Sample records for current prestressing technology

  1. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    NASA Astrophysics Data System (ADS)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  2. Full-Scale Prestress Loss Monitoring of Damaged RC Structures Using Distributed Optical Fiber Sensing Technology

    PubMed Central

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590

  3. Full-scale prestress loss monitoring of damaged RC structures using distributed optical fiber sensing technology.

    PubMed

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.

  4. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    NASA Astrophysics Data System (ADS)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  5. Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo; Feng, De-Cheng

    2018-01-01

    Monitoring prestressing forces is essential for prestressed concrete box girder bridges. However, the current monitoring methods used for prestressing force were not applicable for a box girder neither because of the sensor’s setup being constrained or shear lag effect not being properly considered. Through combining with the previous analysis model of shear lag effect in the box girder, this paper proposed an indirect monitoring method for on-site determination of prestressing force in a concrete box girder utilizing the distributed long-gauge fiber Bragg grating sensor. The performance of this method was initially verified using numerical simulation for three different distribution forms of prestressing tendons. Then, an experiment involving two concrete box girders was conducted to study the feasibility of this method under different prestressing levels preliminarily. The results of both numerical simulation and lab experiment validated this method’s practicability in a box girder.

  6. Monitoring based maintenance utilizing actual stress sensory technology

    NASA Astrophysics Data System (ADS)

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables one to provide adequate accuracy and reliability for monitoring actual stresses of those steel tendons during the life cycle of infrastructures. An example of a field application at a cable-stayed bridge is described.

  7. Assessment of the behavior of reinforced concrete beams retrofitted with pre-stressed CFPR subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Hojatkashani, Ata; Zanjani, Sara

    2018-03-01

    Rehabilitation of weak and damaged structures has been considered widely during recent years. A relatively modern way of strengthening concrete components is to confine parts under tension and shear by means of carbon fiber reinforce polymer (CFRP). This way of strengthening due to the conditions of composite materials such as light weight, linear elastic behavior until failure point, high tensile strength, high elastic modulus, resistance against corrosion, and high fatigue resistance has become so common. During structural strengthening by means of not pre-stressed FRP materials, usually, it is not possible to benefit from the maximum capacity of FRP materials. In addition, sometimes, the expensive cost of such materials will not make a suitable balance between rates of strengthening and consuming spending. Thus, pre-stressing CFRP materials has an undeniable role in the effective use of materials. In the current research, general procedure of simulation using finite-element method (FEM) by means of the numerical package ABAQUS has been presented. In this article, 12 reinforced concrete (RC) models in two states (strengthened with simple and pre-stressed CFRP) under cycling loading have been considered. A parametric study has been carried out in this research on the effects of parameters such as CFRP surface area, percentage of tensile steel rebar and pre-stressing stress on ultimate load carrying capacity (ULCC), stiffness, and the ability of depreciation energy for the samples. In the current article also, for design parameters, percentages of tensile steel rebars, surface area of CFPR sheets, and the effective pre-stressing stress in RC beams retrofitted with pre-stressed CFPR sheets have investigated. In this paper, it was investigated that using different amount of parameters such as steel rebar percentage, CFRP surface area percentage, and CFRP pre-stressing, the resulted ULCC and energy depreciation of the specimens was observed to be increasing and decreasing. Results from examined specimens with optimum steel rebar percentage, CFRP surface area percentage, and CFRP pre-stressing which had the most enhancement on ULCC and energy depreciation are reported in the current article.

  8. Strengthening of bridges by post-tensioning using monostrands in substituted cable ducts

    NASA Astrophysics Data System (ADS)

    Klusáček, Ladislav; Svoboda, Adam

    2017-09-01

    Post-tensioning is suitable, reliable and durable method of strengthening existing engineering structures, especially bridges. The high efficiency of post-tensioning can be seen in many applications throughout the world. In this paper the method is extended by a structural system of substituted cable ducts, which allows for significantly widening application of prestressing so it’s convenient mostly for application on beam bridges or slab bridges (built in years 1920 - 1960). The method of substituted cable ducts is based on theoretical knowledge and technical procedures, which were made possible through the development in prestressing systems, particularly the development of prestressing tendons (monostrands) and encased anchorages, as well as progress in drilling technology. This technique is highly recommended due to minimization of interventions into the constructions, unseen method of cable arrangement and hence the absence of impact on appearance, which is appreciated not only in case of valuable historical structures but also in general. It is possible to summarise that posttensioning by monostrands in substituted cable ducts is a highly effective method of strengthening existing bridges in order to increase their load capacities in terms of current traffic load and to extend their service life.

  9. Determination of service stresses in pretensioned beams, final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    This report presents research on the evaluation of service flexural stresses and cracking moment in prestressed concrete members and on the minimum reinforcement requirements that are currently controlled by the flexural cracking moment. In prestress...

  10. Assessing the need for intermediate diaphragms in prestressed concrete bridges.

    DOT National Transportation Integrated Search

    2008-03-01

    Reinforced concrete intermediate diaphragms (IDs) are currently being used in prestressed concrete (PC) girder bridges in Louisiana. Some of the advantages of providing IDs are disputed in the bridge community; the use of IDs increases the cost and t...

  11. Assessing the Needs for intermediate diaphragms in prestressed concrete bridges : summary of report.

    DOT National Transportation Integrated Search

    2008-05-01

    Reinforced concrete Intermediate Diaphragms (IDs) are currently being used in prestressed concrete (PC) girder bridges in Louisiana. Some of the advantages of providing IDs are disputed in the bridge community because the use of IDs increases the cos...

  12. Design recommendations for the optimized continuity diaphragm for prestressed concrete bulb-T beams.

    DOT National Transportation Integrated Search

    2008-01-01

    This research focused on prestressed concrete bulb-T (PCBT) beams made composite with a cast-in-place concrete deck and continuous over several spans through the use of continuity diaphragms. The current design procedure in AASHTO states that a conti...

  13. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : final report.

    DOT National Transportation Integrated Search

    2016-10-01

    The objective of this study was to determine the economic impact of designing pre-tensioned prestressed concrete beam (PPCB) : bridges utilizing the continuity developed in the bridge deck as opposed to the current Iowa Department of Transportation (...

  14. Effects of increasing the allowable compressive stress at release on the shear strength of prestressed concrete girders.

    DOT National Transportation Integrated Search

    2008-09-01

    In recent years, several research projects have been conducted to study the feasibility of increasing the allowable : compressive stress in concrete at prestress transfer, currently defined as 0.60f'ci in the AASHTO LRFD Bridge : Design Specification...

  15. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : tech transfer summary.

    DOT National Transportation Integrated Search

    2016-10-01

    The objective of this study was to determine the economic impact of : designing pre-tensioned prestressed concrete beam (PPCB) bridges : utilizing the continuity developed in the bridge deck as opposed to the : current Iowa Department of Transportati...

  16. Unbonded prestressing tendons and their role in the construction of slender elements of buildings

    NASA Astrophysics Data System (ADS)

    Mieszczak, M.

    2018-03-01

    Steel unbonded tendons have been introduced in Europe for construction prestressing many years later than in the USA, Honkong, Singapore or Australia. In Poland, they appeared in the early 1990s. Despite their short application, in the last decade, the Institute of Materials and Building Constructions of the Cracow University of Technology in cooperation with the TCE Structural Design & Consulting company has developed and implemented several interesting and unique designs of building components, using the advantages of this type of prestressing. In the author’s work, apart from the short description of these tendons, several selected (own and foreign) projects of unique character have been presented.

  17. 0-6652 : spliced Texas girder bridges.

    DOT National Transportation Integrated Search

    2015-02-01

    Spliced girder technology continues to attract : attention due to its versatility over traditional : prestressed concrete highway bridge construction. : By joining multiple precast concrete girders using : post-tensioning, spliced girder technology :...

  18. An advanced EM railgun design

    NASA Astrophysics Data System (ADS)

    Hallse, R. L.; Weiman, S. M.

    1986-11-01

    A progress report is presented from a study of structural design concepts for a large, square-bore, multi-shot railgun. The railgun is to have multi-MA current, a barrel longer than 15 ft, a thermally-managed breech 3 ft long, and pre-stressed internal components. The design, as of early 1986, had a one-piece monolithic circular shell, S-glass/epoxy insulators, and bolt-loaded steel pre-stressed plates. Thermal management is achieved with longitudinal cooling slots with numerous water and air inlets. The device is instrumented for gun current, voltage, bore velocity, magnetic field, rail and armature current, bore dimensions and coolant temperature.

  19. Post-tensioning technologies.

    DOT National Transportation Integrated Search

    2013-04-01

    Posttensioned bridge construction has become increasingly popular and financially competitive with traditional prestressed concrete : and steel plate girder bridges. Unfortunately, Indiana has experienced several constructionrelated problems in...

  20. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures

    PubMed Central

    Cho, Keunhee; Park, Sung Yong; Cho, Jeong-Rae; Kim, Sung Tae; Park, Young-Hwan

    2015-01-01

    Prestressed concrete (PSC) is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM) sensors to develop a method for tracking representative indicators of the prestress force using smart strands. PMID:26083230

  1. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    DOT National Transportation Integrated Search

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  2. Investigation of long-term prestress losses in pretensioned high performance concrete girders.

    DOT National Transportation Integrated Search

    2005-01-01

    Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress loss...

  3. Health monitoring of prestressing tendons in post-tensioned concrete structures

    NASA Astrophysics Data System (ADS)

    Salamone, Salvatore; Bartoli, Ivan; Nucera, Claudio; Phillips, Robert; Lanza di Scalea, Francesco

    2011-04-01

    Currently 90% of bridges built in California are post-tensioned box-girder. In such structures the steel tendons are the main load-carrying components. The loss of prestress, as well as the presence of defects or the tendon breakage, can be catastrophic for the entire structure. Unfortunately, today there is no well-established method for the monitoring of prestressing (PS) tendons that can provide simultaneous information related to the presence of defects and the level of prestress in a continuous, real time manner. If such a monitoring system were available, considerable savings would be achieved in bridge maintenance since repairs would be implemented in a timely manner without traffic disruptions. This paper presents a health monitoring system for PS tendons in post-tensioned structures of interest to Caltrans. Such a system uses ultrasonic guided waves and embedded sensors to provide simultaneously and in real time, (a) measurements of the level of applied prestress, and (b) defect detection at early grow stages. The proposed PS measurement technique exploits the sensitivity of ultrasonic waves to the inter-wire contact developing in a multi-wire strand as a function of prestress level. In particular the nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Moreover this paper also present real-time damage detection and location in post-tensioned bridge joints using Acoustic Emission techniques. Experimental tests on large-scale single-tendon PT joint specimens, subjected to multiple load cycles, will be presented to validate the monitoring of PS loads (through nonlinear ultrasonic probing) and the monitoring of damage progression and location (through acoustic emission techniques). Issues and potential for the use of such techniques to monitor post-tensioned bridges in the field will be discussed.

  4. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the same ultimate capacity, but reinforced with either steel, PCP or FRP rebars, the service load deflections of beams reinforced with PCP are comparable to that of a steel reinforced concrete beam, and are four times smaller than the deflection of the companion FRP reinforced beam. Similarly, the crack width of the PCP reinforced beams under service loads is comparable to that of the steel reinforced beam while the FRP reinforced beam developed unacceptably wide cracks. In the analytical part comprehensive analysis of the experimental data in both flexure and shear is performed. It is determined that the existing design expressions for ultimate flexural strength and service load deflection calculation cannot accurately predict the response of PCP reinforced beams. Accordingly, new expressions for calculation of deflection, crack width, tension stiffening, and ultimate capacity of the PCP reinforced beams are proposed. The predictions of the proposed methods of analysis agree very well with the corresponding experimental data. Based on the results of the current study, it is concluded that high strength concrete prisms prestressed with carbon fibre reinforced plastic bars can be used as reinforcement in concrete structures to avoid the problems of large deflections and wide cracks under service loads.

  5. Development of Lateral Prestress in High-Strength Concrete-Filled FRP Tubes

    NASA Astrophysics Data System (ADS)

    Vincent, T.; Ozbakkaloglu, T.

    2018-02-01

    This paper reports on an experimental investigation into the axial and lateral strain development of fiber reinforced polymer (FRP) confined high-strength concrete (HSC) with prestressed FRP shells. A total of 24 aramid FRP (AFRP)-confined concrete specimens were manufactured as concrete-filled FRP tubes (CFFTs) with instrumentation to measure the strain variations during application of prestress, removal of end constraints and progressive prestress losses. Prestressed CFFT specimens were prepared with three different dose rates of expansive mineral admixture to create a range of lateral prestress applied to AFRP tubes manufactured with sheet thicknesses of 0.2 or 0.3 mm/ply and referred to as lightly- or well-confined, respectively. In addition to these three levels of prestress, non-prestressed companion specimens were manufactured and tested to determine baseline performance. The experimental results from this study indicate that lateral prestressing of CFFTs manufactured with HSC can be achieved by varying the expansive mineral admixture dose rate with a lateral prestress of up to 7.3 MPa recorded in this study. Significant strain variations were measured during removal of the end constraints with up to 700 microstrain recorded in the axial direction. Finally, the measurement of prestress losses for the month following prestress application revealed minimal progressive losses, with only 250 and 100 με recorded for the axial and hoop strains, respectively.

  6. Feasibility analysis of ultra high performance concrete for prestressed concrete bridge applications.

    DOT National Transportation Integrated Search

    2010-07-01

    UHPC is an emerging material technology in which concrete develops very high : compressive strengths and exhibits improved tensile strength and toughness. A : comprehensive literature and historical application review was completed to determine the :...

  7. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor

    PubMed Central

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-01-01

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172

  8. A Sensor-Type PC Strand with an Embedded FBG Sensor for Monitoring Prestress Forces

    PubMed Central

    Kim, Sung Tae; Park, YoungHwan; Park, Sung Yong; Cho, Keunhee; Cho, Jeong-Rae

    2015-01-01

    Prestressed Concrete Wire and Strand (PC) strands are the most used materials to introduce prestress in a Pre-Stressed Concrete (PSC) structure. However, it is difficult to evaluate the final prestress force of the PC strand after prestressing or its residual prestress force after completion of the structure on site. This impossibility to assess eventual loss of prestress of the PC strand has resulted in a number of serious accidents and even in the collapse of several structures. This situation stresses the necessity to maintain the prestress force residual or after prestressing for the evaluation of the health of the concrete structure throughout its lifespan. Recently, several researchers have studied methods enabling one to verify the prestress force by inserting an optical fiber sensor inside the strand but failed to provide simple techniques for the fabrication of these devices to fulfill measurement performance from the design prestress to failure. Moreover, these methods require the additional installation of electrical resistance strain gages, displacement sensors and load cells on the outer surface of the structure for long-term precise measurement. This paper proposes a method enabling one to evaluate precisely and effectively the prestress force of the PC strand and intends to verify the applicability of the proposed method on actual concrete structures. To that end, an innovative PC strand is developed by embedding a Fiber Bragg Grating (FBG) sensor in the core wire of the PC strand so as to enable short term as well as long term monitoring. The measurement performance of the developed strand is then evaluated experimentally and the reliability of the monitoring data is assessed. PMID:25580903

  9. A sensor-type PC strand with an embedded FBG sensor for monitoring prestress forces.

    PubMed

    Kim, Sung Tae; Park, YoungHwan; Park, Sung Yong; Cho, Keunhee; Cho, Jeong-Rae

    2015-01-08

    Prestressed Concrete Wire and Strand (PC) strands are the most used materials to introduce prestress in a Pre-Stressed Concrete (PSC) structure. However, it is difficult to evaluate the final prestress force of the PC strand after prestressing or its residual prestress force after completion of the structure on site. This impossibility to assess eventual loss of prestress of the PC strand has resulted in a number of serious accidents and even in the collapse of several structures. This situation stresses the necessity to maintain the prestress force residual or after prestressing for the evaluation of the health of the concrete structure throughout its lifespan. Recently, several researchers have studied methods enabling one to verify the prestress force by inserting an optical fiber sensor inside the strand but failed to provide simple techniques for the fabrication of these devices to fulfill measurement performance from the design prestress to failure. Moreover, these methods require the additional installation of electrical resistance strain gages, displacement sensors and load cells on the outer surface of the structure for long-term precise measurement. This paper proposes a method enabling one to evaluate precisely and effectively the prestress force of the PC strand and intends to verify the applicability of the proposed method on actual concrete structures. To that end, an innovative PC strand is developed by embedding a Fiber Bragg Grating (FBG) sensor in the core wire of the PC strand so as to enable short term as well as long term monitoring. The measurement performance of the developed strand is then evaluated experimentally and the reliability of the monitoring data is assessed.

  10. Steel fiber replacement of mild steel in prestressed concrete beams

    DOT National Transportation Integrated Search

    2010-10-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and : transverse mild steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams : exhibit earl...

  11. Steel fiber replacement of mild steel in prestressed concrete beams.

    DOT National Transportation Integrated Search

    2011-01-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and transverse mild : steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams exhibit early-...

  12. R & D of smart FRP-OFBG-based steel strand and its application in monitoring of prestressing loss for RC

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhou, Hui; Huang, Ying; Ou, Jinping

    2008-03-01

    The long-term monitoring and performance evaluation techniques for the steel strand based pre-stressed structures are still not mature yet, especially for the prestressing loss monitoring and prediction. The main problem of this issue is lack of reliable monitoring techniques. To resolve this problem, in this paper, a new kind of quasi-distributed smart steel strand based on FRP-OFBG(Fiber Reinforced Polymer-Optical Fiber Bragg Grating) has been developed and its pre-stress monitoring principle has been also given. The test of the post-tension pre-stressed concrete beam with bonded tendons and its tensioning experiments have been conducted. And the prestressing loss of the steel strands has been monitored using the FBG in it. Researches results indicate that this kind of smart steel strand can monitor both instant loss and permanent loss of the prestressing successfully, and it can preferably describe the pre-stress loss state of the pre-stressed structure. Compared with the traditional monitoring instrument, this kind of smart steel strand owns distinct advantages and broad application foregrounds.

  13. Finite Element Analysis of Deep Wide-Flanged Pre-stressed Girders : Draft Final Report

    DOT National Transportation Integrated Search

    2011-06-01

    Hundreds of prestressed concrete girders are used each year for building bridges in Wisconsin. : The prestress transfer from the prestressing strands to concrete takes place at the girder ends. : Characteristic cracks form in this end region during o...

  14. 76 FR 38213 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... quality standards for using Portland Cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of... strength elements. Thus, any significant deterioration of the prestressing elements caused by corrosion may...

  15. Modeling and design of a pre-stressed piezoelectric stack actuator

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Cheng, Lei

    2017-07-01

    To provide a method for designing a pre-stressed PSA with high-performance, it is very meaningful to model the dynamic characteristics of the pre-stressed PSA accurately. A novel model, which considers both the electric side and the mechanical side of the PSA as distributed systems, is put forward to describe the dynamics characteristics of the PSA and the pre-stressed PSA. The role of the pre-stressed mechanism is derived and analyzed by extended transfer matrix method, and then the principle of design of the pre-stressed mechanism is obtained. The theoretical analysis is in accordance with the experimental results.

  16. Improved Inspection Techniques for Steel Prestressing/Post Tensioning Strand : [Summary

    DOT National Transportation Integrated Search

    2012-01-01

    Post-tensioned concrete has been widely used for : over 50 years. The first Sunshine Skyway Bridge, : built in 1954, was one of the earliest structures in : the U.S. to incorporate post-tensioned elements; : its replacement also uses the technology. ...

  17. Finite element analysis of deep wide-flanged pre-stressed girders to understand and control end cracking.

    DOT National Transportation Integrated Search

    2011-06-01

    Hundreds of prestressed concrete girders are used each year for building bridges in Wisconsin. : The prestress transfer from the prestressing strands to concrete takes place at the girder ends. : Characteristic cracks form in this end region during o...

  18. State of practice for concrete cylinder match curing and effect of test cylinder size.

    DOT National Transportation Integrated Search

    2014-01-01

    The prestressed concrete element industry is interested in exploring the application of different types of matchcuring : technologies and in using 4 x 8-in. (100 x 200-mm) cylinders to measure concrete compressive strength : instead of the standard 6...

  19. 78 FR 57619 - Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of China... prestressed concrete steel rail tie wire from Mexico, Thailand, and the People's Republic of China. See Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation...

  20. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage

    NASA Astrophysics Data System (ADS)

    Huynh, Thanh-Canh; Kim, Jeong-Tae

    2017-12-01

    In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.

  1. Design study of prestressed rotor spar concept

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  2. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  3. Evaluating the risk of water distribution system failure: A shared frailty model

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Thurnau, Robert C.

    2011-12-01

    Condition assessment (CA) Modeling is drawing increasing interest as a technique that can assist in managing drinking water infrastructure. This paper develops a model based on the application of a Cox proportional hazard (PH)/shared frailty model and applies it to evaluating the risk of failure in drinking water networks using data from the Laramie Water Utility (located in Laramie, Wyoming, USA). Using the risk model a cost/ benefit analysis incorporating the inspection value method (IVM), is used to assist in making improved repair, replacement and rehabilitation decisions for selected drinking water distribution system pipes. A separate model is developed to predict failures in prestressed concrete cylinder pipe (PCCP). Various currently available inspection technologies are presented and discussed.

  4. A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2014-07-01

    Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper.

  5. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.

    PubMed

    Krishnamurthy, Sriram; Badcock, Rodney A; Machavaram, Venkata R; Fernando, Gerard F

    2016-05-28

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from -600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to "neutralising" the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.

  6. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors

    PubMed Central

    Krishnamurthy, Sriram; Badcock, Rodney A.; Machavaram, Venkata R.; Fernando, Gerard F.

    2016-01-01

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites. PMID:27240378

  7. Synthesis of concrete bridge piles prestressed with CFRP systems.

    DOT National Transportation Integrated Search

    2017-06-01

    The Texas Department of Transportation frequently constructs prestressed concrete piles for use in bridge : foundations. Such prestressed concrete piles are typically built with steel strands that are highly susceptible to : environmental degradation...

  8. Shear capacity of high-strength concrete pre-stressed girders.

    DOT National Transportation Integrated Search

    1998-05-01

    As part of a project at the University of Minnesota to investigate the application of high-strength concrete in prestressed girders, four shear tests were performed on high-strength concrete prestressed girders.

  9. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer-A Feasibility Study.

    PubMed

    Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing

    2017-01-27

    Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a "smart washer" with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the "smart washer", increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments.

  10. Manufacturing of prestressed piezoelectric unimorphs using a postfired biasing layer.

    PubMed

    Juuti, Jari A; Jantunen, Heli; Moilanen, Veli-Pekka; Leppävuori, Seppo

    2006-05-01

    A novel manufacturing method for prestressed piezoelectric unimorphs is introduced and the actuator properties are examined. Prestressed PZT 5A and PZT 5H unimorphs with piezo material thickness of 250 microm and 375 microm were manufactured by using sintering and thermal shrinkage of the prestressing material. The process was carried out by screen printing a layer of AgPd paste on one side of the sintered bulk ceramic. As an alternative method, dielectric low temperature co-fired ceramic (LTCC) tape was used as the prestressing material. Different configurations were tested to obtain high displacements and to make a comparison between materials. After firing, the samples were poled, and the displacement versus load characteristics of the resulting actuators were investigated. A maximum displacement of 118 microm was obtained from a 250 microm thick, prestressed PZT 5H actuator with a diameter of 25 mm, in which LTCC tape was used as the prestressing layer. Similarly, the PZT 5H material provided a maximum displacement of 63 microm with a screen-printed AgPd prestressing layer. The manufacturing method described offers a novel approach for the production of a wide range of integrated active structures on, for instance, an LTCC circuit board. This is especially important because piezoelectric bulk materials with high piezoelectric coefficients can be used to produce high displacements.

  11. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    NASA Astrophysics Data System (ADS)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  12. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer—A Feasibility Study

    PubMed Central

    Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing

    2017-01-01

    Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a “smart washer” with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the “smart washer”, increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments. PMID:28134811

  13. Fabrication and testing of prestressed composite rotor blade spar specimens

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1974-01-01

    Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.

  14. Evaluation of prestress cable strain in multiple beam configurations.

    DOT National Transportation Integrated Search

    1996-08-01

    A system to measure prestress cable strain was fabricated, software written, and the unit calibrated. Strain measurements were made by attaching four Linear Variable Differential Transformers (LVDT) to prestress cable before they were stressed.

  15. Implementation and field evaluation of pretensioned concrete girder end crack control.

    DOT National Transportation Integrated Search

    2016-05-01

    Wisconsin bulb tee pretensioned concrete girders are currently used for bridge construction. Their efficiency in load resistance has made them particularly desirable. To provide that efficiency, these girders are heavily prestressed. Cracking is evid...

  16. Continuous prestressed concrete girder bridges volume 1 : literature review and preliminary designs.

    DOT National Transportation Integrated Search

    2012-06-01

    The Texas Department of Transportation (TxDOT) is currently designing typical highway bridge structures as simply supported using standard precast, pretensioned girders. TxDOT is interested in developing additional economical design alternatives for ...

  17. Investigation of carbon fiber composite cables (CFCC) in prestressed concrete piles.

    DOT National Transportation Integrated Search

    2014-04-01

    The Florida Department of Transportation (FDOT) commonly uses prestressed concrete piles in : bridge foundations. These piles are prestressed with steel strands that, when installed in aggressive or : marine environments, are subject to corrosion and...

  18. NCEL (Naval Civil Engineering Laboratory) Quarterly Abstracts of Technical Documents, 1 April to 30 June 1987.

    DTIC Science & Technology

    1987-06-30

    release; distribution unlimited. 87 8 3075 TABLE OF CONTENTS page TECHNICAL NOTES N-1764 Validation of Nitronic 33 in Reinforced and Prestressed...TECHNICAL WES K- 1764 Validation of Nitrovic 33 In Reeinforced and Prestressed Concrete, Apr 1987, James F. Jenkins (public release) Nitronic 33...prestressing strand are not acceptable. Before Nitronic 33 stainless steel prestressed concrete waterfront structures were constructed, it was necessary to

  19. Time-Dependent Topology of Railway Prestressed Concrete Sleepers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    The railway sleepers are very important component of railway track structure. The sleepers can be manufactured by using timber, concrete, steel or other engineered materials. Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete sleepers. They are expected to withstand high dynamic loads and harsh environments. However, durability and long-term performance of prestressed concrete sleepers are largely dependent on creep and shrinkage responses. This study investigates the long-term behaviours of prestressed concrete sleepers and proposes the shortening and deflection diagrams. Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into the time-dependent performance of prestressed concrete sleepers. The outcome of this paper will improve the rail maintenance and inspection criteria in order to establish appropriate sensible remote track condition monitor network in practice.

  20. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    NASA Astrophysics Data System (ADS)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  1. Thin layer composite unimorph ferroelectric driver and sensor

    NASA Technical Reports Server (NTRS)

    Hellbaum, Richard F. (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Jalink, Jr., Antony (Inventor); Rohrbach, Wayne W. (Inventor); Simpson, Joycelyn O. (Inventor)

    2004-01-01

    A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled, causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.

  2. Thin Layer Composite Unimorph Ferroelectric Driver and Sensor

    NASA Technical Reports Server (NTRS)

    Helbaum, Richard F. (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Jalink, Antony, Jr. (Inventor); Rohrbach, Wayne W. (Inventor); Simpson, Joycelyn O. (Inventor)

    1995-01-01

    A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled, causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.

  3. Monitoring of prestress losses using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, Hiba; Glisic, Branko

    2017-04-01

    Prestressed concrete has been increasingly used in the construction of bridges due to its superiority as a building material. This has necessitated better assessment of its on-site performance. One of the most important indicators of structural integrity and performance of prestressed concrete structures is the spatial distribution of prestress forces over time, i.e. prestress losses along the structure. Time-dependent prestress losses occur due to dimensional changes in the concrete caused by creep and shrinkage, in addition to strand relaxation. Maintaining certain force levels in the strands, and thus the concrete cross-sections, is essential to ensuring stresses in the concrete do not exceed design stresses, which could cause malfunction or failure of the structure. This paper presents a novel method for monitoring prestress losses based on long-gauge fiber optic sensors embedded in the concrete during construction. The method includes the treatment of varying environmental factors such as temperature to ensure accuracy of results in on-site applications. The method is presented as applied to a segment of a post-tensioned pedestrian bridge on the Princeton University campus, Streicker Bridge. The segment is a three-span continuous girder supported on steel columns, with sensors embedded at key locations along the structure during construction in October 2009. Temperature and strain measurements have been recorded intermittently since construction. The prestress loss results are compared to estimates from design documents.

