Sample records for current profile modifications

  1. Profile modification computations for LHCD experiments on PBX-M using the TSC/LSC model

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Ignat, D. W.; Jardin, S. C.; Okabayashi, M.; Sun, Y. C.

    1996-02-01

    The TSC-LSC computational model of the dynamics of lower hybrid current drive has been exercised extensively in comparison with data from a Princeton Beta Experiment-Modification (PBX-M) discharge where the measured q(0) attained values slightly above unity. Several significant, but plausible, assumptions had to be introduced to keep the computation from behaving pathologically over time, producing singular profiles of plasma current density and q. Addition of a heuristic current diffusion estimate, or more exactly, a smoothing of the rf-driven current with a diffusion-like equation, greatly improved the behavior of the computation, and brought theory and measurement into reasonable agreement. The model was then extended to longer pulse lengths and higher powers to investigate performance to be expected in future PBX-M current profile modification experiments.

  2. Observation of instability-induced current redistribution in a spherical-torus plasma.

    PubMed

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  3. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less

  4. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2009-01-01

    Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.

  5. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electricmore » field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.« less

  6. Current profile modification experiments in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Spizzo, G.; Chapman, B. E.; Gravestjin, R. M.; Franz, P.; Piovesan, P.; Martin, P.; Drake, J. R.

    2004-01-01

    Pulsed poloidal current drive (PPCD) experiments have been conducted in the resistive shell EXTRAP T2R reversed-field pinch experiment. During the current profile modification phase, the fluctuation level of the m = 1 internally resonant tearing modes decreases, and the velocity of these modes increases. The m = 0 modes are not affected during PPCD, although termination occurs with a burst in the m = 0 amplitude. The PPCD phase is characterized by an increase in the central electron temperature (up to 380 eV) and in the soft x-ray signal. Spectroscopic observations confirm an increase in the central electron temperature. During PPCD, the plasma poloidal beta increases to 14%, and the estimated energy confinement time doubles, reaching 380 µs. The reduction in the fluctuation level and the corresponding increase in the energy confinement time are qualitatively consistent with a reduction in parallel transport along stochastic magnetic field lines.

  7. Computer-aided design of high-contact-ratio gears for minimum dynamic load and stress

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Lee, Chinwai; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer aided design procedure is presented for minimizing dynamic effects on high contact ratio gears by modification of the tooth profile. Both linear and parabolic tooth profile modifications of high contact ratio gears under various loading conditions are examined and compared. The effects of the total amount of modification and the length of the modification zone were systematically studied at various loads and speeds to find the optimum profile design for minimizing the dynamic load and the tooth bending stress. Parabolic profile modification is preferred over linear profile modification for high contact ratio gears because of its lower sensitivity to manufacturing errors. For parabolic modification, a greater amount of modification at the tooth tip and a longer modification zone are required. Design charts are presented for high contact ratio gears with various profile modifications operating under a range of loads. A procedure is illustrated for using the charts to find the optimum profile design.

  8. Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Hu, Zehua; Tang, Jinyuan; Zhong, Jue; Chen, Siyu; Yan, Haiyan

    2016-08-01

    A finite element node dynamic model of a high speed gear-rotor-bearing system considering the time-varying mesh stiffness, backlash, gyroscopic effect and transmission error excitation is developed. Different tooth profile modifications are introduced into the gear pair and corresponding time-varying mesh stiffness curves are obtained. Effects of the tooth profile modification on mesh stiffness are analyzed, and the natural frequencies and mode shapes of the gear-rotor-bearing transmission system are given. The dynamic responses with respect to a wide input speed region including dynamic factor, vibration amplitude near the bearing and dynamic transmission error are obtained by introducing the time-varying mesh stiffness in different tooth profile modification cases into the gear-rotor-bearing dynamic system. Effects of the tooth profile modification on the dynamic responses are studied in detail. The numerical simulation results show that both the short profile modification and the long profile modification can affect the mutation of the mesh stiffness when the number of engaging tooth pairs changes. A short profile modification with an appropriate modification amount can improve the dynamic property of the system in certain work condition.

  9. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    NASA Astrophysics Data System (ADS)

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A.

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇ne, ∇Te, ∇νφ, and ∇Ti, delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32-0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  10. Molecular classification of fatty liver by high-throughput profiling of protein post-translational modifications.

    PubMed

    Urasaki, Yasuyo; Fiscus, Ronald R; Le, Thuc T

    2016-04-01

    We describe an alternative approach to classifying fatty liver by profiling protein post-translational modifications (PTMs) with high-throughput capillary isoelectric focusing (cIEF) immunoassays. Four strains of mice were studied, with fatty livers induced by different causes, such as ageing, genetic mutation, acute drug usage, and high-fat diet. Nutrient-sensitive PTMs of a panel of 12 liver metabolic and signalling proteins were simultaneously evaluated with cIEF immunoassays, using nanograms of total cellular protein per assay. Changes to liver protein acetylation, phosphorylation, and O-N-acetylglucosamine glycosylation were quantified and compared between normal and diseased states. Fatty liver tissues could be distinguished from one another by distinctive protein PTM profiles. Fatty liver is currently classified by morphological assessment of lipid droplets, without identifying the underlying molecular causes. In contrast, high-throughput profiling of protein PTMs has the potential to provide molecular classification of fatty liver. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting.

    PubMed

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2016-09-01

    Protein modifications of meat cooked by typical dry-heat methods (e.g., roasting) are currently not well understood. The present study utilised a shotgun proteomic approach to examine the molecular-level effect of roasting on thin lamb longissimus thoracis et lumborum patties, in terms of changes to both the protein profile and amino acid residue side-chain modifications. Cooking caused aggregation of actin, myosin heavy chains and sarcoplasmic proteins. Longer roasting time resulted in significantly reduced protein extractability as well as protein truncation involving particularly a number of myofibrillar and sarcoplasmic proteins, e.g., 6-phosphofructokinase, beta-enolase, l-lactate dehydrogenase A chain, alpha-actinin-3, actin and possibly myosin heavy chains. Modifications that have potential influence on nutritional properties, including carboxyethyllysine and a potentially glucose-derived N-terminal Amadori compound, were observed in actin and myoglobin after roasting. This study provided new insights into molecular changes resulting from the dry-heat treatment of meat, such as commonly used in food preparation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Profiling post-translational modifications of histones in human monocyte-derived macrophages.

    PubMed

    Olszowy, Pawel; Donnelly, Maire Rose; Lee, Chanho; Ciborowski, Pawel

    2015-01-01

    Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human macrophages.

  13. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    NASA Technical Reports Server (NTRS)

    Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.

  14. tRNA modification profiles of the fast-proliferating cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Chao; Niu, Leilei; Song, Wei

    Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In additionmore » to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.« less

  15. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets.

    PubMed

    Lindsay, Cameron; Seikaly, Hadi; Biron, Vincent L

    2017-01-31

    Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.

  16. Thermal island destabilization and the Greenwald limit

    DOE PAGES

    White, R. B.; Gates, D. A.; Brennan, D. P.

    2015-02-24

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. A magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration is evident in a fusion device. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Furthermore, modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturatedmore » island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. In addition destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  17. Thermal island destabilization and the Greenwald limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. A magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration is evident in a fusion device. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Furthermore, modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturatedmore » island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. In addition destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  18. Thermal island destabilization and the Greenwald limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Becausemore » field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  19. Evaluation of Plume Divergence and Facility Effects on Far-Field Faraday Probe Current Density Profiles

    DTIC Science & Technology

    2009-09-01

    elevated background pressure, compared nude Faraday probe designs, and evaluated design modifications to minimize uncertainty due to charge exchange...evaluated Faraday probe design and facility background pressure on collected ion current. A comparison of two nude Faraday probe designs concluded...140.5 Plasma potential in the region surrounding a nude Faraday probe has been measured to study the possibility of probe bias voltage acting as a

  20. The Social Stress Model of Substance Abuse among Childbearing-Age Women: A Review of the Literature.

    ERIC Educational Resources Information Center

    Lindenberg, Cathy Strachan; And Others

    1994-01-01

    This article synthesizes current empirical evidence for the interaction between stress level, stress modification, and drug abuse. The authors analyze 13 research studies of women; and they profile consistencies and inconsistencies in the findings, provide critiques of key methodological issues, and examine implications for future research,…

  1. Effect of tooth profile modification on wear in internal gears

    NASA Astrophysics Data System (ADS)

    Tunalioglu, M. S.; Tuc, B.

    2018-05-01

    Internal gears are often used in the automotive industry when two gears are required to rotate in the same direction. Tooth shapes, slippage speeds at the beginning and end of meshing are different according to the external gears. Manufacturing of internal gears is more difficult than external gears. Thus, it is necessary to determine the working conditions and wear behavior of internal gears carefully. The profile modification method in terms of strength and surface tension of the gear mechanism are performed in order to increase the load-carrying capability. In this study, profile modification method was performed in the internal gears to reduce the wear on the teeth. For this purpose, the wear of the internal gears was theoretically investigated by adapting the Archard wear equation to the internal gears. Closed circuit power circulation system was designed and manufactured to experimentally investigate the wear in internal gears. With this system, wear tests of gears made of St 50 material without profile modification and different profile modifications were made and the results were compared. Experimental study was performed in the same loading and cycle time conditions to validate the theoretical results and it was seen that the results are compatible. According to the experimental results, it is seen that in the internal gears, when profile modification done the wear is decreased in the teeth tip region.

  2. Structure, chaperone-like activity and allergenicity profile of bovine caseins upon peroxynitrite modification: New evidences underlying mastitis pathomechanisms.

    PubMed

    Sadeghian, Tanaz; Tavaf, Zohreh; Oryan, Ahmad; Shokouhi, Raheleh; Pourpak, Zahra; Moosavi-Movahedi, Ali Akbar; Yousefi, Reza

    2018-01-01

    Mastitis, an inflammatory reaction frequently develops in response to intra-mammary bacterial infection‌‌, may induce the generation of peroxynitrite (PON)‌ which is a highly potent reactive oxygen and nitrogen species. Caseins as the intrinsically unfolded proteins seem feasible substrates to react with PON. Therefore, in the current study, structural and functional aspects of both β-casein (β-CN) and whole casein fraction (WCF) were evaluated after PON modification, using a variety of techniques. Modification of the bovine caseins with PON results in an important enhancement in the carbonyl, nitrotryptophan, nitrotyrosine and dityrosine content of these proteins‌. The results of fluorescence and far UV-CD assessments suggested significant structural alteration of caseins upon PON-modification. The chaperone-like activity of β-casein was significantly altered after PON modification. The results of scanning electron microscopy suggest that bovine caseins display unique morphological features after treatment with PON. Also, the PON-modified caseins preserved their allergenicity profile and displayed partial resistance against digestion by the pancreatic proteases. Ascorbic acid, an important antioxidant component of milk, was also capable to significantly prevent the PON-induced structural damages in bovine milk caseins. In conclusion, our results suggest that PON may have significant role in the structural and functional alteration of milk caseins. Also, the PON-induced structural damaging effects of caseins might be effectively prevented by a sufficient level of milk antioxidant components particularly by ascorbic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modification of a Turbulent Boundary Layer within a Homogeneous Concentration of Drag reducing Polymer Solution

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Elbing, Brian

    2017-11-01

    High molecular weight polymer solutions in wall-bounded flows can reduce the local skin friction by as much as 80%. External flow studies have typical focused on injection of polymer within a developing turbulent boundary layer (TBL), allowing the concentration and drag reduction level to evolve with downstream distance. Modification of the log-law region of the TBL is directly related to drag reduction, but recent results suggest that the exact behavior is dependent on flow and polymer properties. Weissenberg number and the viscosity ratio (ratio of solvent viscosity to the zero-shear viscosity) are concentration dependent, thus the current study uses a polymer ocean (i.e. a homogenous concentration of polymer solution) with a developing TBL to eliminate uncertainty related to polymer properties. The near-wall modified TBL velocity profiles are acquired with particle image velocimetry. In the current presentation the mean velocity profiles and the corresponding flow (Reynolds number) and polymer (Weissenberg number, viscosity ratio, and length ratio) properties are reported. Note that the impact of polymer degradation on molecular weight will also be quantified and accounted for when estimating polymer properties This work was supported by NSF Grant 1604978.

  4. Effects of energetic particle phase space modifications by instabilities on integrated modeling

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.

    2016-11-01

    Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.

  5. Effects of energetic particle phase space modifications by instabilities on integrated modeling

    DOE PAGES

    Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; ...

    2016-07-22

    Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effectivemore » tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Furthermore, those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.« less

  6. Profiling modifications for glioblastoma proteome using ultra-tolerant database search: Are the peptide mass shifts biologically relevant or chemically induced?

    PubMed

    Tarasova, Irina A; Chumakov, Peter M; Moshkovskii, Sergei A; Gorshkov, Mikhail V

    2018-05-17

    Peptide mass shifts were profiled using ultra-tolerant database search strategy for shotgun proteomics data sets of human glioblastoma cell lines demonstrating strong response to the type I interferon (IFNα-2b) treatment. The main objective of this profiling was revealing the cell response to IFN treatment at the level of protein modifications. To achieve this objective, statistically significant changes in peptide mass shift profiles between IFN treated and untreated glioblastoma samples were analyzed. Detailed analysis of MS/MS spectra allowed further interpretation of the observed mass shifts and differentiation between post-translational and artifact modifications. Malignant cells typically acquire increased sensitivity to viruses due to the deregulated antiviral mechanisms. Therefore, a viral therapy is considered as one of the promising approaches to treat cancer. However, recent studies have demonstrated that malignant cells can preserve intact antiviral mechanisms, e.g. interferon signaling, and develop resistance to virus infection in response to interferon treatment. Post translational modifications, e.g. tyrosine phosphorylation, are the interferon signaling drivers. Thus, comprehensive characterization of modifications is crucially important, yet, most challenging problem in cancer proteomics. Here, we report on the application of the recently introduced ultra-tolerant search strategy for profiling peptide modifications in the human glioblastoma cell lines demonstrating strong response to the type I interferon (IFNα-2b) treatment. The specific aim of the study was identification of statistically significant changes in peptide mass shift profiles between IFN treated and untreated glioblastoma samples, as well as determination of whether these shifts represent the biologically relevant modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Optimization and validation of a fast amplification protocol for AmpFlSTR® Profiler Plus® for rapid forensic human identification.

    PubMed

    Laurin, Nancy; Frégeau, Chantal

    2012-01-01

    The goal of this work was to optimize and validate a fast amplification protocol for the multiplex amplification of the STR loci included in AmpFlSTR(®) Profiler Plus(®) to expedite human DNA identification. By modifying the cycling conditions and by combining the use of a DNA polymerase optimized for high speed PCR (SpeedSTAR™ HS) and a more efficient thermal cycler instrument (Bio-RAD C1000™), we were able to reduce the amplification process from 4h to 26 min. No modification to the commercial AmpFlSTR(®) Profiler Plus(®) primer mix was required. When compared to the current Royal Canadian Mounted Police (RCMP) amplification protocol, no differences with regards to specificity, sensitivity, heterozygote peak height ratios and overall profile balance were noted. Moreover, complete concordance was obtained with profiles previously generated with the standard amplification protocol and minor alleles in mixture samples were reliably typed. An increase in n-4 stutter ratios (2.2% on average for all loci) was observed for profiles amplified with the fast protocol compared to the current procedure. Our results document the robustness of this rapid amplification protocol for STR profiling using the AmpFlSTR(®) Profiler Plus(®) primer set and demonstrate that comparable data can be obtained in substantially less time. This new approach could provide an alternative option to current multiplex STR typing amplification protocols in order to increase throughput or expedite time-sensitive cases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Characterization and Performance of a High-Current-Density Ion Implanter with Magnetized Hollow-Cathode Plasma Source

    NASA Astrophysics Data System (ADS)

    Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai

    1998-10-01

    In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.

  9. An assessment of lifestyle modification versus medical treatment with clomiphene citrate, metformin, and clomiphene citrate-metformin in patients with polycystic ovary syndrome.

    PubMed

    Karimzadeh, Mohammad Ali; Javedani, Mojgan

    2010-06-01

    To compare the effect of clomiphene citrate, metformin, and lifestyle modification on treatment of patients with polycystic ovary syndrome (PCOS). Prospective randomized double-blind study. University-based infertility clinic and research center. Three hundred forty-three overweight infertile women with PCOS. The participating women were assigned to four groups: clomiphene (n = 90), metformin (n = 90), clomiphene + metformin (n = 88), and lifestyle modification (n = 75). The patients in each group received standardized dietary and exercise advice from a dietitian. The primary outcome variables were change in menstrual cycle, waist circumference measurements, endocrine parameters, and lipid profile. The main secondary outcome variable was clinical pregnancy rate. The clinical pregnancy rate was 12.2% in clomiphene group, 14.4% in metformin group, 14.8% in clomiphene + metformin group, and 20% in lifestyle modification group. Lifestyle modification group achieved a significant reduction in waist circumference, total androgen, and lipid profile. Lifestyle modification improves the lipid profile in PCOS patients. Therefore, lifestyle modification may be used as the first line of ovulation induction in PCOS patients. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization.

    PubMed

    Sandra, Koen; Vandenheede, Isabel; Sandra, Pat

    2014-03-28

    Protein biopharmaceuticals such as monoclonal antibodies and therapeutic proteins are currently in widespread use for the treatment of various life-threatening diseases including cancer, autoimmune disorders, diabetes and anemia. The complexity of protein therapeutics is far exceeding that of small molecule drugs; hence, unraveling this complexity represents an analytical challenge. The current review provides the reader with state-of-the-art chromatographic and mass spectrometric tools available to dissect primary and higher order structures, post-translational modifications, purity and impurity profiles and pharmacokinetic properties of protein therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Diagnostics for real-time plasma control in PBX-M

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Batha, S.; Bell, R. E.; Bernabei, S.; Hatcher, R.; Kozub, T.; Kugel, H.; Levinton, F.; Okabayashi, M.; Sesnic, S.; von Goeler, S.; Zolfaghari, A.; PBX-M Group

    1995-01-01

    An important issue for future tokamaks is real-time plasma control for the avoidance of magnetohydrodynamic instabilities and other applications that require detailed plasma profile and fluctuation data. Although measurements from diagnostics providing this information require significantly more processing than magnetic flux data, recent advancements could make them practical for adjusting operational settings for plasma heating and current drive systems as well as field coil currents. On the Princeton Beta Experiment-Modification (PBX-M), the lower hybrid current drive phasing can be varied during a plasma shot using digitally programmable ferrite phase shifters, and neural beam functions can be fully computer controlled. PBX-M diagnostics that may be used for control purposes include motional Stark-effect polarimetry for magnetic field pitch angle profiles, soft x-ray arrays for plasma position control and the separation of βp from li, hard x-ray detectors for energetic electron distributions, a multichannel electron cyclotron emission radiometer for ballooning mode identification, and passive plate eddy current monitors for kink stabilization. We will describe the present status of these systems on PBX-M, and discuss their suitability for feedback applications.

  12. The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis.

    PubMed

    Lingg, Nico; Zhang, Peiqing; Song, Zhiwei; Bardor, Muriel

    2012-12-01

    Biopharmaceuticals currently represent the fastest growing sector of the pharmaceutical industry, mainly driven by a rapid expansion in the manufacture of recombinant protein-based drugs. Glycosylation is the most prominent post-translational modification occurring on these protein drugs. It constitutes one of the critical quality attributes that requires thorough analysis for optimal efficacy and safety. This review examines the functional importance of glycosylation of recombinant protein drugs, illustrated using three examples of protein biopharmaceuticals: IgG antibodies, erythropoietin and glucocerebrosidase. Current analytical methods are reviewed as solutions for qualitative and quantitative measurements of glycosylation to monitor quality target product profiles of recombinant glycoprotein drugs. Finally, we propose a framework for designing the quality target product profile of recombinant glycoproteins and planning workflow for glycosylation analysis with the selection of available analytical methods and tools. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cross-Shore Numerical Model CSHORE for Waves, Currents, Sediment Transport and Beach Profile Evolution

    DTIC Science & Technology

    2012-09-01

    still water shoreline. This modification is necessary for a berm that is slanted downward toward the toe of a dune . The wet probability Pw on the...high dune provides storm protection and damage reduction, recreational and economical benefits, and biological habitats for plants and animals. Most...has been used to predict wave overwash of dunes . The hydrodynamic model has also been extended to the wet and dry zone on a permeable bottom for

  14. Mechanisms of Immune Evasion in Leishmaniasis

    PubMed Central

    Gupta, Gaurav; Oghumu, Steve; Satoskar, Abhay R.

    2013-01-01

    Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research. PMID:23415155

  15. Combining genomic and proteomic approaches for epigenetics research

    PubMed Central

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  16. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  17. Synthesis and physico-chemical characterization of modified starches from banana (Musa AAB) and its biological activities in diabetic rats.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Vidya, P V; Haripriya, Sundaramoorthy

    2017-01-01

    This study describes a simple method of preparation and physico-chemical properties of modified starches (type-3 resistant starches) from banana (Musa AAB), and the modified starches investigated as functional food with a beneficial effect on type-2 diabetes. RS3 was prepared using a method combined with debranching modification and physical modification; native and modifies starches were characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and rapid visco analyzer (RVA). Use of the enzymatic and physical modification methodology, improved the yield of RS (26.62%) from Musa AAB. A reduced viscosity and swelling power; increased transition temperatures, water absorption capacity and solubility index with B-type crystalline pattern and loss of granular appearance were observed during the debranching modification and physical modification. The modified starches exhibited beneficial health effects in diabetic and HFD rats who consumed it. These results recommend that dietary feeding of RS3 was effective in the regulation of glucose and lipid profile in serum and suppressing the oxidative stress in rats under diabetic and HFD condition. This current study provides new bioactive starches, with potential applications in the food and non-food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessi, G. T. von; Hole, M. J.; Svensson, J.

    2012-01-15

    In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlledmore » Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.« less

  19. Influence of Tooth Spacing Error on Gears With and Without Profile Modifications

    NASA Technical Reports Server (NTRS)

    Padmasolala, Giri; Lin, Hsiang H.; Oswald, Fred B.

    2000-01-01

    A computer simulation was conducted to investigate the effectiveness of profile modification for reducing dynamic loads in gears with different tooth spacing errors. The simulation examined varying amplitudes of spacing error and differences in the span of teeth over which the error occurs. The modification considered included both linear and parabolic tip relief. The analysis considered spacing error that varies around most of the gear circumference (similar to a typical sinusoidal error pattern) as well as a shorter span of spacing errors that occurs on only a few teeth. The dynamic analysis was performed using a revised version of a NASA gear dynamics code, modified to add tooth spacing errors to the analysis. Results obtained from the investigation show that linear tip relief is more effective in reducing dynamic loads on gears with small spacing errors but parabolic tip relief becomes more effective as the amplitude of spacing error increases. In addition, the parabolic modification is more effective for the more severe error case where the error is spread over a longer span of teeth. The findings of this study can be used to design robust tooth profile modification for improving dynamic performance of gear sets with different tooth spacing errors.

  20. Characterization of a PEGylated protein therapeutic by ion exchange chromatography with on-line detection by native ESI MS and MS/MS.

    PubMed

    Muneeruddin, K; Bobst, C E; Frenkel, R; Houde, D; Turyan, I; Sosic, Z; Kaltashov, I A

    2017-01-16

    Detailed profiling of both enzymatic (e.g., glycosylation) and non-enzymatic (e.g., oxidation and deamidation) post-translational modifications (PTMs) is frequently required for the quality assessment of protein-based drugs. Challenging as it is, this task is further complicated for the so-called second-generation biopharmaceuticals, which also contain "designer PTMs" introduced to either enhance their pharmacokinetic profiles (e.g., PEGylated proteins) or endow them with therapeutic activity (e.g., protein-drug conjugates). Such modifications of protein covalent structure can dramatically increase structural heterogeneity, making the very notion of "molecular mass" meaningless, as ions representing different glycoforms of a PEGylated protein may have nearly identical distributions of ionic current as a function of m/z, making their contributions to the mass spectrum impossible to distinguish. In this work we demonstrate that a combination of ion exchange chromatography (IXC) with on-line detection by electrospray ionization mass spectrometry (ESI MS) and methods of ion manipulation in the gas phase (limited charge reduction and collision-induced dissociation) allows meaningful structural information to be obtained on a structurally heterogeneous sample of PEGylated interferon β-1a. IXC profiling of the protein sample gives rise to a convoluted chromatogram with several partially resolved peaks which can represent both deamidation and different glycosylation patterns within the protein, as well as varying extent of PEGylation. Thus, profiling the protein with on-line IXC/ESI/MS/MS allows it to be characterized by providing information on three different types of PTMs (designer, enzymatic and non-enzymatic) within a single protein therapeutic.

  1. Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa

    PubMed Central

    Kojima, Mikiko; Kamada-Nobusada, Tomoe; Komatsu, Hirokazu; Takei, Kentaro; Kuroha, Takeshi; Mizutani, Masaharu; Ashikari, Motoyuki; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Suzuki, Koji; Sakakibara, Hitoshi

    2009-01-01

    We have developed a highly sensitive and high-throughput method for the simultaneous analysis of 43 molecular species of cytokinins, auxins, ABA and gibberellins. This method consists of an automatic liquid handling system for solid phase extraction and ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (qMS/MS) equipped with an electrospray interface (ESI; UPLC-ESI-qMS/MS). In order to improve the detection limit of negatively charged compounds, such as gibberellins, we chemically derivatized fractions containing auxin, ABA and gibberellins with bromocholine that has a quaternary ammonium functional group. This modification, that we call ‘MS-probe’, makes these hormone derivatives have a positive ion charge and permits all compounds to be measured in the positive ion mode with UPLC-ESI-qMS/MS in a single run. Consequently, quantification limits of gibberellins increased up to 50-fold. Our current method needs <100 mg (FW) of plant tissues to determine phytohormone profiles and enables us to analyze >180 plant samples simultaneously. Application of this method to plant hormone profiling enabled us to draw organ distribution maps of hormone species in rice and also to identify interactions among the four major hormones in the rice gibberellin signaling mutants, gid1-3, gid2-1 and slr1. Combining the results of hormone profiling data with transcriptome data in the gibberellin signaling mutants allows us to analyze relationships between changes in gene expression and hormone metabolism. PMID:19369275

  2. Planetary gear profile modification design based on load sharing modelling

    NASA Astrophysics Data System (ADS)

    Iglesias, Miguel; Fernández Del Rincón, Alfonso; De-Juan, Ana Magdalena; Garcia, Pablo; Diez, Alberto; Viadero, Fernando

    2015-07-01

    In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.

  3. Analysis of alternative modifications for reducing backwater flooding at the Honey Creek coal strip-mine reclamation site in Henry County, Missouri. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, T.W.

    Studies to determine the hydrologic conditions in mined and reclaimed mine areas, as well as areas of proposed mining, have become necessary with the enactment of the Surface Mining Control and Reclamation Act of 1977. Honey Creek in Henry County, Missouri, has been re-routed to flow through a series of former strip mining pits which lie within the Honey Creek coal strip mine reclamation site. During intense or long duration rainfalls within the Honey Creek basin, surface runoff has caused flooding on agricultural land near the upstream boundary of the reclamation site. The calculated existing design discharge (3,050 cubic feetmore » per second) water-surface profile is compared to the expected water-surface profiles from three assumed alternative channel modifcations within the Honey Creek study area. The alternative channel modifications used in these analyses include (1) improvement of channel bottom slope, (2) relocation of spoil material, and (3) improved by-pass channel flow conditions. The alternative 1, 2, and 3 design discharge increase will reduce the agricultural field current (1990) frequency of backwater flooding from a 3-year to a 6.5-year event.« less

  4. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    PubMed

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrario, Lorenzo, E-mail: lorenzo.ferrario@polimi.it; Little, Justin M., E-mail: jml@princeton.edu; Choueiri, Edgar Y., E-mail: choueiri@princeton.edu

    The plasma flow in a finite-electron-temperature magnetic nozzle, under the influence of an applied azimuthal current at the throat, is modeled analytically to assess its propulsive performance. A correction to the nozzle throat boundary conditions is derived by modifying the radial equilibrium of a magnetized infinite two-population cylindrical plasma column with the insertion of an external azimuthal body force for the electrons. Inclusion of finite-temperature effects, which leads to a modification of the radial density profile, is necessary for calculating the propulsive performance, which is represented by nozzle divergence efficiency and thrust coefficient. The solutions show that the application ofmore » the azimuthal current enhances all the calculated performance parameters through the narrowing of the radial density profile at the throat, and that investing power in this beam focusing effect is more effective than using the same power to pre-heat the electrons. The results open the possibility for the design of a focusing stage between the plasma source and the nozzle that can significantly enhance the propulsive performance of electron-driven magnetic nozzles.« less

  6. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    NASA Astrophysics Data System (ADS)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  7. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.S.; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090; Yang, J.

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reducemore » the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.« less

  8. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Wu, Si; Stenoien, David L.

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  9. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  10. In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.

    PubMed

    Son, Youngbae; Li, Jiabo; Peterson, Rebecca L

    2016-09-14

    Here we present a novel in situ chemical modification process to form vertical Schottky diodes using palladium (Pd) rectifying bottom contacts, amorphous zinc tin oxide (Zn-Sn-O) semiconductor made via acetate-based solution process, and molybdenum top ohmic contacts. Using X-ray photoelectron spectroscopy depth profiling, we show that oxygen plasma treatment of Pd creates a PdOx interface layer, which is then reduced back to metallic Pd by in situ reactions during Zn-Sn-O film annealing. The plasma treatment ensures an oxygen-rich environment in the semiconductor near the Schottky barrier, reducing the level of oxygen-deficiency-related defects and improving the rectifying contact. Using this process, we achieve diodes with high forward current density exceeding 10(3)A cm(-2) at 1 V, rectification ratios of >10(2), and ideality factors of around 1.9. The measured diode current-voltage characteristics are compared to numerical simulations of thermionic field emission with sub-bandgap states in the semiconductor, which we attribute to spatial variations in metal stoichiometry of amorphous Zn-Sn-O. To the best of our knowledge, this is the first demonstration of vertical Schottky diodes using solution-processed amorphous metal oxide semiconductor. Furthermore, the in situ chemical modification method developed here can be adapted to tune interface properties in many other oxide devices.

  11. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    NASA Astrophysics Data System (ADS)

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  12. The effect of electron cyclotron heating on density fluctuations at ion and electron scales in ITER baseline scenario discharges on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team

    2017-12-01

    Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.

  13. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  14. Development of an Interval Management Algorithm Using Ground Speed Feedback for Delayed Traffic

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Swieringa, Kurt A.; Underwood, Matthew C.; Abbott, Terence; Leonard, Robert D.

    2016-01-01

    One of the goals of NextGen is to enable frequent use of Optimized Profile Descents (OPD) for aircraft, even during periods of peak traffic demand. NASA is currently testing three new technologies that enable air traffic controllers to use speed adjustments to space aircraft during arrival and approach operations. This will allow an aircraft to remain close to their OPD. During the integration of these technologies, it was discovered that, due to a lack of accurate trajectory information for the leading aircraft, Interval Management aircraft were exhibiting poor behavior. NASA's Interval Management algorithm was modified to address the impact of inaccurate trajectory information and a series of studies were performed to assess the impact of this modification. These studies show that the modification provided some improvement when the Interval Management system lacked accurate trajectory information for the leading aircraft.

  15. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE PAGES

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...

    2017-02-13

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  16. Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products.

    PubMed

    Tian, Caiping; Sun, Rui; Liu, Keke; Fu, Ling; Liu, Xiaoyu; Zhou, Wanqi; Yang, Yong; Yang, Jing

    2017-11-16

    Electrophilic groups, such as Michael acceptors, expoxides, are common motifs in natural products (NPs). Electrophilic NPs can act through covalent modification of cysteinyl thiols on functional proteins, and exhibit potent cytotoxicity and anti-inflammatory/cancer activities. Here we describe a new chemoproteomic strategy, termed multiplexed thiol reactivity profiling (MTRP), and its use in target discovery of electrophilic NPs. We demonstrate the utility of MTRP by identifying cellular targets of gambogic acid, an electrophilic NP that is currently under evaluation in clinical trials as anticancer agent. Moreover, MTRP enables simultaneous comparison of seven structurally diversified α,β-unsaturated γ-lactones, which provides insights into the relative proteomic reactivity and target preference of diverse structural scaffolds coupled to a common electrophilic motif and reveals various potential druggable targets with liganded cysteines. We anticipate that this new method for thiol reactivity profiling in a multiplexed manner will find broad application in redox biology and drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    PubMed Central

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  18. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry.

    PubMed

    Souda, Puneet; Ryan, Christopher M; Cramer, William A; Whitelegge, Julian

    2011-12-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein's native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electron-capture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  20. Transcriptomic Modification in the Cerebral Cortex following Noninvasive Brain Stimulation: RNA-Sequencing Approach

    PubMed Central

    Holmes, Ben; Jung, Seung Ho; Lu, Jing; Wagner, Jessica A.; Rubbi, Liudmilla; Pellegrini, Matteo

    2016-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied. PMID:28119786

  1. Modification of the background flow by roll vortices

    NASA Technical Reports Server (NTRS)

    Shirer, Hampton N.; Haack, Tracy

    1990-01-01

    Use of observed wind profiles, such as those obtained from ascent or descent aircraft soundings, for the identification of the expected roll modes is hindered by the fact that these modes are able to modify the wind profiles. When such modified wind profiles are utilized to estimate the critical values of the dynamic and thermodynamic forcing rates, large errors in the preferred orientation angles and aspect ratios of the rolls may result. Nonlinear analysis of a 14 coefficient spectral model of roll circulations shows that the primary modification of the background wind is the addition of a linear component. When the linear profile having the correct amount of shear is subtracted from the observed cross-roll winds, then the pre-roll wind profile can be estimated. A preliminary test of this hypothesis is given for a case in which cloud streets were observed during FIRE.

  2. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Q. D., E-mail: qgao@swip.ac.cn; Budny, R. V.

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LHmore » driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.« less

  3. Creation of catalytically active particles from enzymes crosslinked with a natural bifunctional agent--homocysteine thiolactone.

    PubMed

    Stroylova, Yulia Y; Semenyuk, Pavel I; Asriyantz, Regina A; Gaillard, Cedric; Haertlé, Thomas; Muronetz, Vladimir I

    2014-09-01

    The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes. © 2014 Wiley Periodicals, Inc.

  4. Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications

    NASA Astrophysics Data System (ADS)

    Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.

  5. Waves plus currents at a right angle: The rippled bed case

    NASA Astrophysics Data System (ADS)

    Faraci, C.; Foti, E.; Musumeci, R. E.

    2008-07-01

    The present paper deals with wave plus current flow over a fixed rippled bed. More precisely, modifications of the current profiles due to the superimposition of orthogonal cylindrical waves have been investigated experimentally. Since the experimental setup permitted only the wave dominated regime to be investigated (i.e., the regime where orbital velocity is larger than current velocity), also a numerical k-ɛ turbulence closure model has been developed in order to study a wider range of parameters, thus including the current dominated regime (i.e., where current velocity is larger than wave orbital one). In both cases a different response with respect to the flat bed case has been found. Indeed, in the flat bed case laminar wave boundary layers in a wave dominated regime induce a decrease in bottom shear stresses, while the presence of a rippled bed behaves as a macroroughness, which causes the wave boundary layer to become turbulent and therefore the current velocity near the bottom to be smaller than the one in the case of current only, with a consequent increase in the current bottom roughness.

  6. Turbulent mixing within the Kuroshio in the Tokara Strait

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Eisuke; Matsuno, Takeshi; Lien, Ren-Chieh; Nakamura, Hirohiko; Senjyu, Tomoharu; Guo, Xinyu

    2017-09-01

    Turbulent mixing and background current were observed using a microstructure profiler and acoustic Doppler current profilers in the Tokara Strait, where many seamounts and small islands exist within the route of the Kuroshio in the East China Sea. Vertical structure and water properties of the Kuroshio were greatly modified downstream from shallow seamounts. In the lee of a seamount crest at 200 m depth, the modification made the flow tend to shear instability, and the vertical eddy diffusivity is enhanced by nearly 100 times that of the upstream site, to Kρ ˜ O(10-3)-O(10-2) m2 s-1. A one-dimensional diffusion model using the observed eddy diffusivity reproduced the observed downstream evolution of the temperature-salinity profile. However, the estimated diffusion time-scale is at least 10 times longer than the observed advection time-scale. This suggests that the eddy diffusivity reaches to O(10-1) m2 s-1 in the vicinity of the seamount. At a site away from the abrupt topography, eddy diffusivity was also elevated to O(10-3) m2 s-1, and was associated with shear instability presumably induced by the Kuroshio shear and near-inertial internal-wave shear. Our study suggests that a better prediction of current, water-mass properties, and nutrients within the Kuroshio requires accurate understanding and parameterization of flow-topography interaction such as internal hydraulics, the associated internal-wave processes, and turbulent mixing processes.

  7. Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.

  8. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry.

    PubMed

    Zhou, Mowei; Wu, Si; Stenoien, David L; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Paša-Tolić, Ljiljana

    2017-01-01

    Top-down mass spectrometry is a valuable tool for understanding gene expression through characterization of combinatorial histone post-translational modifications (i.e., histone code). In this protocol, we describe a top-down workflow that employs liquid chromatography (LC) coupled to mass spectrometry (MS), for fast global profiling of changes in histone proteoforms, and apply LCMS top-down approach for comparative analysis of a wild-type and a mutant fungal species. The proteoforms exhibiting differential abundances can be subjected to further targeted studies by other MS or orthogonal (e.g., biochemical) assays. This method can be generally adapted for screening of changes in histone modifications between samples such as wild type vs. mutant or healthy vs. diseased.

  9. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. Results Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. Conclusions Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. PMID:21356108

  10. Optimized methods of chromatin immunoprecipitation for profiling histone modifications in industrial microalgae Nannochloropsis spp.

    PubMed

    Wei, Li; Xu, Jian

    2018-06-01

    Epigenetic factors such as histone modifications play integral roles in plant development and stress response, yet their implications in algae remain poorly understood. In the industrial oleaginous microalgae Nannochloropsis spp., the lack of an efficient methodology for chromatin immunoprecipitation (ChIP), which determines the specific genomic location of various histone modifications, has hindered probing the epigenetic basis of their photosynthetic carbon conversion and storage as oil. Here, a detailed ChIP protocol was developed for Nannochloropsis oceanica, which represents a reliable approach for the analysis of histone modifications, chromatin state, and transcription factor-binding sites at the epigenetic level. Using ChIP-qPCR, genes related to photosynthetic carbon fixation in this microalga were systematically assessed. Furthermore, a ChIP-Seq protocol was established and optimized, which generated a genome-wide profile of histone modification events, using histone mark H3K9Ac as an example. These results are the first step for appreciation of the chromatin landscape in industrial oleaginous microalgae and for epigenetics-based microalgal feedstock development. © 2018 Phycological Society of America.

