Haeng; Kim, Won-Hong; Hwang, Joo Ha

    2010-09-01

    High-intensity focused ultrasound (HIFU) is a novel therapeutic modality that permits noninvasive treatment of various benign and malignant solid tumors, including prostatic cancer, uterine fibroids, hepatic tumors, renal tumors, breast cancers, and pancreatic cancers. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumors, including pancreatic cancer. The results of nonrandomized studies of HIFU therapy in patients with pancreatic cancer have suggested that HIFU treatment can effectively alleviate cancer-related pain without any significant complications. This noninvasive method of delivering ultrasound energy into the body has recently been evolving from a method for purely thermal ablation to harnessing the mechanical effects of HIFU to induce a systemic immune response and to enhance targeted drug delivery. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.

Top