  4. Development of a precast bridge deck overhang system

    DOT National Transportation Integrated Search

    2011-02-01

    Prestressed-precast panels are commonly used at interior beams for bridge decks in Texas. The use of these panels can provide ease : of construction, sufficient capacity, and good economy for the construction of bridge decks in Texas. Current practic...

  5. Durability of precast prestressed concrete piles in marine environment : reinforcement corrosion and mitigation - Part 1.

    DOT National Transportation Integrated Search

    2011-06-01

    Research conducted in Part 1 has verified that precast prestressed concrete piles in : Georgias marine environment are deteriorating. The concrete is subjected to sulfate and : biological attack and the prestressed and nonprestressed reinforcement...

  6. 75 FR 62893 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... for using portland cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of the structure... of the structure depends on the functional reliability of the structure's principal strength elements...

  7. Evaluation of grit-impregnated, epoxy coated prestressing strand on South Slough (Charleston) Bridge : construction report.

    DOT National Transportation Integrated Search

    1991-12-01

    Construction of the South Slough (Charleston) Bridge was completed in March of 1991. The structure was constructed with prestressed concrete beams using grit-impregnated, epoxy coated prestressing strands. While epoxy coated reinforcing steel has bee...

  8. Researching on Control Device of Prestressing Wire Reinforcement

    NASA Astrophysics Data System (ADS)

    Si, Jianhui; Guo, Yangbo; Liu, Maoshe

    2017-06-01

    This paper mainly introduces a device for controlling prestress and its related research methods, the advantage of this method is that the reinforcement process is easy to operate and control the prestress of wire rope accurately. The relationship between the stress and strain of the steel wire rope is monitored during the experiment, and the one - to - one relationship between the controllable position and the pretightening force of the steel wire rope is confirmed by the 5mm steel wire rope, and the results are analyzed theoretically by the measured elastic modulus. The results show that the method can effectively control the prestressing force, and the result provides a reference method for strengthening the concrete column with prestressed steel strand.

  9. Actuator placement in prestressed adaptive trusses for vibration control

    NASA Technical Reports Server (NTRS)

    Jalihal, P.; Utku, Senol; Wada, Ben K.

    1993-01-01

    This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.

  10. Serviceability and Prestress Loss Behavior of SCC Prestressed Concrete Girders Subjected to Increased Compressive Stresses at Release

    DOT National Transportation Integrated Search

    2009-08-01

    There are limited measurements documented in the literature related to long-term prestress losses in self-consolidated concrete (SCC) members. Recorded test data has shown variations in mechanical property behavior of SCC compared to conventional HSC...

  11. Corrosion-free precast prestressed concrete piles made with stainless steel reinforcement : construction, test and evaluation.

    DOT National Transportation Integrated Search

    2015-03-01

    The use of duplex high-strength stainless steel (HSSS) grade 2205 prestressing strand and : austenitic stainless steel (SS) grade 304 spiral wire reinforcement is proposed as a replacement of : conventional prestressing steel, in order to provide a 1...

  12. Determining the transfer length in prestressed concrete railroad ties produced in the United States.

    DOT National Transportation Integrated Search

    2012-05-01

    This paper presents results from transfer length measurements on prestressed concrete railroad ties. Results are shown from : the four main producers of concrete ties in the United States. Six prestressed concrete tie plants were visited by the : res...

  13. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.

    2017-10-01

    Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.

  14. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 2 : stainless steel prestressing strand and wire.

    DOT National Transportation Integrated Search

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  15. 77 FR 2958 - Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-820] Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To Request Administrative Review AGENCY... prestressed concrete steel wire strand (``PC Strand'') from Thailand. See Antidumping or Countervailing Duty...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, D.J.

    Three types of boron/epoxy prepreg tape were prestressed to fracture weak sites along the fiber by winding over 0.3- to 0.6-inch diameter rollers prior to lamination. The prestressed prepreg was then laminated, and design allowable testing was conducted to determine if mechanical strength properties are increased and data scatter is reduced by prestressing. The types of prepreg studied were standard 'Rigidite' 5505/4 prepreg, carbon substrate boron fiber prepreg, and a prepreg made from 'defect' tungsten substrate boron that was manufactured in a high-speed, low-cost, production process. The strength of angleply composites of both 'Rigidite' 5505/4 and carbon substrate boron compositesmore » were unaffected by prestressing. A study was made to determine if prepreg costs could be reduced by manufacturing low-cost 'defect' boron fiber and prestressing it to improve its properties. The results of this study were inconclusive. The test results show prestressing marginally improved some composite properties while others were reduced. On 'Rigidite' 5505/4 unidirectional composites, fatigue strength was significantly improved by prestressing, while longitudinal tensile strength was reduced at room temperature and 350 F. On unidirectional carbon substrate boron composites, the longitudinal tensile strength at room temperature and 350F was increased with attendant variability, while fatigue strength at high stress levels was reduced but not affected at low stress levels.« less

  17. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Tolic-Norrelykke, Iva Marija; Chen, Jianxin; Mijailovich, Srboljub M.; Butler, James P.; Fredberg, Jeffrey J.; Stamenovic, Dimitrije; Ingber, D. E. (Principal Investigator)

    2002-01-01

    The tensegrity hypothesis holds that the cytoskeleton is a structure whose shape is stabilized predominantly by the tensile stresses borne by filamentous structures. Accordingly, cell stiffness must increase in proportion with the level of the tensile stress, which is called the prestress. Here we have tested that prediction in adherent human airway smooth muscle (HASM) cells. Traction microscopy was used to measure the distribution of contractile stresses arising at the interface between each cell and its substrate; this distribution is called the traction field. Because the traction field must be balanced by tensile stresses within the cell body, the prestress could be computed. Cell stiffness (G) was measured by oscillatory magnetic twisting cytometry. As the contractile state of the cell was modulated with graded concentrations of relaxing or contracting agonists (isoproterenol or histamine, respectively), the mean prestress ((t)) ranged from 350 to 1,900 Pa. Over that range, cell stiffness increased linearly with the prestress: G (Pa) = 0.18(t) + 92. While this association does not necessarily preclude other interpretations, it is the hallmark of systems that secure shape stability mainly through the prestress. Regardless of mechanism, these data establish a strong association between stiffness of HASM cells and the level of tensile stress within the cytoskeleton.

  18. Evaluation of long-term prestress losses in post-tensioned box-girder bridges.

    DOT National Transportation Integrated Search

    2011-03-01

    Most of the recent highway bridges built in California have post-tensioned, cast-in-place, concrete box-girder superstructures rigidly connected to bridge columns. However, methods provided in the current (2007 and 2010) AASHTO LRFD Bridge Design Spe...

  19. Behavior of Pile to Bent Cap Connections Subjected to Seismic Forces

    DOT National Transportation Integrated Search

    2012-06-01

    Currently the South Carolina Department of Transportation employs a detail of a plain pile embedment for the : connection between precast prestressed piles and cast-in-place bent caps. This connection has proved beneficial in terms : of time and cost...

  20. Evaluation of continuity detail for precast prestressed girders : research project capsule.

    DOT National Transportation Integrated Search

    2008-03-01

    The construction of a new bridge : crossing the Mississippi River north of : Baton Rouge is currently underway. The : project, named the John James : Audubon Bridge, is a true landmark. Its : main span will be the longest cablestayed : bridge in Nort...

  1. Development of a precast bridge deck overhang system for the rock creek bridge.

    DOT National Transportation Integrated Search

    2008-12-01

    Precast, prestressed panels are commonly used at interior beams for bridges in Texas. The use of these : panels provides ease of construction, sufficient capacity, and good economy for the construction of : bridges in Texas. Current practice for the ...

  2. Analisis parametrico de las variables que influyen en el comportamiento adherente de las armaduras pretesas en el hormigon

    NASA Astrophysics Data System (ADS)

    Arbelaez Jaramillo, Cesar Augusto

    Prestressed concrete technique through the use of prestressed reinforcement is extended in the precast concrete industry. This technique consists on casting a concrete element over a previously prestressed reinforcement, proceeding to release once the concrete has reached a determined strength so the prestressed stress introduced to the reinforcement be transmitted, by bond, to concrete. The bond behaviour of prestressed reinforcement includes two phenomena: prestress transmission from the reinforcement to concrete and anchorage of the reinforcement. This bond behaviour is characterized by mean of two lengths: transmission length and anchorage length. The good design of these lengths is a basic and fundamental aspect in the project of precast prestressed concrete elements to guaranty the appropriate transmission of prestress and to allow the anchorage of the reinforcement along the structural element service life. The influence of the parameters related to the concrete dosage on the transmission and anchorage lengths of prestressing strands have been analyzed. The ECADA test method has been applied. With this method the operations of transmission of prestress and anchorage of the reinforcement are sequentially done. The transmission and anchorage lengths are determined from the force control supported by the reinforcement testing series of specimens with different embedment lengths. The differentiation of the concepts of anchorage length without slips and with slips has been proposed. The relationship of the parameters of dosage with the bond stress and the registered slips during the processes of transmission and anchorage has been studied. Expressions to value the slips distribution of the reinforcement in the transmission zone and in the anchorage zone have been proposed. A study on the determination of the transmission length from the free reinforcement slip end has been done and the viability to experimentally determine the transmission length from the slips sequence in the pull-out end as a function of the embedment length has been verified. The experimental results have been compared with results and predictions from other authors and standards, and an expression to calculate the transmission length have been proposed. Finally, the bond behaviour of self-compacting concretes has been compared with the bond behaviour of traditional concretes.

  3. Constitutive relationships of prestressed steel fiber concrete membrane elements

    NASA Astrophysics Data System (ADS)

    Hoffman, Norman S.

    Steel Fiber Concrete (SFC) displays certain tensile and shear characteristics which are beneficial for concrete that is loaded in a state of shear stress. For example, prestressed bridge beams carry shear load in their web by utilizing shear stirrups. If the properties of SFC can be better understood, then it may be possible to replace the shear stirrups with SFC. The first step in understanding this behavior is to develop a constitutive model for prestressed SFC. Two groups of full-scale prestressed steel fiber concrete (SFC) panels, with a nominal strength of 6 ksi, were tested in the Universal Element Testing machine at Thomas TC Hsu Structural Testing Laboratory to establish the effect of fiber and the level of prestress on the constitutive laws of fiber concrete and prestressing tendon. The specimens contained from 5 to 20 fully tensioned, low-relaxation grade 270 tendons. Fiber content ranged from 0.5% to 1.5% using high performance hooked end fibers. The first group of five panels, designated Group TEF, was used to determine the basic constitutive properties of prestressed SEC for use in the Softened Membrane Model (SMM). The constitutive model consists of smeared tensile and compressive stress strain relationships. An equation for softening with respect of both fiber content and tensile strain is presented. Also presented is a new equation for prestressed SFC in tension. It is notable that the behavior of prestressed SFC in tension displayed significant post-cracking tensile strength for fiber contents ranging from 0.5% to 1.5% by volume. Prior research on SFC using unreinforced dog-bone specimens, or prismatic specimens reinforced with only a single isolated tendon, are not capable of capturing SFC behavior afforded by the stress state, multiple load paths, and confinement situation available in full-scale panel assemblies. The second set of 5 test panels, designated Group TAF, was used to examine the properties of prestressed SFC under the conditions of pure shear. The constitutive model was incorporated into the softened membrane model framework and an analytic model was developed that was used to accurately predict the behavior of the specimens loaded in pure shear.

  4. Post-tensioning and splicing of precast/prestressed bridge beams to extend spans

    NASA Astrophysics Data System (ADS)

    Collett, Brandon S.; Saliba, Joseph E.

    2002-06-01

    This paper explores the status and techniques of post-tensioning and splicing precast concrete I-beams in bridge applications. It will look at the current practices that have been used in the United States and comment on the advantages of these techniques. Representative projects are presented to demonstrate the application and success of specific methods used. To demonstrate the benefits of using post-tensioning and splicing to extend spans, multiple analysis of simple span post-tensioned I-beams were performed varying such characteristics as beam spacing, beam sections, beam depth and concrete strength. Tables were then developed to compare the maximum span length of a prestressed I-beam versus a one segment or a spliced three segment post-tensioned I-beam. The lateral stability of the beam during fabrication, transportation and erection is also examined and discussed. These tables are intended to aid designers and owners in preliminary project studies to determine if post-tensioning can be beneficial to their situation. AASHTO Standard Specifications(2) will be used as basic guidelines and specifications. In many cases, post-tensioning was found to extend the maximum span length of a typical 72-inch precast I-beam more than 40 feet over conventional prestress.

  5. 75 FR 28557 - Pre-Stressed Concrete Steel Wire Strand from the People's Republic of China: Final Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...-stressed concrete (both pre-tensioned and post- tensioned) applications. The scope of this investigation... DEPARTMENT OF COMMERCE International Trade Administration [C-570-946] Pre-Stressed Concrete Steel... producers and exporters of pre-stressed concrete steel wire strand from the People's Republic of China (the...

  6. Determination of prestress and elastic properties of virus capsids

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  7. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Allen, Phillip Grant (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  8. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Allen, Phillip Grant (Inventor); Sherrit, Stewart (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  9. Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Hwang, Jin-Ha; Kim, Woo Jin

    2016-08-01

    This study investigated the prestressing effect of cold-drawn short NiTi shape memory alloy (SMA) fibres in steel reinforced mortar beams. The SMA fibres were mixed with 1.5% volume content in a mortar matrix with the compressive strength of 50 MPa. The SMA fibres had an average length of 34 mm, and they were manufactured with a dog-bone shape: the diameters of the end- and middle-parts were 1.024 and 1.0 mm, respectively. Twenty mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Two types of tests were conducted. One was to investigate the prestressing effect of the SMA fibres, and the beams with the SMA fibres were heated at the bottom. The other was to assess the bending behaviour of the beams prestressed by the SMA fibres. The SMA fibres induced upward deflection and cracking at the top surface by heating at the bottom; thus, they achieved an obvious prestressing effect. The beams that were prestressed by the SMA fibres did not show a significant difference in bending behaviour from that of the SMA fibre reinforced beams that were not subjected to heating. Stress analysis of the beams indicated that the prestressing effect decreased in relation to the cooling temperature.

  10. Power-law creep behavior of a semiflexible chain.

    PubMed

    Majumdar, Arnab; Suki, Béla; Rosenblatt, Noah; Alencar, Adriano M; Stamenović, Dimitrije

    2008-10-01

    Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.

  11. 78 FR 29325 - Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation... (Mexico), Brian Smith (the People's Republic of China (the ``PRC'')), or Kate Johnson (Thailand) at (202... Prestressed Concrete Steel Rail Tie Wire from the People's Republic of China, Mexico, and Thailand...

  12. Advanced Layered Composite Polylaminate Electroactive Actuator and Sensor

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); Copeland, Benjamin M., Jr. (Inventor); Bryant, Robert G. (Inventor)

    2000-01-01

    The present invention relates to the mounting of pre-stressed electroactive material in such a manner that large displacement actuators or sensors result. The invention comprises mounting the pre-stressed electroactive material to a support layer. This combination of a pre-stressed electroactive material and support layer may in turn be attached to a mounting surface. The pre-stressed electroactive material may be a ferroelectric, pyroelectric, piezoelectric, or magnetostrictive material. The size, stiffness, mass, and material of the support layer is selected to result in the electroactive device having dynamic response properties, environmental capability characteristics, and the required resilience optimized for a given application. The capacity to connect the support layer to a surface expands the arenas in which the prestressed electroactive device may be used. Application for which the invention may be used include actuators, sensors, or as a component in a pumps, switches, relays, pressure transducers and acoustic devices.

  13. Research on Buckling State of Prestressed Fiber-Strengthened Steel Pipes

    NASA Astrophysics Data System (ADS)

    Wang, Ruheng; Lan, Kunchang

    2018-01-01

    The main restorative methods of damaged oil and gas pipelines include welding reinforcement, fixture reinforcement and fiber material reinforcement. Owing to the severe corrosion problems of pipes in practical use, the research on renovation and consolidation techniques of damaged pipes gains extensive attention by experts and scholars both at home and abroad. The analysis of mechanical behaviors of reinforced pressure pipelines and further studies focusing on “the critical buckling” and intensity of pressure pipeline failure are conducted in this paper, providing theoretical basis to restressed fiber-strengthened steel pipes. Deformation coordination equations and buckling control equations of steel pipes under the effect of prestress is deduced by using Rayleigh Ritz method, which is an approximation method based on potential energy stationary value theory and minimum potential energy principle. According to the deformation of prestressed steel pipes, the deflection differential equation of prestressed steel pipes is established, and the critical value of buckling under prestress is obtained.

  14. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Shi, M.; Cao, S. L.; Li, Z. H.

    2013-12-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided.

  15. Field evaluation of a new aluminum alloy as a sacrificial anode for steel embedded in concrete

    DOT National Transportation Integrated Search

    1998-04-01

    This is the final report for a study to evaluate the use of sacrificial cathodic protection for reinforced and prestressed concrete bridge members. Cathodic protection (CP) using impressed current is an accepted and common method used to provide corr...

  16. 75 FR 38977 - Pre-Stressed Concrete Steel Wire Strand from the People's Republic of China: Notice of Amended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Wire Strand from the People's Republic of China: Notice of Amended Final Affirmative Countervailing... issuing a countervailing duty order on pre-stressed concrete steel wire strand (PC strand) from the People... determination of material injury to a U.S. industry. See Pre-Stressed Concrete Steel Wire Strand from the People...

  17. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  18. Approach for establishing approximate load carrying capacity for bridges with unknown material and unknown design properties.

    DOT National Transportation Integrated Search

    2011-07-01

    There are 16 small to medium simple span bridges in Larimer County, Colorado that are currently load rated solely based on visual inspections. Most of these bridges are prestressed concrete bridges. The objective of this project is to load rate these...

  19. Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yuchuan; Yang, Xulei; Wereley, Norman M.

    2016-08-01

    In this paper, focusing on the application-oriented giant magnetostrictive material (GMM)-based electro-hydrostatic actuator, which features an applied magnetic field at high frequency and high amplitude, and concentrating on the static and dynamic characteristics of a giant magnetostrictive actuator (GMA) considering the prestress effect on the GMM rod and the electrical input dynamics involving the power amplifier and the inductive coil, a methodology for studying the static and dynamic characteristics of a GMA using the hysteresis loop as a tool is developed. A GMA that can display the preforce on the GMM rod in real-time is designed, and a magnetostrictive model dependent on the prestress on a GMM rod instead of the existing quadratic domain rotation model is proposed. Additionally, an electrical input dynamics model to excite GMA is developed according to the simplified circuit diagram, and the corresponding parameters are identified by the experimental data. A dynamic magnetization model with the eddy current effect is deduced according to the Jiles-Atherton model and the Maxwell equations. Next, all of the parameters, including the electrical input characteristics, the dynamic magnetization and the mechanical structure of GMA, are identified by the experimental data from the current response, magnetization response and displacement response, respectively. Finally, a comprehensive comparison between the model results and experimental data is performed, and the results show that the test data agree well with the presented model results. An analysis on the relation between the GMA displacement response and the parameters from the electrical input dynamics, magnetization dynamics and mechanical structural dynamics is performed.

  20. Development, characterization, and modeling of ballistic impact on composite laminates under compressive pre-stress

    NASA Astrophysics Data System (ADS)

    Kerr-Anderson, Eric

    Structural composite laminates were ballistically impacted while under in-plane compressive pre-stress. Residual properties, damage characterization, and energy absorption were compared to determine synergistic effects of in-plane compressive pre-stress and impact velocity. A fixture was developed to apply in-plane compressive loads up to 30 tons to structural composites during an impact event using a single-stage light-gas gun. Observed failure modes included typical conical delamination, the development of an impact initiated shear crack (IISC), and the shear failure of a pre-stressed composite due to impact. It was observed that the compressive failure threshold quadratically decreased in relation to the impact velocity up to velocities that caused partial penetration. For all laminates impacted at velocities causing partial or full penetration up to 350 ms-1, the failure threshold was consistent and used as an experimental normalization. Samples impacted below 65% of the failure threshold witnessed no significant change in damage morphology or residual properties when compared to typical conical delamination. Samples impacted above 65% of the failure threshold witnessed additional damage in the form of a shear crack extending perpendicular to the applied load from the point of impact. The presence of an IISC reduced the residual properties and even caused failure upon impact at extreme combinations. Four failure envelopes have been established as: transient failure, steady state failure, impact initiated shear crack, and conical damage. Boundaries and empirically based equations for residual compressive strength have been developed for each envelope with relation to two E-glass/vinyl ester laminate systems. Many aspects of pre-stressed impact have been individually examined, but there have been no comprehensive examinations of pre-stressed impact. This research has resulted in the exploration and characterization of compressively pre-stressed damage for impact velocities resulting in reflection, partial penetration, and penetration at pre-stress levels resulting in conical damage, shear cracking, and failure.

  1. Evaluation of the Behavior of Technova Corporation Rod-Stiffened Stitched Compression Specimens

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2013-01-01

    Under Space Act Agreement 1347 between NASA and Technova Corporation, Technova designed and fabricated two carbon-epoxy crippling specimens and NASA loaded them to failure in axial compression. Each specimen contained a pultruded rod stiffener which was held to the specimen skin with through-the-thickness stitches. One of these specimens was designed to be nominally the same as pultruded rod stitched specimens fabricated by Boeing under previous programs. In the other specimen, the rod was prestressed in a Technova manufacturing process to increase its ability to carrying compressive loading. Experimental results demonstrated that the specimen without prestressing carried approximately the same load as the similar Boeing specimens and that the specimen with prestressing carried significantly more load than the specimen without prestressing.

  2. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  3. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    NASA Astrophysics Data System (ADS)

    Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav

    2018-03-01

    Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).

  4. Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors.

    PubMed

    Shin, Kyung-Joon; Lee, Seong-Cheol; Kim, Yun Yong; Kim, Jae-Min; Park, Seunghee; Lee, Hwanwoo

    2017-08-10

    The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams.

  5. Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors

    PubMed Central

    Shin, Kyung-Joon; Lee, Seong-Cheol; Kim, Yun Yong; Kim, Jae-Min; Park, Seunghee; Lee, Hwanwoo

    2017-01-01

    The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams. PMID:28796156

  6. Nonlinear guided wave propagation in prestressed plates.

    PubMed

    Pau, Annamaria; Lanza di Scalea, Francesco

    2015-03-01

    The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress.

  7. Unlocking Internal Prestress from Protein Nanoshells

    NASA Astrophysics Data System (ADS)

    Klug, W. S.; Roos, W. H.; Wuite, G. J. L.

    2012-10-01

    The capsids of icosahedral viruses are closed shells assembled from a hexagonal lattice of proteins with fivefold angular defects located at the icosahedral vertices. Elasticity theory predicts that these disclinations are subject to an internal compressive prestress, which provides an explanation for the link between size and shape of capsids. Using a combination of experiment and elasticity theory we investigate the question of whether macromolecular assemblies are subject to residual prestress, due to basic geometric incompatibility of the subunits. Here we report the first direct experimental test of the theory: by controlled removal of protein pentamers from the icosahedral vertices, we measure the mechanical response of so-called “whiffle ball” capsids of herpes simplex virus, and demonstrate the signature of internal prestress locked into wild-type capsids during assembly.

  8. Apparatuses for prestressing rod-type specimens in torsion for in-situ passive fracture toughness testing in an extremely high-pressure environment of hydrogen

    DOEpatents

    Wang, Jy-an [Oak Ridge, TN; Liu, Ken C [Oak Ridge, TN; Feng, Zhili [Knoxville, TN

    2012-05-15

    An in-situ specimen fixture particularly adapted for prestressing rod-type SNTT-type specimens comprising a tube and end cap wherein the specimen is secured at one end to the tube, and at the opposite end to the end cap. The end cap is rotatable relative to the tube, and may be fixedly secured for creating a torsional force prestressing the specimen enclosed within the tube.

  9. Development length of 0.6-inch prestressing strand in standard I-shaped pretensioned concrete beams

    NASA Astrophysics Data System (ADS)

    Barnes, Robert Wesley

    The use of 0.6 in prestressing strand at a center-to-center spacing of 2 in allows for the optimal implementation of High Strength Concrete (HSC) in precast, prestressed concrete bridge superstructures. For this strand configuration, partial debonding of strands is a desirable alternative to the more traditional method of draping strands to alleviate extreme concrete stresses after prestress release. Recent experimental evidence suggests that existing code provisions addressing the anchorage of pretensioned strands do not adequately describe the behavior of these strands. In addition, the anchorage behavior of partially debonded strands is not fully understood. These uncertainties have combined to hinder the full exploitation of HSC in pretensioned concrete construction. A research study was conducted to determine the anchorage behavior of 0.6 in strands at 2 in spacing in full-size bridge members. The experimental program consisted of assessing transfer and development lengths in plant-cast AASHTO Type I I-beams. The influence of concrete compressive strengths ranging from 5700 to 14,700 psi was examined. In order to consider the full range of strand surface conditions found in practice, the prestressing strand featured either a bright mill finish or a rusted surface condition. The anchorage behavior of partially debonded strands was investigated by using a variety of strand debonding configurations---including debonded strand percentages as high as 75 percent. A limited investigation of the effect of horizontal web reinforcement on anchorage behavior was performed. Pull-out tests were performed in an attempt to correlate results with the bond quality of the strands used in the study. The correlation between strand draw-in and the anchorage behavior of prestressing strands was also examined. A review of the evolution and shortcomings of existing code provisions for the anchorage of prestressing strands is presented. Results of the experimental program are reported, along with recommended design procedures based on these results and those from other studies. The use of 0.6 in strand at 2 in spacing is concluded to be safe, and partial debonding of prestressing strands is shown to be an effective means of reducing stresses in the end regions of pretensioned girders.

  10. Detection of active corrosion in reinforced and prestressed concrete: overview of NIST TIP project

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nunez, M. A.; Nanni, A.; Matta, F.; Ziehl, P.

    2011-04-01

    The US transportation infrastructure has been receiving intensive public and private attention in recent years. The Federal Highway Administration estimates that 42 percent of the nearly 600,000 bridges in the Unites States are in need of structural or functional rehabilitation1. Corrosion of reinforcement steel is the main durability issue for reinforced and prestressed concrete structures, especially in coastal areas and in regions where de-icing salts are regularly used. Acoustic Emission (AE) has proved to be a promising method for detecting corrosion in steel reinforced and prestressed concrete members. This type of non-destructive test method primarily measures the magnitude of energy released within a material when physically strained. The expansive ferrous byproducts resulting from corrosion induce pressure at the steel-concrete interface, producing longitudinal and radial microcracks that can be detected by AE sensors. In the experimental study presented herein, concrete block specimens with embedded steel reinforcing bars and strands were tested under accelerated corrosion to relate the AE activity with the onset and propagation stages of corrosion. AE data along with half cell potential measurements and galvanic current were recorded to examine the deterioration process. Finally, the steel strands and bars were removed from the specimens, cleaned and weighed. The results were compared vis-à-vis Faraday's law to correlate AE measurements with degree of corrosion in each block.

  11. Allowable compressive stress at prestress transfer.

    DOT National Transportation Integrated Search

    2008-12-01

    In 2004, The Texas Department of Transportation initiated Project 5197 to investigate the feasibility of : increasing the allowable compressive stress limit at prestress transfer. Initially, the live load performance of 36 : specimens was evaluated b...

  12. The Effects of Compressive Preloads on the Compression-After-Impact Strength of Carbon/Epoxy

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1994-01-01

    A fixture to apply compressive loads to composite specimens during an impact event was used to assess the effect of prestresses on the compression-after-impact (CAI) strength of 16 ply quasi-isotropic carbon/epoxy test coupons. Advanced design of experiments techniques were used to evaluate a range of prestresses and impact energies on two material systems, T300/934 and IM7/8551-7. An instrumented drop tower supplied impact energies between 1 and 9 Joules for the T300/934 material and between 4 and 16 Joules for the IM7/8551-7 material. The prestress values varied between a low of 5.7 Wa and a high of 287 NDa. Results showed some change in CAI strength that could be attributed to the prestresses on the specimens.