  11. The effect of Electron Cyclotron Heating on density fluctuations at ion and electron scales in ITER Baseline Scenario discharges on the DIII-D tokamak

    DOE PAGES

    Marinoni, Alessandro; Pinsker, Robert I.; Porkolab, Miklos; ...

    2017-08-01

    Experiments simulating the ITER Baseline Scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the Phase Contrast Imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of Electron Cyclotron Heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed β N . Within 20 msmore » after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz; in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. Furthermore, these results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.« less

  12. Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl R.

    1995-11-01

    Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S -0.18 for the root-mean-square magnetic fluctuation level for 2.5x10 3≤S≤4x10 4. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate meansmore » of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.« less

  13. A computational study of a novel graphene nanoribbon field effect transistor

    NASA Astrophysics Data System (ADS)

    Ghoreishi, Seyed Saleh; Yousefi, Reza

    2017-04-01

    In this paper, using gate structure engineering and modification of channel dopant profile, we propose a new double gate graphene nanoribbon field effect transistor (DG-GNRFET) mainly to suppress the band-to-band tunneling (BTBT) of carriers. In the new device, the intrinsic part of the channel is replaced by an intrinsic-lightly doped-intrinsic (I -N--I) configuration in a way that only the intrinsic parts are covered by the gate contact. Transport characteristics of the device are investigated theoretically using the nonequilibrium Green’s function (NEGF) formalism. Numerical simulations show that off-current, ambipolar behavior, on/off-current ratio and the switching characteristics such as intrinsic delay and power-delay product are improved. In addition, the new device demonstrates better sub-threshold swing and less drain-induced barrier lowering (DIBL).

  14. Childhood Acute Myeloid Leukaemia

    PubMed Central

    Rubnitz, Jeffrey E.; Inaba, Hiroto

    2012-01-01

    Summary Although acute myeloid leukaemia (AML) has long been recognized for its morphological and cytogenetic heterogeneity, recent high-resolution genomic profiling has demonstrated a complexity even greater than previously imagined. This complexity can be seen in the number and diversity of genetic alterations, epigenetic modifications, and characteristics of the leukaemic stem cells. The broad range of abnormalities across different AML subtypes suggests that improvements in clinical outcome will require the development of targeted therapies for each subtype of disease and the design of novel clinical trials to test these strategies. It is highly unlikely that further gains in long-term survival rates will be possible by mere intensification of conventional chemotherapy. In this review, we summarize recent studies that provide new insight into the genetics and biology of AML, discuss risk stratification and therapy for this disease, and profile some of the therapeutic agents currently under investigation. PMID:22966788

  15. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo

    2012-01-01

    A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.

  16. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments.

    PubMed

    Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  17. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    NASA Astrophysics Data System (ADS)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  18. O-regime dynamics and modeling in Tore Supra

    NASA Astrophysics Data System (ADS)

    Turco, F.; Giruzzi, G.; Imbeaux, F.; Udintsev, V. S.; Artaud, J. F.; Barana, O.; Dumont, R.; Mazon, D.; Ségui, J.-L.

    2009-06-01

    The regime of nonlinear temperature oscillations (O-regime), characteristic of noninductive discharges on Tore Supra [Équipe Tore Supra, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 9], is investigated in its triggering and suppressing mechanism. This regime can be described by two nonlinearly coupled equations for the current density j(r ) and the electron temperature Te(r) where the equation coefficients are functions of j and Te themselves. Both the integrated modeling code CRONOS [V. Basiuk et al., Nucl. Fusion 43, 822 (2003)] and a two-patch predator-prey system with diffusion and noise have been used and results have been compared to the experimental observations of the O-regime. A database of discharges is analyzed which features monotonic, flat, and reversed safety factor (q) profiles in order to characterize the action of external actuators on the regime dynamics with the widest generality. Electron cyclotron current drive and neutral beam injections have been used in order to induce localized perturbations in the total current profile j(r ) as well as to change the plasma confinement conditions in the central region. Magnetic shear perturbations and modifications of the heat transport turn out to be the central parameters governing the dynamics of the O-regime.

  19. Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.

    2010-07-01

    Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.

  20. Epigenetic modifications in 3D: Nuclear organization of the differentiating mammary epithelial cell

    USDA-ARS?s Scientific Manuscript database

    During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as, histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. ...

  1. Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    NASA Astrophysics Data System (ADS)

    Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas

    2017-09-01

    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.

  2. EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra*

    PubMed Central

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.

    2015-01-01

    Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797

  3. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    PubMed Central

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.

    2017-01-01

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886

  4. DNA-Methylation: Master or Slave of Neural Fate Decisions?

    PubMed Central

    Stricker, Stefan H.; Götz, Magdalena

    2018-01-01

    The pristine formation of complex organs depends on sharp temporal and spatial control of gene expression. Therefore, epigenetic mechanisms have been frequently attributed a central role in controlling cell fate determination. A prime example for this is the first discovered and still most studied epigenetic mark, DNA methylation, and the development of the most complex mammalian organ, the brain. Recently, the field of epigenetics has advanced significantly: new DNA modifications were discovered, epigenomic profiling became widely accessible, and methods for targeted epigenomic manipulation have been developed. Thus, it is time to challenge established models of epigenetic gene regulation. Here, we review the current state of knowledge about DNA modifications, their epigenomic distribution, and their regulatory role. We will summarize the evidence suggesting they possess crucial roles in neurogenesis and discuss whether this likely includes lineage choice regulation or rather effects on differentiation. Finally, we will attempt an outlook on how questions, which remain unresolved, could be answered soon. PMID:29449798

  5. Structural imprints in vivo decode RNA regulatory mechanisms.

    PubMed

    Spitale, Robert C; Flynn, Ryan A; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y; Batista, Pedro J; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y

    2015-03-26

    Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.

  6. Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.

  7. DNA modifications in models of alcohol use disorders

    PubMed Central

    Tulisiak, Christopher T.; Harris, R. Adron; Ponomarev, Igor

    2016-01-01

    Chronic alcohol use and abuse result in widespread changes to gene expression, some of which contribute to the development of alcohol use disorders (AUD). Gene expression is, in part, controlled by a group of regulatory systems often referred to as epigenetic factors, which includes, among other mechanisms, chemical marks made on the histone proteins around which genomic DNA is wound to form chromatin, and on nucleotides of the DNA itself. In particular, alcohol has been shown to perturb the epigenetic machinery, leading to changes in gene expression and cellular functions characteristic of AUD and, ultimately, to altered behavior. DNA modifications in particular are seeing increasing research in the context of alcohol use and abuse. To date, studies of DNA modifications in AUD have primarily looked at global methylation profiles in human brain and blood, gene-specific methylation profiles in animal models, methylation changes associated with prenatal ethanol exposure, and the potential therapeutic abilities of DNA methyltransferase inhibitors. Future studies may be aimed at identifying changes to more recently discovered DNA modifications, utilizing new methods to discriminate methylation profiles between cell types and clarifying how alcohol influences the methylomes of cell type populations and how this may affect downstream processes. These studies and more in-depth probing of DNA methylation will be key to determining whether DNA-level epigenetic regulation plays a causative role in AUD and can thus be targeted for treatment of the disorder. PMID:27865607

  8. Limitations of bootstrap current models

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.; Meneghini, Orso; ...

    2014-03-27

    We assess the accuracy and limitations of two analytic models of the tokamak bootstrap current: (1) the well-known Sauter model and (2) a recent modification of the Sauter model by Koh et al. For this study, we use simulations from the first-principles kinetic code NEO as the baseline to which the models are compared. Tests are performed using both theoretical parameter scans as well as core- to-edge scans of real DIII-D and NSTX plasma profiles. The effects of extreme aspect ratio, large impurity fraction, energetic particles, and high collisionality are studied. In particular, the error in neglecting cross-species collisional couplingmore » – an approximation inherent to both analytic models – is quantified. Moreover, the implications of the corrections from kinetic NEO simulations on MHD equilibrium reconstructions is studied via integrated modeling with kinetic EFIT.« less

  9. Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin

    2017-02-01

    In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.

  10. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  11. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  12. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  13. A multiplexed system for quantitative comparisons of chromatin landscapes

    PubMed Central

    van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.

    2015-01-01

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680

  14. Investigation of modification design of the fan stage in axial compressor

    NASA Astrophysics Data System (ADS)

    Zhou, Xun; Yan, Peigang; Han, Wanjin

    2010-04-01

    The S2 flow path design method of the transonic compressor is used to design the one stage fan in order to replace the original designed blade cascade which has two-stage transonic fan rotors. In the modification design, the camber line is parameterized by a quartic polynomial curve and the thickness distribution of the blade profile is controlled by the double-thrice polynomial. Therefore, the inlet flow has been pre-compressed and the location and intensity of the shock wave at supersonic area have been controlled in order to let the new blade profiles have better aerodynamic performance. The computational results show that the new single stage fan rotor increases the efficiency by two percent at the design condition and the total pressure ratio is slightly higher than that of the original design. At the same time, it also meets the mass flow rate and the geometrical size requirements for the modification design.

  15. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development.

    PubMed

    Ikegami, Kohta; Ohgane, Jun; Tanaka, Satoshi; Yagi, Shintaro; Shiota, Kunio

    2009-01-01

    Genes constitute only a small proportion of the mammalian genome, the majority of which is composed of non-genic repetitive elements including interspersed repeats and satellites. A unique feature of the mammalian genome is that there are numerous tissue-dependent, differentially methylated regions (T-DMRs) in the non-repetitive sequences, which include genes and their regulatory elements. The epigenetic status of T-DMRs varies from that of repetitive elements and constitutes the DNA methylation profile genome-wide. Since the DNA methylation profile is specific to each cell and tissue type, much like a fingerprint, it can be used as a means of identification. The formation of DNA methylation profiles is the basis for cell differentiation and development in mammals. The epigenetic status of each T-DMR is regulated by the interplay between DNA methyltransferases, histone modification enzymes, histone subtypes, non-histone nuclear proteins and non-coding RNAs. In this review, we will discuss how these epigenetic factors cooperate to establish cell- and tissue-specific DNA methylation profiles.

  16. Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis.

    PubMed

    Chabbert, Christophe D; Adjalley, Sophie H; Steinmetz, Lars M; Pelechano, Vicent

    2018-01-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) or microarray hybridization (ChIP-on-chip) are standard methods for the study of transcription factor binding sites and histone chemical modifications. However, these approaches only allow profiling of a single factor or protein modification at a time.In this chapter, we present Bar-ChIP, a higher throughput version of ChIP-Seq that relies on the direct ligation of molecular barcodes to chromatin fragments. Bar-ChIP enables the concurrent profiling of multiple DNA-protein interactions and is therefore amenable to experimental scale-up, without the need for any robotic instrumentation.

  17. Characterization of O-acetylation in sialoglycans by MALDI-MS using a combination of methylamidation and permethylation

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoguan; Li, Henghui; Zhang, Qiwei; Liu, Xin; Zheng, Qi; Li, Jianjun

    2017-04-01

    O-Acetylation of sialic acid in protein N-glycans is an important modification and can occur at either 4-, 7-, 8- or 9-position in various combinations. This modification is usually labile under alkaline reaction conditions. Consequently, a permethylation-based analytical method, which has been widely used in glycomics studies, is not suitable for profiling O-acetylation of sialic acids due to the harsh reaction conditions. Alternatively, methylamidation can be used for N-glycan analysis without affecting the base-labile modification of sialic acid. In this report, we applied both permethylation and methylamidation approaches to the analysis of O-acetylation in sialic acids. It has been demonstrated that methylamidation not only stabilizes sialic acids during MALDI processing but also allow for characterization of their O-acetylation pattern. In addition, LC-MS/MS experiments were carried out to distinguish between the O-acetylated glycans with potential isomeric structures. The repeatability of methylamidation was examined to evaluate the applicability of the approach to profiling of O-acetylation in sialic acids. In conclusion, the combination of methylamidation and permethylation methodology is a powerful MALDI-TOF MS-based tool for profiling O-acetylation in sialic acids applicable to screening of N-glycans.

  18. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...

  19. DNA modifications in models of alcohol use disorders.

    PubMed

    Tulisiak, Christopher T; Harris, R Adron; Ponomarev, Igor

    2017-05-01

    Chronic alcohol use and abuse result in widespread changes to gene expression, some of which contribute to the development of alcohol-use disorders (AUD). Gene expression is controlled, in part, by a group of regulatory systems often referred to as epigenetic factors, which includes, among other mechanisms, chemical marks made on the histone proteins around which genomic DNA is wound to form chromatin, and on nucleotides of the DNA itself. In particular, alcohol has been shown to perturb the epigenetic machinery, leading to changes in gene expression and cellular functions characteristic of AUD and, ultimately, to altered behavior. DNA modifications in particular are seeing increasing research in the context of alcohol use and abuse. To date, studies of DNA modifications in AUD have primarily looked at global methylation profiles in human brain and blood, gene-specific methylation profiles in animal models, methylation changes associated with prenatal ethanol exposure, and the potential therapeutic abilities of DNA methyltransferase inhibitors. Future studies may be aimed at identifying changes to more recently discovered DNA modifications, utilizing new methods to discriminate methylation profiles between cell types, thus clarifying how alcohol influences the methylomes of cell-type populations and how this may affect downstream processes. These studies and more in-depth probing of DNA methylation will be key to determining whether DNA-level epigenetic regulation plays a causative role in AUD and can thus be targeted for treatment of the disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Performance improvement of doped TFET by using plasma formation concept

    NASA Astrophysics Data System (ADS)

    Soni, Deepak; Sharma, Dheeraj; Yadav, Shivendra; Aslam, Mohd.; Sharma, Neeraj

    2018-01-01

    Formation of abrupt doping profile at tunneling junction for the nanoscale tunnel field effect transistor (TFET) is a critical issue for attaining improved electrical behaviour. The realization of abrupt doping profile is more difficult in the case of physically doped TFETs due to material solubility limit. In this concern, we propose a novel design of TFET. For this, P+ (source)-I (channel)-N (drain) type structure has been considered, wherein a metal electrode is deposited over the source region. In addition to this, a negative voltage is applied to the source electrode (SE). It induces the surface plasma layer of holes in the source region, which is responsible for steepness in the bands at source/channel junction and provides the advantage of higher doping in source region without any addition of the physical impurity. The proposed modification is helpful for achieving steeper band bending at the source/channel interface, which enables higher tunneling generation rate of charge carriers at this interface and overcomes the issue of low ON-state current. Thus, the proposed device shows the increment of 2 decades in drain current and 252 mV reduction in threshold voltage compared with conventional device. The optimization of spacer length (LSG) between source/gate (LSG) and applied negative voltage (Vpg) over source electrode have been performed to obtain optimum drain current and threshold voltage (Vth). Further, for the suppression of ambipolar current, drain region is kept lightly doped, which reduces the ambipolar current up to level of Off state current. Moreover, in the proposed device gate electrode is underlapped for improving RF performance. It also reduces gate to drain capacitances (Cgd) and increases cut-off-frequency (fT), fmax, GBP, TFP. In addition to these, linearity analysis has been performed to validate the applicability of the device.

  1. Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment.

    PubMed

    Liu, Hanqing; Tu, Zhigang; Feng, Fan; Shi, Haifeng; Chen, Keping; Xu, Ximing

    2015-06-01

    A virosome is an innovative hybrid drug delivery system with advantages of both viral and non-viral vectors. Studies have shown that a virosome can carry various biologically active molecules, such as nucleic acids, peptides, proteins and small organic molecules. Targeted drug delivery using virosome-based systems can be achieved through surface modifications of virosomes. A number of virosome-based prophylactic and therapeutic products with high safety profiles are currently available in the market. Cancer treatment is a big battlefield for virosome-based drug delivery systems. This review provides an overview of the general concept, preparation procedures, working mechanisms, preclinical studies and clinical applications of virosomes in cancer treatment.

  2. Proteomic profiling of mitochondria: what does it tell us about the ageing brain?

    PubMed

    Ingram, Thomas; Chakrabarti, Lisa

    2016-12-13

    Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression.

  3. Modification of pH Conferring Virucidal Activity on Dental Alginates

    PubMed Central

    Nallamuthu, Navina; Braden, Michael; Oxford, John; Williams, David; Patel, Mangala

    2015-01-01

    To formulate an alginate dental impression material with virucidal properties, experimental alginate dental impression materials were developed and the formulations adjusted in order to study the effect on pH profiles during setting. Commercially available materials served as a comparison. Eight experimental materials were tested for antiviral activity against Herpes Simplex Virus type 1 (HSV-1). Changing the amount of magnesium oxide (MgO) used in the experimental formulations had a marked effect on pH. Increasing MgO concentration corresponded with increased pH values. All experimental materials brought about viral log reductions ranging between 0.5 and 4.0 over a period of 4 h. The material with the lowest pH was the most effective. The current work highlights the very important role of MgO in controlling pH profiles. This knowledge has been applied to the formulation of experimental alginates; where materials with pH values of approximately 4.2–4.4 are able to achieve a significant log reduction when assayed against HSV-1. PMID:28788042

  4. High-resolution metabolic mapping of cell types in plant roots

    PubMed Central

    Moussaieff, Arieh; Rogachev, Ilana; Brodsky, Leonid; Malitsky, Sergey; Toal, Ted W.; Belcher, Heather; Yativ, Merav; Brady, Siobhan M.; Benfey, Philip N.; Aharoni, Asaph

    2013-01-01

    Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations. PMID:23476065

  5. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1989-03-01

    Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.

  6. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1990-05-01

    Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.

  7. Advancing environmental risk assessment for transgenic biofeedstock crops

    PubMed Central

    Wolt, Jeffrey D

    2009-01-01

    Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization. PMID:19883509

  8. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.

    PubMed

    Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz

    2018-05-29

    The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.

  9. Crystalline silicon solar cells with high resistivity emitter

    NASA Astrophysics Data System (ADS)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  10. Role of epigenetic modifications in luminal breast cancer

    PubMed Central

    Abdel-Hafiz, Hany A; Horwitz, Kathryn B

    2015-01-01

    Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases. PMID:25689414

  11. A revisit to model the Cr i triplet at 5204-5208 Å and the Ba ii D2 line at 4554 Å in the Second Solar Spectrum

    NASA Astrophysics Data System (ADS)

    Smitha, H. N.; Nagendra, K. N.; Stenflo, J. O.; Bianda, M.; Sampoorna, M.; Ramelli, R.

    2015-10-01

    In our previous attempt to model the Stokes profiles of the Cr i triplet at 5204-5208 Å and the Ba ii D2 at 4554 Å, we found it necessary to slightly modify the standard FAL model atmospheres to fit the observed polarization profiles. In the case of Cr i triplet, this modification was done to reduce the theoretical continuum polarization, and in the case of Ba ii D2, it was needed to reproduce the central peak in Q/I. In this work, we revisit both these cases using different standard model atmospheres whose temperature structures closely resemble those of the modified FAL models, and explore the possibility of synthesizing the line profiles without the need for small modifications of the model atmosphere.

  12. Effects of random tooth profile errors on the dynamic behaviors of planetary gears

    NASA Astrophysics Data System (ADS)

    Xun, Chao; Long, Xinhua; Hua, Hongxing

    2018-02-01

    In this paper, a nonlinear random model is built to describe the dynamics of planetary gear trains (PGTs), in which the time-varying mesh stiffness, tooth profile modification (TPM), tooth contact loss, and random tooth profile error are considered. A stochastic method based on the method of multiple scales (MMS) is extended to analyze the statistical property of the dynamic performance of PGTs. By the proposed multiple-scales based stochastic method, the distributions of the dynamic transmission errors (DTEs) are investigated, and the lower and upper bounds are determined based on the 3σ principle. Monte Carlo method is employed to verify the proposed method. Results indicate that the proposed method can be used to determine the distribution of the DTE of PGTs high efficiently and allow a link between the manufacturing precision and the dynamical response. In addition, the effects of tooth profile modification on the distributions of vibration amplitudes and the probability of tooth contact loss with different manufacturing tooth profile errors are studied. The results show that the manufacturing precision affects the distribution of dynamic transmission errors dramatically and appropriate TPMs are helpful to decrease the nominal value and the deviation of the vibration amplitudes.

  13. Phase space effects on fast ion transport modeling in tokamaks

    NASA Astrophysics Data System (ADS)

    Podesta, Mario

    2015-11-01

    Simulations of burning plasmas require a consistent treatment of energetic particles (EP), possibly including the effects of instabilities. Reduced EP transport models are emerging as an effective tool to account for those effects in long time-scale simulations. Available models essentially differ for the main transport drive, which is associated to gradients in real or phase space. It is crucial to assess to what extent those different assumptions affect computed quantities such as EP profile, Neutral Beam (NB) driven current and energy/momentum transfer to the thermal populations. These issues are investigated through a kick model, which includes modifications of the EP distribution by instabilities in real and velocity space. TRANSP simulations including the kick model are applied to NB-heated NSTX discharges featuring unstable toroidal Alfvén eigenmodes (TAEs). Results show that TAEs mainly affect fast ions with large parallel velocity, i.e. the most effective for NB current drive. Other portions of the EP distribution are nearly unperturbed. Core NB driven current decreases by 10-30%, with even larger relative changes toward the plasma edge. When TAEs evolve in so-called avalanches, the model reproduces measured drops of ~ 10% in the neutron rate. Consistently with previous results, the drop is caused by both EP energy loss and EP redistribution. These results are compared to those from a simple diffusive model and a ``critical gradient'' model, which postulates radial EP gradient as the only transport drive. The importance of EP velocity space modifications is discussed in terms of accuracy of the predictions, with emphasis on Neutral Beam driven current. Work supported by U.S. DOE Contract DE-AC02-09CH11466.

  14. Application of modified profile analysis to function testing of the motion/no-motion issue in an aircraft ground-handling simulation. [statistical analysis procedure for man machine systems flight simulation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Mckissick, B. T.; Steinmetz, G. G.

    1979-01-01

    A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data.

  15. A study of microbial profile modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, J.H.; Lee, H.O.

    1995-12-31

    A microbial profile modification method using spores was investigated. A halotolerant, spore-forming, biopolymer-producing mesophile was used in Berea cores with a specifically formulated nutrient package to reduce the permeability of the rock. The degree of permeability reduction varied widely depending on the stimulation protocols used. The incubation period had a significant impact on permeability reduction, and there appeared to be an optimum incubation time for maximum permeability reduction. The reduction persisted for many PV of brine injection and appeared very stable. For our microbes used in this study, the permeability reduction was about the same when the NaCl concentration wasmore » above 2 wt% in the range from 0 wt% to 10 wt%.« less

  16. The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.

    2015-02-15

    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less

  17. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  18. Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability.

    PubMed

    Min, Kyung-Won; Zealy, Richard W; Davila, Sylvia; Fomin, Mikhail; Cummings, James C; Makowsky, Daniel; Mcdowell, Catherine H; Thigpen, Haley; Hafner, Markus; Kwon, Sang-Ho; Georgescu, Constantin; Wren, Jonathan D; Yoon, Je-Hyun

    2018-06-01

    Gene expression is dynamically regulated in a variety of mammalian physiologies. During mammalian aging, there are changes that occur in protein expression that are highly controlled by the regulatory steps in transcription, post-transcription, and post-translation. Although there are global profiles of human transcripts during the aging processes available, the mechanism(s) by which transcripts are differentially expressed between young and old cohorts remains unclear. Here, we report on N6-methyladenosine (m6A) RNA modification profiles of human peripheral blood mononuclear cells (PBMCs) from young and old cohorts. An m6A RNA profile identified a decrease in overall RNA methylation during the aging process as well as the predominant modification on proteincoding mRNAs. The m6A-modified transcripts tend to be more highly expressed than nonmodified ones. Among the many methylated mRNAs, those of DROSHA and AGO2 were heavily methylated in young PBMCs which coincided with a decreased steady-state level of AGO2 mRNA in the old PBMC cohort. Similarly, downregulation of AGO2 in proliferating human diploid fibroblasts (HDFs) also correlated with a decrease in AGO2 mRNA modifications and steady-state levels. In addition, the overexpression of RNA methyltransferases stabilized AGO2 mRNA but not DROSHA and DICER1 mRNA in HDFs. Moreover, the abundance of miRNAs also changed in the young and old PBMCs which are possibly due to a correlation with AGO2 expression as observed in AGO2-depleted HDFs. Taken together, we uncovered the role of mRNA methylation on the abundance of AGO2 mRNA resulting in the repression of miRNA expression during the process of human aging. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Global plasma oscillations in electron internal transport barriers in TCV

    NASA Astrophysics Data System (ADS)

    Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team

    2008-12-01

    In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  20. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles

    NASA Technical Reports Server (NTRS)

    Haack, Tracy; Shirer, Hampton N.

    1991-01-01

    The onset and development of both dynamically and convectively forced boundary layer rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the magnitudes of the roll-induced modifications of the initial basic state wind and temperature profiles, and on the sensitivity of the linear stability results to the use of modified profiles as basic states. It is demonstrated that the roll circulations can produce substantial changes to the cross-roll component of the initial wind profile and that significant changes in orientation angle estimates can result from use of a roll-modified profile in the stability analysis. These results demonstrate that roll contributions must be removed from observed background wind profiles before using them to investigate the mechanisms underlying actual secondary flows in the boundary layer. The model is developed quite generally to accept arbitrary basic state wind profiles as dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy comparison with other theoretical boundary layer studies; the ultimate application of the model is to study observed boundary layer profiles. Results of the analytic stability analysis are validated by comparing them with results from a larger linear model. For an appropriate Ekman depth, a complete set of transition curves is given in forcing parameter space for roll modes driven both thermally and dynamically. Preferred orientation angles, horizontal wavelengths and propagation frequencies, as well as energetics and wind profile modifications, are all shown to agree rather well with results from studies on Ekman layers as well as with studies on near-neutral and convective atmospheric boundary layers.

  1. Fabrication and Modification of Nanoporous Silicon Particles

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.

  2. Releasing N-glycan from peptide N-terminus by N-terminal succinylation assisted enzymatic deglycosylation.

    PubMed

    Weng, Yejing; Sui, Zhigang; Jiang, Hao; Shan, Yichu; Chen, Lingfan; Zhang, Shen; Zhang, Lihua; Zhang, Yukui

    2015-04-22

    Due to the important roles of N-glycoproteins in various biological processes, the global N-glycoproteome analysis has been paid much attention. However, by current strategies for N-glycoproteome profiling, peptides with glycosylated Asn at N-terminus (PGANs), generated by protease digestion, could hardly be identified, due to the poor deglycosylation capacity by enzymes. However, theoretically, PGANs occupy 10% of N-glycopeptides in the typical tryptic digests. Therefore, in this study, we developed a novel strategy to identify PGANs by releasing N-glycans through the N-terminal site-selective succinylation assisted enzymatic deglycosylation. The obtained PGANs information is beneficial to not only achieve the deep coverage analysis of glycoproteomes, but also discover the new biological functions of such modification.

  3. Space Shuttle Hot Cabin Emergency Responses

    NASA Technical Reports Server (NTRS)

    Stepaniak, P.; Effenhauser, R. K.; McCluskey, R.; Gillis, D. B.; Hamilton, D.; Kuznetz, L. H.

    2005-01-01

    Methods: Human thermal tolerance, countermeasures, and thermal model data were reviewed and compared to existing shuttle ECS failure temperature and humidity profiles for each failure mode. Increases in core temperature associated with cognitive impairment was identified, as was metabolic heat generation of crewmembers, temperature monitoring, and communication capabilities after partial power-down and other limiting factors. Orbiter landing strategies and a hydration and salt replacement protocol were developed to put wheels on deck in each failure mode prior to development of significant cognitive impairment or collapse of crewmembers. Thermal tradeoffs for use of the Advanced Crew Escape Suit (ACES), Liquid Cooling Garment, integrated G-suit and Quick Don Mask were examined. candidate solutions involved trade-offs or conflicts with cabin oxygen partial pressure limits, system power-downs to limit heat generation, risks of alternate and emergency landing sites or compromise of Mode V-VIII scenarios. Results: Rehydration and minimized cabin workloads are required in all failure modes. Temperature/humidity profiles increase rapidly in two failure modes, and deorbit is recommended without the ACES, ICU and g-suit. This latter configuration limits several shuttle approach and landing escape modes and requires communication modifications. Additional data requirements were identified and engineering simulations were recommended to develop more current shuttle temperature and humidity profiles. Discussion: After failure of the shuttle ECS, there is insufficient cooling capacity of the ACES to protect crewmembers from rising cabin temperature and humidity. The LCG is inadequate for cabin temperatures above 76 F. Current shuttle future life policy makes it unlikely that major engineering upgrades necessary to address this problem will occur.

  4. Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.

    PubMed

    Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L

    2018-06-13

    The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.

  5. Man-induced channel adjustment in Tennessee streams

    USGS Publications Warehouse

    Robbins, C.H.; Simon, Andrew

    1983-01-01

    Channel modifications in Tennessee, particularly in the western part, have led to large-scale instabilities in the channelized rivers and may have contributed to several bridge failures. These modifications, together with land-use practices, led to downcutting, headward erosion, downstream aggradation, accelerated scour, and bank instabilities. Changes in gradient by channel straightening caused more severe channel response than did dredging or clearing. Large-scale changes continue to occur in all the channelized rivers: the Obion River, its forks, and the South Fork Forked Deer River. However, the non-channelized Hatchie River in west Tennessee not only withstood the natural stresses imposed by the wet years of 1973 to 1975 but continues to exhibit characteristics of stability. Water-surface slope, the primary dependent variable, proved to be a sensitive and descriptive parameter useful in determining channel adjustment. Adjustments to man-induced increases in channel-slope are described by inverse exponential functions of the basic form S=ae(-b(t)); where ' S ' is some function describing channel-slope, ' t ' is the number of years since completion of channel work, and ' a ' and ' b ' are coefficients. Response times for the attainment of ' equilibrium ' channel slopes are a function of the magnitude and extent of the imposed modifications. The adjusted profile gradients attained by the streams following channelization are similar to the predisturbed profile gradients, where no alteration to channel length was made. Where the channels were straightened by constructing cut-offs, thus shortening channel length, then slope adjustments (reduction) proceed past the predisturbed profile gradients, to new profiles with lower gradients. (USGS)

  6. Exploitation of molecular profiling techniques for GM food safety assessment.

    PubMed

    Kuiper, Harry A; Kok, Esther J; Engel, Karl-Heinz

    2003-04-01

    Several strategies have been developed to identify unintended alterations in the composition of genetically modified (GM) food crops that may occur as a result of the genetic modification process. These include comparative chemical analysis of single compounds in GM food crops and their conventional non-GM counterparts, and profiling methods such as DNA/RNA microarray technologies, proteomics and metabolite profiling. The potential of profiling methods is obvious, but further exploration of specificity, sensitivity and validation is needed. Moreover, the successful application of profiling techniques to the safety evaluation of GM foods will require linked databases to be built that contain information on variations in profiles associated with differences in developmental stages and environmental conditions.

  7. Aircraft modifications: Assessing the current state of Air Force aircraft modifications and the implications for future military capability

    NASA Astrophysics Data System (ADS)

    Hill, Owen Jacob

    How prepared is the U.S. Air Force to modify its aircraft fleet in upcoming years? Aircraft modernization is a complex interaction of new and legacy aircraft, organizational structure, and planning policy. This research will take one component of modernization: aircraft modification, and apply a new method of analysis in order to help formulate policy to promote modernization. Departing from previous small-sample studies dependent upon weight as a chief explanatory variable, this dissertation incorporates a comprehensive dataset that was constructed for this research of all aircraft modifications from 1996 through 2005. With over 700 modification programs, this dataset is used to examine changes to the current modification policy using policy-response regression models. These changes include separating a codependent procurement and installation schedule, reducing the documentation requirements for safety modifications, and budgeting for aging aircraft modifications. The research then concludes with predictive models for the F-15 and F-16 along with their replacements: the F-22 and F-35 Joint Strike Fighter.

  8. Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain

    NASA Astrophysics Data System (ADS)

    Physick, W. L.; Garratt, J. R.

    1995-04-01

    For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.

  9. 24 CFR 201.18 - Modification agreement or repayment plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... brought current before or by the end of the loan term. A modification agreement may also be used in lieu of refinancing in connection with a loan that is current to effect a reduction in the interest rate...

  10. 24 CFR 201.18 - Modification agreement or repayment plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... brought current before or by the end of the loan term. A modification agreement may also be used in lieu of refinancing in connection with a loan that is current to effect a reduction in the interest rate...

  11. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  12. Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2018-05-01

    The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.

  13. Toxicological features of maleilated polyflavonoids from Pinus radiata (D. Don.) as potential functional additives for biomaterials design.

    PubMed

    García, Danny E; Medina, Paulina A; Zúñiga, Valentina I

    2017-11-01

    Polyflavonoids from Pinus radiata (D. Don.) are an abundant natural oligomers highly desirable as renewable chemicals. However, structural modification of polyflavonoids is a viable strategy in order to use such polyphenols as macrobuilding-blocks for biomaterial design. Polyflavonoids were esterified with three five-member cyclic anhydrides (maleic, itaconic, and citraconic) at 20 °C during 24 h in order to diversify physicochemical-, and biological-properties for agricultural, and food-packaging applications. In addition, the influence of the chemical modification, as well as the chemical structure of the grafting on toxicological features was evaluated. Structural features of derivatives were analyzed by spectroscopy (FT-IR and 1 H-NMR), and the degree of substitution was calculated. Toxicological profile was assessed by using three target species in a wide range of concentration (0.01-100 mgL - 1 ). Effect of polyflavonoids on the growth rate (Selenastrum capricornutum), mortality (Daphnia magna), and germination and radicle length (Lactuca sativa) was determined. Chemical modification affects the toxicological profile on the derivatives in a high extent. Results described remarkable differences in function of the target specie. The bioassays indicate differences of the polyflavonoids toxicological profile associated to the chemical structure of the grafting. Results allowed conclude that polyflavonoids from pine bark show slight toxic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.

    PubMed

    Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R

    2014-08-13

    Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in <100 ms), yet retained 90% of their initial S-nitrosothiol content. Under thermal conditions, NO release profiles were identical to controls. Under buffer soak conditions, the NO release profile was slightly lowered for the plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.

  15. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus.

    PubMed

    Busov, Victor; Meilan, Richard; Pearce, David W; Rood, Stewart B; Ma, Caiping; Tschaplinski, Timothy J; Strauss, Steven H

    2006-07-01

    In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA(3 )inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA(1) and GA(4) in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C(19) precursors of GA(1) (GA(53), GA(44) and GA(19)) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates.

  16. DNA Methylation Profiles of Selected Pro-Inflammatory Cytokines in Alzheimer Disease.

    PubMed

    Nicolia, Vincenzina; Cavallaro, Rosaria A; López-González, Irene; Maccarrone, Mauro; Scarpa, Sigfrido; Ferrer, Isidre; Fuso, Andrea

    2017-01-01

    By means of functional genomics analysis, we recently described the mRNA expression profiles of various genes involved in the neuroinflammatory response in the brains of subjects with late-onset Alzheimer Disease (LOAD). Some of these genes, namely interleukin (IL)-1β and IL-6, showed distinct expression profiles with peak expression during the first stages of the disease and control-like levels at later stages. IL-1β and IL-6 genes are modulated by DNA methylation in different chronic and degenerative diseases; it is also well known that LOAD may have an epigenetic basis. Indeed, we and others have previously reported gene-specific DNA methylation alterations in LOAD and in related animal models. Based on these data, we studied the DNA methylation profiles, at single cytosine resolution, of IL-1β and IL-6 5'-flanking region by bisulphite modification in the cortex of healthy controls and LOAD patients at 2 different disease stages: Braak I-II/A and Braak V-VI/C. Our analysis provides evidence that neuroinflammation in LOAD is associated with (and possibly mediated by) epigenetic modifications. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  17. Audience-Contingent Variation in Action Demonstrations for Humans and Computers

    ERIC Educational Resources Information Center

    Herberg, Jonathan S.; Saylor, Megan M.; Ratanaswasd, Palis; Levin, Daniel T.; Wilkes, D. Mitchell

    2008-01-01

    People may exhibit two kinds of modifications when demonstrating action for others: modifications to facilitate bottom-up, or sensory-based processing; and modifications to facilitate top-down, or knowledge-based processing. The current study examined actors' production of such modifications in action demonstrations for audiences that differed in…

  18. Supporting Asian patients with metastatic breast cancer during ixabepilone therapy.

    PubMed

    Bourdeanu, Laura; Wong, Siu-Fun

    2010-05-01

    Ixabepilone is currently FDA-approved in metastatic breast cancer, and most patients in the registrational trials were Caucasian. Studies in Asian populations receiving other cytotoxic agents have revealed differential pharmacokinetics and clinical outcomes. As such, clinicians should understand the possible contributions of Asian ethnicity and culture to the clinical profile of ixabepilone. Studies in Asian patients receiving other chemotherapeutics reported altered toxicity profiles for myelosuppression, neurotoxicity and gastrointestinal symptoms. Encouragingly, the limited clinical data in Asian patients receiving ixabepilone suggest that efficacy and toxicity in these women resemble those reported in the ixabepilone registrational trials. The reader will better understand how Asian genetics and culture may influence treatment outcomes and patient attitudes toward therapy and interaction with caregivers. Management of ixabepilone-related adverse events is also discussed with an emphasis on special considerations for Asian patients. Awareness of possible altered drug response in Asian patients will aid clinicians in monitoring for toxicity, recognizing the need for dose modification and educating patients. Sensitivity to cultural aspects that are unique to Asians may improve adherence, reporting of adverse events and trust among Asian patients receiving ixabepilone.

  19. Dual Coordination of Post Translational Modifications in Human Protein Networks

    PubMed Central

    Woodsmith, Jonathan; Kamburov, Atanas; Stelzl, Ulrich

    2013-01-01

    Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling. PMID:23505349

  20. Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel

    Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less

  1. Explosive Products EOS: Adjustment for detonation speed and energy release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wavemore » with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.« less

  2. The human sperm epigenome and its potential role in embryonic development.

    PubMed

    Carrell, Douglas T; Hammoud, Saher Sue

    2010-01-01

    Along with many of the genome-wide transitions in chromatin composition throughout spermatogenesis, epigenetic modifications on histone tails and DNA are continuously modified to ensure stage specific gene expression in the maturing spermatid. Recent findings have suggested that the repertoire of epigenetic modifications in the mature sperm may have a potential role in the developing embryo and alterations in the epigenetic profile have been associated with infertility. These changes include DNA demethylation and the retention of modified histones at important developmental, signaling and micro-RNA genes, which resemble the epigenetic state of an embryonic stem cell. This review assesses the significance of epigenetic changes during spermatogenesis, and provides insight on recent associations made between altered epigenetic profiles in the mature sperm and its relationship to infertility.

  3. Quantum to classical transition in the Hořava-Lifshitz quantum cosmology

    NASA Astrophysics Data System (ADS)

    Bernardini, A. E.; Leal, P.; Bertolami, O.

