Sample records for current profilers adcps

  1. Evaluation of mean velocity and turbulence measurements with ADCPs

    USGS Publications Warehouse

    Nystrom, E.A.; Rehmann, C.R.; Oberg, K.A.

    2007-01-01

    To test the ability of acoustic Doppler current profilers (ADCPs) to measure turbulence, profiles measured with two pulse-to-pulse coherent ADCPs in a laboratory flume were compared to profiles measured with an acoustic Doppler velocimeter, and time series measured in the acoustic beam of the ADCPs were examined. A four-beam ADCP was used at a downstream station, while a three-beam ADCP was used at a downstream station and an upstream station. At the downstream station, where the turbulence intensity was low, both ADCPs reproduced the mean velocity profile well away from the flume boundaries; errors near the boundaries were due to transducer ringing, flow disturbance, and sidelobe interference. At the upstream station, where the turbulence intensity was higher, errors in the mean velocity were large. The four-beam ADCP measured the Reynolds stress profile accurately away from the bottom boundary, and these measurements can be used to estimate shear velocity. Estimates of Reynolds stress with a three-beam ADCP and turbulent kinetic energy with both ADCPs cannot be computed without further assumptions, and they are affected by flow inhomogeneity. Neither ADCP measured integral time scales to within 60%. ?? 2007 ASCE.

  2. Measurement of velocities with an acoustic velocity meter, one side-looking and two upward-looking acoustic Doppler current profilers in the Chicago Sanitary and Ship Canal, Romeoville, Illinois

    USGS Publications Warehouse

    Oberg, Kevin A.; Duncker, James J.

    1999-01-01

    In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.

  3. Using Machine Learning Techniques in the Analysis of Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Falcinelli, K. E.; Abuomar, S.

    2017-12-01

    Acoustic Doppler Current Profilers (ADCPs) are oceanographic tools capable of collecting large amounts of current profile data. Using unsupervised machine learning techniques such as principal component analysis, fuzzy c-means clustering, and self-organizing maps, patterns and trends in an ADCP dataset are found. Cluster validity algorithms such as visual assessment of cluster tendency and clustering index are used to determine the optimal number of clusters in the ADCP dataset. These techniques prove to be useful in analysis of ADCP data and demonstrate potential for future use in other oceanographic applications.

  4. Measurements of velocity and discharge, Grand Canyon, Arizona, May 1994

    USGS Publications Warehouse

    Oberg, Kevin A.; Fisk, Gregory G.; ,

    1995-01-01

    The U.S. Geological Survey (USGS) evaluated the feasibility of utilizing an acoustic Doppler current profiler (ADCP) to collect velocity and discharge data in the Colorado River in Grand Canyon, Arizona, in May 1994. An ADCP is an instrument that can be used to measure water velocity and discharge from a moving boat. Measurements of velocity and discharge were made with an ADCP at 54 cross sections along the Colorado River between the Little Colorado River and Diamond Creek. Concurrent measurements of discharge with an ADCP and a Price-AA current meter were made at three U.S. Geological Survey streamflow-gaging stations: Colorado River above the Little Colorado River near Desert View, Colorado River near Grand Canyon, and Colorado River above Diamond Creek near Peach Springs. Discharges measured with an ADCP were within 3 percent of the rated discharge at each streamflow-gaging station. Discharges measured with the ADCP were within 4 percent of discharges measured with a Price-AA meter, except at the Colorado River above Diamond Creek. Vertical velocity profiles were measured with the ADCP from a stationary position at four cross sections along the Colorado River. Graphs of selected vertical velocity profiles collected in a cross section near National Canyon show considerable temporal variation among profile.

  5. Validation of streamflow measurements made with acoustic doppler current profilers

    USGS Publications Warehouse

    Oberg, K.; Mueller, D.S.

    2007-01-01

    The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were -0.51 and -1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement. ?? 2007 ASCE.

  6. Consistent and efficient processing of ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.

  7. Velocity bias induced by flow patterns around ADCPs and associated deployment platforms

    USGS Publications Warehouse

    Mueller, David S.

    2015-01-01

    Velocity measurements near the Acoustic Doppler Current Profiler (ADCP) are important for mapping surface currents, measuring velocity and discharge in shallow streams, and providing accurate estimates of discharge in the top unmeasured portion of the water column. Improvements to ADCP performance permit measurement of velocities much closer (5 cm) to the transducer than has been possible in the past (25 cm). Velocity profiles collected by the U.S. Geological Survey (USGS) with a 1200 kHz Rio Grande Zedhead ADCP in 2002 showed a negative bias in measured velocities near the transducers. On the basis of these results, the USGS initiated a study combining field, laboratory, and numerical modeling data to assess the effect of flow patterns caused by flow around the ADCP and deployment platforms on velocities measured near the transducers. This ongoing study has shown that the negative bias observed in the field is due to the flow pattern around the ADCP. The flow pattern around an ADCP violates the basic assumption of flow homogeneity required for an accurate three-dimensional velocity solution. Results, to date (2014), have indicated velocity biases within the measurable profile, due to flow disturbance, for the TRDI 1200 kHz Rio Grande Zedhead and the SonTek RiverSurveyor M9 ADCPs. The flow speed past the ADCP, the mount and the deployment platform have also been shown to play an important role in the magnitude and extent of the velocity bias.

  8. In Search of Easy-to-Use Methods for Calibrating ADCP's for Velocity and Discharge Measurements

    USGS Publications Warehouse

    Oberg, K.; ,

    2002-01-01

    A cost-effective procedure for calibrating acoustic Doppler current profilers (ADCP) in the field was presented. The advantages and disadvantages of various methods which are used for calibrating ADCP were discussed. The proposed method requires the use of differential global positioning system (DGPS) with sub-meter accuracy and standard software for collecting ADCP data. The method involves traversing a long (400-800 meter) course at a constant compass heading and speed, while collecting simultaneous DGPS and ADCP data.

  9. Using a 1200 kHz workhorse ADCP with mode 12 to measure near bottom mean currents

    USGS Publications Warehouse

    Martini, M.; ,

    2003-01-01

    Using high frequency Acoustic Doppler Current (ADCP) profiling technology, it is possible to make high-resolution measurements of mean current profiles within a few meters of the seabed. In coastal applications, mean current speeds may be 10 cm/s or less, and oscillatory wave currents may exceed 100 cm/s during storm events. To resolve mean flows of 10 cm/s or less under these conditions, accuracies of 1 cm/s or better are desirable.

  10. Measuring discharge with acoustic Doppler current profilers from a moving boat

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  11. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  12. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  13. ADCP measurements of gravity currents in the Chicago River, Illinois

    USGS Publications Warehouse

    Garcia, C.M.; Oberg, K.; Garcia, M.H.

    2007-01-01

    A unique set of observations of stratified flow phenomena in the Chicago River was made using an upward-looking acoustic Doppler current profiler (ADCP) during the period November 20, 2003 to February 1, 2004. Water density differences between the Chicago River and its North Branch (NB) seem to be responsible for the development of gravity currents. With the objective of characterizing the occurrence, frequency, and evolution of such currents, the ADCP was configured to continuously collect high-resolution water velocity and echo intensity profiles in the Chicago River at Columbus Drive. During the observation period, 28 gravity current events were identified, lasting a total of 77% of the time. Sixteen of these events were generated by underflows from the NB and 12 of these events were generated by overflows from the NB. On average, the duration of the underflow and overflow events was 52.3 and 42.1 h, respectively. A detailed analysis of one underflow event, which started on January 7, 2004, and lasted about 65h, was performed. This is the first time that ADCP technology has been used to continuously monitor gravity currents in a river. ?? 2007 ASCE.

  14. Recent applications of acoustic Doppler current profilers

    USGS Publications Warehouse

    Oberg, K.A.; Mueller, David S.

    1994-01-01

    A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.

  15. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar

    2017-01-01

    Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.

  16. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    USGS Publications Warehouse

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview of these applications is provided in the fact sheet.

  17. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  18. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  19. Quality assurance plan for discharge measurements using broadband acoustic Doppler current profilers

    USGS Publications Warehouse

    Lipscomb, S.W.

    1995-01-01

    The recent introduction of the Acoustic Doppler Current Profiler (ADCP) as an instrument for measuring velocities and discharge in the riverine and estuarine environment promises to revolutionize the way these data are collected by the U.S. Geological Survey. The ADCP and associated software, however, compose a complex system and should be used only by qualifies personnel. Standard procedures should be rigorously followed to ensure that the quality of data collected is commensurate with the standards set by the Water Resources Division for all its varied activities in hydrologic investigations.

  20. Near-Inertial and Tidal Currents Detected with a Vessel Mounted Acoustic Doppler Current Profiler in the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Candela, J.; Font, J.

    1998-01-01

    The Acoustic Doppler Current Profiler (ADCP) combined with accurate navigation provides absolute current velocities which include information from all the frequencies which have a dynamical presence in the ocean.

  1. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    USGS Publications Warehouse

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  2. Gravitational circulation in a tidal strait

    USGS Publications Warehouse

    Smith, P.E.; Cheng, R.T.; Burau, J.R.; Simpson, M.R.; ,

    1991-01-01

    Eight months of continuous measurements of tidal current profiles with an acoustic Doppler current profiler (ADCP) were made in Carquinez Strait, California, during 1988 for the purpose of estimating long-term variations in vertical profiles of Eulerian residual currents. Salinity stratification near the ADCP deployment site also was analyzed. The strength of density-driven gravitational circulation and the amount of salinity stratification in the strait varied significantly over the spring-neap tidal cycle. Density currents and stratification were greater during neap tides when vertical mixing from the tide is at a minimum. Landward residual currents along the bottom were observed only during neap tides. Simulations made with a three-dimensional model to supplement the field measurements show a significant, tidally induced lateral variation in residual currents across the strait. The Stokes drift of 1-2 cm/s in the strait is small relative to the speed of gravitational currents.

  3. Validation of exposure time for discharge measurements made with two bottom-tracking acoustic doppler current profilers

    USGS Publications Warehouse

    Czuba, J.A.; Oberg, K.

    2008-01-01

    Previous work by Oberg and Mueller of the U.S. Geological Survey in 2007 concluded that exposure time (total time spent sampling the flow) is a critical factor in reducing measurement uncertainty. In a subsequent paper, Oberg and Mueller validated these conclusions using one set of data to show that the effect of exposure time on the uncertainty of the measured discharge is independent of stream width, depth, and range of boat speeds. Analysis of eight StreamPro acoustic Doppler current profiler (ADCP) measurements indicate that they fall within and show a similar trend to the Rio Grande ADCP data previously reported. Four special validation measurements were made for the purpose of verifying the conclusions of Oberg and Mueller regarding exposure time for Rio Grande and StreamPro ADCPs. Analysis of these measurements confirms that exposure time is a critical factor in reducing measurement uncertainty and is independent of stream width, depth, and range of boat speeds. Furthermore, it appears that the relation between measured discharge uncertainty and exposure time is similar for both Rio Grande and StreamPro ADCPs. These results are applicable to ADCPs that make use of broadband technology using bottom-tracking to obtain the boat velocity. Based on this work, a minimum of two transects should be collected with an exposure time for all transects greater than or equal to 720 seconds in order to achieve an uncertainty of ??5 percent when using bottom-tracking ADCPs. ?? 2008 IEEE.

  4. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    USGS Publications Warehouse

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  5. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  6. Measuring gravity currents in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Oberg, K.A.; Czuba, J.A.; Johnson, K.K.

    2008-01-01

    Recent studies of the Chicago River have determined that gravity currents are responsible for persistent bidirectional flows that have been observed in the river. A gravity current is the flow of one fluid within another caused by a density difference between the fluids. These studies demonstrated how acoustic Doppler current profilers (ADCP) can be used to detect and characterize gravity currents in the field. In order to better understand the formation and evolution of these gravity currents, the U.S. Geological Survey (USGS) has installed ADCPs and other instruments to continuously measure gravity currents in the Chicago River and the North Branch Chicago River. These instruments include stage sensors, thermistor strings, and both upward-looking and horizontal ADCPs. Data loggers and computers installed at gaging stations along the river are used to collect data from these instruments and transmit them to USGS offices. ?? 2008 IEEE.

  7. Improving LADCP Velocity Profiles with External Attitude Sensors

    NASA Astrophysics Data System (ADS)

    Thurnherr, A. M.; Goszczko, I.

    2016-12-01

    Data collected with Acoustic Doppler Current Profilers installed on CTD rosettes and lowered through the water column (LADCP systems) are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (pitch, roll and heading). Of particular concern are the heading measurements because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship as well as the current-carrying winch wire. Heading data from dual-headed LADCP systems, which consist of upward and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10 degrees. In an attempt to reduce LADCP velocity errors, over 200 full-depth profiles were collected during several recent projects, including GO-SHIP, DIMES and ECOGIG, with an inexpensive (<$200) external magnetometer/accelerometer package. The resulting data permit full compass calibrations (for both hard- and soft-iron effects) from in-situ profile data and yields improved pitch and roll measurements. Results indicate greatly reduced inconsistencies between the data from the two ADCPs (horizontal-velocity processing residuals), as well as smaller biases in vertical -velocity (w) measurements. In addition, the external magnetometer package allows processing of some LADCP data collected in regions where the horizontal magnitude of the earth's magnetic field is insufficient for the ADCPs internal compasses to work at all.

  8. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    NASA Astrophysics Data System (ADS)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  9. Vertical Structure and Dynamics of the Beaufort Gyre Subsurface Layer from ADCP Obervations

    NASA Astrophysics Data System (ADS)

    Torres, D. J.; Krishfield, R. A.; Proshutinsky, A. Y.; Timmermans, M. L. E.

    2014-12-01

    As part of the Beaufort Gyre Observing System (BGOS), several Acoustic Doppler Current Profilers (ADCPs) have been maintained at moorings in different locations in the Canada Basin since 2005 to measure upper ocean velocities and sea ice motion. The ADCP data have been analyzed to better understand relationships among different components of forcing driving the sea ice and upper ocean layer including: winds, tides, and horizontal and vertical density gradients in the ocean. Specific attention is paid to data processing and analysis to separate inertial and tidal motions in these regions in the vicinity of the critical latitudes. In addition, we describe the dynamic characteristics of halocline eddies and estimate their kinetic energy and their role in the total energy balance in this region. Ice-Tethered Profiler (ITP) data are used in conjunction with the ADCP measurements to identify relationships between T-S and vertical velocity structures in the mixed layer and deeper. Seasonal and interannual variability in all parameters are also discussed and causes of observed changes are suggested.

  10. Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay

    DOE PAGES

    Harding, S. F.; Richmond, M. C.; Romero-Gomez, P.; ...

    2016-01-02

    Accurate modeling of the velocity field in the forebay of a hydroelectric power station is important for both power generation and fish passage, and is able to be increasingly well represented by computational fluid dynamics (CFD) simulations. Acoustic Doppler Current Profiler (ADCP) are investigated herein as a method of validating the numerical flow solutions, particularly in observed and calculated regions of non-homogeneous flow velocity. By using a numerical model of an ADCP operating in a velocity field calculated using CFD, the errors due to the spatial variation of the flow velocity are quantified. Furthermore, the numerical model of the ADCPmore » is referred to herein as a Virtual ADCP (VADCP).« less

  11. Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements

    USGS Publications Warehouse

    Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.

    2013-01-01

    The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.

  12. Tidal currents and Kuroshio transport variations in the Tokara Strait estimated from ferryboat ADCP data

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Hua; Nakamura, Hirohiko; Dong, Menghong; Nishina, Ayako; Yamashiro, Toru

    2017-03-01

    From 2003 to 2011, current surveys, using an acoustic Doppler current profiler (ADCP) mounted on the Ferry Naminoue, were conducted across the Tokara Strait (TkS). Resulting velocity sections (1234) were used to estimate major tidal current constituents in the TkS. The semidiurnal M2 tidal current (maximum amplitude 27 cm s-1) was dominant among all the tidal constituents, and the diurnal K1 tidal current (maximum amplitude 21 cm s-1) was the largest among all the diurnal tidal constituents. Over the section, the ratios, relative to M2, of averaged amplitudes of M2, S2, N2, K2, K1, O1, P1, and Q1 tidal currents were 1.00:0.44:0.21:0.12:0.56:0.33:0.14:0.10. Tidal currents estimated from the ship-mounted ADCP data were in good agreement with those from the mooring ADCP data. Their root-mean-square difference for the M2 tidal current amplitude was 2.0 cm s-1. After removing the tidal currents, the annual-mean of the net volume transport (NVT) through the TkS ± its standard derivation was 23.03 ± 3.31 Sv (Sv = 106 m3 s-1). The maximum (minimum) monthly mean NVT occurred in July (November) with 24.60 (21.47) Sv. NVT values from the ship-mounted ADCP were in good agreement with previous geostrophic volume transports calculated from conductivity temperature depth data, but the former showed much finer temporal structure than those from the geostrophic calculation.

  13. Field Measurements to Characterize Turbulent Inflow for Marine Hydrokinetic Devices - Marrowstone Island, WA

    NASA Astrophysics Data System (ADS)

    Richmond, M. C.; Thomson, J. M.; Durgesh, V.; Polagye, B. L.

    2011-12-01

    Field measurements are essential for developing an improved understanding of turbulent inflow conditions that affect the design and operation of marine and hydrokinetic (MHK) devices. The Marrowstone Island site in Puget Sound, Washington State is a potential location for installing MHK devices, as it experiences strong tides and associated currents. Here, field measurements from Nodule Point on the eastern side of Marrowstone Island are used to characterize the turbulence in terms of velocity variance as a function of length and time scales. The field measurements were performed using Acoustic Doppler Velocimetry (ADV) and Acoustic Doppler Current Profiler (ADCP) instruments. Both were deployed on a bottom-mounted tripod at the site by the Applied Physics Lab at the University of Washington (APL-UW). The ADV acquired single point, temporally resolved velocity data from 17-21 Feb 2011, at a height of 4.6 m above the seabed at a sampling frequency of 32 Hz. The ADCP measured the velocity profile over the water column from a height of 2.6 m above the seabed up to the sea-surface in 36 bins, with each bin of 0.5 m size. The ADCP acquired data from 11-27 Feb 2011 at a sampling frequency of 2 Hz. Analysis of the ADV measurements shows distinct dynamic regions by scale: anisotropic eddies at large scales, an isotropic turbulent cascade (-5/3 slope in frequency spectra) at mesoscales, and contamination by Doppler noise at small scales. While Doppler noise is an order of magnitude greater for the ADCP measurements, the turbulence bulk statistics are consistent between the two instruments. There are significant variations in turbulence statistics with stage of the tidal currents (i.e., from slack to non-slack tidal conditions), however an average turbulent intensity of 10% is a robust, canonical value for this site. The ADCP velocity profiles are useful in quantifying the variability in velocity along the water column, and the ensemble averaged velocity profiles may be described by a power law, commonly used to characterize boundary layers.

  14. Analysis of mean velocity and turbulence measurements with ADCPs

    NASA Astrophysics Data System (ADS)

    De Serio, Francesca; Mossa, Michele

    2015-07-01

    The present study examines the vertical structure of the coastal current in the inner part of the Gulf of Taranto, located in the Ionian Sea (Southern Italy), including both the Mar Grande and Mar Piccolo basins. To this aim, different measuring stations investigated by both a Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) and a bottom fixed ADCP were taken into consideration. Two surveys were carried out in the target area on 29.12.2006 and on 11.06.2007 by the research unit of the Technical University of Bari (DICATECh Department), using a VM-ADCP to acquire the three velocity components along the water column in selected stationing points. The measurements were taken in shallow waters, under non-breaking wave conditions, offshore the surf zone. Due to the recording frequency of the instrument time-averaged vertical velocity profiles could be evaluated in these measuring stations. Water temperature and salinity were also measured at the same time and locations by means of a CTD recorder. A rigidly mounted ADCP, located on the seabed in the North-Eastern area of the Mar Grande basin, provided current data relative to the period 10-20 February 2014. Set to acquire the three velocity components with higher frequency with respect to the VM-ADCP, it allowed us to estimate the turbulent quantities such as Reynolds stresses and turbulent kinetic energy by means of the variance method. Therefore, the present research is made up of two parts. The first part examines the current pattern measured by the VM-ADCP and verifies that, for each station, the classical log law reproduces well the vertical profile of the experimental streamwise velocities extending beyond its typical limit of validity up to the surface i.e. reaching great heights above the sea bed. This behavior is quite new and not always to be expected, being generally limited to boundary layers. It has been convincingly observed in only few limited experimental works. In the present study this occurred when two conditions were met: (i) the flow was mainly unidirectional along the vertical; (ii) the interested layer was non-stratified. The second part of the research studies the turbulent statistics derived from the beam signals of the fixed ADCP by means of the variance method. This technique had the advantage of being able to measure the time evolution of the turbulent mixing throughout the entire water column, thus making it possible to perform a detailed study on momentum transfer and turbulence. The deduced vertical profiles of the Reynolds stresses and of the turbulent kinetic energy TKE showed an increasing trend toward the surface, in agreement with previous results in literature. New data-sets of mean velocities and shear stresses, coming from field measurements, are always needed. In fact they represent the first step to derive reliable reference values of coefficients and parameters for the implementation and calibration of the used mathematical hydrodynamic models. Consequently, an effort was made to evaluate consistent bottom drag and wind drag coefficients, on the basis of the calculated bottom and surface shear stresses, respectively.

  15. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    USGS Publications Warehouse

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.

  16. Anatomy of a turbidity current: Concentration and grain size structure of a deep-sea flow revealed by multiple-frequency acoustic profilers

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Parsons, D. R.; Paull, C. K.; Barry, J.; Chaffey, M. R.; Gwiazda, R.; O'Reilly, T. C.; Maier, K. L.; Rosenberger, K. J.; Talling, P.; Xu, J.

    2017-12-01

    Turbidity currents are responsible for transporting large volumes of sediment to the deep ocean, yet remain poorly understood due to the limited number of field observations of these episodic, high energy events. As part of the Monterey Coordinated Canyon Experiment high resolution, sub-minute acoustic velocity and backscatter profiles were acquired with downward-looking acoustic Doppler current profilers (ADCPs) distributed along the canyon on moorings at depths ranging from 270 to 1,900 m over a period of 18 months. Additionally, three upward-looking ADCPs on different frequencies (300, 600 and 1200 kHz) profiled the water column above a seafloor instrument node (SIN) at 1850 m water depth. Traps on the moorings collected sediment carried by the flows at different heights above the seafloor and sediment cores were taken to determine the depositional record produced by the flows. Several sediment-laden turbidity flows were observed during the experiment, three of which ran out for more than 50 km to water depths of greater than 1,900 m and were observed on all of the moorings. Flow speeds of up to 6 m/s were observed and individual moorings, anchored by railroad wheels, moved up to 7.8 km down-canyon during these powerful events. We present results based on a novel analysis of the multiple-frequency acoustic data acquired by the ADCPs at the SIN integrated with grain size data from the sediment traps, close to the deepest mooring in the array where the flow thickened to the 70 m height of the ADCP above the bed. The analysis allows, for the first time, retrieval of the suspended sediment concentration and vertical distribution of grain size structure within a turbidity in spectacular detail. The details of the stratification and flow dynamics will be used to re-evaluate and discuss our existing models for these deep-sea flows.

  17. Quality assurance testing of acoustic doppler current profiler transform matrices

    USGS Publications Warehouse

    Armstrong, Brandy; Fulford, Janice M.; Thibodeaux, Kirk G.

    2015-01-01

    The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) is nationally responsible for the design, testing, evaluation, repair, calibration, warehousing, and distribution of hydrologic instrumentation in use within the USGS Water Mission Area (WMA). The HIF's Hydraulic Laboratory has begun routine quality assurance (QA) testing and documenting the performance of every USGS WMA acoustic Doppler current profiler (ADCP) used for making velocity and discharge measurements. All existing ADCPs are being registered and tracked in a database maintained by the HIF, and called for QA checks in the HIF's Hydraulic Laboratory on a 3- year cycle. All new ADCPs purchased directly from the manufacturer as well as ADCPs sent to the HIF or the manufacturer for repair are being registered and tracked in the database and QA checked in the laboratory before being placed into service. Meters failing the QA check are sent directly to the manufacturer for repairs and rechecked by HIF or removed from service. Although this QA program is specific to the SonTek1 and Teledyne RD Instruments1, ADCPs most commonly used within the WMA, it is the intent of the USGS Office of Surface Water and the HIF to expand this program to include all bottom tracking ADCPs as they become available and more widely used throughout the WMA. As part of the HIF QA process, instruments are inspected for physical damage, the instrument must pass the ADCP diagnostic self-check tests, the temperature probe must be within ± 2 degrees Celsius of a National Institute of Standards and Technology traceable reference thermometer and the distance made good over a fixed distance must meet the manufacturer's specifications (+/-0.25% or +/-1% difference). The transform matrix is tested by conducting distance-made-good (DMG) tests comparing the straight-line distance from bottom tracking to the measured tow-track distance. The DMG test is conducted on each instrument twice in the forward and reverse directions (4 tows) at four orientations (16 total tows); with beam 1 orientated 0 degrees to the towing direction; turned 45 degrees to the towing direction; turned 90 degrees to the towing direction; and turned 135 degrees to the towing direction. All QA data files and summary results are archived. This paper documents methodology, participation and preliminary results of WMA ADCP QA testing.

  18. Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data

    USGS Publications Warehouse

    Norris, Lam; Kean, Jason W.; Lyon, Steve

    2016-01-01

    The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.

  19. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment concentration. Spatial analyses of ADCP data showed that a strategy of repeated surveys and flow-field interpolation has the potential to simplify computation of flow and sediment discharge through complex waterways. The use of trade, product, industry, or firm names in this report is for descriptive purposes only and does not constitute endorsement of products by the US Government. ?? 2005 Elsevier B.V. All rights reserved.

  20. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less

  1. An acoustic doppler current profiler survey of flow velocities in St. Clair River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to measure flow velocities in St. Clair River during a survey in May and June of 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. The survey provides 2.7 million point velocity measurements at 104 cross sections. Sections are spaced about 1,630 ft apart along the river from Port Huron to Algonac, Michigan, a distance of 28.6 miles. Two transects were obtained at each cross section, one in each direction across the river. Along each transect, velocity profiles were obtained 2-4 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved through the internet and extracted to column-oriented data files.

  2. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015.

    PubMed

    Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd

    2018-04-01

    Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount), as well as east of the Cape Verde archipelago (Senghor Seamount). The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193.

  3. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  4. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  5. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  6. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    USGS Publications Warehouse

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  7. An acoustic doppler current profiler survey of flow velocities in Detroit River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to survey flow velocities in Detroit River from July 8-19, 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. More than 3.5 million point velocities were measured at 130 cross sections. Cross sections were generally spaced about 1,800 ft apart along the river from the head of Detroit River at the outlet of Lake St. Clair to the mouth of Detroit River on Lake Erie. Two transects were surveyed at each cross section, one in each direction across the river. Along each transect, velocity profiles were generally obtained 0.8-2.2 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved though the internet and extracted to column-oriented data files.

  8. From mobile ADCP to high-resolution SSC: a cross-section calibration tool

    USGS Publications Warehouse

    Boldt, Justin A.

    2015-01-01

    Sediment is a major cause of stream impairment, and improved sediment monitoring is a crucial need. Point samples of suspended-sediment concentration (SSC) are often not enough to provide an understanding to answer critical questions in a changing environment. As technology has improved, there now exists the opportunity to obtain discrete measurements of SSC and flux while providing a spatial scale unmatched by any other device. Acoustic instruments are ubiquitous in the U.S. Geological Survey (USGS) for making streamflow measurements but when calibrated with physical sediment samples, they may be used for sediment measurements as well. The acoustic backscatter measured by an acoustic Doppler current profiler (ADCP) has long been known to correlate well with suspended sediment, but until recently, it has mainly been qualitative in nature. This new method using acoustic surrogates has great potential to leverage the routine data collection to provide calibrated, quantitative measures of SSC which hold promise to be more accurate, complete, and cost efficient than other methods. This extended abstract presents a method for the measurement of high spatial and temporal resolution SSC using a down-looking, mobile ADCP from discrete cross-sections. The high-resolution scales of sediment data are a primary advantage and a vast improvement over other discrete methods for measuring SSC. Although acoustic surrogate technology using continuous, fixed-deployment ADCPs (side-looking) is proven, the same methods cannot be used with down-looking ADCPs due to the fact that the SSC and particle-size distribution variation in the vertical profile violates theory and complicates assumptions. A software tool was developed to assist in using acoustic backscatter from a down-looking, mobile ADCP as a surrogate for SSC. This tool has a simple graphical user interface that loads the data, assists in the calibration procedure, and provides data visualization and output options. This tool is designed to improve ongoing efforts to monitor and predict resource responses to a changing environment. Because ADCPs are used routinely for streamflow measurements, using acoustic backscatter from ADCPs as a surrogate for SSC has the potential to revolutionize sediment measurements by providing rapid measurements of sediment flux and distribution at spatial and temporal scales that are far beyond the capabilities of traditional physical samplers.

  9. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  10. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  11. Surveys of water velocities in the vicinity of the discharge-release gates of Salamonie Lake Dam, northeastern Indiana, spring and winter 1998

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    2000-01-01

    An acoustic Doppler current profiler (ADCP) mounted on a boat was used to collect velocity and depth data and to compute positions of the velocity and depth data relative to the boat track. A global positioning system (GPS) was used to collect earth-referenced position data, and a GPS base station receiver was used to improve the accuracy of the earth-referenced position data. The earth-referenced position data were used to transform the ADCP-computed positions (which were relative to boat tracks) to positions referenced to a point on the spillway tower.

  12. Hydrodynamic Controls on Acoustical and Optical Water Properties in Tropical Reefs

    DTIC Science & Technology

    2012-09-30

    scattering, absorption, and backscattering , shows more complex variations, with a strong diel signal , but with a tidal influence reflecting asymmetry in...Relative acoustic backscatter (ABS) profiles were derived from individual ADCP beam echo intensity correcting for range and absorption using the sonar...REFERENCES Deines K. L., 1999, Backscatter estimation using Broadband acoustic Doppler current profilers. Proceedings of the IEEE Sixth Working

  13. Near-bottom energy cascade from subinertial flows to ocean mixing in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, W.; Li, J.; Xu, J.

    2013-12-01

    The motions with different scales in the bottom boundary layer are potentially important in controlling the water mass transportation. Many physical processes are involved in transferring energy from mesoscale to small-scale motions. Recent studies suggest that subinertial flows should be taken into account in the parameterization of deep-ocean mixing besides topography and tidal forcing. Here, we present the current velocity data obtained from 2 moored downward-looking ADCPs (Acoustic Doppler Current Profiler) and 1 RCM (Recording Current Meter) moored near the bottom boundary layer at a water depth of about 2000 m in the northeastern South China Sea from 2012 to 2013. Specifically, they include an ADCP 1200 kHz deployed at 30 m, an ADCP 300 kHz deployed at 110 m, and a RCM deployed at 40 m above the seafloor. Subinertial flows were calculated from the moored current velocity data by low-pass filtering with a cutoff frequency of 0.3 cycles per day (the local inertial period is about 35 hours). The horizontal subinertial flows were quite strong with average values of 2-5 cm/s. The strong downward vertical velocity with average values of 1-2 cm/s was observed during times of weak subinertial flows. The vertical propagation during both the times of weak and strong subinertial flows can also be shown by vector spectra of horizontal near-inertial current velocity. Turbulent kinetic energy production rate estimated indirectly with the variances of ADCP velocities will be compared with the subinertial kinetic energy to detect the processes of energy cascade from mesoscale motions to small-scale oscillations. The results presented in this study can provide an observational evidence for such energy cascade near the bottom boundary layer in the deep South China Sea.

  14. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  15. Measurements of leakage from Lake Michigan through three control structures near Chicago, Illinois, April-October 1993

    USGS Publications Warehouse

    Oberg, K.A.; Schmidt, A.R.

    1994-01-01

    A total of 213 measurements of leakage were made at three control structures near Chicago, Ill.--the Chicago River Controlling Works (CRCW), Thomas J. O'Brien Lock and Dam (O'Brien), and Wilmette Pumping Station (Wilmette)--using acoustic Doppler current profilers (ADCP's) and dye-dilution techniques. The CRCW consists of the Chicago Lock and two sets of sluice gates connected by a network of harbor walls. Leakage measurements were made in April, May, July, September, and October 1993 using an ADCP. The mean and standard deviation of leakage measured by the ADCP for the Chicago Lock river gate were 133 and 39 cubic feet per second, respectively. The mean and standard deviation of the leakage measurements at CRCW were 204 and 70 cubic feet per second, respectively. The mean and standard deviation of leakage measurements at O'Brien on September 17, 1993, were 21 and 10 cubic feet per second, respectively. The mean and standard deviation leakage measured at Wilmette using the ADCP were 59 and 8 cubic feet per second, respectively, in April 1993. After the pump bays at Wilmette were sealed in July 1993, the leakage dropped to less than 15 cubic feet per second in September 1993. Discharge estimated by dye-dilution at the Chicago Lock on July 15, 1993, was 160 cubic feet per second, or within 8 percent of the discharge measured with the ADCP. (USGS)

  16. Monitoring Maritime Conditions with Unmanned Systems During Trident Warrior 2013

    DTIC Science & Technology

    2014-01-01

    Host- ing Autonomous Remote Craft or SHARC model ) that emit sounds and listen for reflected changes in response to ocean currents. Experiments tested...San Diego Scripps Institution of Oceanography were also deployed; these provided Acoustic Doppler Current Profiler (ADCP) 3D measurements of the...ocean currents as well as measurements of the surface meteorology . Figure 5(b) shows a schematic representa- tion of one wave glider and two ocean

  17. 2013 Mt. Etna Pyroclastic Activity through the ADCP Recordings of NEMO-SN1 Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Lo Bue, N.; Sgroi, T.; Giovinetti, G.; Marinaro, G.; Favali, P.

    2014-12-01

    The Acoustic Doppler Current Profiler (ADCP) is one of the most useful sensor used to measure speed and direction of sea currents in the water column. More often ADCPs are being also used to monitor concentration of suspended matter in rivers or in marine environments by the analysis of the acoustic backscatter intensity. In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), its cabled node, the NEMO-SN1 multidisciplinary seafloor observatory, was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily close to the submarine slope of the Mt. Etna volcano. Starting from February 2013, the Mt. Etna was interested by thirteen different parossistic events producing intense eruption followed by pyroclastic fallout that reached distances of tens kilometres from the eruptive centre. Four of these events affected the ESE sector with a consequent fallout in the Western Ionian Sea and they were detected by NEMO-SN1. In fact, its scientific payload also included an ADCP (RDI WorkHorse 600 kHz) with the main aim to monitor the hydrodynamic conditions of about 30 metres of the water column above the station. Surprisingly, this sensor offered spectacular recordings of the Mt. Etna pyroclastic activity occurred on 2013 wich affected the ESE sector. This work aims to present new records of pyroclastic fallout associated to explosive events observed at sea bottom by the analysis of backscatter signal of the ADCP. A multidisciplinary approach taking into account the Mt. Etna eruptive activity as well as the local oceanographic dynamic is necessary to describe marine processes involved in volcanic ash sedimentation.

  18. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    USGS Publications Warehouse

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna A.; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  19. Application of acoustic doppler current profilers for measuring three-dimensional flow fields and as a surrogate measurement of bedload transport

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2005-01-01

    Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial results and those by other researchers are helping to determine a direction for further research of noncontact measurements of sediment transport. Copyright ASCE 2005.

  20. Quantifying acoustic doppler current profiler discharge uncertainty: A Monte Carlo based tool for moving-boat measurements

    USGS Publications Warehouse

    Mueller, David S.

    2017-01-01

    This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when evaluating the uncertainty of moving-boat ADCP measurements.

  1. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope

    NASA Astrophysics Data System (ADS)

    Amol, P.; Shankar, D.; Fernando, V.; Mukherjee, A.; Aparna, S. G.; Fernandes, R.; Michael, G. S.; Khalap, S. T.; Satelkar, N. P.; Agarvadekar, Y.; Gaonkar, M. G.; Tari, A. P.; Kankonkar, A.; Vernekar, S. P.

    2014-06-01

    We present current data from acoustic Doppler current profilers (ADCPs) moored on the continental slope off the west coast of India. The data were collected at four locations (roughly at Kanyakumari, Kollam, Goa, and Mumbai) extending from ˜ 7° to ˜ 20°N during 2008-2012. The observations show that a seasonal cycle, including an annual cycle, is present in the West India Coastal Current (WICC); this seasonal cycle, which strengthens northward, shows considerable interannual variability and is not as strongly correlated along the coast as in climatologies based on ship drifts or the altimeter. The alongshore decorrelation of the WICC is much stronger at intraseasonal periods, which are evident during the winter monsoon all along the coast. This intraseasonal variability is stronger in the south. A striking feature of the WICC is upward phase propagation, which implies an undercurrent whose depth becomes shallower as the season progresses. There are also instances when the phase propagates downward. At the two southern mooring locations off Kollam and Kanyakumari, the cross-shore current, which is usually associated with eddy-like circulations, is comparable to the alongshore current on occasions. A comparison with data from the OSCAR (Ocean Surface Currents Analyses Real-time) data product shows not only similarities, but also significant differences, particularly in the phase. One possible reason for this phase mismatch between the ADCP current at 48 m and the OSCAR current, which represents the current in the 0-30 m depth range, is the vertical phase propagation. Current products based on Ocean General Circulation Models like ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) and GODAS (Global Ocean Data Assimilation System) show a weaker correlation with the ADCP current, and ECCO2 does capture some of the observed variability.

  2. Hydroacoustic Applications in South Carolina: Technological Advancements in the Streamgaging Network

    USGS Publications Warehouse

    Shelton, John M.

    2008-01-01

    Until the 1990s, the U.S. Geological Survey (USGS) had been making streamflow measurements using the same type of equipment for more than 100 years. The Price AA current meter was developed by USGS engineers in 1896. Until recently, the majority of all streamflow measurements made by the USGS were made using this instrument. In the mid-1990s, a new technology emerged in the field of inland streamflow monitoring. The acoustic Doppler current profiler (ADCP), originally developed for oceanographic work, was adapted for inland streamflow measurements. This instrument is transforming the USGS streamgaging program. The ADCP transmits an acoustic pulse through the water column. A 'Doppler shift' is measured as the signal is reflected off of particles in the water, such as sediment and microorganisms. Based on the assumption that the particles in the water are traveling at the same velocity as the water itself, a water velocity is computed.

  3. Morphodynamic change analysis of bedforms in the Lower Orinoco River, Venezuela

    NASA Astrophysics Data System (ADS)

    Yepez, Santiago Paul; Laraque, Alain; Gualtieri, Carlo; Christophoul, Frédéric; Marchan, Claudio; Castellanos, Bartolo; Azocar, Jose Manuel; Lopez, Jose Luis; Alfonso, Juan

    2018-04-01

    The Orinoco River has the third largest discharge in the world, with an annual mean flow of 37 600 m3 s-1 at its outlet to the Atlantic Ocean. Due to the presence of the Guiana Shield on the right bank, the lower reach of the Orinoco has a plan form characterized by contraction and expansion zones. Typical 1-1.5 km wide narrow reaches are followed by 7-8 km wide reaches. A complex pattern of bed aggradation and degradation processes takes place during the annual hydrological regime. A series of Acoustic Doppler Current Profiler (ADCP) transects were collected on an expansion channel in the Orinoco River, specifically over a fluvial island, representative of the lower Orinoco. In this study, temporal series of bathymetric cartography obtained by ADCP profiles combined with Differential Global Position System (DGPS) measurements (with dual-frequency), were used to recover the local displacement of bed forms in this island. The principal aims of this analysis were: (1) to understand the dynamics and evolution of sand waves and bars at this section and (2) to quantify the volume (erosion vs. accretion) of a mid-channel bar with dunes by applying DEM of Difference (DoD) maps on time series of bathymetric data. This required sampling with ADCP transects during the months of: May 2016; November 2016 and April 2017. Each bathymetric transect was measured twice, 1 day apart and on the same trajectory obtained by a GPS receptor. The spatial analysis of these ADCP transects is presented as a novel tool in the acquisition of time series of bathymetry for a relatively deep section ( ˜ 20 m) and under variable flow conditions.

  4. Suspended sediment dynamics in a large-scale oceanic turbidity current: Direct measurements from the Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, Steve; Azpiroz, Maria; Cartigny, Matthieu; Clare, Mike; Parsons, Dan; Sumner, Esther; Talling, Pete

    2017-04-01

    Turbidity currents transport prodigious volumes of sediment to the deep ocean, depositing a greater volume of sediment than any other process on Earth. Thus far, only a handful of studies have reported direct measurements of turbidity currents, with typical flow durations ranging from a few minutes to a few hours. Consequently, our understanding of turbidity current dynamics is largely derived from scaled laboratory experiments and numerical models. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements of velocity and backscatter were acquired along profiles through the water column at five and six second intervals by two acoustic Doppler current profilers (ADCPs) on separate moorings suspended 80 m and 200 m above the canyon floor, at a water depth of 2000 m. We present a novel inversion method that combines the backscatter from the two ADCPs, acquired at different acoustic frequencies, which enables the first high resolution quantification of sediment concentration and grain size within an oceanic turbidity current. Our results demonstrate the presence of high concentrations of coarse sediment within a fast moving, thin frontal cell, which outruns a slower-moving, thicker, trailing body that can persist for several days. Thus, the flows stretch while propagating down-canyon, demonstrating a behavior that is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended clay-sized sediment and the flow structure is shown to be influenced by interactions with the internal tides in the canyon.

  5. Observations of Inner Shelf Flows Influenced by a Small-Scale River Plume in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.

    2016-02-01

    Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.

  6. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  7. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  8. Synoptic eddy-resolving Ocean Surveys over the Slope of the Chukchi Sea 2016 and 2017

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Elmer, C.; Badiey, M.; Eickmeier, J.; Ryan, P. A.