  13. Fatigue behavior of a thermally-activated NiTiNb SMA-FRP patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.

    2016-01-01

    This paper presents the details of an experimental study that was conducted to characterize the fatigue behavior of a thermally-activated shape memory alloy (SMA)/carbon fiber reinforced polymer (CFRP) patch that can be used to repair cracked steel members. A total of 14 thermally-activated patches were fabricated and tested to evaluate the stability of the prestress under fatigue loading. The parameters considered in this study are the prestress level in the nickel-titanium-niobium SMA wires and the applied force range. An empirical model to predict the degradation of the prestress is also presented. The results indicate that patches for which the maximum applied loads in a fatigue cycle did not cause debonding of the SMA wires from the CFRP sustained two million loading cycles with less than 20% degradation of the prestress.

  14. Effect of residual stresses induced by prestressing on rolling element fatigue life

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  15. Behavior of NiTiNb SMA wires under recovery stress or prestressing.

    PubMed

    Choi, Eunsoo; Nam, Tae-Hyun; Chung, Young-Soo; Kim, Yeon-Wook; Lee, Seung-Yong

    2012-01-05

    The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain.

  16. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  17. A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates

    NASA Astrophysics Data System (ADS)

    Zhang, Shunzu; Yao, Hong; Gao, Yuanwen

    2017-04-01

    A two dimensional (2D) mechanical-magneto-thermal model of direction-dependent magnetoelectric (ME) effect in Terfenol-D/PZT/Terfenol-D laminated composites is established. The expressions of ME coefficient at low and resonance frequencies are derived by the average field method, respectively. The prediction of theoretical model presents a good agreement with the experimental data. The combined effect of orientation-dependent stress and magnetic fields, as well as operating temperature on ME coefficient is discussed. It is shown that ME effect presents a significantly nonlinear change with the increasing pre-stress under different loading angles. There exists an optimal angle and value of pre-stress corresponding to the best ME effect, improving the angle of pre-stress can get more prominent ME coupling than in x axis state. Note that an optimal angle of magnetic field gradually increases with the rise of pre-stress, which can further lead to the enhancement of ME coefficient. Meanwhile, reducing the operating temperature can enhance ME coefficient. Furthermore, resonance frequency, affected by pre-stress, magnetic field and temperature via " ΔE effect", can enhance ME coefficient about 100 times than that at low frequency.

  18. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  19. Evaluation of continuity detail for precast prestressed girders.

    DOT National Transportation Integrated Search

    2011-08-01

    The construction of highway bridges using precast prestressed concrete (PSC) girders is considered one of the most : economical construction alternatives because of the advantages they offer (e.g. reducing formwork and rapid construction). : Construc...

  20. Performance of self-consolidating concrete in prestressed girders.

    DOT National Transportation Integrated Search

    2010-04-01

    A structural investigation of self-consolidating concrete (SCC) in AASHTO Type I precast, : prestressed girders was performed. Six test girders were subjected to transfer length and : flexural testing. Three separate concrete mixtures, two girders pe...

  1. Repair of cracked prestressed concrete girders, I-565, Huntsville, Alabama.

    DOT National Transportation Integrated Search

    2011-07-01

    Wide cracks were discovered in prestressed concrete bridge girders shortly after their construction in Huntsville, Alabama. Previous investigations of these continuous-for-live-load girders revealed that the cracking resulted from restrained thermal ...

  2. Prestressed pavement rehabilitation.

    DOT National Transportation Integrated Search

    2009-06-23

    In 1989, a landmark pavement project was opened to traffic in Blair County, Pennsylvania, that received national attention. The pavement was a two-mile section of prestressed concrete pavement that was constructed on the northbound lanes of what is n...

  3. 0-6722 : spread prestressed concrete slab beam bridges.

    DOT National Transportation Integrated Search

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  4. Precise deformation measurement of prestressed concrete beam during a strain test using the combination of intersection photogrammetry and micro-network measurement

    NASA Astrophysics Data System (ADS)

    Urban, Rudolf; Braun, Jaroslav; Štroner, Martin

    2015-05-01

    The prestressed thin-walled concrete elements enable the bridge a relatively large span. These structures are advantageous in economic and environmental way due to their thickness and lower consumption of materials. The bending moments can be effectively influenced by using the pre-stress. The experiment was done to monitor deformation of the under load. During the experiment the discrete points were monitored. To determine a large number of points, the intersection photogrammetry combined with precise micro-network were chosen. Keywords:

  5. Comparative Study on Different Slot Forms of Prestressed Anchor Blocks

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Si, Jianhui; Jian, Zheng

    2018-03-01

    In this paper, two models of prestressed pier, rectangular cavity anchor block and arch hollow anchor block are established. The ABAQUS software was used to calculate the stress of the surface of the neck of the pier and the cavity of the anchor block, through comparative analysis. The results show that compared with the rectangular cavity anchor block, the stress of the pier and the cavity can be effectively reduced when the arch hole is used, and the amount of prestressed anchor can be reduced, so as to obtain obvious economic benefits.

  6. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  7. Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder

    NASA Astrophysics Data System (ADS)

    Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.

    2017-09-01

    Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.

  8. Self-Consolidating Concrete for Prestressed Bridge Girders

    DOT National Transportation Integrated Search

    2017-07-01

    This document reports the findings of a research project designed to better understand material and structural performance of prestressed bridge girders made with Self-Consolidating Concrete (SCC) from Wisconsin. SCC has high potential to be used for...

  9. Spread prestressed concrete slab beam bridges.

    DOT National Transportation Integrated Search

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  10. Appendix E : FIB-63 tests.

    DOT National Transportation Integrated Search

    2013-03-01

    Web splitting cracks (Figure 1) typically form during prestress transfer, or in the days and : weeks following transfer. They occur due to tensile stresses that are induced as prestressing : forces in the bottom flange are distributed through the cro...

  11. Laboratory investigation of concrete beam-end treatments.

    DOT National Transportation Integrated Search

    2015-05-01

    The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the : moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting...

  12. Performance evaluation of precast prestressed concrete pavement.

    DOT National Transportation Integrated Search

    2007-11-01

    This report describes in detail an experimental investigation of an innovative precast prestressed concrete pavement (PPCP) system used to rehabilitate a 1,000 ft. section of interstate highway located on the northbound lanes of I-57 near Charleston,...

  13. UDOT calibration of AASHTO's new prestress loss design equations.

    DOT National Transportation Integrated Search

    2009-07-01

    In the next edition of the AASHTO LRFD Bridge Design Specifications the procedure to calculate prestress losses will change dramatically. The new equations are empirically based on high performance concrete from four states (Nebraska, New Hampshire, ...

  14. UDOT's calibration of AASHTO's new prestress loss design equations.

    DOT National Transportation Integrated Search

    2009-07-01

    In the next edition of the AASHTO LRFD Bridge Design Specifications the procedure to calculate prestress losses will change dramatically. The new equations are empirically based on high performance concrete from four states (Nebraska, New Hampshire, ...

  15. Reflective Cracking between Precast Prestressed Box Girders : Research Brief

    DOT National Transportation Integrated Search

    2017-08-01

    Ease of construction, favorable span-to-depth ratios, aesthetic appeal and high torsional stiffness make adjacent precast prestressed concrete box-beams a popular option for short-to-medium span bridges. However, persisting durability and performance...

  16. Performance of prestressed girders cast with LWSCC : part II.

    DOT National Transportation Integrated Search

    2012-08-01

    While much research has been performed on lightweight concrete and self-consolidating concrete (SCC), the knowledge of prestress losses in lightweight self-consolidating concrete (LWSCC) is still limited. LWSCC has the benefits of increased flowabili...

  17. Self-Consolidating Concrete for Prestressed Bridge Girders : Research Brief

    DOT National Transportation Integrated Search

    2017-08-01

    Self-consolidating concrete (SCC) is commonly used as an alternative to conventional concrete (CC) in precast, prestressed concrete (PSC) bridge girders. The high strength, highly workable mixture can flow through dense reinforcement to fill formwork...

  18. Influence of Surface Abrasion on Creep and Shrinkage of Railway Prestressed Concrete Sleepers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    Ballasted railway track is very suitable for heavy-rail networks because of its many superior advantages in design, construction, short- and long-term maintenance, sustainability, and life-cycle cost. The sleeper, which supports rail and distributes loads from rail to ballast, is a very important component of rail track system. Prestressed concrete is very popular used in manufacturing sleepers. Therefore, improved knowledge about design techniques for prestressed concrete (PC) sleepers has been developed. However, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers. Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of abrasions in concrete sleepers. This paper presents a comparative investigation using a variety of methods to evaluate creep and shrinkage effects in railway prestressed concrete sleepers. The outcome of this study will improve the material design, which is very critical to the durability of railway track components.

  19. Repair methods for prestressed girder bridges.

    DOT National Transportation Integrated Search

    2009-04-30

    It is common practice that aging and structurally damaged prestressed concrete bridge members are taken out of service and replaced. : This, however, is not an efficient use of materials and resources since the member can often be repaired in situ. T...

  20. Evaluation Of prestressed concrete beams in shear : [part 1 and 2].

    DOT National Transportation Integrated Search

    2014-09-01

    This research investigates possible design-related causes of apparent shear cracks on MDOT prestressed : concrete (PC) bridge girders; assesses the adequacy of PC shear design and rating methods; and : recommends changes to these procedures. It invol...

  1. Construction of prestressed concrete single-tee bridge superstructures.

    DOT National Transportation Integrated Search

    1977-01-01

    This report discusses in detail the construction of the first five precast, prestressed concrete, single-tee beam bridge superstructures to be let to contract in Virginia. The data suggest that this single-tee beam enables efficient construction of t...

  2. Evaluation of continuity detail for precast prestressed girders : tech summary.

    DOT National Transportation Integrated Search

    2011-08-01

    Building multi-simple span bridges using precast prestressed concrete girders is an easy construction. However, the existence of : expansion joints often leads to a host of problems in their vicinity due to drainage leaks. Furthermore, debris accumul...

  3. Development of guidelines for transportation of long prestressed concrete girders.

    DOT National Transportation Integrated Search

    2016-12-01

    This research study investigates the behavior of two long prestressed concrete girders during lifting and : transportation from the precast yard to the bridge site, with a particular focus on cracking concerns : during transport. Different response m...

  4. Rating precast prestressed concrete bridges for shear

    DOT National Transportation Integrated Search

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  5. Investigation of carbon fiber composite cables (CFCC) in prestressed concrete piles : [summary].

    DOT National Transportation Integrated Search

    2014-04-01

    FDOT commonly uses concrete piles prestressed : with steel strands in bridge foundations due to : their economy of design, fabrication, and : installation. However, when installed in marine : environments, the steel strands are prone to : corrosion a...

  6. Seismic assessment of WSDOT bridges with prestressed hollow core piles : part II.

    DOT National Transportation Integrated Search

    2009-12-01

    This report investigates the seismic performance of a reinforced concrete : bridge with prestressed hollow core piles. Both nonlinear static and nonlinear dynamic : analyses were carried out. A three-dimensional spine model of the bridge was : ...

  7. Shear capacity of in service prestressed concrete bridge girders.

    DOT National Transportation Integrated Search

    2010-05-17

    The design of prestressed concrete bridge girders has changed significantly over the past several : decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that : was used forty years ago is very different than t...

  8. Corrosion protection and steel-concrete bond improvement of prestressing strand.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  9. Precast, Prestressed Concrete Bent Caps : Volume 1, Preliminary Design Considerations and Experimental Test Program

    DOT National Transportation Integrated Search

    2018-04-01

    Precast prestressed concrete bent caps may provide significant benefits by enabling accelerated construction of bridge substructures and improve longevity by reducing the propensity for cracking. The Texas Department of Transportation enables the use...

  10. Laboratory investigation of concrete beam-end treatments : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-05-01

    The ends of prestressed concrete beams located under bridge expansion : joints are often exposed to extended periods of moisture and chlorides. This : exposure can cause the beam ends to deteriorate prematurely, corrode the : prestressing strands, de...

  11. Spalling solution of precast-prestressed bridge deck panels.

    DOT National Transportation Integrated Search

    2010-10-01

    This research has examined spalling of several partial-depth precast prestressed concrete (PPC) bridge decks. It was recently obser : that some bridges with this panel system in the MoDOT inventory have experienced rusting of embedded steel reinforce...

  12. Corrosion performance of prestressing strands in contact with dissimilar grouts.

    DOT National Transportation Integrated Search

    2013-01-01

    To improve the corrosion protection provided to prestressing strands, anti-bleed grouts are used to fill voids in post-tensioning : ducts that result from bleeding and shrinkage of older Portland Cement grouts. Environmental differences caused by exp...

  13. Design and laboratory validation of a structural element instrumented with multiplexed interferometric fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zonta, Daniele; Pozzi, Matteo; Wu, Huayong; Inaudi, Daniele

    2008-03-01

    This paper introduces a concept of smart structural elements for the real-time condition monitoring of bridges. These are prefabricated reinforced concrete elements embedding a permanent sensing system and capable of self-diagnosis when in operation. The real-time assessment is automatically controlled by a numerical algorithm founded on Bayesian logic: the method assigns a probability to each possible damage scenario, and estimates the statistical distribution of the damage parameters involved (such as location and extent). To verify the effectiveness of the technology, we produced and tested in the laboratory a reduced-scale smart beam prototype. The specimen is 3.8 m long and has cross-section 0.3 by 0.5m, and has been prestressed using a Dywidag bar, in such a way as to control the preload level. The sensor system includes a multiplexed version of SOFO interferometric sensors mounted on a composite bar, along with a number of traditional metal-foil strain gauges. The method allowed clear recognition of increasing fault states, simulated on the beam by gradually reducing the prestress level.

  14. Self-consolidating concrete for prestressed applications - phase II : bridge construction and in-place performance.

    DOT National Transportation Integrated Search

    2015-04-01

    Prior to statewide acceptance of self-consolidating concrete (SCC) in precast, prestressed bridge member : production, the Alabama Department of Transportation sponsored an investigation of the material to be : performed by the Auburn University High...

  15. Evaluation of Repair Techniques for Impact-Damaged Prestressed Beams

    DOT National Transportation Integrated Search

    2018-05-01

    Collisions between over-height vehicles and bridges occur about 1,000 times per year in the United States. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge beam. For prestressed...

  16. Development of guidelines for transportation of long prestressed concrete girders : tech summary.

    DOT National Transportation Integrated Search

    2016-12-01

    This research study investigates the behavior of two long, prestressed concrete girders during lifting and transportation : from the precast yard to the bridge site, with a particular focus on cracking and stability concerns during transport. Diff er...

  17. Construction of bridge decks with precast prestressed deck planks

    DOT National Transportation Integrated Search

    2002-04-01

    The purpose of this paper is to discuss the construction and early performance of two 1999 - 2000 bridge deck replacement state contracts in Illinois that included precast, prestressed concrete (PPC) deck planks. Metal stay-in-place forms used in one...

  18. Development of improved connection details for adjacent prestressed member bridges.

    DOT National Transportation Integrated Search

    2017-06-01

    Adjacent prestressed member girder bridges are economical systems for short spans and generally come in two types: adjacent box beam bridges and adjacent voided slab bridges. Each type provides the advantages of having low clearances because of their...

  19. A field installation using prestressed panel subdecks.

    DOT National Transportation Integrated Search

    1978-01-01

    This final report is a supplement to an earlier report that covered the installation of the first precast, prestressed panel subdecks installed on a bridge in Virginia. The report discusses the inspection of the decks one year after they were complet...

  20. Installation of prestressed panel subdecks.

    DOT National Transportation Integrated Search

    1977-01-01

    This report is concerned with the field installation of prestressed panel subdecks on the Rte 220 bridges over relocated 23rd St. in the city of Roanoke. These were the first bridges to be constructed in Virginia utilizing the precast subdeck panel c...

  1. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand.

    DOT National Transportation Integrated Search

    2011-08-01

    This is a report describing the activities and accomplishments in this project, completed through November 30, 2009. The overall goal of this project is to investigate the feasibility of a magnetic sensor to detect in-situ corrosion of prestressing s...

  2. Structural identification of a real-world shear-critical prestressed concrete highway bridge.

    DOT National Transportation Integrated Search

    2012-08-01

    A typical span of the Little River overflow bridge located in McCurtain County, Oklahoma, a shear-critical prestressed concrete bridge identified by the Oklahoma Department of Transportation (ODOT) Bridge Division, is studied using a multidisciplinar...

  3. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    DOT National Transportation Integrated Search

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  4. Self-consolidating concrete for prestressed applications - phase I : girder fabrication and pre-erection performance.

    DOT National Transportation Integrated Search

    2015-04-01

    Prior to statewide acceptance of self-consolidating concrete (SCC) in precast, prestressed bridge member production, the Alabama Department of Transportation sponsored an investigation of the material to be performed by the Auburn University Highway ...

  5. Shear capacity of in service pre-stressed concrete bridge girders.

    DOT National Transportation Integrated Search

    2010-05-17

    The design of prestressed concrete bridge girders has changed significantly over the past several decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that was used forty years ago is very different than those...

  6. Reflective Cracking between Precast Prestressed Box Girders

    DOT National Transportation Integrated Search

    2017-06-30

    The adjacent precast prestressed concrete box-beam bridge is the bridge of choice for short and short-to-medium span bridges. This choice is because of the ease of construction, favorable span-to-depth ratios, aesthetic appeal, and high torsional sti...

  7. Design optimization of continuous partially prestressed concrete beams

    NASA Astrophysics Data System (ADS)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  8. Feasibility study of applying an advanced composite structure technique to the fabrication of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.

  9. Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören

    The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less

  10. Static and dynamic behaviours of railway prestressed concrete sleepers with longitudinal through hole

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, C.; Kaewunruen, S.; Remennikov, A. M.

    2017-10-01

    As the crosstie beam in railway track systems, the prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground. Their design takes into account static and dynamic loading conditions. It is evident that prestressed concrete has played a significant role as to maintain the high endurance of the sleepers under low to moderate repeated impact loads. In spite of the most common use of the prestressed concrete sleepers in railway tracks, there have always been many demands from rail engineers to improve serviceability and functionality of concrete sleepers. For example, signalling, fibre optic, equipment cables are often damaged either by ballast corners or by tamping machine. There has been a need to re-design concrete sleeper to cater cables internally so that they would not experience detrimental or harsh environments. Accordingly, this study will investigate the effects of through hole or longitudinal hole on static and dynamic behaviours of concrete sleepers under rail shock loading. The modified compression field theory for ultimate strength design of concrete sleepers will be highlighted in this study. The outcome of this study will enable the new design and calculation methods for prestressed concrete sleepers with holes and web opening that practically benefits civil, track and structural engineers in railway industry.

  11. Stability Calculation Method of Slope Reinforced by Prestressed Anchor in Process of Excavation

    PubMed Central

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical. PMID:24683319

  12. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    PubMed

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  13. Performance of Railway Sleepers with Holes under Impact Loading

    NASA Astrophysics Data System (ADS)

    Lim, Chie Hong; Kaewunruen, Sakdirat; Mlilo, Nhlanganiso

    2017-12-01

    Prestressed concrete sleepers are essential structural components of railway track structures, with the purpose of redistributing wheel loads from the rails to the ground. To facilitate cables and signalling equipment, holes are often generated in these prestressed concrete sleepers. However, the performance of these sleepers under impact loading may be a concern with the addition of these holes. Numerical modelling using finite element analysis (FEA) is an ideal tool that enables static and dynamic simulation and can perform analyses of basic/advanced linear and nonlinear problems, without incurring a huge cost in resources like standard experimental test methods would. This paper will utilize the three-dimensional FE modelling software ABAQUS to investigate the behaviour of the prestressed concrete sleepers with holes of varying sizes upon impact loading. To obtain the results that resemble real-life behaviour of the sleepers under impact loading, the material properties, element types, mesh sizes, contact and interactions and boundary conditions will be defined as accurately as possible. Both Concrete Damaged Plasticity (CDP) and Brittle Cracking models will be used in this study. With a better understanding of how the introduction of holes will influence the performance of prestressed sleepers under impact loading, track and railway engineers will be able to generate them in prestressed concrete sleepers without compromising the sleepers’ performance during operation

  14. Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading

    DOE PAGES

    Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören; ...

    2017-04-08

    The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less

  15. Guidelines for Sampling, Assessing, and Restoring Defective Grout in Prestressed Concrete Bridge Post-Tensioning Ducts

    DOT National Transportation Integrated Search

    2013-05-01

    This document is a technical summary of the Federal Highway Administration report, "Guidelines for Sampling, Assessing, and Restoring Defective Grout in Prestressed Concrete Bridge Post-Tensioning Ducts" (FHWA-HRT-13-028). The objectives of this stud...

  16. Value engineering and cost effectiveness of various fiber reinforced polymer (FRP) repair systems.

    DOT National Transportation Integrated Search

    2006-06-01

    Seventeen 40 year old C-Channel type prestressed concrete bridge girders and one impact damaged AASHTO : Type II prestressed concrete girder were tested under static and fatigue loading to determine the cost-effectiveness : and value engineering aspe...

  17. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 1 : concrete.

    DOT National Transportation Integrated Search

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  18. Performance of prestressed girders cast with LWSCC.

    DOT National Transportation Integrated Search

    2012-08-01

    Bond of prestressing steel has been a much debated topic since the 1950s. Limited data are available on the transfer and development length of strands cast in self : consolidating concrete (SCC) and even less for strands cast in light weight, self-co...

  19. Cathodic Protection Field Trials on Prestressed Concrete Components, Final Report

    DOT National Transportation Integrated Search

    1998-01-01

    This is the final report in a study to demonstrate the feasibility of using cathodic protection (CP) on concrete bridge structures containing prestressed steel. The interim report, FHWA-RD-95-032, has more details on the installation of selected CP s...

  20. Stainless steel prestressing strands and bars for use in prestressed concrete girders and slabs.

    DOT National Transportation Integrated Search

    2015-08-01

    Corrosion decay on structures has continued to be a challenge in the scientific and engineering : communities, where significant federal and state funds have been spent towards replacement or rehabilitation : of bridges that were damaged by corrosion...

  1. Forensic testing of prestress concrete girders after forty years of service.

    DOT National Transportation Integrated Search

    2013-09-01

    This report describes an investigation to quantify the behavior of precast, prestressed concrete : bridge girders made with high-strength concrete. As part of the investigation, four bridge : girders that were made with 77.2 MPs (11.2 ksi) concrete w...

  2. Evaluation of a bridge deck with CFRP prestressed panels under fatigue load cycles

    DOT National Transportation Integrated Search

    2003-09-01

    This report summarizes a study conducted under an IBRC (Innovative Bridge Research and Construction) project sponsored by the FHWA. In this project, a bridge deck with CFRP (carbon fiber reinforced polymeric) prestressed panels and cast-in-place topp...

  3. Corrosion protection of prestressing strand in transportation structures and strand-concrete bond improvement.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  4. Investigation of transfer length, development length, flexural strength, and prestress losses in lightweight prestressed concrete girders.

    DOT National Transportation Integrated Search

    2003-01-01

    Encouraged by the performance of high performance normal weight composite girders, the Virginia Department of Transportation has sought to exploit the use of high performance lightweight composite concrete (HPLWC) girders to achieve economies brought...

  5. Evaluation of repair techniques for impact-damaged prestressed beams : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    Collisions between over height vehicles and bridges occur about 1,000 times per year in the United States. Collision damage to : bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge beam. For prestress...

  6. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  7. Design of a post-tensioned prestressed concrete pavement, construction guidelines, and monitoring plan.

    DOT National Transportation Integrated Search

    2003-08-01

    Prestressed Concrete Pavement (PCP) has been around for almost 60 years. Its application started in Europe in : the 1940s, and since then it has been applied with fair success in other countries, including the United States. : Domestic application of...

  8. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges : technical summary report.

    DOT National Transportation Integrated Search

    2004-03-01

    Most highway bridges are built as cast-in-place : reinforced concrete slabs and prestressed concrete : girders. The shear connectors on the top of the girders : assure composite action between the slabs and : girders. The design guidelines for bridge...

  9. Testing Notched Ends of Prestressed Concrete Box Beams: Final Letter Report on Projects 1479 and 1340

    DOT National Transportation Integrated Search

    1994-12-01

    Prestressed concrete box beams incorporated in a bridge project under construction in the Houston District encountered cracking in the notched (dapped) ends during fabrication. Because the members in question are trapezoidal in section and have inter...

  10. Anchorage zone design for pretensioned precast bulb-T bridge girders in Virginia.

    DOT National Transportation Integrated Search

    2009-01-01

    Precast/prestressed concrete girders are commonly used in bridge construction in the United States. The application and diffusion of the prestress force in a pretensioned girder cause a vertical tension force to develop near the end of the beam. Fiel...

  11. A simplified method for prediction of long-term prestress loss in post-tensioned concrete bridges.

    DOT National Transportation Integrated Search

    2006-07-01

    Creep and shrinkage of concrete and relaxation of prestressing steel cause time-dependent changes in : the stresses and strains of concrete structures. These changes result in continuous reduction in the : concrete compression stresses and in the ten...

  12. Splice length of prestressing strand in field-cast ultra-high performance concrete connections, TechBrief

    DOT National Transportation Integrated Search

    2014-02-02

    The objective of this research was to determine the lap splice length of untensioned prestressing strand in field-cast ultrahigh performance concrete (UHPC). This document is a technical summary of the Federal Highway Administration report, Splice Le...

  13. 75 FR 8113 - Prestressed Concrete Steel Wire Strand From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject investigations. DATES: Effective Date: February 16, 2010. FOR FURTHER INFORMATION...

  14. Bond between smooth prestressing wires and concrete : finite element model and transfer length analysis for pretensioned concrete crossties.

    DOT National Transportation Integrated Search

    2014-04-03

    Pretensioned concrete ties are increasingly employed in railroad high speed : and heavy haul applications. The bond between prestressing wires or strands and : concrete plays an important role in determining the transfer length of pretensioned : conc...

  15. Evaluation of grit-impregnated, epoxy coated prestressing strand on South Slough (Charleston) Bridge : final report.

    DOT National Transportation Integrated Search

    1995-04-01

    The use of grit-impregnated, epoxy coated prestressing strand is a relatively new design strategy being used for corrosion abatement on new concrete structures. This application was chosen for the South Slough (Charleston) structure because it subjec...

  16. Stainless steel prestressing strands and bars for use in prestressed concrete girders and slabs : [research summary].

    DOT National Transportation Integrated Search

    2015-08-01

    Corrosion decay on structures has continued to be a challenge in the scientific : and engineering communities, where significant federal and state funds have : been spent towards replacement or rehabilitation of bridges that were damaged : by corrosi...

  17. Effect of calcium nitrite on the properties of concrete used in prestressed piles and beams.

    DOT National Transportation Integrated Search

    1992-01-01

    This study evaluates the concretes in steam-cured prestressed piles and beams containing calcium nitrite as protection against chloride-induced corrosion of the steel strands and assesses their field performance over a 3-year period. Concretes contai...

  18. 29 CFR 1926.13 - Interpretation of statutory terms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the employer for the specific project on a customized basis. Thus, a supplier of materials which will... the goods or materials in question specifically for the construction project and the work involved may... of prestressed concrete beams and prestressed structural steel would be considered manufacturing...

  19. Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges

    DOT National Transportation Integrated Search

    2017-12-01

    Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...

  20. Influence of vertical holes on creep and shrinkage of railway prestressed concrete sleepers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) must successfully perform two critical duties: first, to carry wheel loads from the rails to the ground; and second, to secure rail gauge for dynamic safe movements of trains. The second duty is often fouled by inappropriate design of the time-dependent behaviors due to their creep, shrinkage and elastic shortening responses of the materials. In addition, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. Accordingly, this study is the world first to investigate creep and shrinkage effects on the railway prestressed concrete sleepers with vertical holes. This paper will highlight constitutive models of concrete materials within the railway sleepers under different environmental conditions over time. It will present a comparative investigation using a variety of methods to evaluate shortening effects in railway prestressed concrete sleepers. The outcome of this study will improve material design, which is very critical to the durability of railway track components.

  1. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  2. Experimental and analytical studies on the vibration serviceability of long-span prestressed concrete floor

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Liu, Jiepeng; Li, Jiang; Zhang, Ruizhi

    2018-04-01

    An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport. Specifically, jumping impact tests were carried out to obtain the floor's modal parameters, followed by an analysis of the distribution of peak accelerations. Running tests were also performed to capture the acceleration responses. The prestressed concrete floor was found to have a low fundamental natural frequency (≈ 8.86 Hz) corresponding to the average modal damping ratio of ≈ 2.17%. A coefficients β rp is proposed for convenient calculation of the maximum root-mean-square acceleration for running. In the theoretical analysis, the prestressed concrete floor under running excitation is treated as a two-span continuous anisotropic rectangular plate with simply-supported edges. The calculated analytical results (natural frequencies and root-mean-square acceleration) agree well with the experimental ones. The analytical approach is thus validated.