    2018-02-01

    A quasi-Gaussian quantum superposition of Hořava-Lifshitz (HL) stationary states is built in order to describe the transition of the quantum cosmological problem to the related classical dynamics. The obtained HL phase-space superposed Wigner function and its associated Wigner currents describe the conditions for the matching between classical and quantum phase-space trajectories. The matching quantum superposition parameter is associated to the total energy of the classical trajectory which, at the same time, drives the engendered Wigner function to the classical stationary regime. Through the analysis of the Wigner flows, the quantum fluctuations that distort the classical regime can be quantified as a measure of (non)classicality. Finally, the modifications to the Wigner currents due to the inclusion of perturbative potentials are computed in the HL quantum cosmological context. In particular, the inclusion of a cosmological constant provides complementary information that allows for connecting the age of the Universe with the overall stiff matter density profile.

  4. DNA Methylation in Osteoarthritis: Current Status and Therapeutic Implications

    PubMed Central

    Miranda-Duarte, Antonio

    2018-01-01

    Background: Primary Osteoarthritis (OA) is a multifactorial disease in which genetic factors are strongly associated with its development; however, recently it has been observed that epigenetic modifications are also involved in the pathogenesis of OA. DNA methylation is related to gene silencing, and several studies have investigated its role in the loci of different pathways or molecules associated to OA. Objective: This review is focused on the current status of DNA methylation studies related to OA pathogenesis. Method: A review of the literature was conducted on searching in PUBMED for original papers on DNA methylation in OA. Conclusion: The DNA methylation research of loci related to OA pathogenesis has shown a correlation between methylation and gene repression; however, there are some exceptions to this rule. Recently, the development of genome-wide methylation and genome-wide hydroxymethylation profiles has demonstrated that several genes previously associated with OA can have changes in their methylation status, favoring the development of the disease, and these have even shown the role of other epigenetic markers. PMID:29682093

  5. Gene expression profiles in promoted-growth rice seedlings that germinated from the seeds implanted by low-energy N+ beam

    PubMed Central

    Ya, Huiyuan; Chen, Qiufang; Wang, Weidong; Chen, Wanguang; Qin, Guangyong; Jiao, Zhen

    2012-01-01

    The stimulation effect that some beneficial agronomic qualities have exhibited in present-generation plants have also been observed due to ion implantation on plants. However, there is relatively little knowledge regarding the molecular mechanism of the stimulation effects of ion-beam implantation. In order to extend our current knowledge about the functional genes related to this stimulation effect, we have reported a comprehensive microarray analysis of the transcriptome features of the promoted-growth rice seedlings germinating from seeds implanted by a low-energy N+ beam. The results showed that 351 up-regulated transcripts and 470 down-regulated transcripts, including signaling proteins, kinases, plant hormones, transposable elements, transcription factors, non-coding protein RNA (including miRNA), secondary metabolites, resistance proteins, peroxidase and chromatin modification, are all involved in the stimulating effects of ion-beam implantation. The divergences of the functional catalog between the vacuum and ion implantation suggest that ion implantation is the principle cause of the ion-beam implantation biological effects, and revealed the complex molecular networks required to adapt to ion-beam implantation stress in plants, including enhanced transposition of transposable elements, promoted ABA biosynthesis and changes in chromatin modification. Our data will extend the current understanding of the molecular mechanisms and gene regulation of stimulation effects. Further research on the candidates reported in this study should provide new insights into the molecular mechanisms of biological effects induced by ion-beam implantation. PMID:22843621

  6. Proteomic technology for biomarker profiling in cancer: an update*

    PubMed Central

    Alaoui-Jamali, Moulay A.; Xu, Ying-jie

    2006-01-01

    The progress in the understanding of cancer progression and early detection has been slow and frustrating due to the complex multifactorial nature and heterogeneity of the cancer syndrome. To date, no effective treatment is available for advanced cancers, which remain a major cause of morbidity and mortality. Clearly, there is urgent need to unravel novel biomarkers for early detection. Most of the functional information of the cancer-associated genes resides in the proteome. The later is an exceptionally complex biological system involving several proteins that function through posttranslational modifications and dynamic intermolecular collisions with partners. These protein complexes can be regulated by signals emanating from cancer cells, their surrounding tissue microenvironment, and/or from the host. Some proteins are secreted and/or cleaved into the extracellular milieu and may represent valuable serum biomarkers for diagnosis purpose. It is estimated that the cancer proteome may include over 1.5 million proteins as a result of posttranslational processing and modifications. Such complexity clearly highlights the need for ultra-high resolution proteomic technology for robust quantitative protein measurements and data acquisition. This review is to update the current research efforts in high-resolution proteomic technology for discovery and monitoring cancer biomarkers. PMID:16625706

  7. Demonstrating the Physics Basis for the ITER 15 MA Inductive Discharge on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Wolfe, S. M.; Hutchinson, I. H.; Hughes, J. W.; Lin, Y.; Ma, Y.; Mikkelsen, D. R.; Poli, F.; Reinke, M. L.; Wukitch, S. J.

    2012-10-01

    Rampup discharges in C-Mod, matching ITE's current diffusion times show ICRF heating can save V-s but results in only weak effects on the current profile, despite strong modifications of the central electron temperature. Simulation of these discharges with TSC, and TORIC for ICRF, using multiple transport models, do not reproduce the temperature profile evolution, or the experimental internal self-inductance li, by sufficiently large amounts to be unacceptable for projections to ITER operation. For the flattop phase experiments EDA H-modes approach the ITER parameter targets of q95=3, H98=1, n/nGr=0.85, betaN=1.7, and k=1.8, and sustain them similar to a normalized ITER flattop time. The discharges show a degradation of energy confinement at higher densities, but increasing H98 with increasing net power to the plasma. For these discharges intrinsic impurities (B, Mo) provided radiated power fractions of 25-37%. Experiments show the plasma can remain in H-mode in rampdown with ICRF injection, the density will decrease with Ip while in the H-mode, and the back transition occurs when the net power reaches about half the L-H transition power. C-Mod indicates that faster rampdowns are preferable. Work supported by US Dept of Energy under DE-AC02-CH0911466 and DE-FC02-99ER54512.

  8. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  9. Sand waves on an epicontinental shelf: Northern Bering Sea

    USGS Publications Warehouse

    Field, M.E.; Nelson, C.H.; Cacchione, D.A.; Drake, D.E.

    1981-01-01

    Sand waves and current ripples occupy the crests and flanks of a series of large linear sand ridges (20 km ?? 5 km ?? 10 m high) lying in an open-marine setting in the northern Bering Sea. The sand wave area, which lies west of Seward Peninsula and southeast of Bering Strait, is exposed to the strong continuous flow of coastal water northward toward Bering Strait. A hierarchy of three sizes of superimposed bedforms, all facing northward, was observed in successive cruises in 1976 and 1977. Large sand waves (height 2 m; spacing 200 m) have smaller sand waves (height 1 m; spacing 20 m) lying at a small oblique angle on their stoss slopes. The smaller sand waves in turn have linguoid ripples on their stoss slopes. Repeated studies of the sand wave fields were made both years with high-resolution seismic-reflection profiles, side-scan sonographs, underwater photographs, current-meter stations, vibracores, and suspended-sediment samplers. Comparison of seismic and side-scan data collected along profile lines run both years showed changes in sand wave shape that indicate significant bedload transport within the year. Gouge marks made in sediment by keels of floating ice also showed significantly different patterns each year, further documenting modification to the bottom by sediment transport. During calm sea conditions in 1977, underwater video and camera observations showed formation and active migration of linguoid and straight-crested current ripples. Current speeds 1 m above the bottom were between 20 and 30 cm/s. Maximum current velocities and sand wave migration apparently occur when strong southwesterly winds enhance the steady northerly flow of coastal water. Many cross-stratified sand bodies in the geologic record are interpreted as having formed in a tidal- or storm-dominated setting. This study provides an example of formation and migration of large bedforms by the interaction of storms with strong uniform coastal currents in an open-marine setting. ?? 1981.

  10. Y-12 Industrial Landfill V. Permit application modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations requiremore » landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.« less

  11. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dian; Shukla, Anil K.; Chen, Baowei

    2013-04-01

    S-nitrosylation (SNO) is an important reversible thiol oxidation event that has been increasingly recognized for its role in cell signaling. While many proteins susceptible to S-nitrosylation have been reported, site-specific identification of physiologically relevant SNO modifications remains an analytical challenge due to the low-abundance and labile nature of the modification. Herein we present further improvement and optimization of the recently reported, resin-assisted cysteinyl peptide enrichment protocol for SNO identification and the extension of this application to mouse skeletal muscle to identify specific sites sensitive to S-nitrosylation by quantitative reactivity profiling. The results of our data indicate that the protein- andmore » peptide-level enrichment protocols provide comparable specificity and coverage of SNO-peptide identifications. S-nitrosylation reactivity profiling was performed by quantitatively comparing the site-specific SNO modification levels in samples treated with S-nitrosoglutathione (GSNO), an NO donor, at two different physiologically relevant concentrations (i.e., 10 μM and 100 μM). The reactivity profiling experiments overall identified 489 SNO-modified cysteine sites from 197 proteins with the specificity of 95.2% at the unique-peptide-level based on the percentage of Cys-peptides. Among these sites, 260 sites from 135 proteins were observed with relatively high reactivity to S-nitrosylation; such SNO-sensitive sites are more likely to be physiologically relevant. Many of the SNO-sensitive proteins are preferentially localized in mitochondria, contractile fiber and actin cytoskeleton, suggesting the susceptibility of these subcellular compartments to redox regulation. Moreover, the SNO-sensitive proteins seem to be primarily involved in metabolic pathways, including TCA cycle, glycolysis/gluconeogenesis, glutathione metabolism, and fatty acid metabolism, suggesting the importance of redox regulation in muscle metabolism and insulin action.« less

  12. Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin, and deltamethrin on rat Na{sub v}1.6 sodium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan Jianguo; Soderlund, David M., E-mail: dms6@cornell.ed

    2010-09-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}{sub 1} and {beta}{sub 2} auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 {mu}M), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were {approx}more » 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 {mu}M), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 {mu}M), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin {approx} 15-fold and that tefluthrin was {approx} 10-fold more potent than deltamethrin as a use-dependent modifier of Na{sub v}1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na{sub v}1.2 sodium channel coexpressed with the rat {beta}{sub 1} and {beta}{sub 2} subunits in oocytes showed that the Na{sub v}1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na{sub v}1.2 isoform. These results implicate sodium channels containing the Na{sub v}1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.« less

  13. Abnormalities of Lipoprotein Levels in Liver Cirrhosis: Clinical Relevance.

    PubMed

    Privitera, Graziella; Spadaro, Luisa; Marchisello, Simona; Fede, Giuseppe; Purrello, Francesco

    2018-01-01

    Progressive lipoprotein impairment occurs in liver cirrhosis and is associated with increased morbidity and mortality. The present review aims to summarize the current evidence regarding the prognostic value of lipoprotein abnormalities in liver cirrhosis and to address the need of a better prognostic stratification of patients, including lipoprotein profile assessment. Low levels of lipoproteins are usual in cirrhosis. Much evidence supports the prognostic role of hypolipidemia in cirrhotic patients. In particular, hypocholesterolemia represents an independent predictor of survival in cirrhosis. In cirrhotic patients, lipoprotein impairment is associated with several complications: infections, malnutrition, adrenal function, and spur cell anemia. Alterations of liver function are associated with modifications of circulating lipids. Decreased levels of lipoproteins significantly impact the survival of cirrhotic patients and play an important role in the pathogenesis of some cirrhosis-related complications.

  14. Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.

    2013-09-01

    A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.

  15. Deducing noninductive current profile from surface voltage evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Wukitch, S.; Hershkowitz, N.

    Solving the resistive diffusion equation in the presence of a noninductive current source determines the time-evolution of the surface voltage. By inverting the problem the current drive profile can be determined from the surface voltage evolution. We show that under wide range of conditions the deduced profile is unique. If the conductivity profile is known, this method can be employed to infer the noninductive current profile, and, ipso facto, the profile of the total current. We discuss the application of this method to analyze the Alfven wave current drive experiments in Phaedrus-T.

  16. Asymmetric histone modifications between the original and derived loci of human segmental duplications

    PubMed Central

    Zheng, Deyou

    2008-01-01

    Background Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored. Results In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications. Conclusion The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences. PMID:18598352

  17. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors

    PubMed Central

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles. PMID:29270186

  18. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors.

    PubMed

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  19. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  20. Numerical modeling of thermal regime in inland water bodies with field measurement data

    NASA Astrophysics Data System (ADS)

    Gladskikh, D.; Sergeev, D.; Baydakov, G.; Soustova, I.; Troitskaya, Yu.

    2018-01-01

    Modification of the program complex LAKE, which is intended to compute the thermal regimes of inland water bodies, and the results of its validation in accordance with the parameters of lake part of Gorky water reservoir are reviewed in the research. The modification caused changing the procedure of input temperature profile assignment and parameterization of surface stress on air-water boundary in accordance with the consideration of wind influence on mixing process. Also the innovation consists in combined methods of gathering meteorological parameters from files of global meteorological reanalysis and data of hydrometeorological station. Temperature profiles carried out with CTD-probe during expeditions in the period 2014-2017 were used for validation of the model. The comparison between the real data and the numerical results and its assessment based on time and temperature dependences in control points, correspondence of the forms of the profiles and standard deviation for all performed realizations are provided. It is demonstrated that the model reproduces the results of field measurement data for all observed conditions and seasons. The numerical results for the regimes with strong mixing are in the best quantitative and qualitative agreement with the real profiles. The accuracy of the forecast for the ones with strong stratification near the surface is lower but all specificities of the forms are correctly reproduced.

  1. Epigenetic Alterations in Cellular Immunity: New Insights into Autoimmune Diseases.

    PubMed

    Wang, Zijun; Lu, Qianjin; Wang, Zhihui

    2017-01-01

    Epigenetic modification is an additional regulator in immune responses as the genome-wide profiling somehow fails to explain the sophisticated mechanisms in autoimmune diseases. The effect of epigenetic modifications on adaptive immunity derives from their regulations to induce a permissive or negative gene expression. Epigenetic events, such as DNA methylation, histone modifications and microRNAs (miRNAs) are often found in T cell activation, differentiation and commitment which are the major parts in cellular immunity. Recognizing the complexity of interactions between epigenetic mechanisms and immune disturbance in autoimmune diseases is essential for the exploration of efficient therapeutic targets. In this review, we summarize a list of studies that indicate the significance of dysregulated epigenetic modifications in autoimmune diseases while focusing on T cell immunity. © 2017 The Author(s)Published by S. Karger AG, Basel.

  2. Fingerprints of Modified RNA Bases from Deep Sequencing Profiles.

    PubMed

    Kietrys, Anna M; Velema, Willem A; Kool, Eric T

    2017-11-29

    Posttranscriptional modifications of RNA bases are not only found in many noncoding RNAs but have also recently been identified in coding (messenger) RNAs as well. They require complex and laborious methods to locate, and many still lack methods for localized detection. Here we test the ability of next-generation sequencing (NGS) to detect and distinguish between ten modified bases in synthetic RNAs. We compare ultradeep sequencing patterns of modified bases, including miscoding, insertions and deletions (indels), and truncations, to unmodified bases in the same contexts. The data show widely varied responses to modification, ranging from no response, to high levels of mutations, insertions, deletions, and truncations. The patterns are distinct for several of the modifications, and suggest the future use of ultradeep sequencing as a fingerprinting strategy for locating and identifying modifications in cellular RNAs.

  3. Surface Modification of Melamine-Formaldehyde (MF-R) Macroparticles in Complex Plasma

    NASA Astrophysics Data System (ADS)

    Semenov, A. V.; Pergament, A. L.; Scherbina, A. I.; Pikalev, A. A.

    2018-04-01

    The surface modification of melamine-formaldehyde (MF-R) macroparticles (4.12 ± 0.09 μm in diameter) in dc glow discharges in neon, argon, and an argon-oxygen mixture (90% Ar, 10% O2) was studied experimentally. The macroparticles were treated in the discharge plasma for 10, 20, 40, and 60 min. The macroparticles were placed in ordered plasma-dust structures and then extracted from them. The results of atomic force microscopy of the surface profile are presented. Quantitative data on destruction of the surface layer and aspects of its modification are discussed. The amount of substance removed from the particle surface for the exposure time was calculated using the fractal analysis method.

  4. High spectral resolution lidar at the university of wisconsin-madison

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2018-04-01

    This paper describes the modifications done on the University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) that improved the instrument's performance. The University of Wisconsin HSRL lidars designed by our group at the Space Science and Engineering Center were deployed in numerous field campaigns in various locations around the world. Over the years the instruments have undergone multiple modifications that improved the performance and added new measurement capabilities such as atmospheric temperature profile and extinction cross-section measurements.

  5. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.

  6. Volumetrical Characterization of Sheet Molding Compounds

    PubMed Central

    Calvimontes, Alfredo; Grundke, Karina; Müller, Anett

    2010-01-01

    For a comprehensive study of Sheet Molding Compound (SMC) surfaces, topographical data obtained by chromatic confocal imaging were submitted systematically for the development of a profile model to understand the formation of cavities on the surface. In order to qualify SMC surfaces and to predict their coatability, a characterization of cavities is applied. To quantify the effect of surface modification treatments, a new parameter (Surface Relative Smooth) is presented, applied and probed. The parameter proposed can be used for any surface modification of any solid material. PMID:28883370

  7. Systematic review of self-concept measures for primary school aged children with cerebral palsy.

    PubMed

    Cheong, Sau Kuan; Johnston, Leanne M

    2013-10-01

    This study involved a systematic review aimed to identify self-concept measures that provided published psychometrics for primary school aged children (8-12 years) with cerebral palsy (CP). Six electronic databases (PubMed, MEDLINE, CINAHL, PsycINFO, PsycARTICLES and Web of Science) were searched to identify assessments that (1) measured self-concept; (2) in children aged 8-12 years; (3) with CP; (4) with psychometrics available. The Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) checklist was used to evaluate psychometric properties and the CanChild Outcome Measure Rating Form was used to evaluate clinical utility. Search yielded 271 papers, of which five met inclusion criteria. These papers reported five measures of self-concept with psychometric properties for the target population: the Rosenberg Self-Esteem Index, Self-Description Questionnaire-I, Self-Perception Profile for Children (original) and two separate modifications of the Self-Perception Profile for Children. Currently, no self-concept measures published in English had sufficient psychometric data for children with CP. The Self-Description Questionnaire-I and the Self-Perception Profile for Children were promising options. Further research is required (a) to determine self-concept construct components important for children with CP and (b) to examine the relative strength, validity, reliability and clinical utility of self-concept measures for the target population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Impact of the plasma geometry on divertor power exhaust: experimental evidence from TCV and simulations with SolEdge2D and TOKAM3X

    NASA Astrophysics Data System (ADS)

    Gallo, A.; Fedorczak, N.; Elmore, S.; Maurizio, R.; Reimerdes, H.; Theiler, C.; Tsui, C. K.; Boedo, J. A.; Faitsch, M.; Bufferand, H.; Ciraolo, G.; Galassi, D.; Ghendrih, P.; Valentinuzzi, M.; Tamain, P.; the EUROfusion MST1 Team; the TCV Team

    2018-01-01

    A deep understanding of plasma transport at the edge of magnetically confined fusion plasmas is needed for the handling and control of heat loads on the machine first wall. Experimental observations collected on a number of tokamaks over the last three decades taught us that heat flux profiles at the divertor targets of X-point configurations can be parametrized by using two scale lengths for the scrape-off layer (SOL) transport, separately characterizing the main SOL ({λ }q) and the divertor SOL (S q ). In this work we challenge the current interpretation of these two scale lengths as well as their dependence on plasma parameters by studying the effect of divertor geometry modifications on heat exhaust in the Tokamak à Configuration Variable. In particular, a significant broadening of the heat flux profiles at the outer divertor target is diagnosed while increasing the length of the outer divertor leg in lower single null, Ohmic, L-mode discharges. Efforts to reproduce this experimental finding with both diffusive (SolEdge2D-EIRENE) and turbulent (TOKAM3X) modelling tools confirm the validity of a diffusive approach for simulating heat flux profiles in more traditional, short leg, configurations while highlighting the need of a turbulent description for modified, long leg, ones in which strongly asymmetric divertor perpendicular transport develops.

  9. Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP).

    PubMed

    Desvoyes, Bénédicte; Sequeira-Mendes, Joana; Vergara, Zaida; Madeira, Sofia; Gutierrez, Crisanto

    2018-01-01

    Identification of chromatin modifications, e.g., histone acetylation and methylation, among others, is widely carried out by using a chromatin immunoprecipitation (ChIP) strategy. The information obtained with these procedures is useful to gain an overall picture of modifications present in all cells of the population under study. It also serves as a basis to figure out the mechanisms of chromatin organization and gene regulation at the population level. However, the ultimate goal is to understand gene regulation at the level of single chromatin fibers. This requires the identification of chromatin modifications that occur at a given genomic location and within the same chromatin fiber. This is achieved by following a sequential ChIP strategy using two antibodies to distinguish different chromatin modifications. Here, we describe a sequential ChIP protocol (Re-ChIP), paying special attention to the controls needed and the required steps to obtain meaningful and reproducible results. The protocol is developed for young Arabidopsis seedlings but could be adapted to other plant materials.

  10. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity.

    PubMed

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.

  11. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

    PubMed Central

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci. PMID:27087825

  12. Evaluation of enamel surface modification using PS-OCT after laser treatment to increase resistance to demineralization

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wan; Chan, Kenneth H.; Fried, Daniel

    2016-02-01

    At laser intensities below ablation, carbonated hydroxyapatite in enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Previous studies suggested the possibility of achieving the conversion without surface modification. This study attempts to evaluate the thresholds for the modification without additional changes in physical and optical properties of the enamel. Bovine specimens were irradiated using an RF-excited CO2 laser operating at 9.4-μm with a pulse duration of 26- μs, pulse repetition rates of 100-1000 Hz, with a Gaussian spatial beam profile - 1.4 mm in diameter. After laser treatment, the samples were subjected to acid demineralization for 48 hours to simulate acidic intraoral conditions of a caries attack. The resulting demineralization and erosion were assessed using polarization sensitive OCT (PS-OCT) and 3D digital microscopy. The images from digital microscopy demonstrated a clear delineation between laser protected zones without visual changes and zones with higher levels of demineralization and erosion. Distinct changes in the surface morphology were found within the laser treated area in accordance with the Gaussian spatial beam profile. There was significant protection from the laser in areas that were not visually altered.

  13. Multiple modes of a-type potassium current regulation.

    PubMed

    Cai, Shi-Qing; Li, Wenchao; Sesti, Federico

    2007-01-01

    Voltage-dependent potassium (K+) channels (Kv) regulate cell excitability by controlling the movement of K+ ions across the membrane in response to changes in the cell voltage. The Kv family, which includes A-type channels, constitute the largest group of K+ channel genes within the superfamily of Na+, Ca2+ and K+ voltage-gated channels. The name "A-type" stems from the typical profile of these currents that results form the opposing effects of fast activation and inactivation. In neuronal cells, A-type currents (I(A)), determine the interval between two consecutive action potentials during repetitive firing. In cardiac muscle, A-type currents (I(to)), control the initial repolarization of the myocardium. Structurally, A-type channels are tetramers of alpha-subunits each containing six putative transmembrane domains including a voltage-sensor. A-type channels can be modulated by means of protein-protein interactions with so-called beta-subunits that control inactivation voltage sensitivity and other properties, and by post-transcriptional modifications such as phosphorylation or oxidation. Recently a new mode of A-type regulation has been discovered in the form of a class of hybrid beta-subunits that posses their own enzymatic activity. Here, we review the biophysical and physiological properties of these multiple modes of A-type channel regulation.

  14. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Ohno, N.; Shibata, Y.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less

  15. Profiling protein function with small molecule microarrays

    PubMed Central

    Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.

    2002-01-01

    The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675

  16. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanikova, E.; Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm; Peterka, M.

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence onmore » the actual magnetic configuration.« less

  17. Electrical DNA biosensor using aluminium interdigitated electrode for E.Coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Natasha, N. Z.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Escherichia Coli (E.Coli) O157:H7 is the one of the most dangerous foodborne pathogens based diseases that presence in our daily life that causes illness and death increase every year. Aluminum Interdigitated Electrode (Al IDE) biosensor was introduced to detect E.Coli O157:H7 in earlier stage. In this paper we investigated ssDNA of E.Coli O157:H7 bacteria detection through electrical behavior of Al IDE sensor. The physical properties of Al IDE biosensor has been characterized using Low Power Microscope (LPM), High Power Microscope (HPM), Scanning Electron Microscope (SEM) and 3D Nano Profiler. The bare Al IDE was electrical characterized by using I-V measurement. The surface modification was accomplished by salinization using APTES and immobilization using Carboxylic Probe E.Coli which was the first step in preparing Al IDE biosensor. Geared up prepared biosensor was hybridized with complementary, non-complementary and single based mismatch ssDNA to confirmed specificity detection of E Coli O157:H7 ssDNA target. The Current - Voltage was performed for each step such as bare Al IDE, surface modification, immobilization and hybridization. Sensitivity measurement was accomplished using different concentration of complementary ssDNA target from 1 fM - 10 µM. Selectivity measurements was achieved using same concentration which was 10 µM concentration for complement, non-complement and mismatch E.Coli O157:H7 ssDNA target. It's totally proved that the Al IDE able to detect specific and small current down to Femtomolar concentration.

  18. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management.

    PubMed

    Zhang, Yingmei; Ren, Jun

    2016-05-01

    Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Covalent Modification of Highly Ordered Pyrolytic Graphite with a Stable Organic Free Radical by Using Diazonium Chemistry.

    PubMed

    Seber, Gonca; Rudnev, Alexander V; Droghetti, Andrea; Rungger, Ivan; Veciana, Jaume; Mas-Torrent, Marta; Rovira, Concepció; Crivillers, Núria

    2017-01-26

    A novel, persistent, electrochemically active perchlorinated triphenylmethyl (PTM) radical with a diazonium functionality has been covalently attached to highly ordered pyrolytic graphite (HOPG) by electrografting in a single-step process. Electrochemical scanning tunneling microscopy (EC-STM) and Raman spectroscopy measurements revealed that PTM molecules had a higher tendency to covalently react at the HOPG step edges. The cross-section profiles from EC-STM images showed that there was current enhancement at the functionalized areas, which could be explained by redox-mediated electron tunneling through surface-confined redox-active molecules. Cyclic voltammetry clearly demonstrated that the intrinsic properties of the organic radical were preserved upon grafting and DFT calculations also revealed that the magnetic character of the PTM radical was preserved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein.

    PubMed

    Kim, Unyong; Oh, Myung Jin; Seo, Youngsuk; Jeon, Yinae; Eom, Joon-Ho; An, Hyun Joo

    2017-09-01

    Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.

  1. Macrophage Migration Inhibitory Factor is subjected to glucose modification and oxidation in Alzheimer’s Disease

    PubMed Central

    Kassaar, Omar; Pereira Morais, Marta; Xu, Suying; Adam, Emily L.; Chamberlain, Rosemary C.; Jenkins, Bryony; James, Tony; Francis, Paul T.; Ward, Stephen; Williams, Robert J.; van den Elsen, Jean

    2017-01-01

    Glucose and glucose metabolites are able to adversely modify proteins through a non-enzymatic reaction called glycation, which is associated with the pathology of Alzheimer’s Disease (AD) and is a characteristic of the hyperglycaemia induced by diabetes. However, the precise protein glycation profile that characterises AD is poorly defined and the molecular link between hyperglycaemia and AD is unknown. In this study, we define an early glycation profile of human brain using fluorescent phenylboronate gel electrophoresis and identify early glycation and oxidation of macrophage migration inhibitory factor (MIF) in AD brain. This modification inhibits MIF enzyme activity and ability to stimulate glial cells. MIF is involved in immune response and insulin regulation, hyperglycaemia, oxidative stress and glycation are all implicated in AD. Our study indicates that glucose modified and oxidised MIF could be a molecular link between hyperglycaemia and the dysregulation of the innate immune system in AD. PMID:28230058

  2. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  3. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  4. Advances in Epigenetics and Epigenomics for Neurodegenerative Diseases

    PubMed Central

    Qureshi, Irfan A.

    2015-01-01

    In the post-genomic era, epigenetic factors—literally those that are “over” or “above” genetic ones and responsible for controlling the expression and function of genes—have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer’s and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders. PMID:21671162

  5. 77 FR 59454 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... 1995, Public Law 104-13(44 U.S.C. 3506(c)(2)(A)). Currently, the IRS is soliciting comments concerning modifications of commercial mortgage loans held by a real estate mortgage investment conduit. DATES: Written... would expand the list of permitted loan modifications to include certain modifications of commercial...

  6. 48 CFR 22.404-6 - Modifications of wage determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Modifications of wage... Involving Construction 22.404-6 Modifications of wage determinations. (a) General. (1) The Department of Labor may modify a wage determination to make it current by specifying only the items being changed or...

  7. Modifications to particles as they move through landscapes: connecting soils and sediments

    NASA Astrophysics Data System (ADS)

    Owens, Philip N.

    2016-04-01

    In many areas of the world, soils are eroded leading to the movement of particles towards the global ocean. Along this journey, there are modifications to these particles and we tend to refer to this altered material as sediment in recognition that such material may no longer be fully reflective of its source. These modifications are brought about by physical, chemical and biological processes, and by the inclusion of additional sources of material, such as channel banks. The degree of modification is partly a function of the inherent properties of the original soil material but also reflects landscape type, and the temporal and spatial scales of investigation. This presentation will consider the changes in particles between soil profiles and sediment transported in river systems, drawing on examples from studies in Canada and beyond. It is hoped that by understanding the transformation of such material we can predict better its movement and impacts.

  8. Impact of IgG Fc-Oligosaccharides on Recombinant Monoclonal Antibody Structure, Stability, Safety, and Efficacy.

    PubMed

    Liu, Hongcheng; Nowak, Christine; Andrien, Bruce; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2017-09-01

    Glycosylation of the conserved asparagine residue in the CH2 domain is the most common posttranslational modification of recombinant monoclonal antibodies. Ideally, a consistent oligosaccharide profile should be maintained from early clinical material to commercial material for the development of recombinant monoclonal therapeutics, though variation in the profile is a typical result of process changes. The risk of oligosaccharide variation posed to further development is required to be thoroughly evaluated based on its impact on antibody structure, stability, efficacy and safety. The variation should be controlled within a range so that there is no detrimental impact on safety and efficacy and thus allowing the use of early phase safety and efficacy data to support project advancement to later phase. This review article focuses on the current scientific understanding of the commonly observed oligosaccharides found in recombinant monoclonal antibodies and their impact on structure, stability and biological functions, which are the basis to evaluate safety and efficacy. It also provides a brief discussion on critical quality attribute (CQA) assessment with regard to oligosaccharides based on the mechanism of action (MOA). © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1173-1181, 2017. © 2017 American Institute of Chemical Engineers.

  9. Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas

    PubMed Central

    Armero, Victoria E. S.; Tremblay, Marie-Pier; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Duval, Cyntia; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.

    2017-01-01

    Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein–Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS. PMID:28493890

  10. Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas.

    PubMed

    Armero, Victoria E S; Tremblay, Marie-Pier; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Duval, Cyntia; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin

    2017-01-01

    Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein-Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.

  11. Dietary factors and epigenetic regulation for prostate cancer prevention.

    PubMed

    Ho, Emily; Beaver, Laura M; Williams, David E; Dashwood, Roderick H

    2011-11-01

    The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.

  12. A study of dietary modification: Perceptions and attitudes of patients with multiple sclerosis.

    PubMed

    Brenton, J Nicholas; Goldman, Myla D

    2016-07-01

    Modifiable risk factors for multiple sclerosis (MS), including obesity and the gut microbiome, have been studied and have been found to be potentially relevant. Given this, there is a growing interest in diet modification as a means of impacting MS risk and disease course. The aim of this study was to determine the current behaviors, level of interest, and relevant factors surrounding modification of diet in MS patients. A total of 601 MS patients were mailed a dietary modification survey containing questions regarding subject demographics, disease course, and diet-related questions. Of the 199 survey responders, 17% admitted to currently attempting a diet for their MS and 91.5% were interested in diet modification as a means of benefiting their disease. Willingness to attempt diet therapy was not affected by demographic features or an individual's disease course. Over 85% of these patients were willing to attempt diet therapy for 3 months or longer. The majority of survey responders expressed interest in diet modification in attempts to improve or treat their MS. Our data demonstrate the feasibility of patient recruitment for future studies assessing therapeutic intervention by way of diet modification for MS disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determining the near-surface current profile from measurements of the wave dispersion relation

    NASA Astrophysics Data System (ADS)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  14. The allegheny general modification of the Harvard Breast Cosmesis Scale for the retreated breast.

    PubMed

    Trombetta, Mark; Julian, Thomas B; Kim, Yongbok; Werts, E Day; Parda, David

    2009-10-01

    The use of brachytherapy--and to a lesser extent, external-beam radiotherapy--in the management of locally recurrent breast cancer following ipsilateral breast tumor recurrence (IBTR) followed by repeat breast-conservation surgery and irradiation is currently an area of intense study. The current cosmetic scoring system is inadequate to score the outcome resulting from retreatment because it does not account for the cosmetic effect of the initial treatment. We propose a modification of the scale for patients who undergo retreatment--the Allegheny General Modification of the Harvard/NSABP/RTOG scoring scale.

  15. Computational Micromodel for Epigenetic Mechanisms

    PubMed Central

    Raghavan, Karthika; Ruskin, Heather J.; Perrin, Dimitri; Goasmat, Francois; Burns, John

    2010-01-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach. PMID:21152421

  16. A Research Program of Spherical Tokamak in China

    NASA Astrophysics Data System (ADS)

    He, Ye-xi

    2002-08-01

    The mission of this program is to explore the spherical torus plasma with a SUNIST spherical tokamak. Main experiments in the start phase will be involved with breakdown and plasma current set-up with a mode of saving volt-second and without ohmic heating system, equilibrium and instability, current driving, heating and profile modification. The SUNIST is a university-scale conceptual spherical tokamak, with R = 0.3 m, A 1.3, Ip ~ 50 kA, BT < 0.15 T, and PRF = 100 kW. The only peculiarity of SUNIST is that there is a toroidal insulating break along the outer wall of vacuum vessel. The expected that advantages of this arrangement are helpful not only for saving flux swing, but also for having a deep understanding of what will influence the discharge startup and globe performances of plasma under different conditions of strong vessel eddy and ECR power assistance. Of course, the vessel structure of cross seal will be at a great risk of controlling vacuum quality, although we have achieved positive results on simulation test and vacuum vessel test.

  17. Initial Edge Stability Observations in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Battaglia, D. J.; Garstka, G. D.; Sontag, A. C.; Unterberg, E. A.

    2007-11-01

    Edge stability is an important consideration for design of fusion experiments, as transient heat loads generated by edge instabilities may damage the first wall. Such instabilities are now believed to include peeling (current driven) and ballooning (pressure driven) components. Peeling instability may be expected for high values of edge j||/B and low edge pressure gradient. This matches the operating space of Pegasus, with typical ˜100 kA/m^2, |B|˜ 0.01 T, and an L-mode edge. A new camera system has observed filamentary structures in the edge of nearly all ohmically-heated discharges. Ideal stability analysis of these discharges with DCON indicates marginal stability to resistive interchange for ψN>= 0.95. Modification of triangularity during startup is observed to delay instability onset. A plasma control system based on that used on DIII-D will allow study of the influence of plasma shaping on mode stability characteristics. An array of magnetic probes capable of insertion into the scrape-off layer and plasma edge is being developed to provide a local constraint on the edge current profile.

  18. Epigenetics in Medullary Thyroid Cancer: From Pathogenesis to Targeted Therapy.

    PubMed

    Vitale, Giovanni; Dicitore, Alessandra; Messina, Erika; Sciammarella, Concetta; Faggiano, Antongiulio; Colao, Annamaria

    2016-01-01

    Medullary thyroid carcinoma (MTC) originates from the parafollicular C cells of the thyroid gland. Mutations of the RET proto-oncogene are implicated in the pathogenesis of MTC. Germline activating mutations of this gene have been reported in about 88-98% of familial MTCs, while somatic mutations of RET gene have been detected in about 23-70% of sporadic forms. Although these genetic events are well characterized, much less is known about the role of epigenetic abnormalities in MTC. The present review reports a detailed description of epigenetic abnormalities (DNA methylation, histone modifications and miRNA profile), probably involved in the pathogenesis and progression of MTC. A systematic review was performed using Pubmed and Google patents databases. We report the current understanding of epigenetic patterns in MTC and discuss the potential use of current knowledge in designing novel therapeutic strategies through epigenetic drugs, focusing on recent patents in this field. Taking into account the reversibility of epigenetic alterations and the recent development in this field, epigenetic therapy may emerge for clinical use in the near future for patients with advanced MTC.

  19. Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aeberhard, Urs, E-mail: u.aeberhard@fz-juelich.de

    2016-07-18

    We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultra-thin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to the leakage of electronically and opticallymore » injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the impact of these non-classical contact regions on carrier generation and extraction is analyzed.« less

  20. First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2014-10-01

    Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.

  1. Lipid Biomarkers Identified for Liver Cancer | Center for Cancer Research

    Cancer.gov

    Hepatocellular carcinoma (HCC) is an aggressive cancer of the liver with poor prognosis and growing incidence in developed countries. Pathology and genetic profiles of HCC are heterogeneous, suggesting that it can begin growing in different cell types. Although human tumors such as HCC have been profiled in-depth by genomics-based studies, not much is known about their overall metabolite modifications and how these changes can form a network that leads to aggressive disease and poor outcome.

  2. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.

  3. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling.

    PubMed

    Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik

    2018-05-24

    Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.

  4. Direct Profiling the Post-Translational Modification Codes of a Single Protein Immobilized on a Surface Using Cu-free Click Chemistry.

    PubMed

    Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho

    2018-05-23

    Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.

  5. O-GlcNAc profiling: from proteins to proteomes

    PubMed Central

    2014-01-01

    O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases. PMID:24593906

  6. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    2004-06-01

    Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result.

  7. Direct Profiling the Post-Translational Modification Codes of a Single Protein Immobilized on a Surface Using Cu-free Click Chemistry

    PubMed Central

    2018-01-01

    Combinatorial post-translational modifications (PTMs), which can serve as dynamic “molecular barcodes”, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.

  8. First results of the SOL reflectometer on Alcator C-Mod.

    PubMed

    Lau, C; Hanson, G; Lin, Y; Wilgen, J; Wukitch, S; Labombard, B; Wallace, G

    2012-10-01

    A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.