    2017-12-01

    Mild weather and warm waters kept the outer continental shelf of the Chukchi Sea ice-free in 2016 when we conducted ocean surveys as part of the Canada Basin Acoustic Propagation Experiment (CANAPE). We used standard CTD and ADCP profiling systems aboard R/V Sikuliaq to describe ocean density and velocity fields at 3 km scales across and 6 km scales along the slope. Our survey covers 800 km2between the 100-m and 400-m isobaths and resolves the internal Rossby radius of deformation which represents the dominant spatial (or eddy) scale for a density-stratified ocean. Our early November 2016 data revealed Bering Sea Summer Waters with temperatures exceeding 1.0 C at 80-m depth near the 200-m isobath. Three-dimensional distribution of this water and associated density gradients suggests a current to the east. The flow is likely unstable, we speculate, because it spawns eddy-like features that we will describe. We will test this hypothesis with ocean current shear estimated from vessel-mounted ADCP profiles. A similar survey is planned for October 2017, when USCGC Healy will re-visit the area to recover ocean moorings deployed prior to the 2016 surveys.

  9. Water Velocities and the Potential for the Movement of Bed Sediments in Sinclair Inlet of Puget Sound, Washington

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Prych, E.A.; Tate, G.B.; Cacchione, D.A.; Cheng, R.T.; Bidlake, W.R.; Ferreira, J.T.

    1998-01-01

    Sinclair Inlet is a small embayment of Puget Sound in the State of Washington. The inlet, about 6.5 kilometers long and 1.5 kilometers wide, is the site of Puget Sound Naval Shipyard. There are concerns that bed sediments in the inlet may have been contaminated as a result of activities at the shipyard, and that these sediments could be resuspended by tide- and wind-driven currents and transported within the inlet or out of the inlet to other parts of Puget Sound. This study was conducted to provide information concerning the potential for sediment resuspension in the inlet. To obtain the necessary data, vertical profiles of water current from about 2 meters above the bed to 2 meters below the water surface were monitored with acoustic Doppler current profilers (ADCPs) at three locations during a 6.5-week winter period and a 4.5-week summer period in 1994. In addition, during the winter period, water velocites between 0.19 and 1.20 meters above the bed were measured with current meters using an instrument package called Geoprobe, which was deployed near one of the ADCPs. Other instruments on the Geoprobe measured light transmissivity, and a camera periodically took photographs of the bottom. Instruments on the Geoprobe and on the ADCPs also measured conductivity (for determining salinity), temperature, and pressure (for determinining tide). Samples of bed sediment and water samples for determining suspended-sediment concentration were collected at each of the current-measurement stations. Wind speed and direction were measured at three stations during a 12-month period, and tide was measured at one of these stations. Water currents measured at the three locations in Sinclair Inlet were relatively weak. Typical speeds were 5 to 10 centimeters per second, and the RMS (root-mean-square) speeds were less than 8 centimeters per second. Tidal and residual currents were of similar magnitude. Residual currents near the bottom typically were flowing in the opposite direction of the prevailing wind, while surface currents were in the same direction as the prevailing wind. During most of the year, the prevailing wind was from the soutwest quadrant; however, during July and August, the prevailing wind was usually from the northeast quadrant. The RMS of the total shear velocity for each ADCP station and measurement period, which was estimated from observed profiles of current velocity, ranged from 0.31 centimeters per second to 0.44 centimeters per second. The skin-friction component of the shear velocity was estimated to be no more than half the total. Critical shear velocity, estimated from particle sizes and density of the bed material, was 0.39 centimeters per second or larger. Comparisons of the skin-friction components of total bottom shear velocities with estimates of the critical shear velocity necessary for resuspension of the bed sediments indicate that resuspension occurs only infrequently, usually at times of maximum current during the tidal cycle. This conclusion is supported by measurements near the bed of light transmissivity, which is related to suspended-sediment concentration.

  10. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  11. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  12. Four-dimensional variational Ocean ReAnalysis for the Western North Pacific over 30 years (FORA-WNP30)

    NASA Astrophysics Data System (ADS)

    Hirose, N.; Takatsuki, Y.; Usui, N.; Wakamatsu, T.; Tanaka, Y.; Toyoda, T.; Nishikawa, S.; Fujii, Y.; Igarashi, H.; Nishikawa, H.; Ishikawa, Y.; Kuragano, T.; Kamachi, M.

    2016-12-01

    An ocean reanalysis, FORA-WNP30, was produced by the collaborative work of Meteorological Research Institute, Japan Meteorological Agency (JMA/MRI) and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). A state-of-the-art 4-dimensional variational ocean data assimilation system, MOVE-4DVAR (Usui et al., 2015) was used. The calculation for the reanalysis, with the horizontal resolution of 0.1 degree (about 10 km) and the period between 1 January 1982 and 31 December 2014, was carried out on the Earth Simulator with the support of JAMSTEC. The model forcing is derived from the JRA-55 atmospheric reanalysis product. In-situ temperature and salinity profiles above 1500m-depth, satellite-based sea surface temperature (SST) and sea surface height (SSH) data are assimilated in FORA-WNP30.Using the current observations obtained by the Acoustic Doppler Current Profiler (ADCP) installed in two JMA research vessels, we validate the current (velocity) field in FORA-WNP30 and MOVE-3DVAR system, the latter of which is an operational ocean data assimilation system in JMA. The ADCP current data are independent because they are not assimilated in both systems. The current fields at 100-m depth during 2001-2012, in both of FORA-WNP30 and MOVE-3DVAR show high correlation with ADCP observation in the south of Japan, the East China Sea and the Kuroshio extension region, and relatively low correlation in the Japan Sea and the Oyashio region. The correlation coefficients of current speed for FORA-WNP30 are higher than those for MOVE-3DVAR in all regions.FORA-WNP30 successfully reproduces not only the major ocean current such as the Kuroshio and Oyashio, but also the associated meso-scale phenomena such as eddies, fronts, and meanders. In addition, it replicates the Kuroshio large meander events and the strong intrusion event of the Oyashio in 1980s, in spite of no satellite altimeter data for this period. Therefore, FORA-WNP30 is a valuable dataset for use in a variety of oceanographic process study and related fields such as climate study, meteorology, and fisheries.

  13. Vessel-Mounted ADCP Data Calibration and Correction

    NASA Astrophysics Data System (ADS)

    de Andrade, A. F.; Barreira, L. M.; Violante-Carvalho, N.

    2013-05-01

    A set of scripts for vessel-mounted ADCP (Acoustic Doppler Current Profiler) data processing is presented. The need for corrections in the data measured by a ship-mounted ADCP and the complexities found during installation, implementation and identification of tasks performed by currently available systems for data processing consist the main motivating factors for the development of a system that would be more practical in manipulation, open code and more manageable for the user. The proposed processing system consists of a set of scripts developed in Matlab TM programming language. The system is able to read the binary files provided by the data acquisition program VMDAS (Vessel Mounted Data Acquisition System), Teledyne RDInstruments proprietary, and calculate calibration factors to correct the data and visualize them after correction. For use the new system, it is only necessary that the ADCP data collected with VMDAS program is in a processing diretory and Matlab TM software be installed on the user's computer. Developed algorithms were extensively tested with ADCP data obtained during Oceano Sul III (Southern Ocean III - OSIII) cruise, conducted by Brazilian Navy aboard the R/V "Antares", from March 26th to May 10th 2007, in the oceanic region between the states of São Paulo and Rio Grande do Sul. For read the data the function rdradcp.m, developed by Rich Pawlowicz and available on his website (http://www.eos.ubc.ca/~rich/#RDADCP), was used. To calculate the calibration factors, alignment error (α) and sensitivity error (β) in Water Tracking and Bottom Tracking Modes, equations deduced by Joyce (1998), Pollard & Read (1989) and Trump & Marmorino (1996) were implemented in Matlab. To validate the calibration factors obtained in the processing system developed, the parameters were compared with the factors provided by CODAS (Common Ocean Data Access System, available at http://currents.soest.hawaii.edu/docs/doc/index.html), post-processing program. For the same data analyzed, the factors provided by both systems were similar. Thereafter, the values obtained were used to correct the data and finally matrices were saved with data corrected and they can be plotted. The values of volume transport of the Brazil Current (BC) were calculated using the corrected data by the two systems and proved quite close, confirming the quality of the correction of the system.

  14. Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed

    NASA Astrophysics Data System (ADS)

    Sassi, M. G.; Hoitink, A. J. F.; Vermeulen, B.; Hidayat, null

    2011-06-01

    Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by sidewall effects that decrease with the width to depth ratio of a channel. A boundary layer model is introduced to convert single-depth velocity data from the H-ADCP to specific discharge. The parameters of the model include the local roughness length and a dip correction factor, which accounts for the sidewall effects. A regression model is employed to translate specific discharge to total discharge. The method was tested in the River Mahakam, representing a large river of complex bathymetry, where part of the flow is intrinsically three-dimensional and discharge rates exceed 8000 m3 s-1. Results from five moving boat ADCP campaigns covering separate semidiurnal tidal cycles are presented, three of which are used for calibration purposes, whereas the remaining two served for validation of the method. The dip correction factor showed a significant correlation with distance to the wall and bears a strong relation to secondary currents. The sidewall effects appeared to remain relatively constant throughout the tidal cycles under study. Bed roughness length is estimated at periods of maximum velocity, showing more variation at subtidal than at intratidal time scales. Intratidal variations were particularly obvious during bidirectional flow conditions, which occurred only during conditions of low river discharge. The new method was shown to outperform the widely used index velocity method by systematically reducing the relative error in the discharge estimates.

  15. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    NASA Astrophysics Data System (ADS)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  16. Validation of a spatial model used to locate fish spawning reef construction sites in the St. Clair–Detroit River system

    USGS Publications Warehouse

    Fischer, Jason L.; Bennion, David; Roseman, Edward F.; Manny, Bruce A.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) populations have suffered precipitous declines in the St. Clair–Detroit River system, following the removal of gravel spawning substrates and overfishing in the late 1800s to mid-1900s. To assist the remediation of lake sturgeon spawning habitat, three hydrodynamic models were integrated into a spatial model to identify areas in two large rivers, where water velocities were appropriate for the restoration of lake sturgeon spawning habitat. Here we use water velocity data collected with an acoustic Doppler current profiler (ADCP) to assess the ability of the spatial model and its sub-models to correctly identify areas where water velocities were deemed suitable for restoration of fish spawning habitat. ArcMap 10.1 was used to create raster grids of water velocity data from model estimates and ADCP measurements which were compared to determine the percentage of cells similarly classified as unsuitable, suitable, or ideal for fish spawning habitat remediation. The spatial model categorized 65% of the raster cells the same as depth-averaged water velocity measurements from the ADCP and 72% of the raster cells the same as surface water velocity measurements from the ADCP. Sub-models focused on depth-averaged velocities categorized the greatest percentage of cells similar to ADCP measurements where 74% and 76% of cells were the same as depth-averaged water velocity measurements. Our results indicate that integrating depth-averaged and surface water velocity hydrodynamic models may have biased the spatial model and overestimated suitable spawning habitat. A model solely integrating depth-averaged velocity models could improve identification of areas suitable for restoration of fish spawning habitat.

  17. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka

    DTIC Science & Technology

    2015-09-30

    moorings to shed light on the spatial structure of the upper layer currents in the area associated with southwest monsoons. C. CTD and ADCP...thermohaline profiles (Fig. 4a). Figure 3. The weekly composite (June 30 – July 3) image of the BoB ocean color, showing enhanced chlorophyll ...measurements. The depth- averaged (between z = 21 and 141m) velocity magnitude is shown by black line; a polynomial approximation of these fluctuations is in

  18. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  19. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  20. Single-ping ADCP measurements in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Sammartino, Simone; García Lafuente, Jesús; Naranjo, Cristina; Sánchez Garrido, José Carlos; Sánchez Leal, Ricardo

    2016-04-01

    In most Acoustic Doppler Current Profiler (ADCP) user manuals, it is widely recommended to apply ensemble averaging of the single-pings measurements, in order to obtain reliable observations of the current speed. The random error related to the single-ping measurement is typically too high to be used directly, while the averaging operation reduces the ensemble error of a factor of approximately √N, with N the number of averaged pings. A 75 kHz ADCP moored in the western exit of the Strait of Gibraltar, included in the long-term monitoring of the Mediterranean outflow, has recently served as test setup for a different approach to current measurements. The ensemble averaging has been disabled, while maintaining the internal coordinate conversion made by the instrument, and a series of single-ping measurements has been collected every 36 seconds during a period of approximately 5 months. The huge amount of data has been fluently handled by the instrument, and no abnormal battery consumption has been recorded. On the other hand a long and unique series of very high frequency current measurements has been collected. Results of this novel approach have been exploited in a dual way: from a statistical point of view, the availability of single-ping measurements allows a real estimate of the (a posteriori) ensemble average error of both current and ancillary variables. While the theoretical random error for horizontal velocity is estimated a priori as ˜2 cm s-1 for a 50 pings ensemble, the value obtained by the a posteriori averaging is ˜15 cm s-1, with an asymptotical behavior starting from an averaging size of 10 pings per ensemble. This result suggests the presence of external sources of random error (e.g.: turbulence), of higher magnitude than the internal sources (ADCP intrinsic precision), which cannot be reduced by the ensemble averaging. On the other hand, although the instrumental configuration is clearly not suitable for a precise estimation of turbulent parameters, some hints of the turbulent structure of the flow can be obtained by the empirical computation of zonal Reynolds stress (along the predominant direction of the current) and rate of production and dissipation of turbulent kinetic energy. All the parameters show a clear correlation with tidal fluctuations of the current, with maximum values coinciding with flood tides, during the maxima of the outflow Mediterranean current.

  1. Predicting the Mobility and Burial of Underwater Unexploded Ordnance (UXO) Using the UXO Mobility Model (ESTCP) 200417

    DTIC Science & Technology

    2009-11-01

    Abbreviations and Acronyms Acronym Definition ADCP Acoustic Doppler Current Profiler AGD Applications Guidance Document ARAMS Army Risk Assessment Modeling...Center iv NESDI Navy Environmental Sustainability Development to Integration NOS National Ocean Service NS Naval Station NWS Naval Weapons...Plan QAS Quality Assurance Specialist RAC Risk Assessment Code REF/DIF Refraction/Diffraction ROI Return on Investment SAJ Dr. Scott A. Jenkins

  2. Comparison of turbulence estimation for four- and five-beam ADCP configurations

    NASA Astrophysics Data System (ADS)

    Togneri, Michael; Masters, Ian; Jones, Dale

    2017-04-01

    Turbulence is a vital consideration for tidal power generation, as the resulting fluctuating loads greatly impact the fatigue life of tidal turbines and their components. Acoustic Doppler current profilers (ADCPs) are one of the most common tools for measurement of currents in tidal power applications, and although most often used for assessment of mean current properties they are also capable of measuring turbulence parameters. Conventional ADCPs use four diverging beams in a so-called 'Janus' configuration, but more recent models employ an additional vertical beam. In this paper we explore the improvements to turbulence measurements that are made possible by the addition of the fifth beam, with a focus on estimation of turbulent kinetic energy (TKE) density. The standard approach for estimating TKE density from ADCP measurements is the variance method. As each of the diverging beams measures a single velocity component at spatially-separated points, it is not possible to find the TKE density by a straightforward combination of beam measurements. Instead, we must assume that the statistical properties of the turbulence are uniform across the spatial extent of the beams; it is then possible to express the TKE density as a linear combination of the velocity variance as measured by each beam. In the four-beam configuration, an additional assumption regarding the magnitude of the turbulent anisotropy: a parameter ξ is introduced that characterises the proportion of TKE in the vertical fluctuations. With the five-beam configuration, direct measurements of the vertical component are available and this assumption is no longer required. In this paper, turbulence measurements from a five-beam ADCP deployed off the coast of Anglesey in 2014 are analysed. We compare turbulence estimates using all five beams to estimates obtained using only the conventional four-beam setup by discarding the vertical beam data. This allows us to quantify the error in the standard value of ξ. We find that it is on average within 3.4% of the real value, although there are times for which it is much greater. We also discuss the Doppler noise correction in the five-beam case, which is more complex than the four-beam case due to the different noise properties of the vertical beam.

  3. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    van Haren, H.; Taupier-Letage, I.; Aguilar, J. A.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-08-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.

  4. Monitoring of well-controlled turbidity currents using the latest technology and a dredger

    NASA Astrophysics Data System (ADS)

    Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.

    2017-12-01

    Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.

  5. Amplitude calibration of an acoustic backscattered signal from a bottom-moored ADCP based on long-term measurement series

    NASA Astrophysics Data System (ADS)

    Piotukh, V. B.; Zatsepin, A. G.; Kuklev, S. B.

    2017-05-01

    A possible approach to, and preliminary results of, amplitude calibration of acoustic signals backscattered from an ADCP moored at the bottom of the near-shelf zone of the Black Sea is considered. The aim of this work is to obtain vertical profiles of acoustic scattering signal levels, showing the real characteristics of the volume content of suspended sediments in sea water in units of conventional acoustic turbidity for a given signal frequency. In this case, the assumption about the intervals of maximum acoustic transparency and vertical homogeneity of the marine environment in long-term series of ADCP measurements is used. According to this hypothesis, the intervals of the least values of acoustic backscattered signals are detected, an empirical transfer function of the ADCP reception path is constructed, and it is calibrated. Normalized sets of acoustic backscattered signals relative to a signal from a level of conventionally clear water are obtained. New features in the behavior of vertical profiles of an acoustic echo-signal are revealed due to the calibration. The results of this work will be used in subsequent analysis of the vertical and time variations in suspended sediment content in the near-shelf zone of the Black Sea.

  6. Using Principal Component and Tidal Analysis as a Quality Metric for Detecting Systematic Heading Uncertainty in Long-Term Acoustic Doppler Current Profiler Data

    NASA Astrophysics Data System (ADS)

    Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.

    2015-12-01

    Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.

  7. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Park, H. B.

    2014-12-01

    Acoustic Doppler Current Profiler (ADCP), designed for measuring velocity profile, is now widely used for the estimation of suspended sediment concentration from acoustic backscatter intensity, but its application to estuarine environments has not been vigorously tested. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz at three Korean estuaries: macrotidal Han river estuary (HRE), microtidal Nakdong river estuary (NRE), and anthropogenically altered macrotidal Yeongsan river estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (aw) and sediment (as) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were smaller than 0.2 kg/m3, the acoustic inversion performed poorly only with as (R2 = 0.05 and 0.39 for NRE and YRE, respectively), but well with aw (R2 = 0.70 and 0.64 for NRE and YRE, respectively). Thus, it is important to accurately constrain aw in low-concentration estuarine environments. However, we did not find that the varying aw performed considerably better than the constant aw. On the other hand, the acoustic inversion was poorest at HRE regardless of aw and as (R2 = 0.58 and mean relative error =45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport at macrotidal HRE.

  8. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Bong; Lee, Guan-hong

    2016-03-01

    Acoustic Doppler Current Profilers (ADCP), designed for measuring velocity profiles, are widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments requires further refinement. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz in three Korean estuaries: the supra-macrotidal Han River Estuary (HRE), microtidal Nakdong River Estuary (NRE), and anthropogenically altered macrotidal Yeongsan River Estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either from water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were less than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20 and 0.38 for NRE and YRE, respectively), but well with αw (r = 0.66 and 0.42 for NRE and YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error = 45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport in the macrotidal HRE.

  9. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Park, Hyo-Bong

    2015-04-01

    Acoustic Doppler Current Profiler (ADCP), designed for measuring velocity profile, is now widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments has still room for improvement. In this study, we examinedthe inversion capability of two ADCPs with 600 and 1200 kHz at three Korean estuaries: macrotidalHan river estuary (HRE), microtidalNakdong river estuary (NRE), and anthropogenically altered macrotidalYeongsan river estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were smaller than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20and 0.38for NRE and YRE, respectively), but well with αw (r = 0.66and 0.42 for NREand YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error =45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport at macrotidal HRE.

  10. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    USGS Publications Warehouse

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates that the H-ADCP is a suitable replacement for the AVM as the primary index velocity meter in the CSSC near Lemont. A key component to Lake Michigan Diversion Accounting is the USGS gaging station on the CSSC near Lemont, Illinois. The importance of this gaging station in monitoring withdrawals from Lake Michigan has made it one of the most highly scrutinized gaging stations in the country. Any changes in streamgaging practices at this gaging station requires detailed analysis to ensure the change will not adversely affect the ability of the USGS to accurately monitor flows. This report provides a detailed analysis of the flow structure and index velocity measurements in the CSSC near Lemont, Illinois, to ensure that decisions regarding the future of this streamgage are made with the best possible understanding of the site and the characteristics of the flow.

  11. The observation of underwater frazil ice formation and upward sediment transport in an Arctic polynya in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Ito, M.; Ohshima, K. I.; Fukamachi, Y.; Simizu, D.; Mahoney, A. R.; Eicken, H.

    2016-12-01

    Sea ice is a great contributor to energy- and salt-budget, dense water formation and bio-related material cycle in the polar ocean. In coastal polynya, the ice production becomes maximum when open water is maintained owing to underwater frazil ice formation associated with supercooling. In addition, an interaction between frazil ice and re-suspended sediment can be a major process of sediment incorporation into sea ice. Although these process have been reported from laboratory experiments and numerical simulations, in-situ observations have been limited because the under-ice observation is logistically challenging and detection methods of frazil ice and sedimentary particles have not been well established. Since 2009, mooring observations with ADCPs, Ice-Profiling Sonars and C-T recorders have been continuously carried out off Barrow in the Chukchi Sea, through a collaboration between Hokkaido University and University of Alaska Fairbanks. Recently, some in-situ measurements reported the possibility that an ADCP can detect frazil ice and re-suspended sediment using acoustic backscatter strength data. Thus, we analyzed the ADCP data in the Chukchi Sea, focusing on underwater frazil ice formation and upward sediment transport. In winter, polynyas were formed episodically around the observational sites several times by offshore-ward strong winds of > 10 m/s. During these polynya events, surface-intensified signals were detected throughout the water column at two sites with water depths of 40 - 50 m simultaneously. In these cases, potential supercooling occurred and signals were particularly enhanced at timings of in-situ supercooling. Thus, we interpreted these signals as those of frazil ice. On the other hand, bottom-intensified signals originating from re-suspended sediment were detected throughout the water column just after frazil ice was detected. These signals were associated with strong ocean currents of 1 m/s. Thus, sedimentary particles are likely dispersed from the ocean bottom by the strong currents and subsequently brought up to the ocean surface under turbulent mixing conditions. We estimated the fall velocity of sedimentary particles as 0.4 mm/s based on the vertical profiles of the ADCP backscatter strength. This fall velocity corresponds to that of the particle diameter of 20 μm.

  12. The transverse dynamics of flow in a tidal channel within a greater strait

    NASA Astrophysics Data System (ADS)

    Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid

    2018-02-01

    Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.

  13. Comparison of spatio-temporal resolution of different flow measurement techniques for marine renewable energy applications

    NASA Astrophysics Data System (ADS)

    Lyon, Vincent; Wosnik, Martin

    2013-11-01

    Marine hydrokinetic (MHK) energy conversion devices are subject to a wide range of turbulent scales, either due to upstream bathymetry, obstacles and waves, or from wakes of upstream devices in array configurations. The commonly used, robust Acoustic Doppler Current Profilers (ADCP) are well suited for long term flow measurements in the marine environment, but are limited to low sampling rates due to their operational principle. The resulting temporal and spatial resolution is insufficient to measure all turbulence scales of interest to the device, e.g., ``blade-scale turbulence.'' The present study systematically characterizes the spatial and temporal resolution of ADCP, Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV). Measurements were conducted in a large cross section tow tank (3.7m × 2.4m) for several benchmark cases, including low and high turbulence intensity uniform flow as well as in the wake of a cylinder, to quantitatively investigate the flow scales which each of the instruments can resolve. The purpose of the study is to supply data for mathematical modeling to improve predictions from ADCP measurements, which can help lead to higher-fidelity energy resource assessment and more accurate device evaluation, including wake measurements. Supported by NSF-CBET grant 1150797.

  14. Upper Ocean Meso-Submesoscale Eddy Variability in the Northwestern Pacific from Repeat ADCP Measurements and 1/48-deg MITgcm Simulation

    NASA Astrophysics Data System (ADS)

    Qiu, B.; Nakano, T.; Chen, S.; Wang, J.; Fu, L. L.; Klein, P.

    2016-12-01

    With the use of Ka-band radar interferometry, the Surface Water and Ocean Topography (SWOT) satellite will improve the measured sea surface height (SSH) resolution down to the spectral wavelength of 15km, allowing us to investigate for the first time the upper oceancirculation variability at the submesoscale range on the global scale. By analyzing repeat shipboardAcoustic Doppler Current Profiler (ADCP) measurements along 137°E, as well as the 1/48-deg MITgcm simulation output, in the northwest Pacific, we demonstrate that the observed/modeled upper ocean velocities are comprised of balanced geostrophic motions and unbalanced ageostrophic wave motions. The length scale, Lc, that separates the dominance between these two types of motions is found to depend sensitively on the energy level of local mesoscale eddy variability. In the eddy-abundant western boundary current region of Kuroshio, Lc can be shorter than 15km, whereas Lc exceeds 200km along the path of relatively stable North Equatorial Current. Judicious separation between the balanced and unbalanced surface ocean signals will both be a challenge and opportunity for the SWOT mission.

  15. Observations of transitional tidal boundary layers and their impact on sediment transport in the Great Bay, NH

    NASA Astrophysics Data System (ADS)

    Koetje, K. M.; Foster, D. L.; Lippmann, T. C.

    2017-12-01

    Observations of the vertical structure of tidal flows obtained in 2016 and 2017 in the Great Bay Estuary, NH show evidence of transitional tidal boundary layers at deployment locations on shallow mudflats. High-resolution bottom boundary layer currents, hydrography, turbidity, and bed characteristics were observed with an acoustic Doppler current profiler (ADCP), an acoustic Doppler velocimeter (ADV), conductivity-depth-temperature (CTD) sensors, optical backscatter sensors, multibeam bathymetric surveys, and sediment grab samples and cores. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak flows ranged from 10 cm/s to 30 cm/s and were primarily driven by the tides. A downward-looking ADCP captured the velocity profile over the lowest 1 m of the water column. Results consistently show a dual-log layer system, with evidence of a lower layer within 15 cm of the bed, another layer above approximately 30 cm from the bed, and a transitional region where the flow field rotates between that the two layers that can be as much as 180 degrees out of phase. CTD casts collected over a complete tidal cycle suggest that the weak thermohaline stratification is not responsible for development of the two layers. On the other hand, acoustic and optical backscatter measurements show spatial and temporal variability in suspended sediments that are dependant on tidal phase. Current work includes an examination of the relationship between sediment concentrations in the water column and velocity profile characteristics, along with an effort to quantify the impact of rotation and dual-log layers on bed stress.

  16. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  17. Secondary flow structures in large rivers

    NASA Astrophysics Data System (ADS)

    Chauvet, H.; Devauchelle, O.; Metivier, F.; Limare, A.; Lajeunesse, E.

    2012-04-01

    Measuring the velocity field in large rivers remains a challenge, even with recent measurement techniques such as Acoustic Doppler Current Profiler (ADCP). Indeed, due to the diverging angle between its ultrasonic beams, an ADCP cannot detect small-scale flow structures. However, when the measurements are limited to a single location for a sufficient period of time, averaging can reveal large, stationary flow structures. Here we present velocity measurements in a straight reach of the Seine river in Paris, France, where the cross-section is close to rectangular. The transverse modulation of the streamwise velocity indicates secondary flow cells, which seem to occupy the entire width of the river. This observation is reminiscent of the longitudinal vortices observed in laboratory experiments (e.g. Blanckaert et al., Advances in Water Resources, 2010, 33, 1062-1074). Although the physical origin of these secondary structures remains unclear, their measured velocity is sufficient to significantly impact the distribution of streamwise momentum. We propose a model for the transverse profile of the depth-averaged velocity based on a crude representation of the longitudinal vortices, with a single free parameter. Preliminary results are in good agreement with field measurements. This model also provides an estimate for the bank shear stress, which controls bank erosion.

  18. Evaluating interception of larval pallid sturgeon on the Lower Missouri River- data acquisition, interpolation, and visualization

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Erwin, S. O.; Anderson, B. J.; Wilson, H.; Jacobson, R. B.

    2016-12-01

    The transition from endogenous to exogenous feeding is an important life-stage transition for many riverine fish larvae. On the Missouri River, U.S., riverine alteration has decreased connectivity between the navigation channel and complex, food-producing and foraging areas on the channel margins, namely shallow side channels and sandbar complexes. A favored hypothesis, the interception hypothesis, for recruitment failure of pallid sturgeon is that drifting larvae are not able to exit the highly engineered navigation channel, and therefore starve. We present work exploring measures of hydraulic connectivity between the navigation channel and channel margins using multiple data-collection protocols with acoustic Doppler current profilers (ADCPs). As ADCP datasets alone often do not have high enough spatial resolution to characterize interception and connectivity sufficiently at the scale of drifting sturgeon larvae, they are often supplemented with physical and empirical models. Using boat-mounted ADCPs, we collected 3-dimensional current velocities with a variety of driving techniques (specifically, regularly spaced transects, reciprocal transects, and irregular patterns) around areas of potential larval interception. We then used toolkits based in Python to interpolate 3-dimensional velocity fields at spatial scales finer than the original measurements, and visualized resultant velocity vectors and flowlines in the software package Paraview. Using these visualizations, we investigated the necessary resolution of field measurements required to model connectivity with channel margin areas on large, highly engineered river ecosystems such as the Missouri River. We anticipate that results from this work will be used to help inform models of larval interception under current conditions. Furthermore, results from this work will be useful in developing monitoring strategies to evaluate the restoration of channel complexity to support ecological functions.

  19. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  20. Quantifying morphological changes of cape-related shoals

    NASA Astrophysics Data System (ADS)

    Paniagua-Arroyave, J. F.; Adams, P. N.; Parra, S. M.; Valle-Levinson, A.

    2017-12-01

    The rising demand for marine resources has motivated the study of inner shelf transport processes, especially in locations with highly-developed coastlines, endangered-species habitats, and valuable economic resources. These characteristics are found at Cape Canaveral shoals, on the Florida Atlantic coast, where transport dynamics and morphological evolution are not well understood. To study morphological changes at these shoals, two sets of paired upward- and downward-pointing acoustic Doppler current profilers (ADCPs) were deployed in winter 2015-2016. One set was deployed at the inner swale of Shoal E, 20 km southeast of the cape tip in 13 m depth, while the other set was located at the edge of Southeast shoal in 5 m deep. Upward-pointing velocity profiles and suspended particle concentrations were implemented in the Exner equation to quantify instantaneous rates of change in bed elevation. This computation includes changes in sediment concentration and the advection of suspended particles, but does not account for spatial gradients in bed-load fluxes and water velocities. The results of the computation were then compared to bed change rates measured directly by the downward-pointing ADCPs. At the easternmost ridge, quantified bed elevation change rates ranged from -7×10-7 to 4×10-7 m/s, and those at the inner swale ranged from -4×10-7 to 8×10-7 m/s. These values were two orders of magnitude smaller than rates measured by downward-pointing ADCPs. Moreover, the cumulative changes were two orders of magnitude larger at the ridge (-0.33 m, downward, and -0.13, m upward) than at the inner swale (cf. -6×10-3 m, downward, and 3×10-3 m, upward). These values suggest that bedform migration may be occurring at the ridge, that suspended sediments account for up to 30% of total bed changes, and that gradients in bed-load fluxes exert control on morphological change over the shoals. Despite uncertainties related to the ADCP-derived sediment concentrations, these findings provide preliminary evidence about the spatial variability in morphological changes over cape-related shoals.

  1. Validation of Model Output versus ADCP Observations on the PR Insular Shelf, Part 2: Are all Sites the Same?

    NASA Astrophysics Data System (ADS)

    Ramos Valle, A.

    2016-02-01

    We have previously compared the output from three oceanographic models against observed data from an ADCP at a common grid point location on the zonally oriented, southwestern Puerto Rico shelf that extends into the northern Caribbean Sea. The three models were: 1) AMSEAS (NCOM), 2) Regional ROMS and 3) a higher resolution version of ROMS nested within the Regional ROMS. These models faced great difficulty in accurately depicting the bathymetry of the ocean in the PR-USVI archipelago which is characterized by small islands, narrow insular shelves, steep slopes and deep water beyond. The resulting validations of the three models versus the ADCP at the selected location were poor. However, the insight we gained into the behavior of the models during the validation process suggested that models might do a better job at simulating currents across the inter-island straits that connect the Atlantic Ocean with the Caribbean Sea than along the insular Caribbean or Atlantic coastlines. We therefore focused our attention on expanding our previous research by performing a similar analysis using the ROMS model against ADCP observations in the Mona Passage, west of PR. This new ADCP location exhibits bathymetric features that are smoother, less complex, and better represented in the Regional ROMS model while flows at the site are stronger than at the previous ADCP site at La Parguera. Statistical time-series analyses are performed on model and ADCP flow velocity time series to quantify the model's skill. Results indicate that ROMS does a much better job at simulating ocean currents at the Mona Passage site than at La Parguera. Dynamical and numerical differences that might explain the spatially varying model skill are considered. In summary: model skill validation sites around PR are not all the same.

  2. Analysis of Near-Surface Oceanic Measurements Obtained During the Low-Wind Component of the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment

    DTIC Science & Technology

    2006-09-30

    temperature and the upwelling IR radiative heat flux were obtained from a pyrometer . The heat fluxes are combined to compute the net heat flux into or out...sampled acoustic Doppler velocimeters (ADVs) and thermistors (Figure 1b). These measurements provide inertial-range estimates of dissipation rates...horizontal velocity at the sea surface were obtained with a “fanbeam” acoustic Doppler current profiler (ADCP), which produces spatial maps of the

  3. Drake Passage-Antarctic Peninsula Ecosystem Research: Spring and Fall Zooplankton and Seabird Assemblages

    NASA Astrophysics Data System (ADS)

    Loeb, V. J.; Chereskin, T. K.; Santora, J. A.

    2016-02-01

    Acoustic Doppler Current Profiler (ADCP) records from multiple "L.M. Gould" supply transits of Drake Passage from 1999 to present demonstrate spatial and temporal (diel, seasonal, annual and longer term) variability in acoustics backscattering. Acoustics backscattering strength in the upper water column corresponds to zooplankton and nekton biomass that relates to seabird and mammal distribution and abundance. Recent results indicate that interannual variability in backscattering strength is correlated to climate indices. The interpretation of these ecological changes is severely limited because the sound scatterers previously had not been identified and linkages to upper trophic level predators are unknown. Net-tows, depth-referenced underwater videography and seabird/mammal visual surveys during spring 2014 and fall 2015 transits provided information on the taxonomic-size composition, distribution, aggregation and behavioral patterns of dominant ADCP backscattering organisms and relate these to higher level predator populations. The distribution and composition of zooplankton species and seabird assemblages conformed to four biogeographic regions. Areas of elevated secondary productivity coincided with increased ADCP target strength with highest concentrations off Patagonia and Antarctic Peninsula and secondary peaks around the Polar Front. Small sized zooplankton taxa dominated north of the Polar Front while larger taxa dominated to the south. Regionally important prey items likely are: copepods, amphipods, small euphausiids and fish (Patagonia); copepods, myctophids, shelled pteropods and squid (Polar Front); large euphausiids (Antarctic Peninsula). This study demonstrates that biological observations during "L.M. Gould" supply transits greatly augment the value of routinely collected ADCP and XBT data and provide basic information relevant to the impacts of climate change in this rapidly warming portion of the Southern Ocean

  4. Calculation of in situ acoustic sediment attenuation using off-the-shelf horizontal ADCPs in low concentration settings

    USGS Publications Warehouse

    Haught, Dan; Venditti, Jeremy G.; Wright, Scott A.

    2017-01-01

    The use of “off-the-shelf” acoustic Doppler velocity profilers (ADCPs) to estimate suspended sediment concentration and grain-size in rivers requires robust methods to estimate sound attenuation by suspended sediment. Theoretical estimates of sediment attenuation require a priori knowledge of the concentration and grain-size distribution (GSD), making the method impractical to apply in routine monitoring programs. In situ methods use acoustic backscatter profile slope to estimate sediment attenuation, and are a more attractive option. However, the performance of in situ sediment attenuation methods has not been extensively compared to theoretical methods. We used three collocated horizontally mounted ADCPs in the Fraser River at Mission, British Columbia and 298 observations of concentration and GSD along the acoustic beams to calculate theoretical and in situ sediment attenuation. Conversion of acoustic intensity from counts to decibels is influenced by the instrument noise floor, which affects the backscatter profile shape and therefore in situ attenuation. We develop a method that converts counts to decibels to maximize profile length, which is useful in rivers where cross-channel acoustic profile penetration is a fraction of total channel width. Nevertheless, the agreement between theoretical and in situ attenuation is poor at low concentrations because cross-stream gradients in concentration, sediment size or GSD can develop, which affect the backscatter profiles. We establish threshold concentrations below which in situ attenuation is unreliable in Fraser River. Our results call for careful examination of cross-stream changes in suspended sediment characteristics and acoustic profiles across a range of flows before in situ attenuation methods are applied in river monitoring programs.

  5. Monitoring Tidal Currents with a Towed ADCP System

    DTIC Science & Technology

    2015-12-22

    these make tidal stream energy a more reliable source than other forms of ma- rine energy, such as waves and offshore wind. The place of tidal stream...big tidal range (9 m), relatively strong (2 m/s) currents, and moderate wind waves (less than 3 m in the an- nual mean), it is considered to be a...Monitoring tidal currents with a towed ADCP system Alexei Sentchev1 & Max Yaremchuk2 Received: 22 September 2015 /Accepted: 10 December 2015

  6. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    PubMed

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  7. Radar observation of an along-front jet and transverse flow convergence associated with a North Sea front

    NASA Astrophysics Data System (ADS)

    Matthews, J. P.; Fox, A. D.; Prandle, D.

    1993-01-01

    This paper describes the first synoptic mapping of surface currents across a strong and stable tidal mixing front by HF radar. The radar deployment took place along the coast of northeast England during August and early September 1988 in parallel with extensive ship based CTD density and ADCP (Acoustic Doppler Current Profiler) measurements which provided data in the vertical plane to complement those of the HF radar. We describe two main results. Firstly, during a spring-tide period of strengthening inshore density gradients, an along-front jet with speeds of up to 14 cm s -1 was detected in the long term IIF radar residual field. The location and spatial form of this jet correspond with estimates of geostrophic currents derived from the measured density field. Secondly, a transverse "double-sided" surface flow convergence centred close to the frontal boundary and of net magnitude 4 cm s -1 accompanied the large along-front jet. Such a weaker cross-frontal component has been anticipated on theoretical grounds but never previously observed in this detailed fashion. The experiment underlines the power of a synergistic approach, based on HF remote sensing radar and ADCP, for the study of frontal circulation in coastal zones.

  8. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  9. Observed Near-Surface Currents Four Super Typhoons

    DTIC Science & Technology

    2014-07-16

    floats under category-4 hur- ricane Frances 2004 (D’Asaro et al., 2007 ; Sanford et al., 2011). Maximum current velocities of 2.0 m s−1 and 1.7 m s−1...Teague et al., 2007 ). The observed maximum current velocities and the storm’s track in the earlier studies are listed in Table 1. In addition to current...2011) 1.5 Ivan (2004), Gulf of Mexico Category-4 5.8 ADCP 15 6 Teague et al. ( 2007 ) 2.1 Harvey (2005), Atlantic Tropical storm 6.3 ADCP 5 18 Black

  10. Tidal and residual currents across the northern Ryukyu Island chain observed by ferryboat ADCP

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-Jun; Nakamura, Hirohiko; Zhu, Xiao-Hua; Nishina, Ayako; Dong, Menghong

    2017-09-01

    Ferryboat Acoustic Doppler Current Profiler (ADCP) data from 2003 to 2012 are used to estimate the tidal and residual currents across the northern Ryukyu Island chain (RIC) between the islands of Okinawa and Amamioshima. In this region, the M2 tide current is the strongest tidal component, and the K1 tide current is the strongest diurnal tidal component. The corresponding maximum amplitudes are 40 and 34 cm s-1, respectively. After removal of the tidal currents, the mean volume transport, 1.5 ± 2.7 Sv, flows into the East China Sea (ECS) from the western North Pacific through four channels in this area. In an empirical orthogonal function (EOF) analysis performed to clarify the temporal and spatial variability of currents through the four channels, the first two EOF modes account for 71% and 18% of the total variance, respectively. The EOF1 mode shows a clear bottom-intensified mode through the deep channel, which is likely to be formed by the propagation of bottom-trapped long topographic Rossby wave caused by the impingement of westward-propagating mesoscale eddies upon the eastern slope of the northern RIC. The EOF2 mode has significant seasonal variability and may be driven by the wind stress prevailing over the Kuroshio flow region around the northern RIC in October-November. This study provides observational evidence of the water exchanges across the northern RIC, which is essential for constructing a circulation scheme in the North Pacific subtropical western boundary region.

  11. Aquatic habitat mapping with an acoustic doppler current profiler: Considerations for data quality

    USGS Publications Warehouse

    Gaeuman, David; Jacobson, Robert B.

    2005-01-01

    When mounted on a boat or other moving platform, acoustic Doppler current profilers (ADCPs) can be used to map a wide range of ecologically significant phenomena, including measures of fluid shear, turbulence, vorticity, and near-bed sediment transport. However, the instrument movement necessary for mapping applications can generate significant errors, many of which have not been inadequately described. This report focuses on the mechanisms by which moving-platform errors are generated, and quantifies their magnitudes under typical habitat-mapping conditions. The potential for velocity errors caused by mis-alignment of the instrument?s internal compass are widely recognized, but has not previously been quantified for moving instruments. Numerical analyses show that even relatively minor compass mis-alignments can produce significant velocity errors, depending on the ratio of absolute instrument velocity to the target velocity and on the relative directions of instrument and target motion. A maximum absolute instrument velocity of about 1 m/s is recommended for most mapping applications. Lower velocities are appropriate when making bed velocity measurements, an emerging application that makes use of ADCP bottom-tracking to measure the velocity of sediment particles at the bed. The mechanisms by which heterogeneities in the flow velocity field generate horizontal velocities errors are also quantified, and some basic limitations in the effectiveness of standard error-detection criteria for identifying these errors are described. Bed velocity measurements may be particularly vulnerable to errors caused by spatial variability in the sediment transport field.

  12. Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs

    NASA Astrophysics Data System (ADS)

    Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim

    2018-01-01

    We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.