  3. Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.

    PubMed

    Mendoza, Nicole; Tu, Roger; Chen, Aaron; Lee, Eugene; Khine, Michelle

    2014-01-01

    The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.

  4. Software for AASHTO LRFD combined shear and torsion computations using modified compression field theory and 3D truss analogy.

    DOT National Transportation Integrated Search

    2011-10-01

    The shear provisions of the AASHTO LRFD Bridge Design Specifications (2008), as well as the simplified : AASHTO procedure for prestressed and non-prestressed reinforced concrete members were investigated and compared : to their equivalent ACI 318-08 ...

  5. VIEW NORTH OF PRESTRESS TRACK CENTERHEMP STORAGE BUILDING 77 (1920) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTH OF PRE-STRESS TRACK CENTER-HEMP STORAGE BUILDING 77 (1920) ROPE WAREHOUSE 43 (1941) BEHIND IT STORAGE SHED 44 (1953) IN FRONT - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  6. Stay-in-place bridge deck forms, a state of the art review. Prestressed panel subdecks.

    DOT National Transportation Integrated Search

    1973-01-01

    The results of prior research conducted on precast prestressed panel subdecks for use in the construction of bridge decks are reviewed and summarized. This construction technique utilizes the precast panel subdecks as the forming for the cast-in-plac...

  7. 75 FR 1755 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-945] Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final Determination AGENCY: Import Administration, International Trade Administration, Department of Commerce. DATES: Effective Date: January 13...

  8. Field verification for the effectiveness of continuity diaphragms for skewed continuous P/C P/S concrete girder bridges : tech summary.

    DOT National Transportation Integrated Search

    2009-10-01

    The majority of highway bridges are built as cast-in-place reinforced concrete slabs and prestressed concrete : girders. The simple-span precast, prestressed concrete girders made continuous through cast-in-place decks : and diaphragms have been wide...

  9. SOLID STATE SENSOR FOR INSPECTION OF PRESTRESSED CONCRETE PRESSURE PIPE - PHASE I

    EPA Science Inventory

     

    An important type of water pipe is the Prestressed Concrete Cylinder Pipe (PCCP). There are thousands of miles of PCCP installed in the United States in sections with lengths up to 20 feet an...

  10. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal

    DOT National Transportation Integrated Search

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  11. Evaluation and long-term monitoring of the time-dependent characteristics of self-consolidating concrete in an instrumented Kansas prestressed concrete bridge.

    DOT National Transportation Integrated Search

    2014-01-01

    Construction of a new prestressed bridge with Self-Consolidating Concrete (SCC) provided the opportunity to further study the time-dependent properties of SCC mix and its long-term performance; considering the results and recommendations of previous ...

  12. Evaluation and long-term monitoring of the time-dependent characteristics of self-consolidating concrete in an instrumented Kansas prestressed concrete bridge : [technical summary].

    DOT National Transportation Integrated Search

    2014-01-01

    Construction of a new prestressed bridge with Self-Consolidating Concrete (SCC) : provided the opportunity to further study the time-dependent properties of SCC mix and : its long-term performance; considering the results and recommendations of previ...

  13. 75 FR 32747 - Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... Wire Strand from Mexico: Rescission of Antidumping Duty Administrative Review AGENCY: Import... request an administrative review of the antidumping duty order on prestressed concrete steel wire strand... received a timely request from American Spring Wire Corp., Insteel Wire Products Co., and Sumiden Wire...

  14. Evaluation of anodes for galvanic cathodic prevention of steel corrosion in prestressed concrete piles in marine environments in Virginia.

    DOT National Transportation Integrated Search

    1999-07-01

    Many of the major highway crossings over coastal waters in the Hampton area of Virginia are supported by prestressed concrete piles, some of which are showing signs of reinforcement corrosion. Grout jacketing alone is an inadequate protection against...

  15. Software for AASHTO LRFD combined shear and torsion computations using modified compression field theory and 3D truss analogy : technical summary.

    DOT National Transportation Integrated Search

    2011-10-01

    The shear provisions of the AASHTO LRFD Bridge Design Specifications (2008), as well as the simplified AASHTO procedure for prestressed and non-prestressed reinforced concrete members were investigated and compared to their equivalent ACI 318-08 prov...

  16. Mechanical integrity and sustainability of pre-stressed concrete bridge girders repaired by epoxy injection – phase 1.

    DOT National Transportation Integrated Search

    2017-02-02

    At present, there is a need to assess the mechanical integrity and sustainability of pre-stressed concrete beams during the entire life cycle of the built infrastructure. According to the NCHRP (Tadros et al., 2010), further research to develop fi...

  17. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges : technical summary.

    DOT National Transportation Integrated Search

    2011-07-01

    The majority of the bridges in Kansas are in rural areas. Many of these are : becoming structurally deficient, and are in need of replacement. Due to the location of : these bridges, cost of transporting prestressed girders to these areas often makes...

  18. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal : Technical Summary

    DOT National Transportation Integrated Search

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  19. Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using self-consolidating concrete.

    DOT National Transportation Integrated Search

    2009-03-01

    Self-consolidating concrete (SCC) is a highly workable concrete that flows through densely reinforced or : complex structural elements under its own weight. The benefits of using SCC include: a) Reducing labor costs : by eliminating the need for mech...

  20. Develop Strong and Serviceable Details for Precast, Prestressed Concrete Bent Cap Standards That Can Be Implemented on Everyday Bridge Construction Projects, Project Summary

    DOT National Transportation Integrated Search

    2018-01-01

    Pretensioned bent caps are an attractive substructure component because they offer contractors an option for fabrication by prestressing plants and can be used to eliminate or reduce cracks. Two sets of design recommendations were developed to enable...

  1. 78 FR 75545 - Prestressed Concrete Steel Rail Tie Wire From the People's Republic of China: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Rail Tie Wire From the People's Republic of China: Preliminary Determination of Sales at Less Than Fair... (``Department'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from... steel wire; stress relieved or low relaxation; indented or otherwise deformed; meeting at a minimum the...

  2. 75 FR 36678 - Prestressed Concrete Steel Wire Strand From China; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Concrete Steel Wire Strand From China; Determinations On the basis of the record \\1\\ developed in the... prestressed concrete steel wire strand (PC strand), provided for in subheading 7312.10.30 of the Harmonized... Spring Wire Corp. (Bedford Heights, OH); Insteel Wire Products Co. (Mt. Airy, NC); and Sumiden Wire...

  3. TECHNICAL NOTE: Actuation displacement performance change of pre-stressed piezoelectric actuators attached to a flat surface

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Phuoc Phan, Van; Park, Hoon Cheol

    2009-03-01

    Pre-stressed piezoelectric actuators such as RAINBOW, THUNDER™, and LIPCA have a curvature due to a mismatch of the coefficient of thermal expansion, which inevitably exists during the manufacturing process. This technical note provides an answer to the question of how their actuation displacement performance changes when the curved pre-stressed piezoelectric actuators are attached to a flat surface. Finite element analysis with the ANSYS™ program was used to calculate the stress distribution inside a LIPCA, one of the pre-stressed piezoelectric actuators, after the LIPCA was cured and attached to the flat surface. The change of actuation displacement performance can be explained in terms of the relation between the piezoelectric strain constants and internal stress. As a result of the curing and attachment to a flat surface, the two-dimensional stress state inside the piezoceramic layer leads to an expected increase of around 51% for the longitudinal piezoelectric strain constant. To confirm this result, we reconsider the experimental results of the actuation moment measurement of the LIPCA and bare lead zirconium titanate.

  4. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Allen, Phillip Grant

    2011-01-01

    High-power ultrasonic actuators are generally assembled with a horn, backing, stress bolt, piezoelectric rings, and electrodes. The manufacturing process is complex, expensive, difficult, and time-consuming. The internal stress bolt needs to be insulated and presents a potential internal discharge point, which can decrease actuator life. Also, the introduction of a center hole for the bolt causes many failures, reducing the throughput of the manufactured actuators. A new design has been developed for producing ultrasonic horn actuators. This design consists of using flexures rather than stress bolts, allowing one to apply pre-load to the piezoelectric material. It also allows one to manufacture them from a single material/plate, rapid prototype them, or make an array in a plate or 3D structure. The actuator is easily assembled, and application of pre-stress greater than 25 MPa was demonstrated. The horn consists of external flexures that eliminate the need for the conventional stress bolt internal to the piezoelectric, and reduces the related complexity. The stress bolts are required in existing horns to provide prestress on piezoelectric stacks when driven at high power levels. In addition, the manufacturing process benefits from the amenability to produce horn structures with internal cavities. The removal of the pre-stress bolt removes a potential internal electric discharge point in the actuator. In addition, it significantly reduces the chances of mechanical failure in the piezoelectric stacks that result from the hole surface in conventional piezoelectric actuators. The novel features of this disclosure are: 1. A design that can be manufactured from a single piece of metal using EDM, precision machining, or rapid prototyping. 2. Increased electromechanical coupling of the horn actuator. 3. Higher energy density. 4. A monolithic structure of a horn that consists of an external flexure or flexures that can be used to pre-stress a solid piezoelectric structure rather than a bolt, which requires a through hole in the piezoelectric material. 5. A flexure system with low stiffness that accommodates mechanical creep with minor reduction in pre-stress.

  5. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  6. Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    PubMed Central

    Hwang, Yongyun; Barakat, Abdul I.

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a long distance without significant decay due to material viscosity and/or cytosolic drag. PMID:22514731

  7. Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field

    DTIC Science & Technology

    2017-04-21

    13  ii LIST OF ABBREVIATIONS AND ACRONYMS AC Alternating Current DC Direct Currant FEA Finite Element Analysis NUWC Naval...at resonance into tension is shown in figure 3; it was estimated from finite element analysis (FEA) that the tensional stresses exceeded 2000 psi...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Stephen C. Butler 5.d PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION

  8. SCHOOLS OF PRESTRESSED CONCRETE. PLANNING, DESIGN AND CONSTRUCTION OF EDUCATIONAL FACILITIES FOR SCHOOLS AND COLLEGES.

    ERIC Educational Resources Information Center

    LYMAN, ROBERT J.

    THE USE OF PRESTRESSED CONCRETE IS EMPHASIZED IN THE AREAS OF SCHOOL PLANNING, DESIGN, AND CONSTRUCTION. THE PLANNING SECTION INCLUDES--(1) ROLES OF ACTIVE PARTIES AND RELATED ORGANIZATIONS, (2) PROCEDURES, AND (3) CONCEPTUAL DATA FOR SITE AND BUILDING. THE DESIGN SECTION CONTAINS--(1) DEVELOPMENT OF CONSTRUCTION SYSTEMS, (2) INTEGRATION OF…

  9. 75 FR 37382 - Notice of Antidumping Duty Order: Prestressed Concrete Steel Wire Strand from the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... strand (``PC strand'') from the People's Republic of China (``PRC''). On June 22, 2010, the ITC notified... investigation of PC strand from the PRC. See Prestressed Concrete Steel Wire Strand From the People's Republic... Determination''). Scope of the Order The scope of this investigation consists of PC strand, produced from wire...

  10. 75 FR 28560 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Final Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Wire Strand From the People's Republic of China: Final Determination of Sales at Less Than Fair Value... Steel Wire Strand From the People's Republic of China: Preliminary Determination of Sales at Less Than... Antidumping Duty Investigation of Prestressed Concrete Steel Wire Strand From the People's Republic of China...

  11. 78 FR 25303 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Institution of antidumping duty..., by reason of imports from prestressed concrete steel rail tie wire from China, Mexico, and Thailand... filed on April 23, 2013, by Davis Wire Corp. of Kent, WA and Insteel Wire Product Co. of Mount Airy, NC...

  12. 78 FR 37236 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Determinations On the basis of the record \\1... imports from China, Mexico, and Thailand of prestressed concrete steel rail tie wire, provided for in... petition was filed with the Commission and Commerce by Davis Wire Corp. of Kent, WA and Insteel Wire...

  13. 78 FR 75544 - Prestressed Concrete Steel Rail Tie Wire From Mexico: Preliminary Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Rail Tie Wire From Mexico: Preliminary Determination of Sales at Less Than Fair Value and Postponement...'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from Mexico is being... covered by this investigation is high carbon steel wire; stress relieved or low relaxation; indented or...

  14. 78 FR 75547 - Prestressed Concrete Steel Rail Tie Wire From Thailand: Preliminary Determination of Sales at Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Rail Tie Wire From Thailand: Preliminary Determination of Sales at Not Less Than Fair Value and...'') preliminarily determines that prestressed concrete steel rail tire wire (``PC tie wire'') from Thailand is not... Investigation The product covered by this investigation is high carbon steel wire; stress relieved or low...

  15. Transfer and development length of 15.2 mm (0.6 in.) diameter prestressing strand in high performance concrete : results of the Hoblitzell-Buckner beam tests

    DOT National Transportation Integrated Search

    1995-06-01

    This study examines the transfer and development length of 15.2 mm (0.6 in.) diameter prestressing strand in high performance (high strength) concrete. Two 1067 mm (42.0 in.) deep rectangular beams, commonly called the Hoblitzell-Buckner beams, each ...

  16. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  17. Guided elastic waves in a pre-stressed compressible interlayer

    PubMed

    Sotiropoulos

    2000-03-01

    The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.

  18. Monitoring of Deep Foundation Pit Support and Construction Process in Soft Soil Area of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Weiyi, Xie; Pengcheng

    2018-03-01

    The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.

  19. Low Temperature Consolidation of Micro/Nanosilver Die-Attach Preforms

    NASA Astrophysics Data System (ADS)

    McCoppin, Jared; Reitz, Thomas L.; Miller, Ryan; Vijwani, Hema; Mukhopadhyay, Sharmila; Young, Daniel

    2014-09-01

    Organically passivated silver nanopowder paste-based sintering is considered a promising solution for die-attach in high temperature power and sensing electronic devices. However, oxygen requirements during burnout and inherently high shrinkage rates limit their use to small die sizes. This work reports an alternative fabrication method that resolves decomposition and shrinkage issues of the die-attach by utilizing a prestressed optimized tape cast mixture of micro- and nanosilver particles with a polypropylene carbonate binder. The effects of prestressing, micro/nanosilver bimodal distribution, and polymer content on resulting microstructure and shear strength were investigated. Prior to application as a die-attach, uniaxial compression of the tape was found to significantly decrease shrinkage and improve green strength. This pre-stressing strategy allows for a decoupling of the resulting die-attach materials properties from the pressure applied during assembly. Bimodal mixtures consisting of 1-3 μm spherical powders with nanosilver resulted in shear strengths comparable to those of pure nanosilver. Shear strength decreased as bimodal particle size increased above 5 μm. A polymer content of ˜10 wt.% polypropylene carbonate combined with prestressing was identified as optimal for maximizing die-attach shear strength while still maintaining pliability and formability. Tape casts that were prestressed to 212 MPa by uniaxially compression and formulated with 10 wt.% of polypropylene carbonate resulted in a die-attach material with a shear strength of 54 MPa when sintered. These materials were used to demonstrate void-free 25-mm2 die-attach assemblies, suggesting that tape cast micro/nanosilver materials may be a promising die-attach method for high temperature and large-area electronics devices.

  20. Flutter: A finite element program for aerodynamic instability analysis of general shells of revolution with thermal prestress

    NASA Technical Reports Server (NTRS)

    Fallon, D. J.; Thornton, E. A.

    1983-01-01

    Documentation for the computer program FLUTTER is presented. The theory of aerodynamic instability with thermal prestress is discussed. Theoretical aspects of the finite element matrices required in the aerodynamic instability analysis are also discussed. General organization of the computer program is explained, and instructions are then presented for the execution of the program.

  1. Impact capacity reduction in railway prestressed concrete sleepers with vertical holes

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground as well as to secure rail gauge for dynamic safe movements of trains. In spite of the most common use of the prestressed concrete sleepers in railway tracks, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. This is because those signalling, fibre optic, equipment cables are often damaged either by ballast corners or by tamping machine. It is thus necessary to modify concrete sleepers to cater cables internally so that the cables or drainage pipes would not experience detrimental or harsh environments. Accordingly, this study will extend from the previous study into the design criteria of holes and web openings. This paper will highlight structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers will be highlighted in this study. The outcome of this study will improve the understanding into dynamic behavior of prestressed concrete sleepers with vertical holes. The insight will enable predictive track maintenance regime in railway industry.

  2. Comparison Between PCI and Box Girder in BridgesPrestressed Concrete Design

    NASA Astrophysics Data System (ADS)

    Rahmawati, Cut; Zainuddin, Z.; Is, Syafridal; Rahim, Robbi

    2018-04-01

    This research is done by comparing PCI and Box Girder types of prestressed concrete design. The method used is load balance. Previous studies have just discussed the differences in terms of effectiveness and economics. In this study, the researchers want to know the design process by comparing the working forces, the resulting moment, and the losses of the prestressed. As the case in this study, the researchers used the bridge with the span of 31 meters. The tendon pulling system was conducted with post-tensioning system The analysis result showed that prestressed of the Girder box type sustained the greatest moment due to the combination of its own weight, additional dead load, lane load, and wind load of 44,029 kNm, while the biggest moment of PCI Girder was 7,556.75 KNm The Girder beam box experiences greater moment and shear force than PCI Girder. This is the effect of the weight of its own Girderboxwaslarger than PCI Girder. The losses ofprestressed style of Girderboxand PCI Girder type were 24.85% and 26.32%, respectively.Moreover, it showed that the type of Girder box is cheaper, easier, and more efficient than PCI Girder.

  3. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, G.J.; Brown, G.G.; Waterman, D.D.

    The feasibility of prestressing commercial boron/epoxy and graphite/epoxy prepreg material to higher strengths and lower property dispersions is demonstrated. Its practical application as an on-line process for improving quality levels is possible with minor modifications to current experimental practice. The mechanics of the bendstressing method affects a controlled alteration in the fiber defect content to the extent that composite improvements can be achieved approaching the inherent fiber quality with dispersions in properties reduced to the 1 to 2% range. (Author, modified-PL)

  5. A microstructural approach to cytoskeletal mechanics based on tensegrity

    NASA Technical Reports Server (NTRS)

    Stamenovic, D.; Fredberg, J. J.; Wang, N.; Butler, J. P.; Ingber, D. E.

    1996-01-01

    Mechanical properties of living cells are commonly described in terms of the laws of continuum mechanics. The purpose of this report is to consider the implications of an alternative approach that emphasizes the discrete nature of stress bearing elements in the cell and is based on the known structural properties of the cytoskeleton. We have noted previously that tensegrity architecture seems to capture essential qualitative features of cytoskeletal shape distortion in adherent cells (Ingber, 1993a; Wang et al., 1993). Here we extend those qualitative notions into a formal microstructural analysis. On the basis of that analysis we attempt to identify unifying principles that might underlie the shape stability of the cytoskeleton. For simplicity, we focus on a tensegrity structure containing six rigid struts interconnected by 24 linearly elastic cables. Cables carry initial tension ("prestress") counterbalanced by compression of struts. Two cases of interconnectedness between cables and struts are considered: one where they are connected by pin-joints, and the other where the cables run through frictionless loops at the junctions. At the molecular level, the pinned structure may represent the case in which different cytoskeletal filaments are cross-linked whereas the looped structure represents the case where they are free to slip past one another. The system is then subjected to uniaxial stretching. Using the principal of virtual work, stretching force vs. extension and structural stiffness vs. stretching force relationships are calculated for different prestresses. The stiffness is found to increase with increasing prestress and, at a given prestress, to increase approximately linearly with increasing stretching force. This behavior is consistent with observations in living endothelial cells exposed to shear stresses (Wang & Ingber, 1994). At a given prestress, the pinned structure is found to be stiffer than the looped one, a result consistent with data on mechanical behavior of isolated, cross-linked and uncross-linked actin networks (Wachsstock et al., 1993). On the basis of our analysis we concluded that architecture and the prestress of the cytoskeleton might be key features that underlie a cell's ability to regulate its shape.

  6. Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain.

    PubMed

    Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa

    2014-01-01

    Flow back along a needle track (backflow) can be a problem during direct infusion, e.g. convection-enhanced delivery (CED), of drugs into soft tissues such as brain. In this study, the effect of needle insertion speed on local tissue injury and backflow was evaluated in vivo in the rat brain. Needles were introduced at three insertion speeds (0.2, 2, and 10 mm/s) followed by CED of Evans blue albumin (EBA) tracer. Holes left in tissue slices were used to reconstruct penetration damage. These measurements were also input into a hyperelastic model to estimate radial stress at the needle-tissue interface (pre-stress) before infusion. Fast insertion speeds were found to produce more tissue bleeding and disruption; average hole area at 10 mm/s was 1.87-fold the area at 0.2 mm/s. Hole measurements also differed at two fixation time points after needle retraction, 10 and 25 min, indicating that pre-stresses are influenced by time-dependent tissue swelling. Calculated pre-stresses were compressive (0 to 485 Pa) and varied along the length of the needle with smaller average values within white matter (116 Pa) than gray matter (301 Pa) regions. Average pre-stress at 0.2 mm/s (351.7 Pa) was calculated to be 1.46-fold the value at 10 mm/s. For CED backflow experiments (0.5, 1, and 2 µL/min), measured EBA backflow increased as much as 2.46-fold between 10 and 0.2 mm/s insertion speeds. Thus, insertion rate-dependent damage and changes in pre-stress were found to directly contribute to the extent of backflow, with slower insertion resulting in less damage and improved targeting.

  7. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.

    PubMed

    Hwang, David; Gabai, Adam S; Yu, Miao; Yew, Alvin G; Hsieh, Adam H

    2012-01-01

    Solid-fluid interactions play an important role in mediating viscoelastic behaviour of biological tissues. In the intervertebral disc, water content is governed by a number of factors, including age, disease and mechanical loads, leading to changes in stiffness characteristics. We hypothesized that zonal stress distributions depend on load history, or the prior stresses experienced by the disc. To investigate these effects, rat caudal motion segments were subjected to compressive creep biomechanical testing in vitro using a protocol that consisted of two phases: a Prestress Phase (varied to represent different histories of load) followed immediately by an Exertion Phase, identical across all Prestress groups. Three analytical models were used to fit the experimental data in order to evaluate load history effects on gross and zonal disc mechanics. Model results indicated that while gross transient response was insensitive to load history, there may be changes in the internal mechanics of the disc. In particular, a fluid transport model suggested that the role of the nucleus pulposus in resisting creep during Exertion depended on Prestress conditions. Separate experiments using similarly defined load history regimens were performed to verify these predictions by measuring intradiscal pressure with a fibre optic sensor. We found that the ability for intradiscal pressure generation was load history-dependent and exhibited even greater sensitivity than predicted by analytical models. A 0.5 MPa Exertion load resulted in 537.2 kPa IDP for low magnitude Prestress compared with 373.7 kPa for high magnitude Prestress. Based on these measurements, we developed a simple model that may describe the pressure-shear environment in the nucleus pulposus. These findings may have important implications on our understanding of how mechanical stress contributes to disc health and disease etiology.

  8. Rim for rotary inertial energy storage device and method

    DOEpatents

    Knight, Jr., Charles E.; Pollard, Roy E.

    1980-01-01

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  9. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof,min enabled the analysis of FRP reinforced concrete columns to be carried out in a manner similar to steel reinforced concrete columns since similar provisions in ACI 318 were consistently used in developing these aids. The design aids produced accurate estimates of rhof,min. When creep and shrinkage effects of concrete were considered, conservative rhof,min values were obtained in order to preserve an adequate margin of safety due to their unpredictability.

  10. Laterally Loaded Partially Prestressed Concrete Piles

    DTIC Science & Technology

    1989-09-01

    of an extensive test program onl laterali y ioadeu. partially pr- estressed concrete fender piles. The study Included service load range as well ats...12,000-psi design strength). Configura- tion G utilized 14 r:- estress strand, in an unsymmetric pattern. To provide a uniform concrete prestress of 540...sudden loss in load carrying capacity directly related to the loss of concrete area. The compression concrete fractured longitudinally and along the

  11. Prestressed curved actuators: characterization and modeling of their piezoelectric behavior

    NASA Astrophysics Data System (ADS)

    Mossi, Karla M.; Ounaies, Zoubeida; Smith, Ralph C.; Ball, Brian

    2003-08-01

    Pre-stressed curved actuators consist of a piezoelectric ceramic (lead zirconate titanate or PZT) sandwiched between various substrates and other top layers. In one configuration, the substrates are stainless steel with a top layer made with aluminum (THUNDER). In another configuration, the substrates and top are based on fiberglass and carbon composite layers (Lipca-C2). Due to their enhanced strain capabilities, these pre-stressed piezoelectric devices are of interest in a variety of aerospace applications. Their performance as a function of electric field, temperature and frequency is needed in order to optimize their operation. During the processing steps, a mismatch between the properties of the various layers leads to pre-stressing of the PZT layer. These internal stresses, combined with restricted lateral motion, are shown to enhance the axial displacement. The goal is to gain an understanding of the resulting piezoelectric behavior over a range of voltages, and frequencies. A nonlinear model, which quantifies the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions, is developed. The model utilizes a hysteretic electric field-polarization relationship and predicts displacements based on the geometry and physical characteristics of the actuator components. The accuracy of the model and associated numerical method is demonstrated through comparison with experimental data.

  12. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    NASA Astrophysics Data System (ADS)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  13. The Effect of Pre-stresses and Microstructural Morphology on the Overall Mechanical Properties of Composites

    DTIC Science & Technology

    2013-09-30

    TERMS micromechanics, prestress, composites, elasticity, viscoelasticity, finite element Anastasia Muliana, KR Rajagopal Texas Engineering Experiment...PERSON 19b. TELEPHONE NUMBER Anastasia Muliana 979-458-3579 3. DATES COVERED (From - To) 15-Sep-2012 Standard Form 298 (Rev 8/98) Prescribed by ANSI...Supported National Academy MemberPERCENT_SUPPORTEDNAME KR Rajagopal 0.40 Anastasia Muliana 0.80 1.20FTE Equivalent: 2Total Number: Names of Under

  14. Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground

    NASA Astrophysics Data System (ADS)

    Yu, Chuang; Liu, Songyu

    2008-11-01

    Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.

  15. Nonlinear Reduced-Order Simulation Using Stress-Free and Pre-Stressed Modal Bases

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Stover, Michael A.; Rizzi, Stephen A.

    2009-01-01

    A study is undertaken to determine the advantages and disadvantages associated with application of stress-free and pre-stressed modal bases in a reduced-order finite-element-based nonlinear simulation. A planar beam is chosen as an application example and its response due to combined thermal and random pressure loadings is examined. Combinations of two random pressure levels and two thermal conditions are investigated. The latter consists of an ambient temperature condition and an elevated temperature condition in the post-buckled regime. It is found that stress-free normal modes establish a broadly applicable modal basis yielding accurate results for all the loading regimes considered. In contrast, the range of applicability for a thermally pre-stressed modal basis is found to be limited. The behavior is explained by scrutinizing the coupling found in the linear stiffness and the effect this coupling has on the structural response characteristics under the range of loading conditions considered.

  16. Shape memory alloy-actuated bistable composites for morphing structures

    NASA Astrophysics Data System (ADS)

    Chillara, Venkata Siva C.; Dapino, Marcelo J.

    2018-03-01

    Laminated composites with orthogonally-applied mechanical prestress have been shown to exhibit two stable shapes where each shape is influenced by only one prestrained lamina. The application of mechanical prestress is associated with an irreversible non-zero stress state; when combined with smart materials with controllable stress-states, this results in multifunctionality in morphing composites. This study presents an experimental characterization of the shape transition or snap-through in mechanically-prestressed bistable laminates. Measurements, conducted using tensile testing and 3D motion capture, show that snap-through in these laminates is a multi-stage phenomenon. An active bistable morphing composite is demonstrated using NiTi shape memory wire actuators in push-pull configuration; activation of one wire resets the second wire as the composite morphs. The set of shape memory actuators not only actuate the composite in both directions, but also act as dampers that enable vibration-free shape transition.

  17. Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less

  18. Evaluation of feasibility of prestressed concrete for use in wind turbine blades

    NASA Technical Reports Server (NTRS)

    Leiblein, S.; Londahl, D. S.; Furlong, D. B.; Dreier, M. E.