  9. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes

    PubMed Central

    Grosjean, Henri; Gaspin, Christine; Marck, Christian; Decatur, Wayne A; de Crécy-Lagard, Valérie

    2008-01-01

    Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation. PMID:18844986

  10. The Effect of Land Use Change on Transformation of Relief and Modification of Soils in Undulating Loess Area of East Poland

    PubMed Central

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Rodzik, Jan

    2014-01-01

    The change of primary forest areas into arable land involves the transformation of relief and modification of soils. In this study, we hypothesized that relatively flat loess area was largely transformed after the change of land use due to erosion. The modifications in soil pedons and distribution of soil properties were studied after 185 years of arable land use. Structure of pedons and solum depth were measured in 128 and soil texture and soil organic carbon in 39 points. Results showed that soils of noneroded and eroded profiles occupied 14 and 50%, respectively, and depositional soils 36% of the area. As a consequence, the clay, silt, and SOC concentration varied greatly in the plowed layer and subsoil. The reconstructed profiles of eroded soils and depositional soils without the accumulation were used to develop the map of past relief. The average inclination of slopes decreased from 4.3 to 2.2°, and slopes >5° vanished in the present topography. Total erosion was 23.8 Mg ha−1 year−1. From that amount, 88% was deposited within the study area, and 12% was removed outside. The study confirmed the hypothesis of the significant effect of the land use change on relief and soils in loess areas. PMID:25614883

  11. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.

    PubMed

    Wanigasekara, Maheshika S K; Chowdhury, Saiful M

    2016-09-07

    Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Modal analysis of circular Bragg fibers with arbitrary index profiles

    NASA Astrophysics Data System (ADS)

    Horikis, Theodoros P.; Kath, William L.

    2006-12-01

    A finite-difference approach based upon the immersed interface method is used to analyze the mode structure of Bragg fibers with arbitrary index profiles. The method allows general propagation constants and eigenmodes to be calculated to a high degree of accuracy, while computation times are kept to a minimum by exploiting sparse matrix algebra. The method is well suited to handle complicated structures comprised of a large number of thin layers with high-index contrast and simultaneously determines multiple eigenmodes without modification.

  13. Profiles of childhood adversities in pathological gamblers - A latent class analysis.

    PubMed

    Lotzin, Annett; Ulas, Mehmet; Buth, Sven; Milin, Sascha; Kalke, Jens; Schäfer, Ingo

    2018-06-01

    Despite of high rates of adverse childhood experiences (ACEs) in pathological gamblers, researchers have rarely studied which types of ACEs often co-occur and how these profiles of ACEs are related to current psychopathology. We aimed to identify profiles of ACEs in pathological gamblers and examined how these profiles were related to gambling-related characteristics and current general psychopathology. In 329 current or lifetime pathological gamblers, diagnosed with the Composite Diagnostic Interview for DSM-IV, 10 types of ACEs were measured using the Adverse Childhood Experiences Questionnaire. Global psychopathology was assessed using the Symptom Checklist SCL-27. ACE profiles were identified using latent class analysis. Differences between ACE profiles in gambling-related characteristics and global psychopathology were analyzed using MANOVA. We found that four out of five gamblers (n=257, 78.1%) reported at least one ACE. Four distinct ACE profiles were identified: 'Low ACE', 'High ACE', 'Physical and emotional abuse', and 'Neglect'. The number of the fulfilled pathological gambling criteria and the severity of current global psychopathology differed between the ACE profiles: Gamblers with a 'High ACE' profile fulfilled more pathological gambling criteria and showed a more severe current psychopathology than gamblers of the 'Low ACE' profile. Gamblers with a 'Physical and emotional abuse' or an 'Emotion neglect' profile showed an intermediate severity of psychopathology. Our findings indicate that four different ACE profiles can be distinguished in pathological gamblers that differed in their gambling-related characteristics and current psychopathology. Systematic assessment of profiles of ACEs in pathological gamblers may inform about the severity of current global psychopathology that might be important to be addressed in addition to gambling-specific treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less

  15. Current results from AlRS/AMSU/HSB

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert; Barnet, Christopher; Blaisdell, Jon; Iredell, Lena; Bri, Genia; Jusem, Juan Carlos; Keita, Fricky; Kouvaris, Louis; Molnar, Gyula

    2004-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correction coefficients and the prediction of location and intensity of cyclones.

  16. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review

    PubMed Central

    Mehta, Piyush; Shah, Rishi; Lohidasan, Sathiyanarayanan; Mahadik, K.R.

    2015-01-01

    Herbal medicine, the backbone of traditional medicine, has played an important role in human health and welfare for a long period. Traditional therapeutic approaches of regional significance are found in Africa, South and Central America, China, India, Tibet, Indonesia, and the Pacific Islands. The considerable scientific significance and commercial potential of traditional medicines have resulted in increased international attention and global market demands for herbal medicines, especially Chinese herbal medicines. Herbal medicines currently are the primary form of health care for the poor in the developing countries, and also are widely used as a supplement or substitute for conventional drugs in developed countries. These traditional medicines have a pivotal role in the treatment of various ailments and more than 50% of drugs used in Western pharmacopoeia are isolated from herbs or derived from modifications of chemicals found in plants. Herbal medicines usually contain a complex mixture of various bioactive molecules, which make its standardization complicated, and there is little information about all compounds responsible for pharmacological activity. Several research papers have been published that claim pharmacological activity of herbal medicines but few are discussing the role of the exact phytoconstituent. Understanding the pharmacokinetic profile of such phytoconstituents is essential. Although there are research papers that deal with pharmacokinetic properties of phytoconstituents, there are a number of phytoconstituents yet to be explored for their kinetic properties. This article reviews the pharmacokinetic profile of 50 different therapeutically effective traditional medicinal plants from the year 2003 onward. PMID:26587392

  17. Early Lung Cancer Detection via Global Protein Modification Profiles

    DTIC Science & Technology

    2013-12-01

    Increased DNMT1 protein expression has also been shown to play a critical role in the malignant progression of hepatocellular carcinoma (HCC) and be a...the Malignant Potential and Poor Prognosis of Human Hepatocellular Carcinomas , Int. J. Cancer, 105:527-532.

  18. Restriction/modification polypeptides, polynucleotides, and methods

    DOEpatents

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  19. High power cascade diode lasers emitting near 2 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu

    2016-03-28

    High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumpingmore » scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.« less

  20. [Exercise in arterial hypertension].

    PubMed

    Predel, Hans-Georg; Schramm, Thomas

    2006-09-01

    Regular endurance training has established itself as a major therapeutic principle in the specter of nonpharmacological measures in arterial hypertension. An initial medical check as well as an adequate technique, dosage and intensity of the prescribed exercise training are mandatory. With respect to the concomitant pharmacological treatment, it should be considered that the beneficial effects of lifestyle modification will not be counteracted by the chosen antihypertensive drug but, ideally, synergistically supported. Based on the individual clinical situation, principally all antihypertensive drugs recommended by the current European guidelines, may be prescribed as mono- or combination therapy.beta-receptor blockers are especially capable of controlling excessive exercise-induced blood pressure increase; however, they have metabolic and exercise physiological limitations. The neutrality concerning metabolic and exercise physiological parameters as well as the positive profile of side effects favor ACE inhibitors, long-acting calcium channel blockers and especially AT(1) antagonists in physically active hypertensive patients with concomitant metabolic syndrome.

  1. Computational Modeling And Analysis Of Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Mittal, Rajat; Cattafesta, Lou

    2005-01-01

    In the last report we focused on the study of 3D synthetic jets of moderate jet aspect-ratio. Jets in quiescent and cross-flow cases were investigated. Since most of the synthetic jets in practical applications are found to be of large aspect ratio, the focus was shifted to studying synthetic jets of large aspect ratio. In the current year, further progress has been made by studying jets of aspect ratio 8 and infinity. Some other aspects of the jet, like the vorticity flux is looked into apart from analyzing the vortex dynamics, velocity profiles and the other dynamical characteristics of the jet which allows us to extract some insight into the effect of these modifications on the jet performance. Also, efforts were made to qualitatively validate the simulated results with the NASA Langley test cases at higher jet Reynolds number for the quiescent jet case.

  2. Increasing the Energy Efficiency of Aluminum-Reduction Cells Using Modified Cathodes

    NASA Astrophysics Data System (ADS)

    Jianping, Peng; Yang, Song; Yuezhong, Di; Yaowu, Wang; Naixiang, Feng

    2017-10-01

    A cathode with an inclined surface (5°) and increased bar collector height (230 mm high) was incorporated into two 300-kA industrial aluminum-reduction cells. The voltage of the cells with the modified cathode was reduced by approximately 200 mV when compared with that of a conventional cell with a flat cathode. Through the use of simulations, the reduction in the cell voltage was attributed to the cathode modification (40 mV) and a reduced electrolyte level of 0.5 cm (160 mV). As a result of reduced anode cathode distance (ACD), the ledge toe was extended to the anode shadow by 12 cm. This caused a large inverted horizontal current and a velocity increase. The ledge profile returned to the desired position when the cells were insulated more effectively, and the metal velocity and metal crest in the modified cells were reduced accordingly.

  3. CATS Aerosol Typing and Future Directions

    NASA Technical Reports Server (NTRS)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; hide

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  4. Burn Control Mechanisms in Tokamaks

    NASA Astrophysics Data System (ADS)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  5. Fluorescence lifetime assays: current advances and applications in drug discovery.

    PubMed

    Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich

    2011-06-01

    Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.

  6. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    PubMed

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.

  7. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

    PubMed

    Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara

    2016-06-01

    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.

    PubMed

    Coudray, Charles; Fouret, Gilles; Lambert, Karen; Ferreri, Carla; Rieusset, Jennifer; Blachnio-Zabielska, Agnieszka; Lecomte, Jérôme; Ebabe Elle, Raymond; Badia, Eric; Murphy, Michael P; Feillet-Coudray, Christine

    2016-04-14

    The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.

  9. Aircraft Modifications: Assessing the Current State of Air Force Aircraft Modifications and the Implications for Future Military Capability

    DTIC Science & Technology

    2007-01-25

    Air, Space , and Cyberspace." Introduction 3 group production lots together into ’spirals’ or ’increments’. These groupings, as well as an increased...important reference point for this work. The analysis of the modification process presented in this reserach , however, does help shed light on the...planning efforts. Chapter 7- The Future of Aircraft Modifications "Strategy is the art of making use of time and space . I am less concerned about the

  10. 77 FR 43545 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Bombardier, Inc. Model DHC-8-400 series airplanes. The existing AD currently requires a modification to trim... the MLG tires, Bombardier Aerospace has developed a modification to trim the edge of the bumper plate...

  11. Global Analysis of Gene Expression Profiles in Physic Nut (Jatropha curcas L.) Seedlings Exposed to Salt Stress

    PubMed Central

    Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Background Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many “biological processes” were affected by salt stress, particular those categories belong to “metabolic process”, such as “primary metabolism process”, “cellular metabolism process” and “macromolecule metabolism process”. The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. Conclusions/Significance The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future. PMID:24837971

  12. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress.

    PubMed

    Zhang, Lin; Zhang, Chao; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.

  13. The Effect of Metabolic and Bariatric Surgery on DNA Methylation Patterns.

    PubMed

    Morcillo, Sonsoles; Macías-González, Manuel; Tinahones, Francisco J

    2017-08-30

    Metabolic and bariatric surgery (MBS) is considered to be the most effective treatment for obesity. Not only due to the significant weight reduction but also because of the many health benefits associated with it. In the last 5 years, several studies have suggested that epigenetic modifications could be involved in the mechanisms underlying the response to bariatric surgery. In this review, we will compile the different studies (2012-2017) concerning the effect of this surgical procedure on DNA methylation patterns (the most studied epigenetic marker) and its association with metabolic improvement. This is an emerging area, and currently, there are not many studies in the literature. The aim is to show what has been done so far and what the future direction in this emerging area might be. Recent findings have shown how metabolic and bariatric surgery modifies the DNA methylation profile of the specific genes associated with the pathophysiology of the disease. The studies were performed in morbidly obese subjects, mainly in women, with the aim of reducing weight and improving the obesity-associated comorbidities. DNA methylation has been measured both in specific tissue and in peripheral blood samples. In general, studies about site-specific DNA methylation have shown a change in the methylation profile after surgery, whereas the studies analyzing global DNA methylation are not so conclusive. Summing up, metabolic and bariatric surgery can modify the DNA methylation profile of different genes and contributes to the metabolic health benefits that are often seen after metabolic and bariatric surgery. Although there are still many issues to be resolved, the capacity to revert the DNA methylation profile of specific sites opens a window for searching for target markers to treat obesity-related comorbidities.

  14. MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing.

    PubMed

    Ye, Pohao; Luan, Yizhao; Chen, Kaining; Liu, Yizhi; Xiao, Chuanle; Xie, Zhi

    2017-01-04

    DNA methylation is an important type of epigenetic modifications, where 5- methylcytosine (5mC), 6-methyadenine (6mA) and 4-methylcytosine (4mC) are the most common types. Previous efforts have been largely focused on 5mC, providing invaluable insights into epigenetic regulation through DNA methylation. Recently developed single-molecule real-time (SMRT) sequencing technology provides a unique opportunity to detect the less studied DNA 6mA and 4mC modifications at single-nucleotide resolution. With a rapidly increased amount of SMRT sequencing data generated, there is an emerging demand to systematically explore DNA 6mA and 4mC modifications from these data sets. MethSMRT is the first resource hosting DNA 6mA and 4mC methylomes. All the data sets were processed using the same analysis pipeline with the same quality control. The current version of the database provides a platform to store, browse, search and download epigenome-wide methylation profiles of 156 species, including seven eukaryotes such as Arabidopsis, C. elegans, Drosophila, mouse and yeast, as well as 149 prokaryotes. It also offers a genome browser to visualize the methylation sites and related information such as single nucleotide polymorphisms (SNP) and genomic annotation. Furthermore, the database provides a quick summary of statistics of methylome of 6mA and 4mC and predicted methylation motifs for each species. MethSMRT is publicly available at http://sysbio.sysu.edu.cn/methsmrt/ without use restriction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins.

    PubMed

    Burbelo, Peter D; Goldman, Radoslav; Mattson, Thomas L

    2005-08-18

    Assays detecting human antigen-specific antibodies are medically useful. However, the usefulness of existing simple immunoassay formats is limited by technical considerations such as sera antibodies to contaminants in insufficiently pure antigen, a problem likely exacerbated when antigen panels are screened to obtain clinically useful data. We developed a novel and simple immunoprecipitation technology for identifying clinical sera containing antigen-specific antibodies and for generating quantitative antibody response profiles. This method is based on fusing protein antigens to an enzyme reporter, Renilla luciferase (Ruc), and expressing these fusions in mammalian cells, where mammalian-specific post-translational modifications can be added. After mixing crude extracts, sera and protein A/G beads together and incubating, during which the Ruc-antigen fusion become immobilized on the A/G beads, antigen-specific antibody is quantitated by washing the beads and adding coelenterazine substrate and measuring light production. We have characterized this technology with sera from patients having three different types of cancers. We show that 20-85% of these sera contain significant titers of antibodies against at least one of five frequently mutated and/or overexpressed tumor-associated proteins. Five of six colon cancer sera tested gave responses that were statistically significantly greater than the average plus three standard deviations of 10 control sera. The results of competition experiments, preincubating positive sera with unmodified E. coli-produced antigens, varied dramatically. This technology has several advantages over current quantitative immunoassays including its relative simplicity, its avoidance of problems associated with E. coli-produced antigens and its use of antigens that can carry mammalian or disease-specific post-translational modifications. This assay should be generally useful for analyzing sera for antibodies recognizing any protein or its post-translational modifications.

  16. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins

    PubMed Central

    Burbelo, Peter D; Goldman, Radoslav; Mattson, Thomas L

    2005-01-01

    Background Assays detecting human antigen-specific antibodies are medically useful. However, the usefulness of existing simple immunoassay formats is limited by technical considerations such as sera antibodies to contaminants in insufficiently pure antigen, a problem likely exacerbated when antigen panels are screened to obtain clinically useful data. Results We developed a novel and simple immunoprecipitation technology for identifying clinical sera containing antigen-specific antibodies and for generating quantitative antibody response profiles. This method is based on fusing protein antigens to an enzyme reporter, Renilla luciferase (Ruc), and expressing these fusions in mammalian cells, where mammalian-specific post-translational modifications can be added. After mixing crude extracts, sera and protein A/G beads together and incubating, during which the Ruc-antigen fusion become immobilized on the A/G beads, antigen-specific antibody is quantitated by washing the beads and adding coelenterazine substrate and measuring light production. We have characterized this technology with sera from patients having three different types of cancers. We show that 20–85% of these sera contain significant titers of antibodies against at least one of five frequently mutated and/or overexpressed tumor-associated proteins. Five of six colon cancer sera tested gave responses that were statistically significantly greater than the average plus three standard deviations of 10 control sera. The results of competition experiments, preincubating positive sera with unmodified E. coli-produced antigens, varied dramatically. Conclusion This technology has several advantages over current quantitative immunoassays including its relative simplicity, its avoidance of problems associated with E. coli-produced antigens and its use of antigens that can carry mammalian or disease-specific post-translational modifications. This assay should be generally useful for analyzing sera for antibodies recognizing any protein or its post-translational modifications. PMID:16109166

  17. Current pharmacotherapies for obesity: A practical perspective.

    PubMed

    Golden, Angela

    2017-10-01

    To review the currently available pharmacotherapies for obesity management with a particular focus on the United States. Narrative review based on literature searches and the latest prescribing information (up to July 2017). Obesity pharmacotherapies may assist those individuals who have obesity, or overweight with comorbidities, who have failed to maintain weight loss with lifestyle modifications alone (caloric restriction and increased physical activity). Currently approved options in the United States include phentermine for short-term use and five obesity pharmacotherapies that can be used long-term (orlistat, lorcaserin, phentermine-topiramate, naltrexone-bupropion, and liraglutide 3.0 mg). If the use of an obesity pharmacotherapy is indicated, treatment should be selected to provide the most appropriate option for each individual and their circumstances. Variables such as contraindications, individual comorbidities, patient choice, patient readiness to incorporate additional behavioral changes (e.g., alcohol prohibition), and cost should guide choices. Each of the obesity pharmacotherapies has advantages and disadvantages that can help guide treatment choice. Those receiving treatment may also have individual preferences based on factors such as administration route, frequency of dosing, and/or safety profile. In addition, some options may be particularly appropriate for patients with common obesity-related complications such as depression or diabetes. ©2017 American Association of Nurse Practitioners.

  18. The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System.

    PubMed

    Angelini, Francesco; Pagano, Francesca; Bordin, Antonella; Milan, Marika; Chimenti, Isotta; Peruzzi, Mariangela; Valenti, Valentina; Marullo, Antonino; Schirone, Leonardo; Palmerio, Silvia; Sciarretta, Sebastiano; Murdoch, Colin E; Frati, Giacomo; De Falco, Elena

    2017-01-01

    Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed.

  19. The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System

    PubMed Central

    Angelini, Francesco; Pagano, Francesca; Bordin, Antonella; Milan, Marika; Valenti, Valentina; Marullo, Antonino; Schirone, Leonardo; Palmerio, Silvia; Sciarretta, Sebastiano; Frati, Giacomo

    2017-01-01

    Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed. PMID:28607629

  20. RF current profile control studies in the alcator C-mod tokamak

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.

    1999-09-01

    Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.

  1. Atmospheric parameterization schemes for satellite cloud property retrieval during FIRE IFO 2

    NASA Technical Reports Server (NTRS)

    Titlow, James; Baum, Bryan A.

    1993-01-01

    Satellite cloud retrieval algorithms generally require atmospheric temperature and humidity profiles to determine such cloud properties as pressure and height. For instance, the CO2 slicing technique called the ratio method requires the calculation of theoretical upwelling radiances both at the surface and a prescribed number (40) of atmospheric levels. This technique has been applied to data from, for example, the High Resolution Infrared Radiometer Sounder (HIRS/2, henceforth HIRS) flown aboard the NOAA series of polar orbiting satellites and the High Resolution Interferometer Sounder (HIS). In this particular study, four NOAA-11 HIRS channels in the 15-micron region are used. The ratio method may be applied to various channel combinations to estimate cloud top heights using channels in the 15-mu m region. Presently, the multispectral, multiresolution (MSMR) scheme uses 4 HIRS channel combination estimates for mid- to high-level cloud pressure retrieval and Advanced Very High Resolution Radiometer (AVHRR) data for low-level (is greater than 700 mb) cloud level retrieval. In order to determine theoretical upwelling radiances, atmospheric temperature and water vapor profiles must be provided as well as profiles of other radiatively important gas absorber constituents such as CO2, O3, and CH4. The assumed temperature and humidity profiles have a large effect on transmittance and radiance profiles, which in turn are used with HIRS data to calculate cloud pressure, and thus cloud height and temperature. For large spatial scale satellite data analysis, atmospheric parameterization schemes for cloud retrieval algorithms are usually based on a gridded product such as that provided by the European Center for Medium Range Weather Forecasting (ECMWF) or the National Meteorological Center (NMC). These global, gridded products prescribe temperature and humidity profiles for a limited number of pressure levels (up to 14) in a vertical atmospheric column. The FIRE IFO 2 experiment provides an opportunity to investigate current atmospheric profile parameterization schemes, compare satellite cloud height results using both gridded products (ECMWF) and high vertical resolution sonde data from the National Weather Service (NWS) and Cross Chain Loran Atmospheric Sounding System (CLASS), and suggest modifications in atmospheric parameterization schemes based on these results.

  2. Reversible RNA adenosine methylation in biological regulation

    PubMed Central

    Jia, Guifang; Fu, Ye; He, Chuan

    2012-01-01

    N6-methyladenosine (m6A) is a ubiquitous modification in messenger RNA (mRNA) and other RNAs across most eukaryotes. For many years, however, the exact functions of m6A were not clearly understood. The discovery that the fat mass and obesity associated protein (FTO) is an m6A demethylase indicates that this modification is reversible and dynamically regulated, suggesting it has regulatory roles. In addition, it has been shown that m6A affects cell fate decisions in yeast and plant development. Recent affinity-based m6A profiling in mouse and human cells further showed that this modification is a widespread mark in coding and non-coding RNA transcripts and is likely dynamically regulated throughout developmental processes. Therefore, reversible RNA methylation, analogous to reversible DNA and histone modifications, may affect gene expression and cell fate decisions by modulating multiple RNA-related cellular pathways, which potentially provides rapid responses to various cellular and environmental signals, including energy and nutrient availability in mammals. PMID:23218460

  3. Plasma control by modification of helicon wave propagation in low magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2010-07-15

    By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasmamore » potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.« less

  4. SH2 Domain Histochemistry.

    PubMed

    Buhs, Sophia; Nollau, Peter

    2017-01-01

    Among posttranslational modifications, the phosphorylation of tyrosine residues is a key modification in cell signaling. Because of its biological importance, characterization of the cellular state of tyrosine phosphorylation is of great interest. Based on the unique properties of endogenously expressed SH2 domains recognizing tyrosine phosphorylated signaling proteins with high specificity we have developed an alternative approach, coined SH2 profiling, enabling us to decipher complex patterns of tyrosine phosphorylation in various normal and cancerous tissues. So far, SH2 profiling has largely been applied for the analysis of protein extracts with the limitation that information on spatial distribution and intensity of tyrosine phosphorylation within a tissue is lost. Here, we describe a novel SH2 domain based strategy for differential characterization of the state of tyrosine phosphorylation in formaldehyde-fixed and paraffin-embedded tissues. This approach demonstrates that SH2 domains may serve as very valuable tools for the analysis of the differential state of tyrosine phosphorylation in primary tissues fixed and processed under conditions frequently applied by routine pathology laboratories.

  5. Effects of the Ponderomotive Terms in the Thermal Transport on the Hydrodynamic Flow in Inertial Confinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Li, G.

    2004-11-01

    Electron thermal transport is significantly modified by the laser-induced electric fields near the turning point and at the critical surface. It is shown that such modifications lead to an additional limitation in the heat flux in laser-produced plasmas. Furthermore, the ponderomotive terms in the heat flux lead to a steepening in the electron-density profile, which is shown to be a larger effect than the profile modification due to the ponderomotive force [W.L. Kruer, The Physics of Laser--Plasma Interactions, Frontiers in Physics, Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988)]. To take into account the nonlocal effects, the delocalization model developed in Ref. 2 [G.P. Schurtz, Ph.D. Nicolaï, and M. Busquet, Phys. Plasmas 7, 4238 (2000).] has been applied to conditions relevant to ICF experiments. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  6. On the Methods of Determining the Radio Emission Geometry in Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Rudak, B.; Harding, Alice K.

    2004-01-01

    We present a modification of the relativistic phase shift method of determining the radio emission geometry from pulsar magnetospheres proposed by Gangadhara & Gupta (2001). Our modification provides a method of determining radio emission altitudes which does not depend on the viewing geometry and does not require polarization measurements. We suggest application of the method to the outer edges of averaged radio pulse profiles to identify magnetic field lines associated with'the edges of the pulse and, thereby, to test the geometric method based on the measurement of the pulse width at the lowest intensity level. We show that another relativistic method proposed by Blaskiewicz et al. (1991) provides upper limits for emission altitudes associated with the outer edges of pulse profiles. A comparison of these limits with the altitudes determined with the geometric method may be used to probe the importance of rotational distortions of magnetic field and refraction effects in the pulsar magnetosphere. We provide a comprehensive discussion of the assumptions used in the relativistic methods.

  7. Elastomeric microvalve geometry affects haemocompatibility.

    PubMed

    Szydzik, Crispin; Brazilek, Rose J; Khoshmanesh, Khashayar; Akbaridoust, Farzan; Knoerzer, Markus; Thurgood, Peter; Muir, Ineke; Marusic, Ivan; Nandurkar, Harshal; Mitchell, Arnan; Nesbitt, Warwick S

    2018-06-12

    This paper reports on the parameters that determine the haemocompatibility of elastomeric microvalves for blood handling in microfluidic systems. Using a comprehensive investigation of blood function, we describe a hierarchy of haemocompatibility as a function of microvalve geometry and identify a "normally-closed" v-gate pneumatic microvalve design that minimally affects blood plasma fibrinogen and von Willebrand factor composition, minimises effects on erythrocyte structure and function, and limits effects on platelet activation and aggregation, while facilitating rapid switching control for blood sample delivery. We propose that the haemodynamic profile of valve gate geometries is a significant determinant of platelet-dependent biofouling and haemocompatibility. Overall our findings suggest that modification of microvalve gate geometry and consequently haemodynamic profile can improve haemocompatibility, while minimising the requirement for chemical or protein modification of microfluidic surfaces. This biological insight and approach may be harnessed to inform future haemocompatible microfluidic valve and component design, and is an advance towards lab-on-chip automation for blood based diagnostic systems.

  8. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  9. Fractal Analysis of Rock Joint Profiles

    NASA Astrophysics Data System (ADS)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  10. Managing Geological Profiles in Databases for 3D Visualisation

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Grøtan, B. O.; Henderson, I. H. C.; Iversen, S.; Khloussy, E.; Nordahl, B.; Rindstad, B. I.

    2016-10-01

    Geology and all geological structures are three-dimensional in space. GIS and databases are common tools used by geologists to interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. 3D geology is usually described by geological profiles, or vertical sections through a map, where you can look at the rock structure below the surface. The goal is to gradually expand the usability of existing and new geological profiles to make them more available in the retail applications as well as build easier entry and registration of profiles. The project target is to develop the methodology for acquisition of data, modification and use of data and its further presentation on the web by creating a user-interface directly linked to NGU's webpage. This will allow users to visualise profiles in a 3D model.

  11. Fast particle confinement with optimized coil currents in the W7-X stellarator

    NASA Astrophysics Data System (ADS)

    Drevlak, M.; Geiger, J.; Helander, P.; Turkin, Y.

    2014-07-01

    One of the principal goals of the W7-X stellarator is to demonstrate good confinement of energetic ions at finite β. This confinement, however, is sensitive to the magnetic field configuration and is thus vulnerable to design modifications of the coil geometry. The collisionless drift orbit losses for 60 keV protons in W7-X are studied using the ANTS code. Particles in this energy range will be produced by the neutral beam injection (NBI) system being constructed for W7-X, and are particularly important because protons at this energy accurately mimick the behaviour of 3.5 MeV α-particles in a HELIAS reactor. To investigate the possibility of improved fast particle confinement, several approaches to adjust the coil currents (5 main field coil currents +2 auxiliary coil currents) were explored. These strategies include simple rules of thumb as well as computational optimization of various properties of the magnetic field. It is shown that significant improvement of collisionless fast particle confinement can be achieved in W7-X for particle populations similar to α particles produced in fusion reactions. Nevertheless, the experimental goal of demonstrating confinement improvement with rising plasma pressure using an NBI-generated population appears to be difficult based on optimization of the coil currents only. The principal reason for this difficulty is that the NBI deposition profile is broader than the region of good fast-ion confinement around the magnetic axis.

  12. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species.

    PubMed

    Huh, Iksoo; Wu, Xin; Park, Taesung; Yi, Soojin V

    2017-07-21

    DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation. © The Author 2017. Published by Oxford University Press.

  13. Nutrition Interventions for Obesity.

    PubMed

    Ard, Jamy D; Miller, Gary; Kahan, Scott

    2016-11-01

    Obesity is a common disorder with complex causes. The epidemic has spurred significant advances in the understanding of nutritional approaches to treating obesity. Although the primary challenge is to introduce a dietary intake that creates an energy deficit, clinicians should also consider targeted risk factor modification with manipulation of the nutrient profile of the weight-reducing diet. These strategies produce significant weight loss and improvements in cardiometabolic risk factors. Future research is needed to better understand how to personalize nutrient prescriptions further to promote optimal risk modification and maintenance of long-term energy balance in the weight-reduced state. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Establishment and functions of DNA methylation in the germline

    PubMed Central

    Stewart, Kathleen R; Veselovska, Lenka; Kelsey, Gavin

    2016-01-01

    Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization. PMID:27659720

  15. Performance of the AOAC use-dilution method with targeted modifications: collaborative study.

    PubMed

    Tomasino, Stephen F; Parker, Albert E; Hamilton, Martin A; Hamilton, Gordon C

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in collaboration with an industry work group, spearheaded a collaborative study designed to further enhance the AOAC use-dilution method (UDM). Based on feedback from laboratories that routinely conduct the UDM, improvements to the test culture preparation steps were prioritized. A set of modifications, largely based on culturing the test microbes on agar as specified in the AOAC hard surface carrier test method, were evaluated in a five-laboratory trial. The modifications targeted the preparation of the Pseudomonas aeruginosa test culture due to the difficulty in separating the pellicle from the broth in the current UDM. The proposed modifications (i.e., the modified UDM) were compared to the current UDM methodology for P. aeruginosa and Staphylococcus aureus. Salmonella choleraesuis was not included in the study. The goal was to determine if the modifications reduced method variability. Three efficacy response variables were statistically analyzed: the number of positive carriers, the log reduction, and the pass/fail outcome. The scope of the collaborative study was limited to testing one liquid disinfectant (an EPA-registered quaternary ammonium product) at two levels of presumed product efficacies, high and low. Test conditions included use of 400 ppm hard water as the product diluent and a 5% organic soil load (horse serum) added to the inoculum. Unfortunately, the study failed to support the adoption of the major modification (use of an agar-based approach to grow the test cultures) based on an analysis of method's variability. The repeatability and reproducibility standard deviations for the modified method were equal to or greater than those for the current method across the various test variables. However, the authors propose retaining the frozen stock preparation step of the modified method, and based on the statistical equivalency of the control log densities, support its adoption as a procedural change to the current UDM. The current UDM displayed acceptable responsiveness to changes in product efficacy; acceptable repeatability across multiple tests in each laboratory for the control counts and log reductions; and acceptable reproducibility across multiple laboratories for the control log density values and log reductions. Although the data do not support the adoption of all modifications, the UDM collaborative study data are valuable for assessing sources of method variability and a reassessment of the performance standard for the UDM.

  16. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    PubMed Central

    Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.

    2017-01-01

    Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s). PMID:29259610

  17. Excess Risk of Temporomandibular Disorder Associated with Cigarette Smoking in Young Adults

    PubMed Central

    Sanders, Anne E.; Slade, Gary D.; Maixner, William; Nackley, Andrea G.; Diatchenko, Luda; By, Kunthel; Miller, Vanessa E.

    2011-01-01

    Evidence suggests that the effect of cigarette smoking on chronic pain is stronger in younger than older adults. This case control study investigated whether age modified an effect of smoking on temporomandibular disorder (TMD) in 299 females aged 18–60 years. It also investigated the extent to which this relationship was explained by psychological profile, inflammatory response and allergy. Cases were defined using the Research Diagnostic Criteria for Temporomandibular Disorders based on clinical examination. Psychological profile was evaluated using standardized instruments. Inflammatory response was evaluated with 11 cytokines isolated in plasma. History of allergy conditions was self-reported. Odds ratios (OR) for the effect of smoking were calculated using binary logistic regression. Stratified analyses and the likelihood ratio test examined effect modification by smoking. Compared to non-smokers, ever smokers aged <30 years had higher odds of TMD (OR =4.14, 95% CI: 1.57, 11.35) than older adults (OR =1.23, 95% CI: 0.55, 2.78) (P (effect modification) =0.038). Adjustment for psychological profile, cytokines and history of allergy-like conditions attenuated the effect by 45% to statistical non-significance. The main finding was reproduced with secondary analyses of two nationally-representative surveys of adults conducted in the U.S. and Australia. PMID:22036516

  18. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  19. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Anthony M.; Williams, Liliya L.R.; Hjorth, Jens, E-mail: amyoung@astro.umn.edu, E-mail: llrw@astro.umn.edu, E-mail: jens@dark-cosmology.dk

    One usually thinks of a radial density profile as having a monotonically changing logarithmic slope, such as in NFW or Einasto profiles. However, in two different classes of commonly used systems, this is often not the case. These classes exhibit non-monotonic changes in their density profile slopes which we call oscillations for short. We analyze these two unrelated classes separately. Class 1 consists of systems that have density oscillations and that are defined through their distribution function f ( E ), or differential energy distribution N ( E ), such as isothermal spheres, King profiles, or DARKexp, a theoretically derivedmore » model for relaxed collisionless systems. Systems defined through f ( E ) or N ( E ) generally have density slope oscillations. Class 1 system oscillations can be found at small, intermediate, or large radii but we focus on a limited set of Class 1 systems that have oscillations in the central regions, usually at log( r / r {sub −2}) ∼< −2, where r {sub −2} is the largest radius where d log(ρ)/ d log( r ) = −2. We show that the shape of their N ( E ) can roughly predict the amplitude of oscillations. Class 2 systems which are a product of dynamical evolution, consist of observed and simulated galaxies and clusters, and pure dark matter halos. Oscillations in the density profile slope seem pervasive in the central regions of Class 2 systems. We argue that in these systems, slope oscillations are an indication that a system is not fully relaxed. We show that these oscillations can be reproduced by small modifications to N ( E ) of DARKexp. These affect a small fraction of systems' mass and are confined to log( r / r {sub −2}) ∼< 0. The size of these modifications serves as a potential diagnostic for quantifying how far a system is from being relaxed.« less

  1. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  2. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  3. Ion Diode Experiments on PBFA-X

    NASA Astrophysics Data System (ADS)

    Lockner, Thomas

    1996-05-01

    The PBFA-II pulsed power accelerator at Sandia National Laboratories has been modified to replace the radially focusing ion diode with an extraction ion diode. In the extraction diode mode (PBFA X) the ion beam is generated on the surface of an annular disk and extracted along the cylindrical axis. An additional magnetically insulated transmission line (MITL) has been installed to transmit power from the center to the bottom of the accelerator, where it drives a magnetically insulated extraction ion diode. The modification increases access to the diode and the diagnostics, permitting a higher shot rate, and allows us to study extraction diode technology at a power level near what is required for a high yield facility. The modification also includes reversing the polarity of the top half of the accelerator to permit operation at twice the previous source voltage. In the new configuration the diode could operate at 15 MV and 0.8 MA. This operating point is near the 30 MV, 1.0 MA operating point envisioned for one module of a high yield facility, and will allow the study of intense extraction ion diodes at power levels relevant to such a facility. Experimental results will be presented including MITL coupling studies, beam current density control, discharge cleaning of diode surfaces to reduce the presence of contaminant ions in the source beam, and the effect of anode substrate materials on the purity of the lithium beam. A comparison between predicted and measured radial beam profiles will also be presented, with the predicted profiles obtained from the ATHETA code that solves magnetostatics problems in two dimensions. This work was supported by the US/DOE under contract No. DE-AC04-94AL85000. +In collaboration with R. S. Coats, M. E. Cuneo, M. P. Desjarlias, D. J. Johnson, T. A. Mehlhorn, C. W. Mendel, Jr., P. Menge#, and W. J. Poukey,

  4. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus

    PubMed Central

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2018-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications. PMID:29375311

  5. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus.

    PubMed

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2017-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications.

  6. Space Shuttle orbiter modifications to support Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Segert, Randall; Lichtenfels, Allyson

    1992-01-01

    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.

  7. Improved Radiative Control of Ribbon Growth

    NASA Technical Reports Server (NTRS)

    Mchugh, J. P.; Seidensticker, R. G.; Skutch, M. E.

    1984-01-01

    Shield modifications enhance growth rate while reducing silicon oxide formation. Control of dendritic-web crystal growth requires precise control of web temperature profile. Achieved by using series of thermal radiation shields to control thermal-radiation field in region where melt solidifying onto crystal ribbon being pulled from melt.

  8. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Andre, R.; Gates, D. A.

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, amore » flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.« less

  9. Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-05-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  10. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    NASA Astrophysics Data System (ADS)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  11. Progress in modification of sunflower oil to expand its industrial value.

    PubMed

    Rauf, Saeed; Jamil, Nazia; Tariq, Sultan Ali; Khan, Maria; Kausar, Maria; Kaya, Yalcin

    2017-05-01

    Increasing the sunflower seed oil content as well as improving its quality makes it compatible for industrial demands. This is an important breeding objective of sunflower which increases its market value and ensures high returns for the producers. The present review focuses on determining the progress of improving sunflower seed oil content and modifying its quality by empirical and advanced molecular breeding methods. It is known that the sunflower oil content and quality have been altered through empirical selection methods and mutation breeding programmes in various parts of the world. Further improvement in seed oil content and its components (such as phytosterols, tocopherols and modified fatty acid profile) has been slowed down due to low genetic variation in elite germplasm and complex of hereditary traits. Introgression from wild species can be carried out to modify the fatty acids profile and tocopherol contents with linkage drags. Different transgenes introduced through biotechnological methods may produce novel long-chain fatty acids within sunflower oil. Bio-engineering of sunflower oil could allow it to be used in diverse industrial products such as bio-diesel or bio-plastics. These results showed that past and current trends of modifying sunflower oil quality are essential for its further expansion as an oilseed crop. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Structural imprints in vivo decode RNA regulatory mechanisms

    PubMed Central

    Spitale, Robert C.; Flynn, Ryan A.; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y.; Batista, Pedro J.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2015-01-01

    Visualizing the physical basis for molecular behavior inside living cells is a grand challenge in biology. RNAs are central to biological regulation, and RNA’s ability to adopt specific structures intimately controls every step of the gene expression program1. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles view only two of four nucleotides that make up RNA2,3. Here we present a novel biochemical approach, In Vivo Click SHAPE (icSHAPE), that enables the first global view of RNA secondary structures of all four bases in living cells. icSHAPE of mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguishes different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA binding proteins or RNA modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N6-methyladenosine (m6A) modification genome-wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression. PMID:25799993

  13. Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169.