  13. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  14. Wave-current interactions in megatidal environment

    NASA Astrophysics Data System (ADS)

    Bennis, A. C.; Pascal, B. D. B.; Feddy, A.; Garnier, V.; Accenti, M.; Dumas, F.; Ardhuin, F.

    2016-12-01

    The strongest tidal current in western Europe (up to 12 knots) occurs in Raz Blanchard (Normandy, France). High winds occur over six months which generate energetic wave conditions with breaking waves, hence the name of `Blanchard'. However, few studies have been conducted on the wave effects on the tidal current at this location because of the lack of measurements. Studies are now required to aid the creation of tidal farms. For this purpose, the 3D fully-coupled model MARS-WW3 is used with three nested ranks which are forced at boundaries by wave spectra from HOMERE database (Boudière et al., 2013) and by sea level from the French Navy (SHOM). The model is tested against ADCP data of IRSN at three locations near Raz Blanchard. Time series of current velocity and of mean sea level are consistent with ADCP data. A rephasing by waves of the tidal current is observed in comparison with simulations without waves, which fits the ADCP data. A strong dependence of the tidal current on bottom roughness is shown as well as the necessity to take into account its spatial heterogeneity. The simulated mean sea level is close to the measured one while it was underestimated for high tide in simulations without wave effects. The vertical shape of the tidal current is especially modified near the surface by waves as expected. Depending on the tidal cycle and wave direction, acceleration or deceleration of the surface current due to waves is observed. Lastly, several hydrodynamical scenarios for Raz Blanchard are carried out for different tidal and wave conditions pending the HYD2M'17 data (ADCP, ADV, drifting wave buoys, HF and VHF and X-Band radars). First results show the impacts of refractive, shoaling and blocking effects on the flood and ebb currents.

  15. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  16. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  17. Effects of Cross-Shelf Physical Forcing on Satellite Bio-Optical Properties

    NASA Astrophysics Data System (ADS)

    Ladner, S. D.; Teague, W. J.; Mitchell, D. A.; Goode, W. A.; Gould, R. W.; Arnone, R. A.

    2005-05-01

    Our goal is to determine the effects of cross-shelf physical forcing on the optical properties in the northern Gulf of Mexico using in situ optical profiles and surface ocean color satellite images from SeaWiFS. The Naval Research Laboratory at Stennis Space Center is conducting an extensive monitoring program in the Northeast Gulf of Mexico west of the Desoto Canyon. During the Slope to Shelf Energetics and Exchange Dynamics (SEED) project, 14 bottom mounted Acoustic Doppler Current Profilers (ADCP's) were deployed from May-December 2004 along the shelf break at depths ranging from 60 to 1000 meters to improve understanding of cross-shelf exchange processes. Analysis of the May current data indicate abnormal events, including 30 cm/s off-shelf currents throughout the water column and a 3° Celsius elevation in bottom temperature. Coincident optical profiles were collected in May (absorption, scattering coefficients) and are compared with currents and physical properties (temperature, salinity). Similar subsurface abnormalities with stronger currents occurred in September during the passing of Hurricane Ivan over the mooring sites. We will show a time series of near-surface current speeds and their effect on the surface-satellite optical properties over the entire SEED sampling exercise.

  18. How was the deep scattering layers (DSLs) influenced by the Deepwater Horizon Spill? - Evidences from 10-year NTL oil/gas ADCP backscattering data collected at the spill site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; DiMarco, S. F.; Socolofsky, S. A.

    2016-02-01

    There are suspicions that the 2010 DWH oil spill might have affected the biomass in the deep scattering layers (DSLs), at least during the period in which the spill was active and oil dispersants were used. The acoustic backscattering intensity (ABI) data from acoustic Doppler current profilers (ADCPs) have been shown to detect and monitor the spatial and temporal evolution of DSLs in many oceans. Since 2005 with the issue of a Notice of Lessees and Operators (NTL), namely, NTL No. 2005-G5, large amounts of continuous ADCP data have been collected by oil/gas companies in the Northern Gulf at more than 100 stations and made publically available via the National Data Buoyancy Center (NDBC) website. NTL ADCPs data have also been collected prior to, during and after the DWH spill at the spill site. The ADCP with station # 42872 was mounted on the DWH rig and collected ABI data from 2005 until the rig sank in April 2010. ADCPs with station # 42916 and 42868 were then moved into the spill region and collected ABI data during and after the spill. The deep scattering layers were well resolved by those 38 kHz with vertical range of 1000m. The SSL provides key food for many large sea-animals, including whales, dolphins, billfishes and giant tunas and therefore have important roles in the ecosystem of the deep Gulf. By carefully applying calibrations and corrections, the ABI data can be converted to biologically meaningful mean volume backscattering strength (MVBS) and areal backscattering strength (ABS). This is an effective and powerful way to study the pelagic communality dynamics in the deep scattering layers and to investigate greater details that were previously inaccessible. Utilizing the NTL data collected during the past 10 years around the DWH site, we investigate the spill influence on deep scattering layers by comparing the biomass pre- and post BP spill and comparing biomass variations in areas with and without oil contamination. Preliminary results have shown that there is a clear decrease trend of relative biomass in the deep scattering layer in 2010 after the spill. We also find extremely dense scattering patches at the depth of DSLs, which appear only during the spill and are likely formed by spill materials. Statistical analysis on the layer depth, intensity, and thickness and their variations over time are also investigated.

  19. Most Detailed Direct Measurements Yet of Turbidity Currents in the Deep Ocean: Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.

    2016-12-01

    Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.

  20. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    NASA Astrophysics Data System (ADS)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  1. Visualization of a drifting buoy deployment on Lake St. Clair within the Great Lakes Waterway from August 12-15, 2002

    USGS Publications Warehouse

    Holtschlag, David J.; Syed, Atiq U.; Kennedy, Gregory W.

    2002-01-01

    Lake St. Clair is a 430 square mile lake between the state of Michigan and the province of Ontario, which forms part of the international boundary between the United States and Canada in the Great Lakes Basin. Lake St. Clair receives most of its inflow from Lake Huron through St. Clair River, which has an average flow of 182,000 cubic feet per second. The lake discharges to Detroit River, where it flows 32 miles to Lake Erie. Twelve drifting buoys were deployed on Lake St. Clair for 74 hours between August 12-15, 2002 to help investigate flow circulation patterns as part of a source water assessment study of the susceptibility of public water intakes. The buoys contained global positioning system (GPS) receivers to track their movements. Buoys were released in a transect between tethered buoys marking an 800-foot wide navigational channel in the north-central part of the lake just downstream of St. Clair River, and about 15.5 miles northeast of Detroit River. In addition, an acoustic Doppler current profiler (ADCP) was used to measure velocity profiles in a grid of 41 points that spanned the area through which the buoys drifted. Computer animations, which can be viewed through the Internet, were developed to help visualize the results of the buoy deployments and ADCP measurements.

  2. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    USGS Publications Warehouse

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  3. Observation and analysis of tidal and residual current in the North Yellow Sea in the spring

    NASA Astrophysics Data System (ADS)

    Miao, Qingsheng; Yang, Jinkun; Yang, Yang; Wan, Fangfang; Yu, Jia

    2018-02-01

    In order to study the current characteristics of the North Yellow Sea (NYS), 4 moored ADCPs (Acoustic Doppler Current Profilers) were deployed and Current characteristics were analyzed based on the observations. Results show that tidal current is the dominant and M2 is the main constituent. Shallow water constituents are obvious in the near-shore area, and tidal current ellipses directions have relations with topography. Residual currents in the Bohai Strait point to the Bohai Sea interior and the magnitude have a connection with terrain. Residual current in south NYS can be divided into two layers, and energy of residual current only accounts for about 13% of the total energy. Barotropic eddy kinetic energy plays a major role and the average in NYS accounts for 87%, baroclinic mean kinetic energy is larger in north NYS, in other regions barotropic mean kinetic energy take the leading position.

  4. Interaction between Fresh and Sea Water in Tidal Influenced Navigation Channel

    NASA Astrophysics Data System (ADS)

    Hwang, J. H. H.; Nam-Hoon, K.

    2016-02-01

    Nam-Hoon, Kim 1, Jin-Hwan, Hwang 2, Hyeyun-Ku 31,2,3 Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea; 1nhkim0426@snu.ac.kr; 2jinhwang@snu.ac.kr; 3hyeyun.ku@gmail.com; We have conducted field observations after freshwater discharges of sea dike during ebb tide in Geum River Estuary, Korea to understand the interaction between fresh and sea water. To measure spatial variability of the stratified flow, an Acoustic Doppler Current Profiler (ADCP) and a portable free-fall tow-yo instrument, Yoing Ocean Data Acquisition Profiler (YODA profiler) which can continuously measures three-dimensional velocity profiles and vertical profiles of the fine-scale features, respectively, within water column were used in a vessel moving at a speed of 1-2 m/s. The flow observations show the strong stratification and dispersion occurred near field region because of the ebb tide advection (Fig. 1). As moving toward the far field region, the stratification and dispersion was getting thin and weak but still remaining. The presence of mixing process between fresh and sea water was represented by the gradient Richardson Number. The mixing occurred throughout the near field region and potentially mixed in the far field region. This study have been conducted to serve as a basic research of understanding the Region Of Freshwater Influence (ROFI) in the tidal influenced navigation channel. We are going to perform a few more observations in the future. Key words: Richardson number, stratification, mixing, ROFI, ADCP, CTDFigure 1. High-resolution observation data of salinity (psu) from YODA Profiler Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Integrated management of marine environment and ecosystems around Saemangeum". We also thank to the administrative supports of Integrated Research Institute of Construction and Environmental Engineering at Seoul National University.

  5. Tide-driven fluid mud transport in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2014-05-01

    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and rapid vertical mixing, inducing the highest instantaneous suspended sediment flux measured during the tidal cycle. During decelerating flood currents a lutocline is again established at a certain distance above the consolidated river bed. During slack water after the flood phase the concentration gradient increases and the thickness of the fluid mud layer below is constant, also during a significant part of the ebb phase. As water depth decreases during ebb, entrainment occurs only at the upper part of the fluid mud layer. The suspended sediment flux is low compared to the flood phase. These observations are further elaborated using turbulence parameters obtained from ADV and ADCP, explaining the difference between ebb and flood concerning the vertical location of the maximum concentration gradient. This study is funded through DFG-Research Center / Excellence Cluster "The Ocean in the Earth System". The Senckenberg Institute and the Federal Waterways Engineering and Research Institute are acknowledged for technical support.

  6. Design and performance of a horizontal mooring for upper-ocean research

    USGS Publications Warehouse

    Grosenbaugh, Mark; Anderson, Steven; Trask, Richard; Gobat, Jason; Paul, Walter; Butman, Bradford; Weller, Robert

    2002-01-01

    This paper describes the design and performance of a two-dimensional moored array for sampling horizontal variability in the upper ocean. The mooring was deployed in Massachusetts Bay in a water depth of 84 m for the purpose of measuring the horizontal structure of internal waves. The mooring was instrumented with three acoustic current meters (ACMs) spaced along a 170-m horizontal cable that was stretched between two subsurface buoys 20 m below the sea surface. Five 25-m-long vertical instrument strings were suspended from the horizontal cable. A bottom-mounted acoustic Doppler current profiler (ADCP) was deployed nearby to measure the current velocity throughout the water column. Pressure sensors mounted on the subsurface buoys and the vertical instrument strings were used to measure the vertical displacements of the array in response to the currents. Measurements from the ACMs and the ADCP were used to construct time-dependent, two-dimensional current fields. The current fields were used as input to a numerical model that calculated the deformation of the array with respect to the nominal zero-current configuration. Comparison of the calculated vertical offsets of the downstream subsurface buoy and downstream vertical instrument string with the pressure measurements were used to verify the numerical code. These results were then used to estimate total deformation of the array due to the passage of the internal waves. Based on the analysis of the three internal wave events with the highest measured vertical offsets, it is concluded that the geometry of the main structure (horizontal cable and anchor legs) was kept to within ±2.0 m, and the geometry of the vertical instrument strings was kept to within ±4.0 m except for one instance when the current velocity reached 0.88 m s−1.

  7. Palos Verdes Shelf oceanographic study; data report for observations December 2007–April 2008

    USGS Publications Warehouse

    Rosenberger, Kurt J.; Noble, Marlene A.; Sherwood, Christopher R.; Martini, Marinna M.; Ferreira, Joanne T.; Montgomery, Ellyn T.

    2011-01-01

    Beginning in 1997, the Environmental Protection Agency (EPA) defined a contaminated section of the Palos Verdes Shelf region in southern California as a Superfund Site, initiating a continuing investigation of this area. The investigation involved the EPA, the U.S. Geological Survey (USGS), Science Applications International Corporation (SAIC), Los Angeles County Sanitation Districts (LACSD) data, and other allied agencies. In mid-2007, the Palos Verdes Shelf project team identified the need for additional data on the sediment properties and oceanographic conditions at the Palos Verdes Superfund Site and deployed seven bottom platforms, three subsurface moorings, and three surface moorings on the shelf. This additional data was needed to support ongoing modeling and feasibility studies and to improve our ability to model the fate of the effluent-affected deposit over time. It provided more detail on the spatial variability and magnitude of resuspension of the deposit during multiple storms that are expected to transit the region during a winter season. The operation began in early December 2007 and ended in early April 2008. The goal was to measure the sediment response (threshold of resuspension, suspended-sediment concentrations, and suspended-sediment transport rates) to bed stresses associated with waves and currents. Other objectives included determining the structure of the bottom boundary layer (BBL) relating nearbed currents with those measured at 10 m above bottom (mab) and comparing those with the long-term data from the LACSD Acoustic Doppler Current Profiler (ADCP) deployments for nearbed current speed and direction. Low-profile tripods with high-frequency ADCPs co-located with two of the large tripods were selected for this goal. This report describes the data obtained during the field program, the instruments and data-processing procedures used, and the archive that contains the data sets that have passed our quality-assurance procedures.

  8. Summer monsoon response of the Northern Somali Current, 1995

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Fischer, Jürgen; Garternicht, Ulf; Quadfasel, Detlef

    Preliminary results on the development of the northern Somali Current regime and Great Whirl during the summer monsoon of 1995 are reported. They are based on the water mass and current profiling observations from three shipboard surveys of R/V Meteor and on the time series from a moored current-meter and ADCP array. The monsoon response of the GW was deep-reaching, to more than 1000m. involving large deep transports. The northern Somali Current was found to be disconnected from the interior Arabian Sea in latitude range 4°N-12°N in both, water mass properties and current fields. Instead, communication dominantly occurs through the passages between Socotra and the African continent. From moored stations in the main passage a northward throughflow from the Somali Current to the Gulf of Aden of about 5 Sv was determined for the summer monsoon of 1995.

  9. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  10. Investigation of active volcanic areas through oceanographic data collected by the NEMO-SN1 multiparametric seafloor observatory

    NASA Astrophysics Data System (ADS)

    Lo Bue, Nadia; Sgroi, Tiziana; Giovanetti, Gabriele; Marinaro, Giuditta; Embriaco, Davide; Beranzoli, Laura; Favali, Paolo

    2015-04-01

    In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), the cabled multidisciplinary seafloor observatory node NEMO-SN1 was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily, close to the Mt. Etna volcano system. The oceanographic payload mounted on this observatory was originally designed to monitor possible variations of the local hydrodynamic playing a crucial role on the redistribution of deep water in the Eastern Mediterranean Sea. In particular the Acoustic Doppler Current Profiler (ADCP RDI WorkHorse 600 kHz) was configured with the main aim to record the bottom dynamics, watching few meters of water column above the station (about 30 m). Surprisingly, this sensor offered a spectacular recording of the Mt.Etna pyroclastic activity occurred on 2013 which affected the ESE sector of the volcano. Although the ADCP sensor is commonly used to measure speed and direction of sea currents, it is more often used to monitor concentration suspended matter of controlled areas, such as rivers or coastal marine environments, by the analysis of the acoustic backscatter intensity. This standard condition entails some a-priori knowledge (i.e. suspended sediment concentration, particle size, echo intensity calibration) useful to well configure the sensors before starting its acquisition. However, in the case of Mt. Etna pyroclastic activity, due to the unexpected recording, these information were not available and it was necessary to work in a post-processing mode considering all acquired data. In fact, several different parameters contribute to complete the comprehension of the observed phenomenon: the ADCP acoustic wavelength able to indirectly provide information on the detectable particle size, the intensity of the explosive activity useful to define the starting energy of the volcanic system, the oceanographic local dynamics indispensable to know possible ash dispersion in seawater. This work aims to present a new perspective of observation for pyroclastic fallout in benthic seafloor areas using alternative sensors normally designed for other investigation such as the ADCP. Also, it highlights the possibility to optimize the instrumental resources used within the benthic observatories and opens new possibilities for the study of benthic processes, as volcanic ash sedimentation, through multiparametric analysis.

  11. Variability in Benthic Exchange Rate, Depth, and Residence Time Beneath a Shallow Coastal Estuary

    NASA Astrophysics Data System (ADS)

    Russoniello, Christopher J.; Heiss, James W.; Michael, Holly A.

    2018-03-01

    Hydrodynamically driven benthic exchange of water between the water column and shallow seabed aquifer is a significant and dynamic component of coastal and estuarine fluid budgets. Associated exchange of solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times constrains coastal chemical cycling estimates. We present the first combined field, numerical, and analytical modeling investigation of wave-induced exchange. Temporal variability of exchange was calculated with data collected by instruments deployed in a shallow estuary for 11 days. Differential pressure sensors recorded pressure gradients across the seabed, and up- and down-looking ADCPs recorded currents and pressures to determine wave parameters, surface-water currents, and water depth. Wave-induced exchange was calculated (1) directly from differential pressure measurements, and indirectly with an analytical model based on wave parameters from (2) ADCP and (3) wind data. Wave-induced exchange from pressure measurements and ADCP-measured wave parameters matched well, but both exceeded wind-based values. Exchange induced by tidal pumping and current-bed form interaction—the other primary drivers in shallow coastal waters were calculated from tidal stage variation and ADCP-measured currents. Exchange from waves (mean = 20.0 cm/d; range = 1.75-92.3 cm/d) greatly exceeded exchange due to tides (mean = 3.7 cm/d) and current-bed form interaction (mean = 6.5 × 10-2 cm/d). Groundwater flow models showed aquifer properties affect wave-driven benthic exchange: residence time and depth increased and exchange rates decreased with increasing hydraulic diffusivity (ratio of aquifer permeability to compressibility). This new understanding of benthic exchange will help managers assess its control over chemical fluxes to marine systems.

  12. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    USGS Publications Warehouse

    Wagner, Chad R.; Mueller, David S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks.

  13. Field evaluation of shallow-water acoustic doppler current profiler discharge measurements

    USGS Publications Warehouse

    Rehmel, M.S.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.

  14. Tidal and residual circulation in a semi-arid bay: Coquimbo Bay, Chile

    NASA Astrophysics Data System (ADS)

    Valle-Levinson, Arnoldo; Moraga, Julio; Olivares, Jorge; Blanco, José Luis

    2000-11-01

    Velocity profiles and time-series data were combined with conductivity-temperature-depth (CTD) casts to describe the general circulation at tidal and subtidal scales in a bay of semi-arid climate, Coquimbo Bay (˜30°S), Chile. This was the first study that used a towed acoustic Doppler current profiler (ADCP) in coastal Chilean waters and is one of the very few in semi-arid bays. The ADCP was towed for two semi-diurnal tidal cycles in early austral autumn, between March 23 and 24, 1997 along a triangular trajectory that covered most of the bay. Additional data consisted of moored current meters and CTD casts. The observations indicated the presence of a surface layer, above the pycnocline, that showed predominantly diurnal variability forced by the breeze regime and by tides. The tidal circulation in the surface layer featured amplitudes of 10 cm/s within an anticyclonic gyre that occupied most of the bay. The subtidal circulation in the surface was characterized by a pair of counter-rotating gyres. The northernmost three-fourths of the bay showed an anticyclonic gyre, and the observations over the southern fourth implied a cyclonic gyre. The subtidal anticyclonic gyre had a counterpart rotating in opposite direction within a lower layer, underneath the pycnocline. The lower layer showed semidiurnal variability in addition to diurnal variability and was insulated by the pycnocline from heat and momentum fluxes through the air-water interface. Circulations that resemble estuarine and anti-estuarine patterns were found associated with the subtidal gyres. A horizontal divergence related to a 10 cm/s near-surface outflow around Point Tortuga, to the south of the bay entrance, allowed the development of upward motion off the Point, as evidenced by the tilt of the isopycnals at the entrance to the bay.

  15. Wave data processing toolbox manual

    USGS Publications Warehouse

    Sullivan, Charlene M.; Warner, John C.; Martini, Marinna A.; Lightsom, Frances S.; Voulgaris, George; Work, Paul

    2006-01-01

    Researchers routinely deploy oceanographic equipment in estuaries, coastal nearshore environments, and shelf settings. These deployments usually include tripod-mounted instruments to measure a suite of physical parameters such as currents, waves, and pressure. Instruments such as the RD Instruments Acoustic Doppler Current Profiler (ADCP(tm)), the Sontek Argonaut, and the Nortek Aquadopp(tm) Profiler (AP) can measure these parameters. The data from these instruments must be processed using proprietary software unique to each instrument to convert measurements to real physical values. These processed files are then available for dissemination and scientific evaluation. For example, the proprietary processing program used to process data from the RD Instruments ADCP for wave information is called WavesMon. Depending on the length of the deployment, WavesMon will typically produce thousands of processed data files. These files are difficult to archive and further analysis of the data becomes cumbersome. More imperative is that these files alone do not include sufficient information pertinent to that deployment (metadata), which could hinder future scientific interpretation. This open-file report describes a toolbox developed to compile, archive, and disseminate the processed wave measurement data from an RD Instruments ADCP, a Sontek Argonaut, or a Nortek AP. This toolbox will be referred to as the Wave Data Processing Toolbox. The Wave Data Processing Toolbox congregates the processed files output from the proprietary software into two NetCDF files: one file contains the statistics of the burst data and the other file contains the raw burst data (additional details described below). One important advantage of this toolbox is that it converts the data into NetCDF format. Data in NetCDF format is easy to disseminate, is portable to any computer platform, and is viewable with public-domain freely-available software. Another important advantage is that a metadata structure is embedded with the data to document pertinent information regarding the deployment and the parameters used to process the data. Using this format ensures that the relevant information about how the data was collected and converted to physical units is maintained with the actual data. EPIC-standard variable names have been utilized where appropriate. These standards, developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) (http://www.pmel.noaa.gov/epic/), provide a universal vernacular allowing researchers to share data without translation.

  16. The down canyon evolution of submarine sediment density flows

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.

    2017-12-01

    Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.

  17. Generation of periodic intrusions at Suruga Bay when the Kuroshio follows a large meandering path

    NASA Astrophysics Data System (ADS)

    Katsumata, Takaaki

    2016-07-01

    We measured the vertical profiles of currents at the eastern mouth of the Suruga Bay using a moored acoustic Doppler current profiler (ADCP). Currents vertical profiles were found to be mostly barotropic in structure when intrusions occurred at the eastern mouth of the bay. Warm-water intrusions at the Suruga Bay and sea level elevations at the bay and at islands on the Izu Ridge located off the bay have the same period of 26 days. The temporal variation in the sea levels occurs in response to Kuroshio frontal waves, and the two phases are consistent. The sea level rise propagates from Hachijo Island to the Suruga Bay via Miyake Island and Kozu Island, i.e., from off the Suruga Bay to in or near the bay. The perturbation of the sea level along the Izu Ridge occurs as waves with a period of 26 days, a wavelength of 500 km, and a phase speed of 23 cm/sec. The propagated waves and those of the Kuroshio frontal waves have the same features. This means that the periodic inflows at the eastern mouth of the Suruga Bay are caused by the passage of Kuroshio frontal waves off the bay.

  18. Observed and modeled tsunami current velocities in Humboldt Bay and Crescent City Harbor, northern California

    NASA Astrophysics Data System (ADS)

    Admire, A. R.; Dengler, L.; Crawford, G. B.; uslu, B. U.; Montoya, J.

    2012-12-01

    A pilot project was initiated in 2009 in Humboldt Bay, about 370 kilometers (km) north of San Francisco, California, to measure the currents produced by tsunamis. Northern California is susceptible to both near- and far-field tsunamis and has a historic record of damaging events. Crescent City Harbor, located approximately 100 km north of Humboldt Bay, suffered US 20 million in damages from strong currents produced by the 2006 Kuril Islands tsunami and an additional US 20 million from the 2011 Japan tsunami. In order to better evaluate these currents in northern California, we deployed a Nortek Aquadopp 600kHz 2D Acoustic Doppler Current Profiler (ADCP) with a one-minute sampling interval in Humboldt Bay, near the existing National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) tide gauge station. The instrument recorded the tsunamis produced by the Mw 8.8 Chile earthquake on February 27, 2010 and the Mw 9.0 Japan earthquake on March 11, 2011. Currents from the 2010 tsunami persisted in Humboldt Bay for at least 30 hours with peak amplitudes of about 0.3 meters per second (m/s). The 2011 tsunami signal lasted for over 86 hours with peak amplitude of 0.95 m/s. Strongest currents corresponded to the maximum change in water level as recorded on the NOAA NOS tide gauge, and occurred 90 minutes after the initial wave arrival. No damage was observed in Humboldt Bay for either event. In Crescent City, currents for the first three and a half hours of the 2011 Japan tsunami were estimated using security camera video footage from the Harbor Master building across from the entrance to the small boat basin, approximately 70 meters away from the NOAA NOS tide gauge station. The largest amplitude tide gauge water-level oscillations and most of the damage occurred within this time window. The currents reached a velocity of approximately 4.5 m/s and six cycles exceeded 3 m/s during this period. Measured current velocities both in Humboldt Bay and in Crescent City were compared to calculated velocities from the Method of Splitting Tsunamis (MOST) numerical model. For Humboldt Bay, the 2010 model tsunami frequencies matched the actual values for the first two hours after the initial arrival however the amplitudes were underestimated by approximately 65%. MOST replicated the first four hours of the 2011 tsunami signal in Humboldt Bay quite well although the peak flood currents were underestimated by about 50%. MOST predicted attenuation of the signal after four hours but the actual signal persisted at a nearly constant level for more than 48 hours. In Crescent City, the model prediction of the 2011 frequency agreed quite well with the observed signal for the first two and a half hours after the initial arrival with a 50% underestimation of the peak amplitude. The results from this project demonstrate that ADCPs can effectively record tsunami currents for small to moderate events and can be used to calibrate and validate models (i.e. MOST) in order to better predict hazardous tsunami conditions and improve planned responses to protect lives and property, especially within harbors. An ADCP will be installed in Crescent City Harbor and four additional ADCPs are being deployed in Humboldt Bay during the fall of 2012.

  19. Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Hosegood, P.; Wynn, R. B.; De Boer, M. N.; Butler-Cowdry, S.; Embling, C. B.

    2014-11-01

    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a local scale. Information on the functional mechanisms linking porpoise distribution to static and dynamic physical habitat variables is extremely valuable to the monitoring and management of the species within the context of European conservation policies and marine renewable energy infrastructure development.

  20. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    USGS Publications Warehouse

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm/s, respectively. The range in ME of the temperature simulations over the same period was ?0.94 to 0.73 degrees Celsius (?C), and the RMSE ranged from 0.43 to 1.12?C. The model adequately simulated periods of stratification in the deep trench when complete mixing did not occur for several days at a time. The model was validated using boundary conditions and forcing functions from 2006 without changing any calibration parameters. A spatially variable wind was used. Data for the model validation periods in 2006 included lake elevation at 4 gages around the lake, currents collected at 2 ADCP sites, and temperature collected at 21 water-quality monitoring locations. Errors generally were larger than in 2005. ME and RMSE in the simulated velocity at ADCP1 were 2.30 cm/s and 3.88 cm/s, respectively, for the same 37-day simulation over which errors were computed for 2005. The ME in temperature over the same period ranged from ?0.56 to 1.5?C and the RMSE ranged from 0.41 to 1.86?C. Numerical experiments with conservative tracers were used to demonstrate the prevailing clockwise circulation patterns in the lake, and to show the influence of water from the deep trench located along the western shoreline of the lake on fish habitat in the northern part of the lake. Because water exiting the trench is split into two pathways, the numerical experiments indicate that bottom water from the trench has a stronger influence on water quality in the northern part of the lake, and surface water from the trench has a stronger influence on the southern part of the lake. This may be part of the explanation for why episodes of low dissolved oxygen tend to be more severe in the northern than in the southern part of the lake.

  1. The Role of Environmental Forcing in Controlling Water Retention Gyres in Subsystems of Narragansett Bay

    NASA Astrophysics Data System (ADS)

    Balt, C.; Kincaid, C. R.; Ullman, D. S.

    2010-12-01

    Greenwich Bay and the Providence River represent two subsystems of the Narragansett Bay (RI) estuary with chronic water quality problems. Both underway and moored Acoustic Doppler Current Profiler (ADCP) observations have shown the presence of large-scale, subtidal gyres within these subsystems. Prior numerical models of Narragansett Bay, developed using the Regional Ocean Modeling System (ROMS), indicate that prevailing summer sea breeze conditions are favorable to the evolution of stable circulation gyres, which increase retention times within each subsystem. Fluid dynamics laboratory models of the Providence River, conducted in the Geophysical Fluid Dynamics Laboratory of the Research School of Earth Sciences (Australian National University), reproduce gyres that match first order features of the ADCP data. These laboratory models also reveal details of small-scale eddies along the edges of the retention gyre. We report results from spatially and temporally detailed current meter deployments (using SeaHorse Tilt Current Meters) in both subsystems, which reveal details on the growth and decay of gyres under various spring-summer forcing conditions. In particular, current meters were deployed during the severe flooding events in the Narragansett Bay watershed during March, 2010. A combination of current meter data and high-resolution ROMS modeling is used to show how gyres effectively limit subtidal exchange from the Providence River and Greenwich Bay and to understand the forcing conditions that favor efficient flushing. The residence times of stable gyres within these regions can be an order of magnitude larger than values predicted by fraction of water methods. ROMS modeling is employed to characterize gyre energy, stability, and flushing rates for a wide range of seasonal, wind and runoff scenarios.

  2. Use of acoustic technology to define hydraulic characteristics of an estuary near the Mississippi Gulf Coast

    USGS Publications Warehouse

    Van Wilson, K.

    2004-01-01

    An Acoustic Doppler Current Profiler (ADCP) was used on the Jourdan River at Interstate Highway 10 near Kiln, Mississippi, in 1996 to measure three-dimensional velocity vectors and water depths and in 1998, in combination with a global positioning system, to define channel bathymetry in the vicinity of the bridge. During a 25-hour period on September 19-20, 1996, 117 consecutive measurements of stage and discharge were obtained throughout a complete tidal cycle. These measurements were obtained during the time of year when headwater flows were minimal, and, therefore, the tidal-affected flow conditions were noticeable. The stage ranged from only 0.7 to 2.8 ft above sea level, but discharge ranged from 3,980 ft3/s flowing upstream to 5,580 ft 3/s flowing downstream. The average discharge during the 25-hour period was only 80 ft3/s flowing downstream. By using the ADCP, full downstream flow, bi-directional flow, and full upstream flow conditions were identified. If conventional measurement techniques had been used, the bi-directional flow conditions could not have been detected since flow direction would have been based on what was seen at the water surface. These measurements were used to define the lower range of the stage-storage-volume relation inland of the highway. On June 10, 1998, the ADCP, in combination with a global positional system, was used to define channel bathymetry for the river reach from about 3,500 ft upstream to about 2,500 ft downstream of the bridge. The bathymetry was compared to past soundings obtained in the vicinity of the bridge; as much as 18 ft of total scour was indicated to have occurred at a bridge pier. Copyright ASCE 2004.

  3. Feasibility of Estimating Constituent Concentrations and Loads Based on Data Recorded by Acoustic Instrumentation

    USGS Publications Warehouse

    Lietz, A.C.

    2002-01-01

    The acoustic Doppler current profiler (ADCP) and acoustic Doppler velocity meter (ADVM) were used to estimate constituent concentrations and loads at a sampling site along the Hendry-Collier County boundary in southwestern Florida. The sampling site is strategically placed within a highly managed canal system that exhibits low and rapidly changing water conditions. With the ADCP and ADVM, flow can be gaged more accurately rather than by conventional field-data collection methods. An ADVM velocity rating relates measured velocity determined by the ADCP (dependent variable) with the ADVM velocity (independent variable) by means of regression analysis techniques. The coefficient of determination (R2) for this rating is 0.99 at the sampling site. Concentrations and loads of total phosphorus, total Kjeldahl nitrogen, and total nitrogen (dependent variables) were related to instantaneous discharge, acoustic backscatter, stage, or water temperature (independent variables) recorded at the time of sampling. Only positive discharges were used for this analysis. Discharges less than 100 cubic feet per second generally are considered inaccurate (probably as a result of acoustic ray bending and vertical temperature gradients in the water column). Of the concentration models, only total phosphorus was statistically significant at the 95-percent confidence level (p-value less than 0.05). Total phosphorus had an adjusted R2 of 0.93, indicating most of the variation in the concentration can be explained by the discharge. All of the load models for total phosphorus, total Kjeldahl nitrogen, and total nitrogen were statistically significant. Most of the variation in load can be explained by the discharge as reflected in the adjusted R2 for total phosphorus (0.98), total Kjeldahl nitrogen (0.99), and total nitrogen (0.99).

  4. Observations of the sub-inertial, near-surface East India Coastal Current

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Shankar, D.; Aparna, S. G.; Mukherjee, A.

    2017-09-01

    We present surface current measurements made using two pairs of HF (high-frequency) radars deployed on the east coast of India. The radar data, used in conjunction with data from acoustic Doppler current profiler (ADCP) measurements on the shelf and slope off the Indian east coast, confirm that the East India Coastal Current (EICC) flows poleward as a deep current during February-March. During the summer monsoon, when the EICC flows poleward, and October-December, when the EICC flows equatorward, the current is shallow (< 40 m deep), except towards the northern end of the coast. Data from Argo floats confirm a shallow mixed layer that leads to a strong vertical shear off southeast India during October-December. A consequence of the strong stratification is that the upward propagation of phase evident in the ADCP data does not always extend to the surface. Even within the seasons, however, the poleward and equatorward flows show variability at periods of the order of 20-45 days, implying that the EICC direction is the same over the top ∼100 m for short durations. The high spatial resolution of the HF radar data brings out features at scales shorter than those resolved by the altimeter and the high temporal resolution captures short bursts that are not captured in satellite-derived estimates of surface currents. The radar data show that the EICC, which is a boundary current, leaves a strong imprint on the current at the coast. Since the EICC is known to be affected significantly by remote forcing, this correlation between the boundary and nearshore current implies the need to use large-domain models even for simulating the nearshore current. Comparison with a simulation by a state-of-the-art Ocean General Circulation Model, run at a resolution of 0.1 ° × 0.1 ° , shows that the model is able to simulate only the low-frequency variability.

  5. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  6. Near bottom velocity and suspended solids measurements in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Cheng, Ralph T.; Cacchione, David A.; Tate, George B.

    1997-01-01

    Ability to accurately measure long-term time-series of turbulent mean velocity distribution within the bottom boundary layer (BBL) in addition to suspended solids concentration (SSC) is critical to understanding complex processes controlling transport, resuspension, and deposition of suspended sediments in bays and estuaries. A suite of instruments, including broad band acoustic Doppler current profilers (BB-ADCPs), capable of making very high resolution measurement of velocity profiles in the BBL, was deployed in the shipping channel of South San Francisco Bay (South Bay), California in an investigation of sediment dynamics during March and April 1995. Results of field measurements provide information to calculate suspended solids flux (SSF) at the site. Calculations show striking patterns; residual SSF varies through the spring-neap tidal cycle. Significant differences from one spring tide to another are caused by differences in tidal current diurnal inequalities. Winds from significant storms establish residual circulation patterns that may affect magnitude of residual SSF more than increased tidal energy at spring tides.

  7. North Adriatic Tides: Observations, Variational Data Assimilation Modeling, and Linear Tide Dynamics

    DTIC Science & Technology

    2009-12-01

    of the North Adriatic ( Lee et al., 2005). In addition to the ADCP measurements of currents through- out the water column, bottom pressure (by ADCP or...of the year with low levels of stratification (Figure 2, Jeffries and Lee , 2007). Actual generation of internal tides in the North Adriatic would...Thompson, K.R., Teague, W. J., Jacobs, G.A., Suk, M.-S., Chang, K.-I., Lee , J.-C. and Choi, B.H. (2004): Data assimilation modeling of the barotropic

  8. Fish pass assessment by remote control: a novel framework for quantifying the hydraulics at fish pass entrances

    NASA Astrophysics Data System (ADS)

    Kriechbaumer, Thomas; Blackburn, Kim; Gill, Andrew; Breckon, Toby; Everard, Nick; Wright, Ros; Rivas Casado, Monica

    2014-05-01

    Fragmentation of aquatic habitats can lead to the extinction of migratory fish species with severe negative consequences at the ecosystem level and thus opposes the target of good ecological status of rivers defined in the EU Water Framework Directive (WFD). In the UK, the implementation of the EU WFD requires investments in fish pass facilities of estimated 532 million GBP (i.e. 639 million Euros) until 2027 to ensure fish passage at around 3,000 barriers considered critical. Hundreds of passes have been installed in the past. However, monitoring studies of fish passes around the world indicate that on average less than half of the fish attempting to pass such facilities are actually successful. There is a need for frameworks that allow the rapid identification of facilities that are biologically effective and those that require enhancement. Although there are many environmental characteristics that can affect fish passage success, past research suggests that variations in hydrodynamic conditions, reflected in water velocities, velocity gradients and turbulences, are the major cues that fish use to seek migration pathways in rivers. This paper presents the first steps taken in the development of a framework for the rapid field-based quantification of the hydraulic conditions downstream of fish passes and the assessment of the attractivity of fish passes for salmonids and coarse fish in UK rivers. For this purpose, a small-sized remote control platform carrying an acoustic Doppler current profiler (ADCP), a GPS unit, a stereo camera and an inertial measurement unit has been developed. The large amount of data on water velocities and depths measured by the ADCP within relatively short time is used to quantify the spatial and temporal distribution of water velocities. By matching these hydraulic features with known preferences of migratory fish, it is attempted to identify likely migration routes and aggregation areas at barriers as well as hydraulic features that may distract fish away from fish pass entrances. The initial steps of the framework development have focused on the challenge of precise spatial data referencing in areas with limited sky view to navigation satellites. Platform tracking with a motorised Total Station, various satellite-based positioning solutions and simultaneous localisation and mapping (SLAM) based on stereo images have been tested. The effect of errors in spatial data referencing on ADCP-derived maps of flow features and bathymetry will be quantified through simultaneous deployment of these navigation technologies and the ADCP. This will inform the selection of a cost-effective platform positioning system in practice. Further steps will cover the quantification of uncertainties in ADCP data caused by highly turbulent flows and the identification of suitable ADCP data sampling strategies at fish passes. The final framework for fish pass assessment can contribute to an improved understanding of the interaction of fish and the complex hydraulic river environment.

  9. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    NASA Astrophysics Data System (ADS)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the turbulence scales of the flow. In case of heterogeneous distributions of vertical velocity components in the ADCP beams, the resulting errors significantly biased the mean velocities and could not be recognized by sole ADCP measurements. For the straightened flow scenario, the results showed good agreement of ADCP and ADV data for mean velocities, whereas the ADCP data consistently overestimated turbulence intensities by a factor of 2. Reynolds stresses were in good agreement as well as were turbulent kinetic energies, apart from one measurement with outliers of up to 30%. For the tailrace flow scenario, the mean velocities from the ADCP data underestimated the ADV data by 23%. Turbulence intensities from the ADCP data were fluctuant, overestimated the ADV data by factors of up to 2.8 and showed spatial discrepancies over the depth. Reynolds stresses were only partly in good agreement and turbulent kinetic energies were over- and underestimated in a range of [-50; +30] %.

  10. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  11. Observations of near-bottom currents in Bornholm Basin, Slupsk Furrow and Gdansk Deep

    NASA Astrophysics Data System (ADS)

    Bulczak, A. I.; Rak, D.; Schmidt, B.; Beldowski, J.

    2016-06-01

    Dense bottom currents are responsible for transport of the salty inflow waters from the North Sea driving ventilation and renewal of Baltic deep waters. This study characterises dense currents in three deep locations of the Baltic Proper: Bornholm Basin (BB), Gdansk Basin (GB) and Slupsk Furrow (SF). These locations are of fundamental importance for the transport and pollution associated with chemical munitions deposited in BB and GB after 2nd World War. Of further importance the sub-basins are situated along the pathway of dense inflowing water.Current velocities were measured in the majority of the water column during regular cruises of r/v Oceania and r/v Baltica in 2001-2012 (38 cruises) by 307 kHz vessel mounted (VM), downlooking ADCP. Additionally, the high-resolution CTD and oxygen profiles were collected. Three moorings measured current velocity profiles in SF and GB over the summer 2012. In addition, temperature, salinity, oxygen and turbidity were measured at about 1 m above the bottom in GB. The results showed that mean current speed across the Baltic Proper was around 12 cm s-1 and the stronger flow was characteristic to the regions located above the sills, in the Bornholm and Slupsk Channels, reaching on average about 20 cm s-1. The results suggest that these regions are important for the inflow of saline waters into the eastern Baltic and are the areas of intense vertical mixing. The VM ADCP observations indicate that the average near-bottom flow across the basin can reach 35±6 cm s-1. The mooring observations also showed similar near-bottom flow velocities. However, they showed that the increased speed of the near-bottom layer occurred frequently in SF and GB during short time periods lasting for about few to several days or 10-20% of time. The observations showed that the bottom mixed layer occupies at least 10% of the water column and the turbulent mixing induced by near-bottom currents is likely to produce sediment resuspension and transport within the layer in all three sub-basins. The turbidity measurements, performed for 5-month-long time period over the summer 2012 in GB show that increased sediment resuspension is associated with a faster near-bottom flow.

  12. Hydrological Measurements in Several Streams During Breakup in the National Petroleum Reserve - Alaska

    NASA Astrophysics Data System (ADS)

    Vas, D. A.; Toniolo, H. A.; Kemnitz, R.; Brailey, D.; Lamb, E. K.