    1979-01-01

    A preliminary evaluation of the feasibility of the use of prestressed concrete as a material for low cost blades for wind turbines was conducted. A baseline blade design was achieved for an experimental wind turbine that met aerodynamic and structural requirements. Significant cost reductions were indicated for volume production. Casting of a model blade section showed no fabrication problems. Coupled dynamic analysis revealed that adverse rotor tower interactions can be significant with heavy rotor blades.

  19. Pre-loading of components during laser peenforming

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA

    2003-12-30

    A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.

  20. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete

    PubMed Central

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-01-01

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration. PMID:28788223

  1. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  2. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete.

    PubMed

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-10-10

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.

  3. Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    The results of accelerated stress testing of four different types of silicon terrestrial solar cells are discussed. The accelerated stress tests used included bias-temperature tests, bias-temperature-humidity tests, thermal cycle and thermal shock tests, and power cycle tests. Characterization of the cells was performed before stress testing and at periodic down-times, using electrical measurement, visual inspection, and metal adherence pull tests. Electrical parameters measured included short-circuit current, open circuit voltage, and output power, voltage, and current at the maximum power point. Incorporated in the report are the distributions of the prestress electrical data for all cell types. Data were also obtained on cell series and shunt resistance.

  4. Pretest Round Robin Analysis of 1:4-Scale Prestressed Concrete Containment Vessel Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HESSHEIMER,MICHAEL F.; LUK,VINCENT K.; KLAMERUS,ERIC W.

    The purpose of the program is to investigate the response of representative scale models of nuclear containment to pressure loading beyond the design basis accident and to compare analytical predictions to measured behavior. This objective is accomplished by conducting static, pneumatic overpressurization tests of scale models at ambient temperature. This research program consists of testing two scale models: a steel containment vessel (SCV) model (tested in 1996) and a prestressed concrete containment vessel (PCCV) model, which is the subject of this paper.

  5. Shear wave in a pre-stressed poroelastic medium diffracted by a rigid strip

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar; Yadav, Ram Prasad; Kumar, Santan; Chattopadhyay, Amares

    2017-10-01

    The investigated work analytically addresses the diffraction of horizontally polarised shear wave by a rigid strip in a pre-stressed transversely isotropic poroelastic infinite medium. The far field solution for the diffracted displacement of shear wave has been established in closed form. The diffraction patterns for displacement in the said medium have been computed numerically and its dependence on wave number has been depicted graphically. Further, the study also delineates the pronounced influence of various affecting parameters viz. anisotropy parameter, porosity parameter, speed of the shear wave, and incident angle on the diffracted displacement of the propagating wave. The effects of horizontal as well as vertical compressive and tensile pre-stresses on diffracted displacement of propagating wave have been examined meticulously in a comparative manner. It can be remarkably quoted that porosity prevailing in the medium disfavors the diffracted displacement of the propagating wave. In addition, some special cases have been deduced from the determined expression of the diffracted displacement of shear wave at a large distance from the strip.

  6. Effect of geometric size on mechanical properties of dielectric elastomers based on an improved visco-hyperelastic film model

    NASA Astrophysics Data System (ADS)

    Chang, Mengzhou; Wang, Zhenqing; Tong, Liyong; Liang, Wenyan

    2017-03-01

    Dielectric polymers show complex mechanical behaviors with different boundary conditions, geometry size and pre-stress. A viscoelastic model suitable for inhomogeneous deformation is presented integrating the Kelvin-Voigt model in a new form in this work. For different types of uniaxial tensile test loading along the length direction of sample, single-step-relaxation tests, loading-unloading tests and tensile-creep-relaxation tests the improved model provides a quite favorable comparison with the experiment results. Moreover, The mechanical properties of test sample with several length-width ratios under different boundary conditions are also invested. The influences of the different boundary conditions are calculated with a stress applied on the boundary point and the result show that the fixed boundary will increase the stress compare with homogeneous deformation. In modeling the effect of pre-stress in the shear test, three pre-stressed mode are discussed. The model validation on the general mechanical behavior shows excellent predictive capability.

  7. Mechanical properties of monolayer graphene oxide.

    PubMed

    Suk, Ji Won; Piner, Richard D; An, Jinho; Ruoff, Rodney S

    2010-11-23

    Mechanical properties of ultrathin membranes consisting of one layer, two overlapped layers, and three overlapped layers of graphene oxide platelets were investigated by atomic force microscopy (AFM) imaging in contact mode. In order to evaluate both the elastic modulus and prestress of thin membranes, the AFM measurement was combined with the finite element method (FEM) in a new approach for evaluating the mechanics of ultrathin membranes. Monolayer graphene oxide was found to have a lower effective Young's modulus (207.6 ± 23.4 GPa when a thickness of 0.7 nm is used) as compared to the value reported for "pristine" graphene. The prestress (39.7-76.8 MPa) of the graphene oxide membranes obtained by solution-based deposition was found to be 1 order of magnitude lower than that obtained by others for mechanically cleaved graphene. The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes.

  8. Prestressed Ring Beam in the Church of St. Peter’s and Paul’s in Bodzanow, Design and Realization

    NASA Astrophysics Data System (ADS)

    Szydlowski, Rafal; Labuzek, Barbara; Turcza, Monika

    2017-10-01

    The present trend in architecture is designing thin. slender and spacious architectural forms. It has become the reason for searching for new solutions and finding new ways of use of the existing construction ones. Recently, the first time in Poland, the post-tensioning has been used in realization of church building. In the Church of St. Peter’s and Paul’s in Bodzanow (near Cracow) was designed circumferential ring beam post-tensioned with 4 unbounded tendons to transfer peripheral tensile forces from the roof. Thanks to the use of a prestressed ring beam hidden in the wall, large cross-section of roof girders was possible to be avoided, as well as a massive reinforced concrete ring or additional steel tie-rods. The paper presents the applied solutions in details with the theoretical calculated results as well as the results of prestressing measured in site during tensioning of tendons. Based on presented results some conclusions have been drawn.

  9. Ballistic impact to access the high-rate behaviour of individual silk fibres

    NASA Astrophysics Data System (ADS)

    Drodge, Daniel R.; Mortimer, Beth; Holland, Chris; Siviour, Clive R.

    2012-10-01

    A revision of a classic transverse fibre impact technique is presented, as applied to the problem of obtaining the high strain-rate constitutive behaviour of commercial Bombyx mori silk. Medium tenacity nylon was also studied. Two approaches are presented: firstly a fixed pre-stress, varied impact velocity method that derives stress-strain behaviour by inverse fit; and secondly a fixed impact velocity, varied pre-stress approach, assuming basic elastic jump conditions to obtain a locus of post-impact states. The post-impact stress-strain states obtained using the two approaches converge for silk but diverge for nylon. This we attribute to silk's fine structure being able to homogenise energy dissipation at static and dynamic deformation rates. However, the coarser microstructure of nylon results in a different loading path dependence, thus divergence in the two approaches. It was also noted that silk exhibited a comparatively stable level of impact energy absorption under varying pre-stress, when compared to nylon.

  10. Pretest fracture evaluation of the NESC-1 spinning-cylinder experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeney, J.A.; Bass, B.R.; Williams, P.T.

    This paper describes a pretest fracture analysis of the cylinder specimen being used in the Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). Organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards, the NESC is currently focusing on a research project funded by United Kingdom Health and Safety Executive (HSE) to study the total process of structural integrity assessments of aged reactor pressure vessels (RPVs) containing subclad cracks. The intent is to have the problem studied by a wide rangemore » of organizations involved in RPV safety assessment. In this project, important safety assessment issues are being investigated by inspection and analysis of a spinning cylinder test which was performed at the AEA Technology facility at Risley, UK. Thermoelastic-plastic analyses were carried out for a clad cylinder model with a 74-mm-deep through-clad inner-surface crack. For this loading, the analytical results indicate that cleavage initiation may be achieved. The intervention of warm prestressing and loss of constraint may make cleavage initiation difficult to achieve in the heat-affected zone (HAZ) and near-HAZ regions.« less

  11. Seismic Risk Mitigation of Historical Minarets Using SMA Wire Dampers

    NASA Astrophysics Data System (ADS)

    El-Attar, Adel G.; Saleh, Ahmed M.; El-Habbal, Islam R.

    2008-07-01

    This paper presents the results of a research program sponsored by the European Commission through project WIND-CHIME (Wide Range Non-INtrusive Devices toward Conservation of HIstorical Monuments in the MEditerranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, two outstanding Egyptian Mamluk-Style minarets, are investigated. The first is the southern minaret of Al-Sultaniya (1340 A.D, 739 Hijri Date (H.D.)), the second is the minaret of Qusun minaret (1337 A.D, 736 H.D.), both located within the city of Cairo. Based on previous studies on the minarets by the authors, a seismic retrofit technique is proposed. The technique utilizes shape memory alloy (SMA) wires as dampers for the upper, more flexible, parts of the minarets in addition to vertical pre-stressing of the lower parts found to be prone to tensile cracking under ground excitation. The effectiveness of the proposed technique is numerically evaluated via nonlinear transient dynamic analyses. The results indicate the effectiveness of the technique in mitigating the seismic hazard, demonstrated by the effective reduction in stresses and in dynamic response.

  12. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana.

    PubMed

    Ramel, Fanny; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2009-12-01

    Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose-starch partition and organ allocation. The question of potential relationships between endogenous sugar levels and stress responses to atrazine treatment was investigated through analysis of natural genetic accessions of A. thaliana. Parallel quantitative and statistical analysis of biochemical parameters and of stress-sensitive physiological traits was carried out on a set of 11 accessions. Important natural variation was found between accessions of A. thaliana in pre-stress shoot endogenous sugar levels and responses of plantlets to subsequent atrazine stress. Moreover, consistent trends and statistically significant correlations were detected between specific endogenous sugar parameters, such as the pre-stress end of day sucrose level in shoots, and physiological markers of atrazine tolerance. These significant relationships between endogenous carbohydrate metabolism and stress response therefore point to an important integration of carbon nutritional status and induction of stress tolerance in plants. The specific correlation between pre-stress sucrose level and greater atrazine tolerance may reflect adaptive mechanisms that link sucrose accumulation, photosynthesis-related stress and sucrose induction of stress defences.

  13. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses.

    PubMed

    Guo, Xiao; Wei, Peijun

    2016-03-01

    The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Prestressed elastomer for energy storage

    DOEpatents

    Hoppie, Lyle O.; Speranza, Donald

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  15. Scaling of F-actin network rheology to probe single filament elasticity and dynamics.

    PubMed

    Gardel, M L; Shin, J H; MacKintosh, F C; Mahadevan, L; Matsudaira, P A; Weitz, D A

    2004-10-29

    The linear and nonlinear viscoelastic response of networks of cross-linked and bundled cytoskeletal filaments demonstrates remarkable scaling with both frequency and applied prestress, which helps elucidate the origins of the viscoelasticity. The frequency dependence of the shear modulus reflects the underlying single-filament relaxation dynamics for 0.1-10 rad/sec. Moreover, the nonlinear strain stiffening of such networks exhibits a universal form as a function of prestress; this is quantitatively explained by the full force-extension relation of single semiflexible filaments.

  16. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana

    PubMed Central

    Ramel, Fanny; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2009-01-01

    Background Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. Methods Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose–starch partition and organ allocation. The question of potential relationships between endogenous sugar levels and stress responses to atrazine treatment was investigated through analysis of natural genetic accessions of A. thaliana. Parallel quantitative and statistical analysis of biochemical parameters and of stress-sensitive physiological traits was carried out on a set of 11 accessions. Key Results Important natural variation was found between accessions of A. thaliana in pre-stress shoot endogenous sugar levels and responses of plantlets to subsequent atrazine stress. Moreover, consistent trends and statistically significant correlations were detected between specific endogenous sugar parameters, such as the pre-stress end of day sucrose level in shoots, and physiological markers of atrazine tolerance. Conclusions These significant relationships between endogenous carbohydrate metabolism and stress response therefore point to an important integration of carbon nutritional status and induction of stress tolerance in plants. The specific correlation between pre-stress sucrose level and greater atrazine tolerance may reflect adaptive mechanisms that link sucrose accumulation, photosynthesis-related stress and sucrose induction of stress defences. PMID:19789177

  17. A Review on the Development of New Materials for Construction of Prestressed Concrete Railway Sleepers

    NASA Astrophysics Data System (ADS)

    Raj, Anand; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Railways form the backbone of all economies, transporting goods, and passengers alike. Sleepers play a pivotal role in track performance and safety in rail transport. This paper discusses in brief about the materials that have been used in making sleepers in the early stages of railways. Extensive studies have been carried out on the static, dynamic and impact analysis of prestressed sleepers all around the globe. It has been shown that majority of the sleepers do not last till their expected design life resulting in massive replacement and repair cost. The primary reasons leading to the failure of sleepers have been summarised. This article also highlights the use of new materials developed recently for the construction of prestressed concrete sleepers to improve the performance and life of railway sleepers. Use of geopolymer concrete and steel fibre reinforced concrete, assist in the reduction of flexural cracking, whereas rubber concrete enhances the impact resistance of concrete by three folds. This paper presents a review of state of the art of new materials for railway sleepers.

  18. Mechanical behavior in living cells consistent with the tensegrity model

    NASA Technical Reports Server (NTRS)

    Wang, N.; Naruse, K.; Stamenovic, D.; Fredberg, J. J.; Mijailovich, S. M.; Tolic-Norrelykke, I. M.; Polte, T.; Mannix, R.; Ingber, D. E.

    2001-01-01

    Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

  19. Influence of prestress and periodic corrugated boundary surfaces on Rayleigh waves in an orthotropic medium over a transversely isotropic dissipative semi-infinite substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Ahmed, Mostaid

    2017-01-01

    The paper environs the study of Rayleigh-type surface waves in an orthotropic crustal layer over a transversely isotropic dissipative semi-infinite medium under the effect of prestress and corrugated boundary surfaces. Separate displacement components for both media have been derived in order to characterize the dynamics of individual materials. Suitable boundary conditions have been employed upon the surface wave solutions of the elasto-dynamical equations that are taken into consideration in the light of corrugated boundary surfaces. From the real part of the sixth-order complex determinantal expression, we obtain the frequency equation for Rayleigh waves concerning the proposed earth model. Possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. Numerical computations have been performed in order to graphically demonstrate the role of the thickness of layer, prestress, corrugation parameters and dissipation on Rayleigh wave velocity. The study may be regarded as important due to its possible applications in delay line services and investigating deformation characteristics of solids as well as typical rock formations.

  20. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  1. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE PAGES

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.; ...

    2016-05-30

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  2. Piezoelectric Pre-Stressed Bending Mechanism for Impact-Driven Energy Harvester

    NASA Astrophysics Data System (ADS)

    Abdal, A. M.; Leong, K. S.

    2017-06-01

    This paper experimentally demonstrates and evaluates a piezoelectric power generator bending mechanism based on pre-stressed condition whereby the piezoelectric transducer being bended and remained in the stressed condition before applying a force on the piezoelectric bending structure, which increase the stress on the piezoelectric surface and hence increase the generated electrical charges. An impact force is being exerted onto bending the piezoelectric beam and hence generating electrical power across an external resistive load. The proposed bending mechanism prototype has been manufactured by employing 3D printer technology in order to conduct the evaluation. A free fall test has been conducted as the evaluation method with varying force using a series of different masses and different fall heights. A rectangular piezoelectric harvester beam with the size of 32mm in width, 70mm in length, and 0.55mm in thickness is used to demonstrate the experiment. It can be seen from the experiment that the instantaneous peak to peak AC volt output measured at open-circuit is increasing and saturated at about of 70V when an impact force of about 80N is being applied. It is also found that a maximum power of about 53mW is generated at an impact force of 50N when it is connected to an external resistive load of 0.7KΩ. The reported mechanism is a promising candidate in the application of energy harvesting for powering various wireless sensor nodes (WSN) which is the core of Internet of Things (IoT).

  3. Large deflection analysis of a pre-stressed annular plate with a rigid boss under axisymmetric loading

    NASA Astrophysics Data System (ADS)

    Su, Y. H.; Chen, K. S.; Roberts, D. C.; Spearing, S. M.

    2001-11-01

    The large deflection analysis of a pre-stressed annular plate with a central rigid boss subjected to axisymmetric loading is presented. The factors affecting the transition from plate behaviour to membrane behaviour (e.g. thickness, in-plane tension and material properties) are studied. The effect of boss size and pre-tension on the effective stiffness of the plate are investigated. The extent of the bending boundary layers at the edges of the plate are quantified. All results are presented in non-dimensional form. The design implications for microelectromechanical system components are assessed.

  4. Composite resin reinforced with pre-tensioned glass fibers. Influence of prestressing on flexural properties.

    PubMed

    Schlichting, Luís Henrique; de Andrada, Mauro Amaral Caldeira; Vieira, Luiz Clóvis Cardoso; de Oliveira Barra, Guilherme Mariz; Magne, Pascal

    2010-02-01

    This investigation evaluated the flexural properties of two composite resins, and the influence of unidirectional glass fiber reinforcements, with and without pre-tensioning. Two composite resins (Q: Quixfil and A: Adoro) were used to fabricate 2 mm x 2 mm x 25 mm beams (N = 10), reinforced with two fiber bundles along the long axis of the beam and pre-tensioned under a load equivalent to 73.5% of its tensile strength (groups QPF and APF). In two other experimental groups, the bundles were similarly positioned but without pre-tension (groups QF and AF). Two more groups were included without fiber reinforcement (control groups Q and A). After 24h storage, specimens were subjected to a three-point flexural bending test to establish the flexural module, the deflection at initial failure and the flexural strength. Data were analyzed using a two-way analysis of variance (composite resin system and fiber reinforcement type) and the Tukey HSD post hoc tests (alpha = .05). The results showed that prestressing increased the flexural module of Adoro specimens (p<.001) but not Quixfil (p = .17). Prestressed beams reached greater deflection at initial failure than those conventionally reinforced (p<.001), namely .85-1.35 mm for Adoro and .66-.90 mm for Quixfil. Prestressing also significantly increased the flexural strength of beams (p<.001) in both Adoro and Quixfil groups, from 443.46 to 569.15 MPa and from 425.47 to 568.00 MPa, respectively. Pre-tensioning of unidirectional glass fibers increased both deflection until initial failure and flexural strength of Quixfil and Adoro composite resins, however, with limited effects on the flexural modulus. Copyright 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Spontaneous wettability patterning via creasing instability

    PubMed Central

    Chen, Dayong; McKinley, Gareth H.; Cohen, Robert E.

    2016-01-01

    Surfaces with patterned wettability contrast are important in industrial applications such as heat transfer, water collection, and particle separation. Traditional methods of fabricating such surfaces rely on microfabrication technologies, which are only applicable to certain substrates and are difficult to scale up and implement on curved surfaces. By taking advantage of a mechanical instability on a polyurethane elastomer film, we show that wettability patterns on both flat and curved surfaces can be generated spontaneously via a simple dip coating process. Variations in dipping time, sample prestress, and chemical treatment enable independent control of domain size (from about 100 to 500 μm), morphology, and wettability contrast, respectively. We characterize the wettability contrast using local surface energy measurements via the sessile droplet technique and tensiometry. PMID:27382170

  6. Pre-stressed thermal protection systems

    NASA Technical Reports Server (NTRS)

    Dunn, T. J. (Inventor)

    1984-01-01

    A hexagonal protective and high temperature resistant system for the Space Shuttle Orbiter consists of a multiplicity of pockets formed by hexagonally oriented spacer bars secured on the vehicle substructure. A packing of low density insulating batt material 18 in each pocket, and a thin protective panel of laterally resilient advanced carbon-carbon material surmounting the peripherals bars and packing. Each panel has three stepped or offset lips on contiguous edges. At the center of each pocket is a fully insulated stanchion secured to and connecting the substructure and panel for flexing the panel toward the substructure and thereby prestressing the panel and forcing the panel edges firmly against the spacer bars.

  7. Development and Assessment of a New CFRP Rod Anchor System for Prestressed Concrete

    NASA Astrophysics Data System (ADS)

    Al-Mayah, A.; Soudki, K.; Plumtree, A.

    2006-09-01

    Design concepts and experimental assessment of a new wedge anchor system for prestressing CFRP rods are presented. This compact and reusable anchor consists of an outer cylinder (barrel), a number of wedges, and a soft metal sleeve. The contacting surfaces of the wedges and barrel have a circular profile along the length of the anchor. Tensile testing using different presetting loads, geometric configurations, and rod sizes was carried out. The relationship of the tensile load and displacement of the rod was established. Presetting was found unnecessary since the anchor system was found to be capable of carrying the full design strength of the rods.

  8. Odua Weston Jambi Hotel’s Structural Building Design with Prestressed Concrete Slab System Approach

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Darmawan, M. S.; Rofiq, M. A.; Santoso, S. E.; Hardiyanto, E.

    2017-11-01

    Odua Weston Jambi Hotel is an eight-floor hotel and located in a prone to earth-quake area. This building used conventional concrete to its structural beam and column. This research’s purpose was to maximize the second-floor’s function by modifing its architectural design. Special Moment Resisting Frame System (SMRFS) approach was used in the structural design, referred to SNI 03-2847-2013 dan SNI 1726-2012 and to compensate the needs of a spacious hall without any column in the centre of the hall, so therefore, prestressed concrete plate is used to solve this problem.

  9. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  10. Evaluation of a Highly Anticlastic Panel with Tow Overlaps

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Gurdal, Zafer

    2007-01-01

    A rectangular, variable-stiffness panel with tow overlaps was manufactured using an advanced tow placement machine. The cured panel had large anticlastic imperfections, with measured amplitudes of over two times the average panel thickness. These imperfections were not due to the overall steered-fiber layup or the tow overlaps, but instead resulted from local asymmetries in the laminate that were caused by a manufacturing oversight. In the nominal panel layup, fiber angles vary linearly from 60 degrees on the panel axial centerline to 30 degrees on the parallel edges. A geometrically nonlinear analysis was performed with a -280 degree Fahrenheit thermal load to simulate the postcure cooldown to room temperature. The predicted geometric imperfections correlated well with the measured panel shape. Unique structural test fixtures were then developed which greatly reduced these imperfections, but they also caused prestresses in the panel. Surface imperfections measured after the panel was installed in the test fixtures were used with nonlinear finite element analyses to predict these fixturing-induced prestresses. These prestresses were also included in structural analyses of panel end compression to failure, and the analytical results compared well with test data when both geometric and material nonlinearities were included.

  11. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn

    2015-10-15

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions.more » The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.« less

  12. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  13. Superconductivity Devices: Commercial Use of Space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene (Principal Investigator); Furman, Eugene; Li, Guang

    1996-01-01

    The work described in this report covers various aspects of the Rainbow solid-state actuator and sensor technologies. It is presented in five parts dealing with sensor applications, nonlinear properties, stress-optic and electrooptic properties, stacks and arrays, and publications. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It involves a new processing technique for preparing pre-stressed, high lead containing piezoelectric and electrostrictive ceramic materials. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders. Since they can also be used in sensor applications, Rainbows are part of the family of materials known as smart ceramics. During this period, PLZT Rainbow ceramics were characterized with respect to their piezoelectric properties for potential use in stress sensor applications. Studies of the nonlinear and stress-optic/electrooptic birefringent properties were also initiated during this period. Various means for increasing the utility of stress-enhanced Rainbow actuators are presently under investigation.

  14. Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocke, Fredrik; Pernpeintner, Matthias; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de

    We investigate the mechanical properties of a doubly clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Young's modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetostrictive, or in more general multiferroicmore » materials.« less

  15. Damage evaluation and repair methods for prestressed concrete bridge members

    NASA Astrophysics Data System (ADS)

    Shanafelt, G. O.; Horn, W. B.

    1980-11-01

    The types of accidental damage occurring and the severity and frequency of their occurrence are summarized. Practices and equipment used for assessing damage and making repairs are presented and evaluated. Guidelines for inspection, assessing damage, and selection of repair methods are given. Methods of repair includes adding external prestress, a metal sleeve splice, and splicing broken strands or rods. The findings of this study suggest that in some instances better repair techniques should be used. The findings of this study also indicate that proper selection of repair methods may reduce the number of damaged girders presently being replaced. Plausible methods of repair requiring additional research are identified and techniques for testing are outlined.

  16. Study on the causes and methods of influencing concrete deflection

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  17. The research of suspen-dome structure

    NASA Astrophysics Data System (ADS)

    Gong, Shengyuan

    2017-09-01

    After overcoming the shortcomings of single-layer latticed shell and cable dome structure, the suspen-dome was developed by inheriting the advantages of them, and it was recognized and applied as a new type of prestressed force large span space structure. Based on the analysis of the background and mechanical principle, the researches of suspen-dome are reviewed, including form-finding analysis, the analysis of static force and stability, the dynamic behaviors and the earthquake resistant behavior, the analysis of prestressing force and optimization design, and the research status of the design of the fir-resistant performance etc. This thesis summarizes the methods of various researches, being a reference for further structural performance research and structural engineering application.

  18. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  19. Variational theorems for superimposed motions in elasticity, with application to beams

    NASA Technical Reports Server (NTRS)

    Doekmeci, M. C.

    1976-01-01

    Variational theorems are presented for a theory of small motions superimposed on large static deformations and governing equations for prestressed beams on the basis of 3-D theory of elastodynamics. First, the principle of virtual work is modified through Friedrichs's transformation so as to describe the initial stress problem of elastodynamics. Next, the modified principle together with a chosen displacement field is used to derive a set of 1-D macroscopic governing equations of prestressed beams. The resulting equations describe all the types of superimposed motions in elastic beams, and they include all the effects of transverse shear and normal strains, and the rotatory inertia. The instability of the governing equations is discussed briefly.

  20. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  1. Investigation of the interwire energy transfer of elastic guided waves inside prestressed cables.

    PubMed

    Treyssède, Fabien

    2016-07-01

    Elastic guided waves are of interest for the non-destructive evaluation of cables. Cables are most often multi-wire structures, and understanding wave propagation requires numerical models accounting for the helical geometry of individual wires, the interwire contact mechanisms and the effects of prestress. In this paper, a modal approach based on a so-called semi-analytical finite element method and taking advantage of a biorthogonality relation is proposed in order to calculate the forced response under excitation of a cable, multi-wired, twisted, and prestressed. The main goal of this paper is to investigate how the energy transfers from a given wire, directly excited, to the other wires in order to identify some localization of energy inside the active wire as the waves propagate along the waveguide. The power flow of the excited field is theoretically derived and an energy transfer parameter is proposed to evaluate the level of energy localization inside a given wire. Numerical results obtained for different polarizations of excitation, central and peripheral, highlight how the energy may localize, spread, or strongly change in the cross-section as waves travel along the axis. In particular, a compressional mode localized inside the central wire is found, with little dispersion and significant excitability.

  2. Choice of rational structural solution for smart innovative suspension structure

    NASA Astrophysics Data System (ADS)

    Goremikins, V.; Serdjuks, D.; Buka-Vaivade, K.; Pakrastins, L.

    2017-10-01

    Choice of the rational structural solution for smart innovative suspension structure was carried out. The prestressed cable trusses and cross-laminated timber panels were considered as the main load bearing members for the smart innovative suspension structure. The FEM model, which enables to predict behaviours of the structure, was developed in the programme ANSYS v12. Structural solutions that are differed by the lattice configuration of the cable truss and placement of cross-laminated timber panels were considered. The variant of the cable truss with the vertical suspenders and chords joined in the middle of the span was chosen as the best one. It was shown, that placement of cross-laminated timber panels by the bottom chord of the prestressed cable truss enables to decrease materials consumption by 16.7% in comparison with the variant, where the panels are placed by the top chord. It was stated, that the materials consumption decrease by 17.3% in the case, when common work of the prestressed cable trusses and cross-laminated timber panels is taken into account. The cross-laminated timber panels are working in the both directions. Physical model of the structure with the span equal to 2 m was developed for checking of numerically obtained results.

  3. A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.

    PubMed

    Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang

    2011-07-01

    A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.

  4. Cranial electrotherapy stimulation for the treatment of depression.

    PubMed

    Gunther, Mary; Phillips, Kenneth D

    2010-11-01

    More prevalent in women than men, clinical depression affects approximately 15 million American adults in a given year. Psychopharmaceutical therapy accompanied by psychotherapy and wellness interventions (e.g., nutrition, exercise, counseling) is effective in 80% of diagnosed cases. A lesser known adjunctive therapy is that of cranial electrotherapy stimulation (CES). The major hypothesis for the use of CES in depression is that it may reset the brain to pre-stress homeostasis levels. It is conjectured that the pulsed electrical currents emitted by cranial electrical stimulators affect changes in the limbic system, the reticular activating system, and/or the hypothalamus that result in neurotransmitter secretion and downstream hormone production. While evidence is good for applied research, basic research about the mechanisms of action for CES remains in its infancy. A review of the literature provides an overview of current research findings and implications for clinical mental health practice.