    PubMed

    Lyman, Mathew; Rubinfeld, Bonnee; Leif, Roald; Mulcahy, Heather; Dugan, Lawrence; Souza, Brian

    2018-01-01

    Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3-6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0-4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilic balance (HLB) of these compounds, and their potential utility within industrial applications.

  14. UC/MALDI-MS analysis of HDL; evidence for density-dependent post-translational modifications

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffery D.; Henriquez, Ronald R.; Tichy, Shane E.; Russell, David H.; McNeal, Catherine J.; Macfarlane, Ronald D.

    2007-12-01

    The purpose of this study is to determine whether the nature of the post-translational modifications of the major apolipoproteins of HDL is different for density-distinct subclasses. These subclasses were separated by ultracentrifugation using a novel density-forming solute to yield a high-resolution separation. The serum of two subjects, a control with a normolipidemic profile and a subject with diagnosed cardiovascular disease, was studied. Aliquots of three HDL subclasses were analyzed by MALDI and considerable differences were seen when comparing density-distinct subclasses and also when comparing the two subjects. A detailed analysis of the post-translational modification pattern of apoA-1 shows evidence of considerable protease activity, particularly in the more dense fractions. We conclude that part of the heterogeneity of the population of HDL particles is due to density-dependent protease activity.

  15. Performance Assessment of Model-Based Optimal Feedforward and Feedback Current Profile Control in NSTX-U using the TRANSP Code

    NASA Astrophysics Data System (ADS)

    Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.

    2015-11-01

    Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.

  16. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  17. Tip-induced reduction of the resonant tunneling current on semiconductor surfaces.

    PubMed

    Jelínek, Pavel; Svec, Martin; Pou, Pablo; Perez, Ruben; Cháb, Vladimír

    2008-10-24

    We report scanning tunneling microscope measurements showing a substantial decrease of the current, almost to zero, on the Si(111)-(7x7) reconstruction in the near-to-contact region under low bias conditions. First principles simulations for the tip-sample interaction and transport calculations show that this effect is driven by the substantial local modification of the atomic and electronic structure of the surface. The chemical reactivity of the adatom dangling bond states that dominate the electronic density of states close to the Fermi level and their spatial localization result in a strong modification of the electronic current.

  18. Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants.

    PubMed

    Wojcik, Felix; Dann, Geoffrey P; Beh, Leslie Y; Debelouchina, Galia T; Hofmann, Raphael; Muir, Tom W

    2018-04-11

    Ubiquitylation of histone H2B at lysine residue 120 (H2BK120ub) is a prominent histone posttranslational modification (PTM) associated with the actively transcribed genome. Although H2BK120ub triggers several critical downstream histone modification pathways and changes in chromatin structure, less is known about the regulation of the ubiquitylation reaction itself, in particular with respect to the modification status of the chromatin substrate. Here we employ an unbiased library screening approach to profile the impact of pre-existing chromatin modifications on de novo ubiquitylation of H2BK120 by the cognate human E2:E3 ligase pair, UBE2A:RNF20/40. Deposition of H2BK120ub is found to be highly sensitive to PTMs on the N-terminal tail of histone H2A, a crosstalk that extends to the common histone variant H2A.Z. Based on a series of biochemical and cell-based studies, we propose that this crosstalk contributes to the spatial organization of H2BK120ub on gene bodies, and is thus important for transcriptional regulation.

  19. Recent Advances in Attention Bias Modification for Substance Addictions

    PubMed Central

    Zhang, Melvyn Weibin; Ying, Jiang Bo; Song, Guo; Fung, Daniel S. S.; Smith, Helen E.

    2018-01-01

    Research on attentional bias modification has increased since 2014. A recent meta-analysis demonstrates evidence for bias modification for substance disorders, including alcohol and tobacco use disorders. Several pharmacological trials have shown that pharmacological agents can attenuate and modify such attentional bias. The pharmacological trials that have appeared to date have produced mixed results, which has clinical implications. Developments in Internet and mobile technologies have transformed how attention bias modification is currently being achieved. There remains great potential for further research that examines the efficacy of technology-aided attention bias interventions. PMID:29617325

  20. Neural network evaluation of tokamak current profiles for real time control

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-02-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental datais demonstrated.

  1. Neural network evaluation of tokamak current profiles for real time control (abstract)

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated.

  2. Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage.

    PubMed

    Russell, Scott D; Gou, Xiaoping; Wong, Chui E; Wang, Xinkun; Yuan, Tong; Wei, Xiaoping; Bhalla, Prem L; Singh, Mohan B

    2012-08-01

    Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10,732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Product quality considerations for mammalian cell culture process development and manufacturing.

    PubMed

    Gramer, Michael J

    2014-01-01

    The manufacturing of a biologic drug from mammalian cells results in not a single substance, but an array of product isoforms, also known as variants. These isoforms arise due to intracellular or extracellular events as a result of biological or chemical modification. The most common examples related to biomanufacturing include amino acid modifications (glycosylation, isomerization, oxidation, adduct formation, pyroglutamate formation, phosphorylation, sulfation, amidation), amino acid sequence variants (genetic mutations, amino acid misincorporation, N- and C-terminal heterogeneity, clipping), and higher-order structure modifications (misfolding, aggregation, disulfide pairing). Process-related impurities (HCP, DNA, media components, viral particles) are also important quality attributes related to product safety. The observed ranges associated with each quality attribute define the product quality profile. A biologic drug must have a correct and consistent quality profile throughout clinical development and scale-up to commercial production to ensure product safety and efficacy. In general, the upstream process (cell culture) defines the quality of product-related substances, whereas the downstream process (purification) defines the residual level of process- and product-related impurities. The purpose of this chapter is to review the impact of the cell culture process on product quality. Emphasis is placed on studies with industrial significance and where the direct mechanism of product quality impact was determined. Where possible, recommendations for maintaining consistent or improved quality are provided.

  4. Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment

    PubMed Central

    Osório, Nádia; Pereira, Carla; Simões, Sara; Delgadillo, Ivonne

    2018-01-01

    The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells. PMID:29518018

  5. Effects of crystallinity and surface modification of calcium phosphate nanoparticles on the loading and release of tetracycline hydro-chloride

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian

    2017-03-01

    The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.

  6. GAPP: A Proteogenomic Software for Genome Annotation and Global Profiling of Post-translational Modifications in Prokaryotes.

    PubMed

    Zhang, Jia; Yang, Ming-Kun; Zeng, Honghui; Ge, Feng

    2016-11-01

    Although the number of sequenced prokaryotic genomes is growing rapidly, experimentally verified annotation of prokaryotic genome remains patchy and challenging. To facilitate genome annotation efforts for prokaryotes, we developed an open source software called GAPP for genome annotation and global profiling of post-translational modifications (PTMs) in prokaryotes. With a single command, it provides a standard workflow to validate and refine predicted genetic models and discover diverse PTM events. We demonstrated the utility of GAPP using proteomic data from Helicobacter pylori, one of the major human pathogens that is responsible for many gastric diseases. Our results confirmed 84.9% of the existing predicted H. pylori proteins, identified 20 novel protein coding genes, and corrected four existing gene models with regard to translation initiation sites. In particular, GAPP revealed a large repertoire of PTMs using the same proteomic data and provided a rich resource that can be used to examine the functions of reversible modifications in this human pathogen. This software is a powerful tool for genome annotation and global discovery of PTMs and is applicable to any sequenced prokaryotic organism; we expect that it will become an integral part of ongoing genome annotation efforts for prokaryotes. GAPP is freely available at https://sourceforge.net/projects/gappproteogenomic/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    PubMed

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  8. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

    PubMed Central

    Belda-Palazón, Borja; Nohales, María A.; Rambla, José L.; Aceña, José L.; Delgado, Oscar; Fustero, Santos; Martínez, M. Carmen; Granell, Antonio; Carbonell, Juan; Ferrando, Alejandro

    2014-01-01

    The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana. PMID:24904603

  9. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  10. Computer program documentation modified version of the JA70 aerodynamic heating computer program H800 (MINIVER with a DISSPLA plot package

    NASA Technical Reports Server (NTRS)

    Olmedo, L.

    1980-01-01

    The changes, modifications, and inclusions which were adapted to the current version of the MINIVER program are discussed. Extensive modifications were made to various subroutines, and a new plot package added. This plot package is the Johnson Space Center DISSPLA Graphics System currently driven under an 1110 EXEC 8 configuration. User instructions on executing the MINIVER program are provided and the plot package is described.

  11. Effect of surface modification on hydration kinetics of carbamazepine anhydrate using isothermal microcalorimetry.

    PubMed

    Otsuka, Makoto; Ishii, Mika; Matsuda, Yoshihisa

    2003-01-01

    The purpose of this research was to improve the stability of carbamazepine (CBZ) bulk powder under high humidity by surface modification. The surface-modified anhydrates of CBZ were obtained in a specially designed surface modification apparatus at 60 degrees C via the adsorption of n-butanol, and powder x-ray diffraction, Fourier-Transformed Infrared spectra, and differential scanning calorimetry were used to determine the crystalline characteristics of the samples. The hydration process of intact and surface-modified CBZ anhydrate at 97% relative humidity (RH) and 40 +/-C 1 degrees C was automatically monitored by using isothermal microcalorimetry (IMC). The dissolution test for surface-modified samples (20 mg) was performed in 900 mL of distilled water at 37 +/-C 0.5 degrees C with stirring by a paddle at 100 rpm as in the Japanese Pharmacopoeia XIII. The heat flow profiles of hydration of intact and surface-modified CBZ anhydrates at 97% RH by using IMC profiles showed a maximum peak at around 10 hours and 45 hours after 0 and 10 hours of induction, respectively. The result indicated that hydration of CBZ anhydrate was completely inhibited at the initial stage by surface modification of n-butanol and thereafter transformed into dihydrate. The hydration of surface-modified samples followed a 2-dimensional phase boundary process with an induction period (IP). The IP of intact and surface-modified samples decreased with increase of the reaction temperature, and the hydration rate constant (k) increased with increase of the temperature. The crystal growth rate constants of nuclei of the intact sample were significantly larger than the surface-modified sample's at each temperature. The activation energy (E) of nuclei formation and crystal growth process for hydration of surface-modified CBZ anhydrate were evaluated to be 20.1 and 32.5 kJ/mol, respectively, from Arrhenius plots, but the Es of intact anhydrate were 56.3 and 26.8 kJ/mol, respectively. The dissolution profiles showed that the surface-modified sample dissolved faster than the intact sample at the initial stage. The dissolution kinetics were analyzed based on the Hixon-Crowell equation, and the dissolution rate constants for intact and surface-modified anhydrates were found to be 0.0102 +/-C 0.008 mg(1/3) x min(-1) and 0.1442 +/-C 0.0482 mg(1/3) x min(-1). The surface-modified anhydrate powders were more stable than the nonmodified samples under high humidity and showed resistance against moisture. However, surface modification induced rapid dissolution in water compared to the control.

  12. Genome-wide histone modification profile induced by MDV in MD-resistant and -susceptible chickens

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease (MD) is a lymphoproliferative disease in chicken caused by oncogenic Marek’s disease virus (MDV). MD is characterized by infiltration of proliferating lymphoid cells in organs, such as peripheral nerve, skin, muscle, liver, spleen, heart, kidney, gonads and proventriculus. Epigenetic...

  13. Real jet effects on dual jets in a crossflow

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.

    1984-01-01

    A 6-ft by 6-ft wind tunnel section was modification to accommodate the 7-ft wide NASA dual-jet flate model in an effort to determine the effects of nonuniform and/or noncircular jet exhaust profiles on the pressure field induced on a nearby surface. Tests completed yield surface pressure measurements for a 90 deg circular injector producing exit profiles representative of turbofan nozzles (such as the TF-34 nozzle). The measurements were obtained for both tandem and side-by-side jet configurations, jet spacing of S/D =2, and velocity ratios of R=2.2 and 4.0. Control tests at the same mass flow rate but with uniform exit velocity profiles were also conducted, for comparison purposes. Plots for 90 deg injection and R=2.2 show that the effects of exit velocity profile nonuniformity are quite significant.

  14. Methods for stable recording of short-circuit current in a Na+-transporting epithelium.

    PubMed

    Gondzik, Veronika; Awayda, Mouhamed S

    2011-07-01

    Epithelial Na(+) transport as measured by a variety of techniques, including the short-circuit current technique, has been described to exhibit a "rundown" phenomenon. This phenomenon manifests as time-dependent decrease of current and resistance and precludes the ability to carry out prolonged experiments aimed at examining the regulation of this transport. We developed methods for prolonged stable recordings of epithelial Na(+) transport using modifications of the short-circuit current technique and commercial Ussing-type chambers. We utilize the polarized MDCK cell line expressing the epithelial Na(+) channel (ENaC) to describe these methods. Briefly, existing commercial chambers were modified to allow continuous flow of Ringer solution and precise control of such flow. Chamber manifolds and associated plumbing were modified to allow precise temperature clamp preventing temperature oscillations. Recording electrodes were modified to eliminate the use of KCl and prevent membrane depolarization from KCl leakage. Solutions utilized standard bicarbonate-based buffers, but all gasses were prehydrated to clamp buffer osmolarity. We demonstrate that these modifications result in measurements of current and resistance that are stable for at least 2 h. We further demonstrate that drifts in osmolarity similar to those obtained before prior to our modifications can lead to a decrease of current and resistance similar to those attributed to rundown.

  15. Sexual side effects associated with conventional and atypical antipsychotics.

    PubMed

    Compton, M T; Miller, A H

    2001-01-01

    The sexual side effects of psychotropic medications are becoming increasingly recognized in clinical psychiatry. The magnitude of the problem of sexual side effects associated with antipsychotic medications has yet to be fully elucidated, but a multitude of references in the literature demonstrate the importance of these side effects in both men and women. All currently used antipsychotic medications are associated with sexual side effects of various types. Although each antipsychotic medication may have a specific side effect profile determined by its various receptor affinities and by the degree to which it elevates serum prolactin, there is currently no evidence that specific side effects can be predicted. Sexual side effects can be categorized according to the phase of the sexual response cycle with which they interfere. Suggestions for clinical evaluation and treatment options are provided, including risk factor modification, dose reduction, switching agents, and addition of other agents. Sexual side effects associated with conventional and atypical antipsychotic medications represent an underestimated and understudied set of side effects that may diminish a patient's quality of life and lead to treatment noncompliance. Clinicians prescribing antipsychotic medications should be familiar with the classification, evaluation, and treatment of these side effects.

  16. Managing side effects of JAK inhibitors for myelofibrosis in clinical practice.

    PubMed

    Saeed, Iram; McLornan, Donal; Harrison, Claire N

    2017-07-01

    Myelofibrosis (MF) is characterized by bone marrow fibrosis, abnormalities in peripheral counts, extramedullary hematopoiesis, splenomegaly and an increased risk of transformation to acute myeloid leukaemia. The disease course is often heterogeneous and management can range from observation alone through to allogeneic stem cell transplantation. As of 2017, the only approved medication for MF remains the JAK Inhibitor (JAKi), ruxolitinib (Novartis Pharmaceuticals, Basel, Switzerland; Incyte, Wilmington, Detroit, USA) although several others have reached advanced stages of clinical trials. Areas covered: In this review, we focus on the management of both common and uncommon side effects arising from the use of currently approved and clinical trial JAKi. Most of the discussion concerns ruxolitinib although we also cover both pacritinib (CTI BioPharma) and momelotinib (Gilead Sciences, Foster City, California) which have been in recent large, multinational phase III trials. The various approaches to management of JAKi-related side effects are discussed - with particular emphasis to anaemia, thrombocytopaenia and infection risk. Expert commentary: JAK inhibitors are effective in many individuals with MF and have revolutionized the current treatment paradigm. The side effect profile, in the most, is predictable and manageable with high degrees of clinical surveillance and dose modifications.

  17. The search for a 100MA RancheroS magnetic flux compression generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, Robert Gregory

    2016-09-01

    The Eulerian AMR rad-hydro-MHD code Roxane was used to investigate modifications to existing designs of the new RancheroS class of Magnetic Flux Compression Generators (FCGs) which might allow some members of this FCG family to exceed 100 MA driving a 10 nH static load. This report details the results of that study and proposes a specific generator modification which seems to satisfy both the peak current and desired risetime for the current pulse into the load. The details of the study and necessary modifications are presented. For details of the LA43S RancheroS FCG design and predictions for the first usemore » of the generator refer to the relevant publications.« less

  18. Bootstrap current in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  19. Surface currents associated with external kink modes in tokamak plasmas during a major disruption

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    2017-10-01

    The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.

  20. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  1. Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.

    1997-01-01

    This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.

  2. Audience-contingent variation in action demonstrations for humans and computers.

    PubMed

    Herberg, Jonathan S; Saylor, Megan M; Ratanaswasd, Palis; Levin, Daniel T; Wilkes, D Mitchell

    2008-09-01

    People may exhibit two kinds of modifications when demonstrating action for others: modifications to facilitate bottom-up, or sensory-based processing; and modifications to facilitate top-down, or knowledge-based processing. The current study examined actors' production of such modifications in action demonstrations for audiences that differed in their capacity for intentional reasoning. Actors' demonstrations of complex actions for a non-anthropomorphic computer system and for people (adult and toddler) were compared. Evidence was found for greater highlighting of top-down modifications in the demonstrations for the human audiences versus the computer audience. Conversely, participants highlighted simple perceptual modifications for the computer audience, producing more punctuated and wider ranging motions. This study suggests that people consider differences in their audiences when demonstrating action. 2008 Cognitive Science Society, Inc.

  3. Methodological guidelines for developing accident modification functions.

    PubMed

    Elvik, Rune

    2015-07-01

    This paper proposes methodological guidelines for developing accident modification functions. An accident modification function is a mathematical function describing systematic variation in the effects of road safety measures. The paper describes ten guidelines. An example is given of how to use the guidelines. The importance of exploratory analysis and an iterative approach in developing accident modification functions is stressed. The example shows that strict compliance with all the guidelines may be difficult, but represents a level of stringency that should be strived for. Currently the main limitations in developing accident modification functions are the small number of good evaluation studies and the often huge variation in estimates of effect. It is therefore still not possible to develop accident modification functions for very many road safety measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltagemore » dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels in HEK293 cells differ from the effects of these compounds on Na{sub v}1.6 channels in Xenopus oocytes and more closely reflect the actions of pyrethroids on channels in their native neuronal environment. -- Highlights: Black-Right-Pointing-Pointer We expressed rat Na{sub v}1.6 voltage-gated sodium channels in HEK293 cells. Black-Right-Pointing-Pointer Tefluthrin and deltamethrin caused resting modification of Na{sub v}1.6 channels. Black-Right-Pointing-Pointer Only deltamethrin exhibited use-dependent enhancement of modification. Black-Right-Pointing-Pointer State-dependent effects of pyrethroids are influenced by the cellular context. Black-Right-Pointing-Pointer Channels in HEK293 cells exhibit properties similar to native neuronal channels.« less

  5. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    NASA Astrophysics Data System (ADS)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  6. MARCC (Matrix-Assisted Reader Chromatin Capture): an antibody-free method to enrich and analyze combinatorial nucleosome modifications

    PubMed Central

    Su, Zhangli

    2016-01-01

    Combinatorial patterns of histone modifications are key indicators of different chromatin states. Most of the current approaches rely on the usage of antibodies to analyze combinatorial histone modifications. Here we detail an antibody-free method named MARCC (Matrix-Assisted Reader Chromatin Capture) to enrich combinatorial histone modifications. The combinatorial patterns are enriched on native nucleosomes extracted from cultured mammalian cells and prepared by micrococcal nuclease digestion. Such enrichment is achieved by recombinant chromatin-interacting protein modules, or so-called reader domains, which can bind in a combinatorial modification-dependent manner. The enriched chromatin can be quantified by western blotting or mass spectrometry for the co-existence of histone modifications, while the associated DNA content can be analyzed by qPCR or next-generation sequencing. Altogether, MARCC provides a reproducible, efficient and customizable solution to enrich and analyze combinatorial histone modifications. PMID:26131849

  7. Green electrochemical modification of RVC foam electrode and improved H2O2 electrogeneration by applying pulsed current for pollutant removal.

    PubMed

    Zhou, Wei; Ding, Yani; Gao, Jihui; Kou, Kaikai; Wang, Yan; Meng, Xiaoxiao; Wu, Shaohua; Qin, Yukun

    2018-02-01

    The performance of cathode on H 2 O 2 electrogeneration is a critical factor that limits the practical application of electro-Fenton (EF) process. Herein, we report a simple but effective electrochemical modification of reticulated vitreous carbon foam (RVC foam) electrode for enhanced H 2 O 2 electrogeneration. Cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectrum were used to characterize the modified electrode. Oxygen-containing groups (72.5-184.0 μmol/g) were introduced to RVC foam surface, thus resulting in a 59.8-258.2% higher H 2 O 2 yield. The modified electrodes showed much higher electrocatalytic activity toward O 2 reduction and good stability. Moreover, aimed at weakening the extent of electroreduction of H 2 O 2 in porous RVC foam, the strategy of pulsed current was proposed. H 2 O 2 concentration was 582.3 and 114.0% higher than the unmodified and modified electrodes, respectively. To test the feasibility of modification, as well as pulsed current, EF process was operated for removal of Reactive Blue 19 (RB19). The fluorescence intensity of hydroxybenzoic acid in EF with modified electrode is 3.2 times higher than EF with unmodified electrode, illustrating more hydroxyl radicals were generated. The removal efficiency of RB 19 in EF with unmodified electrode, modified electrode, and unmodified electrode assisted by pulsed current was 53.9, 68.9, and 81.1%, respectively, demonstrating that the green modification approach, as well as pulsed current, is applicable in EF system for pollutant removal. Graphical abstract ᅟ.

  8. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neves, Bruno Miguel; Centro de Neurociencias e Biologia Celular, Universidade de Coimbra, Coimbra 3004-517; Goncalo, Margarida

    2011-01-15

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiatedmore » from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.« less

  9. Importance of investigating epigenetic alterations for industry and regulators: An appraisal of current efforts by the Health and Environmental Sciences Institute.

    PubMed

    Miousse, Isabelle R; Currie, Richard; Datta, Kaushik; Ellinger-Ziegelbauer, Heidrun; French, John E; Harrill, Alison H; Koturbash, Igor; Lawton, Michael; Mann, Derek; Meehan, Richard R; Moggs, Jonathan G; O'Lone, Raegan; Rasoulpour, Reza J; Pera, Renee A Reijo; Thompson, Karol

    2015-09-01

    Recent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled "Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals" in Washington, D.C. The goal of the symposium was to identify gaps in knowledge and highlight promising areas of progress that represent opportunities to utilize epigenomic profiling for risk assessment of drugs and chemicals. Epigenomic profiling has the potential to provide mechanistic information in toxicological safety assessments; this is especially relevant for the evaluation of carcinogenic or teratogenic potential and also for drugs that directly target epigenetic modifiers, like DNA methyltransferases or histone modifying enzymes. Furthermore, it can serve as an endpoint or marker for hazard characterization in chemical safety assessment. The assessment of epigenetic effects may also be approached with new model systems that could directly assess transgenerational effects or potentially sensitive stem cell populations. These would enhance the range of safety assessment tools for evaluating xenobiotics that perturb the epigenome. Here we provide a brief synopsis of the symposium, update findings since that time and then highlight potential directions for future collaborative efforts to incorporate epigenetic profiling into risk assessment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.

    2011-12-01

    A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program

  11. Differential Mass Spectrometry Profiles of Tau Protein in the Cerebrospinal Fluid of Patients with Alzheimer's Disease, Progressive Supranuclear Palsy, and Dementia with Lewy Bodies.

    PubMed

    Barthélemy, Nicolas R; Gabelle, Audrey; Hirtz, Christophe; Fenaille, François; Sergeant, Nicolas; Schraen-Maschke, Susanna; Vialaret, Jérôme; Buée, Luc; Junot, Christophe; Becher, François; Lehmann, Sylvain

    2016-01-01

    Microtubule-associated Tau proteins are major actors in neurological disorders, the so-called tauopathies. In some of them, and specifically in Alzheimer's disease (AD), hyperphosphorylated forms of Tau aggregate into neurofibrillary tangles. Following and understanding the complexity of Tau's molecular profile with its multiple isoforms and post-translational modifications represent an important issue, and a major analytical challenge. Immunodetection methods are, in fact, limited by the number, specificity, sensitivity, and capturing property of the available antibodies. Mass spectrometry (MS) has recently allowed protein quantification in complex biological fluids using isotope-labeled recombinant standard for absolute quantification (PSAQ). To study Tau proteins, which are found at very low concentrations within the cerebrospinal fluid (CSF), we relied on an innovative two-step pre-fractionation strategy, which was not dependent on immuno-enrichment. We then developed a sensitive multiplex peptide detection capability using targeted high-resolution MS to quantify Tau-specific peptides covering its entire sequence. This approach was used on a clinical cohort of patients with AD, progressive supranuclear palsy (PSP), and dementia with Lewy body (DLB) and with control non-neurodegenerative disorders. We uncovered a common CSF Tau molecular profile characterized by a predominance of central core expression and 1N/3R isoform detection. While PSP and DLB tau profiles showed minimal changes, AD was characterized by a unique pattern with specific modifications of peptide distribution. Taken together these results provide important information on Tau biology for future therapeutic interventions, and improved molecular diagnosis of tauopathies.

  12. Hemostatic properties and protein expression profile of therapeutic apheresis plasma treated with amotosalen and ultraviolet A for pathogen inactivation.

    PubMed

    Ohlmann, Philippe; Hechler, Béatrice; Chafey, Philippe; Ravanat, Catherine; Isola, Hervé; Wiesel, Marie-Louise; Cazenave, Jean-Pierre; Gachet, Christian

    2016-09-01

    The INTERCEPT Blood System (IBS) using amotosalen-HCl and ultraviolet (UV)A inactivates a large spectrum of microbial pathogens and white blood cells in therapeutic plasma. Our aim was to evaluate to what extent IBS modifies the capacity of plasma to generate thrombin and induces qualitative or quantitative modifications of plasma proteins. Plasma units from four donors were collected by apheresis. Samples were taken before (control [CTRL]) and after IBS treatment and stored at -80°C until use. The activities of plasma coagulation factors and inhibitors and the thrombin generation potential were determined using assays measuring clotting times and the calibrated automated thrombogram (CAT), respectively. The proteomic profile of plasma proteins was examined using a two-dimensional differential in-gel electrophoresis (2D-DIGE) method. Nearly all of the procoagulant and antithrombotic factors tested retained at least 78% of their initial pre-IBS activity. Only FVII and FVIII displayed a lower level of conservation (67%), which nevertheless remained within the reference range for conventional plasma coagulation factors. The thrombin generation profile of plasma was conserved after IBS treatment. Among the 1331 protein spots revealed by 2D-DIGE analysis, only four were differentially expressed in IBS plasma compared to CTRL plasma and two were identified by mass spectrometric analysis as transthyretin and apolipoprotein A1. The IBS technique for plasma moderately decreases the activities of plasma coagulation factors and antithrombotic proteins, with no impact on the thrombin generation potential of plasma and very limited modifications of the proteomic profile. © 2016 AABB.

  13. First report of nonpsychotic self-cannibalism (autophagy), tongue splitting, and scar patterns (scarification) as an extreme form of cultural body modification in a western civilization.

    PubMed

    Benecke, M

    1999-09-01

    As part of her current lifestyle, a 28-year-old Caucasian woman routinely injures and allows subsequent healing of her skin and other tissues. Her body modifications include a "split tongue" (a tongue split to the base), which does not interfere with speaking and eating. Other modifications include large scarification patterns produced by branding and cutting. This woman has been known to eat parts of her skin that were previously cut out of her body. She also performs "needle play" by allowing medical syringe needles to be lodged temporarily under her skin. The patient had a normal childhood, is currently employed full-time as an office manager, and is psychologically stable. Although one other case of self-induced penoscrotal hypospadias is known, this is the only report of extensive, nonpsychotic, autodestructive behavior. However, this may not be the case in the future as an increasing number of young individuals have become interested in body modifications.

  14. Nanoscale Surface Modifications of Orthopaedic Implants: State of the Art and Perspectives

    PubMed Central

    Staruch, RMT; Griffin, MF; Butler, PEM

    2016-01-01

    Background: Orthopaedic implants such as the total hip or total knee replacement are examples of surgical interventions with postoperative success rates of over 90% at 10 years. Implant failure is associated with wear particles and pain that requires surgical revision. Improving the implant - bone surface interface is a key area for biomaterial research for future clinical applications. Current implants utilise mechanical, chemical or physical methods for surface modification. Methods: A review of all literature concerning the nanoscale surface modification of orthopaedic implant technology was conducted. Results: The techniques and fabrication methods of nanoscale surface modifications are discussed in detail, including benefits and potential pitfalls. Future directions for nanoscale surface technology are explored. Conclusion: Future understanding of the role of mechanical cues and protein adsorption will enable greater flexibility in surface control. The aim of this review is to investigate and summarise the current concepts and future directions for controlling the implant nanosurface to improve interactions. PMID:28217214

  15. The shape parameter and its modification for defining coastal profiles

    NASA Astrophysics Data System (ADS)

    Türker, Umut; Kabdaşli, M. Sedat

    2009-03-01

    The shape parameter is important for the theoretical description of the sandy coastal profiles. This parameter has previously been defined as a function of the sediment-settling velocity. However, the settling velocity cannot be characterized over a wide range of sediment grains. This, in turn, limits the calculation of the shape parameter over a wide range. This paper provides a simpler and faster analytical equation to describe the shape parameter. The validity of the equation has been tested and compared with the previously estimated values given in both graphical and tabular forms. The results of this study indicate that the analytical solutions of the shape parameter improved the usability of profile better than graphical solutions, predicting better results both at the surf zone and offshore.

  16. Human liver proteome project: plan, progress, and perspectives.

    PubMed

    He, Fuchu

    2005-12-01

    The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.

  17. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility.

    PubMed

    Kumar, E K Pramod; Jølck, Rasmus I; Andresen, Thomas L

    2015-09-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-resolution studies of the HF ionospheric modification interaction region

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Sheerin, J. P.

    1985-01-01

    The use of the pulse edge analysis technique to explain ionospheric modifications caused by high-power HF radio waves is discussed. The technique, implemented at the Arecibo Observatory, uses long radar pulses and very rapid data sampling. A comparison of the pulse leading and trailing edge characteristics is obtained and the comparison is used to estimate the relative changes in the interaction region height and layer width; an example utilizing this technique is provided. Main plasma line overshoot and miniovershoot were studied from the pulse edge observations; the observations at various HF pulsings and radar resolutions are graphically presented. From the pulse edge data the development and the occurrence of main plasma line overshoot and miniovershoot are explained. The theories of soliton formation and collapse, wave ducting, profile modification, and parametric instabilities are examined as a means of explaining main plasma line overshoots and miniovershoots.

  19. Electron density inversed by plasma lines induced by suprathermal electron in the ionospheric modification experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen

    2018-05-01

    Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment.

  20. Favorable cardiovascular risk factor profile is associated with lower healthcare expenditure and resource utilization among adults with diabetes mellitus free of established cardiovascular disease: 2012 Medical Expenditure Panel Survey (MEPS).

    PubMed

    Feldman, David I; Valero-Elizondo, Javier; Salami, Joseph A; Rana, Jamal S; Ogunmoroti, Oluseye; Osondu, Chukwuemeka U; Spatz, Erica S; Virani, Salim S; Blankstein, Ron; Blaha, Michael J; Veledar, Emir; Nasir, Khurram

    2017-03-01

    Given the prevalence and economic burden of diabetes mellitus (DM), we studied the impact of a favorable cardiovascular risk factor (CRF) profile on healthcare expenditures and resource utilization among individuals without cardiovascular disease (CVD), by DM status. 25,317 participants were categorized into 3 mutually-exclusive strata: "Poor", "Average" and "Optimal" CRF profiles (≥4, 2-3, 0-1 CRF, respectively). Two-part econometric models were utilized to study cost data. Mean age was 45 (48% male), with 54% having optimal, 39% average, and 7% poor CRF profiles. Individuals with DM were more likely to have poor CRF profile vs. those without DM (OR 7.7, 95% CI 6.4, 9.2). Individuals with DM/poor CRF profile had a mean annual expenditure of $9,006, compared to $6,461 among those with DM/optimal CRF profile (p < 0.001). A favorable CRF profile is associated with significantly lower healthcare expenditures and utilization in CVD-free individuals across DM status, suggesting that these individuals require aggressive individualized prescriptions targeting lifestyle modifications and therapeutic treatments. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method

    NASA Astrophysics Data System (ADS)

    H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman

    2016-05-01

    In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.

  2. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    PubMed

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  3. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein,more » we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.« less

  4. Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC–UV–MS

    PubMed Central

    Russell, Susan P.; Limbach, Patrick A.

    2013-01-01

    Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized. These modifications are present at very low levels and isolation of individual nucleosides for analysis requires a complex multi-step approach. The focus of this study is to characterize the reproducibility of a liquid chromatography method used to isolate and quantitatively characterize modified nucleosides in tRNA and rRNA when nucleoside detection is performed using ultraviolet and mass spectrometric detection (UV and MS, respectively). Despite the analytical challenges of sample isolation and dynamic range, quantitative profiling of modified nucleosides obtained from bacterial tRNAs and rRNAs is feasible at relative standard deviations of 5% RSD or less. PMID:23500350

  5. Recent modifications and calibration of the Langley low-turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.; Foster, J. M.

    1984-01-01

    Modifications to the Langley Low-Turbulence Pressure Tunnel are presented and a calibration of the mean flow parameters in the test section is provided. Also included are the operational capability of the tunnel and typical test results for both single-element and multi-element airfoils. Modifications to the facility consisted of the following: replacement of the original cooling coils and antiturbulence screens and addition of a tunnel-shell heating system, a two dimensional model-support and force-balance system, a sidewall boundary layer control system, a remote-controlled survey apparatus, and a new data acquisition system. A calibration of the mean flow parameters in the test section was conducted over the complete operational range of the tunnel. The calibration included dynamic-pressure measurements, Mach number distributions, flow-angularity measurements, boundary-layer characteristics, and total-pressure profiles. In addition, test-section turbulence measurements made after the tunnel modifications have been included with these calibration data to show a comparison of existing turbulence levels with data obtained for the facility in 1941 with the original screen installation.

  6. ChromBiSim: Interactive chromatin biclustering using a simple approach.

    PubMed

    Noureen, Nighat; Zohaib, Hafiz Muhammad; Qadir, Muhammad Abdul; Fazal, Sahar

    2017-10-01

    Combinatorial patterns of histone modifications sketch the epigenomic locale. Specific positions of these modifications in the genome are marked by the presence of such signals. Various methods highlight such patterns on global scale hence missing the local patterns which are the actual hidden combinatorics. We present ChromBiSim, an interactive tool for mining subsets of modifications from epigenomic profiles. ChromBiSim efficiently extracts biclusters with their genomic locations. It is the very first user interface based and multiple cell type handling tool for decoding the interplay of subsets of histone modifications combinations along their genomic locations. It displays the results in the forms of charts and heat maps in accordance with saving them in files which could be used for post analysis. ChromBiSim tested on multiple cell types produced in total 803 combinatorial patterns. It could be used to highlight variations among diseased versus normal cell types of any species. ChromBiSim is available at (http://sourceforge.net/projects/chrombisim) in C-sharp and python languages. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 40 CFR 144.41 - Minor modifications of permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Minor modifications of permits. 144.41 Section 144.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... responsibility, coverage, and liability between the current and new permittees has been submitted to the Director...

  8. EPA MOBILE INCINERATION SYSTEM MODIFICATIONS, TESTING AND OPERATIONS - FEBRUARY 1986 TO JUNE 1989

    EPA Science Inventory

    The report covers the field demonstration activities of the U.S. Environmental Protection Agency's Mobile Incineration System (MIS) from February 1986 to June 1989 at the Denney Farm Site, Missouri. The activities discussed in the current report include: modifications made to the...

  9. 77 FR 19751 - Privacy Act of 1974, as Amended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    .... ACTION: Notice of Alteration of Privacy Act System of Records for the Home Affordable Modification... Treasury (Department) gives notice of four proposed alterations to the system of records currently entitled as ``Treasury/DO .218--Home Affordable Modification Program'': (1) The system of records shall be...

  10. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  11. U1108 performance model

    NASA Technical Reports Server (NTRS)

    Trachta, G.

    1976-01-01

    A model of Univac 1108 work flow has been developed to assist in performance evaluation studies and configuration planning. Workload profiles and system configurations are parameterized for ease of experimental modification. Outputs include capacity estimates and performance evaluation functions. The U1108 system is conceptualized as a service network; classical queueing theory is used to evaluate network dynamics.

  12. Modification of ruminal fermentation and methane production by adding legumes containing condensed tannins to an orchardgrass diet in continuous culture systems

    USDA-ARS?s Scientific Manuscript database

    Condensed tannins (CT) can alter ruminal fermentation and enteric methane (CH4) production in ruminants; however, research is lacking on how increased CT levels affect nutrient digestibility, volatile fatty acid (VFA) production, bacterial protein synthesis, fatty acid (FA) profiles, protozoal popul...

  13. Seismic Propagation in the Kuriles/Kamchatka Region

    DTIC Science & Technology

    1980-07-25

    model the final profile is well-represented by a spline interpolation. Figure 7 shows the sampling grid used to input velocity perturbations due to the...A modification of Cagniard’s method for s~ lving seismic pulse problems, Appl. Sci. Res. B., 8, p. 349, 1960. Fuchs, K. and G. Muller, Computation of

  14. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    USDA-ARS?s Scientific Manuscript database

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  15. Background diet and fat type alters plasma lipoprotein response but not aortic cholesterol accumulation in F1B golden syrian hamsters

    USDA-ARS?s Scientific Manuscript database

    Dietary modification alters plasma lipoprotein profiles and atherosclerotic lesion progression in humans and some animal models. Variability in response to diet induced atherosclerosis has been reported in hamsters. Assessed was the interaction between background diet composition and dietary fat typ...