    2011-12-01

    The National Petroleum Reserve - Alaska (NPR - A) expands from the North side of the Brooks Range to the Arctic Ocean over 23.5 million acres. There is a renewed interest in opening NPR -A for oil and gas exploration and hydrological data is critical to the development of pipelines, roads, and bridges. A set of hydraulic measurements, which includes discharge measurements using Acoustic Doppler Current Profiler (ADCP), water slope, and suspended sediment sampling during breakup were conducted on Otuk Creek, Seabee Creek, Prince Creek, Ikpikpuk River, Judy Creek, Fish Creek, and Ublutuoch River in the NPR - A region. We will present preliminary results, grouped by stream characteristics.

  13. Large Kelvin-Helmholtz Billow Trains Observed in the Kuroshio above a Seamount

    NASA Astrophysics Data System (ADS)

    Chang, M. H.; Jheng, S. Y.; Lien, R. C.

    2016-02-01

    Trains of large Kelvin-Helmholtz (KH) billows were observed within the Kuroshio core, off southeastern Taiwan, at 230-m depth above a seamount in shipboard echo sounder, ADCP, and LADCP/CTD profiling, and moored ADCP measurements. The large KH billow trains were present in a strong shear band along 0.55 ms-1 isotach within the Kuroshio core as a result of the Kuroshio current interacting with the rapid changing topography. Each individual billow, resembling a cats' eye, had a horizontal length scale of 200 m and a vertical amplitude scale of 100 m, and a propagation timescale of 7 minutes, near local buoyancy period. Overturns were frequently observed in both the billow core and the upper eyelid. The shear instability criterion (Ri < 0.25) was reached in the billow core. The dissipation rate of turbulent kinetic energy in the core and in the eyelid is comparable at an average value of O(10-4) WKg-1 and a maximum value of O(10-3) WKg-1. The KH billows derive energy from the Kuroshio kinetic energy. The corresponding turbulence mixing allows the water mass exchange between the Kuroshio and the surrounding water. These small-scale processes play an important role in the energy and water mass budgets within the Kuroshio.

  14. Autonomous Research Vessels for Adaptive Upper-Ocean Process Studies

    DTIC Science & Technology

    2014-09-30

    system with the goal  of extending  its mission robustness,  adaptabilit and science capabilities beyond that  of the   Arduino -­‐ based ones... measure the interplay between these finescale dynamics and turbulence, which ultimately drives  the  irreversible  heat/freshwater  transports...profiling in Greenland  Fjords. acquiring CTD cast (and ADCP profiles) within m of a Greenland iceberg.APPROACH: Our first ARV (ARV Rob) was based on

  15. Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary

    NASA Astrophysics Data System (ADS)

    Russoniello, C. J.; Michael, H. A.; Heiss, J.

    2017-12-01

    Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased in high-permeability, incompressible aquifers, and exchange rates increased in low-permeability, compressible aquifers. These findings support and extend the utility of existing wave-induced exchange solutions and will help managers assess the importance of benthic exchange on coastal chemical cycling.

  16. Nutrient flux estimates in a tidal basin: A case study of Magdalena lagoon, Mexican Pacific coast

    NASA Astrophysics Data System (ADS)

    Zaytsev, Oleg; Cervantes-Duarte, Rafael

    2018-07-01

    Bahia Magdalena (BM), known for its high primary productivity, is one of the largest tidal lagoons on the Mexican Pacific coast of the Baja California Peninsula. BM is located in an area of active coastal upwelling and significant tides with a maximum range of about 2.4 m. Dissolved inorganic nutrients upwelled from the depths are transported by tidal water exchange into the lagoon, contributing to its fertilisation. To estimate the magnitude and mechanisms driving the tidal exchange of water and nutrients, field observations of the nutrient content were made in the inlet area and on the adjacent shelf during March 2003, December 2004 and June, August and November 2005. In March 2003, the research vessel El Puma carried out a complete hydrological study of the area using Seabird-19 CTD profiler. At the same time, a current meter with a tide gauge was installed in the BM inlet, and multiple measurements of currents were made on a section across the inlet with a SonTek hull-mounted Acoustic Doppler Current Profiler (ADCP). Field studies were complemented by numerical experiments with the hydrodynamic model ECOM 3D. Analysis of the currents in the inlet area, deriving from both the ADCP data and the numerical simulation, indicates that the water volume transported during a semidiurnal tidal cycle through the inlet varied from 0.3 km3 for neap tide to 0.82 km3 for spring tide. Net nitrate mass intakes to the lagoon deriving from currents in the mouth can be estimated as 7.0 × 103 kg for neap tides and 20.0 × 103 kg for spring tides, and the maximum phosphate contribution was estimated at 2.5 × 103 kg and 8.5 × 103 kg, respectively. Taking into account that fluvial contribution in the lagoon is practically absent, unexpanded mangroves are distributed mainly at its northern part, and organic sediment decomposition is potentially evaluated as low, we can thus conclude that the coupled effect of upwelling and tidal currents play an important role in fertilising the BM. Naturally, this mechanism works only in periods of upwelling activity, namely, from March to June, and to a lesser extent from September to October.

  17. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.

  18. Influence of bedrock on river hydrodynamics and channel geometry

    NASA Astrophysics Data System (ADS)

    Rennie, C. D.; Church, M. A.; Venditti, J. G.; Bomhof, J.; Adderley, C.

    2013-12-01

    We present an acoustic Doppler current profiler (aDcp) survey of a 524 km long reach of Fraser River, British Columbia, Canada, as it passes through the Fraser Canyons. The channel alternates between gravel-bedded reaches that are incised into semi-consolidated glacial deposits and bedrock-bound reaches (7.7% of the reach between the towns of Quesnel and Hope). A continuous centreline aDcp survey was employed to measure longitudinal variation in slope, depth, depth-averaged velocity, and shear velocity. A total of 71 aDcp sectional surveys throughout the reach provided section widths (w), section-averaged depths (d), velocity distributions, and discharge (Q). Finally, air photo analysis using Google imagery provided channel widths at 0.5 km spacing. The survey reach was subdivided into 10 morphological sub-reaches, which ranged from alluvial gravel-bed reaches with relatively moderate slope to steep non-alluvial rock-walled canyons. The resulting data provide a unique opportunity to evaluate the influence of bedrock confinement on river hydrodynamics and channel geometry. Continuous centreline longitudinal aDcp data and the widths from air photo analysis were grouped within each sub-reach based on presence of bedrock confinement on both banks, either bank, or neither bank. The results demonstrate that river widths decreased and water depths, flow velocities, and shear velocities increased from the alluvial sub-reaches to the semi-alluvial reaches to the canyon reaches. Within each sub-reach, locations with bedrock encroachment on both banks were also narrower and deeper, but had lower depth-averaged velocity and shear velocity. Sectional geometry data were homogenized along the river (to compensate increasing flows at tributary junctions) by computing w/Q^{1/2} and d/Q^{1/3}, following commonly observed scaling relations. Alluvial reaches are 2.3x wider than rock-bound reaches (from the more abundant imagery data) and 0.60x as deep (from aDcp sections), implying that mean velocity is accelerated in rock reaches by 38%. There is also variation from reach to reach along the river controlled by variation in rock lithologies, with the narrowest canyons occurring in Fraser Canyon proper (w/Q^{1/2} = 0.083 compared with 1.4 elsewhere). The uppermost (';Marguerite') and lowermost (';Agassiz') alluvial reaches are considerably wider (w/Q^{1/2}= 3.9 and 7.1 respectively) than intervening ones ( 2.35). These reaches have lower gradients and exhibit wandering channels. Because of lithological control, the downstream hydraulic geometry of the river does not, in fact, conform with the common pattern, even when sections are analyzed according to boundary material. However, river gradient is well correlated with scaled width; inversely for gravel reaches and directly, but with little sensitivity, for rock-bound reaches.

  19. Predictability of the California Current System

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and time scales.

  20. Delineation of tidal scour through marine geophysical techniques at Sloop Channel and Goose Creek bridges, Jones Beach State Park, Long Island, New York

    USGS Publications Warehouse

    Stumm, Frederick; Chu, Anthony; Reynolds, Richard J.

    2001-01-01

    Inspection of the Goose Creek Bridge in southeastern Nassau County in April 1998 by the New York State Department of Transportation (NYSDOT) indicated a separation of bridge piers from the road bed as a result of pier instability due to apparent seabed scouring by tidal currents. This prompted a cooperative study by the U.S. Geological Survey with the NYSDOT to delineate the extent of tidal scour at this bridge and at the Sloop Channel Bridge, about 0.5 mile to the south, through several marine- geophysical techniques. These techniques included use of a narrow-beam, 200-kilohertz, research-grade fathometer, a global positioning system accurate to within 3 feet, a 3.5 to 7-kilohertz seismic-reflection profiler, and an acoustic Doppler current profiler (ADCP). The ADCP was used only at the Sloop Channel Bridge; the other techniques were used at both bridges.Results indicate extensive tidal scour at both bridges. The fathometer data indicate two major scour holes nearly parallel to the Sloop Channel Bridge—one along the east side, and one along the west side (bridge is oriented north-south). The scour-hole depths are as much as 47 feet below sea level and average more than 40 feet below sea level; these scour holes also appear to have begun to connect beneath the bridge. The deepest scour is at the north end of the bridge beneath the westernmost piers. The east-west symmetry of scour at Sloop Channel Bridge suggests that flood and ebb tides produce extensive scour.The thickness of sediment that has settled within scour holes could not be interpreted from fathometer data alone because fathometer frequencies cannot penetrate beneath the sea-floor surface. The lower frequencies used in seismic-reflection profiling can penetrate the sea floor and underlying sediments, and indicate the amount of infilling of scour holes, the extent of riprap under the bridge, and the assemblages of clay, sand, and silt beneath the sea floor. The seismic- reflection surveys detected 2 to 5 feet of sediment filling the scour holes at both bridges; this indicates that the fathometer surveys were undermeasuring the effective depth of bridge scour by 2 to 5 feet through their inability to penetrate the infilled sediment. Several clay layers with thicknesses of 3 to 5 feet were detected beneath the sea floor at both bridges. Most of the piers beneath Sloop Channel Bridge appear to be surrounded by riprap, but, in several areas the riprap appears to be slumping or sliding into adjacent scour holes. Similar slumping was indicated at the Goose Creek Bridge. Most of the sediment underlying the sea floor at both bridges is interpreted as a fine-grained, cross-bedded sand.ADCP data from Sloop Channel indicate that the constricted flow beneath the bridge increases the horizontal current velocities from 2 to 6 feet per second. Total measured discharge beneath Sloop Channel Bridge was 41,800 cubic feet per second at flood tide and 27,600 cubic feet per second at ebb tide.

  1. Merging altimeter data with Argo profiles to improve observation of tropical Pacific thermocline circulation and ENSO

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Lee, T.; Wang, F.; McPhaden, M. J.; Kessler, W. S.

    2016-12-01

    Meridional thermocline currents play an important role in the recharge and discharge of tropical Pacific warm water during the development and transition of ENSO cycles. Previous analyses have shown large variations of the equatorward meridional thermocline convergence/divergence on ENSO and decadal time scales in the interior ocean. The total convergence/divergence is however unknown due to the lack of long term observation in the western boundary currents. Numerical modelling studies suggested a tendency of compensation between the interior and western boundary currents, but the exact compensation is model dependent. While Argo floats provide reasonable data coverage in the interior ocean, few floats are in the western boundary currents. Recent multi-mission satellite altimeter data and advanced processing techniques have resulted in higher resolution sea surface height anomaly (SSHA) products with better accuracy closer to the coasts. This study utilizes the statistical relationship between Argo dynamic height profiles and altimeter SSHA to calculate geostrophic thermocline currents in both the interior ocean and the western boundary of the tropical Pacific. The derived thermocline currents in the western boundary are validated by a 3.5-year moored Acoustic Doppler Current Profiler (ADCP) measurement in the Mindanao Current and by a series of glider surveys (Davis et al. 2012) in the Solomon Sea. The meridional transport timeseries of the interior and western boundary currents in the thermocline show different lead-lag relationships to the Nino 3.4 index. Results will be discussed in the context of recent 2014-2015 El Nino development and the potential contribution to the Tropical Pacific Observing System (TPOS).

  2. Estimates of Shear Stress and Measurements of Water Levels in the Lower Fox River near Green Bay, Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.

    2006-01-01

    Turbulent shear stress in the boundary layer of a natural river system largely controls the deposition and resuspension of sediment, as well as the longevity and effectiveness of granular-material caps used to cover and isolate contaminated sediments. This report documents measurements and calculations made in order to estimate shear stress and shear velocity on the Lower Fox River, Wisconsin. Velocity profiles were generated using an acoustic Doppler current profiler (ADCP) mounted on a moored vessel. This method of data collection yielded 158 velocity profiles on the Lower Fox River between June 2003 and November 2004. Of these profiles, 109 were classified as valid and were used to estimate the bottom shear stress and velocity using log-profile and turbulent kinetic energy methods. Estimated shear stress ranged from 0.09 to 10.8 dynes per centimeter squared. Estimated coefficients of friction ranged from 0.001 to 0.025. This report describes both the field and data-analysis methods used to estimate shear-stress parameters for the Lower Fox River. Summaries of the estimated values for bottom shear stress, shear velocity, and coefficient of friction are presented. Confidence intervals about the shear-stress estimates are provided.

  3. Observations of ebb flows on tidal flats: Evidence of dewatering?

    NASA Astrophysics Data System (ADS)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures. Top: (soild) Water depth within the channel and (dashed) tidal flat elevation. Center: Channel surface velocities as measured by an (black) ADCP and (red) a Fourier technique using infrared video. Bottom: Temperatures of (blue) near bed water downstream of the incised channel, (black) channel outflow, and (red) tidal flat sediment at 10 cm depth within the bed.

  4. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    NASA Astrophysics Data System (ADS)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  5. Hydroecological monitoring in the headwaters of the Volga River

    NASA Astrophysics Data System (ADS)

    Kuzovlev, Viacheslav V.; Zhenikov, Yuri N.; Zhenikov, Kyrill Y.; Shaporenko, Sergey I.; Haun, Stefan; Füreder, Leopold; Schletterer, Martin

    2016-04-01

    Europe's largest river, the Volga (3551 km), has experienced multiple stressors from human activities (i.e. the Volga Basin comprises about 40 % of the Russian population, 45 % of the country's industry and more than 50 % of its agriculture). During the research expedition "Upper Volga 2005" an assessment of hydrological, limnochemical and biological parameters was carried out by scientists from the Russian Federation and from Austria. The extensive sampling in 2005 showed that the free-flowing section of the Volga River, located upstream of Tver, represents conditions which are either reference or least disturbed - thus it can be considered as a refugial system for freshwater biota of the European lowlands. Subsequently three stretches in the headwaters of the Volga River (Rzhev, Staritsa, Tver) were selected for the monitoring programme "REFCOND_VOLGA", which is in operation since 2006. These locations correspond also with the sampling sites of ROSHYDROMET, i.e. at Tver physic-chemical samples are taken monthly and at Rzhev samples are taken in the main hydrological periods. The laboratory ship "ROSHYDROMET 11" conducted monthly cruises between Tver and Kalyazin (Ivankovskoye and Uglichskoye reservoirs on Volga) in the headwaters during the navigation period (May - October). This also includes measurements with ADCP, which further allow the analyses of the spatial distribution of the suspended solids within cross sections. In addition sediment fluxes were derived by using the acoustic backscatter signal strength from the acoustic current Doppler profiler (ADCP). We exemplify at the monitoring sites the spatial distribution of different sediments, i.e. choriotope types, according the longitudinal profile of the river. We show that it is highly influenced by morphodynamics in the different river sections and this corresponds with the zoobenthos fauna accordingly. This interdisciplinary approach, including sediment conditions, limnochemistry, hydrology and hydrobiology, leads to a hydro-ecological reference for European lowland rivers.

  6. Inferring Upper Ocean Dynamics from Horizontal Wavenumber Spectra in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Chereskin, T. K.; Gille, S. T.; Rocha, C. B.; Menemenlis, D.

    2016-02-01

    At the largest horizontal scales (> 100 km), the surface kinetic energy of the ocean appears dominated by a regime of balanced geostrophic motions. At the smallest scales, it transitions to a regime where unbalanced motions (such as internal waves, mixed-layer instabilities, etc.) dominate the surface kinetic energy. The length scale at which the transition occurs depends on the relative energies of balanced and unbalanced motions, which in turn display significant geographic variability. Wavenumber spectra in the upper ocean have been hypothesized to have slopes consistent with either quasi-geostrophic (QG) or surface quasi-geostrophic (SQG) theory. In previous analyses of repeat-track shipboard acoustic Doppler Current profiler (ADCP) velocity observations in the Gulf Stream and the Antarctic Circumpolar Current, spectral slopes were more consistent with QG than SQG theory for length scales between 40 km and 200 km. For scales less than 40 km, the spectra deviated from both QG and SQG theory, and this was attributed in part to internal wave effects. A spectral Helmholtz decomposition was used to split the kinetic energy spectra into rotational and divergent components, identified with balanced and ageostrophic motions, respectively. The California Current System (CCS) provides a contrasting environment characterized by a weak mean flow and an energetic meso- and submeso- scale. It is a nonlinear regime where the amplitude of eddies can be as large as the total steric height increase across the California Current, and hence southward flow in the CCS can, and often is, disrupted by its eddies. This study uses 10 years of shipboard ADCP observations collected on the quarterly cruises of the California Cooperative Oceanic Fisheries Investigations. Horizontal wavenumber spectra from 36 cruises along 6 repeated tracks in the southern CCS that extend from the coast to the subtropical gyre are used to diagnose the dominant governing dynamics at meso- to submeso- scales (10-200 km), with particular attention to the partition into balanced and ageostrophic flows.

  7. Validation of Sentinel-3A altimetry data by using in-situ multi-platform observations near Mallorca Island (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Antonio; Heslop, Emma; Reeve, Krissy; Rodriguez, Daniel; Pujol, Isabelle; Faugère, Yannice; Torner, Marc; Tintoré, Joaquín; Pascual, Ananda

    2017-04-01

    In the frame of the Copernicus Marine Environment Monitoring Service (CMEMS) Sea Level Thematic Assembly Center (SL-TAC), a glider mission was undertaken between May and June 2016 along the same track as the overpass of the Sentinel 3A satellite in the Southern Mallorca region. Moreover, a one-day ship mission on May 30, synchronous with the overpass of the satellite, captured two transects of moving vessel ADCP close to the coastal area. The aim was to compare the along track altimeter products and multi-platform in-situ observations in the southern coastal zone of the Mallorca Island and the Algerian Basin. In addition, we explored the potential of the Synthetic Aperture Radar Mode (SARM) instrumentation of Sentinel-3 mission, which enables the satellite to measure nearest the coasts with both higher spatial resolution and higher precision than previous missions. With the ultimate goal of contributing to a more complete understanding of both ocean and coastal physical processes and the biogeochemical impacts. The analyses presented here are conducted through the comparison of Absolute Dynamic Topography (ADT) obtained from the Sentinel-3A altimetry measurements along ground-track #713 and Dynamic Height (DH) derived from temperature and salinity profiles measured by the glider along the trajectory followed by the satellite. Moreover, currents derived from altimetry and in-situ glider data along the track followed by the satellite; and from ADCP data collected in the coastal region are analysed. Results show a good agreement between ADT from altimetry and DH from glider data with maximum differences of around 2 cm that promote a root mean square error (RMSE) of 1 cm, the correlation coefficient between both datasets is 0.89. The satellite data closely resemble the geostrophic velocity pattern observed by the glider measurements along the Algerian Current, and also the ADCP data in the coastal zone, exhibiting a RMSE lower than 10 cm/s and a correlation coefficient larger than 0.75. This mission is part of a study focused on mesoscale variability and comparison of the along-track and gridded interpolated maps altimetry products in the western Mediterranean Sea using in-situ data including Argo, ADCP, gliders, drifters, HF radar and tide gauges data. We take advantage of the high spatial resolution and a multi-platform approach to investigate the variability of physical processes in the coastal area of this region. This experiment contributes to the preparatory cal/val activities of the forthcoming wide-swath satellite altimeter (SWOT) that will provide daily high resolution sea surface height measurements during the fast phase after launch around the Balearic Islands.

  8. Interannual variation of the South China Sea circulation during winter: intensified in the southern basin

    NASA Astrophysics Data System (ADS)

    Zu, Tingting; Xue, Huijie; Wang, Dongxiao; Geng, Bingxu; Zeng, Lili; Liu, Qinyan; Chen, Ju; He, Yunkai

    2018-05-01

    Surface geostrophic current derived from altimetry remote sensing data, and current profiles observed from in-situ Acoustic Doppler Current Profilers (ADCP) mooring in the northern South China Sea (NSCS) and southern South China Sea (SSCS) are utilized to study the kinetic and energetic interannual variability of the circulation in the South China Sea (SCS) during winter. Results reveal a more significant interannual variation of the circulation and water mass properties in the SSCS than that in the NSCS. Composite ananlysis shows a significantly reduced western boundary current (WBC) and a closed cyclonic eddy in the SSCS at the mature phase of El Niño event, but a strong WBC and an unclosed cyclonic circulation in winter at normal or La Niña years. The SST is warmer while the subsurface water is colder and fresher in the mature phase of El Niño event than that in the normal or La Niña years in the SSCS. Numerical experiments and energy analysis suggest that both local and remote wind stress change are important for the interannual variation in the SSCS, remote wind forcing and Kuroshio intrusion affect the circulation and water mass properties in the SSCS through WBC advection.

  9. Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.

    2006-01-01

    An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a tidally averaged discharge ranging from 1310 to 1510 m3 s-1. ?? 2006 Regents of the University of Colorado.

  10. Estimation of composite hydraulic resistance in ice-covered alluvial streams

    NASA Astrophysics Data System (ADS)

    Ghareh Aghaji Zare, Soheil; Moore, Stephanie A.; Rennie, Colin D.; Seidou, Ousmane; Ahmari, Habib; Malenchak, Jarrod

    2016-02-01

    Formation, propagation, and recession of ice cover introduce a dynamic boundary layer to the top of rivers during northern winters. Ice cover affects water velocity magnitude and distribution, water level and consequently conveyance capacity of the river. In this research, total resistance, i.e., "composite resistance," is studied for a 4 month period including stable ice cover, breakup, and open water stages in Lower Nelson River (LNR), northern Manitoba, Canada. Flow and ice characteristics such as water velocity and depth and ice thickness and condition were measured continuously using acoustic techniques. An Acoustic Doppler Current Profiler (ADCP) and Shallow Water Ice Profiling Sonar (SWIPS) were installed simultaneously on a bottom mount and deployed for this purpose. Total resistance to the flow and boundary roughness are estimated using measured bulk hydraulic parameters. A novel method is developed to calculate composite resistance directly from measured under ice velocity profiles. The results of this method are compared to the measured total resistance and to the calculated composite resistance using formulae available in literature. The new technique is demonstrated to compare favorably to measured total resistance and to outperform previously available methods.

  11. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001)

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Jan, S.; Wang, D. P.

    2003-05-01

    Tidal and mean flows in the Taiwan Strait are obtained from analysis of 2.5 years (1999-2001) of shipboard ADCP data using a spatial least-squares technique. The average tidal current amplitude is 0.46 ms -1, the maximum amplitude is 0.80 ms -1 at the northeast and southeast entrances and the minimum amplitude is 0.20 ms -1 in the middle of the Strait. The tidal current ellipses derived from the shipboard ADCP data compare well with the predictions of a high-resolution regional tidal model. For the mean currents, the average velocity is about 0.40 ms -1. The mean transport through the Strait is northward (into the East China Sea) at 1.8 Sv. The transport is related to the along Strait wind by a simple regression, transport (Sv)=2.42+0.12×wind (ms -1). Using this empirical formula, the maximum seasonal transport is in summer, about 2.7 Sv, the minimum transport is in winter, at 0.9 Sv, and the mean transport is 1.8 Sv. For comparison, this result indicates that the seasonal amplitude is almost identical to the classical estimate by Wyrtki (Physical oceanography of the southeast Asian waters, scientific results of marine investigations of the South China Sea and Gulf of Thailand, 1959-1961. Naga Report 2, Scripps Institute of Oceanography, 195 pp.) based on the mass balance in the South China Sea, while the mean is close to the recent estimate by Isobe [Continental Shelf Research 19 (1999) 195] based on the mass balance in the East China Sea.

  12. The Barents Sea Polar Front in summer

    NASA Astrophysics Data System (ADS)

    Parsons, A. Rost; Bourke, Robert H.; Muench, Robin D.; Chiu, Ching-Sang; Lynch, James F.; Miller, James H.; Plueddemann, Albert J.; Pawlowicz, Richard

    1996-06-01

    In August 1992 a combined physical oceanography and acoustic tomography experiment was conducted to describe the Barents Sea Polar Front (BSPF) and investigate its impact on the regional oceanography. The study area was an 80 × 70 km grid east of Bear Island where the front exhibits topographic trapping along the northern slope of the Bear Island Trough. Conductivity-temperature-depth, current meter, and acoustic Doppler current profiler (ADCP) data, combined with tomographic cross sections, presented a highly resolved picture of the front in August. All hydrographic measurements were dominated by tidal signals, with the strongest signatures associated with the M2 and S2 semidiurnal species. Mean currents in the warm saline water to the south of the front, derived from a current meter mooring and ADCP data, were directed to the southwest and may be associated with a barotropic recirculation of Norwegian Atlantic Water (NAW) within the Bear Island Trough. The geostrophic component of the velocity was well correlated with the measured southwestward mean surface layer flow north of the front. The frontal structure was retrograde, as the frontal isopleths sloped opposite to the bathymetry. The surface signature of the front was dominated by salinity gradients associated with the confluence of Atlantic and Arctic water masses, both warmed by insolation to a depth of about 20 m. The surface manifestation of the front varied laterally on the order of 10 km associated with tidal oscillations. Below the mixed layer, temperature and salinity variations were compensating, defining a nearly barotropic front. The horizontal scale of the front in this region was ˜3 km or less. At middepth beneath the frontal interface, tomographic cross sections indicated a high-frequency (˜16 cpd) upslope motion of filaments of NAW origin. The summertime BSPF was confirmed to have many of the general characteristics of a shelf-slope frontal system [Mooers et al., 1978] as well as a topographic-circulatory front [Federov, 1983].

  13. On the cyclonic eddy generation in Panay Strait, Philippines

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.

    2016-12-01

    High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale currents in Panay Strait, Philippines. Low frequency surface currents inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic eddy west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic eddy in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic eddy characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface currents. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic eddy in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic eddy. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the eddy. The Beta-effect on the other hand may led to propagation of the eddy westward.

  14. Hydraulic Control and Mixing in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Ott, M. W.

    2006-05-01

    Properly modeling the exchange rate at the mouths of estuarine bays is critical to understanding the effects of freshwater and pollutants on the hydrographic and biological conditions within these bays. There is evidence that hydraulic control occurs at certain locations in the deeper channels of Chesapeake Bay and may be a mechanism in limiting the exchange rate. In addition, the vertical and horizontal mixing associated with the resulting hydraulic jumps has implications both for the hydrographic conditions and circulation, as well as for primary productivity within Chesapeake Bay. Shipboard acoustic Doppler current profiler (ADCP) data, as well as conductivity-temperature-depth (CTD) profiles were collected during the spring of 2005 at various locations within Chesapeake Bay to better understand the occurrence and strength of hydraulic controls in relation to the phases of the fortnightly and semi-diurnal tidal cycles as well as to topography. Mixing is shown to occur alternatively over both hollows and bumps, depending on the tidal phase, and the strength and effects if this mixing is compared.

  15. Extracting Prior Distributions from a Large Dataset of In-Situ Measurements to Support SWOT-based Estimation of River Discharge

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Gleason, C. J.

    2017-12-01

    The upcoming (2021) Surface Water and Ocean Topography (SWOT) NASA satellite mission aims, in part, to estimate discharge on major rivers worldwide using reach-scale measurements of stream width, slope, and height. Current formalizations of channel and floodplain hydraulics are insufficient to fully constrain this problem mathematically, resulting in an infinitely large solution set for any set of satellite observations. Recent work has reformulated this problem in a Bayesian statistical setting, in which the likelihood distributions derive directly from hydraulic flow-law equations. When coupled with prior distributions on unknown flow-law parameters, this formulation probabilistically constrains the parameter space, and results in a computationally tractable description of discharge. Using a curated dataset of over 200,000 in-situ acoustic Doppler current profiler (ADCP) discharge measurements from over 10,000 USGS gaging stations throughout the United States, we developed empirical prior distributions for flow-law parameters that are not observable by SWOT, but that are required in order to estimate discharge. This analysis quantified prior uncertainties on quantities including cross-sectional area, at-a-station hydraulic geometry width exponent, and discharge variability, that are dependent on SWOT-observable variables including reach-scale statistics of width and height. When compared against discharge estimation approaches that do not use this prior information, the Bayesian approach using ADCP-derived priors demonstrated consistently improved performance across a range of performance metrics. This Bayesian approach formally transfers information from in-situ gaging stations to remote-sensed estimation of discharge, in which the desired quantities are not directly observable. Further investigation using large in-situ datasets is therefore a promising way forward in improving satellite-based estimates of river discharge.

  16. Small-scale lacustrine drifts in Lake Champlain, Vermont

    USGS Publications Warehouse

    Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas

    2012-01-01

    High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.

  17. Tempest in Vailulu'u Crater

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Koppers, A.; Young, C.; Baker, E.

    2005-12-01

    The summit crater of the Samoan submarine volcano, Vailulu'u, has been actively erupting since 2001. Based on water chemistry, CTD and temperature logger data from 2000 and 2001, we formulated a model for the hydrothermal system in the crater involving a tidally-modulated "breathing" (Staudigel et al., 2004). During low stands of internal waves (exterior to the crater), the crater exhales warm buoyant hydrothermal water that forms a "halo" around the crater rich in Mn, 3He, and particulates. During "high tides", cold dense external water is inhaled into the crater through the three breaches, and cascades to the crater floor. In April 2005, we used the HURL PISCES V submersible to deploy various temperature and particulate loggers and current meters in and around the crater; these were retrieved by Pisces V in July 2005. In addition, continuous CTD profiling was carried out over 12 hour tidal cycles at one location inside, and one outside, the crater. The accumulated data set fully reinforces our "breathing" model. An ADCP, deployed for 93 days in the NW breach at 752m, showed dominant easterly inflow currents and westerly outflow currents, with maximum velocities of approximately 25 cm/s. The flows were coherent for distances up to 50-60m above the ADCP; the mean inflow velocity and azimuth (20-40 m interval above the ADCP) was 7 cm/s due east; the mean outflow velocity and azimuth was 5 cm/s at 260 degrees. Mean inflows were consistently colder than outflows (5.00 C vs 5.20 C); the maximum observed range in temperature was 1.1 C, correlated with peak flow velocities. The coldest inflows would require very large regional internal wave amplitudes, up to 50-100 meters. A 2-D acoustic current meter was deployed on top of the west crater rim summit (582m) for 90 days, and in the S breach (697m) for 4 days. The summit flows are presumed to represent the regional scale currents; these were largely from the SW quadrant, with typical velocities of 8-15 cm/s, and peaks to 25 cm/s. The S breach flows had a clear semi-diurnal tidal modulation, with strong NE quadrant inflows at high velocity (15-30 cm/s), separated by short outflow spikes of 1-2 hour duration at much lower velocity (greater than10 cm/s). The outflow water was typically warmer by 0.1-0.2 C; the maximum temperature range was 0.6 C, about half of that observed at the NW breach. A 12-hour continuous profiling CTD-LBSS station was serendipitously sited on top of a large diffuse-venting hydrothermal field, in the crater moat just north of the new volcanic cone. The water column here was incredibly dynamic, with a 5-10m bottom boundary layer, 1 C above ambient, forming by diffuse flow from the basalt substrate in a matter of minutes; this layer would destabilize, detach, and rise with velocities of ~ 1 cm/sec. This buoyant water was both warmer and less saline than either the ambient crater water, or the cold outside water which occasionally cascaded onto this site from the nearby NW breach; it was also laden with particulates, with LBSS readings up to 1.7 NTU. Water chemistry and He isotope analyses are in progress.

  18. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  19. Turbulence Measurements from a Moored Platform at Mid-Depth in a Swift Tidal Channel

    NASA Astrophysics Data System (ADS)

    Hay, Alex; Lueck, Rolf; Wolk, Fabian; McMillan, Justine

    2014-05-01

    Results are presented from a turbulence experiment with a 3-m long streamlined floatation body, instrumented with velocity shear probes, fast-response thermistors, a 1 MHz Acoustic Doppler Current Profiler (AD2CP), and an Acoustic Doppler Velocimeter (ADV). The system was deployed over seven tidal cycles at mid-depth in a 30-m deep tidal channel in the lower Bay of Fundy, Canada. Peak flow speeds exceeded 2 m s-1, and while 10-min time scale average speeds were similar between ebb and flood, the variances were markedly higher during flood. Turbulent kinetic energy (TKE) dissipation rates measured with the shear probes exhibit a pronounced flood/ebb contrast: O(10-4) W kg-1 peak values during flood, but lower by an order of magnitude during ebb. Dissipation rates follow u3 scaling over a wide range of flow speeds between 0.5 and 2.5 m s-1. Below 0.5 m s-1 an asymmetry in the mounting arrangement caused the floatation body to pitch upward, biasing the measured dissipation values high. The ADV on the platform registered mean speed - used to implement Taylor's hypothesis - which was corroborated with the platform-mounted ADCP. Additional ADCPs were also deployed on a nearby bottom pod, sampling at turbulence resolving rates - up to 8 Hz. Comparisons between the shear probe and acoustic estimates of the TKE spectrum and dissipation rate - at comparable depths - are presented.

  20. The atypical hydrodynamics of the Mayotte Lagoon (Indian Ocean): Effects on water age and potential impact on plankton productivity

    NASA Astrophysics Data System (ADS)

    Chevalier, C.; Devenon, J. L.; Pagano, M.; Rougier, G.; Blanchot, J.; Arfi, R.

    2017-09-01

    In mesotidal lagoons of the Indian Ocean, the coral reef barrier may be temporarily submerged at high tide and partially exposed at low tide, and this may cause unusual lagoon dynamics. A field measurement campaign was conducted in the north-east Mayotte Lagoon in order to understand these processes. An experimental approach was used, combining measurements taken by 1) a side-mounted Acoustic Doppler Current Profiler (ADCP) on a moving boat along transects through the reef passages (17 transects) and 2) by more conventional high-resolution moored ADCP measurements. A specific tidal analysis methodology was used to determine the spatial variability of the velocity. The tidal hydrodynamics within the lagoon were determined using a numerical model and then analyzed. The tide acted as a quasi-progressive forced wave in the lagoon: at low tide, water entered through the south passage, over the reef and left the lagoon through the north passage. This flow was reversed at high tide. The tide-driven quasi-progressive wave created a specific lagoon dynamics. Contrary to most other channel lagoons, the flow over the reef was mainly outward. This increases the inflow through the passages, which renews the water in the lagoon as shown by the indicators of age and origin of the water inside the lagoon. This study also showed the importance of these indicators for better understanding the variations and levels of plankton biomass (with chlorophyll concentration as proxy) which is quite high in this lagoon.

  1. Spectral Interpretation of Wave-vortex Duality in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, H.; Jing, Z.; Yan, T.

    2017-12-01

    The mesoscale to submesocale oceanic dynamics are characterized by a joint effect of vortex and wave component, which primarily declares the partition between geostrophic balanced and unbalanced flows. The spectral method is a favorable approach that can afford the muti-scale analysis. This study investigates the characteristics of horizontal wavenumber spectra in Nothern South China Sea using orbital altimeter data (SARA/AltiKa), 13-yr shipboard ADCP (Acoustic Doppler Current Profiler) measurements (2014-2016), and a high-resolution numerical simulation (llc4320 Mitgcm). The observed SSH (sea surface height) spectrum presents a conspicuous transition at scales of 50-100 km, which clearly shows the inconsistency with geostrophic balance. The Helmholtz decomposition separating the wave and vortex energy for the spectra of ADCP and numerical model data shows that ageostrophic flows should be responsible for the spectral discrepancy with the QG (qusi-geostrophic) turbulence theory. Generally, it is found that inertia-gravity waves (including internal tides) govern the significant kinetic energy in the submesoscale range in Northern South China Sea. More specific analysis suggests that the wave kinetic energy can extend to a large scale of 500 km or more from the zonal velocity spectra at the left-center of Luzon Strait, which appears to be dominated by inertia-gravity waves likely emitted by the intrusion of the west pacific at Luzon Strait. Instead, the development of eddy kinetic energy at this place is strictly constrained by the width of the strait.

  2. Winter variability in the western Gulf of Maine: Part 1: Internal tides

    NASA Astrophysics Data System (ADS)

    Brown, W. S.

    2011-09-01

    During the winter 1997-1998, a field program was conducted in Wilkinson Basin-western Gulf of Maine-as part of a study of winter convective mixing. The field program consisted of (1) Wilkinson basin-scale hydrographic surveys, (2) a tight three-mooring array with ˜100 m separations measured temperature and conductivity at rates of 2-15 min and (3) a single pair of upward/downward-looking pair acoustic Doppler current profiling (ADCP) instruments measured currents with 8 m vertical resolution over the 270 m water column in north-central Wilkinson basin at a rate of 10 min. The moored array measurements below the mixed layer (˜100 m depth) between 11 January and 6 February 1998 were dominated by a combination of the relatively strong semidiurnal external (depth-independent or barotropic) tide; upon which were superposed a weaker phase-locked semidiurnal internal tide and a very weak water column mean currents of about 1 cm/s southward or approximately across the local isobaths. The harmonic analysis of a vertical average of the relatively uniform ADCP velocities in the well-mixed upper 123 m of the water column, defined the external tidal currents which were dominated by a nearly rectilinear, across-isobath (326°T) M 2 semidiurnal tidal current of about 15 cm/s. The depth-dependent residual current field, which was created by subtracting the external tidal current, consisted of (1) clockwise-rotating semidiurnal internal tidal currents of about 5 cm/s below the mixed layer; (2) clockwise-rotating inertial currents; and (3) a considerably less energetic subtidal current variability. The results from both frequency-domain empirical orthogonal function and tidal harmonic analyses of the of isotherm displacement series at each of the three moorings in the 100 m array mutually confirm an approximate east-northeastward phase propagation of the dominant M 2 semidiurnal internal tide across Wilkinson Basin. Further investigation supports the idea that this winter internal tide is very likely generated by the interaction of the external tidal currents and the southwestern wall of Wilkinson Basin. The definitions of the local Wilkinson Basin external tide and phase-locked internal tides will enable us to analyze a less "noisy" set of measurements for the subtle atmospherically forced convective and wind-driven motions.

  3. Currents and Mixing in the San Lorenzo Overflow, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Rosas-Villegas, Froylán.; López, Manuel; Candela, Julio

    2018-02-01

    The main properties of the San Lorenzo (SL) overflow are studied, using data from two nonsimultaneous ADCP moorings (located at the sill, and 5 km downstream), as well as CTD and LADCP profiles. Strong tidal currents at the sill modulate the overflow, which is not shut down during the neaps. At the downstream site, the largest flood currents are associated with colder water advected from the sill, flowing downslope, and creating an asymmetry in the semidiurnal tidal cycle. The overflow introduces a significant fortnightly harmonic at the downstream site, and delays the M2 tidal currents for more than an hour with respect to the currents at the sill. The overflow mixes with the overlying water by entrainment during its supercritical stage, reaching near-bottom velocities as high as 1.5 ms-1 and an estimated mean transport of 0.11 Sv; almost twice that estimated at the sill for the same period of the year. Estimated Froude numbers during spring tides suggest the development of an internal hydraulic jump. After relaxation of the maximum downstream currents, high-frequency temperature fluctuations, likely linked to upstream traveling waves, are consistently observed. Direct estimations of the turbulent dissipation rates were used to compute diapycnal diffusivity (Kρ) profiles. Mean estimates of Kρ, as high as 5.5 × 10-2 m2s-1, show that shear at the interface is the most significant source of cross-isopycnal mixing along the SL overflow during ebb tides.

  4. Membrane lipid-protein interactions modify the regulatory role of adenosine-deaminase complexing protein: a phase fluorometry study of a malignancy marker

    NASA Astrophysics Data System (ADS)

    Parola, Abraham H.; Porat, Nurith; Caiolfa, Valeria R.; Gill, David; Kiesow, Lutz A.; Weisman, Mathew; Nemschitz, S.; Yaron, Dahlia; Singer, Karen; Solomon, Ethel

    1990-05-01

    The role of membrane lipid-protein interactions in malignant cell transformation was examined with adenosine deaminase (ADA) as a representative membrane protein. ADA's activity changes dramatically in transformed cells and accordingly it is a malignancy marker. Yet, the mechanisms controlling its variable activity are unknown. We undertook the spectroscopic deciphering of its interactions with its lipidic environment in normal and malignant cells. ADA exists in two interconvertible forms, small (45 KD) and large (21OKD). The large form consists of two small catalytic subunits (55-ADA) and a dimeric complexing protein ADCP. The physiological role of ADCP was not known either. Our studies were carried out at three levels.: 1. Solution enzyme kinetics, 2. The interaction of 55-ADA with ADCP reconstituted in liposomes: Effect of cholesterol and 3. Multifrequency phase modulation spectrofluorometry of pyrene-labeled 55-ADA bound to ADCP on the membranes of normal and RSV or RSV Ts68 transformed chick embryo fibroblasts. We found: 1. ADCP has an allosteric regulatory role on 55-ADA, which may be of physiological relevance: It inhibits 55-ADA activity at low physiological adenosine concentrations but accelerates deamination at high substrate concentration. 2. When reconstituted in DMPC liposomes, it retains 55-ADA activity (in its absence the activity is lost) and upon rigidification with cholesterol, a three fold increase in 55-ADA activity is attained, contrary to ADCP's regulatory activity when free of lipids. 3. The reduced ADA activity in transformed chick embryo fibroblasts is associated with increased membrane lipid fluidity (reduced order parameter), reduced accessibility of ADCP and increase rotational dynamics of the complex. We thus obtained spectroscopic deciphering of the vertical motion of ADCP, controlled by lipid-protein interaction, resulting in variable activity of this malignancy marker.