  5. Spatially Resolved Measurement of the Stress Tensor in Thin Membranes Using Bending Waves

    NASA Astrophysics Data System (ADS)

    Waitz, Reimar; Lutz, Carolin; Nößner, Stephan; Hertkorn, Michael; Scheer, Elke

    2015-04-01

    The mode shape of bending waves in thin silicon and silicon-carbide membranes is measured as a function of space and time, using a phase-shift interferometer with stroboscopic light. The mode shapes hold information about all the relevant mechanical parameters of the samples, including the spatial distribution of static prestress. We present a simple algorithm to obtain a map of the lateral tensor components of the prestress, with a spatial resolution much better than the wavelength of the bending waves. The method is not limited to measuring the stress of bending waves. It is applicable in almost any situation, where the fields determining the state of the system can be measured as a function of space and time.

  6. Time dependent variation of carrying capacity of prestressed precast beam

    NASA Astrophysics Data System (ADS)

    Le, Tuan D.; Konečný, Petr; Matečková, Pavlína

    2018-04-01

    The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.

  7. Prestress Strengthens the Shell of Norwalk Virus Nanoparticles

    PubMed Central

    Baclayon, Marian; Shoemaker, Glen K.; Uetrecht, Charlotte; Crawford, Sue E.; Estes, Mary K.; Prasad, B. V. Venkataram; Heck, Albert J. R.; Wuite, Gijs J. L.; Roos, Wouter H.

    2014-01-01

    We investigated the influence of the protruding domain of Norwalk virus-like particles (NVLP) on its overall structural and mechanical stability. Deletion of the protruding domain yields smooth mutant particles and our AFM nanoindentation measurements show a surprisingly altered indentation response of these particles. Notably, the brittle behavior of the NVLP as compared to the plastic behavior of the mutant reveals that the protruding domain drastically changes the capsid’s material properties. We conclude that the protruding domain introduces prestress, thereby increasing the stiffness of the NVLP and effectively stabilizing the viral nanoparticles. Our results exemplify the variety of methods that nature has explored to improve the mechanical properties of viral capsids, which in turn provides new insights for developing rationally designed, self-assembled nanodevices. PMID:21967663

  8. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  9. Analysis of prestressed concrete slab-and-beam structures

    NASA Astrophysics Data System (ADS)

    Sapountzakis, E. J.; Katsikadelis, J. T.

    In this paper a solution to the problem of prestressed concrete slab-and-beam structures including creep and shrinkage effect is presented. The adopted model takes into account the resulting inplane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the interface, which produce lateral deflection and inplane deformation to the plate and lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The influence of creep and shrinkage effect relative with the time of the casting and the time of the loading of the plate and the beams is taken into account. The estimation of the prestressing axial force of the beams is accomplished iteratively. Both instant (e.g. friction, slip of anchorage) and time dependent losses are encountered. The solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation method (AEM). The adopted model, compared with those ignoring the inplane forces and deformations, describes better the actual response of the plate-beams system and permits the evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of prefabricated ribbed plates.

  10. Stress recovery and cyclic behaviour of an Fe-Mn-Si shape memory alloy after multiple thermal activation

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.

    2018-02-01

    The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.

  11. Appendix B : small beam tests.

    DOT National Transportation Integrated Search

    2013-03-01

    The AASHTO LRFD Bridge Design Specifications (2007) require that confinement : reinforcement be placed around prestressing strands in the bottom bulb of pretensioned concrete : beams. Although the AASHTO specifications contain prescriptive requiremen...

  12. Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer

    NASA Astrophysics Data System (ADS)

    Bagno, A. M.

    2017-03-01

    The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed

  13. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  14. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  15. Appendix D : FIB-54 tests.

    DOT National Transportation Integrated Search

    2013-03-01

    Confinement reinforcement is placed near the end of pretensioned concrete I-girders to : enclose prestressing strands in the bottom flange. Experimental and analytical test programs : were conducted to investigate the function of confinement reinforc...

  16. Apparatus and method of preloading vibration-damping bellows

    DOEpatents

    Cutburth, Ronald W.

    1988-01-01

    An improved vibration damping bellows mount or interconnection is disclosed. In one aspect, the bellows is compressively prestressed along its length to offset vacuum-generated tensile loads and thereby improve vibration damping characteristics.

  17. Dynamics of a bilayer membrane coupled to a two-dimensional cytoskeleton: Scale transfers of membrane deformations

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Komura, Shigeyuki; Fournier, Jean-Baptiste

    2017-07-01

    We theoretically investigate the dynamics of a floating lipid bilayer membrane coupled with a two-dimensional cytoskeleton network, taking into account explicitly the intermonolayer friction, the discrete lattice structure of the cytoskeleton, and its prestress. The lattice structure breaks lateral continuous translational symmetry and couples Fourier modes with different wave vectors. It is shown that within a short time interval a long-wavelength deformation excites a collection of modes with wavelengths shorter than the lattice spacing. These modes relax slowly with a common renormalized rate originating from the long-wavelength mode. As a result, and because of the prestress, the slowest relaxation is governed by the intermonolayer friction. Conversely, and most interestingly, forces applied at the scale of the cytoskeleton for a sufficiently long time can cooperatively excite large-scale modes.

  18. Warm prestress effects in fracture-margin assessment of PWR-RPVs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shum, D.K.M.

    This paper examines various issues that would impact the incorporation of warm prestress (WPS) effects in the fracture-margin assessment of reactor pressure vessels (RPVs). By way of an example problem, possible beneficial effects of including type-I WPS in the assessment of an RPV subjected to a small break loss of coolant accident are described. In addition, the need to consider possible loss of constraint effects when interpreting available small specimen WPS-enhanced fracture toughness data is demonstrated through two- and three-dimensional local crack-lip field analyses of a compact tension specimen. Finally, a hybrid correlative-predictive model of WPS base on J-Q theorymore » and the Ritchie-Knott-Rice model is applied to a small scale yielding boundary layer formulation to investigate near crack-tip fields under varying degrees of loading and unloading.« less

  19. Detecting grouting quality of tendon ducts using the impact-echo method

    NASA Astrophysics Data System (ADS)

    Qu, Guangzhen; Sun, Min; Zhou, Guangli

    2018-06-01

    The performance, durability and safety of prestressed concrete bridge were directly affected by the compaction of prestressed pipe. However, the pipe was hidden in the beam, and its grouting density was difficult to detect. The paper had modified three different status of gouting quality through making test model. After that, the impact-Echo method was adopted to detect the grouting quality of tendon ducts, the study was sunmmarized as follow. If the reflect time of slab bottom and nominal thickness of slab increased, the degree of density will increase; testing from half-hole of web, the reflect time and nominal thickness of slab was biggest. At the same time, the reflect time of compacted and uncompacted tendon ducts were mainly. At last, the method was verified by the engineering project, which provided reference value.

  20. Acoustic Emission Analysis of Prestressed Concrete Structures

    NASA Astrophysics Data System (ADS)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  1. Hemodynamic Assessment of Compliance of Pre-Stressed Pulmonary Valve-Vasculature in Patient Specific Geometry Using an Inverse Algorithm

    NASA Astrophysics Data System (ADS)

    Hebbar, Ullhas; Paul, Anup; Banerjee, Rupak

    2016-11-01

    Image based modeling is finding increasing relevance in assisting diagnosis of Pulmonary Valve-Vasculature Dysfunction (PVD) in congenital heart disease patients. This research presents compliant artery - blood interaction in a patient specific Pulmonary Artery (PA) model. This is an improvement over our previous numerical studies which assumed rigid walled arteries. The impedance of the arteries and the energy transfer from the Right Ventricle (RV) to PA is governed by compliance, which in turn is influenced by the level of pre-stress in the arteries. In order to evaluate the pre-stress, an inverse algorithm was developed using an in-house script written in MATLAB and Python, and implemented using the Finite Element Method (FEM). This analysis used a patient specific material model developed by our group, in conjunction with measured pressure (invasive) and velocity (non-invasive) values. The analysis was performed on an FEM solver, and preliminary results indicated that the Main PA (MPA) exhibited higher compliance as well as increased hysteresis over the cardiac cycle when compared with the Left PA (LPA). The computed compliance values for the MPA and LPA were 14% and 34% lesser than the corresponding measured values. Further, the computed pressure drop and flow waveforms were in close agreement with the measured values. In conclusion, compliant artery - blood interaction models of patient specific geometries can play an important role in hemodynamics based diagnosis of PVD.

  2. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  3. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang

    1993-01-01

    The processing and screen printing of the superconducting BSCCO and 123 YBCO materials on substrates is described. The resulting superconducting properties and the use of these materials as possible electrode materials for ferroelectrics at 77 K are evaluated. Also, work performed in the development of solid-state electromechanical actuators is reported. Specific details include the fabrication and processing of high strain PBZT and PLZT electrostrictive materials, the development of PSZT and PMN-based ceramics, and the testing and evaluation of these electrostrictive materials. Finally, the results of studies on a new processing technology for preparing piezoelectric and electrostrictive ceramic materials are summarized. The process involves a high temperature chemical reduction which leads to an internal pre-stressing of the oxide wafer. These reduced and internally biased oxide wafers (RAINBOW) can produce bending-mode actuator devices which possess a factor of ten more displacement and load bearing capacity than present-day benders.

  4. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    NASA Astrophysics Data System (ADS)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  5. Investigation of negative moment reinforcing in bridge decks.

    DOT National Transportation Integrated Search

    2015-09-01

    Multi-span pre-tensioned pre-stressed concrete beam (PPCB) bridges made continuous usually experience a negative live load : moment region over the intermediate supports. Conventional thinking dictates that sufficient reinforcement must be provided i...

  6. Forensic testing of a double tee bridge.

    DOT National Transportation Integrated Search

    2014-12-01

    This report describes an investigation to quantify the behavior of precast, prestressed concrete double-tee bridge : girders made with lightweight concrete. As part of the investigation, three bridge girders were salvaged from a : decommissioned brid...

  7. Finite Element Bond Modeling for Indented Wires in Pretensioned Concrete Crossties

    DOT National Transportation Integrated Search

    2016-04-12

    Indented wires have been increasingly employed by : concrete crosstie manufacturers to improve the bond between : prestressing steel reinforcements and concrete, as bond can : affect several critical performance measures, including transfer : length,...

  8. Unbonded Prestressed Columns for Earthquake Resistance

    DOT National Transportation Integrated Search

    2012-05-01

    Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...

  9. Structural monitoring of Rigolets Pass Bridge.

    DOT National Transportation Integrated Search

    2009-10-01

    The overall objective of this research project was to evaluate the structural behavior of prestressed highperformance : concrete (HPC) long-span bulb-tee girders utilized in Louisiana bridge construction. To : accomplish this objective, one span of t...

  10. Investigation of reliability attributes and accelerated stress factors of terrestrial solar cells. First annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prince, J.L.; Lathrop, J.W.

    1979-05-01

    The results of accelerated stress testing of four different types of silicon terrestrial solar cells are discussed. The accelerated stress tests used included bias-temperature tests, bias-temperature-humidity tests, thermal cycle and thermal shock tests, and power cycle tests. Characterization of the cells was performed before stress testing and at periodic down-times, using electrical measurement, visual inspection, and metal adherence pull tests. Electrical parameters measured included short-circuit current, I/sub sc/, open circuit voltage, V/sub oc/, and output power, voltage, and current at the maximum power point, P/sub m/, V/sub m/, and I/sub m/ respectively. Incorporated in the report are the distributions ofmore » the prestress electrical data for all cell types. Data was also obtained on cell series and shunt resistance. Significant differences in the response to the various stress tests was observed between cell types. On the basis of the experience gained in this research work, a suggested Reliability Qualification Test Schedule was developed.« less

  11. Induced seismicity provides insight into why earthquake ruptures stop.

    PubMed

    Galis, Martin; Ampuero, Jean Paul; Mai, P Martin; Cappa, Frédéric

    2017-12-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  12. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode.

    PubMed

    Zhang, He; Gonenc, Berk; Iordachita, Iulian

    2017-10-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations.

  13. Integrated actuation and energy harvesting in prestressed piezoelectric synthetic jets

    NASA Astrophysics Data System (ADS)

    Mane, Poorna

    With the looming energy crisis compounded by the global economic downturn there is an urgent need to increase energy efficiency and to discover new energy sources. An approach to solve this problem is to improve the efficiency of aerodynamic vehicles by using active flow control tools such as synthetic jet actuators. These devices are able to reduce fuel consumption and streamlined vehicle design by reducing drag and weight, and increasing maneuverability. Hence, the main goal of this dissertation is to study factors that affect the efficiency of synthetic jets by incorporating energy harvesting into actuator design using prestressed piezoelectric composites. Four state-of-the-art piezoelectric composites were chosen as active diaphragms in synthetic jet actuators. These composites not only overcome the inherent brittle and fragile nature of piezoelectric materials but also enhance domain movement which in turn enhances intrinsic contributions. With these varying characteristics among different types of composites, the intricacies of the synthetic jet design and its implementation increases. In addition the electrical power requirements of piezoelectric materials make the new SJA system a coupled multiphysics problem involving electro-mechanical and structural-fluid interactions. Due to the nature of this system, a design of experiments approach, a method of combining experiments and statistics, is utilized. Geometric and electro-mechanical factors are investigated using a fractional factorial design with peak synthetic jet velocity as a response variable. Furthermore, energy generated by the system oscillations is harvested with a prestressed composite and a piezo-polymer. Using response surface methodology the process is optimized under different temperatures and pressures to simulate harsh environmental conditions. Results of the fractional factorial experimental design showed that cavity dimensions and type of signal used to drive the synthetic jet actuator were statistically significant factors when studying peak jet velocity. The Bimorph (˜50m/s) and the prestressed metal composite (˜45m/s) generated similar peak jet velocities but the later is the most robust of all tested actuators. In addition, an alternate input signal to the composite, a sawtooth waveform, leads to jets formed with larger peak velocities at frequencies above 15Hz. The optimized factor levels for the energy harvesting process were identified as 237.6kPa, 3.7Hz, 1MO and 12°C and the power density measured at these conditions was 24.27microW/mm3. Finally, the SJA is integrated with an energy harvesting system and the power generated is stored into a large capacitor and a rechargeable battery. After approximately six hours of operation 5V of generated voltage is stored in a 330microF capacitor with the prestressed metal composite as the harvester. It is then demonstrated that energy harvested from the inherent vibrations of a SJA can be stored for later use. Then, the system proposed in this dissertation not only improves on the efficiency of aerodynamic bodies, but also harvests energy that is otherwise wasted.

  14. Miniaturization of Planar Horn Motors

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-01-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2x2x2 mm piezoelectric stacks integrated into thin plates that are of the order of3 x 3x 0.2 cm.

  15. Performance evaluation of concrete railroad ties on the northeast corridor.

    DOT National Transportation Integrated Search

    2014-03-01

    Simpson Gumpertz & Heger Inc. conducted an investigation into the factors that caused widespread failure in prestressed concrete : railroad ties on the Northeast Corridor. The problem was apparent in ties manufactured and installed circa 19941998....

  16. Freight facts and figures 2005

    DOT National Transportation Integrated Search

    2000-05-01

    This report describes all aspects of a study to develop a nondestructive evaluation (NDE) system based on the concept of magnetic flux leakage (MFL) to detect corrosion and fracture of prestressing steel in pretensioned and post-tensioned concrete br...

  17. Use of improved materials systems in marine piling : final report.

    DOT National Transportation Integrated Search

    1982-12-01

    This report contains the results of a study to evaluate the feasibility of manufacturing precast, prestressed marine pile from polymer concrete, polymer impregnated concrete, internally sealed concrete and latex modified concrete. Included in the rep...

  18. Radiant heat curing of concrete.

    DOT National Transportation Integrated Search

    1985-01-01

    Comparisons were made of the properties of concrete mixtures cured with radiant heat and mixtures cured with low pressure steam and of the curing conditions. The concretes were prepared and cured at two plants which produce precast, prestressed concr...

  19. Evaluation of static resistance of deep foundations.

    DOT National Transportation Integrated Search

    2017-05-01

    The focus of this research was to evaluate and improve Florida Department of Transportation (FDOT) FB-Deep software prediction of nominal resistance of H-piles, prestressed concrete piles in limestone, large diameter (> 36) open steel and concrete...

  20. Evaluation and repair of existing bridges in extreme environments.

    DOT National Transportation Integrated Search

    2016-01-26

    The research described in this report consisted of analysis and experimental testing of steel bridge details susceptible to fatigue and end regions of precast prestressed concrete girder ends subjected to reinforcement corrosion. Locations most affec...

  1. Evaluation of static resistance of deep foundation [project summary].

    DOT National Transportation Integrated Search

    2017-06-01

    Various types of deep foundations were investigated including steel H-piles, pre-stressed concrete piles, open cylindrical steel and concrete piles with diameters greater than 36 inches, and drilled shafts with partial length permanent casing. : The ...

  2. End region detailing of pretensioned concrete bridge girders : [summary].

    DOT National Transportation Integrated Search

    2013-03-01

    Introduction of the Florida-I Beam (FIB) in 2009 renewed interest in prestressed concrete beam design, especially end region details. In this study, University of Florida researchers examined construction detailing at the FIB end region.

  3. Tension pile study : final report.

    DOT National Transportation Integrated Search

    1970-07-01

    This report contains the results of a short term study of a pile in tension loads. The piles tested were driven on Louisiana Department of Highway's property in response to preceding research work entitled "Stability of Slender Prestressed Concrete P...

  4. Electronic automation of LRFD design programs.

    DOT National Transportation Integrated Search

    2010-03-01

    The study provided electronic programs to WisDOT for designing pre-stressed girders and piers using the Load : Resistance Factor Design (LRFD) methodology. The software provided is intended to ease the transition to : LRFD for WisDOT design engineers...

  5. Preliminary Specifications for Standard Concrete Ties and Fastenings for Transit Track

    DOT National Transportation Integrated Search

    1979-01-01

    These revised specifications cover requirements for component materials, manufacturing procedures, and handling of mono-block and two-block concrete (prestressed) cross ties, pads, and insulators for rapid transit use. It also includes requirements f...

  6. Self-stressed sandwich bridge decks.

    DOT National Transportation Integrated Search

    1971-01-01

    Proposed is an entirely new type of bridge deck, consisting of an unreinforced lightweight concrete slab made of expanding cement sandwiched between two thin plates of steel. The expanding core serves to prestress the panel. Laboratory tests were con...

  7. Axle equivalent transverse loading on segmental bridge decks.

    DOT National Transportation Integrated Search

    2014-04-01

    For a prestressed concrete segmental box girder bridge, both design and load rating are determined by : longitudinal and transverse analyses. A transverse analysis is performed for the top slab, typically by : using Homberg charts (an engineers de...

  8. Evaluation of models for predicting (total) creep of prestressed concrete mixtures.

    DOT National Transportation Integrated Search

    2001-01-01

    Concrete experiences volume changes throughout its service life. When loaded, concrete experiences an instantaneous recoverable elastic deformation and a slow inelastic deformation called creep. Creep of concrete is composed of two components, basic ...

  9. EVALUATIONS ON ASR DAMAGE OF CONCRETE STRUCTURE AND ITS STRUCTURAL PERFORMANCE

    NASA Astrophysics Data System (ADS)

    Ueda, Naoshi; Nakamura, Hikaru; Kunieda, Minoru; Maeno, Hirofumi; Morishit, Noriaki; Asai, Hiroshi

    In this paper, experiments and finite element analyses were conducted in order to evaluate effects of ASR on structural performance of RC and PC structures. From the experimental results, it was confirmed that the ASR expansion was affected by the restraint of reinforcement and the magnitude of prestress. The material properties of concrete damaged by ASR had anisotropic characteristics depending on the degree of ASR expansion. Therefore, when the structural performance of RC and PC structures were evaluated by using the material properties of core concrete, the direction and place where cylinder specimens were cored should be considered. On the other hand, by means of proposed analytical method, ASR expansion behaviors of RC and PC beams and changing of their structural performance were evaluated. As the results, it was confirmed that PC structure had much advantage comparing with RC structure regarding the structural performance under ASR damage because of restraint by prestress against the ASR.

  10. Piezoelectric loudspeaker

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall (Inventor); Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1994-01-01

    A piezoelectric loudspeaker suitable for midrange frequencies uses a dome shaped piezoelectric actuator to drive a speaker membrane directly. The dome shaped actuator is made from a reduced and internally biased oxygen wafer, and generates excursion of the apex of the dome in the order of 0.02 - 0.05 inches when a rated drive voltage of 350 V rms is applied between the convex and the concave surfaces of the dome shaped actuator. The load capacity exceeds 10 lbs. The edge of the rim of the dome shaped actuator must be free to rock when the dome height varies to ensure low distortion in the loudspeaker. This is achieved by mounting the rim of the dome shaped actuator on a support surface by prestress only. An exceptionally simple design uses a planar speaker membrane with the center part of one side pressed against the rim of a dome shaped actuator by prestress from a stretched latex surround member.

  11. An info-gap application to robust design of a prestressed space structure under epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Hot, Aurélien; Weisser, Thomas; Cogan, Scott

    2017-07-01

    Uncertainty quantification is an integral part of the model validation process and is important to take into account during the design of mechanical systems. Sources of uncertainty are diverse but generally fall into two categories: aleatory due to random process and epistemic resulting from a lack of knowledge. This work focuses on the behavior of solar arrays in their stowed configuration. To avoid impacts during launch, snubbers are used to prestress the panels. Since the mechanical properties of the snubbers and the associated preload configurations are difficult to characterize precisely, an info-gap approach is proposed to investigate the influence of such uncertainties on design configurations obtained for different values of safety factors. This eventually allows to revise the typical values of these factors and to reevaluate them with respect to a targeted robustness level. The proposed methodology is illustrated using a simplified finite element model of a solar array.

  12. High Displacement Solid State Ferroelectric Loudspeaker

    NASA Technical Reports Server (NTRS)

    Regan, Curtis R. (Inventor); Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1998-01-01

    A piezoelectric loudspeaker suitable for midrange frequencies uses a dome shaped piezoelectric actuator to a speaker membrane directly is discussed. The dome shaped actuator is made from a reduced and internally biased oxygen wafer, and generates excursion of the apex of the dome in the order of 0.02-0.05 inches when a rated drive voltage of 350 V rms is applied between the convex and the concave surface of the dome shaped actuator. The load capacity exceeds 10 lbs. The edge of the rim of the dome shaped actuator must be free to rock when the dome height varies to ensure low distortion in the loudspeaker. This is achieved by mounting the rim of the dome shaped actuator on a support surface by prestress only. An exceptionally simple design uses a planar speaker membrane with the center part of one side pressed against the rim of a dome shaped actuator by prestress from a stretched latex surround member.

  13. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NASA Astrophysics Data System (ADS)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; van Aanhold, J. E.; van der Meulen, O. R.; Sagimon, M.

    2010-06-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.

  14. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  15. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  16. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    PubMed Central

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30–50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles. PMID:25597747

  17. Computer modeling design of a frame pier for a high-speed railway project

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    In this paper, a double line pier on a high-speed railway in China is taken as an example. the size of each location is drawn up firstly. The design of pre-stressed steel beam for its crossbeam is carried out, and the configuration of ordinary reinforcement is carried out for concrete piers. Combined with bridge structure analysis software Midas Civil and BSAS, the frame pier is modeled and calculated. The results show that the beam and pier column section size reasonable design of pre-stressed steel beam with 17-7V5 high strength low relaxation steel strand, can meet the requirements of high speed railway carrying capacity; the main reinforcement of pier shaft with HRB400 diameter is 28mm, ring arranged around the pier, can satisfy the eccentric compression strength, stiffness and stability requirements, also meet the requirements of seismic design.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, J.P.; Canonico, D.A.; Richardson, M.

    The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a /sup 1///sub 6/-scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the innermore » surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating.« less

  19. Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi - An adaptation to seasonal drought stress.

    PubMed

    Speck, Olga; Schlechtendahl, Mark; Borm, Florian; Kampowski, Tim; Speck, Thomas

    2018-01-01

    During evolution, plants evolved various reactions to wounding. Fast wound sealing and subsequent healing represent a selective advantage of particular importance for plants growing in arid habitats. An effective self-sealing function by internal deformation has been found in the succulent leaves of Delosperma cooperi. After a transversal incision, the entire leaf bends until the wound is closed. Our results indicate that the underlying sealing principle is a combination of hydraulic shrinking and swelling as the main driving forces and growth-induced mechanical pre-stresses in the tissues. Hydraulic effects were measured in terms of the relative bending angle over 55 minutes under various humidity conditions. The higher the relative air humidity, the lower the bending angle. Negative bending angles were found when a droplet of liquid water was applied to the wound. The statistical analysis revealed highly significant differences of the single main effects such as "humidity conditions in the wound region" and "time after wounding" and their interaction effect. The centripetal arrangement of five tissue layers with various thicknesses and significantly different mechanical properties might play an additional role with regard to mechanically driven effects. Injury disturbs the mechanical equilibrium, with pre-stresses leading to internal deformation until a new equilibrium is reached. In the context of self-sealing by internal deformation, the highly flexible wide-band tracheids, which form a net of vascular bundles, are regarded as paedomorphic tracheids, which are specialised to prevent cell collapse under drought stress and allow for building growth-induced mechanical pre-stresses.

  20. Bottom flange reinforcement in NU I-girders.

    DOT National Transportation Integrated Search

    2010-08-01

    "The 1996 edition of AASHTO Standard Specifications for Highway Bridges stated that nominal confinement reinforcement be placed to enclose prestressing steel in the bottom flange of bridge girders from girder ends to at least a distance eq changed th...

  1. Use of improved structural materials systems in marine piling : interim report.

    DOT National Transportation Integrated Search

    1982-09-01

    This report contains the results of a study to evaluate the feasibility of manufacturing precast, prestressed marine pile from polymer concrete, polymer impregnated concrete, internally sealed concrete and latex modified concrete. Included in the rep...

  2. Measurement of stress waves in EDC piles.

    DOT National Transportation Integrated Search

    2008-12-30

    "This project focused on instrumentation analysis of one Smart Structures Incorporated, EDC pile. In general, the EDC pile is a pre-stressed 18" x 18" concrete pile that has been outfitted with embedded strain gages and accelerometers at six location...

  3. Development of an optimized continuity diaphragm for new PCBT girders.

    DOT National Transportation Integrated Search

    2005-01-01

    Over the past 50 years, many states have recognized the benefits of making precast, prestressed multi-girder bridges continuous by connecting the girders with a continuity diaphragm. Although there is widespread agreement on the benefits of continuou...

  4. Cathodic protection of coastal prestressed concrete piles : prevention of hydrogen embrittlement.

    DOT National Transportation Integrated Search

    1998-01-01

    Assessing the effect of cathodic protection (CP) on a chloride-contaminated bridge pile involved defining the hydrogen embrittlement behavior of the pearlitic reinforcement and quantifying the local (i.e., at the steel/concrete interface) chemical an...

  5. High-strength self-consolidating concrete girders subjected to elevated compressive fiber stresses.

    DOT National Transportation Integrated Search

    2009-08-01

    There are limited measurements documented in the literature related to long-term prestress losses in self consolidated concrete : (SCC) members. Recorded test data has shown variations in mechanical property behavior of SCC compared to conventional :...

  6. Design aids of NU I-girders bridges.

    DOT National Transportation Integrated Search

    2010-05-01

    Precast prestressed concrete I-Girder bridges have become the most dominant bridge system in the United States. In the early design : stages, preliminary design becomes a vital first step in designing an economical bridge. Within the state of Nebrask...

  7. Field testing of jet-grouted pile : [summary].

    DOT National Transportation Integrated Search

    2014-01-01

    In many areas of Florida, local geology dictates the use of deep foundations for transportation structures bridges, noise walls, signage, etc. When concrete piles are used, they are either prestressed at the casting yard, cast in situ through a h...

  8. Accelerating Bridge Construction to Reduce Congestion

    DOT National Transportation Integrated Search

    2011-05-01

    The magnitude of the "residual" displacements at the end of an earthquake can affect the amount of time needed to restore a bridge to service. It may be possible to reduce these displacements (and downtimes) by introducing prestressing forces into br...