  16. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less

  17. XPS investigation of depth profiling induced chemistry

    NASA Astrophysics Data System (ADS)

    Pratt, Quinn; Skinner, Charles; Koel, Bruce; Chen, Zhu

    2017-10-01

    Surface analysis is an important tool for understanding plasma-material interactions. Depth profiles are typically generated by etching with a monatomic argon ion beam, however this can induce unintended chemical changes in the sample. Tantalum pentoxide, a sputtering standard, and PEDOT:PSS, a polymer that was used to mimic the response of amorphous carbon-hydrogen co-deposits, were studied. We compare depth profiles generated with monatomic and gas cluster argon ion beams (GCIB) using X-ray photoelectron spectroscopy (XPS) to quantify chemical changes. In both samples, monatomic ion bombardment led to beam-induced chemical changes. Tantalum pentoxide exhibited preferential sputtering of oxygen and the polymer experienced significant bond modification. Depth profiling with clusters is shown to mitigate these effects. We present sputtering rates for Ta2O5 and PEDOT:PSS as a function of incident energy and flux. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  18. DNA Methylation of the Aryl Hydrocarbon Receptor Repressor Associations with Cigarette Smoking and Subclinical Atherosclerosis

    PubMed Central

    Reynolds, Lindsay M.; Wan, Ma; Ding, Jingzhong; Taylor, Jackson R.; Mstat, Kurt Lohman; Su, Dan; Bennett, Brian D.; Porter, Devin K.; Gimple, Ryan; Pittman, Gary S.; Wang, Xuting; Howard, Timothy D.; Siscovick, David; Psaty, Bruce M.; Shea, Steven; Burke, Gregory L.; Jacobs, David R.; Rich, Stephen S.; Hixson, James E.; Stein, James H.; Stunnenberg, Hendrik; Barr, R. Graham; Kaufman, Joel D.; Post, Wendy S.; Hoeschele, Ina; Herrington, David M.; Bell, Douglas A.; Liu, Yongmei

    2015-01-01

    Background Tobacco smoke contains numerous agonists of the aryl-hydrocarbon receptor (AhR) pathway, and activation of the AhR pathway was shown to promote atherosclerosis in mice. Intriguingly, cigarette smoking is most strongly and robustly associated with DNA modifications to an AhR pathway gene, the aryl-hydrocarbon receptor repressor (AHRR). We hypothesized that altered AHRR methylation in monocytes, a cell type sensitive to cigarette smoking and involved in atherogenesis, may be a part of the biological link between cigarette smoking and atherosclerosis. Methods and Results DNA methylation profiles of AHRR in monocytes (542 CpG sites ± 150kb of AHRR, using Illumina 450K array) were integrated with smoking habits and ultrasound-measured carotid plaque scores from 1,256 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Methylation of cg05575921 significantly associated (p = 6.1×10−134) with smoking status (current vs. never). Novel associations between cg05575921 methylation and carotid plaque scores (p = 3.1×10−10) were identified, which remained significant in current and former smokers even after adjusting for self-reported smoking habits, urinary cotinine, and well-known CVD risk factors. This association replicated in an independent cohort using hepatic DNA (n = 141). Functionally, cg05575921 was located in a predicted gene expression regulatory element (enhancer), and had methylation correlated with AHRR mRNA profiles (p = 1.4×10−17) obtained from RNA sequencing conducted on a subset (n = 373) of the samples. Conclusions These findings suggest AHRR methylation may be functionally related to AHRR expression in monocytes, and represents a potential biomarker of subclinical atherosclerosis in smokers. PMID:26307030

  19. Modeling Corneal Oxygen with Scleral Gas Permeable Lens Wear.

    PubMed

    Compañ, Vicente; Aguilella-Arzo, Marcel; Edrington, Timothy B; Weissman, Barry A

    2016-11-01

    The main goal of this current work is to use an updated calculation paradigm, and updated boundary conditions, to provide theoretical guidelines to assist the clinician whose goal is to improve his or her scleral gas permeable (GP) contact lens wearing patients' anterior corneal oxygen supply. Our model uses a variable value of corneal oxygen consumption developed through Monod equations that disallows negative oxygen tensions within the stroma to predict oxygen tension at the anterior corneal surface of scleral GP contact lens wearing eyes, and to describe oxygen tension and flux profiles, for various boundary conditions, through the lens, tears, and cornea. We use several updated tissue and boundary parameters in our model. Tear exchange with GP scleral lenses is considered nonexistent in this model. The majority of current scleral GP contact lenses should produce some levels of corneal hypoxia under open eye conditions. Only lenses producing the thinnest of tear vaults should result in anterior corneal surface oxygen tensions greater than a presumed critical oxygen tension of 100 mmHg. We also find that corneal oxygen tension and flux are each more sensitive to modification in tear vault than to changes in lens oxygen permeability, within the ranges of current clinical manipulation. Our study suggests that clinicians would be prudent to prescribe scleral GP lenses manufactured from higher oxygen permeability materials and especially to fit without excessive corneal clearance.

  20. Near-Inertial and Tidal Currents Detected with a Vessel Mounted Acoustic Doppler Current Profiler in the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Candela, J.; Font, J.

    1998-01-01

    The Acoustic Doppler Current Profiler (ADCP) combined with accurate navigation provides absolute current velocities which include information from all the frequencies which have a dynamical presence in the ocean.

  1. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  2. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  3. An experimental study of the compressor rotor blade boundary layer

    NASA Technical Reports Server (NTRS)

    Pouagare, M.; Lakshminarayana, B.; Galmes, J. M.

    1984-01-01

    The three-dimensional turbulent boundary layer developing on a rotor blade of an axial flow compressor was measured using a miniature 'x' configuration hot-wire probe. The measurements were carried out at nine radial locations on both surfaces of the blade at various chordwise locations. The data derived includes streamwise and radial mean velocities and turbulence intensities. The validity of conventional velocity profiles such as the 'power law profile' for the streamwise profile, and Mager and Eichelbrenner's for the radial profile, is examined. A modification to Mager's crossflow profile is proposed. Away from the blade tip, the streamwise component of the blade boundary layer seems to be mainly influenced by the streamwise pressure gradient. Near the tip of the blade, the behavior of the blade boundary layer is affected by the tip leakage flow and the annulus wall boundary layer. The 'tangential blockage' due to the blade boundary layer is derived from the data. The profile losses are found to be less than that of an equivalent cascade, except in the tip region of the blade.

  4. An Overview of Structurally Modified Glycyrrhetinic Acid Derivatives as Antitumor Agents.

    PubMed

    Xu, Bing; Wu, Gao-Rong; Zhang, Xin-Yu; Yan, Meng-Meng; Zhao, Rui; Xue, Nan-Nan; Fang, Kang; Wang, Hui; Chen, Meng; Guo, Wen-Bo; Wang, Peng-Long; Lei, Hai-Min

    2017-06-02

    Glycyrrhetinic Acid ( GA ), a triterpenoid aglycone component of the natural product glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize new antitumor agents. The structural modifications of GA reported in recent decades can be divided into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring modifications. The lack of a comprehensive and recent review on this topic prompted us to gather more new information. This overview is dedicated to summarizing and updating the structural modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives along with their activity profile in different series. Furthermore, the structure activity relationships of these derivatives are briefly discussed. The included information is expected to be of benefit to further studies of structural modifications of GA to enhance its antitumor activity.

  5. Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2016-12-01

    Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNA Opt We suspected a modification of the tRNA Opt AUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNA Opt AUG is converted to inosine. We identified tRNA Opt AUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Evaluation of a Magnetically-Filtered Faraday Probe for Measuring the ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2004-07-01

    The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the

  7. Test of electical resistivity and current diffusion modelling on MAST and JET

    NASA Astrophysics Data System (ADS)

    Keeling, D. L.; Challis, C. D.; Jenkins, I.; Hawkes, N. C.; Lupelli, I.; Michael, C.; de Bock, M. F. M.; the MAST Team; contributors, JET

    2018-01-01

    Experiments have been carried out on the MAST and JET tokamaks intended to compare the electrical resistivity of the plasma with theoretical formulations. The tests consist of obtaining motional stark effect (MSE) measurements in MHD-free plasmas during plasma current ramp-up (JET and MAST), ramp-down (MAST) and in stationary state (JET and MAST). Simulations of these plasmas are then performed in which the current profile evolution is calculated according to the poloidal field diffusion equation (PFDE) with classical or neoclassical resistivity. Synthetic MSE data are produced in the simulations for direct comparison with the experimental data. It is found that the toroidal current profile evolution modelled using neoclassical resistivity did not match the experimental observations on either device during current ramp-up or ramp-down as concluded from comparison of experimental and synthetic MSE profiles. In these phases, use of neoclassical resistivity in the modelling systematically overestimates the rate of current profile evolution. During the stationary state however, the modelled toroidal current profile matched experimental observations to a high degree of accuracy on both devices using neoclassical resistivity. Whilst no solution to the mismatch in the dynamic phases of the plasma is proposed, it is suggested that some physical process other than MHD which is not captured by the simple diffusive model of current profile evolution is responsible.

  8. Effects of Computer-Based Training on Procedural Modifications to Standard Functional Analyses

    ERIC Educational Resources Information Center

    Schnell, Lauren K.; Sidener, Tina M.; DeBar, Ruth M.; Vladescu, Jason C.; Kahng, SungWoo

    2018-01-01

    Few studies have evaluated methods for training decision-making when functional analysis data are undifferentiated. The current study evaluated computer-based training to teach 20 graduate students to arrange functional analysis conditions, analyze functional analysis data, and implement procedural modifications. Participants were exposed to…

  9. Cognitive Rather than Emotional Modification in Peace Education Programs: Advantages and Limitations

    ERIC Educational Resources Information Center

    Yablon, Yaacov Boaz

    2007-01-01

    Contact intervention programs are being used as the main vehicle to enhance positive relationships between conflict groups. Current research seeks to reveal the force driving processes that lead to positive contact between conflict groups, and points to the importance of emotional modification. Acknowledging the centrality of emotional…

  10. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    PubMed

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Surface assessment and modification of concrete using abrasive blasting

    NASA Astrophysics Data System (ADS)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to approximate the 3-D concrete surface profiles. The errors were reduced when a weighted average of the four linear profiles approximated the corresponding 3-D parameter. The following chapter considers the parametric and sensitivity of concrete surface topography measurements. The weighted average of the four 2-D profiles consistently resulted in underestimation of the corresponding 3-D parameters: the dispersion of surface elevations (Sq) and the roughness (Sa). Results indicated the 3-D parameter, Sq, had the least sensitivity to data point reduction. The final chapter investigated surface modification using dry ice and sand blasting. The overall objective was to evaluate the change in the 3-D surface roughness (Sa) following blasting as functions of mix design and as induced by freeze-thaw cycling, and to compare the results obtained using dry ice with those obtained using sand as the blasting media. In general, sand blasting produced larger changes in Sa compared to dry ice blasting for the concrete mix designs considered. The primary mechanism responsible for altering the surface topography of the concrete was the scaling of the superficial cement paste layer on the exposed surface, which was due to freeze-thaw cycling. The largest relative change in roughness following blasting occurred in the control samples, which had not undergone freeze-thaw cycling.

  12. Lipoprotein Profile Modifications during Gestation: A Current Approach to Cardiovascular risk surrogate markers and Maternal-fetal Unit Complications.

    PubMed

    Santos, Ana Paula Caires Dos; Couto, Ricardo David

    2018-05-16

    Several changes occur in lipid metabolism during gestation due to hormonal and metabolic changes, which are essential to satisfy the nutritional demands of the maternal-fetal unit development. The gestation shows two distinct periods that begin with fat accumulation, mainly in maternal adipose tissue, and the late phase, characterized by accelerated catabolism, with the increase of fatty acids in the circulation that causes hyperlipidemia, especially the one characterized as hypertriglyceridemia. Maternal hyperlipidemia may be associated with the development of maternal-fetal complications (preterm birth, preeclampsia, vascular complications) and the development of long-term cardiovascular disease. The cardiovascular risk may not only be related to lipoproteins cholesterol content, but also to the number and functionality of circulating lipoprotein particles. This review reports the major changes that occur in lipoprotein metabolism during pregnancy and that are associated with the development of dyslipidemias, lipoprotein atherogenic phenotype, and maternal-fetal unit complications. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  13. Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1984-01-01

    The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.

  14. Selectivity optimization in green chromatography by gradient stationary phase optimized selectivity liquid chromatography.

    PubMed

    Chen, Kai; Lynen, Frédéric; De Beer, Maarten; Hitzel, Laure; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-11-12

    Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation by using a combination of different stationary phases. Previous work has shown that SOSLC offers excellent possibilities for method development, especially after the recent modification towards linear gradient SOSLC. The present work is aimed at developing and extending the SOSLC approach towards selectivity optimization and method development for green chromatography. Contrary to current LC practices, a green mobile phase (water/ethanol/formic acid) is hereby preselected and the composition of the stationary phase is optimized under a given gradient profile to obtain baseline resolution of all target solutes in the shortest possible analysis time. With the algorithm adapted to the high viscosity property of ethanol, the principle is illustrated with a fast, full baseline resolution for a randomly selected mixture composed of sulphonamides, xanthine alkaloids and steroids. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation.

    PubMed

    Amodio, Nicola; D'Aquila, Patrizia; Passarino, Giuseppe; Tassone, Pierfrancesco; Bellizzi, Dina

    2017-01-01

    Multiple Myeloma (MM) is a clonal late B-cell disorder accounting for about 13% of hematological cancers and 1% of all neoplastic diseases. Recent studies on the molecular pathogenesis and biology of MM have highlighted a complex epigenomic landscape contributing to MM onset, prognosis and high individual variability. Areas covered: We describe here the current knowledge on epigenetic events characterizing MM initiation and progression, focusing on the role of DNA and histone methylation and on the most promising epi-therapeutic approaches targeting the methylation pathway. Expert opinion: Data published so far indicate that alterations of the epigenetic framework, which include aberrant global or gene/non-coding RNA specific methylation profiles, feature prominently in the pathobiology of MM. Indeed, the aberrant expression of components of the epigenetic machinery as well as the reversibility of the epigenetic marks make this pathway druggable, providing the basis for the design of epigenetic therapies against this still fatal malignancy.

  16. Cleaning techniques for applied-B ion diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaningmore » techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.« less

  17. Modification of the wake behind a bat ear with and without tubercles

    NASA Astrophysics Data System (ADS)

    Petrin, Christopher; Elbing, Brian

    2015-11-01

    The Mexican Free-Tailed Bat (Tadarida brasiliensis) is a highly aerobatic bat, known to dive from altitudes of several thousand feet into their home caves, reaching estimated speeds of 27 m/s (Davis et al., Ecological Monographs, 32, 1962). A series of small tubercles have been observed on the leading edge of the bat's ear, which mimic the pattern of tubercles found on the fins of the humpback whale (Megaptera novaeangliae). The tubercles on the whale fins have been proven to delay stall on the fin and allow the whale to retain better control during dives. The goal of the current study is to assess whether the bat ear tubercles fulfill a similar purpose of improving flow control, particularly at high angles of attack. This was accomplished by acquiring PIV measurements of the bat ear wake with and without the tubercles. The velocity profiles were used to assess the drag and lift as a function of angle of attack. These results will be presented and the impact of the tubercles assessed.

  18. Radiative transfer code SHARM for atmospheric and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Lyapustin, A. I.

    2005-12-01

    An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Δ-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.

  19. Radiative transfer code SHARM for atmospheric and terrestrial applications.

    PubMed

    Lyapustin, A I

    2005-12-20

    An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Delta-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.

  20. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    NASA Technical Reports Server (NTRS)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness in the final profile than in Jackson s program. The new code uses the complete refractive index expression for a cold collisionless plasma and can accommodate the IGRF, T96, and other geomagnetic field models.

  1. Current good manufacturing practices, quality control procedures, quality factors, notification requirements, and records and reports, for infant formula. Final rule.

    PubMed

    2014-06-10

    The Food and Drug Administration (FDA or we) is issuing a final rule that adopts, with some modifications, the interim final rule (IFR) entitled "Current Good Manufacturing Practices, Quality Control Procedures, Quality Factors, Notification Requirements, and Records and Reports, for Infant Formula'' (February 10, 2014). This final rule affirms the IFR's changes to FDA's regulations and provides additional modifications and clarifications. The final rule also responds to certain comments submitted in response to the request for comments in the IFR.

  2. Operant conditioning-based behavior modification: one approach to treating somatic disorders.

    PubMed

    LeBow, M D

    1975-01-01

    The applicability of behavior modification as a process for treating somatic difficulties is examined within the framework of measurement, modification, and evaluation. Illustrations of this process are presented throughout. In particular, the last section of the paper gives an example of a currently operative and multifaceted approach to the problem of obesity. Among the topics considered herein are the use of behavioral contracts that specify ameliorative weight reduction practices and the assessment as well as manipulation of eating speed.

  3. Off-axis current drive and real-time control of current profile in JT-60U

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.; JT-60 Team

    2008-04-01

    Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (qmin) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control qmin. The real-time control of qmin is demonstrated in a high-β plasma, where qmin follows the temporally changing reference qmin,ref from 1.3 to 1.7. Applying the control to another high-β discharge (βN = 1.7, βp = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), qmin was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement.

  4. Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169

    PubMed Central

    Rubinfeld, Bonnee; Leif, Roald; Mulcahy, Heather; Dugan, Lawrence; Souza, Brian

    2018-01-01

    Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3–6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0–4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilic balance (HLB) of these compounds, and their potential utility within industrial applications. PMID:29293588

  5. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specifiedmore » in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.« less

  6. An Asian community's perspective on facial profile attractiveness.

    PubMed

    Soh, Jen; Chew, Ming Tak; Wong, Hwee Bee

    2007-02-01

    To assess the facial profile preferences of laypersons in an Asian community and the influence of age, ethnic and gender on profile selection. A sample of 149 laypersons (65.1% Chinese, 21.5% Malays and 13.4% Indians), comprising of 112 females (75.2%) participated in the study. The mean age was 24.6 years (SD 4.4). A facial profile photograph and a lateral cephalometric radiograph of a Chinese male and female adult with a normal profile and a class I incisor and skeletal relationship were digitized to create a baseline template. Computerized digital photographic image modification was carried out on the template to obtain seven facial profiles [bimaxillary protrusion, protrusive mandible, retrusive mandible, normal profile (incisor and skeletal class I pattern), retrusive maxilla, protrusive maxilla and bimaxillary retrusion] for each gender. The laypersons were asked to rank the profiles of each gender on a scale of 1 (very attractive) to 7 (least attractive). Orthognathic Chinese male and female profiles were perceived to be the most attractive. A male orthognathic profile with normative Chinese cephalometric values was perceived to be more attractive than a 'flatter' bimaxillary retrusive profile. Bimaxillary retrusion and normal Chinese female profiles were perceived to be the most attractive. A male or female profile with a protrusive mandible was judged to be the least attractive. Age, gender and ethnicity were nonsignificant predictors for the most attractive female profile. Orthognathic Chinese male and female profiles were judged to be the most attractive by Asian adult laypersons. Male and female profiles with mandibular protrusion were judged to be the least attractive.

  7. An in vitro evaluation of the Anew Zephyr open-bag IOL in the prevention of posterior capsule opacification using a human capsular bag model.

    PubMed

    Eldred, Julie A; Spalton, David J; Wormstone, I Michael

    2014-09-18

    During cataract surgery an IOL is placed within the capsular bag. Clinical studies show that IOLs with a square edge profile and complete contact between the IOL and the anterior capsule (AC) are currently the best way to prevent posterior capsule opacification (PCO). This has been challenged by recent clinical and experimental observations, which suggest that if the capsular bag is kept open with separation of contact between the AC and posterior capsule (PC) by an "open-bag device" PCO is dramatically reduced. Therefore, the current study set out to evaluate the putative merits of an open-bag IOL (Anew Zephyr) in a human capsular bag model. An in vitro organ culture model using the bag-zonular-ciliary body complex isolated from fellow human donor eyes was prepared. A capsulorhexis and lens extraction were performed, and an Alcon Acrysof IOL or Anew Zephyr IOL implanted. Preparations were secured by pinning the ciliary body to a silicone ring and maintained in 6 mL Eagle's minimum essential medium (EMEM) or EMEM supplemented with 2% vol/vol human serum (HS) and 10 ng/mL TGF-β2 for 28 days. Cell growth and capsular modifications were monitored with phase-contrast and modified dark-field microscopy. In serum-free EMEM culture conditions, cells were observed growing onto the PC of preparations implanted with an Anew Zephyr IOL, but this was retarded relative to observations in match-paired capsular bags implanted with an Alcon Acrysof IOL. In the case of cultures maintained in 2% HS-EMEM plus TGF-β2, the movement on to the PC was again delayed with the presence of an Anew Zephyr IOL. Differences in the degree of growth on the PC and matrix modifications were apparent with the different donors, but in each case the match-paired Alcon Acrysof implanted bag exhibited significantly greater coverage and modification of the capsule. The Anew Zephyr open-bag IOL performs consistently better than the Alcon Acrysof IOL in the human capsular bag model. We propose that the benefits observed with the Anew Zephyr result from a reduction in growth factor levels available within the capsular bag and a barrier function imposed by the ring haptic. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Application of Traditional and Nanostructure Materials for Medical Electron Beams Collimation: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.

    2015-11-01

    Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.

  9. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species

    PubMed Central

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D.; Amodeo, Gabriela

    2015-01-01

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected. PMID:26602985

  10. Bioremediation of cooking oil waste using lipases from wastes

    PubMed Central

    do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166

  11. Label-free specific detection of femtomolar cardiac troponin using an integrated nanoslit array fluidic diode.

    PubMed

    Liu, Yifan; Yobas, Levent

    2014-12-10

    We demonstrate here for the first time the utility of an integrated nanofluidic diode for detecting and quantifying physiologically relevant macromolecules. Troponin T, a key human cardiac protein biomarker, was selectively and rapidly detected free of labels for concentrations down to 10 fg/mL (∼ 0.3 fM) in buffer as well as 10 pg/mL (∼ 300 fM) in untreated human serum. This ultrasensitive detection arises from monolithic integration of a unique nanofluidic diode structure that is highly robust and amenable to site-specific surface modification. The structure features a planar nanoslit array where each nanoslit is defined at a nominal width of 70 nm over a micrometer-scale silicon trench without the use of high-resolution patterning techniques. Through vapor deposition, a glass layer is placed at a nonuniform thickness, tapering the trench profile upward and contributing to the triangular nanoslit structure. This asymmetric profile is essential for ionic current rectification noted here at various pH values, ionic strengths, and captured target species, which modulate the surface-charge density within the sensitive region of the nanoslit. The nanoslit, unlike nanopores, offers only 1D confinement, which appears to be adequate for reasonable rectification. The measurements are found in quantitative agreement with the diode simulations for the first time based on a pH- and salt-dependent surface-charge model.

  12. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles?

    PubMed

    Fulneček, Jaroslav; Kovařík, Aleš

    2014-01-06

    DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation.

  13. Bioremediation of cooking oil waste using lipases from wastes.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Prado, Débora Zanoni do; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando; Fleuri, Luciana Francisco

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  14. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics

    DOE PAGES

    Rinke, Christian; Low, Serene; Woodcroft, Ben J.; ...

    2016-09-22

    High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. For this study, we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diversemore » Bacteria and Archaea. The main technical issues with the low input libraries were a greater potential for contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a lower limit of 1 pg (~100–1,000 microbial cells) to ensure community composition fidelity, and the inclusion of negative controls to identify reagent-specific contaminants. Applying the approach to marine surface water, pronounced differences were observed between bacterial community profiles of microliter volume samples, which we attribute to biological variation. This result is consistent with expected microscale patchiness in marine communities. We thus envision that our benchmarked, slightly modified low input DNA protocol will be beneficial for microscale and low biomass metagenomics.« less

  15. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinke, Christian; Low, Serene; Woodcroft, Ben J.

    High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. For this study, we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diversemore » Bacteria and Archaea. The main technical issues with the low input libraries were a greater potential for contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a lower limit of 1 pg (~100–1,000 microbial cells) to ensure community composition fidelity, and the inclusion of negative controls to identify reagent-specific contaminants. Applying the approach to marine surface water, pronounced differences were observed between bacterial community profiles of microliter volume samples, which we attribute to biological variation. This result is consistent with expected microscale patchiness in marine communities. We thus envision that our benchmarked, slightly modified low input DNA protocol will be beneficial for microscale and low biomass metagenomics.« less

  16. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics

    PubMed Central

    Low, Serene; Raina, Jean-Baptiste; Skarshewski, Adam; Le, Xuyen H.; Butler, Margaret K.; Stocker, Roman; Seymour, Justin; Tyson, Gene W.

    2016-01-01

    High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. Here we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diverse Bacteria and Archaea. The main technical issues with the low input libraries were a greater potential for contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a lower limit of 1 pg (∼100–1,000 microbial cells) to ensure community composition fidelity, and the inclusion of negative controls to identify reagent-specific contaminants. Applying the approach to marine surface water, pronounced differences were observed between bacterial community profiles of microliter volume samples, which we attribute to biological variation. This result is consistent with expected microscale patchiness in marine communities. We thus envision that our benchmarked, slightly modified low input DNA protocol will be beneficial for microscale and low biomass metagenomics. PMID:27688978

  17. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the initial wavefront of the device and fore optics. A wavefront correction is calculated, and voltage profile for each nanowire strip is determined. The voltage is applied, modifying the local index of refraction of the dielectric under the nanowire strip. This modifies the phase of the reflected light to allow wavefront correction.

  18. Minimal modification of tri-bimaximal neutrino mixing and leptonic CP violation

    NASA Astrophysics Data System (ADS)

    Kang, Sin Kyu

    2017-12-01

    We confront possible forms of the minimal modification of the tri-bimaximal (TBM) neutrino mixing matrix proposed by Kang and Kim (Phys. Rev. D 90, 077301 (2014)) with the latest global fit to neutrino data. One form among them is singled out by the current experimental results at 1σ confidence level (C.L.) The minimal modification of the TBM mixing matrix makes possible the prediction of Dirac-type CP phase in the Pontecorbo-Maki-Nakagawa-Sakata neutrino mixing matrix in terms of two neutrino mixing angles. By carrying out a numerical analysis based on the latest experimental results for neutrino mixing angles, we are able to present new results on the prediction of the Dirac-type CP phase. We also compare our results on CP violation with those from the current global fit at 1 σ C.L.

  19. Drug delivery from hydrophobic-modified mesoporous silicas: Control via modification level and site-selective modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Qunli, E-mail: tangqunli@hnu.c; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001; Chen Yuxi

    2010-01-15

    Dimethylsilyl (DMS) modified mesoporous silicas were successfully prepared via co-condensation and post-grafting modification methods. The post-grafting modification was carried out by the reaction of the as-synthesized MCM-41 material (before CTAB removal) with diethoxydimethylsinale (DEDMS). N{sub 2} adsorption-desorption and {sup 29}Si MAS NMR characterization demonstrated that different amount of DMS groups were successfully incorporated into the co-condensation modified samples, and the functional DMS groups were placed selectively on the pore openings and external pore surfaces in the post-grafting modified samples. Subsequently, the controlled drug delivery properties from the resulting DMS-modified mesoporous silicas were investigated in detail. The drug adsorption experiments showedmore » that the adsorption capacities were mainly depended on the content of silanol group (CSG) in the corresponding carriers. The in vitro tests exhibited that the incorporation of DMS groups greatly retarded the ibuprofen release rate. Moreover, the ibuprofen release profiles could be well modulated by varying DMS modification levels and site-selective distribution of functional groups in mesoporous carriers. - The distribution of DMS groups on the pore surfaces of the mesostructures strongly affects the drug release rate. The P-M41-1 and the P-M41-2 possess the close DMS modification levels as the C-M41-10, but the ibuprofen release rates from the P-M41-1 and P-M41-2 are much slower than that from the C-M41-10.« less

  20. Solid state recording current meter conversion

    USGS Publications Warehouse

    Cheng, Ralph T.; Wang, Lichen

    1985-01-01

    The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.

  1. The interaction of the soybean seed high oleic acid oil trait with other fatty acid modifications

    USDA-ARS?s Scientific Manuscript database

    Oil value is determined by the functional qualities imparted from the fatty acid profile. Soybean oil historically had excellent utilization in both food and industrial uses, but the need to increase the stability of the oil without negative health consequences has led to a significant decline in s...

  2. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    USDA-ARS?s Scientific Manuscript database

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  3. Genome-wide DNA methylation profiles and their replationship with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos Taurine)

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is a key epigenetic modification in mammals, having essential and important roles in muscle development. We sample longissimus thoracis tissues from a well-known elite native breed of Chinese Qinchuan cattle living within comparable environments at fetal and adult stages, using methy...

  4. Effects of aqueous extracts of dried calyx of sour tea (Hibiscus sabdariffa L.) on polygenic dyslipidemia: A randomized clinical trial.

    PubMed

    Hajifaraji, Majid; Matlabi, Mohammad; Ahmadzadeh-Sani, Farihe; Mehrabi, Yadollah; Rezaee, Mohammad Salem; Hajimehdipour, Homa; Hasanzadeh, Abbas; Roghani, Katayoun

    2018-01-01

    Dyslipidemia has been considered as a major risk factor for coronary heart disease. Alternative medicine has a significant role in treatment of dyslipidemia. There are controversial findings regarding the effects of sour tea on dyslipidemia. The aim of this study was to evaluate the impact of aqueous extract of dried calyx of sour tea on polygenic dyslipidemia. This clinical trial was done on 43 adults (30-60 years old) with polygenic dyslipidemia that were randomly assigned to the intervention and control groups. The control group was trained in lifestyle modifications at baseline. The intervention group was trained for lifestyle modifications at baseline and received two cups of sour tea daily, and both groups were followed up for 12 weeks. Lipid profile was evaluated at baseline, and six and 12 weeks following the intervention. In addition, dietary and physical activity assessed at baseline for twelve weeks. Mean concentration of total cholesterol, HDL-C and LDL-C significantly decreased by up to 9.46%, 8.33%, and 9.80%, respectively, after 12 weeks in the intervention group in comparison to their baseline values. However, LDL-C/HDL-C ratio significantly increased by up to 3.15%, following 12 weeks in the control group in comparison to their baseline values. This study showed no difference in lipid profiles between the two groups, except for HDL-C concentrations. sour tea may have significant positive effects on lipid profile of polygenic dyslipidemia subjects and these effect might be attributed to its anthocyanins and inflation factor content. Therefore, sour tea intake with recommended dietary patterns and physical activity can be useful in regulation of lipid profile in patients with polygenic dyslipidemia.

  5. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Kabirul; Chen, Yuling; Wu, Hong

    2013-11-18

    Protein methyltransferase (PMT)-mediated posttranslational modification of histone and nonhistone substrates modulates stability, localization, and interacting partners of target proteins in diverse cellular contexts. These events play critical roles in normal biological processes and are frequently deregulated in human diseases. In the course of identifying substrates of individual PMTs, bioorthogonal profiling of protein methylation (BPPM) has demonstrated its merits. In this approach, specific PMTs are engineered to process S-adenosyl-L-methionine (SAM) analogs as cofactor surrogates and label their substrates with distinct chemical modifications for target elucidation. Despite the proof-of-concept advancement of BPPM, few efforts have been made to explore its generality. Withmore » two cancer-relevant PMTs, EuHMT1 (GLP1/KMT1D) and EuHMT2 (G9a/KMT1C), as models, we defined the key structural features of engineered PMTs and matched SAM analogs that can render the orthogonal enzyme–cofactor pairs for efficient catalysis. Here we have demonstrated that the presence of sulfonium-β-sp 2 carbon and flexible, medium-sized sulfonium-δ-substituents are crucial for SAM analogs as BPPM reagents. The bulky cofactors can be accommodated by tailoring the conserved Y1211/Y1154 residues and nearby hydrophobic cavities of EuHMT1/2. Profiling proteome-wide substrates with BPPM allowed identification of >500 targets of EuHMT1/2 with representative targets validated using native EuHMT1/2 and SAM. This finding indicates that EuHMT1/2 may regulate many cellular events previously unrecognized to be modulated by methylation. The present work, therefore, paves the way to a broader application of the BPPM technology to profile methylomes of diverse PMTs and elucidate their downstream functions.« less

  6. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    PubMed Central

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  7. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    PubMed

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  8. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    NASA Astrophysics Data System (ADS)

    Kraus, B. F.; Hudson, S. R.

    2017-09-01

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.

  9. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis.

    PubMed

    Kumar, Himanshu; Lund, Riikka; Laiho, Asta; Lundelin, Krista; Ley, Ruth E; Isolauri, Erika; Salminen, Seppo

    2014-12-16

    The core human gut microbiota contributes to the developmental origin of diseases by modifying metabolic pathways. To evaluate the predominant microbiota as an epigenetic modifier, we classified 8 pregnant women into two groups based on their dominant microbiota, i.e., Bacteroidetes, Firmicutes, and Proteobacteria. Deep sequencing of DNA methylomes revealed a clear association between bacterial predominance and epigenetic profiles. The genes with differentially methylated promoters in the group in which Firmicutes was dominant were linked to risk of disease, predominantly to cardiovascular disease and specifically to lipid metabolism, obesity, and the inflammatory response. This is one of the first studies that highlights the association of the predominant bacterial phyla in the gut with methylation patterns. Further longitudinal and in-depth studies targeting individual microbial species or metabolites are recommended to give us a deeper insight into the molecular mechanism of such epigenetic modifications. Epigenetics encompasses genomic modifications that are due to environmental factors and do not affect the nucleotide sequence. The gut microbiota has an important role in human metabolism and could be a significant environmental factor affecting our epigenome. To investigate the association of gut microbiota with epigenetic changes, we assessed pregnant women and selected the participants based on their predominant gut microbiota for a study on their postpartum methylation profile. Intriguingly, we found that blood DNA methylation patterns were associated with gut microbiota profiles. The gut microbiota profiles, with either Firmicutes or Bacteroidetes as a dominant group, correlated with differential methylation status of gene promoters functionally associated with cardiovascular diseases. Furthermore, differential methylation of gene promoters linked to lipid metabolism and obesity was observed. For the first time, we report here a position of the predominant gut microbiota in epigenetic profiling, suggesting one potential mechanism in obesity with comorbidities, if proven in further in-depth studies. Copyright © 2014 Kumar et al.

  10. Meta-Analysis of the Effects of Academic Interventions and Modifications on Student Behavior Outcomes

    ERIC Educational Resources Information Center

    Warmbold-Brann, Kristy; Burns, Matthew K.; Preast, June L.; Taylor, Crystal N.; Aguilar, Lisa N.

    2017-01-01

    The current study examined the effect of academic interventions and modifications on behavioral outcomes in a meta-analysis of 32 single-case design studies. Academic interventions included modifying task difficulty, providing instruction in reading, mathematics, or writing, and contingent reinforcement for academic performance. There was an…

  11. 40 CFR 122.63 - Minor modifications of permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Minor modifications of permits. 122.63..., coverage, and liability between the current and new permittees has been submitted to the Director. (e)(1...) Incorporate changes to the terms of a CAFO's nutrient management plan that have been revised in accordance...

  12. Research Review: Attention Bias Modification (ABM)--A Novel Treatment for Anxiety Disorders

    ERIC Educational Resources Information Center

    Bar-Haim, Yair

    2010-01-01

    Attention bias modification (ABM) is a newly emerging therapy for anxiety disorders that is rooted in current cognitive models of anxiety and in established experimental data on threat-related attentional biases in anxiety. This review describes the evidence indicating that ABM has the potential to become an enhancing tool for current…

  13. The Substitution Augmentation Modification Redefinition (SAMR) Model: A Critical Review and Suggestions for Its Use

    ERIC Educational Resources Information Center

    Hamilton, Erica R.; Rosenberg, Joshua M.; Akcaoglu, Mete

    2016-01-01

    The Substitution, Augmentation, Modification, and Redefinition (SAMR) model is a four-level, taxonomy-based approach for selecting, using, and evaluating technology in K-12 settings (Puentedura 2006). Despite its increasing popularity among practitioners, the SAMR model is not currently represented in the extant literature. To focus the ongoing…

  14. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... involves important physical modifications to the HNP, Unit 1 security system. There are several issues... in which some important security modifications are planned. A direct outside access route to the... implementation deadline, the licensee currently maintains a security system acceptable to the NRC and that will...

  15. Fathers Show Modifications of Infant-Directed Action Similar to that of Mothers

    ERIC Educational Resources Information Center

    Rutherford, M. D.; Przednowek, Malgorzata

    2012-01-01

    Mothers' actions are more enthusiastic, simple, and repetitive when demonstrating novel object properties to their infants than to adults, a behavioral modification called "infant-directed action" by Brand and colleagues (2002). The current study tested whether fathers also tailor their behavior when interacting with infants and whether this…

  16. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  17. Voltage Profiles for the Lead-Acid Cell: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Haaser, Robert; Ross, Joseph H.; Saslow, Wayne M.

    1999-10-01

    Using platinum electrodes we have measured the voltage profile in space across a lead-acid cell, for slow, steady processes. Once in the slow, steady charge or discharge regime, the experimental voltage profile is quadratic, as predicted by recent theory.^1 However, even without current flow, in the slow, steady regime the voltage profile also is quadratic, rather than a straight line with zero slope. This other quadratic voltage profile is due to nonfaradaic chemical reactions at the working electrodes, which slowly discharge the cell without drawing any current. Such a quadratic voltage profile follows from theory. The voltage jump profiles (change in voltage profile on sudden change in current) on starting or ending a charge or discharge, are linear in space, with slope consistent with the measured resistivity of battery acid. This is as expected if charge on the electrodes, but not in the electrolyte, has time to move. 1. W.M.Saslow, Phys.Rev.Lett.76, 4849 (1996).

  18. Cardiac ion channel modulation by the hypoglycaemic agent rosiglitazone.

    PubMed

    Hancox, J C

    2011-06-01

    The hypoglycaemic thiazolidinedione rosiglitazone is used clinically in the treatment of type 2 diabetes. However, in 2010, information relating to rosiglitazone-associated increased cardiovascular risk led the European Medicines Agency to recommend suspension of marketing authorizations for rosiglitazone-containing anti-diabetes drugs, while the US Food and Drug Administration recommended significant restriction on the agent's use. Two timely studies in this issue of the British Journal of Phrarmacology provide new information regarding modification of cardiac cellular electrophysiology by rosiglitazone. Szentandrássy et al. demonstrate canine ventricular action potential modification and concentration-dependent suppression of L-type Ca current and of transient outward and rapid delayed rectifier K currents. Jeong et al. demonstrate concentration-dependent inhibition of recombinant K(v) 4.3 channels, providing mechanistic insight into the likely molecular basis of transient outward K current inhibition by the compound. Further studies using diabetic models would be of value to determine whether, in a diabetic setting, rosiglitazone modification of these channels could affect the risk of arrhythmia at clinically relevant drug concentrations. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  19. Spline-Based Smoothing of Airfoil Curvatures

    NASA Technical Reports Server (NTRS)

    Li, W.; Krist, S.