  5. Synergistic surface current mapping by spaceborne stereo imaging and coastal HF radar

    NASA Astrophysics Data System (ADS)

    Matthews, John Philip; Yoshikawa, Yutaka

    2012-09-01

    Well validated optical and radar methods of surface current measurement at high spatial resolution (nominally <100 m) from space can greatly advance our ability to monitor earth's oceans, coastal zones, lakes and rivers. With interest growing in optical along-track stereo techniques for surface current and wave motion determinations, questions of how to interpret such data and how to relate them to measurements made by better validated techniques arise. Here we make the first systematic appraisal of surface currents derived from along-track stereo Sun glitter (ATSSG) imagery through comparisons with simultaneous synoptic flows observed by coastal HF radars working at frequencies of 13.9 and 24.5 MHz, which return averaged currents within surface layers of roughly 1 m and 2 m depth respectively. At our Tsushima Strait (Japan) test site, we found that these two techniques provided largely compatible surface current patterns, with the main difference apparent in current strength. Within the northwest (southern) comparison region, the magnitudes of the ATSSG current vectors derived for 13 August 2006 were on average 22% (40%) higher than the corresponding vectors for the 1-m (2-m) depth radar. These results reflect near-surface vertical current structure, differences in the flow components sensed by the two techniques and disparities in instrumental performance. The vertical profile constructed here from ATSSG, HF radar and ADCP data is the first to resolve downwind drift in the upper 2 m of the open ocean. The profile e-folding depth suggests Stokes drift from waves of 10-m wavelength visible in the images.

  6. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. The planned installation, consisting of a vertical axis turbine with the generator above water, mounted to a floating platform, and underwater instrumentation will be outlined. Supported by NSF-IIP 1430260

  7. Ocean Surface Observations of the Diurnal Cycle of Turbulence with ASIP

    NASA Astrophysics Data System (ADS)

    Ward, Brian; Sutherland, Graig; Reverdin, Gilles; Marie, Louis; Christensen, Kai; Brostrom, Goran; Harcourt, Ramsey; Breivik, Oyvind

    2015-04-01

    The STRASSE field experiment was conducted in August/September 2012 as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) campaign. The average conditions during STRASSE were low wind and high insolation, which are typical for the generation of near-surface diurnal warming. We deployed the Air-Sea Interaction Profiler (ASIP), an autonomous upwardly-rising microstructure instrument capable of resolving small-scale processes close to the air-sea interface. ASIP provides direct estimates of the dissipation rate of turbulent kinetic energy, temperature, salinity, and PAR at timescales suitable for the study of diurnal processes. In combination with the ASIP data, we had shipboard meteorological data for calculation of atmospheric forcing, and a surface mounted Lagrangian ADCP for determination of the near-surface velocity. There was a strong diurnal cycle of temperature and dissipation (from ASIP) and shear (from an ADCP). As air-sea fluxes are driven by turbulence immediately at the air-sea interface, the presence of this enhanced shear-induced turbulence will enhance fluxes.

  8. 4-D Current Experiment Using AUV and HF-Radar

    DTIC Science & Technology

    1998-01-01

    the NICOP project at FAU. RESULTS Measurements of bathymetry, current and CTD measurements were acquired in shallow water on 5 and 11 Dec 97 in a lawn ... mower pattern (An et al., 1998). These surveys were conducted over about a 3 h period at a constant water depth of 7 m in the vicinity of an ADCP. On

  9. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies

    NASA Astrophysics Data System (ADS)

    Hauss, Helena; Christiansen, Svenja; Schütte, Florian; Kiko, Rainer; Edvam Lima, Miryam; Rodrigues, Elizandro; Karstensen, Johannes; Löscher, Carolin R.; Körtzinger, Arne; Fiedler, Björn

    2016-04-01

    The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by ongoing ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv) at 75 kHz (shipboard acoustic Doppler current profiler, ADCP) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers avoided the depth range between approximately 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies followed by zooplankton in response to in response to the eddy OMZ have been identified: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids); (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods); (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes); and (iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.

  10. Integrated Observations From Fixed and AUV Platforms in the Littoral Zone at the SFOMC Coastal Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Dhanak, M. R.

    2001-12-01

    A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).

  11. Shallow-water gaseohydrothermal plume studies after massive eruption at Panarea, Aeolian Islands, Italy

    NASA Astrophysics Data System (ADS)

    Tudino, T.; Bortoluzzi, G.; Aliani, S.

    2014-03-01

    Marine water dynamics in the near field of a massive gas eruption near Panarea (Aeolian Islands volcanic arc, SE Tyrrhenian Sea) is described. ADCP current-meters were deployed during the paroxysmal phase in 2002 and 2003 a few meters from the degassing vent, recording day-long time series. Datasets were sorted to remove errors and select good quality ensembles over the entire water column. Standard deviation of error velocity was considered a proxy for inhomogeneous velocity fields over beams. Time series intervals had been selected when the basic ADCP assumptions were fulfilled and random errors minimized. Backscatter data were also processed to identify bubbles in the water column with the aim of locating bubble-free ensembles. Reliable time series are selected combining these data. Two possible scenarios have been described: firstly, a highly dynamic situation with visible surface diverging rings of waves, entrainment on the lower part of the gas column, detrainment in the upper part and a stagnation line (SL) at mid depth where currents were close to zero and most of the gas bubbles spread laterally; secondly, a less dynamic situation with water entraining into the gas plume at all depths and no surface rings of diverging waves. Reasons for these different dynamics may be ascribed to changes in gas fluxes (one order of magnitude higher in 2002). Description of SL is important to quantify its position in the water column and timing for entrainment-detrainment, and it can be measured by ADCP and calculated from models.

  12. Model velocities assessment and HF radar data assimilation in the Ibiza Channel

    NASA Astrophysics Data System (ADS)

    Hernandez Lasheras, Jaime; Mourre, Baptiste; Reyes, Emma; Marmain, Julien; Orfila, Alejandro; Tintoré, Joaquin

    2017-04-01

    High Frequency Radar (HFR) provides continuous and high-resolution surface current measurements over wide coastal areas, enabling the observation of dynamic processes at the atmosphere-ocean interface, where a lot of momentum and heat exchange takes place, which is still not fully understood. Furthermore, HFR data provide critical information to improve numerical model predictions through data assimilation. However, the routine assimilation of HFR surface current data in operational models is still a challenge from both the methodological and computational points of view. Since 2012, SOCIB, the Balearic Islands Coastal Observing and Forecasting System, operates two coastal HFR sites with the purpose of monitoring the surface currents of the Ibiza Channel (Western Mediterranean Sea). It is an area characterized by important meridional flow exchanges with significant impacts on ecosystems. The circulation in the Ibiza Channel results from the complex interaction of different water masses under strong topographic constraints. This makes the area very challenging from the point of view of numerical modeling. Indeed, models are generally found to represent erroneous flows across this section. In this work, we perform the first steps to evaluate the potential of HFR data to improve the model circulation in the Ibiza Channel area with data assimilation. A multimodel Ensemble Optimal Interpolation scheme has been coupled to the SOCIB Western Mediterranean Operational Model (WMOP) to assimilate multiplatform observations, including the HFR surface velocities. WMOP is a 2-km resolution configuration of the ROMS model using CMEMS numerical products as initial and boundary conditions and high-resolution surface forcing from the Spanish Meteorological Agency. To evaluate whether the model properly captures the main dynamical features observed in the Ibiza Channel (which is a prerequisite for a successful data assimilation), comparison of spatial empirical orthogonal function (EOF) patterns from HFR observations and from model results have been performed. Results show good agreement between the two first modes of variability of both data sets, which explain the north-south and east-west flows, respectively. The comparison with ADCP data in the HFR coverage area shows also good agreement with the main vertical modes of the model at the first 120 m. In our approach, model error covariances are estimated by sampling three long-run simulations of the WMOP system with different initial/boundary forcing and mixing parameters. Vertical correlations in the HFR coverage area are validated using ADCP measurements at the mooring. As expected, correlations decrease with depth both in the model as well as with the ADCP data. The agreement is found to vary with the season and the velocity component under consideration. The first results of multiplatform data assimilation experiments using this modelling setup and including HFR, SST, SSH and in situ profiles will then be presented.

  13. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  14. Acoustic Doppler Current Profiler (ADCP) Velocity Verification Experiments in the Navy’s Large Cavitation Channel (LCC)

    DTIC Science & Technology

    2007-12-01

    79 ~~~~ ~_ 6/3 .Irhs et1 4 oSB 3. 0 0 413 ll c1501- 80 6_ 1 20 _ _ _ dcane Wok1_c $tro 5052_00 vc]35_0713-2- _ _j 45 to_ _ STBD 0_ 34.8 I0 3 81 6...0I48 70 3 500005 nn 844 6/13 20 dezwonWtakhorae Seninl 45 toSTBD 0 20. 005 30 4k3O0505 neI201 88 ~~~1 U13 d= Sunl 4 oSB 23 70 2 %22000 W201 2Q tl...700 3 4= /27 vc]3-07143 W5 6/4a 45 oSB /0d 2.8 0 0 45 m O w1 3-0714- 164 61/4 204,, W4/5,,tO, tSo STUD lOdown, 39.0 700 30 45000mI,15 3 /-0714.3 /659

  15. Estimating sub-surface dispersed oil concentration using acoustic backscatter response.

    PubMed

    Fuller, Christopher B; Bonner, James S; Islam, Mohammad S; Page, Cheryl; Ojo, Temitope; Kirkey, William

    2013-05-15

    The recent Deepwater Horizon disaster resulted in a dispersed oil plume at an approximate depth of 1000 m. Several methods were used to characterize this plume with respect to concentration and spatial extent including surface supported sampling and autonomous underwater vehicles with in situ instrument payloads. Additionally, echo sounders were used to track the plume location, demonstrating the potential for remote detection using acoustic backscatter (ABS). This study evaluated use of an Acoustic Doppler Current Profiler (ADCP) to quantitatively detect oil-droplet suspensions from the ABS response in a controlled laboratory setting. Results from this study showed log-linear ABS responses to oil-droplet volume concentration. However, the inability to reproduce ABS response factors suggests the difficultly in developing meaningful calibration factors for quantitative field analysis. Evaluation of theoretical ABS intensity derived from the particle size distribution provided insight regarding method sensitivity in the presence of interfering ambient particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Analysis of longer period variation of the Kuroshio Current intrusion into the Luzon Strait using rectified wavelet power spectra

    NASA Astrophysics Data System (ADS)

    Yuan, Yaochu; Yang, Chenghao; Tseng, Yu-heng; Zhu, Xiao-Hua; Wang, Huiqun; Chen, Hong

    2017-08-01

    Longer period variation of the Kuroshio into the Luzon Strait (LS) was identified using acoustic Doppler current profiler (ADCP) observations as well as pressure and temperature time series data recorded by two TDs (manufactured by the RBR Ltd.) at mooring station N2 (20°40.441‧N, 120°38.324‧E). The ADCP was deployed at depths of 50-300 m between July 7, 2009 and April 10, 2011, and the TDs at around 340 and 365 m between July 9, 2009 and July 9, 2011. Observations provide strong evidence of longer period variation of the Kuroshio into the LS using the Vector rotary spectra (VRS) and Rectified wavelet power spectra analysis (RWPSA). RWPSA of the observations allowed the identification of two types of dominant periods. The first type, with the strongest power spectral density (PSD), had a dominant period of 112 d and was found throughout the upper 300 m. For example, the maximum PSD for western and northern velocity components time series were 3800 and 3550 at 50 m, respectively. The maximum power spectral density decrease with deeper depths, i.e., the depth dependence of maximum PSD. The 112 d period was also identified in the pressure and temperature time series data, at 340 m and 365 m. Combined RWPSA with VRS and mechanism analysis, it is clear that the occurrence of the most dominant period of 112 d in the upper 300 m is related to the clockwise meandering of the Kuroshio into the LS, which is caused by westward propagating stronger anticyclonic eddies from the interior ocean due to the interaction of Rossby eddies with the Kuroshio. The second type of dominant period, for example a 40 d period, is related to the anticlockwise meandering of the Kuroshio. The final dominant period of 14 d coincides with the fortnightly spring-neap tidal period.

  17. Assessment of tidal circulation and tidal current asymmetry in the Iroise sea with specific emphasis on characterization of tidal energy resources around the Ushant Island.

    NASA Astrophysics Data System (ADS)

    Thiébaut, Maxime; Sentchev, Alexei

    2015-04-01

    We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the surface current speed. We consider this value in our calculation of power to make the power estimation of marine turbine devices more realistic. Finally, we demonstrate that in the region of opposing flood-versus ebb-dominated asymmetry occurring over limited spatial scale, it is possible to aggregated free-stream devices to provide balanced power generation over the tidal cycle. Keywords : Tidal circulation, current asymmetry, tidal energy, HF radar, Iroise Sea.

  18. Temporal variations of volume transport through the Taiwan Strait, as identified by three-year measurements

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Wen; Liu, Cho-Teng; Matsuno, Takeshi; Ichikawa, Kaoru; Fukudome, Ken-ichi; Yang, Yih; Doong, Dong-Jiing; Tsai, Wei-Ling

    2016-02-01

    The water characteristics of the East China Sea depend on influxes from river run-off, the Kuroshio, and the Taiwan Strait. A three-year observation using an acoustic Doppler current profiler (ADCP) operated on a ferry provides the first nearly continuous data set concerning the seasonal flow pattern and the volume transport from the Taiwan Strait to the East China Sea. The observed volume transport shows strong seasonality and linkage to the along-strait wind stress. An empirical regression formula between the volume transport and wind was derived to fill the gaps of observation so as to obtain a continuous data set. Based on this unique data set, the three-year mean of monthly volume transport is northeastward throughout the year, large (nearly 3 Sv) in summer and low (nearly zero) in winter. The China Coastal Current flows southward in winter, while the northward-flowing Taiwan Strait Current may reverse direction during severe northeasterly winds in the winter or under typhoons. The sea level difference across Taiwan Strait is closely correlated to the transport through the strait, and their relation is found seasonally nearly stable.

  19. The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality

    NASA Astrophysics Data System (ADS)

    Just, C.; Muste, M.; Kruger, A.

    2007-12-01

    As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP) measurements has been finalized. The software package provides mean flow field and turbulence characteristics obtained by operating the ADCP at fixed points or using the moving-boat approach. Current Work: The current development work is focused on extracting and populating the Clear Creek database with in-situ measurements acquired and transmitted in real time with sensors deployed in the Clear Creek watershed.

  20. Tilt Current Meter Field Validation in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Anarde, K.; Myres, H.; Figlus, J.

    2016-12-01

    Tilt current meters (TCMs) are a low-cost way of measuring current velocities in coastal waters. They consist of a slightly buoyant floater, tilt sensor assembly, and internal logger tethered to a fixed base. TCMs measure the tilt of the sensor induced by the forces of the flowing water to infer local current velocity. They have been successfully deployed to measure unidirectional flows in rivers and slowly oscillating flows in tidally influenced bodies of water where the inertia of the instrument does not create a problem. Here we attempt to validate an array of TCMs for use in the surf zone where waves, wave bores, and alongshore currents dominate the hydrodynamics in relatively shallow water (0.3 - 2.0 m) with relatively high oscillatory frequencies. A series of test deployments using seven measuring pods outfitted with TCMs and pressure transducers were conducted in the surf zone off Galveston Island, Texas. Field experiments were supported by laboratory tests of the instrument assemblies in a moveable-bed wave flume. Instrument pod design was optimized over the series of tests to minimize issues caused by scouring, sedimentation, and overturning. The end design consists of a low-profile concrete base plate secured to the bed by sand stakes. Field measurements of tilt and bearing were calibrated against co-located acoustic Doppler velocimeter (ADV) and wave-current profiler (ADCP) measurements as well as laboratory-supplied calibration curves. While optimization of the setup is ongoing, the initial field studies show good correlation between instrument pairs. If successfully validated, the TCMs will be used as part of an instrument array designed to measure overland flow dynamics during extreme storms. Other potential uses include detailed analysis of spatial and temporal gradients in nearshore hydrodynamics such as the complex flow scenarios through tidal inlets and around barrier islands.

  1. Sediment transport monitoring for sustainable hydropower development

    NASA Astrophysics Data System (ADS)

    Rüther, Nils; Guerrero, Massimo; Stokseth, Siri

    2015-04-01

    Due to the increasing demand of CO2 neutral energy not only in Europe but also in World, a relatively large amount of new hydro power plants (HPP) are built. In addition, will existing ones refurbished and renewed in order to run them more cost effective. A huge thread to HPPs is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head and volume and reduce consequently the life time of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of incoming sediments in suspension and therefore planning efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Consequently will this study present a method to measure suspended sediment concentrations and their grain size distribution with a dual frequency acoustic Doppler current profiler (ADCP). This method is more cost effective and reliable in comparison to traditional measurement methods. Having more detailed information about the sediments being transported in a river, the hydro power plant can be planned, built, and operated much more efficiently and sustainable. The two horizontal ADCPs are installed at a measurement cross section in the Devoll river in Albania. To verify the new method, the suspended load concentrations will be monitored also in the traditional ways at the same cross sections. It is planned to install turbidity measurement devices included with an automatic sampling devices. It is also planned to use an optical in situ measurement device (LISST SL by Sequoia Inc.) to have detailed information of sediment concentration and grain sizes over the depth.

  2. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  3. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these conditions.

  4. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGES

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  5. Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system

    NASA Astrophysics Data System (ADS)

    Kawanisi, K.; Razaz, M.; Ishikawa, K.; Yano, J.; Soltaniasl, M.

    2012-05-01

    The continuous measurement of river discharge for long periods of time is crucial in water resource studies. However, the accurate estimation of river discharge is a difficult and labor-intensive procedure; thus, a robust and efficient method of measurement is required. Continuous measurements of flowrate have been carried out in a wide, shallow gravel bed river (water depth ≈ 0.6 m under low-flow conditions, width ≈ 115 m) using Fluvial Acoustic Tomography System (FATS) that has 25 kHz broadband transducers with horizontally omnidirectional and vertically hemispherical beam patterns. Reciprocal sound transmissions were performed between the two acoustic stations located diagonally on both sides of the river. The horizontal distance between the transducers was 301.96 m. FATS enabled the measurement of the depth- and range-averaged sound speed and flow velocity along the ray path. In contrast to traditional point/transect measurements of discharge, in a fraction of a second, FATS covers the entire cross section of river in a single measurement. The flow rates measured by FATS were compared to those estimated by moving boat Acoustic Doppler Current Profiler (ADCP) and rating curve (RC) methods. FATS estimates were in good agreement with ADCP estimates over a range of 20 to 65 m3 s-1. The RMS of residual between the two measurements was 2.41 m3 s-1. On the other hand the flowrate by RC method fairly agreed with FATS estimates for greater discharges than around 40 m3 s-1. This inconsistency arises from biased RC estimates in low flows. Thus, the flow rates derived from FATS could be considered reliable.

  6. Flow Structure and Channel Morphology at a Confluent-Meander Bend

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2009-12-01

    Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.

  7. Comparison of three inert markers in measuring apparent nutrient digestibility of juvenile abalone under different culture condition and temperature regimes

    NASA Astrophysics Data System (ADS)

    Nur, K. U.; Adams, L.; Stone, D.; Savva, N.; Adams, M.

    2018-03-01

    A comparative research using three inert markers, chromic oxide, yttrium and ytterbium to measure the apparent nutrient digestibility of experimental feed in juvenile Hybrid abalone (Haliotis rubra X H. laevigata) and Greenlip abalone (H.laevigata) revealed that apparent digestibility of crude protein (ADCP) measured using yttrium and ytterbium in hybrid abalone were significantly different across the treatments. Protein digestibility measured in experimental tanks was higher than those measured in indoor and outdoor commercial tanks, regardless of inert marker used. Chromic oxide led to overestimated ADCP compared to when measured using yttrium and ytterbium. There were no significant interactions between temperature and inert markers when measuring ADCP and apparent digestibility of gross energy (ADGE). However, there was a significant difference of ADCP amongst inert markers when measured in greenlip abalone cultured at two temperatures. While measurements of ADge calculated using three inert markers shared the same value.

  8. Characterizing Three-Dimensional Mixing Process in a River Confluence using Hydro-acoustical Backscatter and Flow Measurement

    NASA Astrophysics Data System (ADS)

    Son, Geunsoo; Kim, Dongsu; Kim, YoungDo; Lyu, Siwan; Kim, Seojun

    2017-04-01

    River confluences are zones where two rivers with different geomorphic and hydraulic characteristics amalgamate, resulting in rapid change in terms of flow regime, sediment entrainment and hydraulic geometry. In these confluence zones, the flow structure is basically complicated responded with concurrent mixing of physical and chemical aquatic properties, and continuous channel morphology could be changed due to erosion and sedimentation. In addition, the confluences are regions in which two rivers join and play an important role in river ecology. In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, therefore, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data especially for characterizing this kind of mixing process. Even with intensive in-situ measurements, those researches tended to focus mainly on the hydraulic characteristics such as the flow and morphological complexity of confluence, so that very few studies comprehensively included sediment variation with flow at the same time. In this study, subsequently, flow and sediment mixing characteristics were concurrently investigated in the confluence between Nakdong and Nam river in South Korea, where it has been frequently questioned to determine how Nam river affects Nakdong river that recently have suffered various environmental problems such as green algae bloom and erosion/deposition in the confluence. We basically examined the mixing characteristics of confluence by using acoustic Doppler current profilers (ADCPs) which were used to measure hydraulic factors such as flow rate and depth, as well as measuring the suspended sediment concentration by using acoustic backscatter. Cross-sectional ADCP measurements in a confluence were collected with high spatial resolution in order to analyze the details of spatial distribution in the perspective of the three-dimensional mixing patterns of flow and sediment, where backscatters (or SNR) measured from ADCPs were used to track sediment mixing assuming that it could be a surrogate to estimate the suspended sediment concentration. Raw backscatter data were corrected by considering the beam spreading and absorption by water. Also, an optical Laser diffraction instrument (LISST) was used to verify the method of acoustic backscatter and to collect the particle size distribution of main stream and tributary. In addition, image-based spatial distributions of sediment mixture in the confluence were monitored in various flow conditions by using an unmanned aerial vehicle (UAV), which were compared with the spatial distribution of acoustic backscatter. As results, we found that when acoustic backscatter and flow measurements by ADCPs were well processed, they could be proper indicators to identify the spatial patterns of the three-dimensional mixing process between two rivers.

  9. Southward flow on the western flank of the Florida Current

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Hirons, Amy; Maingot, Christopher; Dean, Cayla W.; Dodge, Richard E.; Yankovsky, Alexander E.; Wood, Jon; Weisberg, Robert H.; Luther, Mark E.; McCreary, Julian P.

    2017-07-01

    A suite of long-term in situ measurements in the Straits of Florida, including the ADCP bottom moorings at an 11-m isobath and 244-m isobath (Miami Terrace) and several ADCP ship transects, have revealed a remarkable feature of the ocean circulation - southward flow on the western, coastal flank of the Florida Current. We have observed three forms of the southward flow - a seasonally varying coastal countercurrent, an undercurrent jet attached to the Florida shelf, and an intermittent undercurrent on the Miami Terrace. According to a 13-year monthly climatology obtained from the near-shore mooring, the coastal countercurrent is a persistent feature from October through January. The southward flow in the form of an undercurrent jet attached to the continental slope was observed during five ship transects from April through September but was not observed during three transects in February, March, and November. This undercurrent jet is well mixed due to strong shear at its top associated with the northward direction of the surface flow (Florida Current) and friction at the bottom. At the same time, no statistically significant seasonal cycle has been observed in the undercurrent flow on the Miami Terrace. Theoretical considerations suggest that several processes could drive the southward current, including interaction between the Florida Current and the shelf, as well as forcing that is independent of the Florida Current. The exact nature of the southward flow on the western flank of the Florida Current is, however, unknown.

  10. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.

    2013-01-01

    profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers’ software.

  11. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    PubMed

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  12. Analysis of change of retention capacity of a small water reservoir

    NASA Astrophysics Data System (ADS)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  13. A direct estimate of poleward volume, heat, and freshwater fluxes at 59.5°N between Greenland and Scotland

    NASA Astrophysics Data System (ADS)

    Rossby, T.; Reverdin, Gilles; Chafik, Leon; Søiland, Henrik

    2017-07-01

    The meridional overturning circulation (MOC) in the North Atlantic plays a major role in the transport of heat from low to high latitudes. In this study, we combine recent measurements of currents from the surface to >700 m from a shipboard acoustic Doppler current profiler with Argo profiles (to 2000 m) to estimate poleward volume, heat, and freshwater flux at 59.5°N between Greenland and Scotland. This is made possible thanks to the vessel Nuka Arctica that operates on a 3 week schedule between Greenland and Denmark. For the period late 2012 to early 2016, the deseasoned mean meridional overturning circulation reaches a 18.4 ± 3.4 Sv maximum at the σθ = 27.55 kg m-3 isopycnal, which varies in depth from near the surface in the western Irminger Sea to 1000 m in Rockall Trough. The total heat and freshwater fluxes across 59.5°N = 399 ± 74 TW and -0.20 ± 0.04 Sv, where the uncertainties are principally due to that of the MOC. Analysis of altimetric sea surface height variations along exactly the same route reveals a somewhat stronger geostrophic flow north during this period compared to the 23 year mean suggesting that for a long-term mean the above flux estimates should be reduced slightly to 17.4 Sv, 377 TW, and -0.19 Sv, respectively, with the same estimate uncertainties. The ADCP program is ongoing.

  14. Bedload-surrogate monitoring technologies

    USGS Publications Warehouse

    Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Advances in technologies for quantifying bedload fluxes and in some cases bedload size distributions in rivers show promise toward supplanting traditional physical samplers and sampling methods predicated on the collection and analysis of physical bedload samples. Four workshops held from 2002 to 2007 directly or peripherally addressed bedload-surrogate technologies, and results from these workshops have been compiled to evaluate the state-of-the-art in bedload monitoring. Papers from the 2007 workshop are published for the first time with this report. Selected research and publications since the 2007 workshop also are presented. Traditional samplers used for some or all of the last eight decades include box or basket samplers, pan or tray samplers, pressure-difference samplers, and trough or pit samplers. Although still useful, the future niche of these devices may be as a means for calibrating bedload-surrogate technologies operating with active- and passive-type sensors, in many cases continuously and automatically at a river site. Active sensors include acoustic Doppler current profilers (ADCPs), sonar, radar, and smart sensors. Passive sensors include geophones (pipes or plates) in direct contact with the streambed, hydrophones deployed in the water column, impact columns, and magnetic detection. The ADCP for sand and geophones for gravel are currently the most developed techniques, several of which have been calibrated under both laboratory and field conditions. Although none of the bedload-surrogate technologies described herein are broadly accepted for use in large-scale monitoring programs, several are under evaluation. The benefits of verifying and operationally deploying selected bedload-surrogate monitoring technologies could be considerable, providing for more frequent and consistent, less expensive, and arguably more accurate bedload data obtained with reduced personal risk for use in managing the world's sedimentary resources. Twenty-six papers are published for the first time as part of the 2007 International Bedload-Surrogate Monitoring Workshop (listed in table 2 in alphabetical order by name of first author). Sequential page numbering of the papers begins on page 38, after the last page of the report. The report plus the 26 papers comprise 430 pages.

  15. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimizationmore » study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage decoded for JSATS transmitters from: turbine operations; spillway operations; DIDSON/ADCP acoustic energy; and PAS hydroacoustic systems at transmit level of -12 dB, although there was a significant impact at all higher transmit levels (-11 to -6 dB). The main conclusion from this optimization study is that valid JSATS telemetry data can be collected simultaneously with a DIDSON/ADCP and a PAS hydroacoustic system at transmit level -12 dB. Multiple evaluation tools should be considered to increase the robustness and thoroughness of future fish passage evaluations at John Day and other dams.« less

  16. Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift

    PubMed Central

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O.

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. PMID:23593127

  17. Maintenance of coastal surface blooms by surface temperature stratification and wind drift.

    PubMed

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.

  18. A novel sensor platform for the rapid hydraulic characterisation of freshwater ecosystems

    NASA Astrophysics Data System (ADS)

    Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby; Gill, Andrew; Everard, Nick; Wright, Ros; Rivas Casado, Monica

    2014-05-01

    The spatially explicit quantification of hydraulic features provides valuable information for the physical habitat assessment of freshwater ecosystems. Collection of data on water velocities and depths using in-situ current meters or acoustic sensors on tethered boats is time-consuming and requires good site accessibility. Moreover, on smaller rivers precise spatial data referencing can be challenging, as river bank vegetation can block sky view to navigation satellites over a considerable proportion of the water surface. This paper describes the development and testing of a new small sized remote control sensor platform and a novel approach to spatial data referencing based on computer vision to enable the rapid hydraulic characterisation of habitats in small rivers. It highlights the manifold opportunities that recent achievements in the disciplines of computer science and electronics can create for the environmental sciences. The platform carries an acoustic Doppler current profiler (ADCP) to rapidly collect large amounts of data on water velocities and river depths, from which the spatial and temporal water velocity distributions can be derived. The 1.30m long and 0.60m wide platform hull has been designed to enable single person deployment. Platform pitch and roll magnitudes and periods are quantified at a frequency of 512Hz through a low-cost inertial measurement unit on board, allowing the quantification of the errors that these platform motions can cause in the ADCP data. Jet propulsion and a tail thruster ensure high manoeuvrability, minimum draught operation and greater safety than propellers. An on-board Raspberry Pi computer enables time-synchronised logging of data from a GPS unit, the ADCP and further sensors that may be added to the platform. Real-time serial communication between the Raspberry Pi and the embedded propulsion system control (an Arduino Uno microcontroller) builds the basis for future platform autonomy. This can enable the autonomous implementation of pre-defined data collection strategies. Through field experiments, a set of technologies to position the platform in the river environment has been evaluated. Simultaneous localisation and mapping (SLAM) based on frames from a stereo camera has been identified as a promising alternative to satellite-based platform positioning. In terrestrial environments, SLAM has recently achieved high position accuracies, comparable with those of differential GPS. Software that implements SLAM for the river environment is currently developed. This constitutes the first application of visual SLAM on water and, to the authors' knowledge, its first application in the context of environmental research. Furthermore, platform tracking with a motorised Total Station has been found to be a highly accurate (cm-level) positioning technique despite fast platform movements, as long as line of sight to the tracked object is given. In the near future, the platform will be used to characterise the hydraulic conditions downstream of fish passes in order to rapidly assess the attractivity of these facilities to migrating fish species. Several of the applied technologies (e.g. Raspberry Pi, Arduino) are cheap and easily accessible. They provide a multitude of opportunities to facilitate data collection and prototype development in the environmental sciences.

  19. Hydrography and circulation west of Sardinia in June 2014

    NASA Astrophysics Data System (ADS)

    Knoll, Michaela; Borrione, Ines; Fiekas, Heinz-Volker; Funk, Andreas; Hemming, Michael P.; Kaiser, Jan; Onken, Reiner; Queste, Bastien; Russo, Aniello

    2017-11-01

    In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m-3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m-3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15' E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s-1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition.

  20. Hydrodynamic observations in support of Moored Autonomous pCO2 buoy efforts at La Parguera Marine Reserve

    NASA Astrophysics Data System (ADS)

    Rodriguez-Abudo, S.; Melendez, M.; Morell, J. M.; Padilla, A.; Salisbury, J.

    2016-02-01

    Time series of near-reef carbonate chemistry obtained through the National Coral Reef Monitoring Program (NCRMP) at La Parguera Marine Reserve, Puerto Rico exhibit seasonal and diurnal variations modulated by diverse processes including coral community metabolism, thermodynamics and hydrodynamics. While surface CO2 dynamics have been fairly well characterized with moored pCO2 efforts, detailed hydrodynamic information resulting from La Parguera's complex morphological, meteorological, and oceanographic processes is currently lacking. This project focuses on a one-month-long hydrodynamic assessment near a fore reef site located within 100 m of the NCRMP pCO2 buoy. Current profiles spanning 12 m of depth were resolved with a bottom-mounted ADCP. Preliminary results show that under no wind conditions, dominant currents are tidally driven and aligned with the reef channel. Depth-averaged currents exhibit diurnal and semidiurnal peaks, not inconsistent with tidal and wind forcing. The analysis also shows that at times surface current direction can differ from near-reef currents by as much as 200 degrees, suggesting a possible mismatch between carbonate chemistry resolved at the surface and that felt by the reef structure. Moreover, buoy measurements are potentially resolving carbonate chemistry from both, oceanic and inshore water masses. Our findings suggest that monitoring and potentially predicting near-reef CO2 dynamics require interdisciplinary expertise and integrated approaches. This project provides new insights into the effects of tidal and meteorological forcing on the carbonate chemistry of near-reef coral ecosystems.

  1. First Year Observations of Antarctic Circumpolar Current Variability and Internal Wave Activity from the DIMES Mooring Array

    NASA Astrophysics Data System (ADS)

    Brearley, J. A.; Sheen, K. L.; Naveira-Garabato, A. C.

    2012-04-01

    A key component of DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) is the deployment of a two-year cross-shaped mooring array in the Antarctic Circumpolar Current to the east of Drake Passage close to 57°W. Motivation for the cluster arises from the need to understand how eddies dissipate in the Southern Ocean, and specifically how much energy is extracted from the mesoscale by breaking internal waves, which in turn leads to turbulent mixing. The location of the mooring cluster was chosen to fulfil these objectives, being situated in a region of pronounced finestructure with high eddy kinetic energy and rough topography. The array, comprising 34 current meters and Microcats and a downward-looking ADCP, was first deployed in December 2009 and serviced in December 2010. Time series of current meter results from the most heavily-instrumented 'C' mooring indicate that a strong (up to 80 cms-1) surface-intensified north-eastward directed ACC occupies the region for most of the year, with over 85% of the variability in current speed being accounted for by equivalent barotropic fluctuations. A strong mean poleward heat flux is observed at the site, which compares favourably in magnitude with literature results from other ACC locations. Interestingly, four episodes of mid-depth (~2000 m) current speed maxima, each of a few days duration, were found during the 360-day time series, a situation also observed by the lowered ADCP during mooring servicing in December 2010. Early results indicate that these episodes, which coincide with time minima in stratification close to 2000 m, could profoundly influence the nature of eddy-internal wave interactions at these times. Quantification of the energy budget at the mooring cluster has been a key priority. When compared with previous moorings located in Drake Passage (Bryden, 1977), a near threefold-increase in mean eddy kinetic energy (EKE) is observed despite a small reduction in the mean kinetic energy between these sites. The magnitude of interactions between the available potential energy and EKE and between the EKE and mean kinetic energy are of similar magnitude to those observed in Drake Passage. Unfortunately, the collapse of two moorings early in 2010 has meant that second-year data will be required before the exchange of energy between the eddy and internal wave frequency bands can be rigorously quantified. However, data from the downward-looking ADCP between 2700 and 3400 m is starting to identify the important frequencies and mechanisms of internal wave activity.

  2. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    USGS Publications Warehouse

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  3. Near-surface Stratification and Submesoscale Fronts in the north Bay of Bengal during Summer Monsoon of 2014 and 2015.

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Jarugula, S. L.; D'Asaro, E. A.; Chaudhuri, D.; S, S.; Tandon, A.; M, R.; Lucas, A.; Simmons, H. L.

    2016-02-01

    The north bay of Bengal is characterised by a shallow layer of fresh water from monsoon rainfall and river discharge, with very strong stratification at its base, and a warm subsurface layer. The thermodynamic structure of the ocean has significant influence on air-sea interaction. We conducted two research cruises of ORV Sagar Nidhi in August-September 2014 and 2015, to study the physical processes that maintain the shallow fresh layer. We collected a total of about 4000 kilometers of underway Conductivity-Temperature-Depth (uCTD) and Acoustic Doppler Current Profiler (ADCP) data. The vertical resolution of the data is 1-2 m; at ship speeds of 4-5 knots, the horizontal resolution is 300-1500 m, sufficient to resolve submesoscale (1-20 km) features. It is known that dynamical instability of submesoscale fronts can lead to slumping of heavier water under lighter water, enhancing vertical stratification. We identified 35 major salinity-dominated near-surface density fronts along the ship track, with surface density gradient exceeding 0.03 kg/m3 per kilometer, and density difference exceeding 0.3 kg/m3. The largest gradients in the open ocean, between fresh water of riverine origin and ambient seawater, exceeded 10 psu in 40 km and 6 psu in 50 km; the spatial scales of the other fronts range from 1 to 25 km. At several submesoscale fronts, the surface mixed layer is shallower directly under the front than on either side, suggesting active restratification. ADCP observations reveal a region of confluence and narrow jets associated with some fronts, consistent with frontal slumping. In addition, wind-driven Ekman transport can enhance near-surface stratification by carrying lighter water over denser water. We discuss the relevance of these two mechanisms in observations and model simulations.

  4. Model Simulations of Waves in Hurricane Juan

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Toulany, B.; Padilla-Hernandez, R.; Hu, Y.; Smith, P.; Zhang, W.; Zou, Q.; Ren, X.

    2004-05-01

    Hurricane Juan made landfall at 0300 UTC near Halifax Nova Scotia. This was a category 2 hurricane with winds of 44 m/s, the largest storm to pass over these coastal areas in several decades. Associated high ocean waves were experienced in coastal waters, from Peggy's Cove to Sheet Harbour, growing to epic proportions on the Scotian Shelf, and exceeding the 100-year return wave based on the present climatology. As part of the GoMOOS program (Gulf of Maine Ocean Observing System, www.gomoos.org), winds from the USA Navy COAMPS (Coupled Ocean Atmosphere Model Prediction System) were used to evaluate and compare three widely-used third generation numerical wave models, SWAN, WAM and WaveWatch-III (hereafter WW3) for accuracy, with in situ measurements. Model comparisons consist of a set of composite model systems, respectively nesting WAM, WW3 and SWAN in WAM and WW3. We report results from the intermediate-resolution grid for Hurricane Juan. Wave measurements were made using four operational deep-water buoys (C44258, C44142, C44137, 44005), by a conventional directional wave rider (DWR) moored offshore from Lunenburg Bay, and also by two acoustic Doppler current profiler (ADCP) located (1) near an oil rig on Sable Island Bank, in relatively shallow water, and (2) near the outer boundary of Lunenburg Bay. We discuss the reliability of DWR wave data compared to ADCP wave data. We show that all models provide reliable hindcasts for significant wave height (Hs) and for peak period (Tp) for Juan, although a clear under-estimation of Hs at the peak of the storm is evident, compared to observations. A feature in the COAMPS storm simulation is that the storm track appears to be slightly to the east of that of Quikscat scatterometer data. Comparisons between models and 2-dimensional wave spectra are presented. Preliminary results suggest that the recently released upgrade to the WW3 model shows slightly enhanced skill compared to the other models.

  5. Quantifying the Bering Strait Oceanic Fluxes and their Impacts on Sea-Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014

    DTIC Science & Technology

    2014-09-30

    Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard...was extremely good. The ADCPs and lower level temperature and salinity sensors all returned complete records. All 3 moorings also carried upper... Pavlov , and M. Kulakov (1999), The Siberian Coastal Current: a wind- and buoyancy-forced Arctic coastal current, J. Geophys. Res., 104(C12), 29697

  6. In situ observations of suspended particulate matter plumes at an offshore wind farm, southern North Sea

    NASA Astrophysics Data System (ADS)

    Baeye, Matthias; Fettweis, Michael

    2015-08-01

    Suspended particulate matter (SPM) plumes associated with the monopile foundations of the Belgian offshore wind farm (OWF) Belwind I were acoustically profiled by means of a Doppler current profiler (ADCP). Together with the analysis of a bottom lander dataset of optical and acoustic backscatter sensors (OBSs and ADPs respectively), the spatiotemporal SPM plume dynamics were inferred. The fieldwork comprised (1) near-bed measurements of hydrodynamics and SPM concentrations in the direct vicinity of the wind turbines, by means of a bottom lander over a spring-neap cycle in May 2010; this dataset represents a typically tide-driven situation because there was no significant meteorological forcing during the measurement period; (2) additional vessel-based measurements conducted in May 2013 to capture the SPM plumes inside and outside the OWF over part of a tidal cycle. Both in situ datasets revealed that the SPM plumes were generated at the turbine piles, consistent with aerial and space-borne imagery. The SPM plumes are well aligned with the tidal current direction in the wake of the monopiles, concentrations being estimated to reach up to 5 times that of the background concentration of about 3 mg/l. It is suggested that the epifaunal communities colonizing the monopile surface and the protective rock collar at the base play a key role as source of the suspended matter recorded in the plumes. The organisms filter and trap fine SPM from the water column, resulting in predominant accumulation of SPM, including detritus and (pseudo-) faeces, at the base of the piles. When tidal currents exceed a certain velocity, fine particles in the near-bed fluff layer are re-suspended and transported downstream in the wake of the piles.

  7. Monitoring surface currents and transport variability in Drake Passage using altimetry and hydrography

    NASA Astrophysics Data System (ADS)

    Pavic, M.; Cunningham, S. A.; Challenor, P.; Duncan, L.

    2003-04-01

    Between 1993 and 2001 the UK has completed seven occupations of WOCE section SR1b from Burdwood Bank to Elephant Island across Drake Passage. The section consists of a minimum of 31 full depth CTD stations, shipboard ADCP measurements of currents in the upper 300m, and in three of the years full depth lowered ADCP measurements at each station. The section lies under the satellite track of ERS2. The satellite altimeter can determine the along track slope of the sea surface relative to a reference satellite pass once every 35 days. From this we can calculate the relative SSH slope or geostrophic surface current anomalies. If we measure simultaneously with any satellite pass, we can estimate the absolute surface geostrophic current for any subsequent pass. This says that by combining in situ absolute velocity measurements - the reference velocities with altimetry at one time the absolute geostrophic current can be estimated on any subsequent (or previous) altimeter pass. This is the method of Challenor et al. 1996, though they did not have the data to test this relationship. We have seven estimates of the surface reference velocity: one for each of the seven occupations of the WOCE line. The difference in any pair of reference velocities is predicted by the difference of the corresponding altimeter measurements. Errors in combining the satellite and hydrographic data are estimated by comparing pairs of these differences: errors arise from the in situ observations and from the altimetric measurements. Finally we produce our best estimates of eight years of absolute surface geostrophic currents and transport variability along WOCE section SR1 in Drake Passage.