  9. Evaluation of FRP repair method for cracked bridge members.

    DOT National Transportation Integrated Search

    2005-01-01

    This research program was undertaken to investigate the effects Carbon Fiber Reinforced Polymers (CFRP) have on the shear strength on under-reinforced, lab-scale prestressed concrete (PC) bridge girders. Many bridges in the states of Missouri and Kan...

  10. Aggregate distribution investigation in box beams fabricated with self consolidating concrete.

    DOT National Transportation Integrated Search

    2009-10-01

    In 2004, the Texas Department of Transportation initiated Project 0-5197 to investigate the feasibility of : increasing the allowable compressive stress limit at prestress transfer. Initially, the live load performance of 36 : specimens was evaluated...

  11. Investigation of negative moment reinforcing in bridge decks : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-09-01

    Multi-span pre-tensioned pre-stressed concrete beam (PPCB) bridges made : continuous, for live loads, usually may experience a negative total moment : over the intermediate supports, which this research investigated as part of an : investigation into...

  12. Recessed floating pier caps for highway bridges.

    DOT National Transportation Integrated Search

    1973-01-01

    Presented are alternate designs for two existing bridges in Virginia - one with steel beams and the other with prestressed concrete beams - whereby the pier caps are recessed within the depth of the longitudinal beams. The purpose of this recession i...

  13. Precast, Prestressed Concrete Bent Caps : Volume 2, Design Recommendations and Design Examples

    DOT National Transportation Integrated Search

    2018-04-01

    Recommendations for design of pretensioned bent caps are developed based on the findings of full-scale experimental tests of bent cap subassemblages. Companion examples are provided to demonstrate implementation of the design recommendations. First, ...

  14. Bridge condition assessment and load rating using dynamic response.

    DOT National Transportation Integrated Search

    2014-07-01

    This report describes a method for the overall condition assessment and load rating of prestressed box beam : (PSBB) bridges based on their dynamic response collected through wireless sensor networks (WSNs). Due to a : large inventory of deficient an...

  15. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    DOT National Transportation Integrated Search

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  16. Continuous prestressed concrete girder bridges, volume 2 : analysis, testing, and recommendations.

    DOT National Transportation Integrated Search

    2016-12-01

    The Texas Department of Transportation designs typical highway bridge structures as simple span systems using : standard precast, pretensioned girders. Spans are limited to about 150 ft due to weight and length restrictions on : transporting the prec...

  17. Modal analysis and nonlinear characterization of an airborne power ultrasonic transducer with rectangular plate radiator.

    PubMed

    Andrés, R R; Acosta, V M; Lucas, M; Riera, E

    2018-01-01

    Some industrial processes like particle agglomeration or food dehydration among others can be enhanced by the use of power ultrasonic technologies. These technologies are based on an airborne power ultrasonic transducer (APUT) constituted by a pre-stressed Langevin-type transducer, a mechanical amplifier and an extensive plate radiator. In order to produce the desired effects in industrial processing, the transducer has to vibrate in an extensional mode driving an extensive radiator in the desired flexural mode with high amplitude displacements. Due to the generation of these high amplitude displacements in the radiator surfaces, non-linear effects like frequency shifts, hysteresis or modal interactions, among others, may be produced in the transducer behavior. When any nonlinear effect appears, when applying power, the stability and efficiency of this ultrasonic technology decreases, and the transducer may be damaged depending on the excitation power level and the nature of the nonlinearity. In this paper, an APUT with flat rectangular radiator is presented, as the active part of an innovative system with stepped reflectors. The nonlinear behavior of the APUT has been characterized numerically and experimentally in case of the modal analysis and experimentally in the case of dynamic analysis. According to the results obtained after the experiments, no modal interactions are expected, nor do other nonlinear effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Improved connection details for adjacent prestressed bridge beams.

    DOT National Transportation Integrated Search

    2015-03-01

    Bridges with adjacent box beams and voided slabs are simply and rapidly constructed, and are well suited to : short to medium spans. The traditional connection between the adjacent members is a shear key lled with a : conventional non-shrink grout...

  19. Studies on carbon FRP (CFRP) prestressed concrete bridge columns and piles in marine environment.

    DOT National Transportation Integrated Search

    1998-11-01

    The main objective of this study was to investigate the feasibility of using concrete piles pretensioned with Carbon Fiber Reinforced Plastics (CFRP) tendons. The study reviews the available literature on mechanical properties of CFRP reinforcement, ...

  20. Grade 300 prestressing strand and the effect of vertical casting position.

    DOT National Transportation Integrated Search

    2009-01-01

    The purpose of this investigation was (1) to compare the differences in the transfer length, development length, and flexural strength among Grade 300 strand, the traditional Grade 270 strand, and the predictions of these properties obtained using cu...

  1. Evaluating prestressing strands and post-tensioning cables in concrete structures using nondestructive methods.

    DOT National Transportation Integrated Search

    2015-11-01

    The objectives were to evaluate the ability of different NDE methods to detect and quantify : defects associated with corrosion of steel reinforcement and grout defects in post-tensioning : applications; and to evaluate the effectiveness of selected ...

  2. PCP cracking and bridge deck reinforcement : an interim report.

    DOT National Transportation Integrated Search

    2010-10-28

    TxDOT Project 0-6348 Controlling Cracking in Prestressed Concrete Panels and Optimizing Bridge Deck : Reinforcing Steel started on September 1, 2008 and is scheduled to end on August 31, 2012. The project is : proceeding on schedule. This repor...

  3. Experimental validation of bracing recommendations for long-span concrete girders : final report.

    DOT National Transportation Integrated Search

    2012-12-01

    During bridge construction, flexible support conditions provided by steel-reinforced neoprene bearing pads supporting precast, prestressed concrete girders may allow the girders to become unstable, rolling about an axis parallel to the span of the gi...

  4. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, Gerald J.

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  5. Evaluation of the inverted tee shallow bridge system for use in Kansas

    DOT National Transportation Integrated Search

    2006-12-01

    With the introduction of the pre-stressed concrete Inverted Tee (IT) girders as an alternative to the conventional concrete slab bridges, the distribution of live load in this system required considerable investigation. The approximate equations give...

  6. Developing Extended Strands in Girder-Cap Beam Connections for Positive Moment Resistance

    DOT National Transportation Integrated Search

    2017-11-01

    In bridges constructed with precast prestressed concrete girders, resistance to seismic effects is achieved by the interaction between the columns, the cap beam and the girders. These components must be connected to provide flexural resistance. Under...

  7. Theoretical and field experimental evaluation of skewed modular slab bridges : [research summary].

    DOT National Transportation Integrated Search

    2012-12-01

    Adjacent precast, prestressed concrete multi-beam bridges have become more : prevalent due to their rapid construction time and cost effectiveness. Over the : years, various adjustments and refinements have been made to the design of : these bridges ...

  8. Modification of Existing Prestressed Girder Cross-Sections for the Optimal Structural Use of Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2008-10-22

    Ultra High Performance Concrete (UHPC) is a class of cementitious materials that share similar characteristics including very large compressive strengths, tensile strength greater than conventional concrete and high durability. The material consists ...

  9. Freeze-thaw performance testing of whole concrete railroad ties.

    DOT National Transportation Integrated Search

    2013-10-01

    Freezing and thawing durability tests of prestressed concrete ties are normally performed according to ASTM C666 specifications. Small specimens are cut from the shoulders of concrete ties and tested through 300 cycles of freezing and thawing. Saw-cu...

  10. Flywheel system using wire-wound rotor

    DOEpatents

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  11. Calibration of resistance factors needed in the LRFD design of driven piles.

    DOT National Transportation Integrated Search

    2009-05-01

    This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...

  12. Calibration of Resistance Factors Needed in the LRFD Design of Driven Piles

    DOT National Transportation Integrated Search

    2009-05-01

    This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...

  13. Innovative concrete bridging systems for pedestrian bridges : implementation and monitoring.

    DOT National Transportation Integrated Search

    2013-08-01

    Two precast, prestressed pedestrian bridges were designed for rapid construction in Rolla, MO, utilizing high-strength concrete (HSC) : and high-strength self-consolidating concrete (HS-SCC) with a target 28 day compressive strength of 68.9 MPa (10,0...

  14. Shear in high strength concrete bridge girders : technical report.

    DOT National Transportation Integrated Search

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  15. Statistical methods for the quality control of steam cured concrete : final report.

    DOT National Transportation Integrated Search

    1971-01-01

    Concrete strength test results from three prestressing plants utilizing steam curing were evaluated statistically in terms of the concrete as received and the effectiveness of the plants' steaming procedures. Control charts were prepared to show tren...

  16. Safe, High-Performance, Sustainable Precast School Design

    ERIC Educational Resources Information Center

    Finsen, Peter I.

    2011-01-01

    School design utilizing integrated architectural and structural precast and prestressed concrete components has gained greater acceptance recently for numerous reasons, including increasingly sophisticated owners and improved learning environments based on material benefits such as: sustainability, energy efficiency, indoor air quality, storm…

  17. Monitoring of the Bonnet Carre Spillway Bridge during extreme overload.

    DOT National Transportation Integrated Search

    2003-10-01

    This report concerns the monitoring of a portion of the Bonnet Carr Spillway Bridge during an extreme overload. On Tuesday, November 5, 2002, Tulane University was requested to monitor strain at the bottom flange of two adjacent prestressed girders...

  18. Corrosion performance of prestressing strands in contact with dissimilar grouts : technical summary.

    DOT National Transportation Integrated Search

    2013-01-01

    Inspections of post-tensioned bridges : by the Kansas Department of Transportation : have revealed voids in strand ducts due to : bleeding and shrinkage of older Portland : Cement grouts. The Kansas Department : of Transportation is faced with a deci...

  19. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  20. Induced seismicity provides insight into why earthquake ruptures stop

    PubMed Central

    Galis, Martin; Ampuero, Jean Paul; Mai, P. Martin; Cappa, Frédéric

    2017-01-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures. PMID:29291250

  1. Repair & Strengthening of Distressed/Damaged Ends of Prestressed Beams with FRP Composites

    DOT National Transportation Integrated Search

    2018-02-01

    Over the past few decades, fiber reinforced polymer (FRP) composites have emerged as a lightweight and efficient material used for the repair and retrofit of concrete infrastructures. FRP can be applied to concrete as either externally bonded laminat...

  2. Evaluation of bearing capacity of piles from cone penetration test data.

    DOT National Transportation Integrated Search

    1999-11-01

    This study presents an evaluation of the performance of eight cone penetration test (CPT) methods in predicting the ultimate load carrying capacity of square precast prestressed concrete (PPC) piles driven into Louisiana soils. A search in the DOTD f...

  3. Improved Inspection Techniques for Steel Prestressing/Post-tensioning Strand : Volume I

    DOT National Transportation Integrated Search

    2012-06-01

    Post-tensioned bridges require a detailed inspection of their post-tensioning systems since damage in these : systems is not evident and can result in costly repairs/replacements, loss of integrity and reduction in safety : of the bridge. Different n...

  4. Design and construction of precast piles with stainless reinforcing steel.

    DOT National Transportation Integrated Search

    2014-02-01

    The service life of prestressed concrete piles is, in part, dictated by the time required to corrode the steel once : chloride ions are at the surface of the steel. Stainless steel materials, although limited in availability in strand : form, have a ...

  5. Thermal gradients in Southwestern United States and the effect on bridge bearing loads : final report.

    DOT National Transportation Integrated Search

    2017-05-01

    Thermal gradients became a component of bridge design after soffit cracking in prestressed concrete bridges was attributed to nonlinear temperature distribution through the depth of the bridge. While the effect of thermal gradient on stress distribut...

  6. Bond, transfer length, and development length of prestressing strand in self-consolidating concrete.

    DOT National Transportation Integrated Search

    2014-07-01

    Due to its economic advantages, the use of self-consolidating concrete (SCC) has increased rapidly in recent years. However, because : SCC mixes typically have decreased amounts of coarse aggregate and high amounts of admixtures, industry members hav...

  7. Recommendations for the use of precast deck panels at expansion joints

    DOT National Transportation Integrated Search

    2008-11-01

    Prestressed concrete panels have been used by the bridge construction industry in the state of Texas for many : years to increase construction speed and improve safety and economy. At expansion joints, cast-in-place concrete : is used and requires te...

  8. Laboratory performance of highway bridge girder anchorages under simulated hurricane-induced wave loading.

    DOT National Transportation Integrated Search

    2012-07-01

    Many bridges along the Gulf Coast of the United States were damaged by recent hurricanes, and many more are susceptible to : similar damage. This research examines the structural performance of common connection details used to anchor prestressed : c...

  9. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  10. Fatigue and shear behavior of HPC bulb tee girders : LTRC technical summary report.

    DOT National Transportation Integrated Search

    2008-04-01

    The objectives of the research were (1) to provide assurance that full size, deep prestressed concrete girders made with HPC would perform satisfactorily under flexural fatigue, static shear, and static flexural loading conditions; (2) to determine i...

  11. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand : phase II.

    DOT National Transportation Integrated Search

    2011-08-01

    This report gives an account of the execution and achievements in Phase II of the project completed through August 2011. The main objective of this project is to advance the practical development of a nondestructive testing and evaluation method usin...

  12. Finite Element Modeling of Prestressed Concrete Crossties with Ballast and Subgrade Support.

    DOT National Transportation Integrated Search

    2011-05-26

    With the first major installation in North American : railroads during the 1960s, concrete ties were believed to last : longer than timber ties and have the potential for reduced life : cycle costs. However, their characteristic response to initia...

  13. Finite element bond models for seven-wire prestressing strands in concrete crossties.

    DOT National Transportation Integrated Search

    2015-03-23

    Seven-wire strands are commonly used in pretensioned : concrete ties, but its bonding mechanism with concrete needs : further examination to provide a better understanding of some : concrete tie failure modes. As a key component in the finite : eleme...

  14. Implementation of radio frequency identification (RFID) sensors for monitoring of bridge deck corrosion in Missouri.

    DOT National Transportation Integrated Search

    2014-03-01

    Chloride ion ingress is an important parameter that helps estimate the durability and service life of reinforced concrete (RC) and : prestress concrete (PC) structures, especially in those structures exposed to marine environments and salts applied d...

  15. Rational and Safe Design of Concrete Transportation Structures for Size Effect and Multi-Decade Sustainability

    DOT National Transportation Integrated Search

    2012-10-01

    The overall goal of this project was to improve the safety and sustainability in the design of large : prestressed concrete bridges and other transportation structures. The safety of large concrete : structures, including bridges, has been insufficie...

  16. Implementation of 0.7 in. diameter strands in prestressed concrete girders.

    DOT National Transportation Integrated Search

    2013-03-01

    For several years, 0.7 in. diameter strands have been successfully used in cable bridges and for mining applications. Using these large diameter strands at 2 in. by 2 in. spacing in pretensioned concrete girders results in approximately 35% increase ...

  17. Precast-Prestressed Schools.

    ERIC Educational Resources Information Center

    Basalt Rock Co., Inc., Napa, CA.

    Diagrammatic explanations of various concepts, processes, details, and potential material usages are presented. Specific material and element topics include--(1) the fabrication process, (2) basic structural components, (3) element usage, and (4) building construction procedures. Examples of the use of related elements are shown for typical school…

  18. Experimental and analytical investigation of full-depth precast deck panels on prestressed I-girders.

    DOT National Transportation Integrated Search

    2008-01-01

    A bridge with precast bridge deck panels was built at the Virginia Tech Structures Laboratory to examine constructibility issues, creep and shrinkage behavior, and strength and fatigue performance of transverse joints, different types of shear connec...

  19. Evaluation of sprayed-on metalizing for precast prestressed concrete I-beams

    DOT National Transportation Integrated Search

    2002-04-01

    Cathodic protection has been used as an effective means of arresting corrosion in reinforced concrete. A galvanic system typically consists of a sacrificial anode, some form of adhesive or fastening system to secure the anode to the concrete, and an ...

  20. Forensic collapse investigation of a concrete bridge with timber piers.

    DOT National Transportation Integrated Search

    2009-04-01

    This report outlines the forensic investigation of the collapse of Bridge No. SN 019-5010 in DeKalb County, : Illinois on August 19, 2008. The bridge consisted of three 42 feet precast prestressed concrete deck beams : simply-supported by concrete pi...

  1. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    DOT National Transportation Integrated Search

    2011-04-01

    The purpose of this research was to characterize the performance of High Strength Lightweight Concrete (HSLW) in precast, prestressed bridge girders and to evaluate their performance in a highway bridge. The mechanical properties and long-term time-d...

  2. Endogenous opioids released during non-nociceptive environmental stress induce latent pain sensitization Via a NMDA-dependent process.

    PubMed

    Le Roy, Chloé; Laboureyras, Emilie; Gavello-Baudy, Stéphanie; Chateauraynaud, Jérémy; Laulin, Jean-Paul; Simonnet, Guy

    2011-10-01

    Although stress induces analgesia, there is evidence that stressful events may exacerbate pain syndromes. Here, we studied the effects of 1 to 3 prestressful events (days 0, 2, and 7), such as non-nociceptive environmental stress, on inflammatory hyperalgesia induced by a carrageenan injection (day 14) in 1 rat hind paw. Changes in nociceptive threshold were evaluated by the paw pressure vocalization test. The higher the number of stress sessions presented to the rats, the greater was the inflammatory hyperalgesia. Blockade of opioid receptors by naltrexone before each stress inhibited stress-induced analgesia and suppressed the exaggerated inflammatory hyperalgesia. Stressed versus nonstressed animals could be discriminated by their response to a fentanyl ultra-low dose (fULD), that produced hyperalgesia or analgesia, respectively. This pharmacological test permitted the prediction of the pain vulnerability level of prestressed rats because fULD analgesic or hyperalgesic indices were positively correlated with inflammatory hyperalgesic indices (r(2) = .84). In prestressed rats, fULD-induced hyperalgesia and the exaggerated inflammatory hyperalgesia were prevented NMDA receptor antagonists. This study provides some preclinical evidence that pain intensity is not only the result of nociceptive input level but is also dependent on the individual history, especially prior life stress events associated with endogenous opioid release. Based on these preclinical data, it would be of clinical interest to evaluate whether prior stressful events may also affect further pain sensation in humans. Moreover, this preclinical model could be a good tool for evaluating new therapeutic strategies for relieving pain hypersensitivity. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-10-01

    Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.

  4. Guidelines for Sampling, Assessing, and Restoring Defective Grout in Prestressed Concrete Bridge Post-Tensioning Ducts

    DOT National Transportation Integrated Search

    2013-10-01

    A significant proportion of the United States bridge inventory is based on bonded post-tensioned (PT) concrete construction. An important aspect of maintaining corrosion protection of these PT systems is assuring that tendon ducts are properly groute...

  5. Guidelines for sampling, assessing, and restoring defective grout in prestressed concrete bridge post-tensioning ducts.

    DOT National Transportation Integrated Search

    2013-10-01

    "A significant proportion of the U.S. bridge inventory is based on bonded post-tensioned (PT) concrete construction. An : important aspect of maintaining corrosion protection of these PT systems is assuring that tendon ducts are properly grouted : wi...

  6. Railroad Tie Responses to Directly Applied Rail Seat Loading in Ballasted Tracks : A Computational Study.

    DOT National Transportation Integrated Search

    2012-04-17

    This paper describes work in-progress that applies the : finite element (FE) method in predicting the responses of : individual railroad crossties to rail seat pressure loading in a : ballasted track. Both wood and prestressed concrete crossties : ar...

  7. Development of acoustic emission evaluation method for repaired prestressed concrete bridge girders.

    DOT National Transportation Integrated Search

    2011-06-01

    Acoustic emission (AE) monitoring has proven to be a useful nondestructive testing tool in ordinary reinforced concrete beams. Over the past decade, however, the technique has also been used to test other concrete structures. It has been seen that ac...

  8. Field verification for the effectiveness of continuity diaphragms for skewed continuous P/C P/S concrete girder bridges.

    DOT National Transportation Integrated Search

    2009-10-01

    The research presented herein describes the field verification for the effectiveness of continuity diaphragms for : skewed continuous precast, prestressed, concrete girder bridges. The objectives of this research are (1) to perform : field load testi...

  9. Forensic investigation of two voided slab bridges in the Virginia Department of Transportation's Richmond District.

    DOT National Transportation Integrated Search

    2017-06-01

    The precast prestressed concrete voided slab structure is a popular bridge design because of its rapid construction and cost : savings in terms of eliminating formwork at the jobsite. However, the longitudinal shear transfer mechanism often fails, le...

  10. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges.

    DOT National Transportation Integrated Search

    2011-07-01

    This report details results from testing that was conducted to determine the bond and time-dependent : characteristics of two lightweight concrete mixes. The lightweight mixes were evaluated to possibly : provide a more cost-effective solution to rep...

  11. Evaluating Louisiana new deck continuity detail for precast prestressed concrete girder bridges : research project capsule.

    DOT National Transportation Integrated Search

    2014-08-01

    The goal of everyone in the transportation community is to build bridges : that are economic, easy to construct, and durable. Therefore, accelerating : bridge construction through the use of precast concrete or prefabricated : steel girders is a comm...

  12. Magnetic-based NDE of prestressed and post-tensioned concrete members : the MFL system : tech brief.

    DOT National Transportation Integrated Search

    1997-02-01

    This report assesses the effectiveness of vehicle retirement programs in reducing emissions from the motor vehicle fleets, as well as examining the effect of a program's timing on the magnitude of these reductions. First, the eastern Massachusetts no...

  13. Magnetic-Based NDE of Prestressed and Post-Tensioned Concrete Members: The MFL System.

    DOT National Transportation Integrated Search

    1997-07-01

    Many metropolitan areas have begun or are planning to implement traffic monitoring programs to meet the many demands for traffic data. The purpose of this project is to document a series of examples of urban traffic monitoring data collection program...

  14. Field instrumentation and measured response of the I-295 cable-stayed bridge.

    DOT National Transportation Integrated Search

    1992-01-01

    This first report describes the results of a field study of the live load responses of a segmentally constructed prestressed concrete cable-stayed bridge. The main span of the test structure consists of twin box girders connected by delta frames. Kno...

  15. 75 FR 1333 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... KOREA: Top-of-the Stove Stainless Steel Cooking Ware A-580-601 1/1/09 - 12/31/09 THAILAND: Prestressed...-of-the-Stove Stainless Steel Cooking Ware C-580-602 1/1/09 - 12/31/09 Suspension Agreements MEXICO...

  16. Strand development and splice device : final report, February 3, 2009.

    DOT National Transportation Integrated Search

    2010-02-01

    "A new device for gripping prestressing strands was developed and tested. The device could provide a means of anchoring the terminal end of a strand in order to provide a mechanism for developing bonded strand at the service limit state, to provide t...

  17. Free vibration of rectangular plates with a small initial curvature

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A. A.; Oyediran, A. A.

    1988-01-01

    The method of matched asymptotic expansions is used to solve the transverse free vibration of a slightly curved, thin rectangular plate. Analytical results for natural frequencies and mode shapes are presented in the limit when the dimensionless bending rigidity, epsilon, is small compared with in-plane forces. Results for different boundary conditions are obtained when the initial deflection is: (1) a polynomial in both directions, and (2) the product of a polynomial and a trigonometric function, and arbitrary. For the arbitrary initial deflection case, the Fourier series technique is used to define the initial deflection. The results obtained show that the natural frequencies of vibration of slightly curved plates are coincident with those of perfectly flat, prestressed rectangular plates. However, the eigenmodes are very different from those of initially flat prestressed rectangular plates. The total deflection is found to be the sum of the initial deflection, the deflection resulting from the solution of the flat plate problem, and the deflection resulting from the static problem.

  18. Rimonabant effects on anxiety induced by simulated public speaking in healthy humans: a preliminary report.

    PubMed

    Bergamaschi, Mateus M; Queiroz, Regina H C; Chagas, Marcos H N; Linares, Ila M P; Arrais, Kátia C; de Oliveira, Danielle C G; Queiroz, Maria E; Nardi, Antonio E; Huestis, Marilyn A; Hallak, Jaime E C; Zuardi, Antonio W; Moreira, Fabrício A; Crippa, José A S

    2014-01-01

    We investigated the hypothesis that rimonabant, a cannabinoid antagonist/inverse agonist, would increase anxiety in healthy subjects during a simulation of the public speaking test. Participants were randomly allocated to receive oral placebo or 90 mg rimonabant in a double-blind design. Subjective effects were measured by Visual Analogue Mood Scale. Physiological parameters, namely arterial blood pressure and heart rate, also were monitored. Twelve participants received oral placebo and 12 received 90 mg rimonabant. Rimonabant increased self-reported anxiety levels during the anticipatory speech and performance phase compared with placebo. Interestingly, rimonabant did not modulate anxiety prestress and was not associated with sedation, cognitive impairment, discomfort, or blood pressure changes. Cannabinoid-1 antagonism magnifies the responses to an anxiogenic stimulus without interfering with the prestress phase. These data suggest that the endocannabinoid system may work on-demand to counteract the consequences of anxiogenic stimuli in healthy humans. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Electromechanical modelling for piezoelectric flextensional actuators

    NASA Astrophysics Data System (ADS)

    Liu, Jinghang; O'Connor, William J.; Ahearne, Eamonn; Byrne, Gerald

    2014-02-01

    The piezoelectric flextensional actuator investigated in this paper comprises three pre-stressed piezoceramic lead zirconate titanate (PZT) stacks and an external, flexure-hinged, mechanical amplifier configuration. An electromechanical model is used to relate the electrical and mechanical domains, comprising the PZT stacks and the flexure mechanism, with the dynamic characteristics of the latter represented by a multiple degree-of-freedom dynamic model. The Maxwell resistive capacitive model is used to describe the nonlinear relationship between charge and voltage within the PZT stacks. The actuator model parameters and the electromechanical couplings of the PZT stacks, which describe the energy transfer between the electrical and mechanical domains, are experimentally identified without disassembling the embedded piezoceramic stacks. To verify the electromechanical model, displacement and frequency experiments are performed. There was good agreement between modelled and experimental results, with less than 1.5% displacement error. This work outlines a general process by which other pre-stressed piezoelectric flextensional actuators can be characterized, modelled and identified in a non-destructive way.

  20. Rimonabant effects on anxiety induced by simulated public speaking in healthy humans: a preliminary report

    PubMed Central

    Bergamaschi, Mateus M.; Queiroz, Regina H. C.; Chagas, Marcos H. N.; Linares, Ila M. P.; Arrais, Kátia C.; de Oliveira, Danielle C. G.; Queiroz, Maria E.; Nardi, Antonio E.; Huestis, Marilyn A.; Hallak, Jaime E. C.; Zuardi, Antonio W.; Moreira, Fabrício A.; Crippa, José A. S.

    2015-01-01

    Objective We investigated the hypothesis that rimonabant, a cannabinoid antagonist/inverse agonist, would increase anxiety in healthy subjects during a simulation of the public speaking test. Methods Participants were randomly allocated to receive oral placebo or 90 mg rimonabant in a double-blind design. Subjective effects were measured by Visual Analogue Mood Scale. Physiological parameters, namely arterial blood pressure and heart rate, also were monitored. Results Twelve participants received oral placebo and 12 received 90 mg rimonabant. Rimonabant increased self-reported anxiety levels during the anticipatory speech and performance phase compared with placebo. Interestingly, rimonabant did not modulate anxiety prestress and was not associated with sedation, cognitive impairment, discomfort, or blood pressure changes. Conclusions Cannabinoid-1 antagonism magnifies the responses to an anxiogenic stimulus without interfering with the prestress phase. These data suggest that the endocannabinoid system may work on-demand to counteract the consequences of anxiogenic stimuli in healthy humans. PMID:24424711

  1. A Prestressed Cable Network Model of the Adherent Cell Cytoskeleton

    PubMed Central

    Coughlin, Mark F.; Stamenović, Dimitrije

    2003-01-01

    A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at ∼158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response. PMID:12547813

  2. A prestressed cable network model of the adherent cell cytoskeleton.

    PubMed

    Coughlin, Mark F; Stamenović, Dimitrije

    2003-02-01

    A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at approximately 158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response.

  3. Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar; Das, Amrita; Parween, Zeenat; Chattopadhyay, Amares

    2015-10-01

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.

  4. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    NASA Astrophysics Data System (ADS)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  5. Micron-scale channel formation by the release and bond-back of pre-stressed thin films: A finite element analysis

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Huck, W. T. S.; Onck, P. R.