    2008-01-01

    Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been extensively tested on a number of supercritical airfoil data sets generated by inverse design and optimization computer programs. All of the smoothing results show that CFACS is able to generate unbiased smooth fits of curvature profiles, trading small modifications of geometry for increasing curvature smoothness by eliminating curvature oscillations and bumps (see figure).

  20. Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact.

    PubMed

    Mansouri, Larry; Wierzbinska, Justyna Anna; Plass, Christoph; Rosenquist, Richard

    2018-02-07

    Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Development and characterization of an allergoid of cat dander for immunotherapy.

    PubMed

    Sola, J P; Pedreño, Y; Cerezo, A; Peñalver-Mellado, M

    2018-01-13

    Allergy to cats is a frequent cause of sensitization to indoor allergens and currently there are few alternatives to specific immunotherapy with cat native extracts. The objective is to develop and characterize a new allergoid to increase the tools available for use in clinical practice. The allergoid cat dander extract (ACD) was developed from a native cat dander extract (NCD) by modification with glutaraldehyde, and the optimal process control was determined by SDS-PAGE, DOT BLOT and determination of free amine groups. The ACD was characterized in protein profile by SDS-PAGE, size exclusion chromatography (SEC) and peptide footprint. The allergenic profile of ACD was determined by immunoblot, IgE CAP inhibition and IgG competition ELISA. The major allergen content in NCD was obtained by the ELISA sandwich protocol and was extrapolated to ACD. The control process determined the optimal development of the allergoid. The ACD obtained contains 182.28μg/mg of protein and 11.90μg/mg of Fel d 1. SDS-PAGE and SEC confirmed the presence of high molecular weight proteins in ACD, and the peptide footprint showed the presence of Fel d 1 and Fel d 7. The high degree of polymerization was evidenced with the determination of the reduction of lysine residues in the allergoid, resulting 91.96%. The ACD showed a significant loss of allergenicity respect to NCD, while the IgG-binding capacity was maintained. The ACD obtained presents a good safety profile, so would be a good alternative for treatment of cat allergy. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  2. Potential Role of Gut Microbiota in ALS Pathogenesis and Possible Novel Therapeutic Strategies.

    PubMed

    Mazzini, Letizia; Mogna, Luca; De Marchi, Fabiola; Amoruso, Angela; Pane, Marco; Aloisio, Irene; Cionci, Nicole Bozzi; Gaggìa, Francesca; Lucenti, Ausiliatrice; Bersano, Enrica; Cantello, Roberto; Di Gioia, Diana; Mogna, Giovanni

    2018-05-18

    Recent preclinical studies suggest that dysfunction of gastrointestinal tract may play a role in amyotrophic lateral sclerosis (ALS) pathogenesis through a modification of the gut microbiota brain axis. Our study is the first focused on microbiota analysis in ALS patients. Our aim was to study the main human gut microbial groups and the overall microbial diversity in ALS and healthy subjects. Moreover we have examined the influence of a treatment with a specific bacteriotherapy composed of Lactobacillus strains (Lactobacillus fermentum, Lactobacillus delbrueckii, Lactobacillus plantarum, Lactobacillus salivarius) acting on the gastrointestinal barrier. We enrolled 50 ALS patients and 50 healthy controls, matched for sex, age, and origin. Fecal samples were used for total genomic DNA extraction. Enterobacteria, Bifidobacterium spp., Lactobacillus spp., Clostridium sensu stricto, Escherichia coli and yeast were quantified using quantitative polymerase chain reaction approach. Denaturing gradient gel electrophoresis analyses were performed to investigate total eubacteria and yeasts populations. Patients were randomized to double-blind treatment either with microorganisms or placebo for 6 months and monitored for clinical progression and microbiota composition. The comparison between ALS subjects and healthy group revealed a variation in the intestinal microbial composition with a higher abundance of E. coli and enterobacteria and a low abundance of total yeast in patients. Polymerase chain reaction denaturing gradient gel electrophoresis analysis showed a cluster distinction between the bacterial profiles of ALS patients and the healthy subjects. The complexity of the profiles in both cases may indicate that a real dysbiosis status is not evident in the ALS patients although differences between healthy and patients exist. The effects of the progression of the disease and of the bacteriotherapy on the bacterial and yeast populations are currently in progress. Our preliminary results confirm that there is a difference in the microbiota profile in ALS patients.

  3. Comparative Effectiveness of Personalized Lifestyle Management Strategies for Cardiovascular Disease Risk Reduction.

    PubMed

    Chu, Paula; Pandya, Ankur; Salomon, Joshua A; Goldie, Sue J; Hunink, M G Myriam

    2016-03-29

    Evidence shows that healthy diet, exercise, smoking interventions, and stress reduction reduce cardiovascular disease risk. We aimed to compare the effectiveness of these lifestyle interventions for individual risk profiles and determine their rank order in reducing 10-year cardiovascular disease risk. We computed risks using the American College of Cardiology/American Heart Association Pooled Cohort Equations for a variety of individual profiles. Using published literature on risk factor reductions through diverse lifestyle interventions-group therapy for stopping smoking, Mediterranean diet, aerobic exercise (walking), and yoga-we calculated the risk reduction through each of these interventions to determine the strategy associated with the maximum benefit for each profile. Sensitivity analyses were conducted to test the robustness of the results. In the base-case analysis, yoga was associated with the largest 10-year cardiovascular disease risk reductions (maximum absolute reduction 16.7% for the highest-risk individuals). Walking generally ranked second (max 11.4%), followed by Mediterranean diet (max 9.2%), and group therapy for smoking (max 1.6%). If the individual was a current smoker and successfully quit smoking (ie, achieved complete smoking cessation), then stopping smoking yielded the largest reduction. Probabilistic and 1-way sensitivity analysis confirmed the demonstrated trend. This study reports the comparative effectiveness of several forms of lifestyle modifications and found smoking cessation and yoga to be the most effective forms of cardiovascular disease prevention. Future research should focus on patient adherence to personalized therapies, cost-effectiveness of these strategies, and the potential for enhanced benefit when interventions are performed simultaneously rather than as single measures. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  4. Non-metric multidimensional performance indicator scaling reveals seasonal and team dissimilarity within the National Rugby League.

    PubMed

    Woods, Carl T; Robertson, Sam; Sinclair, Wade H; Collier, Neil French

    2018-04-01

    Analysing the dissimilarity of seasonal and team profiles within elite sport may reveal the evolutionary dynamics of game-play, while highlighting the similarity of individual team profiles. This study analysed seasonal and team dissimilarity within the National Rugby League (NRL) between the 2005 to 2016 seasons. Longitudinal. Total seasonal values for 15 performance indicators were collected for every NRL team over the analysed period (n=190 observations). Non-metric multidimensional scaling was used to reveal seasonal and team dissimilarity. Compared to the 2005 to 2011 seasons, the 2012 to 2016 seasons were in a state of flux, with a relative dissimilarity in the positioning of team profiles on the ordination surface. There was an abrupt change in performance indicator characteristics following the 2012 season, with the 2014 season reflecting a large increase in the total count of 'all run metres' (d=1.21; 90% CI=0.56-1.83), 'kick return metres' (d=2.99; 90% CI=2.12-3.84) and decrease in 'missed tackles' (d=-2.43; 90% CI=-3.19 to -1.64) and 'tackle breaks' (d=-2.41; 90% CI=-3.17 to -1.62). Interpretation of team ordination plots showed that certain teams evolved in (dis)similar ways over the analysed period. It appears that NRL match-types evolved following the 2012 season and are in a current state of flux. The modification of coaching tactics and rule changes may have contributed to these observations. Coaches could use these results when designing prospective game strategies in the NRL. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.).

    PubMed

    Ayyappan, Vasudevan; Kalavacharla, Venu; Thimmapuram, Jyothi; Bhide, Ketaki P; Sripathi, Venkateswara R; Smolinski, Tomasz G; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress.

  6. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Thimmapuram, Jyothi; Bhide, Ketaki P.; Sripathi, Venkateswara R.; Smolinski, Tomasz G.; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress. PMID:26167691

  7. Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population.

    PubMed

    Singh, Virendra; Singh, Laishram C; Singh, Avninder P; Sharma, Jagannath; Borthakur, Bibhuti B; Debnath, Arundhati; Rai, Avdhesh K; Phukan, Rup K; Mahanta, Jagadish; Kataki, Amal C; Kapur, Sujala; Saxena, Sunita

    2015-01-01

    Esophageal cancer incidence is reported in high frequency in northeast India. The etiology is different from other population at India due to wide variations in dietary habits or nutritional factors, tobacco/betel quid chewing and alcohol habits. Since DNA methylation, histone modification and miRNA-mediated epigenetic processes alter the gene expression, the involvement of these processes might be useful to find out epigenetic markers of esophageal cancer risk in northeast Indian population. The present investigation was aimed to carryout differential expression profiling of chromatin modification enzymes in tumor and normal tissue collected from esophageal squamous cell carcinoma (ESCC) patients. Differential mRNA expression profiling and their validation was done by quantitative real time PCR and tissue microarray respectively. Univariate and multiple logistic regression analysis were used to analyze the epidemiological data. mRNA expression data was analyzed by Student t-test. Fisher exact test was used for tissue microarray data analysis. Higher expression of enzymes regulating methylation (DOT1L and PRMT1) and acetylation (KAT7, KAT8, KAT2A and KAT6A) of histone was found associated with ESCC risk. Tissue microarray done in independent cohort of 75 patients revealed higher nuclear protein expression of KAT8 and PRMT1 in tumor similar to mRNA expression. Expression status of PRMT1 and KAT8 was found declined as we move from low grade to high grade tumor. Betel nut chewing, alcohol drinking and dried fish intake were significantly associated with increased risk of esophageal cancer among the study subject. Study suggests the association of PRMT1 and KAT8 with esophageal cancer risk and its involvement in the transition process of low to high grade tumor formation. The study exposes the differential status of chromatin modification enzymes between tumor and normal tissue and points out that relaxed state of chromatin facilitates more transcriptionally active genome in esophageal carcinogenesis.

  8. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis.

    PubMed

    Leong, Daniel J; Choudhury, Marwa; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Sun, Hui B

    2013-11-21

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals-food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease-offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.

  9. Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

    PubMed Central

    Leong, Daniel J.; Choudhury, Marwa; Hirsh, David M.; Hardin, John A.; Cobelli, Neil J.; Sun, Hui B.

    2013-01-01

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment. PMID:24284399

  10. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.

    PubMed

    Gagné, Jean-Philippe; Langelier, Marie-France; Pascal, John M; Poirier, Guy G

    2018-06-11

    Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simple derivatives for effective interrogation of protein databases and site-specific localization of the modified residues. Currently, the generation of spectral signatures indicative of ADP-ribosylation rely on chemical or enzymatic conversion of the modification to a single mass increment. Still, limitations arise from the lability of the poly(ADP-ribose) remnant during tandem mass spectrometry, the varying susceptibilities of different ADP-ribose-protein bonds to chemical hydrolysis, or the context dependence of enzyme-catalyzed reactions. Here, we present a chemical-based derivatization method applicable to the confident identification of site-specific ADP-ribosylation by conventional mass spectrometry on any targeted amino acid residue. Using PARP-1 as a model protein, we report that treatment of ADP-ribosylated peptides with hydrofluoric acid generates a specific +132 Da mass signature that corresponds to the decomposition of mono- and poly(ADP-ribosylated) peptides into ribose adducts as a consequence of the cleavage of the phosphorus-oxygen bonds.

  11. To the theory of high-power gyrotrons with uptapered resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrajs, O.; Nusinovich, G. S.

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimizationmore » of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.« less

  12. Mobile Phone Cognitive Bias Modification Research Platform for Substance Use Disorders: Protocol for a Feasibility Study.

    PubMed

    Zhang, Melvyn; Ying, JiangBo; Song, Guo; Fung, Daniel Ss; Smith, Helen

    2018-06-12

    Cognitive biases refer to automatic attentional and interpretational tendencies, which could be retained by cognitive bias modification interventions. Cristea et al and Jones et al have published reviews (in 2016 and 2017 respectively) on the effectiveness of such interventions. The advancement of technologies such as electronic health (eHealth) and mobile health (mHealth) has led to them being harnessed for the delivery of cognitive bias modification. To date, at least eight studies have demonstrated the feasibility of mobile technologies for the delivery of cognitive bias modification. Most of the studies are limited to a description of the conventional cognitive bias modification methodology that has been adopted. None of the studies shared the developmental process for the methodology involved, such that future studies could adopt it in the cost-effective replication of such interventions. It is important to have a common platform that could facilitate the design and customization of cognitive bias modification interventions for a variety of psychiatric and addictive disorders. It is the aim of the current research protocol to describe the design of a research platform that allows for customization of cognitive bias modification interventions for addictive disorders. A multidisciplinary team of 2 addiction psychiatrists, a psychologist with expertise in cognitive bias modification, and a computer engineer, were involved in the development of the intervention. The proposed platform would comprise of a mobile phone version of the cognitive bias task which is controlled by a server that could customize the algorithm for the tasks and collate the reaction-time data in realtime. The server would also allow the researcher to program the specific set of images that will be present in the task. The mobile phone app would synchronize with the backend server in real-time. An open-sourced cross-platform gaming software from React Native was used in the current development. Multimedia Appendix 1 contains a video demonstrating the operation of the app, as well as a sample dataset of the reaction times (used for the computation of attentional biases) captured by the app. The current design can be utilized for cognitive bias modification across a spectrum of disorders and is not limited to one disorder. It will be of value for future research to utilize the above platform and compare the efficacy of mHealth approaches, such as the one described in this study, with conventional Web-based approaches in the delivery of attentional bias modification interventions. RR1-10.2196/9740. ©Melvyn Zhang, JiangBo Ying, Guo Song, Daniel SS Fung, Helen Smith. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 12.06.2018.

  13. Taurus II Stage Test Simulations: Using Large-Scale CFD Simulations to Provide Critical Insight into Plume Induced Environments During Design

    NASA Technical Reports Server (NTRS)

    Struzenberg, L. L.; West, J. S.

    2011-01-01

    This paper describes the use of targeted Loci/CHEM CFD simulations to evaluate the effects of a dual-engine first-stage hot-fire test on an evolving integrated launch pad/test article design. This effort was undertaken as a part of the NESC Independent Assessment of the Taurus II Stage Test Series. The underlying conceptual model included development of a series of computational models and simulations to analyze the plume induced environments on the pad, facility structures and test article. A pathfinder simulation was first developed, capable of providing quick-turn around evaluation of plume impingement pressures on the flame deflector. Results from this simulation were available in time to provide data for an ongoing structural assessment of the deflector. The resulting recommendation was available in a timely manner and was incorporated into construction schedule for the new launch stand under construction at Wallops Flight Facility. A series of Reynolds-Averaged Navier-Stokes (RANS) quasi-steady simulations representative of various key elements of the test profile was performed to identify potential concerns with the test configuration and test profile. As required, unsteady Hybrid-RANS/LES simulations were performed, to provide additional insight into critical aspects of the test sequence. Modifications to the test-specific hardware and facility structures thermal protection as well as modifications to the planned hot-fire test profile were implemented based on these simulation results.

  14. Arginine and Polyamines Fate in Leishmania Infection

    PubMed Central

    Muxel, Sandra M.; Aoki, Juliana I.; Fernandes, Juliane C. R.; Laranjeira-Silva, Maria F.; Zampieri, Ricardo A.; Acuña, Stephanie M.; Müller, Karl E.; Vanderlinde, Rubia H.; Floeter-Winter, Lucile M.

    2018-01-01

    Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection. PMID:29379478

  15. Molecular targets of epigenetic regulation and effectors of environmental influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhuri, Supratim, E-mail: Supratim.Choudhuri@fda.hhs.go; Cui Yue; Klaassen, Curtis D., E-mail: cklaasse@kumc.ed

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, suchmore » as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.« less

  16. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE PAGES

    Kraus, B. F.; Hudson, S. R.

    2017-09-29

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  17. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, B. F.; Hudson, S. R.

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  18. Laser altimeter observations from MESSENGER's first Mercury flyby.

    PubMed

    Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K

    2008-07-04

    A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.

  19. Overcoming translational barriers impeding development of Alzheimer's disease modifying therapies.

    PubMed

    Golde, Todd E

    2016-10-01

    It has now been ~ 30 years since the Alzheimer's disease (AD) research entered what may be termed the 'molecular era' that began with the identification of the amyloid β protein (Aβ) as the primary component of amyloid within senile plaques and cerebrovascular amyloid and the microtubule-associated protein tau as the primary component of neurofibrillary tangles in the AD brain. These pivotal discoveries and the subsequent genetic, pathological, and modeling studies supporting pivotal roles for tau and Aβ aggregation and accumulation have provided firm rationale for a new generation of AD therapies designed not to just provide symptomatic benefit, but as disease modifying agents that would slow or even reverse the disease course. Indeed, over the last 20 years numerous therapeutic strategies for disease modification have emerged, been preclinically validated, and advanced through various stages of clinical testing. Unfortunately, no therapy has yet to show significant clinical disease modification. In this review, I describe 10 translational barriers to successful disease modification, highlight current efforts addressing some of these barriers, and discuss how the field could focus future efforts to overcome barriers that are not major foci of current research efforts. Seminal discoveries made over the past 25 years have provided firm rationale for a new generation of Alzheimer's disease (AD) therapies designed as disease modifying agents that would slow or even reverse the disease course. Unfortunately, no therapy has yet to show significant clinical disease modification. In this review, I describe 10 translational barriers to successful AD disease modification, highlight current efforts addressing some of these barriers, and discuss how the field could focus future efforts to overcome these barriers. This article is part of the 60th Anniversary special issue. © 2016 International Society for Neurochemistry.

  20. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.

    PubMed

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M; Weissman, Jonathan S; Rouskin, Silvi

    2017-01-01

    Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.

  1. Gut microbiota, epigenetic modification and colorectal cancer

    PubMed Central

    Rezasoltani, Sama; Asadzadeh-Aghdaei, Hamid; Nazemalhosseini-Mojarad, Ehsan; Dabiri, Hossein; Ghanbari, Reza; Zali, Mohammad Reza

    2017-01-01

    Micro-organisms contain 90% of cells in human body and trillions foreign genes versus less than 30 thousand of their own. The human colon host various species of microorganisms, appraised at more than 1014 microbiota and contained of over a thousand species. Although each one’s profile is separable, the relative abundance and distribution of bacterial species is the same between healthy ones, causing conservation of each person’s overall health. Germline DNA mutations have been attributed to the less than 5% of CRC occurrence while more than 90% is associated with the epigenetic regulation. The most ubiquitous environmental factor in epigenetic modification is gut microbiota. Disruptive changes in the gut microbiome strongly contributed to the improvement of colorectal cancer. Gut microbiota may play critical role in progression of CRC via their metabolite or their structural component interacting with host intestinal epithelial cell (IEC). Herein we discuss the mechanism of epigenetic modification and its implication in CRC development, progression even metastasis by gut microbiota induction. PMID:29213996

  2. Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells.

    PubMed

    Sun, Rui; Fu, Ling; Liu, Keke; Tian, Caiping; Yang, Yong; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C; Yang, Jing

    2017-10-01

    4-Oxo-2-nonenal (ONE) derived from lipid peroxidation modifies nucleophiles and transduces redox signaling by its reactions with proteins. However, the molecular interactions between ONE and complex proteomes and their dynamics in situ remain largely unknown. Here we describe a quantitative chemoproteomic analysis of protein adduction by ONE in cells, in which the cellular target profile of ONE is mimicked by its alkynyl surrogate. The analyses reveal four types of ONE-derived modifications in cells, including ketoamide and Schiff-base adducts to lysine, Michael adducts to cysteine, and a novel pyrrole adduct to cysteine. ONE-derived adducts co-localize and exhibit crosstalk with many histone marks and redox sensitive sites. All four types of modifications derived from ONE can be reversed site-specifically in cells. Taken together, our study provides much-needed mechanistic insights into the cellular signaling and potential toxicities associated with this important lipid derived electrophile. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.

    PubMed

    Hawkins, R David; Hon, Gary C; Lee, Leonard K; Ngo, Queminh; Lister, Ryan; Pelizzola, Mattia; Edsall, Lee E; Kuan, Samantha; Luu, Ying; Klugman, Sarit; Antosiewicz-Bourget, Jessica; Ye, Zhen; Espinoza, Celso; Agarwahl, Saurabh; Shen, Li; Ruotti, Victor; Wang, Wei; Stewart, Ron; Thomson, James A; Ecker, Joseph R; Ren, Bing

    2010-05-07

    Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.

  4. Structure of Hydrophobically Modified Phytoglycogen Nanoparticles

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Dutcher, John; Katsaras, John

    Phytoglycogen is a highly branched, polysaccharide nanoparticle produced by some varieties of plants including sweet corn. These particles are attractive candidates for cosmetic, industrial and biomedical applications. Many of these applications result from phytoglycogen's unique interaction with water: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Neutron scattering measurements of native phytoglycogen revealed that the particles have uniform size, uniform radial particle density, and a high level of hydration. Hydrophobically modifying the outer surface of the hydrophilic nanoparticles opens up new applications in food and biomedicine, such as solubilizing and stabilizing bioactive compounds. One such modification is octenyl succinate anhydride (OSA), where the hydrophobicity can be tuned by adjusting the degree of substitution. I will present the results of small angle neutron scattering (SANS) measurements of aqueous dispersions of OSA-modified phytoglycogen with two different degrees of modification. Contrast series SANS measurements have yielded information about the radial density profile, providing insight into the nature of the chemical modification of the particles.

  5. Profiles of Childhood Trauma in Patients with Alcohol Dependence and Their Associations with Addiction-Related Problems.

    PubMed

    Lotzin, Annett; Haupt, Lena; von Schönfels, Julia; Wingenfeld, Katja; Schäfer, Ingo

    2016-03-01

    The high occurrence of childhood trauma in individuals with alcohol dependence is well-recognized. Nevertheless, researchers have rarely studied which types of childhood trauma often co-occur and how these combinations of different types and severities of childhood trauma are related to the patients' current addiction-related problems. We aimed to identify childhood trauma profiles in patients with alcohol dependence and examined relations of these trauma profiles with the patients' current addiction-related problems. In 347 alcohol-dependent patients, 5 types of childhood trauma (sexual abuse, physical abuse, emotional abuse, emotional neglect, and physical neglect) were measured using the Childhood Trauma Questionnaire. Childhood trauma profiles were identified using cluster analysis. The patients' current severity of addiction-related problems was assessed using the European Addiction Severity Index. We identified 6 profiles that comprised different types and severities of childhood trauma. The patients' trauma profiles predicted the severity of addiction-related problems in the domains of psychiatric symptoms, family relationships, social relationships, and drug use. Childhood trauma profiles may provide more useful information about the patient's risk of current addiction-related problems than the common distinction between traumatized versus nontraumatized patients. Copyright © 2016 by the Research Society on Alcoholism.

  6. The computational nature of memory modification.

    PubMed

    Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael

    2017-03-15

    Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature.

  7. Speckle contrast techniques in the study of tissue thermal modification and denaturation

    NASA Astrophysics Data System (ADS)

    Agafonov, Dmitry N.; Kuznetsova, Liana V.; Zimnyakov, Dmitry A.; Sviridov, Alexander P.; Omelchenko, Alexander I.

    2002-05-01

    Results of the contrast analysis of time-averaged dynamic speckle patterns in application to monitoring of the structure modification of the thermally treated collagenous tissue such as cartilage are presented. The modification presumably induced by the bound to free water phase transition in the matrix of the treated tissue cause the specific feature of evolution of the time-averaged speckle contrast with the change of the current temperature of modified collagen tissue. This evolution appears as hysteresis associated with irreversible changes in tissue structure.

  8. Recommendations and Justifications for Modifications To Downgrade Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birney, Cathleen; Krauss, Mark J

    This document is part of an effort to reevaluate 37 FFACO and Administrative URs against the current Soils Risk-Based Corrective Action Evaluation Process. After reviewing 37 existing FFACO and Administrative URs, 11 URs addressed in this document have sufficient information to determine that these current URs may be downgraded to Administrative URs based on the RBCA criteria. This document presents recommendations on modifications to existing URs that will be consistent with the RBCA criteria.

  9. Synthesis and Characterization of a New Modification of the Quasi-Low-Dimensional Compound KMo 4O 6

    NASA Astrophysics Data System (ADS)

    Ramanujachary, K. V.; Greenblatt, D. M.; Jones, E. B.; McCarroll, W. H.

    1993-01-01

    Prismatic single crystals, up to 3 mm in length, of a third modification of KMo4O6 have been prepared by electrolysis of a melt with a high ratio of K2MoO4 to MoO3. Single-crystal X-ray diffraction analysis shows that the structure conforms more closely than the other two modifications to that reported originally for NaMo4O6. When current is passed parallel to the tetragonal c axis (i.e., parallel to the trans-edge-sharing chains of Mo6 octahedra) the compound displays metallic conductivity down to 100 K, where a broad transition to semiconducting behavior occurs. If the current is passed perpendicular to the c axis the conductivity is approximately a factor of 5 lower. Magnetic susceptibility measurements on a randomly oriented collection of crystals showed Pauli paramagnetic behavior with a small Curie tail at low temperatures.

  10. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    PubMed

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  11. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators.

    PubMed

    Brankack, J; Stewart, M; Fox, S E

    1993-07-02

    Single-electrode depth profiles of the hippocampal EEG were made in urethane-anesthetized rats and rats trained in an alternating running/drinking task. Current source density (CSD) was computed from the voltage as a function of depth. A problem inherent to AC-coupled profiles was eliminated by incorporating sustained potential components of the EEG. 'AC' profiles force phasic current sinks to alternate with current sources at each lamina, changing the magnitude and even the sign of the computed membrane current. It was possible to include DC potentials in the profiles from anesthetized rats by using glass micropipettes for recording. A method of 'subtracting' profiles of the non-theta EEG from theta profiles was developed as an approach to including sustained potentials in recordings from freely-moving animals implanted with platinum electrodes. 'DC' profiles are superior to 'AC' profiles for analysis of EEG activity because 'DC'-CSD values can be considered correct in sign and more closely represent the actual membrane current magnitudes. Since hippocampal inputs are laminated, CSD analysis leads to straightforward predictions of the afferents involved. Theta-related activity in afferents from entorhinal neurons, hippocampal interneurons and ipsi- and contralateral hippocampal pyramids all appear to contribute to sources and sinks in CA1 and the dentate area. The largest theta-related generator was a sink at the fissure, having both phasic and tonic components. This sink may reflect activity in afferents from the lateral entorhinal cortex. The phase of the dentate mid-molecular sink suggests that medial entorhinal afferents drive the theta-related granule and pyramidal cell firing. The sustained components may be simply due to different average rates of firing during theta rhythm than during non-theta EEG in afferents whose firing rates are also phasically modulated.

  12. Emotion and Emotion-Laden Words in the Bilingual Lexicon

    ERIC Educational Resources Information Center

    Pavlenko, Aneta

    2008-01-01

    The purpose of this paper is to draw on recent studies of bilingualism and emotions to argue for three types of modifications to the current models of the bilingual lexicon. The first modification involves word categories: I will show that emotion words need to be considered as a separate class of words in the mental lexicon, represented and…

  13. Sedation in gastrointestinal endoscopy: current issues.

    PubMed

    Triantafillidis, John K; Merikas, Emmanuel; Nikolakis, Dimitrios; Papalois, Apostolos E

    2013-01-28

    Diagnostic and therapeutic endoscopy can successfully be performed by applying moderate (conscious) sedation. Moderate sedation, using midazolam and an opioid, is the standard method of sedation, although propofol is increasingly being used in many countries because the satisfaction of endoscopists with propofol sedation is greater compared with their satisfaction with conventional sedation. Moreover, the use of propofol is currently preferred for the endoscopic sedation of patients with advanced liver disease due to its short biologic half-life and, consequently, its low risk of inducing hepatic encephalopathy. In the future, propofol could become the preferred sedation agent, especially for routine colonoscopy. Midazolam is the benzodiazepine of choice because of its shorter duration of action and better pharmacokinetic profile compared with diazepam. Among opioids, pethidine and fentanyl are the most popular. A number of other substances have been tested in several clinical trials with promising results. Among them, newer opioids, such as remifentanil, enable a faster recovery. The controversy regarding the administration of sedation by an endoscopist or an experienced nurse, as well as the optimal staffing of endoscopy units, continues to be a matter of discussion. Safe sedation in special clinical circumstances, such as in the cases of obese, pregnant, and elderly individuals, as well as patients with chronic lung, renal or liver disease, requires modification of the dose of the drugs used for sedation. In the great majority of patients, sedation under the supervision of a properly trained endoscopist remains the standard practice worldwide. In this review, an overview of the current knowledge concerning sedation during digestive endoscopy will be provided based on the data in the current literature.

  14. Sedation in gastrointestinal endoscopy: Current issues

    PubMed Central

    Triantafillidis, John K; Merikas, Emmanuel; Nikolakis, Dimitrios; Papalois, Apostolos E

    2013-01-01

    Diagnostic and therapeutic endoscopy can successfully be performed by applying moderate (conscious) sedation. Moderate sedation, using midazolam and an opioid, is the standard method of sedation, although propofol is increasingly being used in many countries because the satisfaction of endoscopists with propofol sedation is greater compared with their satisfaction with conventional sedation. Moreover, the use of propofol is currently preferred for the endoscopic sedation of patients with advanced liver disease due to its short biologic half-life and, consequently, its low risk of inducing hepatic encephalopathy. In the future, propofol could become the preferred sedation agent, especially for routine colonoscopy. Midazolam is the benzodiazepine of choice because of its shorter duration of action and better pharmacokinetic profile compared with diazepam. Among opioids, pethidine and fentanyl are the most popular. A number of other substances have been tested in several clinical trials with promising results. Among them, newer opioids, such as remifentanil, enable a faster recovery. The controversy regarding the administration of sedation by an endoscopist or an experienced nurse, as well as the optimal staffing of endoscopy units, continues to be a matter of discussion. Safe sedation in special clinical circumstances, such as in the cases of obese, pregnant, and elderly individuals, as well as patients with chronic lung, renal or liver disease, requires modification of the dose of the drugs used for sedation. In the great majority of patients, sedation under the supervision of a properly trained endoscopist remains the standard practice worldwide. In this review, an overview of the current knowledge concerning sedation during digestive endoscopy will be provided based on the data in the current literature. PMID:23382625

  15. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  16. Tapered microelectrode array system for dielectrophoretically filtration: fabrication, characterization, and simulation study

    NASA Astrophysics Data System (ADS)

    Buyong, Muhamad Ramdzan; Larki, Farhad; Takamura, Yuzuru; Majlis, Burhanuddin Yeop

    2017-10-01

    This paper presents the fabrication, characterization, and simulation of microelectrode arrays system with tapered profile having an aluminum surface for dielectrophoresis (DEP)-based manipulation of particles. The proposed structure demonstrates more effective electric field gradient compared with its counterpart with untapered profile. Therefore, according to the asymmetric distribution of the electric field in the active region of microelectrode, it produces more effective particle manipulation. The tapered aluminum microelectrode array (TAMA) fabrication process uses a state-of-the-art technique in the formation of the resist's taper profile. The performance of TAMA with various sidewall profile angles (5 deg to 90 deg) was analyzed through finite-element method numerical simulations to offer a better understanding of the origin of the sidewall profile effect. The ability of capturing and manipulating of the device was examined through modification of the Clausius-Mossotti factor and cross-over frequency (f). The fabricated system has been particularly implemented for filtration of particles with a desired diameter from a mixture of particles with three different diameters in an aqueous medium. The microelectrode system with tapered side wall profile offers a more efficient platform for particle manipulation and sensing applications compared with the conventional microelectrode systems.

  17. Current and cutting-edge interventions for the treatment of obese patients.

    PubMed

    Vairavamurthy, Jenanan; Cheskin, Lawrence J; Kraitchman, Dara L; Arepally, Aravind; Weiss, Clifford R

    2017-08-01

    The number of people classified as obese, defined by the World Health Organization as having a body mass index ≥30, has been rising since the 1980s. Obesity is associated with comorbidities such as hypertension, diabetes mellitus, and nonalcoholic fatty liver disease. The current treatment paradigm emphasizes lifestyle modifications, including diet and exercise; however this approach produces only modest weight loss for many patients. When lifestyle modifications fail, the current "gold standard" therapy for obesity is bariatric surgery, including Roux-en-Y gastric bypass, sleeve gastrectomy, duodenal switch, and placement of an adjustable gastric band. Though effective, bariatric surgery can have severe short- and long-term complications. To fill the major gap in invasiveness between lifestyle modification and surgery, researchers have been developing pharmacotherapies and minimally invasive endoscopic techniques to treat obesity. Recently, interventional radiologists developed a percutaneous transarterial catheter-directed therapy targeting the hormonal function of the stomach. This review describes the current standard obesity treatments (including diet, exercise, and surgery), as well as newer endoscopic bariatric procedures and pharmacotherapies to help patients lose weight. We present data from two ongoing human trials of a new interventional radiology procedure for weight loss, bariatric embolization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Lifestyle modifications in an adolescent dormitory: a clinical trial.

    PubMed

    Abu-Kishk, Ibrahim; Alumot-Yehoshua, Michal; Reisler, Gadi; Efrati, Shai; Kozer, Eran; Doenyas-Barak, Keren; Feldon, Michal; Dagan, Zahi; Reifen, Rami; Berkovitch, Matitiahu

    2014-12-01

    Childhood obesity is an increasing public health issue worldwide. We examined dietary patterns among adolescents in a dormitory school, identified obese adolescents and tried to intervene to improve food habits and physical activity. We conducted an experimental prospective longitudinal study based on 36 obese (body mass index [BMI]≥95th percentile) adolescents (aged 12-18 years) compared with controls (healthy children: normal age-appropriate BMI (BMI≤85th percentile). Six months' intervention included lifestyle-modification counseling (once a week by a clinical dietician), and an exercise regimen twice a week, 60 minutes each time, instructed by a professional pediatric trainer). Both groups underwent baseline measurements at the beginning of the study and 6 months later (arterial stiffness, blood pressure, pulse, weight and height, hemoglobin, creatinine, liver enzymes, highly sensitive C-reactive protein and complete lipid profile). Twenty-one participants completed the study. Low compliance from participants, school staff and parents was observed (participation in planned meetings; 71%-83%). BMI significantly decreased from 32.46±3.93 kg/m(2) to 30.32±3.4 kg/m(2) (P=0.002) in the study group. Arterial stiffness was not significantly different between the 2 groups and did not change significantly after 6 months' intervention (P=0.494). No significant changes in CRP and lipid profile were observed after the intervention. Making lifestyle modifications among adolescents in a dormitory school is a complex task. Active intervention indeed ameliorates BMI parameters. However, in order to maximize the beneficial effects, a multidisciplinary well-trained team is needed, with emphasis on integrating parents and the school environment.

  19. Visualization by discharge illumination technique and modification by plasma actuator of rarefied Mach 2 airflow around a cylinder

    NASA Astrophysics Data System (ADS)

    Leger, L.; Sellam, M.; Barbosa, E.; Depussay, E.

    2013-06-01

    The use of plasma actuators for flow control has received considerable attention in recent years. This kind of device seems to be an appropriate means of raising abilities in flow control thanks to total electric control, no moving parts and a fast response time. The experimental work presented here shows, firstly, the non-intrusive character of the visualization of the density field of an airflow around a cylinder obtained using a plasma luminescence technique. Experiments are made in a continuous supersonic wind tunnel. The static pressure in the flow is 8 Pa, the mean free path is about 0.3 mm and the airflow velocity is 510 m s-1. Pressure measurements obtained by means of glass Pitot tube without the visualization discharge are proposed. Measured and simulated pressure profiles are in good agreement in the region near the cylinder. There is good correlation between numerical simulations of the supersonic flow field, analytical model predictions and experimental flow visualizations obtained by a plasma luminescence technique. Consequently, we show that the plasma luminescence technique is non-intrusive. Secondly, the effect of a dc discharge on a supersonic rarefied air flow around a cylinder is studied. An electrode is flush mounted on the cylinder. Stagnation pressure profiles are examined for different electrode positions on the cylinder. A shock wave modification depending on the electrode location is observed. The discharge placed at the upstream stagnation point induces an upstream shift of the bow shock, whereas a modification of the shock wave shape is observed when it is placed at 45° or 90°.

  20. Impact of storage conditions on the urinary metabolomics fingerprint.

    PubMed

    Laparre, Jérôme; Kaabia, Zied; Mooney, Mark; Buckley, Tom; Sherry, Mark; Le Bizec, Bruno; Dervilly-Pinel, Gaud

    2017-01-25

    Urine stability during storage is essential in metabolomics to avoid misleading conclusions or erroneous interpretations. Facing the lack of comprehensive studies on urine metabolome stability, the present work performed a follow-up of potential modifications in urinary chemical profile using LC-HRMS on the basis of two parameters: the storage temperature (+4 °C, -20 °C, -80 °C and freeze-dried stored at -80 °C) and the storage duration (5-144 days). Both HILIC and RP chromatographies have been implemented in order to globally monitor the urinary metabolome. Using an original data processing associated to univariate and multivariate data analysis, our study confirms that chemical profiles of urine samples stored at +4 °C are very rapidly modified, as observed for instance for compounds such as:N-acetyl Glycine, Adenosine, 4-Amino benzoic acid, N-Amino diglycine, creatine, glucuronic acid, 3-hydroxy-benzoic acid, pyridoxal, l-pyroglutamic acid, shikimic acid, succinic acid, thymidine, trigonelline and valeryl-carnitine, while it also demonstrates that urine samples stored at -20 °C exhibit a global stability over a long period with no major modifications compared to -80 °C condition. This study is the first to investigate long term stability of urine samples and report potential modifications in the urinary metabolome, using both targeted approach monitoring individually a large number (n > 200) of urinary metabolites and an untargeted strategy enabling assessing for global impact of storage conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    PubMed Central

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  2. Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines

    PubMed Central

    Marques, Rute B.; Dits, Natasja F.; Erkens-Schulze, Sigrun; van IJcken, Wilfred F. J.; van Weerden, Wytske M.; Jenster, Guido

    2011-01-01

    Background Prostate epithelial cells depend on androgens for survival and function. In (early) prostate cancer (PCa) androgens also regulate tumor growth, which is exploited by hormonal therapies in metastatic disease. The aim of the present study was to characterize the androgen receptor (AR) response in hormonal therapy-resistant PC346 cells and identify potential disease markers. Methodology/Principal Findings Human 19K oligoarrays were used to establish the androgen-regulated expression profile of androgen-responsive PC346C cells and its derivative therapy-resistant sublines: PC346DCC (vestigial AR levels), PC346Flu1 (AR overexpression) and PC346Flu2 (T877A AR mutation). In total, 107 transcripts were differentially-expressed in PC346C and derivatives after R1881 or hydroxyflutamide stimulations. The AR-regulated expression profiles reflected the AR modifications of respective therapy-resistant sublines: AR overexpression resulted in stronger and broader transcriptional response to R1881 stimulation, AR down-regulation correlated with deficient response of AR-target genes and the T877A mutation resulted in transcriptional response to both R1881 and hydroxyflutamide. This AR-target signature was linked to multiple publicly available cell line and tumor derived PCa databases, revealing that distinct functional clusters were differentially modulated during PCa progression. Differentiation and secretory functions were up-regulated in primary PCa but repressed in metastasis, whereas proliferation, cytoskeletal remodeling and adhesion were overexpressed in metastasis. Finally, the androgen-regulated genes ENDOD1, MCCC2 and ACSL3 were selected as potential disease markers for RT-PCR quantification in a distinct set of human prostate specimens. ENDOD1 and ACSL3 showed down-regulation in high-grade and metastatic PCa, while MCCC2 was overexpressed in low-grade PCa. Conclusions/Significance AR modifications altered the transcriptional response to (anti)androgens in therapy-resistant cells. Furthermore, selective down-regulation of genes involved in differentiation and up-regulation of genes promoting proliferation and invasion suggest a disturbed balance between the growth and differentiation functions of the AR pathway during PCa progression. These findings may have implications in the current treatment and development of novel therapeutical approaches for metastatic PCa. PMID:21829708

  3. Nominal Profile Refinements Report: Target in 120 Nautical Mile Circular Orbit

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The compability of the nominal rendezvous sequence with low target orbits is addressed. It was found that for targets in low earth orbits certain modifications of the nominal sequence are required to achieve a feasible anytime liftoff capability, notably the use of elliptical phasing orbits and the allowance of up to two days for rendezvous under certain phasing conditions.