  8. Currents' spatial structure in the Western, Central and South-Eastern Baltic on the base of numerical model and ADCP data analysis

    NASA Astrophysics Data System (ADS)

    Golenko, Mariya; Golenko, Nikolay

    2014-05-01

    Numerical modeling of the currents' spatial structure in some regions of the Baltic Sea is performed on the base of POM (Princeton Ocean Model). The calculations were performed under the westerly (most frequent in the Baltic) and north-easterly wind forcings. In the regions adjacent to the Kaliningrad Region's, Polish and Lithuanian coasts these winds generate oppositely directed geostrophic, drift and others types of currents. On the whole these processes can be considered as downwelling and upwelling. Apart from the regions mentioned above the Slupsk Furrow region, which determines the mass and momentum exchange between the Western and Central Baltic, is also considered. During the analysis of currents not only the whole model velocity but also components directed along and across the barotropic geostrophic current velocity are considered. The along geostrophic component for one's turn is separated into the geostrophic current itself and an ageostrophic part. The across geostrophic component is totally ageostrophic. The velocity components directed along and across the geostrophic current approximately describe the velocity components directed along the coast (along isobathes) and from the coast towards the open sea. The suggested approach allowed to present the currents' spatial structures typical for different wind forcings as two maps with the components directed along and across the barotropic geostrophic current velocity. On these maps the areas of the intensive alongshore currents are clearly depicted (for ex. near the base of the Hel Spit, in the region of the Slupsk Sill). The combined analysis of the vectors of the whole and geostrophic velocities allows to reveal the areas where the geostrophic component is significantly strengthened or weakened by the ageostrophic component. Under the westerly wind such currents' features are clearly observed near the end of the Hel Spit and at the southern boarder of the Slupsk Sill, under the north-easterly wind - near the base of the Hel Spit, at the southern boarder of the Slupsk Furrow, near the Curonian Spit (where the relief is bent). On the maps presenting the spatial distributions of the across shore velocities the areas where the mass and momentum transport from the shore to the open sea in the surface layer and vice versa takes place are discriminated. There are also revealed the areas where sharp changes of different velocity components under the wind changes are expected as well as the areas where such changes are expected to be minimal. The model is validated using the field surveys of current velocities by ADCP in the area adjacent to the Kaliningrad region. The comparison of current velocities has shown a close correspondence. In rather wide area the directions and amplitudes of the model and ADCP surface velocities are close, that is additionally confirmed by the comparison of the local vorticity distributions. On the vertical transects of the ADCP current velocity directed across the shoreline the geostrophic jet is clearly pronounced. Its horizontal and vertical scales are in close correspondence with ones of the model jet. At that the more detail calculations which are allowed during the modeling have shown that the geostrophic currents amount to 40-60% (in average) of the whole velocity; two components of the ageostrophic velocity directed along and across the geostrophic velocity are highly variable (from 10 to 60% of the whole velocity). The ageostrophic component directed along the geostrophic current generally strengthens it (up to 20-40% in average and up to 60-70% near the end of the Hel Spit). But in some regions, for example, in the Slupsk Furrow the ageostrophic component slows down the geostrophic current (to 30-40%). In some narrow local areas immediately adjacent to the coast currents directed oppositely to the general quasi geostrophic jet were registered on both field and model data. Before the comparison with the field data these local jets revealed on the model data were considered as improbable. As a result, the comparative analysis of the field and model data led to more detail understanding of dynamic processes in some coastal parts of the Baltic Sea.

  9. Comparison of morphology of active cyclic steps created by turbidity currents on Squamish Delta, British Columbia, Canada with flume experiments

    NASA Astrophysics Data System (ADS)

    Yokokawa, Miwa; Yamamoto, Shinya; Higuchi, Hiroyuki; Hughes Clarke, John E.; Izumi, Norihiro

    2015-04-01

    Upper-flow-regime bedforms, such as cyclic steps and antidunes, have been reported to be formed by turbidity currents. Their formative conditions are, however, not fully understood because of the difficulty of field surveys in the deep sea. Field observations of turbidity currents and seabed topography on the Squamish delta in Howe Sound, British Columbia, Canada have been undertaken which found bedwaves actively migrating in the upstream direction in channels formed on the prodelta slope. Their topography and behavior suggest that they are cyclic steps formed by turbidity currents. Because Squamish delta is as shallow as around 150 m, and easy to access compared with general submarine canyons, it is thought to be one of the best places for studying characteristics of cyclic steps formed by turbidity currents through field observations. In this study, we have analyzed configurations of cyclic steps with the use of data obtained in the field observation of 2011, and compare them with the data from the flume experiments. On the prodelta slope, three major active channels are clearly developed. In addition to the sonar survey, a 600 kHz ADCP was installed in 150m of water just seaward of the termination of the North Channel. In addition, 1200kHz ADCP and 500kHz M3s are suspended from the research vessel in 60 m of water and 300 m distance from the delta edge. We selected images showing large daily differences. The steps move vigorously at the upper 600m parts of the prodelta slope, so that we measured the steps in this area. From the profiles perpendicular to the bedwave crest lines through the center of channels, wavelength and wave height for each step, mean slope were measured on the software for quantitative image analyses manually. Wave steepness for each step was calculated using the wavelength and wave height measured as above. The mean slope ranges from 6.8° ~ 2.7° (more proximal, steeper), mean wavelength and wave heights of steps range from 24.5 to 87.6m and from 2.4 to 5.4m respectively. We compare the shape of steps with the upper-flow-regime bedforms, such as antidunes and cyclic steps, obtained from the open channel experiments. Wave steepness of the steps in Squamish ranges from 0.035 to 0.157, which is relatively high and close in value to those of cyclic steps and downstream-migrating-antidunes (DMA) in the open channel experiments. The non-dimensional wave number depends on the estimation of the thickness of the turbidity currents. Based on the optical backscatter profiles, the upper limit of sediment suspension is around 10m. However the maximum velocity is always located within the lower 5m, and higher density layer seems to locate within the lowermost 2 m. For the 10m flow thickness, the wave number is close in value to those of DMA. While for the 0.5m flow thickness, the wave number is close in value to those of cyclic steps. We will discuss about the effect of "density currents" and/or "surge" on the morphology of those steps.

  10. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  11. Wave-current induced erosion of cohesive riverbanks in northern Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, N.; Clark, S.; Ahmari, H.; Hunt, J.

    2015-03-01

    The field of cohesive soil erosion is still not fully understood, in large part due to the many soil parameters that affect cohesive soil erodibility. This study is focused on two channels, 2-Mile and 8-Mile channels in northern Manitoba, Canada, that were built to connect Lake Winnipeg with Playgreen Lake and Playgreen Lake with Kiskikittogisu Lake, respectively. The banks of the channels consist of clay rich soils and alluvial deposits of layered clay, silts and sands. The study of erosion at the sites is further complicated because the flow-induced erosion is combined with the effects of significant wave action due to the large fetch length on the adjacent lakes, particularly Lake Winnipeg that is the seventh largest lake in North America. The study included three main components: field measurements, laboratory experiments and numerical modelling. Field measurements consisted of soil sampling from the banks and bed of the channels, current measurements and water sampling. Grab soil samples were used to measure the essential physical and electrochemical properties of the riverbanks, and standard ASTM Shelby tube samples were used to estimate the critical shear stress and erodibility of the soil samples using an erosion measurement device (EMD). Water samples were taken to estimate the sediment concentration profile and also to monitor changes in sediment concentration along the channels over time. An Acoustic Doppler Current Profiler (ADCP) was used to collect bathymetry and current data, and two water level gauges have been installed to record water levels at the entrance and outlet of the channels. The MIKE 21 NSW model was used to simulate waves using historical winds and measured bathymetry of the channels and lakes. Finally, results from the wave numerical model, laboratory tests and current measurement were used to estimate the effect of each component on erodibility of the cohesive banks.

  12. Seasonal and Interannual Variability in Gulf of Maine Hydrodynamics: 2002-2011.

    PubMed

    Li, Yizhen; He, Ruoying; McGillicuddy, Dennis J

    2014-05-01

    In situ observations including long-term moored meteorological and oceanographic measurements and multi-year gulf-wide ship survey data are used to quantify interannual variability of surface wind, river runoff, and hydrographic conditions in the Gulf of Maine during summers 2002-2011. The cumulative upwelling index shows that upwelling (downwelling)-favorable wind conditions were most persistent in 2010 (2005) over the 10-year study period. River discharge was highest in 2005; peak runoff occurred in early April in 2010 as opposed to late April to middle May in other years. Moored time series show that coastal water temperature was 0.5-2 °C warmer than average in summer 2010, and about 2 °C colder than average in 2004. Coastal salinity in April 2010 was the lowest in the 10-year study period. Both moored Acoustic Doppler Current Profiler (ADCP) current measurements and dynamic height/geostrophic velocity calculations based on gulf-wide ship survey data show May-June 2010 had one of the weakest alongshore transports in the western Gulf of Maine during the 10-year study period, likely associated with intrusions of warm slope water and fresher-than-usual Scotian Shelf water. Comparisons of coastal currents to the Paralytic Shellfish Poisoning (PSP) closure maps resulting from A. fundyense blooms suggest a linkage between alongshore transport and the downstream extent of toxicity.

  13. Total Organic Carbon Distribution and Bacterial Cycling Across A Geostrophic Front In Mediterranean Sea. Implications For The Western Basin Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Sempere, R.; van Wambeke, F.; Bianchi, M.; Dafner, E.; Lefevre, D.; Bruyant, F.; Prieur, L.

    We investigated the dynamic of the total organic carbon (TOC) pool and the role it played in the carbon cycle during winter 1997-1998 in the Almeria-Oran jet-front (AOF) system resulting from the spreading of Atlantic surface water through the Gibraltar Strait in the Alboran Sea (Southwestern Mediterranean Sea). We determined TOC by using high temperature combustion technique (HTC) and bacterial produc- tion (BP; via [3H] leucine incorporation) during two legs in the frontal area. We also estimated labile TOC (l-TOC) and bacterial growth efficiency (BGE) by performing TOC biodegradation experiments on board during the cruise whereas water column semi-labile (sl-TOC), and refractory-TOC were determined from TOC profile exami- nation. These results are discussed in relation with current velocity measured by using accoustic doppler current profiler (ADCP). Lowest TOC stocks (6330-6853 mmol C m-2) over 0-100 m were measured in the northern side of the geostrophic Jet which is also the highest dynamic area (horizontal speed of 80 cm s-1 in the first 100 m di- rected eastward). Our results indicated variable turnover times of sl-TOC across the Jet-Front system, which might be explained by different coupling of primary produc- tion and bacterial production observed in these areas. We also estimated TOC and sl-TOC transports within the Jet core off the Alboran Sea as well as potential CO2 production through bacterial respiration produced from sl-TOC assimilation by het- erotrophic bacteria.

  14. Measuring the uncertainties of discharge measurements: interlaboratory experiments in hydrometry

    NASA Astrophysics Data System (ADS)

    Le Coz, Jérôme; Blanquart, Bertrand; Pobanz, Karine; Dramais, Guillaume; Pierrefeu, Gilles; Hauet, Alexandre; Despax, Aurélien

    2015-04-01

    Quantifying the uncertainty of streamflow data is key for hydrological sciences. The conventional uncertainty analysis based on error propagation techniques is restricted by the absence of traceable discharge standards and by the weight of difficult-to-predict errors related to the operator, procedure and measurement environment. Field interlaboratory experiments recently emerged as an efficient, standardized method to 'measure' the uncertainties of a given streamgauging technique in given measurement conditions. Both uncertainty approaches are compatible and should be developed jointly in the field of hydrometry. In the recent years, several interlaboratory experiments have been reported by different hydrological services. They involved different streamgauging techniques, including acoustic profilers (ADCP), current-meters and handheld radars (SVR). Uncertainty analysis was not always their primary goal: most often, testing the proficiency and homogeneity of instruments, makes and models, procedures and operators was the original motivation. When interlaboratory experiments are processed for uncertainty analysis, once outliers have been discarded all participants are assumed to be equally skilled and to apply the same streamgauging technique in equivalent conditions. A universal requirement is that all participants simultaneously measure the same discharge, which shall be kept constant within negligible variations. To our best knowledge, we were the first to apply the interlaboratory method for computing the uncertainties of streamgauging techniques, according to the authoritative international documents (ISO standards). Several specific issues arise due to the measurements conditions in outdoor canals and rivers. The main limitation is that the best available river discharge references are usually too uncertain to quantify the bias of the streamgauging technique, i.e. the systematic errors that are common to all participants in the experiment. A reference or a sensitivity analysis to the fixed parameters of the streamgauging technique remain very useful for estimating the uncertainty related to the (non quantified) bias correction. In the absence of a reference, the uncertainty estimate is referenced to the average of all discharge measurements in the interlaboratory experiment, ignoring the technique bias. Simple equations can be used to assess the uncertainty of the uncertainty results, as a function of the number of participants and of repeated measurements. The interlaboratory method was applied to several interlaboratory experiments on ADCPs and currentmeters mounted on wading rods, in streams of different sizes and aspects, with 10 to 30 instruments, typically. The uncertainty results were consistent with the usual expert judgment and highly depended on the measurement environment. Approximately, the expanded uncertainties (within the 95% probability interval) were ±5% to ±10% for ADCPs in good or poor conditions, and ±10% to ±15% for currentmeters in shallow creeks. Due to the specific limitations related to a slow measurement process and to small, natural streams, uncertainty results for currentmeters were more uncertain than for ADCPs, for which the site-specific errors were significantly evidenced. The proposed method can be applied to a wide range of interlaboratory experiments conducted in contrasted environments for different streamgauging techniques, in a standardized way. Ideally, an international open database would enhance the investigation of hydrological data uncertainties, according to the characteristics of the measurement conditions and procedures. Such a dataset could be used for implementing and validating uncertainty propagation methods in hydrometry.

  15. 5-Beam ADCP Deployment Strategy Considerations

    NASA Astrophysics Data System (ADS)

    Moore, T.; Savidge, D. K.; Gargett, A.

    2016-02-01

    With the increasing availability of 5 beam ADCPs and expanding opportunities for their deployment within both observatory and dedicated process study settings, refinements in deployment strategies are needed.Measuring vertical velocities directly with a vertically oriented acoustic beam requires that the instrument be stably mounted and leveled within fractions of a degree. Leveled shallow water deployments to date have utilized divers to jet pipes into the sand for stability, manually mount the instruments on the pipes, and level them. Leveling has been guided by the deployed instrument's pitch and roll output, available in real-time because of the observatory settings in which the deployments occurred. To expand the range of feasible deployments to deeper, perhaps non-real-time capable settings, alternatives to diver deployment and leveling must be considered. To determine stability requirements, mooring motion (heading, pitch and roll) has been sampled at 1Hz by gimballed ADCPs at a range of instrument deployment depths, and in shrouded and unshrouded cages. Conditions under which ADCP cages resting on the bottom experience significant shifts in tilt, roll or heading are assessed using co-located wind and wave measurements. The accuracy of estimating vertical velocities using all five beams relative to a well leveled vertical single beam is assessed from archived high frequency five beam data, to explore whether easing the leveling requirement is feasible.

  16. Seasonality of the Mindanao Current/Undercurrent System

    NASA Astrophysics Data System (ADS)

    Ren, Qiuping; Li, Yuanlong; Wang, Fan; Song, Lina; Liu, Chuanyu; Zhai, Fangguo

    2018-02-01

    Seasonality of the Mindanao Current (MC)/Undercurrent (MUC) system is investigated using moored acoustic Doppler current profiler (ADCP) measurements off Mindanao (8°N, 127.05°E) and ocean model simulations. The mooring observation during December 2010 to August 2014 revealed that the surface-layer MC between 50-150 m is dominated by annual-period variation and tends to be stronger in spring (boreal) and weaker in fall. Prominent semiannual variations were detected below 150 m. The lower MC between 150 and 400 m is stronger in spring and fall and weaker in summer and winter, while the northward MUC below 400 m emerges in summer and winter and disappears in spring and fall. In-phase and out-of-phase current anomalies above and below 150 m were observed alternatively. These variations are faithfully reproduced by an eddy-resolving ocean model simulation (OFES). Further analysis demonstrates that seasonal variation of the MC is a component of large-scale upper-ocean circulation gyre, while current variations in the MUC layer are confined near the western boundary and featured by shorter-scale (200-400 km) structures. Most of the MC variations and approximately half of the MUC variations can be explained by the first and second baroclinic modes and caused by local wind forcing of the western Pacific. Semiannual surface wind variability and superimposition of the two baroclinic modes jointly give rise to the enhanced subsurface semiannual variations. The pronounced mesoscale eddy variability in the MUC layer may also contribute to the seasonality of the MUC through eddy-current interaction.

  17. First studies of bottom boundary currents in the Ría de Vigo (NW Iberian upwelling system)

    NASA Astrophysics Data System (ADS)

    Villacieros-Robineau, N.; Herrera, J. H.; Castro, C. G.; Piedracoba, S.; Rosón, G.

    2012-04-01

    The NW Iberian Upwelling system has a set of physical and chemical characteristics that determine the ecology at the coast, specifically inside the Rías Baixas where activities like raft culture have a significant weight in the local economy. Although several studies have dealt with the physical processes driving the rías general circulation, no previous research has faced the study of bottom boundary currents. This work studies the behavior of bottom currents inside the Rías Baixas and identifies their possible forcing mechanism. For tackling this issue, high resolution time series of bottom currents by means of a downwards looking ADCP (3-5 meters above the bottom) were recorded at one site in the Ría de Vigo covering the four seasons of the climate year 2004 - 2005. Our analysis shows that most of the time (aprox. 70 -80%), the bottom currents respond to a logarithmic profile being possible to apply the law of the wall. This pattern can be applied to the residual component and also to the tidal component of the currents. Based on this logarithmic fit, we have obtained characteristic parameters like shear stress and shear velocity. Our results point to a coupling among shear stress, shelf winds and runoff. Other important conclusion is the relative importance of tidal shear stress versus residual shear stress because the typical assumption of tidal has more influence is not true always. In some occasions when there are neap tides and high shelf winds the residual stress could be just three times the tidal ones.

  18. Ridge-Runnel and Swash Dynamics Field Experiment on a Steep Meso-Tidal Beach

    NASA Astrophysics Data System (ADS)

    Figlus, J.; Song, Y.-K.; Chardon-Maldonado, P.; Puleo, J. A.

    2014-12-01

    Ridge-runnel (RR) systems are morphological features that may form in the intermittently wet and dry zone of the beach immediately after storm events. Their onshore migration provides a natural way of recovery for an eroded beach but the detailed swash interactions and complex feedback mechanisms between wave dynamics, sediment transport and profile evolution are not well understood and challenging to measure in-situ. During a storm, elevated water levels and large waves can significantly erode the beach profile in a matter of hours through offshore-directed sediment transport. The beach recovery process, on the other hand, occurs over a much longer time period during less intense wave conditions. In the beginning of this 3-week field campaign at South Bethany Beach, Delaware, a Nor'easter, eroded significant portions of this steep, meso-tidal beach and formed a pronounced RR system which then evolved during the less energetic conditions after the storm. An extensive cross-shore array of sensors was installed immediately after the storm measuring near-bed velocity profiles (5 Nortek Vectrino Profilers) and horizontal velocities (6 Sontec Electromagnetic Current Meters; 1 side-looking Nortek Vectrino) suspended sediment concentrations (10 Optical Backscatter Sensors OBS-3+), and pressure fluctuations (7 GE Druck pressure transducers) in the swash zone. Dense topography surveys of the RR system were conducted twice a day during low tide conditions with a Leica RTK GPS rover system. In addition, sediment grab samples along the entire RR cross-section were collected daily. An offshore ADCP with surface wave tracking capability (Nortek 2MHz AWAC AST) measured directional wave spectra and current profiles at a water depth of approximately 6m. The RR system showed rapid onshore migration over the two tide cycles immediately after the storm, followed by a period of vertical ridge accretion of up to 3 ft at certain locations. A first look at the collected data and analysis results related to the feedback mechanisms between wave forcing and RR evolution is presented along with a discussion of difficulties encountered during the experiment.

  19. Hatteras Breach, North Carolina

    DTIC Science & Technology

    2010-07-01

    1400 EST. Cross channel ADCP transects were also made from an instrumented Zodiac inflatable boat on 16, 17, and 24 October. The ADCP employed for...of the breach, near the middle, and on the sound side (Figure 11). The Zodiac crabbed (at an angle to the cur- rent) across the breach at a best...Coastal and Hydraulics Engineering Technical Note (CHETN) is intended to document the rapid response of the U.S. Army Corps of Engineers to engineer and

  20. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records (E2-M3A)

    NASA Astrophysics Data System (ADS)

    Ursella, Laura; Cardin, Vanessa; Batistić, Mirna

    2017-04-01

    The E2-M3A Station is deployed in the southern Adriatic Sea, at about 1200 m depth, in the center of the cyclonic gyre where deep convection process takes place, involving both the atmosphere and the ocean dynamics and forming new dense and oxygenated waters, thus triggering the solubility and the biological pump. In particular, the E2M3A is equipped with an upward looking 150 kHz RDI-Acoustic Doppler Current Profiler (ADCP) positioned between 265 and 320 m depth, with a vertical resolution of 5 m and a range of 250-300 m. The mooring line has been in water since November 2006, with an interruption from September 2010 until May 2011. ADCP backscattering signal is very useful in determining zooplankton distribution and variability at various time scales, including seasonal/annual behavior and diel vertical migration (DVM). From ADCP backscattering signal, backscattering strength (Sv) was calculated for the entire dataset. Sv permits to quantify qualitatively the scatters present in the water, i.e. the particulate and/or the phyto/zoo-plankton. Zooplankton distribution is dependent on phytoplankton presence and blooms, which on its own depend on nutrients availability (related to wind-induced vertical mixing), but also on sunlight. The variation in time of Sv together with vertical velocity allows for measuring DVM of zooplankton and its variability with seasons and years. Alternation of high and low values for Sv are present all year long with differences in intensities in particular in the surface layer. Quite high values for Sv are found in spring and summer; in spring they are found along a large part of the water column, while in summer they are detected prevalently in the upper part of the measurement range. This behavior is related to the conditions of the water column, i.e. mixing and nutrients availability, which influence phytoplankton blooms and therefore zooplankton growing and movements. Correlating Net Primary Production obtained from model and Mixed Layer Depth, a delay of two months in the bloom of phytoplankton with respect to deepest mixing is found. Power Spectra of Sv show a major peak at 24 h that corresponds to the classical nocturnal-diurnal migration, and a secondary important peak at the period of 12 hours that indicates a different type of DVM pattern, the twilight migration. The ultimate factor behind DVM seems to be the minimization of the risk of predation from fishes and other carnivorous groups. Calculating the monthly mean daily cycle of the Sv, it is evident that there is a decrease in Sv at sunrise, while it increases at sunset. The highest values in the derivative of Sv, as well as highest values in the vertical velocity (w), coincide in time with sunset and sunrise. In particular, w is negative (downward movement) at sunrise while it is positive (upward movement) at sunset, and in some cases absolute value of w (|w|) reaches 5 cm/s. The hour of occurrence of |w| greater than 4.5 cm/s follows the curves in time of the hours of sunset and sunrise, which are changing throughout the year.

  1. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland)

    NASA Astrophysics Data System (ADS)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Søren; Babb, David; Toudal Pedersen, Leif; Ehn, Jens; Bendtsen, Jørgen; Barber, David

    2017-11-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22-24 April, when northerly winds exceeded 15 m s-1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0-40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ˜ 4 days. Although current velocities did not exceed 5 cm s-1, the enhanced circulation during the storm caused cold turbid intrusions at 75-95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ˜ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf-basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  2. Long-term Measurement of Sediment Resuspension and Gas Hydrate Stability at a Gulf of Mexico Seep Site

    NASA Astrophysics Data System (ADS)

    Vardaro, M. F.; Bender, L. C.; MacDonald, I. R.

    2003-12-01

    To study the temporal topographic and hydrologic changes in Gulf of Mexico cold seeps, we deployed a deep-sea time-lapse camera, several temperature probes and an ADCP mooring at the continental shelf seep community surrounding a gas hydrate outcropping. The digital camera recorded one still image every six hours for three months in 2001, every two hours for the month of June 2002 and every six hours for the month of July 2002. A pair of 300 kHz Workhorse acoustic Doppler current profilers (ADCPs) attached to a 540 meter-long mooring were anchored approximately 2 km from the site in 2002. Temperature probes were deployed at the site over the entire experimental period. The data recovered provide a comprehensive record of gas hydrate mound processes. We calculated biological activity by identifying fauna observed in the time-lapse record and recording the number of individuals and species seen in each image. 1,381 individual organisms representing over 20 species were observed. An average of 4.6 (+/-3.0) organisms were seen in each frame during the three-month deployment, while 3.6 (+/-4.2) were seen per frame in the one-month deployment. An extensive amount of sediment suspension and redistribution occurred during the deployment period. By digitally analyzing the luminosity of the water column above the mound and plotting the results over time the turbidity at the site could be quantified. A 24.1-hour diurnal pattern can be seen in the record, indicating a possible tidal or inertial component to deep-sea currents in this area. Contrary to expectations, there was no major change in shape or size of the gas hydrate outcrop being studied. This indicates a higher degree of stability than laboratory studies or prior in situ observations have shown. The stable topography of the gas hydrate mound combines with high organic output and sediment turnover to serve as a focus of benthic predatory activity. The frequency and recurrence of sediment resuspension indicate that change in the depth and local distribution of surface sediments is a robust feature of the benthos at this site. Because the sediment interface is a critical environment for hydrocarbon oxidation and chemosynthesis, short term variations and heterogeneity may be important attributes of these settings.

  3. Observation of Tropical Cyclone-Induced Shallow Water Currents in Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Shen, Junqiang; Qiu, Yun; Zhang, Shanwu; Kuang, Fangfang

    2017-06-01

    The data from three stations equipped with Acoustic Doppler Current Profilers (ADCPs) deployed in the shallow water of the Taiwan Strait (TWS) were used to study the shallow coastal ocean response to five quasi-continuous tropical cyclone (TC) events in the late summer 2006. We revealed that, in the forced stage, when the large and strong TC (Bilis) transited, the geostrophic currents were formed which dominated the whole event, while the strong but relatively small one (Saomai) or the weak one (Bopha) primarily leaded to the generation of Ekman currents. In the relaxation stage, the barotropic subinertial waves and/or the baroclinic near-inertial oscillations (NIOs) were triggered. Typically, during the transit of the Saomai, subinertial waves were induced which demonstrated a period of 2.8-4.1 days and a mean alongshore phase velocity of 14.9 ± 3.2 m/s in the form of free-barotropic continental shelf waves. However, the NIOs are only notable in the area in which the water column is stably stratified and also where the wind stress is dominated by the clockwise component and accompanied by high-frequency (near-inertial) variations. We also demonstrated that, due to the damping effects, the nonlinear wave-wave interaction (e.g., between NIO and semidiurnal tide in our case), together with the well-known bottom friction, led to the rapid decay of the observed TC-induced near-inertial currents, giving a typical e-folding time scale of 1-3 inertial periods. Moreover, such nonlinear wave-wave interaction was even found to play a major role during the spring tide in TWS.

  4. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that errors are effectively decreased by applying calibration parameters interpolated in time, and by an optimization of the sediment absorption coefficient. We further discuss practical aspects of residual flux determination in tidal environments and of measuring strategies in relation to site-specific tidal dynamics.

  5. Diffusion profiling of tumor volumes using a histogram approach can predict proliferation and further microarchitectural features in medulloblastoma.

    PubMed

    Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey

    2018-05-31

    Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.

  6. The Angola Current and its seasonal variability as observed at 11°S

    NASA Astrophysics Data System (ADS)

    Kopte, Robert; Brandt, Peter; Dengler, Marcus; Claus, Martin; Greatbatch, Richard J.

    2016-04-01

    The eastern boundary circulation off the coast of Angola has been described only sparsely to date. The region off Angola, which connects the equatorial Atlantic and the Angola-Benguela upwelling regime, is of particular interest to understand the relative importance of transient equatorial versus local forcing of the observed variability in the coastal upwelling region. For the first time multi-year velocity observations of the Angola Current at 11°S are available. From July 2013 to November 2015 a bottom shield equipped with an ADCP had been deployed at 500m water depth, accompanied by a mooring sitting on the 1200m-isobath with an ADCP being installed at 500m depth. Both upward-looking instruments measured the current speed up to about 50m below the sea surface. During the deployment period the Angola Current was characterized by a weak southward mean flow of 5-8 cm/s at 50m depth (slightly stronger at the in-shore mooring position), with the southward current penetrating down to about 200m depth. The alongshore velocity component reveals a pronounced seasonal variability. It is dominated by 120-day, semi-annual, and annual oscillations with distinct baroclinic structures. Here we apply a reduced gravity model of the tropical Atlantic for the first five baroclinic modes forced with interannually varying wind stress to investigate the seasonal variability along the equatorial and coastal waveguides. In the equatorial Atlantic the 120-day, semi-annual, and annual oscillations are associated with resonant basin modes of the 1st, 2nd, and 4th baroclinic mode, respectively. These basin modes are composed of equatorial Kelvin and Rossby waves as well as coastally trapped waves. The reduced gravity model is further used to study the respective role of the remote equatorial forcing, more specifically the influence of equatorial basin modes via coastally trapped waves, and the local forcing for the observed seasonal variability and associated baroclinic structure of the Angola Current at 11°S.

  7. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    NASA Astrophysics Data System (ADS)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  8. Development of a hydro kinetic river turbine with simulation and operational measurement results in comparison

    NASA Astrophysics Data System (ADS)

    Ruopp, A.; Ruprecht, A.; Riedelbauch, S.; Arnaud, G.; Hamad, I.

    2014-03-01

    The development of a hydro-kinetic prototype was shown including the compound structure, guide vanes, runner blades and a draft tube section with a steeply sloping, short spoiler. The design process of the hydrodynamic layout was split into three major steps. First the compound and the draft tube section was designed and the best operating point was identified using porous media as replacement for the guide vane and runner section (step one). The best operating point and the volume flux as well as the pressure drop was identified and used for the design of the guide vane section and the runner section. Both were designed and simulated independently (step two). In step three, all parts were merged in stationary simulation runs detecting peak power and operational bandwidth. In addition, the full scale demonstrator was installed in August 2010 and measured in the St. Lawrence River in Quebec supporting the average inflow velocity using ADCP (Acoustic Doppler Current Profiler) and the generator power output over the variable rotational speed. Simulation data and measurements are in good agreement. Thus, the presented approach is a suitable way in designing a hydro kinetic turbine.

  9. Hydraulic alterations resulting from hydropower development in the Bonneville Reach of the Columbia River

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.

    2010-01-01

    We used a two-dimensional (2D) hydrodynamic model to simulate and compare the hydraulic characteristics in a 74-km reach of the Columbia River (the Bonneville Reach) before and after construction of Bonneville Dam. For hydrodynamic modeling, we created a bathymetric layer of the Bonneville Reach from single-beam and multi-beam echo-sounder surveys, digital elevation models, and navigation surveys. We calibrated the hydrodynamic model at 100 and 300 kcfs with a user-defined roughness layer, a variable-sized mesh, and a U.S. Army Corps of Engineers backwater curve. We verified the 2D model with acoustic Doppler current profiler (ADCP) data at 14 transects and three flows. The 2D model was 88% accurate for water depths, and 77% accurate for velocities. We verified a pre-dam 2D model run at 126 kcfs using pre-dam aerial photos from September 1935. Hydraulic simulations indicated that mean water depths in the Bonneville Reach increased by 34% following dam construction, while mean velocities decreased by 58%. There are numerous activities that would benefit from data output from the 2D model, including biological sampling, bioenergetics, and spatially explicit habitat modeling.

  10. A Three-Year Comparison of Hydrological Measurements in Seven Streams During Breakup in the National Petroleum Reserve - Alaska

    NASA Astrophysics Data System (ADS)

    Vas, D. A.; Toniolo, H. A.; Kemnitz, R.; Lamb, E.

    2012-12-01

    National Petroleum Reserve-Alaska (NPR-A) is an extensive 22.8 million acre oil, gas, and coal rich area that extends from the north foothills of the Brooks range all the way to the Arctic Ocean. Due to increasing demand for oil and natural gas the United States Department of Interior, Bureau of Land Management (BLM) is holding annual oil and gas lease sales in the NPR-A region. BLM is also supporting research to aid responsible oil exploration in the NPR-A region. We conducted a set of hydraulic measurements, which includes discharge measurements using Acoustic Doppler Current Profiler (ADCP), water slope, and suspended sediment sampling during breakup, the most important hydrologic event of the year, from 2010 to 2012 on Otuk Creek, Seabee Creek, Prince Creek, Ikpikpuk River, Judy Creek, Fish Creek, and Ublutuoch River in the NPR - A region. The hydraulic data we collected helped us understand how rivers change yearly which is useful for the development of new infrastructure such as pipe lines, bridges, and roads in the NPR-A region. The goal of this work is to present the results of our 2010 to 2012 spring breakup measurements.

  11. Birth, life and death of an Anticyclonic eddy in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Torres, R.; Sallee, J. B.; Schwarz, J.; Hosegood, P. J.; Taylor, J. R.; Adams, K.; Bachman, S.; Stamper, M. A.

    2016-02-01

    The Antarctic Circumpolar Current (ACC) is a climatically relevant frontal structure of global importance, which regularly develops instabilities growing into meanders, and eventually evolving into long-lived anticyclonic eddies. These eddies exhibit sustained primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean where we sampled and tracked an ACC meander as it developed into an eddy and later vanished some 90 days later. The physical characteristics of the meander and eddy were observed with a combination of high resolution hydrography, ADCP and turbulence observations, in addition to biogeochemical observations of nutrients and phytoplankton. The life and death of the eddy was subsequently tracked through Argo, BIO-Argo Lagrangian profilers and remote sensing. In this presentation we will use observations and ecosystem modelling to discuss the physical processes that sustain the observed high Chlorophyll levels in the eddy and explore how the eddy evolution impacts the rate of nutrient supply and how this translates into the observed changes in chlorophyll. We will discuss the relevance of eddy formation to Chlorophyll and productivity in the region.

  12. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies

    NASA Astrophysics Data System (ADS)

    Hauss, H.; Christiansen, S.; Schütte, F.; Kiko, R.; Edvam Lima, M.; Rodrigues, E.; Karstensen, J.; Löscher, C. R.; Körtzinger, A.; Fiedler, B.

    2015-11-01

    The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 μmol O2 kg-1, but are thought to decline in the course of climate change. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 μmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. A marked reduction in acoustic target strength (derived from shipboard ADCP, 75kHz) within the shallow OMZ at nighttime was evident. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 μmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified followed by zooplankton in response to the eddy OMZ: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect zooplankton avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 μmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.

  13. Pathways and Hydrography in the Mesoamerican Barrier Reef System Part 1: Circulation

    NASA Astrophysics Data System (ADS)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2015-10-01

    Acoustic Doppler Current Profiler (ADCP) measurements and surface drifters released from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the circulation off the Mesoamerican Barrier Reef System (MBRS). We show that the MBRS circulation can be divided into two distinct regimes, a northern region dominated by the strong, northward-flowing Yucatan Current, and a southern region with weaker southward coastal currents and the presence of the Honduras Gyre. The latitude of impingement of the Cayman Current onto the coastline varies with time, and creates a third region, which acts as a boundary between the northern and southern circulation regimes. This circulation pattern yields two zones in terms of dispersal, with planktonic propagules in the northern region being rapidly exported to the north, whereas plankton in the southern and impingement regions may be retained locally or regionally. The latitude of the impingement region shifts interannually and intra-annually up to 3° in latitude. Sub-mesoscale features are observed in association with topography, e.g., flow bifurcation around Cozumel Island, flow wake north of Chinchorro Bank and separation of flow from the coast just north of Bahia de la Ascencion. This third feature is evident as cyclonic recirculation in coastal waters, which we call the Ascencion-Cozumel Coastal Eddy. An understanding of the implications of these different circulation regimes on water mass distributions, population connectivity, and the fate of land-based pollutants in the MBRS is critically important to better inform science-based resource management and conservation plans for the MBRS coral reefs.

  14. Underwater glider observations of the ongoing El Niño

    NASA Astrophysics Data System (ADS)

    Rudnick, D. L.; Owens, B.; Johnston, S.; Karnauskas, K.

    2016-02-01

    We report on observations by underwater gliders in the equatorial current system along 93°W and 95°W between 2°S and 2°N starting in October 2013 and continuing through the present. The project Repeat Observations by Gliders in the Equatorial Region (ROGER) was conceived with the intention of using underwater gliders to make repeat sections across equatorial system to quantify the location and strength of the Equatorial Undercurrent (EUC) and the equatorial front. ROGER serendipitously started near the beginning of a series of events that have led to the El Niño currently ongoing. We use Spray underwater gliders equipped with CTDs and ADCPs to measure pressure, temperature, salinity, velocity and chlorophyll fluorescence in a series of deployments from the Galapagos Islands. At the time of writing of this abstract, we have completed 15 glider missions, with 3 currently underway. Gliders have completed 7300 dives to as deep as 1000 m, traveling 27,000 km in 1600 glider-days. To our knowledge, this is the most extensive glider data set ever collected in the equatorial current system. With 6-km horizontal spacing between profiles, these more than 30 sections across the equator allow a finely-resolved look at the passage of Kelvin waves that establish El Niño. The Kelvin waves are manifest as deepening of the thermocline, warming of the surface, strengthening of the EUC, and northward migration of the equatorial front. We will present an up-to-date account of the continuing glider observations of El Niño.

  15. Field Data Collection Methods and Data Processing of the Influence of Low Momentum Ratio and the Rate of Sediment Transport Forcing on Confluence Hydrodynamics, Morphodynamics and Mixing

    NASA Astrophysics Data System (ADS)

    Moradi, Gelare; Cardot, Romain; Lane, Stuart; Rennie, Colin

    2017-04-01

    River confluences are zones where two or more rivers join and form a single channel downstream of their junction. Because of their essential role in the dynamic of fluvial networks, there has been an increase in the attention given to their hydrodynamics and morphodynamics during last three decades. Despite this increased understanding of the complex flow behavior and morphological aspects, few studies has been focused on low momentum ratio river confluences and mixing processes. As among these few studies, most of them have been driven by the mean of laboratory experiments and numerical models, a combination of field data collection and data processing is required to study the effect of low momentum ratio on flow dynamic, rive morphology and rate of mixing in river confluences. In the present poster, the flow discharge and velocity data of two upper Rhône river confluences in Switzerland, which are characterized by low momentum ratio and a varied rate of poorly sorted sediment transport is shown. The data set is mostly collected, using spatial distributed acoustic Doppler current profiling (aDcp) measurements. The morphological changes are studied using a combination of high-resolution aerial imagery data obtained by a phantom drone and acoustic bathymetric surveys. The mixing processes are investigated by measuring the surface water temperature with a thermic camera mounted on an E-bee drone [, whereas sediment pathways can be explored through the use of the 'bottom-tracking' feature of the aDcp device (not sure there will be such results at the conference time)]. These collected data is processed using a matlab code, Pix4D and visualization software. These processed data then can be used to describe the flow behavior, morphological aspects and mixing processes at river confluences characterized by low momentum ratio and to test laboratory derived conceptual models of flow processes at such junctions. The obtained results can be used under a wider range of forcing conditions to provide detailed data on the three-dimensional flow field and the morphology, to validate numerical models.

  16. Field observations of cohesive sediment dynamics in a partially stratified estuary

    NASA Astrophysics Data System (ADS)

    Huang, I. B.; Monismith, S. G.; Manning, A. J.

    2016-12-01

    This research focuses on understanding cohesive sediment dynamics and transport in a partially stratified estuary, the San Francisco Bay-Delta estuary. Three different datasets are used in this study: 1) Polaris transects: seven longitudinal transects collected on the R/V Polaris in collaboration with the USGS SFB monthly water monitoring project (http://sfbay.wr.usgs.gov/access/wqdata); 2) Questuary transects: two two-day transects collected on the R/V Questuary spanning from Suisun Bay to the Delta, near Sacramento, CA; and 3) Questuary stationary: a 48-hr stationary profiling experiment collected on the R/V Questuary at the low-salinity zone in Rio Vista, CA. Altogether, these cruises covered a spatial range of approximately 220 km from June 2008 to November 2015. Vertical profiles of particle size distributions (PSDs), total floc volume concentrations, pressure, salinity, temperature, fluorescence, suspended sediment concentrations (SSC via optical backscatter calibration), and photosynthetically irradiance (PAR) were collected in all experiments using a LISST 100X Type B or Type C (Sequoia Scientific) and a SBE 19+ CTD (Seabird Electronics). Background currents were monitored using a downward-looking 600 or 1200 kHz ADCP (RDI Teledyne) on all Questuary datasets, and in-situ dissipation profiles were measured using a free-falling VMP-200 (Rockland Scientific) in all datasets except for one Polaris transect. We make the following main observations. First, suspended sediment flocculation significantly enhances particle fall velocity and therefore sediment removal from the water column. Second, we argue that estuarine physics is the main driving mechanism behind floc size changes, rather than chemical or biological factors. Lastly, we show that suspended sediment and light penetration relationships can be improved by accounting for floc size changes under certain conditions.

  17. Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer

    2008-01-01

    In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and carbon concentrations were similar at the top and bottom of the water column, though ammonia and particulate carbon showed more variability in summer. Averaged over the season, particulate carbon and particulate nitrogen decreased in the downstream direction, while ammonia and orthophosphate concentrations increased in the downstream direction. At most sites, bacteria, phytoplankton, and zooplankton populations reached their maximums in summer. Large bacterial cells made up most of the bacteria biovolume, though cocci were the most numerous bacteria type. The cocci were smaller than the filter pore sizes used to separate dissolved from particulate matter in this study. Phytoplankton biovolumes were dominated by the blue-green alga Aphanizomenon flos-aquae most of the sampling season, though a spring diatom bloom occurred. Phytoplankton biovolumes were generally highest at the upstream Link River and Railroad Bridge sites and decreased in the downstream direction. Zooplankton populations were dominated by copepods in early spring, and by cladocerans and rotifers in summer, with rotifers more common farther downstream.

  18. Hydrography and bottom boundary layer dynamics: Influence on inner shelf sediment mobility, Long Bay, North Carolina

    USGS Publications Warehouse

    Davis, L.A.; Leonard, L.A.; Snedden, G.A.