    2010-04-01

    Buckling of thin films on a rigid substrate during use or fabrication is a well-known but unwanted phenomenon. However, this phenomenon can also be exploited to generate well-controlled patterns at the micro and nano-scale. These patterned surfaces find various technological applications such as optical gratings or micro/nano-fluidic channels. In this article, we present a numerical model that accounts for the buckling-up of pre-strained thin films by a reduction of the interface toughness and the subsequent bond-back. Channels are formed whose dimensions can be controlled by tuning the film dimensions, film thickness and stiffness, the eigenstrain in the film and the cohesive interface energy between the film and the substrate. We will show how the buckling-up and draping back processes can be captured in terms of a limited set of dimensionless parameters, providing quantitative insight on how these parameters should be tuned to generate a specified channel geometry.

  6. Design of thin shear blades for crosscut shearing of wood.

    Treesearch

    Rodger A. Arola; Thomas R. Grimm

    1974-01-01

    Discusses principles and presents formulations for evaluating the elastic stability of thin plates subjected to edge loadings. Three different prestress methods to increase late stability are presented. A procedure is given to evaluate the elastic stability of thin shear blades under expected shearing loads.

  7. Improved materials systems in marine piling after nine years of exposure in Yaquina Bay : Newport, Oregon : state study : research.

    DOT National Transportation Integrated Search

    1990-02-01

    From 1979 to 1983 the Oregon State Highway Division participated with the FHWA in a demonstration Project to evaluate the feasibility of manufacturing precast, prestressed marine piles from advanced structural materials. The materials that were evalu...

  8. 75 FR 52490 - Track Safety Standards; Concrete Crossties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    .... \\1\\ J.W. Weber, ``Concrete crossties in the United States,'' International Journal Prestressed... Laboratories (PCA). The PCA's research included the use of various shapes, sizes, and materials to develop the... abrasion. \\4\\ Albert J. Reinschmidt, ``Rail-seat abrasion: Causes and the search for the cure,'' Railway...

  9. Materials and Methods for Corrosion Control of Reinforced and Prestressed Concrete Structures in New Construction

    DOT National Transportation Integrated Search

    2000-08-03

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  10. Rapid construction of Pacific Street Bridge with o.7 inch strands.

    DOT National Transportation Integrated Search

    2010-10-01

    The Pacific Street Bridge over I-680 in Omaha, NE is the first bridge in the United States to use 0.7-in.-diameter prestressing : strands in pretensioned concrete girders. This project was funded by FHWA through NDOR under the Innovative Bridge Resea...

  11. Regenerator seal design

    DOEpatents

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  12. Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360)

    EPA Science Inventory

    Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...

  13. Finite element analysis of deep wide-flanged pre-stressed girders to understand and control end cracking : [work plan].

    DOT National Transportation Integrated Search

    2011-01-01

    Project -- Work Approach: The first phase will examine the critical problem of controlling cracking in the 82W : girders. This complex problem is controlled by effects of concentrated stresses, force : transfer from pre-tensioning strand, inelastic b...

  14. Calculation of Tectonic Strain Release from an Explosion in a Three-Dimensional Stress Field

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M. S.

    2012-12-01

    We have developed a 3D nonlinear finite element code designed for calculation of explosions in 3D heterogeneous media and have incorporated the capability to perform explosion calculations in a prestressed medium. The effect of tectonic prestress on explosion-generated surface waves has been discussed since the 1960's. In most of these studies tectonic release was described as superposition of a tectonic source modeled as a double couple, multipole or moment tensor, plus a point explosion source. The size of the tectonic source was determined by comparison with the observed Love waves and the Rayleigh wave radiation pattern. Day et al. (1987) first attempted to perform numerical modeling of tectonic release through an axisymmetric calculation of the explosion Piledriver. To the best of our knowledge no one has previously performed numerical calculations for an explosion in a three-dimensional stress field. Calculation of tectonic release depends on a realistic representation of the stress state in the earth. In general the vertical stress is equal to the overburden weight of the material above at any given point. The horizontal stresses may be larger or smaller than this value up to the point where failure due to frictional sliding relieves the stress. In our calculations, we use the normal overburden calculation to determine the vertical stress, and then modify the horizontal stresses to some fraction of the frictional limit. This is the initial stable state of the calculation prior to introduction of the explosion. Note that although the vertical stress is still equivalent to the overburden weight, the pressure is not, and it may be either increased or reduced by the tectonic stresses. Since material strength increases with pressure, this also can substantially affect the seismic source. In general, normal faulting regimes will amplify seismic signals, while reverse faulting regimes will decrease seismic signals; strike-slip regimes may do either. We performed a 3D calculation of the Shoal underground nuclear explosion including tectonic prestress. Shoal was a 12.5 kiloton nuclear explosion detonated near Fallon, Nevada. This event had strong heterogeneity in near field waveforms and is in a region under primarily extensional tectonic stress. There were three near-field shot level recording stations located in three directions each at about 590 meters from the shot. Including prestress consistent with the regional stress field causes variations in the calculated near-field waveforms similar to those observed in the Shoal data.

  15. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    PubMed

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  16. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    PubMed Central

    Herbrand, Martin; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-01-01

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented. PMID:28925962

  17. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Li, Guang

    1995-01-01

    The work described in this report covers various aspects of the Rainbow solid-state actuator technology. It is presented in six parts dealing with materials, processing, fabrication, properties and associated phenomena. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It consists of a new processing technology for preparing piezoelectric and electrostrictive ceramic materials. It involves a high temperature chemical reduction process which leads to an internal pre-stressing of the oxide wafer, thus the name Rainbow, an acronym for Reduced And INternally Biased Oxide Wafer. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders (unimorphs, bimorphs). It is anticipated that these solid-state, electromechanical actuators which can be used in a number of applications in space such as cryopump motors, anti-vibration active structures, autoleveling platforms, telescope mirror correctors and autofocusing devices. When considering any of these applications, the key to the development of a successful device is the successful development of a ceramic material which can produce maximum displacement per volt input; hence, this initiative involving a solid-state means for achieving unusually high electromechanical displacement can be significant and far reaching. An additional benefit obtained from employing the piezoelectric effect in these actuator devices is the ability to also utilize them as sensors; and, indeed, they can be used as both motor (actuator) and generator (sensor) in multifunction devices.

  18. CFRP Renewal of Prestressed Concrete Cylinder Pipe (WaterRF Report 4352)

    EPA Science Inventory

    The project completed and reported on multiple tasks, including: Review literature and data on degradation of CFRP to determine the material adjustment and time effect factors that should be used in design of CFRP liners for design lives of five and fifty years; Review literatu...

  19. Report B : self-consolidating concrete (SCC) for infrastructure elements - bond, transfer length, and development length of prestressing strand in SCC.

    DOT National Transportation Integrated Search

    2012-08-01

    Due to its economic advantages, the use of self-consolidating concrete (SCC) has : increased rapidly in recent years. However, because SCC mixes typically have decreased : amounts of coarse aggregate and high amounts of admixtures, industry members h...

  20. A multidegree-of-freedom vibrational apparatus

    NASA Technical Reports Server (NTRS)

    Kerley, J. J., Jr.; Schaller, N. C.

    1973-01-01

    Apparatus uses prestressed cables to support vibrational table. Cables are durable, do not require frequent servicing, and provide increased safety. Because much weight rests on these cables, vibration actuating pistons can provide longer service. In event of structural failure of other supporting components, they will support entire weight of vibrational table.

  1. 77 FR 69508 - Inservice Inspection of Prestressed Concrete Containment Structures With Grouted Tendons

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... real-time, multiple-strategy approach (i.e., appropriate grout design and installation, installed... is available in ADAMS) is provided the first time that a document is referenced. Revision 2 of... ``Regulatory Guide'' series. This series was developed to describe and make available to the public information...

  2. Condition assessment and methods of abatement of prestressed concrete box-beam deterioration, phase II : volume 1.

    DOT National Transportation Integrated Search

    2009-04-13

    Side-by-side box-beam bridge constitutes approximately 17 percent of bridges built or replaced annually on : public roads and there is a renewed thrust to use this bridge type for rapid construction under the Highway for : LIFE program. Further, fail...

  3. Ramifications of welding a soleplate to a precast metal insert of a prestressed single-tee beam.

    DOT National Transportation Integrated Search

    1976-01-01

    A model of the bearing assembly specified on the plans for the bridges being constructed in Norton, Virginia, was prepared in the laboratory at the Research Council. The shielded metal-arc welding process was used to weld the soleplate to the metal i...

  4. Subwavelength prestressed microcantilevers based metamaterials for efficient manipulation of terahertz waves

    DTIC Science & Technology

    2015-07-01

    for the fluid flow controlled MEMS metamaterial with PDMS chamber. (b)-(d) shows the cantilever deformation with respect to increasing fluid flow...Firstly the metamaterial was integrated with a polydimethylsiloxane fluidic channel and the injection flow rate was varied from 0 to 5 ml/min

  5. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION... wire strand, provided for in subheading 7312.10.30 of the Harmonized Tariff Schedule of the United... merchandise as PC strand, produced from wire of nonstainless, non-galvanized steel, which is suitable for use...

  6. Condition assessment and methods of abatement of prestressed concrete box-beam deterioration, phase II : volume 2.

    DOT National Transportation Integrated Search

    2009-04-13

    Side-by-side box-beam bridge constitutes approximately 17 percent of bridges built or replaced annually on public roads and there is a renewed thrust to use this bridge type for rapid construction under the Highway for LIFE program. Further, failure ...

  7. Experimental verification of the influence of time-dependent material properties on long-term bridge characteristics.

    DOT National Transportation Integrated Search

    2006-08-01

    Post-tensioned cast-in-place box girder bridges are commonly used in California. Losses in tension in : the steel prestressing tendons used in these bridges occur over time due to creep and shrinkage of : concrete and relaxation of the tendons. The u...

  8. Structural evaluation of LIC-310-0396 and FAY-35-17-6.82 box beams with advanced strand deterioration : executive summary report.

    DOT National Transportation Integrated Search

    2011-09-01

    Adjacent prestressed concrete box beam bridges are popular in Ohio with approximately 1,100 bridges existing that are under ODOT maintenance responsibility, amounting to approximately 9% of all Ohios bridges. However, these bridges are also very c...

  9. Assessment of the transportation route of oversize and excessive loads in relation to the load-bearing capacity of existing bridges

    NASA Astrophysics Data System (ADS)

    Doležel, Jiří; Novák, Drahomír; Petrů, Jan

    2017-09-01

    Transportation routes of oversize and excessive loads are currently planned in relation to ensure the transit of a vehicle through critical points on the road. Critical points are level-intersection of roads, bridges etc. This article presents a comprehensive procedure to determine a reliability and a load-bearing capacity level of the existing bridges on highways and roads using the advanced methods of reliability analysis based on simulation techniques of Monte Carlo type in combination with nonlinear finite element method analysis. The safety index is considered as a main criterion of the reliability level of the existing construction structures and the index is described in current structural design standards, e.g. ISO and Eurocode. An example of a single-span slab bridge made of precast prestressed concrete girders of the 60 year current time and its load bearing capacity is set for the ultimate limit state and serviceability limit state. The structure’s design load capacity was estimated by the full probability nonlinear MKP analysis using a simulation technique Latin Hypercube Sampling (LHS). Load-bearing capacity values based on a fully probabilistic analysis are compared with the load-bearing capacity levels which were estimated by deterministic methods of a critical section of the most loaded girders.

  10. Evaluation of lightweight high performance concrete in bulb-T beams and decks in two bridges on Route 33 in Virginia.

    DOT National Transportation Integrated Search

    2009-01-01

    Lightweight high performance concrete (LWHPC) is expected to provide high strength and high durability along with reduced weight. The purpose of this research was to evaluate and compare the prestressed LWHPC bulb-T beams and decks in two bridge stru...

  11. Concrete structure construction on the Moon

    NASA Technical Reports Server (NTRS)

    Matsumoto, Shinji; Namba, Haruyuki; Kai, Yoshiro; Yoshida, Tetsuji

    1992-01-01

    This paper describes a precast prestressed concrete structure system on the Moon and erection methods for this system. The horizontal section of the structural module is hexagonal so that various layouts of the modules are possible by connecting the adjacent modules to each other. For erection of the modules, specially designed mobile cranes are used.

  12. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  13. Design, Fabrication, Processing, and Testing of Micro-Electro-Mechanical Chemical Sensors

    DTIC Science & Technology

    1995-12-01

    sensor ...... .......................... 118 71. Resonating bridge parameter curves ...... ......................... 119 72. Low frequency oscillations...131 82. Heater V-I curve .. .. .. .. ... ... ... ... ... ... ... ... ..... 132 83. Frequency response of heated chemoresistor...devices, including devices that may be pre-stressed due to fabrication procedures (i.e. curve out of the plane after being released)? Due to their

  14. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons.

    DOT National Transportation Integrated Search

    2017-05-01

    The service life and durability of prestressed concrete in bridges are vulnerable to corrosion damages due to many factors such as construction, material, and environment. To ensure public safety, it is important to inspect these structures and to de...

  15. Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Zhihong; Huang Peiyan; Guo Yongchang

    2010-05-21

    A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectivelymore » utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.« less

  16. Experimental and analytical studies on the vibration serviceability of pre-stressed cable RC truss floor systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xuhong; Cao, Liang; Chen, Y. Frank; Liu, Jiepeng; Li, Jiang

    2016-01-01

    The developed pre-stressed cable reinforced concrete truss (PCT) floor system is a relatively new floor structure, which can be applied to various long-span structures such as buildings, stadiums, and bridges. Due to the lighter mass and longer span, floor vibration would be a serviceability concern problem for such systems. In this paper, field testing and theoretical analysis for the PCT floor system were conducted. Specifically, heel-drop impact and walking tests were performed on the PCT floor system to capture the dynamic properties including natural frequencies, mode shapes, damping ratios, and acceleration response. The PCT floor system was found to be a low frequency (<10 Hz) and low damping (damping ratio<2 percent) structural system. The comparison of the experimental results with the AISC's limiting values indicates that the investigated PCT system exhibits satisfactory vibration perceptibility, however. The analytical solution obtained from the weighted residual method agrees well with the experimental results and thus validates the proposed analytical expression. Sensitivity studies using the analytical solution were also conducted to investigate the vibration performance of the PCT floor system.

  17. Vibration energy harvesting using a piezoelectric circular diaphragm array.

    PubMed

    Wang, Wei; Yang, Tongqing; Chen, Xurui; Yao, Xi

    2012-09-01

    This paper presents a method for harvesting electric energy from mechanical vibration using a mechanically excited piezoelectric circular membrane array. The piezoelectric circular diaphragm array consists of four plates with series and parallel connection, and the electrical characteristics of the array are examined under dynamic conditions. With an optimal load resistor of 160 kΩ, an output power of 28 mW was generated from the array in series connection at 150 Hz under a prestress of 0.8 N and a vibration acceleration of 9.8 m/s(2), whereas a maximal output power of 27 mW can be obtained from the array in parallel connection through a resistive load of 11 kΩ under the same frequency, prestress, and acceleration conditions. The results show that using a piezoelectric circular diaphragm array can significantly increase the output of energy compared with the use of a single plate. By choosing an appropriate connection pattern (series or parallel connections) among the plates, the equivalent impedance of the energy harvesting devices can be tailored to meet the matched load of different applications for maximal power output.

  18. RAINBOWS and CERAMBOWS: The Technologies of Pre-Stressed Piezo Actuators

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1996-01-01

    Amplified mechanical displacement effects, similar to those observed in the recently reported Rainbow actuators, have also been found to exist in prestressed ceramic/metal composite structures coined as CERAMBOW's - an acronym for CERamic And Metal Biased Oxide Wafer. Mimicking the Rainbows in many ways, the intentionally created internal compressive and tensile stresses within the Cerambows are used to amplify their displacement properties via the combined effects of piezoelectric d31 strain and domain reorientation. They are fabricated from ferroelectric, piezoelectric or electrostrictive materials and metal substrates of significantly different thermal expansions which are largely responsible for the creation of the stress. Typical ceramics used in Cerambows are PZT, PLZT, PBZT, PSZT and PMN and some typical metal substrates are Al, Ag, Ni, brass, steel and Be/Cu foil. Shapes can vary from round disks to square plates and rectangular bars. Formed at an elevated temperature of approximately 250 C, the stresses on cooling to room temperature are generally sufficient to produce displacements as large as 0.125mm (5 mils) when activated unipolar and 0.25mm (10 mils) when operated bipolar at 450 volts in a dome mode. Comparing equal structures of a Cerambow with a Rainbow, the Cerambow was found to achieve approximately 70% of the displacement that would normally be obtained with a Rainbow. Although this difference in displacement is sufficient to prefer a Rainbow for many applications, there are some advantages for the Cerambow. Among these are (1) the processing temperatures are lower, (2) high lead-containing ceramics are not required and (3) in some instances the metal substrate is more convenient to interface with other elements of a device. However, the disadvantages include (1) lower displacement in the dome mode of operation, (2) the higher displacement saddle mode has not yet been demonstrated with a Cerambow and (3) the ceramic/metal bond interface is a possible failure area when operated for extended periods of time. The applications for Cerambows are considered to be similar to Rainbows, i.e., actuators, pumps, deflectors, vibrators, speakers, hydrophones, hydroprojectors, switches, etc.

  19. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.

    PubMed

    Tierney, Áine P; Callanan, Anthony; McGloughlin, Timothy M

    2012-02-01

    To investigate the use of regional variations in the mechanical properties of abdominal aortic aneurysms (AAA) in finite element (FE) modeling of AAA rupture risk, which has heretofore assumed homogeneous mechanical tissue properties. Electrocardiogram-gated computed tomography scans from 3 male patients with known infrarenal AAA were used to characterize the behavior of the aneurysm in 4 different segments (posterior, anterior, and left and right lateral) at maximum diameter and above the infrarenal aorta. The elasticity of the aneurysm (circumferential cyclic strain, compliance, and the Hudetz incremental modulus) was calculated for each segment and the aneurysm as a whole. The FE analysis inclusive of prestress (pre-existing tensile stress) produced a detailed stress pattern on each of the aneurysm models under pressure loading. The 4 largest areas of stress in each region were considered in conjunction with the local regional properties of the segment to define a specific regional prestress rupture index (RPRI). In terms of elasticity, there were average reductions of 68% in circumferential cyclic strain and 63% in compliance, with a >5-fold increase in incremental modulus, between the healthy and the aneurysmal aorta for each patient. There were also regional variations in all elastic properties in each individual patient. The average difference in total stress inclusive of prestress was 59%, 67%, and 15%, respectively, for the 3 patients. Comparing the strain from FE models with the CT scans revealed an average difference in strain of 1.55% for the segmented models and 3.61% for the homogeneous models, which suggests that the segmented models more accurately reflect in vivo behavior. RPRI values were calculated for each segment for all patients. A greater understanding of the local material properties and their use in FE models is essential for greater accuracy in rupture prediction. Quantifying the regional behavior will yield insight into the changes in patient-specific aneurysms and increase understanding about the progression of aneurysmal disease.

  20. Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study

    DOE PAGES

    Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat

    2016-12-17

    Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less

  1. Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat

    Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less

  2. 46 CFR 160.076-31 - Production tests and examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... meet UL 1180 section 7.15. Prior to initiating the test at the specified values, samples may be... the specified values, test samples may be prestressed by inflating to a pressure greater than the... accordance with and meet UL 1180 section 7.2.2-7.2.10, except 7.2.5. Each buoyancy value must fall within the...

  3. New Forum Addresses Microbiologically Influenced Corrosion

    DTIC Science & Technology

    2012-06-01

    methanogens. 15. SUBJECT TERMS MIC, biofilm Formation , localized corrosion, microoganisms 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b... Stainless Steels for Prestressed Concrete" Elisabeth Schwarzenbbck University of Bourgogne Third Place, Mars Fontana Category "Microelectrochemical...Campbell described a monitoring sys- tem for a Type 316L stainless steel (UNS S31603) drinking water distribution system that measured open circuit

  4. Covered Bridge Security Manual

    Treesearch

    Brett Phares; Terry Wipf; Ryan Sievers; Travis Hosteng

    2013-01-01

    The design, construction, and use of covered timber bridges is all but a lost art in these days of pre-stressed concrete, high-performance steel, and the significant growth both in the volume and size of vehicles. Furthermore, many of the existing covered timber bridges are preserved only because of their status on the National Registry of Historic Places or the...

  5. Structural evaluation of LIC-310-0396 and FAY-35-17-6.82 box beams with advanced strand deterioration : draft final report - phase II.

    DOT National Transportation Integrated Search

    2011-09-01

    This report describes the results from the testing of a full scale three span 43 year old adjacent prestressed concrete box beam bridge. This research is the second phase of the overall project entitled Structural Evaluation of LIC-310-0396 Box Be...

  6. Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives.

    PubMed

    Chen, Aaron; Lieu, Deborah K; Freschauf, Lauren; Lew, Valerie; Sharma, Himanshu; Wang, Jiaxian; Nguyen, Diep; Karakikes, Ioannis; Hajjar, Roger J; Gopinathan, Ajay; Botvinick, Elliot; Fowlkes, Charless C; Li, Ronald A; Khine, Michelle

    2011-12-22

    A biomimetic substrate for cell-culture is fabricated by plasma treatment of a prestressed thermoplastic shrink film to create tunable multiscaled alignment "wrinkles". Using this substrate, the functional alignment of human embryonic stem cell derived cardiomyocytes is demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lexical Representation of Schwa Words: Two Mackerels, but Only One Salami

    ERIC Educational Resources Information Center

    Burki, Audrey; Gaskell, M. Gareth

    2012-01-01

    The present study investigated the lexical representations underlying the production of English schwa words. Two types of schwa words were compared: words with a schwa in poststress position (e.g., mack"e"rel), whose schwa and reduced variants differ in a categorical way, and words with a schwa in prestress position (e.g.,…

  8. Progress in the Long $${\\rm Nb}_{3}{\\rm Sn}$$ Quadrupole R&D by LARP

    DOE PAGES

    Ambrosio, G.; Andreev, N.; Anerella, M.; ...

    2011-11-14

    After the successful test of the first long Nb 3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb 3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled inmore » the LQS01 structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less

  9. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  10. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  11. Shotcrete for Expedient Structural Repair

    DTIC Science & Technology

    1991-12-01

    pp. 29-44. Selmer - Olsen , R., "Examples of the Behavior of Shotcrete Linings Underground," Proceedings, Shotcrete for Ground Support, The Engineering... Selmer - Olsen , R. PAPER TITLE: Examples of the Behavior of Shotcrete Linings Underground DESCRIPTIVE TITLE NOTE: -0- BOOK/REPORT TITLE: Proceedings...prestressed tanks, thin overlays over structural materials, repair of concrete deteriorated by fire or earthquake, rock slope stabilization, and

  12. The Contributions of Maternal Sensitivity and Maternal Depressive Symptoms to Epigenetic Processes and Neuroendocrine Functioning

    ERIC Educational Resources Information Center

    Conradt, Elisabeth; Hawes, Katheleen; Guerin, Dylan; Armstrong, David A.; Marsit, Carmen J.; Tronick, Edward; Lester, Barry M.

    2016-01-01

    This study tested whether maternal responsiveness may buffer the child to the effects of maternal depressive symptoms on DNA methylation of "NR3C1," "11ß-HSD2," and neuroendocrine functioning. DNA was derived from buccal epithelial cells and prestress cortisol was obtained from the saliva of 128 infants. Mothers with depressive…

  13. Influence of casting conditions on durability and structural performance of HPC-AR : optimization of self-consolidating concrete to guarantee homogeneity during casting of long structural elements : final report.

    DOT National Transportation Integrated Search

    2017-05-01

    This report is a summary of the research done on dynamic segregation of self-consolidating concrete (SCC) including the casting of pre-stressed beams at Coreslab Structures. SCC is a highly flowable concrete that spreads into place with little to no ...

  14. Tensegrity, cellular biophysics, and the mechanics of living systems

    PubMed Central

    Ingber, Donald E.; Wang, Ning; Stamenović, Dimitrije

    2014-01-01

    The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life — from individual molecules to whole living organisms — to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level. PMID:24695087

  15. Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete.

    PubMed

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun

    2015-03-13

    In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of -1 to +1, eight axial mixtures were prepared at extreme values of -2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model.

  16. Regulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin 1

    PubMed Central

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    Phosphoenolpyruvate carboxylase (PEPCase), the key enzyme of Crassulacean acid metabolism, is induced by water stress in leaves of Mesembryanthemum crystallinum. In water-stressed plants or excised leaves, exogenous cytokinin suppresses PEPCase transcript accumulation in the leaves. Cytokinin (6-benzylaminopurine) used in concentrations from 5 to 500 micromolar (a) inhibits the upregulation of PEPCase transcripts, enzyme activity, and Crassulacean acid metabolism induction in salt-stressed intact plants when sprayed once daily during the stress period, (b) inhibits the accumulation of PEPCase mRNA in leaves from well-watered plants, (c) down-regulates PEPCase transcripts within 8 hours in prestressed, intact plants after a single spraying of an individual leaf, (d) inhibits accumulation of PEPCase transcripts in excised, wilting leaves, and (e) accelerates the net decrease of PEPCase transcripts in excised leaves from prestressed plants under rehydration conditions. When roots, the main site of cytokinin biosynthesis, are excised, PEPCase induction under drought stress is intensified. We propose that roots, acting as sensors of soil water status, may regulate PEPCase gene expression in the leaves with cytokinin as a signal transducer. ImagesFigure 2Figure 7 PMID:16669088

  17. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.

    PubMed Central

    Discher, D E; Boal, D H; Boey, S K

    1998-01-01

    Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment. PMID:9726959

  18. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.

    PubMed

    Discher, D E; Boal, D H; Boey, S K

    1998-09-01

    Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment.

  19. Analytical coupled modeling of a magneto-based acoustic metamaterial harvester

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Zhu, R.; Chen, J. K.; Tracy, S. L.; Huang, G. L.

    2018-05-01

    Membrane-type acoustic metamaterials (MAMs) have demonstrated unusual capacity in controlling low-frequency sound transmission, reflection, and absorption. In this paper, an analytical vibro-acoustic-electromagnetic coupling model is developed to study MAM harvester sound absorption, energy conversion, and energy harvesting behavior under a normal sound incidence. The MAM harvester is composed of a prestressed membrane with an attached rigid mass, a magnet coil, and a permanent magnet coin. To accurately capture finite-dimension rigid mass effects on the membrane deformation under the variable magnet force, a theoretical model based on the deviating acoustic surface Green’s function approach is developed by considering the acoustic near field and distributed effective shear force along the interfacial boundary between the mass and the membrane. The accuracy and capability of the theoretical model is verified through comparison with the finite element method. In particular, sound absorption, acoustic-electric energy conversion, and harvesting coefficient are quantitatively investigated by varying the weight and size of the attached mass, prestress and thickness of the membrane. It is found that the highest achievable conversion and harvesting coefficients can reach up to 48%, and 36%, respectively. The developed model can serve as an efficient tool for designing MAM harvesters.

  20. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates

    NASA Astrophysics Data System (ADS)

    Sharac, N.; Sharma, H.; Veysi, M.; Sanderson, R. N.; Khine, M.; Capolino, F.; Ragan, R.

    2016-03-01

    Thermally responsive polymers present an interesting avenue for tuning the optical properties of nanomaterials on their surfaces by varying their periodicity and shape using facile processing methods. Gold bowtie nanoantenna arrays are fabricated using nanosphere lithography on prestressed polyolefin (PO), a thermoplastic polymer, and optical properties are investigated via a combination of spectroscopy and electromagnetic simulations to correlate shape evolution with optical response. Geometric features of bowtie nanoantennas evolve by annealing at temperatures between 105 °C and 135 °C by releasing the degree of prestress in PO. Due to the higher modulus of Au versus PO, compressive stress occurs on Au bowtie regions on PO, which leads to surface buckling at the two highest annealing temperatures; regions with a 5 nm gap between bowtie nanoantennas are observed and the average reduction is 75%. Reflectance spectroscopy and full-wave electromagnetic simulations both demonstrate the ability to tune the plasmon resonance wavelength with a window of approximately 90 nm in the range of annealing temperatures investigated. Surface-enhanced Raman scattering measurements demonstrate that maximum enhancement is observed as the excitation wavelength approaches the plasmon resonance of Au bowtie nanoantennas. Both the size and morphology tunability offered by PO allows for customizing optical response.

Top