  4. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes

    USDA-ARS?s Scientific Manuscript database

    Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expre...

  5. Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides.

    PubMed

    Tharmalingam, Tharmala; Adamczyk, Barbara; Doherty, Margaret A; Royle, Louise; Rudd, Pauline M

    2013-02-01

    Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening. Here we focus on these aspects of glycan analysis, showing how state-of-the-art technologies are required at all stages during the production of recombinant glycotherapeutics. These data can provide insights into processing pathways and suggest markers for intervention at critical control points in bioprocessing and also critical decision points in disease and drug monitoring in patients. Importantly, these tools are now enabling the first glycome/genome studies in large populations, allowing the integration of glycomics into other 'omics platforms in a systems biology context.

  6. A New Approach to the Internal Calibration of Reverberation-Mapping Spectra

    NASA Astrophysics Data System (ADS)

    Fausnaugh, M. M.

    2017-02-01

    We present a new procedure for the internal (night-to-night) calibration of timeseries spectra, with specific applications to optical AGN reverberation mapping data. The traditional calibration technique assumes that the narrow [O iii] λ5007 emission-line profile is constant in time; given a reference [O iii] λ5007 line profile, nightly spectra are aligned by fitting for a wavelength shift, a flux rescaling factor, and a change in the spectroscopic resolution. We propose the following modifications to this procedure: (1) we stipulate a constant spectral resolution for the final calibrated spectra, (2) we employ a more flexible model for changes in the spectral resolution, and (3) we use a Bayesian modeling framework to assess uncertainties in the calibration. In a test case using data for MCG+08-11-011, these modifications result in a calibration precision of ˜1 millimagnitude, which is approximately a factor of five improvement over the traditional technique. At this level, other systematic issues (e.g., the nightly sensitivity functions and Feii contamination) limit the final precision of the observed light curves. We implement this procedure as a python package (mapspec), which we make available to the community.

  7. Superfund Explanation of Significant Difference for the Record of Decision (EPA Region 8): Silver Bow Creek/Butte Area, Silver Bow and Deer Lodge, MT, August 31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1998-12-01

    This document presents an Explanation of Significant Differences from the Record of Decision (ROD) for one Streamside Tailings Operable Unit (SSTOU) of the Silver Bow Creek/Butte Area National Priorities List (NPL) Site. The significant differences discussed in this ESD are: An increase in the volume of tailings/impacted soil in the operable unit; Modifications to the alignment of Silver Bow Creek and the channel profile (i.e., elevation profile); Use of a temporary stream diversion during and after construction to facilitate dewatering and excavation of near-stream tailings and to enhance floodplain and streambank revegetation efforts; Changes in the criteria for in-stream sedimentmore » removal as a result of other design changes; Modifications to the mine waste relocation repository (MWRR) design; The inclusion of sediment basins to contain contaminated overland flow run-on from off-site mine waste sources; Elimination of treatment wetlands as the end land use in Subarea 1; Changes in the estimated schedule to implement the SSTOU remedy; and An increase in the estimated cost of the SSTOU remedy.« less

  8. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameri, S.; Aminian, K.; Wasson, J.A.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagationmore » of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.« less

  9. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  10. New characterization aspects of carbonate accumulation horizons in Chalky Champagne (NE of the Paris Basin, France)

    NASA Astrophysics Data System (ADS)

    Linoir, Damien; Thomachot-Schneider, Céline; Gommeaux, Maxime; Fronteau, Gilles; Barbin, Vincent

    2016-05-01

    The soil profiles of the Champagne area (NE of Paris Basin, France) occasionally show carbonate accumulation horizons (CAHs). From the top to the bottom, these soil profiles include a rendic leptosol horizon, a Quaternary cryoturbated paleosol (QCP), and a chalky substratum. The CAHs are located in the top part of the QCP. This study is aimed at highlighting the specific characteristics of CAHs compared to other soil profile horizons using geophysics, geochemistry, micromorphology, and mercury injection porosimetry. It is the first essential step for understanding the impact of CAHs on water transfers into the Champagne soil profiles. Our analyses show that Champagne CAHs are not systematically characterized by a typical induration unlike generally put forward in the regional literature. They are more porous and heterogeneous than their parent material (QCP). Carbonate accumulation horizons are also characterized by singular colorimetric parameters that are linked to their geochemical specific content, even if they bear a signature of the initial QCP before the pedogenic modification.

  11. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

    PubMed Central

    Harris, R. Alan; Wang, Ting; Coarfa, Cristian; Nagarajan, Raman P.; Hong, Chibo; Downey, Sara L.; Johnson, Brett E.; Fouse, Shaun D.; Delaney, Allen; Zhao, Yongjun; Olshen, Adam; Ballinger, Tracy; Zhou, Xin; Forsberg, Kevin J.; Gu, Junchen; Echipare, Lorigail; O’Geen, Henriette; Lister, Ryan; Pelizzola, Mattia; Xi, Yuanxin; Epstein, Charles B.; Bernstein, Bradley E.; Hawkins, R. David; Ren, Bing; Chung, Wen-Yu; Gu, Hongcang; Bock, Christoph; Gnirke, Andreas; Zhang, Michael Q.; Haussler, David; Ecker, Joseph; Li, Wei; Farnham, Peggy J.; Waterland, Robert A.; Meissner, Alexander; Marra, Marco A.; Hirst, Martin; Milosavljevic, Aleksandar; Costello, Joseph F.

    2010-01-01

    Sequencing-based DNA methylation profiling methods are comprehensive and, as accuracy and affordability improve, will increasingly supplant microarrays for genome-scale analyses. Here, four sequencing-based methodologies were applied to biological replicates of human embryonic stem cells to compare their CpG coverage genome-wide and in transposons, resolution, cost, concordance and its relationship with CpG density and genomic context. The two bisulfite methods reached concordance of 82% for CpG methylation levels and 99% for non-CpG cytosine methylation levels. Using binary methylation calls, two enrichment methods were 99% concordant, while regions assessed by all four methods were 97% concordant. To achieve comprehensive methylome coverage while reducing cost, an approach integrating two complementary methods was examined. The integrative methylome profile along with histone methylation, RNA, and SNP profiles derived from the sequence reads allowed genome-wide assessment of allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression. PMID:20852635

  12. Beam profile and coherence properties of synchrotron beams after reflection on modified multilayer mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Alexander, E-mail: alexander.rack@esrf.fr; Vivo, Amparo; Morawe, Christian

    2016-07-27

    Multilayer mirrors present an attractive alternative for reflective hard X-ray monochromators due to their increased bandwidth compared with crystal-based systems. An issue remains the strong modulations in the reflected beam profile, i.e. an irregular stripe pattern. This is a major problem for micro-imaging applications, where multilayer-based monochromators are frequently employed to deliver higher photon flux density. A subject of particular interest is how to overcome beam profile modifications, namely the stripe patterns, induced by the reflection on a multilayer. For multilayer coatings in general it is known that the substrate and its surface quality significantly influence the performance of suchmore » kind of mirrors as the coating reproduces to a certain degree roughness and shape of the substrate. Our studies have shown that modified coatings can significantly change the impact of the multilayer reflection on the beam profile. We will present recent results as well as a critical review.« less

  13. PyLDTk: Python toolkit for calculating stellar limb darkening profiles and model-specific coefficients for arbitrary filters

    NASA Astrophysics Data System (ADS)

    Parviainen, Hannu

    2015-10-01

    PyLDTk automates the calculation of custom stellar limb darkening (LD) profiles and model-specific limb darkening coefficients (LDC) using the library of PHOENIX-generated specific intensity spectra by Husser et al. (2013). It facilitates exoplanet transit light curve modeling, especially transmission spectroscopy where the modeling is carried out for custom narrow passbands. PyLDTk construct model-specific priors on the limb darkening coefficients prior to the transit light curve modeling. It can also be directly integrated into the log posterior computation of any pre-existing transit modeling code with minimal modifications to constrain the LD model parameter space directly by the LD profile, allowing for the marginalization over the whole parameter space that can explain the profile without the need to approximate this constraint by a prior distribution. This is useful when using a high-order limb darkening model where the coefficients are often correlated, and the priors estimated from the tabulated values usually fail to include these correlations.

  14. Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.

    PubMed

    Wu, Ting-Hsiang; Sagullo, Enrico; Case, Dana; Zheng, Xin; Li, Yanjing; Hong, Jason S; TeSlaa, Tara; Patananan, Alexander N; McCaffery, J Michael; Niazi, Kayvan; Braas, Daniel; Koehler, Carla M; Graeber, Thomas G; Chiou, Pei-Yu; Teitell, Michael A

    2016-05-10

    mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A novel approach: high resolution inspection with wafer plane defect detection

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Wihl, Mark; Shi, Rui-fang; Xiong, Yalin; Pang, Song

    2008-05-01

    High Resolution reticle inspection is well-established as a proven, effective, and efficient means of detecting yield-limiting mask defects as well as defects which are not immediately yield-limiting yet can enable manufacturing process improvements. Historically, RAPID products have enabled detection of both classes of these defects. The newly-developed Wafer Plane Inspection (WPI) detector technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. Wafer Plane Inspection accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. This has the effect of reducing sensitivity to non-printing defects while enabling higher sensitivity focused in high MEEF areas where small reticle defects still yield significant printing defects on wafers. WPI is a new inspection mode that has been developed by KLA-Tencor and is currently under test with multiple customers. It employs the same transmitted and reflected-light high-resolution images as the industry-standard high-resolution inspections, but with much more sophisticated processing involved. A rigorous mask pattern recovery algorithm is used to convert the transmitted and reflected light images into a modeled representation of the reticle. Lithographic modeling of the scanner is then used to generate an aerial image of the mask. This is followed by resist modeling to determine the exposure of the photoresist. The defect detectors are then applied on this photoresist plane so that only printing defects are detected. Note that no hardware modifications to the inspection system are required to enable this detector. The same tool will be able to perform both our standard High Resolution inspections and the Wafer Plane Inspection detector. This approach has several important features. The ability to ignore non-printing defects and to apply additional effective sensitivity in high MEEF areas enables advanced node development. In addition, the modeling allows the inclusion of important polarization effects that occur in the resist for high NA operation. This allows for the results to better match wafer print results compared to alternate approaches. Finally, the simulation easily allows for the application of arbitrary illumination profiles. With this approach, users of WPI can make use of unique or custom scanner illumination profiles. This allows the more precise modeling of profiles without inspection system hardware modification or loss of company intellectual property. This paper examines WPI in Die:Die mode. Future work includes a review of Die:Database WPI capability.

  16. [Applications of DNA methylation markers in forensic medicine].

    PubMed

    Zhao, Gui-sen; Yang, Qing-en

    2005-02-01

    DNA methylation is a post-replication modification that is predominantly found in cytosines of the dinucleotide sequence CpG. Epigenetic information is stored in the distribution of the modified base 5-methylcytosine. DNA methylation profiles represent a more chemically and biologically stable source of molecular diagnostic information than RNA or most proteins. Recent advances attest to the great promise of DNA methylation markers as powerful future tools in the clinic. In the past decade, DNA methylation analysis has been revolutionized by two technological advances--bisulphite modification of DNA and methylation-specific polymerase chain reaction (MSP). The methylation pattern of human genome is space-time specific, sex-specific, parent-of-origin specific and disease specific, providing us an alternative way to solve forensic problems.

  17. Uranus' (3-0) H2 quadrupole line profiles

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1987-01-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  18. Ground-based observations and simulation of ionospheric VLF source in experiments on modification of the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Lebed', O. M.; Fedorenko, Yu. V.; Blagoveshchenskaya, N. F.; Larchenko, A. V.; Grigor'ev, V. F.; Pil'gaev, S. V.

    2017-11-01

    The phase velocities of TE and TEM waves at frequencies of 1017 and 3017 Hz, as well as the effect of precipitations during auroras on the velocities, are estimated in the Earth-ionosphere waveguide on the basis of observations of electromagnetic fields of an ionospheric source in experiments on modification of the lower ionosphere by a modulated high-power short-wave signals performed by the Arctic and Antarctic Research Institute (AARI) at the EISCAT/Heating test bench in October 2016. Probable electron density profiles in the plane-stratified ionosphere are retrieved from the numerical solution of a wave equation, which are used for the calculation of the phase velocities close to measured ones.

  19. Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues.

    PubMed

    Rao, M

    2008-01-01

    Embryonic stem cells unlike most adult stem cell populations can replicate indefinitely while preserving genetic, epigenetic, mitochondrial and functional profiles. ESCs are therefore an excellent candidate cell type for providing a bank of cells for allogenic therapy and for introducing targeted genetic modifications for therapeutic intervention. This ability of prolonged self-renewal of stem cells and the unique advantages that this offers for gene therapy, discovery efforts, cell replacement, personalized medicine and other more direct applications requires the resolution of several important manufacturing, gene targeting and regulatory issues. In this review, we assess some of the advance made in developing scalable culture systems, improvement in vector design and gene insertion technology and the changing regulatory landscape.

  20. Uncertainty propagation in q and current profiles derived from motional Stark effect polarimetry on TFTR (abstract)a)

    NASA Astrophysics Data System (ADS)

    Batha, S. H.; Levinton, F. M.; Bell, M. G.; Wieland, R. M.; Hirschman, S. P.

    1995-01-01

    The magnetic-field pitch-angle profile, γp(R)≡arctan(Bpol/Btor), is measured on the TFTR tokamak using a motional Stark effect (MSE) polarimeter. Measured profiles are converted to q profiles with the equilibrium code vmec. Uncertainties in the q profile due to uncertainties in the γp(R), magnetics, and kinetic measurements are quantified. Subsequent uncertainties in the vmec-calculated profiles of current density and shear, both of which are important for stability and transport analyses, are also quantified. Examples of circular plasmas under various confinement modes, including the supershot and L mode, will be given.

  1. Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise.

    PubMed

    Myslicki, Jason P; Belke, Darrell D; Shearer, Jane

    2014-11-01

    The purpose of this review is to highlight the role of O-linked β-N-acetylglucosamine (O-GlcNAc) protein modification in metabolic disease states and to summarize current knowledge of how exercise affects this important post-translational signalling pathway. O-GlcNAc modification is an intracellular tool capable of integrating energy supply with demand. The accumulation of excess energy associated with obesity and insulin resistance is mediated, in part, by the hexosamine biosynthetic pathway (HBP), which results in the O-GlcNAcylation of a myriad of proteins, thereby affecting their respective function, stability, and localization. Insulin resistance is related to the excessive O-GlcNAcylation of key metabolic proteins causing a chronic blunting of insulin signalling pathways and precipitating the accompanying pathologies, such as heart and kidney disease. Lifestyle modifications such as diet and exercise also modify the pathway. Exercise is a front-line and cost-effective therapeutic approach for insulin resistance, and recent work shows that the intervention can alter O-GlcNAc gene expression, signalling, and protein modification. However, there is currently no consensus on the effect of frequency, intensity, type, and duration of exercise on O-GlcNAc modification, the HBP, and its related enzymes. On one end of the spectrum, mild, prolonged swim training reduces O-GlcNAcylation, while on the other end, higher intensity treadmill running increases cardiac protein O-GlcNAc modification. Clearly, a balance between acute and chronic stress of exercise is needed to reap the benefits of the intervention on O-GlcNAc signalling.

  2. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less

  3. 19 CFR 177.12 - Modification or revocation of interpretive rulings, protest review decisions, and previous...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Modification or revocation of interpretive rulings... 177.12 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT... 174 of this chapter, if found to be in error or not in accord with the current views of Customs, may...

  4. 19 CFR 177.12 - Modification or revocation of interpretive rulings, protest review decisions, and previous...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Modification or revocation of interpretive rulings... 177.12 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT... 174 of this chapter, if found to be in error or not in accord with the current views of Customs, may...

  5. 19 CFR 177.12 - Modification or revocation of interpretive rulings, protest review decisions, and previous...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Modification or revocation of interpretive rulings... 177.12 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT... 174 of this chapter, if found to be in error or not in accord with the current views of Customs, may...

  6. 19 CFR 177.12 - Modification or revocation of interpretive rulings, protest review decisions, and previous...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Modification or revocation of interpretive rulings... 177.12 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT... 174 of this chapter, if found to be in error or not in accord with the current views of Customs, may...

  7. Surface Modified TiO2 Obscurants for Increased Safety and Performance

    DTIC Science & Technology

    2012-11-01

    based obscurant devices in performance. 15. SUBJECT TERMS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification...hexamethyldimethoxysilane IR Infrared wavelength LabRAM Lab scale Resonant Acoustic Mixer from Resodyn Corporation LPM Liters Per Minute M106 Currently fielded (Army...trinitrophloroglucinol UV-Vis Ultraviolet-visible wavelengths KEYWORDS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification

  8. "The Knowledge of" Counselors in Balqa Governorate: Behavior Modification Strategies in Light of Some of the Variables

    ERIC Educational Resources Information Center

    Al-basel, D-Nagham Mohammad Abu

    2013-01-01

    The present study aimed to identify the extent of knowledge of counselor behavior modification strategies. The current study sample consisted of (80) mentor and guide, were selected randomly from among all workers enrolled in regular public schools in the Balqa governorate represented the community study for the academic year 2012-2013. The study…

  9. The Single and Combined Effects of Multiple Intensities of Behavior Modification and Methylphenidate for Children with Attention Deficit Hyperactivity Disorder in a Classroom Setting

    ERIC Educational Resources Information Center

    Fabiano, Gregory A.; Pelham, William E., Jr.; Gnagy, Elizabeth M.; Burrows-MacLean, Lisa; Coles, Erika K.; Chacko, Anil; Wymbs, Brian T.; Walker, Kathryn S.; Arnold, Fran; Garefino, Allison; Keenan, Jenna K.; Onyango, Adia N.; Hoffman, Martin T.; Massetti, Greta M.; Robb, Jessica A.

    2007-01-01

    Currently behavior modification, stimulant medication, and combined treatments are supported as evidence-based interventions for attention deficit hyperactivity disorder in classroom settings. However, there has been little study of the relative effects of these two modalities and their combination in classrooms. Using a within-subject design, the…

  10. Complementary Medicine, Exercise, Meditation, Diet, and Lifestyle Modification for Anxiety Disorders: A Review of Current Evidence

    PubMed Central

    Sarris, J.; Moylan, S.; Camfield, D. A.; Pase, M. P.; Mischoulon, D.; Berk, M.; Jacka, F. N.; Schweitzer, I.

    2012-01-01

    Use of complementary medicines and therapies (CAM) and modification of lifestyle factors such as physical activity, exercise, and diet are being increasingly considered as potential therapeutic options for anxiety disorders. The objective of this metareview was to examine evidence across a broad range of CAM and lifestyle interventions in the treatment of anxiety disorders. In early 2012 we conducted a literature search of PubMed, Scopus, CINAHL, Web of Science, PsycInfo, and the Cochrane Library, for key studies, systematic reviews, and metaanalyses in the area. Our paper found that in respect to treatment of generalized anxiety or specific disorders, CAM evidence revealed current support for the herbal medicine Kava. One isolated study shows benefit for naturopathic medicine, whereas acupuncture, yoga, and Tai chi have tentative supportive evidence, which is hampered by overall poor methodology. The breadth of evidence does not support homeopathy for treating anxiety. Strong support exists for lifestyle modifications including adoption of moderate exercise and mindfulness meditation, whereas dietary improvement, avoidance of caffeine, alcohol, and nicotine offer encouraging preliminary data. In conclusion, certain lifestyle modifications and some CAMs may provide a beneficial role in the treatment of anxiety disorders. PMID:22969831

  11. Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells.

    PubMed

    Luo, Jianmei; Chi, Meiling; Wang, Hongyu; He, Huanhuan; Zhou, Minghua

    2013-12-01

    A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.

  12. The computational nature of memory modification

    PubMed Central

    Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael

    2017-01-01

    Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature. DOI: http://dx.doi.org/10.7554/eLife.23763.001 PMID:28294944

  13. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum

    NASA Astrophysics Data System (ADS)

    Liu, Chengjun; Zhao, Qing; Wang, Yeguang; Shi, Peiyang; Jiang, Maofa

    2016-01-01

    In order to obtain hydrophobic whisker for preparing polymeric composite product, the calcium sulfate whisker (CSW) prepared from flue gas desulfurization (FGD) gypsum by hydrothermal synthesis was modified by various surfactants, and the effects of some modification conditions on the hydrophobic property of CSW were investigated in this study. Sodium stearate was considered to be a suitable surfactant and its reasonable dosage was 2% of ethanol solvent. Both physical and chemical absorptions were found in the surface modification process, and the later one was suggested to preferentially occur on the CSW surface. Moreover, modifying temperature, modifying duration, and agitation speed were experimentally found to have a remarkable influence on the modification behavior. Active ratio reached 0.845 when the modification process was conducted under reasonable conditions obtained in the current work. Finally, polypropylene sheet products were prepared from modified CSW showing an excellence mechanical property.

  14. Modification to the Langley 8-foot high temperature tunnel for hypersonic propulsion testing

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Puster, R. L.; Kelly, H. N.

    1987-01-01

    Described are the modifications currently under way to the Langley 8-Foot High Temperature Tunnel to produce a new, unique national resource for testing hypersonic air-breathing propulsion systems. The current tunnel, which has been used for aerothermal loads and structures research since its inception, is being modified with the addition of a LOX system to bring the oxygen content of the test medium up to that of air, the addition of alternate Mach number capability (4 and 5) to augment the current M=7 capability, improvements to the tunnel hardware to reduce maintenance downtime, the addition of a hydrogen system to allow the testing of hydrogen powered engines, and a new data system to increase both the quantity and quality of the data obtained.

  15. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.

    PubMed

    Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili

    2015-03-26

    Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be detected well before the histological detection of NFTs. Therapeutic treatment targeting tau should therefore aim to reduce all tau species associated with the pathological tau pool rather than reduce specific post-translational modifications. There is still much to learn about CSF tau in physiological and pathological processes in order to use it as a translational biomarker in drug discovery.

  16. Construction of new profiler certification tracks.

    DOT National Transportation Integrated Search

    2014-04-01

    The existing smoothness specifications of the Texas Department of Transportation (TxDOT) require : certification of inertial profilers for ride quality assurance testing. Currently, inertial profilers are certified : based on profile measurements col...

  17. Application of a range of turbulence energy models to the determination of M4 tidal current profiles

    NASA Astrophysics Data System (ADS)

    Xing, Jiuxing; Davies, Alan M.

    1996-04-01

    A fully nonlinear, three-dimensional hydrodynamic model of the Irish Sea, using a range of turbulence energy sub-models, is used to examine the influence of the turbulence closure method upon the vertical variation of the current profile of the fundamental and higher harmonics of the tide in the region. Computed tidal current profiles are compared with previous calculations using a spectral model with eddy viscosity related to the flow field. The model has a sufficiently fine grid to resolve the advection terms, in particular the advection of turbulence and momentum. Calculations show that the advection of turbulence energy does not have a significant influence upon the current profile of either the fundamental or higher harmonic of the tide, although the advection of momentum is important in the region of headlands. The simplification of the advective terms by only including them in their vertically integrated form does not appear to make a significant difference to current profiles, but does reduce the computational effort by a significant amount. Computed current profiles both for the fundamental and the higher harmonic determined with a prognostic equation for turbulence and an algebraic mixing length formula, are as accurate as those determined with a two prognostic equation model (the so called q2- q2l model), provided the mixing length is specified correctly. A simple, flow-dependent eddy viscosity with a parabolic variation of viscosity also performs equally well.

  18. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  19. Modifications of ORNL's computer programs MSF-21 and VTE-21 for the evaluation and rapid optimization of multistage flash and vertical tube evaporators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glueckstern, P.; Wilson, J.V.; Reed, S.A.

    1976-06-01

    Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.

  20. V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical sharpening.

    PubMed

    Teich, Andrew F; Qian, Ning

    2010-03-01

    Orientation adaptation and perceptual learning change orientation tuning curves of V1 cells. Adaptation shifts tuning curve peaks away from the adapted orientation, reduces tuning curve slopes near the adapted orientation, and increases the responses on the far flank of tuning curves. Learning an orientation discrimination task increases tuning curve slopes near the trained orientation. These changes have been explained previously in a recurrent model (RM) of orientation selectivity. However, the RM generates only complex cells when they are well tuned, so that there is currently no model of orientation plasticity for simple cells. In addition, some feedforward models, such as the modified feedforward model (MFM), also contain recurrent cortical excitation, and it is unknown whether they can explain plasticity. Here, we compare plasticity in the MFM, which simulates simple cells, and a recent modification of the RM (MRM), which displays a continuum of simple-to-complex characteristics. Both pre- and postsynaptic-based modifications of the recurrent and feedforward connections in the models are investigated. The MRM can account for all the learning- and adaptation-induced plasticity, for both simple and complex cells, while the MFM cannot. The key features from the MRM required for explaining plasticity are broadly tuned feedforward inputs and sharpening by a Mexican hat intracortical interaction profile. The mere presence of recurrent cortical interactions in feedforward models like the MFM is insufficient; such models have more rigid tuning curves. We predict that the plastic properties must be absent for cells whose orientation tuning arises from a feedforward mechanism.

  1. Effective Classification and Gene Expression Profiling for the Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    González-Navarro, Félix F.; Belanche-Muñoz, Lluís A.; Silva-Colón, Karen A.

    2013-01-01

    The Facioscapulohumeral Muscular Dystrophy (FSHD) is an autosomal dominant neuromuscular disorder whose incidence is estimated in about one in 400,000 to one in 20,000. No effective therapeutic strategies are known to halt progression or reverse muscle weakness and atrophy. It is known that the FSHD is caused by modifications located within a D4ZA repeat array in the chromosome 4q, while recent advances have linked these modifications to the DUX4 gene. Unfortunately, the complete mechanisms responsible for the molecular pathogenesis and progressive muscle weakness still remain unknown. Although there are many studies addressing cancer databases from a machine learning perspective, there is no such precedent in the analysis of the FSHD. This study aims to fill this gap by analyzing two specific FSHD databases. A feature selection algorithm is used as the main engine to select genes promoting the highest possible classification capacity. The combination of feature selection and classification aims at obtaining simple models (in terms of very low numbers of genes) capable of good generalization, that may be associated with the disease. We show that the reported method is highly efficient in finding genes to discern between healthy cases (not affected by the FSHD) and FSHD cases, allowing the discovery of very parsimonious models that yield negligible repeated cross-validation error. These models in turn give rise to very simple decision procedures in the form of a decision tree. Current biological evidence regarding these genes shows that they are linked to skeletal muscle processes concerning specific human conditions. PMID:24349187

  2. Testing chameleon gravity with the Coma cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terukina, Ayumu; Yamamoto, Kazuhiro; Lombriser, Lucas

    2014-04-01

    We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extramore » force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |f{sub R0}| < 6 × 10{sup −5}, which is currently the tightest constraint on cosmological scales.« less

  3. Capitation pricing: Adjusting for prior utilization and physician discretion

    PubMed Central

    Anderson, Gerard F.; Cantor, Joel C.; Steinberg, Earl P.; Holloway, James

    1986-01-01

    As the number of Medicare beneficiaries receiving care under at-risk capitation arrangements increases, the method for setting payment rates will come under increasing scrutiny. A number of modifications to the current adjusted average per capita cost (AAPCC) methodology have been proposed, including an adjustment for prior utilization. In this article, we propose use of a utilization adjustment that includes only hospitalizations involving low or moderate physician discretion in the decision to hospitalize. This modification avoids discrimination against capitated systems that prevent certain discretionary admissions. The model also explains more of the variance in per capita expenditures than does the current AAPCC. PMID:10312010

  4. Research supporting potential modification of the NASA specification for dry heat microbial reduction of spacecraft hardware

    NASA Astrophysics Data System (ADS)

    Spry, James A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.

  5. Cigar Product Modification Among High School Youth.

    PubMed

    Trapl, Erika S; Koopman Gonzalez, Sarah J; Cofie, Leslie; Yoder, Laura D; Frank, Jean; Sterling, Kymberle L

    2018-02-07

    Prevalence of cigar use has been increasing among youth. Research indicates that youth are modifying cigar products either by "freaking" (ie, removing the filter paper) or "blunting" (removing the tobacco and supplementing or replacing with marijuana), yet little is known about youth who engage in this behavior. Thus, this study examines demographic and concurrent substance use behaviors of youth who modify cigars. Data from the 2013 Cuyahoga County Youth Risk Behavior survey were examined (n = 16 855). The survey collected data on demographics, cigar product use, cigar modification behaviors, and current cigarette, hookah and marijuana use. Responses to cigar product use items were used to create a composite to classify youth in one of eight unique user categories. Univariate and bivariate statistics were calculated using SPSS complex samples procedures. Overall, 15.2% reported current cigar product use, 11.0% reported current freaking, and 18.5% reported current blunt use; taken together, 25.3% of respondents reported any current use of a cigar product. When examined by user category, of those who endorsed any cigar product use, cigars, cigarillos, and little cigars use only was most endorsed (26.3%), followed by Blunt only (25.2%) and all three (ie, cigars, cigarillos, and little cigars, freaking, and blunting; 17.4%). A substantial proportion of high school youth who report using cigar products are modifying them in some way, with nearly half freaking and nearly two-thirds blunting. Given the FDA Center for Tobacco products recent extension of its regulatory authority to include cigar products, it is imperative to understand more about the prevalence of and reasons for cigar modification behaviors. Although the FDA has recently enacted regulatory authority over cigar products, little is known about cigar product modification. This is the first study to concurrently examine two unique cigar modification behaviors, "freaking" (ie, removing the filter paper) and "blunting" (removing the tobacco and supplementing or replacing with marijuana). A significant proportion of high school youth are modifying cigar products to be used as a tobacco product and as a mechanism to smoke marijuana. More research is needed to understand these behaviors to prevent and reduce the use of cigar products among youth. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Modification of the Near Surface Region Metastable Phases and Ion Induced Reactions

    DTIC Science & Technology

    1984-02-03

    cell Si Dave Lilienfeld - amorphous Si layer thickness Au diffusion in metallic glasses Dave Lilienfeld & - low temperature Cu diffusion in Si Tim...Sullivan Fritz Stafford - defect characterization in implanted & annealed silicon-on-sapphire Peter Zielinski - Composition of CuZr metallic glass...ribbons 5. Prof. Johnson Dave Kuhn - measurement of Pd layer thickness Alexandra Elve - hydrogen profiles in metals Lauren Heitner - hydrogen diffusion in

  7. Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod

    NASA Astrophysics Data System (ADS)

    Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.

    2003-09-01

    The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.

  8. Lower hybrid current drive in experiments for transport barriers at high βN of JET (Joint European Torus)

    NASA Astrophysics Data System (ADS)

    Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.

    2007-09-01

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  9. 76 FR 58094 - Airworthiness Directives; 328 Support Services GmbH (Type Certificate Previously Held by AvCraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... subsequent Eddy Current inspection (NDI) [non-destructive inspection] of the same area to detect cracks... inspections are eddy current inspections. The modification includes cold expansion of the former lower wing... with consequent loss of control. * * * * * The new inspections are eddy current inspections. The...

  10. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  11. Alterations in Aspergillus brasiliensis (niger) ATCC 9642 membranes associated to metabolism modifications during application of low-intensity electric current.

    PubMed

    Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio

    2017-12-01

    The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.

  12. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    NASA Astrophysics Data System (ADS)

    Jordà, G.; Bolaños, R.; Espino, M.; Sánchez-Arcilla, A.

    2006-10-01

    The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions) project. A one way sequential coupling approach is adopted to link the wave model (WAM) to the circulation model (SYMPHONIE). The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bo€ttom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean), a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  13. Neutron stars in screened modified gravity: Chameleon versus dilaton

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine; Jha, Rahul

    2017-04-01

    We consider the scalar field profile around relativistic compact objects such as neutron stars for a range of modified gravity models with screening mechanisms of the chameleon and Damour-Polyakov types. We focus primarily on inverse power law chameleons and the environmentally dependent dilaton as examples of both mechanisms. We discuss the modified Tolman-Oppenheimer-Volkoff equation and then implement a relaxation algorithm to solve for the scalar profiles numerically. We find that chameleons and dilatons behave in a similar manner and that there is a large degeneracy between the modified gravity parameters and the neutron star equation of state. This is exemplified by the modifications to the mass-radius relationship for a variety of model parameters.

  14. Profiling of modified nucleosides from ribonucleic acid digestion by supercritical fluid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Laboureur, Laurent; Guérineau, Vincent; Auxilien, Sylvie; Yoshizawa, Satoko; Touboul, David

    2018-02-16

    A method based on supercritical fluid chromatography coupled to high resolution mass spectrometry for the profiling of canonical and modified nucleosides was optimized, and compared to classical reverse-phase liquid chromatography in terms of separation, number of detected modified nucleosides and sensitivity. Limits of detection and quantification were measured using statistical method and quantifications of twelve nucleosides of a tRNA digest from E. coli are in good agreement with previously reported data. Results highlight the complementarity of both separation techniques to cover the largest view of nucleoside modifications for forthcoming epigenetic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Coil-current effect in Kibble balances: analysis, measurement, and optimization

    NASA Astrophysics Data System (ADS)

    Li, S.; Bielsa, F.; Stock, M.; Kiss, A.; Fang, H.

    2018-02-01

    The Kibble balance is expected to become an important instrument in the near future for realizing the unit of mass, the kilogram, in the revised international system of units (SI). The Kibble balance assumes an equality of two magnetic profiles measured in the weighing and velocity phases. A recent study conducted in the Kibble balance group at the Bureau International des Poids et Mesures (BIPM) showed that the coil current could significantly affect the magnetic profile, which should be carefully taken into account in the Kibble balance experiment. This paper gives a deeper understanding and investigation of the effect, and discusses the magnetic profile change due to the coil current, for both the classical two-mode and the one-mode Kibble balances. The coil current effect has been theoretically and experimentally investigated based on a typical magnet design with an air gap. One important conclusion found in the one-mode Kibble balance is that the magnetic profile change measured in the velocity phase is twice the change in the weighing phase. A compensation suggestion, to minimize the profile change due to the coil current in a BIPM-type magnet, is presented.

  16. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array.

    PubMed

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F

    2017-09-26

    Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.

  17. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.).

    PubMed

    Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis

    2014-06-04

    The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present.

  18. Distributed media server for the support of multimedia teaching

    NASA Astrophysics Data System (ADS)

    Liepert, Michael; Griwodz, Carsten; On, Giwon; Zink, Michael; Steinmetz, Ralf

    1999-11-01

    One major problem of using multimedia material in lecturing is the trade-off between actuality of the content and quality of the presentations. A frequent need for content refreshment exists, but high quality presentations can not be authored by the individual teacher alone at the required rate. Several past and current projects have had the goal of developing so-called learning archives, a variation of digital libraries. On demand, these deliver material with limited structure to students. For lecturing, these systems provide just as insufficient service as the unreliable WWW. Based on our system HyNoDe [HYN97] we address these issues in our distributed media server built of 'medianodes.' We add content management that addresses teachers' needs and provide guaranteed service for connected as well as disconnected operation of their presentation systems. Medianode aims at a scenario for non-real-time, shared creation and modification of presentations and presentation elements. It provides user authentication, administrative roles and authorization mechanisms. It requires an understanding of consistency, versioning and alternative content tailored to lecturing. To allow for predictable presentation quality, medianode provides application level QoS supporting alternative media and alternative presentations. Viable presentation tracks are dynamically generated based on user requests, user profiles and hardware profiles. For machines that are removed from the system according to a schedule, the systems guarantees availability of consistent, complete tracks of selected presentations at disconnect time. In this paper we present the scope of the medianode project and afterwards its architecture, following the realization steps.

  19. How to interpret Methylation Sensitive Amplified Polymorphism (MSAP) profiles?

    PubMed Central

    2014-01-01

    Background DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. Results Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. Conclusions We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation. PMID:24393618

  20. Multiple sclerosis (MS) for the urologist: What should urologists know about MS?

    PubMed

    Aharony, Shachar; Lam, Ornella; Lapierre, Yves; Corcos, Jacques

    2016-02-01

    Multiple sclerosis (MS) is a unique central nervous system (CNS) inflammatory disease with a broad spectrum of clinical presentations, which are time- and disease progression-related. It usually affects young adults, with a female predominance of 3:1. Men are more likely to develop symptoms at a slightly older age with a more progressive disease course. Diagnosis relies on a combination of clinical, radiological, and laboratory investigations, with a central role of magnetic resonance imaging (MRI). Although the exact etiology is still obscure, the leading hypothesis behind MS relapses is acute inflammatory attacks on CNS myelin and axons. This complex process involves B and T cells together with macrophages and microglia. Genetic and environmental factors are thought to be major contributors to the disease's evolution. MS therapies consist of long-term (immunomodulatory) management, focusing on disease modification, and short-term symptomatic control. Symptomatic treatment includes pharmacological and non-pharmacological methods to protect function and restore quality of life (QoL). The introduction and development of disease-modifying medications provide opportunities to change the face of this disease, enhancing QoL over the long-term. Interferon (INF) and Glatiramer acetate (GLAT) represent first line medications with limited effect and relatively fair safety profile. Newer medications with improved efficacy along with a more hazardous side effect profile are now considered second line therapy. The present review summarizes current knowledge of this frequent disease. Urologists must acquire a deeper understanding for better integration of practice recommendations. © 2015 Wiley Periodicals, Inc.

Top