    2008-01-01

    This study examined the hydrography and bottom boundary-layer dynamics of two typical storm events affecting coastal North Carolina (NC); a hurricane and the passages of two small consecutive extratropical storms during November 2005. Two upward-looking 1200-kHz Acoustic Doppler Current Profilers (ADCP) were deployed on the inner shelf in northern Long Bay, NC at water depths of less than 15 m. Both instruments profiled the overlying water column in 0.35 in bins beginning at a height of 1.35 in above the bottom (mab). Simultaneous measurements of wind speed and direction, wave and current parameters, and acoustic backscatter were coupled with output from a bottom boundary layer (bbl) model to describe the hydrography and boundary layer conditions during each event. The bbl model also was used to quantify sediment transport in the boundary layer during each storm. Both study sites exhibited similar temporal variations in wave and current magnitude, however, wave heights during the November event were higher than waves associated with the hurricane. Near-bottom mean and subtidal currents, however, were of greater magnitude during the hurricane. Peak depth-integrated suspended sediment transport during the November event exceeded transport associated with the hurricane by 25-70%. Substantial spatial variations in sediment transport existed throughout both events. During both events, along-shelf sediment transport exceeded across-shelf transport and was related to the magnitude and direction of subtidal currents. Given the variations in sediment type across the bay, complex shoreline configuration, and local bathymetry, the sediment transport rates reported here are very site specific. However, the general hydrography associated with the two storms is representative of conditions across northern Long Bay. Since the beaches in the study area undergo frequent renourishment to counter the effects of beach erosion, the results of this study also are relevant to coastal management decision-making. Specifically, these issues include 1) identification of municipalities that should share the cost for renourishment given the likelihood for significant along-shelf sand movement and 2) appropriate timing of sand placement with respect to local climatology and sea-turtle nesting restrictions.

  19. Field observation and analysis of wave-current-sediment movement in Caofeidian Sea area in the Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Zuo, Li-qin; Lu, Yong-jun; Wang, Ya-ping; Liu, Huai-xiang

    2014-06-01

    In order to study the mechanism of flow-sediment movement, it is essential to obtain measured data of water hydrodynamic and sediment concentration process with high spatial and temporal resolution in the bottom boundary layer (BBL). Field observations were carried out in the northwest Caofeidian sea area in the Bohai Bay. Near 2 m isobath (under the lowest tidal level), a tripod system was installed with AWAC (Acoustic Wave And Current), ADCP (Acoustic Doppler Current Profilers), OBS-3A (Optical Backscatter Point Sensor), ADV (Acoustic Doppler Velocimeters), etc. The accurate measurement of the bottom boundary layer during a single tidal period was carried out, together with a long-term sediment concentration measurement under different hydrological conditions. All the measured data were used to analyze the characteristics of wave-current-sediment movement and the BBL. Analysis was performed on flow structure, shear stress, roughness, eddy viscosity and other parameters of the BBL. Two major findings were made. Firstly, from the measured data, the three-layer distribution model of the velocity profiles and eddy viscosities in the wave-current BBL are proposed in the observed sea area; secondly, the sediment movement is related closely to wind-waves in the muddy coast area where sediment is clayey silt: 1) The observed suspended sediment concentration under light wind conditions is very low, with the peak value generally smaller than 0.1 kg/m3 and the average value being 0.03 kg/m3; 2) The sediment concentration increases continuously under the gales over 6-7 in Beaufort scale, under a sustained wind action. The measured peak sediment concentration at 0.4 m above the seabed is 0.15-0.32 kg/m3, and the average sediment concentration during wind-wave action is 0.08-0.18 kg/m3, which is about 3-6 times the value under light wind conditions. The critical wave height signaling remarkable changes of sediment concentration is 0.5 m. The results show that the suspended load sediment concentration is mainly influenced by wave-induced sediment suspension.

  20. Interannual variability of mass transport in the Canary region from LADCP data

    NASA Astrophysics Data System (ADS)

    Comas-Rodríguez, Isis; Hernández-Guerra, Alonso; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2010-05-01

    The variability of the Canary Current is a widely studied topic regarding its role as eastern boundary of the North Atlantic Subtropical Gyre. The Canary region provides indeed an interesting study area in terms of estimating variability scales of the Subtropical Gyre as well as the water masses dynamics. RAPROCAN (RAdial PROfunda de CANarias - Canary deep hydrographic section) is a project based on the reaching of these goals through the obtaining of hydrographic measures during cruises taking place approximately along 29°N, to the North of the Canary Archipelago, twice a year since 2006. The full depth sampling carried out allows the study of temperature and salinity distribution and the calculation of mass transports across the section. The transport estimates are compared to those obtained from previous measurements and estimates in the region. Therefore, transports and their variability through the last decade are quantified. The most significant advance made to previous works is the use of LADCP (Lowered Acoustic Doppler Current Profiler) data informing the initial geostrophic calculations. Thus, corrections are applied to each geostrophic profile considering the reference velocity obtained from LADCP data. ADCP-referenced transport estimates are obtained, providing a successful comparison between the velocity fields obtained from the hydrographic measures. While this work shows the interannual variability observed in winter since 1997, preliminary results confirm previous hypotheses about the magnitude of the Canary Current. Those results including LADCP data also provide new aspects in the circulation distribution across the Canary Archipelago. Also moored current meter data were taken into account in the up close study of the Current through the Lanzarote Passage. Interesting conclusions were drawn that certify the usefulness of LADCP data in referencing geostrophic calculations, while corroborating the results obtained through this methodology. Hence, this work permits the quantification of mass fluxes across the section as well as the study of the water masses located in the Canary Basin and the further analysis of the Subtropical Gyre variability with regards to its significance in the circulation and dynamics concerning the North Atlantic Ocean.

  1. Beach Erosion and Accretion: Comparison of the Seasonal Influence of Suspended- and Bedload-Sediment Transport at Grays Harbor, Washington, U. S. A.

    NASA Astrophysics Data System (ADS)

    Sherwood, C. R.; Lacy, J. R.; Ruggiero, P.; Kerr, L. A.; Gelfenbaum, G.; Wilson, D. J.

    2001-12-01

    We conducted field studies on the ebb-tidal delta near the entrance to Grays Harbor, Washington in Autumn, 1999 and Spring 2001, with the objectives of 1) providing directional wave data to validate a shoaling and refraction model for the ebb-tidal delta, and 2) measuring forcing (wave- and current-induced near-bottom velocities, accelerations, and shear stresses) and responses (bedforms, suspended-sediment profiles, and sediment fluxes) associated with intervals of beach erosion and accretion. In the Autumn experiment (October - December), tripods were deployed at shallow ( ~14-m) and deep ( ~24-m) sites on the northern, middle, and southern flanks of the ebb tidal. In the Spring experiment (May - mid-July), tripods were redeployed at four sites and a new inshore site ( ~9-m depth), and pressures, current velocities, and suspended-sediment concentrations were measured with 5-MHz acoustic Doppler velocimeters (ADVs), optical backscatterance sensors, upward-looking acoustic Doppler current profilers (ADCPs), a downward-looking pulse-coherent acoustic Doppler profiler (PCADP), and an acoustic backscatterance sensor (ABS). We also measured bedforms with profiling and imaging sonars and estimated Reynolds stresses with a pair of 10-MHz ADVs at the inshore site. Incident waves, nearshore circulation patterns, statistics of near-bottom wave- and current-induced velocities, and sediment fluxes were distinctly different in the two experiments. During the Autumn measurements, the general direction of wave approach shifted from WNW to WSW as the North Pacific weather pattern shifted from summer to winter, and we observed a large storm (offshore significant wave heights Hs of ~8 m) and a sequence of about 8 smaller events with ~4 to 5-m waves. Sediment transport was dominated by storm-induced, downwelling-favorable circulation that transported suspended sediments northward and offshore. Inferred bedload fluxes were directed shoreward, but were much smaller. In contrast, Spring wave conditions were much milder (maximum Hs of ~4 m), and waves approached mostly from the WNW. There were long periods of upwelling-favorable circulation interrupted by intervals of storm-induced northward flow. Net suspended-sediment transport was directed northward at the deeper sites and southward at the inshore sites. Near-bottom transport remained offshore at the deeper sites, but was lower, with negligible net cross-shore component at the shallow sites. The relative contribution of shoreward bedload transport was much larger. These changes in sediment transport outside the breaker zone are consistent with measured changes in beach and bar morphology.

  2. Velocity and sediment surge: What do we see at times of very shallow water on intertidal mudflats?

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Gong, Zheng; Zhang, Changkuan; Townend, Ian; Jin, Chuang; Li, Huan

    2016-02-01

    A self-designed "bottom boundary layer hydrodynamic and suspended sediment concentration (SSC) measuring system" was built to observe the hydrodynamic and the SSC processes over the intertidal mudflats at the middle part of the Jiangsu coast during August 8-10, 2013. Velocity profiles within 10 cm of the mudflat surface were obtained with a vertical resolution as fine as 1 mm. An ADCP was used to extend the profile over the full water depth with a resolution of 10 cm and the vertical SSC profile was measured at intervals using Optical Backscatter Sensors (OBS). At the same time, water levels and wave conditions were measured with a Tide and Wave Recorder. Measured data suggested that the vertical structure of velocity profiles within 10 cm above the bed maintains a logarithmic distribution during the whole tidal cycle except the slack-water periods. Shallow flows during both the early-flood period and the later-ebb period are characterized by a relatively large vertical velocity gradient and a "surge" feature. We conclude that the very shallow water stages are transient and may not contribute much to the whole water and sediment transport, while they can play a significant role in the formation and evolution of micro-topographies on tidal flats.

  3. Bathymetry and ocean properties beneath Pine Island Glacier revealed by Autosub3 and implications for recent ice stream evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Dutrieux, P.; McPhail, S.; Perrett, J.; Webb, A.; White, D.; Jacobs, S. S.

    2009-12-01

    The Antarctic ice sheet, which represents the largest of all potential contributors to sea level rise, appears to be losing mass at a rate that has accelerated over recent decades. Ice loss is focussed in a number of key drainage basins where dynamical changes in the outlet glaciers have led to increased discharge. The synchronous response of several independent glaciers, coupled with the observation that thinning is most rapid over their floating termini, is generally taken as an indicator that the changes have been driven from the ocean. Some of the most significant changes have been observed on Pine Island Glacier, where thinning, acceleration and grounding line retreat have all been observed, primarily through satellite remote sensing. Even during the relatively short satellite record, rates of change have been observed to increase. Between 20th and 30th January 2009 the Autosub3 autonomous underwater vehicle was deployed from host ship RVIB Nathaniel B Palmer on six sorties into the ocean cavity beneath Pine Island Glacier. Total track length was 887 km (taking 167 hours) of which 510 km (taking 94 hours) were beneath the glacier. Some of the main aims were to map both the seabed beneath and the underside of the glacier and to investigate how warm Circumpolar Deep Water (CDW) flows beneath Pine Island Glacier and determines its melt rate. Among the instruments carried by Autosub-3 were a Seabird CTD, with dual conductivity and temperature sensors plus a dissolved oxygen sensor and a transmissometer, a multi-beam echosounder that could be configured to look up or down, and two Acoustic Doppler Current Profilers (ADCPs): an upward-looking 300 kHz instrument and a downward-looking 150 kHz instrument, providing a record of ice draft and seabed depth along the vehicle track. The ADCP data reveal an apparently continuous ridge with an undulating crest that extends across the cavity about 30km in from the current ice front. This topographic feature blocks CDW inflow from the inner cavity and impacts the degree to which it mixes with the cooler melt water outflow. Swath soundings indicate that this ridge was a former grounding line, while satellite imagery from the early 1970’s hints that Pine Island Glacier might still have been in contact with the ridge at that time. These findings suggest that the changes observed by satellite over the past two decades are the continuation of a longer period of grounding line retreat.

  4. Downstream evolution of the Kuroshio's time-varying transport and velocity structure

    NASA Astrophysics Data System (ADS)

    Andres, M.; Mensah, V.; Jan, S.; Chang, M.-H.; Yang, Y.-J.; Lee, C. M.; Ma, B.; Sanford, T. B.

    2017-05-01

    Observations from two companion field programs—Origins of the Kuroshio and Mindanao Current (OKMC) and Observations of Kuroshio Transport Variability (OKTV)—are used here to examine the Kuroshio's temporal and spatial evolution. Kuroshio strength and velocity structure were measured between June 2012 and November 2014 with pressure-sensor equipped inverted echo sounders (PIESs) and upward-looking acoustic Doppler current profilers (ADCPs) deployed across the current northeast of Luzon, Philippines, and east of Taiwan with an 8 month overlap in the two arrays' deployment periods. The time-mean net (i.e., integrated from the surface to the bottom) absolute transport increases downstream from 7.3 Sv (±4.4 Sv standard error) northeast of Luzon to 13.7 Sv (±3.6 Sv) east of Taiwan. The observed downstream increase is consistent with the return flow predicted by the simple Sverdrup relation and the mean wind stress curl field over the North Pacific (despite the complicated bathymetry and gaps along the North Pacific western boundary). Northeast of Luzon, the Kuroshio—bounded by the 0 m s-1 isotach—is shallower than 750 dbar, while east of Taiwan areas of positive flow reach to the seafloor (3000 m). Both arrays indicate a deep counterflow beneath the poleward-flowing Kuroshio (-10.3 ± 2.3 Sv by Luzon and -12.5 ± 1.2 Sv east of Taiwan). Time-varying transports and velocities indicate the strong influence at both sections of westward propagating eddies from the ocean interior. Topography associated with the ridges east of Taiwan also influences the mean and time-varying velocity structure there.

  5. Modeling tides and their influence on the circulation in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Chao, Yi; Zhang, Hongchun; Farrara, John; Li, Zhijin; Jin, Xin; Park, Kyungeen; Colas, Francois; McWilliams, James C.; Paternostro, Chris; Shum, C. K.; Yi, Yuchan; Schoch, Carl; Olsson, Peter

    2013-07-01

    In the process of developing a real-time data-assimilating coastal ocean forecasting system for Prince William Sound, Alaska, tidal signal was added to a three-domain nested model for the region. The model, which is configured from the Regional Ocean Modeling System (ROMS), has 40 levels in the vertical direction and horizontal resolutions of 10.6km, 3.6km and 1.2km for its three nested domains, respectively. In the present research, the ROMS tidal solution was validated using data from coastal tide gauges, satellite altimeters, high-frequency coastal radars, and Acoustic Doppler Current Profiler (ADCP) current surveys. The error of barotropic tides, as measured by the total root mean square discrepancy of eight major tidal constituents is 5.3cm, or 5.6% of the tidal sea surface height variability in the open ocean. Along the coastal region, the total discrepancy is 9.6cm, or 8.2% of the tidal sea surface height variability. Model tidal currents agree reasonably well with the observations. The influence of tides on the circulation was also investigated using numerical experiments. Besides tides, other types of forcing fields (heat flux, wind stress, evaporation minus precipitation, and freshwater discharge) were also included in the model. Our results indicate that tides play a significant role in shaping the mean circulation of the region. For the summer months, the tidal residual circulation tends to generate a cyclonic gyre in the central Sound. The net transport into the Sound through Hinchinbrook Entrance is reduced. Tides also increase the mixed layer depth in the Sound, especially during the winter months.

  6. Dual-RiverSonde measurements of two-dimensional river flow patterns

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.

    2008-01-01

    Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.

  7. Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Strutton, Peter G.; Martz, Todd R.; Degrandpre, Michael D.; McGillis, Wade R.; Drennan, William M.; Boss, Emmanuel

    2011-11-01

    A unique time series of moored bio-optical measurements documented the 2004 spring-summer bloom in the southern Labrador Sea. In situ and satellite chlorophyll data show that chlorophyll levels in the 2004 bloom were at the upper end of those typically observed in this region. Satellite chlorophyll and profiling float temperature/salinity data show that the main bloom, which typically peaks in June/July, is often preceded by ephemeral mixed layer shoaling and a lesser, short-lived bloom in May; this was the case in 2004. The particulate backscatter to beam attenuation ratio (bbp[470 nm]/Cp[660 nm]) showed peaks in the relative abundance of small particles at bloom initiation and during the decline of the bloom, while larger particles dominated during the bloom. Chlorophyll/Cp and bbp/chlorophyll were correlated with carbon export and dominated by changes in the pigment per cell associated with lower light levels due to enhanced attenuation of solar radiation during the bloom. An NPZ (nutrients, phytoplankton, zooplankton) model captured the phytoplankton bloom and an early July peak in zooplankton. Moored acoustic Doppler current profiler (ADCP) data showed an additional mid-June peak in zooplankton biomass which was attributed to egg-laying copepods. The data reported here represent one of the few moored time series of Cp, bbp and chlorophyll extending over several months in an open ocean region. Interpretation of data sets such as this will become increasingly important as these deployments become more commonplace via ocean observing systems. Moreover, these data contribute to the understanding of biological-physical coupling in a biogeochemically important, yet poorly studied region.

  8. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  9. Real-time data collection of scour at bridges

    USGS Publications Warehouse

    Mueller, David S.; Landers, Mark N.

    1994-01-01

    The record flood on the Mississippi River during the summer of 1993 provided a rare opportunity to collect data on scour of the streambed at bridges and to test data collection equipment under extreme hydraulic conditions. Detailed bathymetric and hydraulic information were collected at two bridges crossing the Mississippi River during the rising limb, near the peak, and during the recession of the flood. Bathymetric data were collected using a digital echo sounder. Three-dimensional velocities were collected using Broadband Acoustic Doppler Current Profilers (BB-ADCP) operating at 300 kilohertz (kHz), 600 kHz, and 1,200 kHz. Positioning of the data collected was measured using a range-azimuth tracking system and two global positioning systems (GPS). Although differential GPS was able to provide accurate positions and tracking information during approach- and exit-reach data collection, it was unable to maintain lock on a sufficient number of satellites when the survey vessel was under the bridge or near the piers. The range-azimuth tracking system was used to collect position and tracking information for detailed data collection near the bridge piers. These detailed data indicated local scour ranging from 3 to 8 meters and will permit a field-based evaluation of the ability of various numerical models to compute the hydraulics, depth, geometry, and time-dependent development of local scour.

  10. An empirical model of the tidal currents in the Gulf of the Farallones

    USGS Publications Warehouse

    Steger, J.M.; Collins, C.A.; Schwing, F.B.; Noble, M.; Garfield, N.; Steiner, M.T.

    1998-01-01

    Candela et al. (1990, 1992) showed that tides in an open ocean region can be resolved using velocity data from a ship-mounted ADCP. We use their method to build a spatially varying model of the tidal currents in the Gulf of the Farallones, an area of complicated bathymetry where the tidal velocities in some parts of the region are weak compared to the mean currents. We describe the tidal fields for the M2, S2, K1, and O1 constituents and show that this method is sensitive to the model parameters and the quantity of input data. In areas with complex bathymetry and tidal structures, a large amount of spatial data is needed to resolve the tides. A method of estimating the associated errors inherent in the model is described.

  11. Streamflow loss quantification for groundwater flow modeling using a wading-rod-mounted acoustic Doppler current profiler in a headwater stream

    NASA Astrophysics Data System (ADS)

    Pflügl, Christian; Hoehn, Philipp; Hofmann, Thilo

    2017-04-01

    Irrespective of the availability of various field measurement and modeling approaches, the quantification of interactions between surface water and groundwater systems remains associated with high uncertainty. Such uncertainties on stream-aquifer interaction have a high potential to misinterpret the local water budget and water quality significantly. Due to typically considerable temporal variation of stream discharge rates, it is desirable for the measurement of streamflow to reduce the measuring duration while reducing uncertainty. Streamflow measurements, according to the velocity-area method, have been performed along reaches of a losing-disconnected, subalpine headwater stream using a 2-dimensional, wading-rod-mounted acoustic Doppler current profiler (ADCP). The method was chosen, with stream morphology not allowing for boat-mounted setups, to reduce uncertainty compared to conventional, single-point streamflow measurements of similar measurement duration. Reach-averaged stream loss rates were subsequently quantified between 12 cross sections. They enabled the delineation of strongly infiltrating stream reaches and their differentiation from insignificantly infiltrating reaches. Furthermore, a total of 10 near-stream observation wells were constructed and/or equipped with pressure and temperature loggers. The time series of near-stream groundwater temperature data were cross-correlated with stream temperature time series to yield supportive qualitative information on the delineation of infiltrating reaches. Subsequently, as a reference parameterization, the hydraulic conductivity and specific yield of a numerical, steady-state model of groundwater flow, in the unconfined glaciofluvial aquifer adjacent to the stream, were inversely determined incorporating the inferred stream loss rates. Applying synthetic sets of infiltration rates, resembling increasing levels of uncertainty associated with single-point streamflow measurements of comparable duration, the same inversion procedure was run. The volume-weighted mean of the respective parameter distribution within 200 m of stream periphery deviated increasingly from the reference parameterization at increasing deviation of infiltration rates.

  12. Multiscale wind cycles and current pulses at the Black Sea eastern boundary

    NASA Astrophysics Data System (ADS)

    Melnikov, Vasiliy; Moskalenko, Lidija; Piotoukh, Vladimir; Zatsepin, Andrey

    2015-04-01

    The goal of the research is to examine meteorological descriptive elements, sea-water properties, regional hydrodynamics and energy conversion fluxes in order to study sea responses to the local and far-field weather system. The Black Sea is situated in the chain of internal basins between the North Atlantic and Central Asia deserts in the marginal interaction zone and, accordingly, is under the influence of the Azores and Siberian anticyclones, Arctic cold-air surges and subtropical desert belt to the south. The analysis is based on the data of modern oceanographic measuring network "Hydro-physical Polygon" of the Institute of oceanology, using contact and remote sensing methods, weather stations around the Black Sea coasts, including long-term (1938-2014) measurements at the Gelendzhik weather station. Various satellite and Reanalysis databases are used. Currently, there are three long-time measuring moored stations (each contains ADCP and thermistor chain) and scanning profiling system "Akvalog". Hydrological sections and field surveys using towed ADCP and CTD are performed on a regular basis. The data are accumulated in the coastal archive which allows calibration of satellite measurements and testing results of numerical modeling. Data processing includes data sets preparation, editing, time series statistical calculations using histograms, progressive vector diagrams, traditional Fourier spectral analysis including auto- and cross spectra, auto and mutual wavelet diagrams, moving spectrograms, vector data methods using rotary components, spectral invariants, empirical modes, hodograph and pre-specified spectrum representations on the basis of stochastic models with imposed dynamical assumptions. Due to the intermittent nature of the time rows, spectral representation is misleading, often. In order to identify the individual evolving dynamical phenomenon, typical background (seasonal) three-dimensional structures of the hydrological field, as well as quantified anomalies, associated with different frequency components of variability, such as sub-meso-scale eddies, marginal shelf waves, inertial oscillations, diurnal, semi-diurnal and short-period internal waves, long surface waves, were estimated. Based on estimates of the statistical relationships between the different parameters of hydro-meteorological system, including meteorological elements, sea level, sea temperature and flow fields, space/time scales of the observed fields variability were estimated. Several new features of the physical mechanisms of multiscale hydro-physical processes in the shelf zone of the Black Sea, have been revealed. In particular, it is shown, that there are wind self-similar cycles at different time scales, each cycle being consisted of a pair of northeast and then southeast winds, which corresponds to the alternative influences of the Azores and Siberian highs(in winter). In the range of decadal (10 years) scale and in macro space view, long-term wind cycles support basic Black Sea circulation(Rim Current).Wind cycles with a time scale of about 20 days give rise to distinct upwellings, appeared with the same frequency. Along with each upwelling, radical hydrological restructuring of the stratification is accompanied by intense advection with high velocities(up to 1 m/s). Kinetic energy is dominated by alongshore currents, the direction being reversed periodically. The vertical structure of currents is rather complicated. When the current speed exceeds some threshold value, the flow gives rise to relaxation oscillations with a period of about 24 hours with counterclockwise velocity vector rotation. All the above mentioned events and current pulses cause significant variations of air-sea fluxes. This research was jointly supported by Ministry of Education of the RF (Agreement №14.604.21.0044), Russian Academy of Sciences(Program No 23), RFBR grant 14-05-00159,contract No 10/2013 RGS-RFBR.

  13. Application of acoustical methods for estimating water flow and constituent loads in Perdido Bay, Florida

    USGS Publications Warehouse

    Grubbs, J.W.; Pittman, J.R.

    1997-01-01

    Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.

  14. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Tidal and seasonal effects on transport of pink shrimp postlarvae

    USGS Publications Warehouse

    Criales, Maria M.; Wang, Jingyuan; Browder, Joan A.; Robblee, M.B.

    2005-01-01

    Transport simulations were conducted to investigate a large seasonal peak in postlarvae of the pink shrimp Farfantepenaeus duorarum that occurs every summer on the northwestern border of Florida Bay. Daily vertical migration, a known behavior in pink shrimp postlarvae, was assumed in all scenarios investigated. A Lagrangian trajectory model was developed using a current field derived from a 3 yr ADCP (Acoustic Doppler Current Profiler) time series. To fit the estimated planktonic development time of pink shrimp, the model simulated larvae traveling at night over a 30 d period. We investigated 2 types of effects: (1) the effect of mismatch periodicity between tidal constituents and daily migration, and (2) the effect of seasonal changes in night length. The maximum eastward displacement with the semidiurnal lunar tidal constituent (M2) was 4 km, with periods of enhanced transport in both summer and winter. In contrast, eastward displacement with the semidiurnal solar tidal constituent (S2) and the lunisolar diurnal K1 was 65 km and the period of maximum distance occurred in summer every year. Because the periods of S2 and K1 are so close to the 24 h vertical migration period, and the eastward current (flood) of these constituents matches the diel cycle over extended intervals, they can induce strong horizontal transport during summer. Thus, diel vertical migration can interact with the S2 and the K1 tidal constituents and with the annual cycle of night length to produce a distinct annual cycle that may enhance transport of pink shrimp and other coastal species during summer in shallow areas of the Gulf of Mexico. ?? Inter-Research 2005.

  16. Multiscale and multidisciplinary Marine Rapid Environmental Assessment data collection methods for process studies: the case of the Taranto Gulf

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Maicu, Francesco; Pinardi, Nadia; Lyubartsev, Vladyslav; Causio, Salvatore; Caporale, Claudio; Demarte, Maurizio; Falconieri, Alfredo; Lecci, Rita; Lacava, Teodosio; Lisi, Matteo; Sepp-Neves, Augusto; Lorenzetti, Giuliano; Manfe', Giorgia; Trotta, Francesco; Zaggia, Luca; Ciliberti, Stefania Angela; Fratianni, Claudia; Grandi, Alessandro

    2017-04-01

    The present work aims to investigate the thermohaline properties and the circulation of the Gulf of Taranto, which is a deep, semi-enclosed ocean area in the northern Ionian sea, encircled by two Italian peninsulas of southern Apulia and Calabria. Since few observations in the past have been reported in the Gulf of Taranto, it emerged the need of planning and implementing oceanographic cruises in this area, based on an innovative concept of MREA (Marine Rapid Environmental Assessment). The methodology was based on an optimal experimental strategy to collect definitive evidences on ocean mesoscales with a spatial-and-time synoptic coverage. The MREA surveys have been performed thanks to the synergies between Italian oceanographic research centers and the Italian Navy Hydrographic Institute. Starting from the experience and results of MREA14 (Pinardi et al., 2016), which have shown in the Gulf an anticyclonic circulation in Autumn (October 2014) and the presence of submesoscale structure, a new experiment (MREA16) was repeated in a different season (Summer, June-July 2016), evaluating possible changes in current circulation. Furthermore, the new sampling methodology was refined and strengthened integrating the classical CTD data collection with additional simultaneous measurements of currents by means of vessel-mounted ADCP. The geostrophic circulation pattern derived from the CTD objective-analysis mapping techniques has been verified with the ADCP measurements. Moreover, the analysis on circulation fields confirms the presence of possible submesoscale structures, which can be well solved by a high-resolution sampling scheme. The MREA investigation in Gulf of Taranto shows a large-scale gyre anticyclonically-oriented in Autumn (MREA14) and cyclonically-oriented in Summer (MREA16). This opposite circulation pattern is probably connected to (i) the impact of Western Adriatic Coastal Current (WACC), (ii) the effect of the Northern Ionian Sea outflow-inflow system in different seasons and (iii) the local atmospheric forcing.

  17. Modelling and in-situ measurements of intense currents during a winter storm in the Gulf of Aigues-Mortes (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Michaud, Héloïse; Leredde, Yann; Estournel, Claude; Berthebaud, Éric; Marsaleix, Patrick

    2013-09-01

    While oceanic circulation in the Gulf of Lion (GoL) has often been studied in calm weather or with northerly winds (Tramontane or Mistral) through observations and numerical circulation models, few studies have focused on southeasterly storm events. Yet, correct representation of the circulation during storms is crucial if the suspension of sediments is to be correctly modelled throughout the Gulf. The purpose of this paper is to describe the hydrodynamics in the Gulf of Aigues-Mortes (NW of the GoL) during the storm of 18 February 2007 by using a set of data from an ADCP station placed at a depth of 65 m on the sea bed off the coast at Sète, supplemented by the ocean circulation model SYMPHONIE. This storm was characterized by a moderate south-easterly wind (15 m . s-1) and waves of up to 5 m of significant height at its apex. At the ADCP, strong currents of up to 0.8 m . s-1 near the surface and 0.5 m . s-1 near the bottom were recorded, parallel to the coast, flowing towards the south-west. The simulated currents were widely underestimated, even taking the effect of waves into account in the model. It was suspected that the representation of the wind in the atmospheric model was an underestimation. A new simulation was therefore run with an arbitrarily chosen stronger wind and its results were in much better agreement with the measurements. A simplified theoretical analysis successfully isolated the wind-induced processes, responsible for the strong currents measured during the apex and the strong vertical shear that occurred at the beginning of the storm. These processes were: 1/ the barotropic geostrophic current induced by a wind parallel to the coast and 2/ the Ekman spiral. The duration of the storm (about 36 h at the apex) explains the continuous increase of the current as predicted by the theory. The frictionally induced Ekman transport explains the current shear in the surface layer in the rising stage of the storm, and the addition of high waves and strong wind at the apex is more in favour of strong vertical mixing in the surface layer.

  18. The Berlin Exoplanet Search Telescope

    NASA Astrophysics Data System (ADS)

    Rauer, H.; Erikson, A.; Voss, H.; Hatzes, A.; Eisloeffel, J.

    Several authors have suggested that nonlinear internal waves (solitary waves) can transport plankton over considerable distances. In this talk we present a preliminary analysis of the data collected during a 10-day long experiment in Massachusetts Bay that was specifically designed to test this hipothesys. We sampled over 15 trains of solitary waves, collecting current data with the shipboard ADCP while at the same time sampling the concentration and taxonomic distribution of plankton in the water column by means of a towed Video Plankton Recorder, which also collected hydro- graphic data. In the analisys, we compare the current data with the data from the towed instrument to test wether the waves act as concentrator. We have also devel- oped a model to asses the effect of particular behavioral responses with regard to the ability to surf the waves.

  19. Are mangroves as tough as a seawall? Flow-vegetation interaction in a living shoreline restoration

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Kitsikoudis, V.; Spiering, D. W.

    2017-12-01

    This study aims to assess the impact of an established living shoreline restoration on near-shore hydraulics, shoreline slope, and sediment texture and organic matter content. We collected data from three 100 m shoreline sites within an estuarine lagoon in Canaveral National Seashore: one restored; one that had been stabilized by a seawall; and one in a reference condition stabilized by mature mangrove vegetation. The living shoreline site was restored five years prior with a breakwater of oyster shell bags, emergent marsh grasses (Spartina alterniflora), and mangroves (Rhizophora mangle and Avicennia germinans). We sampled water depth and incoming velocity profiles of the full water column at 2 Hz using a 2 MHz Acoustic Doppler Current Profiler (ADCP, Nortek), stationed down-looking, approximately 10 m offshore. A 2 - 3 cm velocity profile above the bed was sampled on the shoreline at 100 Hz, using a Nortek Vectrino profiler. In restored and reference sites, the onshore probe was placed within vegetation. We surveyed vegetation upstream of the probe for species and diameter at water level. Windspeed and direction were collected 2 m above the water surface. Shorelines were surveyed in transects using GPS survey equipment. Five sediment cores were collected to 20 cm depth from both onshore and offshore of each site. Individual cores were processed for loss on ignition before being pooled by site for analysis of grain size distribution. While incoming velocity profiles were similar between sites, hydraulic conditions onshore within the vegetated sites deviated from the seawall site, which was devoid of vegetation. Offshore to onshore gradients in shear stress, mean velocity, and turbulent kinetic energy differed widely between sites, despite similar wind and tidal conditions. Sediment grain sizes were finer and contained more organic matter in the restored and reference sites than in the seawall site. Profiles of the restored and seawall sites were similar, though the reference site had a more complex bathymetry. Variable hydraulic patterns observed at restored and reference sites may attribute to differences in dominant vegetation-water interactions. Interactions at the reference site were characterized by flow between mangrove prop roots while the restored site consisted mainly of Spartina leaves.

  20. 2014 & 2015 Loop Current Observations from a Gulf of Mexico Public-Private Ocean Observing Collaboration

    NASA Astrophysics Data System (ADS)

    Leung, P.; Perry, R.; Sharma, N.; Zwissler, C.; McCall, W.; Bouchard, R. H.; Martin, K. M.

    2016-02-01

    In 2008, Shell Exploration & Production Company and NOAA formed a collaboration to explore joint opportunities for monitoring the Gulf of Mexico outer continental shelf (OCS). Since then, industry, academic, private, and government partners have been working to build an adaptive ocean observing program that leverages and integrates the complementary strengths of each partner. The program includes vessel and rig-mounted ADCPs, buoys, remote sensing, and profiling gliders with advanced numerical modeling. In this presentation, we focus on 2014 and 2015 program observations of the Gulf physical environment. The 2014 season was characterized by strong Loop Current (LC) circulation with persistent currents (3.5+ knots) extending as far north as 29oN. A number of eddies impacted the Mississippi Canyon region from May to November with one (Eddy Lazarus) undergoing several separation and reattachment cycles. During Lazarus reattachment, the fresh inflow resulted in rapid northward surge of strong currents at and onto the Louisiana continental shelf resulting in advection of Mississippi River waters into the outer OCS. Advection led to higher than average offshore surface and near-surface production atypical for the OCS. The combination of fast, persistent LC speeds and dynamic eddies impacted operations throughout the eastern, central, and western Gulf regions. The 2015 season is active. The size and intensity of eddies (4 at time of publication) are impacting industry and glider operations and forecasting of the LC. Eddies Nautilus and Olympus (250nm wide, 4 knot currents) remain in the central Gulf impacting activities from the Mississippi Canyon to Walker Ridge. Integrating real-time observations with numerical modeling provides the collaboration an opportunity to observe unique features in real-time. Furthermore, data sharing from this program is providing valuable, near real-time data for the community to better understand annual variability of the LC and eddies.

  1. Mechanisms Controlling Hypoxia Data Atlas: High-resolution hydrographic and chemical observations from 2003-2014

    NASA Astrophysics Data System (ADS)

    Zimmerle, H.; DiMarco, S. F.

    2016-02-01

    The Mechanisms Controlling Hypoxia (MCH) project consisted of 31 cruises from 2003-2014 with an objective to investigate the physical and biogeochemical processes that control the hypoxic zone on the Texas-Louisiana shelf in the northern Gulf of Mexico. The known seasonal low oxygen conditions in this region are the result of river-derived nutrients, freshwater input, and wind. The MCH Data Atlas showcases in situ data and subsequent products produced during the duration of the project, focusing on oceanographic observations from 2010-2014. The Atlas features 230 high-resolution vertical sections from nine cruises using the Acrobat undulating towed vehicle that contained a CTD along with sensors measuring oxygen, fluorescence, and turbidity. Vertical profiles along the 20-meter isobaths section feature temperature, salinity, chlorophyll, and dissolved oxygen from the Acrobat towfish and CTD rosette as well as separate selected profiles from the CTD. Surface planview maps show the horizontal distribution of temperature, salinity, chlorophyll, beam transmission, and CDOM observed by the shipboard flow-through system. Bottom planview maps present the horizontal distribution of dissolved oxygen as well as temperature and salinity from the CTD rosette and Acrobat towfish along the shelf's seafloor. Informational basemaps display the GPS cruise track as well as individual CTD stations for each cruise. The shelf concentrations of CTD rosette bottle nutrients, including nitrate, nitrite, phosphate, ammonia, and silicate are displayed in select plots. Shipboard ADCP current velocity fields are also represented. MCH datasets and additional products are featured as an electronic version to compliment the published atlas. The MCH Data Atlas provides a showcase for the spatial and temporal variability of the environmental parameters associated with the annual hypoxic event and will be a useful tool in the continued monitoring and assessment of Gulf coastal hypoxia.

  2. A Coupled Model System for Southeast Florida: Wave Model Validation Using Radar and In Situ Observations

    DTIC Science & Technology

    2012-02-24

    also included. The “ground truth” for waves validation includes in situ data (ADCP and buoy) and high frequency Wellen Radar (WERA HF) data...which swells are able to pass through islands and shoals to arrive at the in situ data region is highly sensitive to whether currents are included...grid 1: WW3 • ∆x = ∆y = 0.5° ≈ 55 km • Longitude: x = -100° to -0.5° W (260° to 359.5° E), nx =200 • Latitude: y =17° to 59° N, ny =85 • no

  3. Transient response of the Northwestern Iberian upwelling regime.

    PubMed

    Ferreira Cordeiro, Nuno Gonçalo; Dubert, Jesus; Nolasco, Rita; Desmond Barton, Eric

    2018-01-01

    The hydrography and dynamics of NW Iberian margin were explored for July 2009, based on a set of in situ and remote sensing observations. Zonal sections of standard CTD casts, towed CTD (SeaSoar), Acoustic Doppler Current Profilers (ADCP) and Lagrangian surveys were made to characterize cycles of upwelling and relaxation in this region. Two periods of northerly winds, bounded by relaxation periods, were responsible for the formation of an upwelling front extending to the shelf edge. An equatorward flow was quickly set up on the shelf responding to the northerly wind pulses. South of Cape Silleiro, the development and subsequent relaxation of an upwelling event was intensively surveyed in the shelf, following a Lagrangian drifter transported by the upwelling jet. This region is part of an upwelling center extending from Cape Silleiro to Porto, where the surface temperature was colder than the neighboring regions, under upwelling favorable winds. As these winds relaxed, persistent poleward flow developed, originating south of the upwelling center and consisting in an inner-shelf tongue of warm waters. During an event of strong southerly wind, the poleward flow was observed to extend to the whole continental shelf. Although the cruise was executed during summertime, the presence of river-plumes was observed over the shelf. The interaction of the plumes with the circulation on the shelf was also described in terms of coastal convergence and offshore advection. The sampling of the offshore and slope regions showed the presence of the Iberian poleward current offshore and a persistent equatorward flow over the upper slope.

  4. Flow structure at an ice-covered river confluence

    NASA Astrophysics Data System (ADS)

    Martel, Nancy; Biron, Pascale; Buffin-Bélanger, Thomas

    2017-04-01

    River confluences are known to exhibit complex relationships between flow structure, sediment transport and bed-form development. Flow structure at these sites is influenced by the junction angle, the momentum flux ratio (Mr) and bed morphology. In cold regions where an ice cover is present for most of the winter period, the flow structure is also likely affected by the roughness effect of the ice. However, very few studies have examined the impact of an ice cover on the flow structure at a confluence. The aims of this study are (1) to describe the evolution of an ice cover at a river confluence and (2) to characterize and compare the flow structure at a river confluence with and without an ice cover. The field site is a medium-sized confluence (around 40 m wide) between the Mit is and Neigette Rivers in the Bas-Saint-Laurent region, Quebec (Canada). The confluence was selected because a thick ice cover is present for most of the winter allowing for safe field work. Two winter field campaigns were conducted in 2015 and 2016 to obtain ice cover measurements in addition to hydraulic and morphological measurements. Daily monitoring of the evolution of the ice cover was made with a Reconyx camera. Velocity profiles were collected with an acoustic Doppler current profiler (ADCP) to reconstruct the three-dimensional flow structure. Time series of photographs allow the evolution of the ice cover to be mapped, linking the processes leading to the formation of the primary ice cover for each year. The time series suggests that these processes are closely related with both confluence flow zones and hydro-climatic conditions. Results on the thickness of the ice cover from in situ measurements reveal that the ice thickness tends to be thinner at the center of the confluence where high turbulent exchanges take place. Velocity measurements reveal that the ice cover affects velocity profiles by moving the highest velocities towards the center of the profiles. A spatio-temporal conceptual model is presented to illustrate the main differences on the three-dimensional flow structure at the river confluence with and without the ice cover.

  5. Dissipation in the Baltic proper during winter stratification

    NASA Astrophysics Data System (ADS)

    Lass, Hans Ulrich; Prandke, Hartmut; Liljebladh, Bengt

    2003-06-01

    Profiles of dissipation rates and stratification between 10 and 120 m depth were measured with a loosely tethered profiler over a 9-day winter period in the Gotland Basin of the Baltic Sea. Supplementary measurements of current profiles were made with moored ADCPs. Temporal and spatial patterns of the stratification were observed by means of towed CTD. Shallow freshwater lenses in the surface mixed layer, mesoscale eddies, inertial oscillations, and inertial waves as part of the internal wave spectrum provided the marine physical environment for the small-scale turbulence. Two well-separated turbulence regimes were detected. The turbulence in the surface mixed layer was well correlated with the wind. The majority of the energy flux from the wind to the turbulent kinetic energy was dissipated within the surface mixed layer. A minor part of this flux was consumed by changes of the potential energy of the fresh water lenses. The penetration depth Hpen of the wind-driven turbulence into the weakly stratified surface mixed layer depended on the local wind speed (W10) as Hpen = cW103/2 Active erosion of the Baltic halocline by wind-driven turbulence is expected for wind speeds greater than 14 m/s. The turbulence in the strongly stratified interior of the water column was quite independent of the meteorological forcing at the sea surface. The integrated production of turbulent kinetic energy exceeded the energy loss of inertial oscillations in the surface layer suggesting additional energy sources which might have been provided by inertial wave radiation during geostrophic adjustment of coastal jets and mesoscale eddies. The averaged dissipation rate profile in the stratified part of the water column, best fitted by ɛ ∝ EN, was different from the scaling of the dissipation in the thermocline of the ocean [, 1986]. The diapycnical mixing coefficient (Kv) was best fit by Kv = a0/N according to [1987] with a0 ≈ 0.87 × 10-7 m2/s2. The diapycnal diffusivity estimated from the dissipation rate was lower than those estimated by the bulk method.

  6. The influence of tributary flow density differences on the hydrodynamic behavior of a confluent meander bend and implications for flow mixing

    NASA Astrophysics Data System (ADS)

    Herrero, Horacio S.; Díaz Lozada, José M.; García, Carlos M.; Szupiany, Ricardo N.; Best, Jim; Pagot, Mariana

    2018-03-01

    The goal of this study is to evaluate the influence of tributary flow density differences on hydrodynamics and mixing at a confluent meander bend. A detailed field characterization is performed using an Acoustic Doppler Current Profiler (ADCP) for quantification of the 3D flow field, flow discharge and bathymetry, as well as CTD measurements (conductivity, temperature, depth) to characterize the patterns of mixing. Satellite images of the confluence taken at complementary times to the field surveys were analyzed to evaluate the confluence hydrodynamics at different flow conditions. The results illustrate the differences in hydrodynamics and mixing length in relation to confluences with equal density tributaries. At low-density differences, and higher discharge ratio (Qr) between the two rivers, the flow is similar to equi-density confluent meander bends. In contrast, at high-density differences (low Qr), the tributary flow is confined to near the confluence but the density difference causes the flow to move across channel. In this case, the density difference causes the lateral spread of the tributary flow to be greater than at a greater Qr when the density difference is less. These results illustrate the potential importance of density differences between tributaries in determining the rate and spatial extent of mixing and sediment dispersal at confluent meander bends.

  7. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height

    NASA Astrophysics Data System (ADS)

    Hagemann, M. W.; Gleason, C. J.; Durand, M. T.

    2017-11-01

    The forthcoming Surface Water and Ocean Topography (SWOT) NASA satellite mission will measure water surface width, height, and slope of major rivers worldwide. The resulting data could provide an unprecedented account of river discharge at continental scales, but reliable methods need to be identified prior to launch. Here we present a novel algorithm for discharge estimation from only remotely sensed stream width, slope, and height at multiple locations along a mass-conserved river segment. The algorithm, termed the Bayesian AMHG-Manning (BAM) algorithm, implements a Bayesian formulation of streamflow uncertainty using a combination of Manning's equation and at-many-stations hydraulic geometry (AMHG). Bayesian methods provide a statistically defensible approach to generating discharge estimates in a physically underconstrained system but rely on prior distributions that quantify the a priori uncertainty of unknown quantities including discharge and hydraulic equation parameters. These were obtained from literature-reported values and from a USGS data set of acoustic Doppler current profiler (ADCP) measurements at USGS stream gauges. A data set of simulated widths, slopes, and heights from 19 rivers was used to evaluate the algorithms using a set of performance metrics. Results across the 19 rivers indicate an improvement in performance of BAM over previously tested methods and highlight a path forward in solving discharge estimation using solely satellite remote sensing.

  8. Variability of stratification according to operation of the tidal power plant in Lake Sihwa, South Korea.

    NASA Astrophysics Data System (ADS)

    Woo, S. B.; Song, J. I.; Jang, T. H.; Park, C. J.; Kwon, H. K.

    2017-12-01

    Artificial forcing according to operation of the tidal power plant (TPP) affects the physical environmental changes near the power plant. Strong turbulence by generation is expected to change the stratification structure of the Lake Sihwa inside. In order to examine the stratification changes by the power plant operation, ship bottom mounted observation were performed for 13 hours using an acoustic Doppler current profiler (ADCP) and Conductivity-Temperature-Depth (CTD) in Lake Sihwa at near TPP. The strong stratification in Sihwa Lake is maintained before TPP operation. The absence of external forces and freshwater inflow from the land forms the stratification in the Lake. Strong winds in a stratification statement lead to two-layer circulation. After wind event, multi-layer velocity structure is formed which lasted for approximately 4 h. After TPP operation, the jet flow was observed in entire water column at the beginning of the power generation. Vortex is formed by strong jet flow and maintained throughout during power generation period. Strong turbulence flow is generated by the turbine blades, enhancing vertical mixing. External forces, which dominantly affect Lake Sihwa, have changed from the wind to the turbulent flow. The stratification was extinguished by strong turbulent flow and becomes fully-mixed state. Changes in stratification structure are expected to affect material transport and ecological environment change continuously.

  9. Looking to the Future: Non-contact Methods for Measuring Streamflow

    USGS Publications Warehouse

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.B.; Spicer, K.R.; Plant, J.; Keller, W.C.; Hayes, K.; Wahl, T.L.; Pugh, C.A.; Oberg, K.A.; Vermeyen, T.B.

    2002-01-01

    We have conducted a series of proof-of-concept experiments to demonstrate whether it is possible to make completely non-contact open-channel discharge measurements. After an extensive evaluation of potential technologies, we concluded a combination of high-frequency (microwave) radar (for measuring surface velocity) and low-frequency radar (ground-penetrating radar) for measuring channel cross-section, had the best chance for success. The first experiment in 1999 on the Skagit River, Washington, using non-contact methods, produced a discharge value nearly exactly the same as from an ADCP and current meter. Surface-velocity data were converted to mean velocity based on measurements of the velocity profile (multiplied by 0.85), and radar signal speed in impure fresh water was measured to be 0.11-0.12 ft/ns. The weak link was thought to be the requirement to suspend the GPR antenna over the water, which required a bridge or cableway. Two contractors, expert with radar, were unsuccessful in field experiments to measure channel cross-section from the riverbank. Another series of experiments were designed to demonstrate whether both radar systems could be mounted on a helicopter, flown back and forth across a river, and provide data to compute flow. In Sept. 2000 and May 2001, a series of helicopter flights with mounted radar systems successfully measured surface velocity and channel cross-section of the Cowlitz River, Washington.

  10. Going with the flow: Tidal influence on the occurrence of the harbour porpoise (Phocoena phocoena) in the Marsdiep area, The Netherlands

    NASA Astrophysics Data System (ADS)

    IJsseldijk, Lonneke L.; Camphuysen, Kees C. J.; Nauw, Janine J.; Aarts, Geert

    2015-09-01

    One of the most important factors explaining the distribution and behaviour of coastal marine mammals are tides. Tidal forces drive a large number of primary and secondary processes, such as changes in water depth, salinity, temperature, current velocity and direction. Unravelling which tidal process is the most influential for a certain species is often challenging, due to a lack of observations of all tide related covariates, strong correlation between them, and the elusive nature of most marine organisms which often hampers their detection. In the Marsdiep area, a tidal inlet between the North Sea and the Dutch Wadden Sea, the presence of harbour porpoises (Phocoena phocoena) was studied as a function of tide related covariates. Observations were carried out in early spring from a ferry crossing the inlet on a half hourly basis. Environmental and sightings data were collected by one observer, while an on-board Acoustic Doppler Current Profiler (ADCP) and temperature sensor continuously recorded current velocity profiles and temperature, respectively. Sea surface temperature and salinity were measured at a nearby jetty. Sightings (n = 134) were linked to tidal elevation, geographical position, local depth-averaged current velocity, water temperature (with and without trend correction) and salinity. Variation in sighting rate was best described by salinity, with highest sighting rate at high levels of salinity (> 30 g kg- 1), indicating that porpoises enter the area in bodies of (more saline) North Sea water. Second best variable was time of day, with the highest sighting rate early morning, and decreasing during the day. However, surveys in the morning happened to coincide more often with high water and hence, the apparent time of day effect could be due to collinearity. Most porpoises were present in the northern part of the Marsdiep, particularly during high tide. Tide dependent sighting rates confirmed that porpoises reside in the North Sea, and enter the western Wadden Sea during the flood and leave during ebb. This tidal influx is most likely related to prey availability, which corresponds to other recent studies in this area showing higher fish abundance during high tide. Documenting information on tide related patterns could be used in practice, when e.g. planning anthropogenic activities or assessing critical habitats for this species.

  11. Real-time Monitoring Network to Characterize Anthropogenic and Natural Events Affecting the Hudson River, NY

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Bonner, J. S.; Fuller, C.; Kirkey, W.; Ojo, T.

    2011-12-01

    The Hudson River watershed spans 34,700 km2 predominantly in New York State, including agricultural, wilderness, and urban areas. The Hudson River supports many activities including shipping, supplies water for municipal, commercial, and agricultural uses, and is an important recreational resource. As the population increases within this watershed, so does the anthropogenic impact on this natural system. To address the impacts of anthropogenic and natural activities on this ecosystem, the River and Estuary Observatory Network (REON) is being developed through a joint venture between the Beacon Institute, Clarkson University, General Electric Inc. and IBM Inc. to monitor New York's Hudson and Mohawk Rivers in real-time. REON uses four sensor platform types with multiple nodes within the network to capture environmentally relevant episodic events. Sensor platform types include: 1) fixed robotic vertical profiler (FRVP); 2) mobile robotic undulating platform (MRUP); 3) fixed acoustic Doppler current profiler (FADCP) and 4) Autonomous Underwater Vehicle (AUV). The FRVP periodically generates a vertical profile with respect to water temperature, salinity, dissolved oxygen, particle concentration and size distribution, and fluorescence. The MRUP utilizes an undulating tow-body tethered behind a research vessel to measure the same set of water parameters as the FRVP, but does so 'synchronically' over a highly-resolved spatial regime. The fixed ADCP provides continuous water current profiles. The AUV maps four-dimensional (time, latitude, longitude, depth) variation of water quality, water currents and bathymetry along a pre-determined transect route. REON data can be used to identify episodic events, both anthropogenic and natural, that impact the Hudson River. For example, a strong heat signature associated with cooling water discharge from the Indian Point nuclear power plant was detected with the MRUP. The FRVP monitoring platform at Beacon, NY, located in the transition region between fresh and saline water, captured the occurrence of strong precipitation event on the Hudson river as indicated by reduced water column salinity levels in the water column. Despite the large influx of freshwater and suspended solids originating as precipitation runoff, tidal forces dominated the net water transport and coincident suspended particle load. Such information is crucial to track the particle-driven contaminant movement in the water column. Both the FRVP and MRUP have been deployed in an active Poly-Chlorinated Biphenyls Superfund site to characterize the fundamental sediment transport mechanisms affecting remedial dredging operations. A potential application of this monitoring system is in the development of an adaptive remedial operation, where activity would be adjusted to maintain conditions within threshold limits based on real time environmental observations. Further, observational REON data can be integrated with water quality and hydrodynamic models that can be used to evaluate episodic events and their subsequent impacts to the Hudson River.

  12. Bathymetry, substrate and circulation in Westcott Bay, San Juan Islands, Washington

    USGS Publications Warehouse

    Grossman, Eric E.; Stevens, Andrew W.; Curran, Chris; Smith, Collin; Schwartz, Andrew

    2007-01-01

    Nearshore bathymetry, substrate type, and circulation patterns in Westcott Bay, San Juan Islands, Washington, were mapped using two acoustic sonar systems, video and direct sampling of seafloor sediments. The goal of the project was to characterize nearshore habitat and conditions influencing eelgrass (Z. marina) where extensive loss has occurred since 1995. A principal hypothesis for the loss of eelgrass is a recent decrease in light availability for eelgrass growth due to increase in turbidity associated with either an increase in fine sedimentation or biological productivity within the bay. To explore sources for this fine sediment and turbidity, a dual-frequency Biosonics sonar operating at 200 and 430 kHz was used to map seafloor depth, morphology and vegetation along 69 linear kilometers of the bay. The higher frequency 430 kHz system also provided information on particulate concentrations in the water column. A boat-mounted 600 kHz RDI Acoustic Doppler Current Profiler (ADCP) was used to map current velocity and direction and water column backscatter intensity along another 29 km, with select measurements made to characterize variations in circulation with tides. An underwater video camera was deployed to ground-truth acoustic data. Seventy one sediment samples were collected to quantify sediment grain size distributions across Westcott Bay. Sediment samples were analyzed for grain size at the Western Coastal and Marine Geology Team sediment laboratory in Menlo Park, Calif. These data reveal that the seafloor near the entrance to Westcott Bay is rocky with a complex morphology and covered with dense and diverse benthic vegetation. Current velocities were also measured to be highest at the entrance and along a deep channel extending 1 km into the bay. The substrate is increasingly comprised of finer sediments with distance into Westcott Bay where current velocities are lower. This report describes the data collected and preliminary findings of USGS Cruise B-6-07-PS conducted between May 31, 2007 and June 5, 2007.

  13. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  14. Diurnal tidal currents attributed to free baroclinic coastal-trapped waves on the Pacific shelf off the southeastern coast of Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Kuroda, Hiroshi; Kusaka, Akira; Isoda, Yutaka; Honda, Satoshi; Ito, Sayaka; Onitsuka, Toshihiro

    2018-04-01

    To understand the properties of tides and tidal currents on the Pacific shelf off the southeastern coast of Hokkaido, Japan, we analyzed time series of 9 current meters that were moored on the shelf for 1 month to 2 years. Diurnal tidal currents such as the K1 and O1 constituents were more dominant than semi-diurnal ones by an order of magnitude. The diurnal tidal currents clearly propagated westward along the coast with a typical phase velocity of 2 m s-1 and wavelength of 200 km. Moreover, the shape and phase of the diurnal currents measured by a bottom-mounted ADCP were vertically homogeneous, except in the vicinity of the bottom boundary layer. These features were very consistent with theoretically estimated properties of free baroclinic coastal-trapped waves of the first mode. An annual (semi-annual) variation was apparent for the phase (amplitude) of the O1 tidal current, which was correlated with density stratification (intensity of an along-shelf current called the Coastal Oyashio). These possible causes are discussed in terms of the propagation and generation of coastal-trapped waves.

  15. The VIMS CBOS Observing System Buoy, an Initial Scientific Analysis

    NASA Astrophysics Data System (ADS)

    Brasseur, L. H.; Brubaker, J. M.; Friedrichs, C. T.; Wright, L. D.

    2004-12-01

    The Virginia Institute of Marine Science (VIMS) has recently deployed a data buoy at Gloucester Point, York River, Virginia as part of the Chesapeake Bay Observing System (CBOS). The data streams collected by the buoy and its associated sensors are wind speed and direction, incoming solar radiation, air temperature, water temperature, salinity, turbidity, fluorescence, and dissolved oxygen. In addition, water velocities throughout the water column are recorded every 5 minutes and wave statistics including directional wave spectra are calculated every hour from an upward looking RD Instruments Acoustic Doppler Current Profiler (ADCP) in 8 meters of water in conjunction with the data buoy. All data are collected in real time and are available to scientists with a 15 minute to 1 hour time lag. These data are used in conjunction with other long tem data sets in the York River and lower Chesapeake Bay such as the Chesapeake Bay National Estuarine Research Reserve (CBNERR) sites' water quality data in the York River and USGS stream flow data to investigate several questions of scientific interest. One of these questions is the observed reverse salinity gradient in the York River during spring flood tides. It was previously thought that this was caused by a temporal mismatch in the phase of flood tide between the lower Chesapeake Bay and the mouth of the York River subestuary only during spring tides when the currents are strongest and the tidal range is large. In 2004, however, this effect can be seen during both spring and neap tides on several occasions in the spring and summer. This phenomenon and others are evaluated in the context of the VIMS observing system buoy and the initial data collected from the buoy are also evaluated in terms of instrument accuracy, ease of data retrieval, and possible uses for this information.

  16. Preliminary results from the hydrodynamic element of the 1994 entrapment zone study

    USGS Publications Warehouse

    Burau, J.R.; Stacey, M.; Gartner, J.W.

    1995-01-01

    This article discusses preliminary results from analyses of USGS hydrodynamic data collected as part of the 1994 Interagency Ecological Program entrapment zone study. The USGS took part in three 30-hour cruises and deployed instruments for measuring currents and salinity from April to June. This article primarily focuses on the analysis of data from five Acoustic Doppler Current ProUers (ADCPs) deployed in Carquinez Strait, Suisun Bay, and the Western Delta. From these analyses a revised conceptual model of the hydrodynamics of the entrapment/null zone has evolved. The ideas discussed in this newsletter article are essentially working hypotheses, which are presented here to stimulate discussion and further analyses. In this article we discuss the currently-held conceptual model of entrapment and present data that are inconsistent with this conceptual model. Finally, we suggest a revised conceptual model that is consistent with all of the hydrodynamic data collected to date and describe how the 1995 study incorporates our revised conceptual model into its design.

  17. Current variability and momentum balance in the along-shore flow for the Catalan inner-shelf.

    NASA Astrophysics Data System (ADS)

    Grifoll, M.; Aretxabaleta, A.; Espino, M.; Warner, J. C.

    2012-04-01

    This contribution examines the circulation of the inner-shelf of the Catalan Sea from an observational perspective. Measurements were obtained from a set of ADCPs deployed during March and April 2011 at 25 and 50 meters depth. Analysis reveals a strongly polarized low-frequency flow following the isobaths predominantly in the south-westward direction. The current variance is mostly explained by the two principal modes of an empirical orthogonal decomposition. The first mode represents almost 80% of the variability. Correlation values of 0.4 to 0.7 have been found between the depth-averaged along-shelf flow and the local wind and the Adjusted Sea-level Slope. The momentum balance in the along-shore direction reveals strong frictional effects and an influence of the barotropic pressure gradients. This research provides a physical framework for ongoing numerical modelling activities and climatological studies in the Catalan inner-shelf.

  18. OceanCubes: An Affordable Cabled Observatory System for Integrated Long-Term, High Frequency Biological, Chemical, and Physical Measurements for Understanding Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Gallager, S. M.

    2016-02-01

    Understanding how coastal ocean processes are forcing and/or responding to ecosystem change is a central premise in current oceanographic research and monitoring. A distributed, high capacity observing capability is necessary to address biological processes requiring high frequency observations on short ( turbulence, internal waves), moderate (typhoons), and decadal time scales (e.g., NAO, El Nino-SO, PDO). The current belief that ocean observing systems need to be expensive, large, difficult to deploy and limited in capacity was tested by developing OceanCubes, an end-to-end cabled observational system with real-time telemetry, state-of-the-art sensor packages, high level of expandability, and diver maintained to reduce operating costs. A modular approach allows for a scalable system that can grow over time to accommodate budgets. The control volume design allows for measurement of material flux and energy from the water column to the benthos at a rate of s-1. The sensor package is connected by electro-optical cable to shore providing the capability for internet-based teleoperation by scientists world-wide. The central node provides underwater mateable connections for > 22 serial and Ethernet-based sensors (CTD, four ADCPs, chlorophyll and CDOM fluorescence, O2, nitrate, pCO2, pH, a bio-optical package, a Continuous Plankton Imaging and Classification Sensor (CPICS) for mesoplankton, a pan and tilt webcam, and two stereo cameras to observe and track fish communities. ADCPs and temperature strings mark the corners of the 162,000 m3 control volume. Disparate data streams are remotely archived, correlated, and analyzed while plankton and fish are identified using state-of-the-art machine vision and learning techniques. Two OceanCubes have been installed in Japan (Okinawa and Oshima Island, Tokyo) and have survived several typhoon seasons. Two additional systems are planned for either side of the Panamanian Isthmus. Results of these systems will be discussed.

  19. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  20. Hydrodynamics Offshore of the North Beach of Indian River Inlet, DE

    NASA Astrophysics Data System (ADS)

    DiCosmo, N. R.; Puleo, J. A.

    2014-12-01

    The Indian River Inlet (IRI) on the east coast of Delaware, USA connects the Atlantic Ocean to the Indian River and Rehoboth Bays. Long-term and large-scale net alongshore sediment transport along this portion of coastline is from south to north. The north beach of IRI suffers from severe erosion due to interruption of the alongshore transport and current variability near the inlet. The magnitude of such erosion has increased over the past decade and questions have arisen as to the cause. The goal of this study is to quantify currents and wave patterns and estimate sediment transport rates at the north beach and near the inlet in an effort to determine the causes of persistent erosion. Data were obtained from October 2013 to March 2014 in the form of 3 separate 28-day deployments. Each deployment consisted of 4 proposed deployment sites. Data at each site were collected using a bottom mounted Nortek Aquadopp Acoustic Doppler Current Profiler (ADCP) and 2 Campbell Scientific Optical Backscatter Sensors (OBS). Currents and OBS data were sampled every 120 s. Waves were sampled for approximately 17 minutes at the beginning of every hour. Data analysis from the deployments indicates the presence of several interesting trends in currents that can be linked to the persistent erosion. Current data are filtered to quantify typical current speed and direction for a tidal cycle (peak flood to peak flood) at each deployment site. The typical currents off of the north beach and up to 800 m north of the north jetty are mostly directed southward over the entire tidal cycle. This consistent southward flow implies: 1) there is no flow reversal based on tide, contrary to what might be expected at an inlet adjacent beach, 2) the typical current direction is opposite of the expectations for the known long-term large-scale net alongshore transport and 3) the consistency of this atypical current may be responsible for transporting sediment southward and away from the north beach. Currents and waves will be further analyzed for storm and non-storm conditions in order to more completely quantify the hydrodynamics of the area. Sediment data will also be analyzed in conjunction with the hydrodynamic data in order to better understand the sediment transport process.

  1. Ocean Observing Public-Private Collaboration to Improve Tropical Storm and Hurricane Predictions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Perry, R.; Leung, P.; McCall, W.; Martin, K. M.; Howden, S. D.; Vandermeulen, R. A.; Kim, H. S. S.; Kirkpatrick, B. A.; Watson, S.; Smith, W.

    2016-02-01

    In 2008, Shell partnered with NOAA to explore opportunities for improving storm predictions in the Gulf of Mexico. Since, the collaboration has grown to include partners from Shell, NOAA National Data Buoy Center and National Center for Environmental Information, National Center for Environmental Prediction, University of Southern Mississippi, and the Gulf of Mexico Coastal Ocean Observing System. The partnership leverages complementary strengths of each collaborator to build a comprehensive and sustainable monitoring and data program to expand observing capacity and protect offshore assets and Gulf communities from storms and hurricanes. The program combines in situ and autonomous platforms with remote sensing and numerical modeling. Here we focus on profiling gliders and the benefits of a public-private partnership model for expanding regional ocean observing capacity. Shallow and deep gliders measure ocean temperature to derive ocean heat content (OHC), along with salinity, dissolved oxygen, fluorescence, and CDOM, in the central and eastern Gulf shelf and offshore. Since 2012, gliders have collected 4500+ vertical profiles and surveyed 5000+ nautical miles. Adaptive sampling and mission coordination with NCEP modelers provides specific datasets to assimilate into EMC's coupled HYCOM-HWRF model and 'connect-the-dots' between well-established Eulerian metocean measurements by obtaining (and validating) data between fixed stations (e.g. platform and buoy ADCPs) . Adaptive sampling combined with remote sensing provides satellite-derived OHC validation and the ability to sample productive coastal waters advected offshore by the Loop Current. Tracking coastal waters with remote sensing provides another verification of estimate Loop Current and eddy boundaries, as well as quantifying productivity and analyzing water quality on the Gulf coast, shelf break and offshore. Incorporating gliders demonstrates their value as tools to better protect offshore oil and gas assets and the greater Gulf coast communities from storms and hurricanes. Data collected under the collaboration, along with deployment of gliders, will have long-term benefits in helping to understand the ecological and environmental health of the Gulf by monitoring real-time annual and seasonal physical variability.

  2. Absolute geostrophic currents over the SR02 section south of Africa in December 2009

    NASA Astrophysics Data System (ADS)

    Tarakanov, Roman

    2017-04-01

    The structure of the absolute geostrophic currents is investigated on the basis of CTD-, SADCP- and LADCP-data over the hydrographic section occupied south of Africa from the Good Hope Cape to 57° S along the Prime Meridian, and on the basis of satellite data on absolute dynamic topography (ADT) produced by Ssalto/Duacs and distributed by Aviso, with a support from Cnes (http://www.aviso.altimetry.fr/duacs/). Thus the section crossed the subtropical zone (at the junction of the subtropical gyres of the Indian and Atlantic oceans), the Antarctic Circumpolar Current (ACC) and terminated at the northern periphery of the Weddell Gyre. A total of 87 stations were occupied here with CTD-, and LADCP-profiling in the entire water column. The distance between stations was 20 nautical miles. Absolute geostrophic currents were calculated between each pair of CTD-stations with barotropic correction based on two methods: by SADCP data and by ADT at these stations. The subtropical part of the section crossed a large segment of the Agulhas meander, already separated from the current and disintegrating into individual eddies. In addition, smaller formed cyclones and anticyclones of the Agulhas Current were also observed in this zone. These structural elements of the upper layer of the ocean currents do not penetrate deeper than 1000-1500 m. Oppositely directed barotropic currents with velocities up to 30 cm/s were observed below these depths extending to the ocean bottom. Such large velocities agree well with the data of the bottom tracking of Lowered ADCP. Only these data were the reliable results of LADCP measurements because of the high transparency of the deep waters of the subtropical zone. The total transport of absolute geostrophic currents in the section is estimated as 144 and 179 Sv to the east, based on the SADCP and ADT barotropic correction, respectively. A transport of 4 (2) Sv to the east was observed on the northern periphery of the Weddell Gyre, 187 (182) Sv to the east was in the ACC zone (up to Subtropical front), 47 (5) Sv to the west was in the subtropical zone. The total transport of abyssal barotropic currents in the subtropical zone was 18 to the west (7 to the east).

  3. Vertical diffusivity in the benthic boundary layer of the Oregon shelf from a deliberate tracer release experiment

    NASA Astrophysics Data System (ADS)

    Ferrón, S.; Ho, D. T.; Hales, B. R.

    2010-12-01

    A Fluorescein/SF6 deliberate tracer release experiment was conducted in benthic boundary layer (BBL) waters of the outer shelf of Oregon, as part of a multi-disciplinary research project that aims to study cross-shelf carbon transport and biogeochemical reaction rates within the BBL. The purpose of the tracers release was to examine physical transport processes, the rate of turbulent mixing and to provide a Lagrangian frame of reference for tracking other chemical species (pCO2, O2, CH4, DIC, DOC, POC, NO3-, NH4+, Fe). The tracers were injected on May 2009 during moderate upwelling favorable conditions with weak near-bottom currents, along a 4-km N-S line near the shelf streak at the 150 m isobath. Tracers distribution in the patch were tracked for over 5 days by tow-yo surveys using a winch-controlled pumping profiling vehicle that incorporated several in situ instruments such as CTD sensors, a 1200 kHz ADCP and a dye fluorometer for Fluorescein. Dissolved SF6 concentrations were analyzed on board from the underway water stream pumped from the towed vehicle by using an automated high-resolution chromatographic system equipped with an electron capture detector (ECD). The work presented here focuses on the estimation of the effective vertical diffusivity (Kz) in the BBL of the Oregon Shelf from the change in moment of the tracers’ vertical distribution, calculated using a 1D advection-diffusion model.

  4. Variability in Ocean Color Associated with Phytoplankton and Terrigenous Matter: Time Series Measurements and Algorithm Development at the FRONT Site on the New England Continental Shelf. Chapter 12

    NASA Technical Reports Server (NTRS)

    Morrison, John R.; Sosik, Heidi M.

    2003-01-01

    Fronts in the coastal ocean describe areas of strong horizontal gradients in both physical and biological properties associated with tidal mixing and freshwater estuarine output (e.g. Simpson, 1981 and O Donnell, 1993). Related gradients in optically important constituents mean that fronts can be observed from space as changes in ocean color as well as sea surface temperature (e.g., Dupouy et al., 1986). This research program is designed to determine which processes and optically important constituents must be considered to explain ocean color variations associated with coastal fronts on the New England continental shelf, in particular the National Ocean Partnership Program (NOPP) Front Resolving Observational Network with Telemetry (FRONT) site. This site is located at the mouth of Long Island sound and was selected after the analysis of 12 years of AVHRR data showed the region to be an area of strong frontal activity (Ullman and Cornillon, 1999). FRONT consists of a network of modem nodes that link bottom mounted Acoustic Doppler Current Profilers (ADCPs) and profiling arrays. At the center of the network is the Autonomous Vertically Profiling Plankton Observatory (AVPPO) (Thwaites et al. 1998). The AVPPO consists of buoyant sampling vehicle and a trawl-resistant bottom-mounted enclosure, which holds a winch, the vehicle (when not sampling), batteries, and controller. Three sampling systems are present on the vehicle, a video plankton recorder, a CTD with accessory sensors, and a suite of bio-optical sensors including Satlantic OCI-200 and OCR-200 spectral radiometers and a WetLabs ac-9 dual path absorption and attenuation meter. At preprogrammed times the vehicle is released, floats to the surface, and is then winched back into the enclosure with power and data connection maintained through the winch cable. Communication to shore is possible through a bottom cable and nearby surface telemetry buoy, equipped with a mobile modem, giving the capability for near-real time data transmission and interactive sampling control.

  5. Design of a Low-cost Oil Spill Tracking Buoy

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, X.; Yu, F.; Dong, S.; Chen, G.

    2017-12-01

    As the rapid development of oil exploitation and transportation, oil spill accidents, such as Prestige oil spill, Gulf of Mexico oil spill accident and so on, happened frequently in recent years which would result in long-term damage to the environment and human life. It would be helpful for rescue operation if we can locate the oil slick diffusion area in real time. Equipped with GNSS system, current tracking buoys(CTB), such as Lagrangian drifting buoy, Surface Velocity Program (SVP) drifter, iSLDMB (Iridium self locating datum marker buoy) and Argosphere buoy, have been used as oil tracking buoy in oil slick observation and as validation tools for oil spill simulation. However, surface wind could affect the movement of oil slick, which couldn't be reflected by CTB, thus the oil spill tracking performance is limited. Here, we proposed an novel oil spill tracking buoy (OSTB) which has a low cost of less than $140 and is equipped with Beidou positioning module and sails to track oil slick. Based on hydrodynamic equilibrium model and ocean dynamic analysis, the wind sails and water sails are designed to be adjustable according to different marine conditions to improve tracking efficiency. Quick release device is designed to assure easy deployment from air or ship. Sea experiment was carried out in Jiaozhou Bay, Northern China. OSTB, SVP, iSLDMB, Argosphere buoy and a piece of oil-simulated rubber sheet were deployed at the same time. Meanwhile, oil spill simulation model GNOME (general NOAA operational modeling environment) was configured with the wind and current field, which were collected by an unmanned surface vehicle (USV) mounted with acoustic Doppler current profilers (ADCP) and wind speed and direction sensors. Experimental results show that the OSTB has better relevance with rubber sheet and GNOME simulation results, which validate the oil tracking ability of OSTB. With low cost and easy deployment, OSTB provides an effective way for oil spill numerical modeling validation and quick response to oil spill accidents.

  6. The Effect of Waves on the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.

    2016-02-01

    The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.

  7. Dynamic behaviour of natural oil droplets through the water column in deep-water environment: the case of the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Jatiault, R.; Dhont, D.; Loncke, L.; Durrieu De Madron, X.; Dubucq, D.; Channelliere, C.; Bourrin, F.

    2017-12-01

    Key words: Hydrocarbon seepage, Oil Slick, Lower Congo Basin, Underwater deflection, Deep-water Pockmark, Ascent speedThe space-borne imagery provides a significant means to locate active oil seeps and to estimate the expelled volume in the marine environment. The analysis of numerous overlapping satellite images revealed an abundant volume of 4400 m3 of oil naturally reaching the sea surface per year, expelled from more than a hundred seep sites through the Lower Congo Basin. The active seepage area is located in the distal compressional province of the basin where salt napes and squeezed diapirs. The integration of current data was used to link accurately sea surface manifestations of natural oil leakages with active fluid flow features on the seafloor. A mooring with ADCPs (Acoustic Doppler Current Profilers) distributed throughout the water column provided an efficient calibration tool to evaluate the horizontal deflection of oil droplets. Using a Eulerian propagation model that considered a range of probable ascent speeds, we estimated the oil migration pathways through the water column using two different approaches. The first approach consisted in simulating the backwards trajectory of oil droplets using sea surface oil slicks locations and concomitant current measurements. The second method analyzed the spatial spreading of the surfacing signatures of natural oil slicks based on 21 years of satellite observations. The location of the surfacing points of oil droplets at the sea surface is restricted to a circle of 2.5 km radius around the release point at the seafloor. Both approaches provided a range of ascent speeds of oil droplets between 3 to 8 cm.s-1. The low deflection values validate the near-vertical links between the average surfacing area of oil slicks at the sea surface with specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

  8. Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects

    NASA Astrophysics Data System (ADS)

    Savidge, Dana K.; Amft, Julie A.

    2009-10-01

    Over the past 30 years, shelf circulation on the West Antarctic Peninsula (WAP) has been derived from hydrographic data with a reasonable level of confidence. However, with the exception of a very few drifter tracks and current-meter timeseries from moorings, direct velocity measurements have not previously been available. In this article, shelf and shelf-edge circulation is examined using a new velocity dataset, consisting of several years of acoustic Doppler current profiler transects, routinely collected along the ship tracks of the R/V Gould and the R/V Palmer since the fall of 1997. Initial processing and quality control is performed by Dr. Teresa Chereskin and Dr. Eric Firing, who then place the data in an archive accessible by public website, resulting in the broad availability of the data for a variety of uses. In this study, gridded Eulerian means have been calculated to examine circulation on the shelf and slope off the South Shetland Islands, in Bransfield Strait, and on the shelf and slope south of these regions, including Marguerite Bay and the adjacent shelf and shelf-edge. Shelf-edge flow is northeastward in the study area from the offshore of northern Alexander Island to Smith Island, while a southward flowing shelf-edge feature, probably the shallow component of the polar slope current, appears between Elephant Island and Livingston Island. The shallow polar slope current appears to turn shoreward to pass through Boyd Strait between Smith and Livingston Islands. In Bransfield Strait, there is cyclonic circulation. The previously identified northeastward-flowing South Shetland Island jet is strong and present in all seasons, with a large barotropic component not revealed by the hydrography-based velocities derived in the past. On the shelf seaward of Adelaide, Anvers and Brabant Islands, the strong along-shelf Antarctic Peninsula coastal current flows southwestward, with strongest velocities in winter (June-September) off Anvers and Brabant Islands, but stronger in summer (December-March) off Adelaide Island. Seaward of Marguerite Bay, there is seaward flow in the upper 400 m of the water column over the southwest bank of Marguerite Trough, strongest in summer, and shoreward flow near the northeast bank and adjacent shallower shelf areas.

  9. A field study of the confluence between Negro and Solimões Rivers. Part 1: Hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    Gualtieri, Carlo; Filizola, Naziano; de Oliveira, Marco; Santos, Andrè Martinelli; Ianniruberto, Marco

    2018-01-01

    Confluences are a common feature of riverine systems, where are located converging flow streamlines and potential mixing of separate flows. The confluence of the Negro and Solimões Rivers ranks among the largest on Earth and its study may provide some general insights into large confluence dynamics and processes. An investigation was recently conducted about that confluence in both low and high-flow conditions using acoustic Doppler velocity profiling (ADCP), water quality sampling and high-resolution seismic data. First, the study gained insights into the characterization of the basic hydrodynamics parameters about the confluence as well as of those affecting sediments transport. Second, the analysis of the results showed that common hydrodynamic features noted in previous confluence studies were herein observed. Finally, some differences between low-flow and relatively high-flow conditions about the transfer of momentum from the Solimões to the Negro side of the Amazon Channel were identified.

  10. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions-comparison of glioblastomas and brain abscesses.

    PubMed

    Horvath-Rizea, Diana; Surov, Alexey; Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-04-06

    Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm 2 . Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10 -5 mm 2 × s -1 . ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

  11. Transitional Benthic Boundary Layers and their Influence on Nutrient Flux in Tidal Estuaries

    NASA Astrophysics Data System (ADS)

    Koetje, K. M.; Foster, D. L.; Lippmann, T. C.; Kalnejais, L. H.

    2016-12-01

    Quantifying the coupled physical and geochemical processes in the fluid-sediment interface is critical to managing coastal resources. This is of particular importance during times of enhanced hydrodynamic forcing where extreme tide or wind events can have a significant impact on water quality. A combination of field and laboratory experiments were used to examine the relationship between large-scale fluid shear stresses and geochemical fluxes at the fluid-sediment interface in the Great Bay Estuary, New Hampshire. Sediment geochemical measurements paired with flow field observations along estuary-wide transects over several tidal cycles provide nutrient load estimates that can be scaled to represent the whole Bay. Three-dimensional flow field measurements collected using a maneuverable personal watercraft were used to determine the spatial and temporal variability of the shear stress throughout the Bay. High-resolution bottom boundary layer dynamics were observed using a suite of acoustic Doppler current profilers (ADCP) in order to improve the accuracy of diffusive flux estimates by directly measuring the thickness of the benthic boundary layer. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak mean flows ranged from 0.2 m/s to 1 m/s at the sampling sites. The dominant contribution of hydrodynamic forcing to the Bay is due to tidal flows, which are largely unidirectional during flood tide. Sediment grain size analysis characterized the bed at sampling sites as fine-grained sandy mud (d50 = 47 μm). Sampling during typical tidal flow conditions, a smooth turbulent flow field was observed and the threshold of motion was not exceeded. Along with sediment characterization, porosity profiles and erosion chamber experiments were used to characterize nutrient release. This host of data provides shear stress estimates that can constrain nutrient loads under variable hydrodynamic conditions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  13. Developing Improved Water Velocity and Flux Estimation from AUVs - Results From Recent ASTEP Field Programs

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; Yoerger, D. R.; Camilli, R.; German, C. R.

    2010-12-01

    Water velocity measurements are crucial to quantifying fluxes and better understanding water as a fundamental transport mechanism for marine chemical and biological processes. The importance of flux to understanding these processes makes it a crucial component of astrobiological exploration to moons possessing large bodies of water, such as Europa. Present technology allows us to obtain submerged water velocity measurements from stationary platforms; rarer are measurements from submerged vehicles which possess the ability to autonomously survey tens of kilometers over extended periods. Improving this capability would also allow us to obtain co-registered water velocity and other sensor data (e.g., mass spectrometers, temperature, oxygen, etc) and significantly enhance our ability to estimate fluxes. We report results from 4 recent expeditions in which we measured water velocities from autonomous underwater vehicles (AUVs) to help quantify flux in three different oceanographic contexts: hydrothermal vent plumes; an oil spill cruise responding to the 2010 Deepwater Horizon blowout; and two expeditions investigating naturally occurring methane seeps. On all of these cruises, we directly measured the water velocities with an acoustic Doppler current profiler (ADCP) mounted on the AUV. Vehicle motion was corrected for using bottom-lock Doppler tracks when available and, in the absence of bottom-lock, estimates of vehicle velocity based on dynamic models. In addition, on the methane seep cruises, we explored the potential of using acoustic mapping sonars, such as multi-beam and sub-bottom profiling systems, to localize plumes and indirectly quantify flux. Data obtained on these expeditions enhanced our scientific investigations and provides data for future development of algorithms for autonomously processing, identifying, and classifying water velocity and flux measurements. Such technology will be crucial in future astrobiology missions where highly constrained bandwidth will require robots to possess sufficient autonomy to process and react to data independent of human interpretation and interaction.

  14. Eddy forced variations in on- and off-margin summertime circulation along the 1000-m isobath of the northern Gulf of Mexico, 2000-2003, and links with sperm whale distributions along the middle slope

    NASA Astrophysics Data System (ADS)

    Biggs, Douglas C.; Jochens, Ann E.; Howard, Matthew K.; DiMarco, Steven F.; Mullin, Keith D.; Leben, Robert R.; Muller-Karger, Frank E.; Hu, Chuanmin

    In summers 2000-2003, NOAA Ship Gordon Gunter and TAMU R/V Gyre dropped XBTs and logged ADCP data while carrying out visual and passive-acoustic surveys for sperm whales along the 1000-m isobath of the northern Gulf of Mexico. The ships also made CTD casts, particularly when/where the XBT and ADCP data indicated the ships were passing into or out of anticyclonic and/or cyclonic slope eddies. The fine-scale resolution of the ship surveys, when combined with the meso-scale resolution of remote sensing surveys of sea surface height and ocean color, document the summer-to-summer variability in the intensity and geographic location of Loop Current eddies, warm slope eddies, and areas of cyclonic circulation over this middle slope region of the northern Gulf of Mexico. These variations forced striking year-to-year differences in the locations along the 1000-m isobath where there was on-margin and off-margin flow, and in locations where sperm whales were encountered along the 1000-m isobath. For example, when there was on-margin flow into the Mississippi Canyon region in early summer 2003, sperm whales were very rarely seen or heard there. In contrast, later that summer and during other summers when flow was along-margin or off-margin there, sperm whales were locally abundant. In this report we describe how eddy-forced variations in on-margin and off-margin flow changed the meso-scale circulation along the 1000-m isobath, and we show that most sperm whales were encountered in regions of negative SSH and/or higher-than-average surface chlorophyll.

  15. Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler

    NASA Astrophysics Data System (ADS)

    Campbell, R. W.

    2016-02-01

    As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North Pacific.

  16. On the nature of low-frequency currents over a shallow area of the southern coast of the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Lilover, M.-J.; Pavelson, J.; Kõuts, T.

    2014-01-01

    This study aims to explain those factors influencing low-frequency currents in a shallow unstratified sea with complex topography. Current velocity measurements using a bottom-mounted ADCP, deployed at 8 m depth on the slope of Naissaar Bank (northern entrance to the Tallinn Bay, Gulf of Finland), were performed over five weeks in late autumn 2008. A quasi-steady current from nine sub-periods (two weeks) was relatively well correlated with wind (mean correlation coefficient of 0.70). During moderate to fresh winds, the current is veered to the right relative to the wind direction, by angles in the range of 14-38°. The flow is directed to the left, relative to the wind direction in stronger wind conditions, indicating evidence of topographic forcing. The observed current was reasonably in accordance with the flow predicted by the classical Ekman model. The modelled current speeds (wind speeds < 11 m s- 1) appear to be overestimated by 3-6 cm s- 1, whilst the observed rotation angles were mostly less than those predicted by the model. Inclusion of barotropic forcing to the Ekman model improved its performance. The discrepancies between the model and observations are discussed in terms of topographic steering, baroclinic effect and surface wave induced forcing.

  17. From the CMV Oleander Project: A Study of the Shelfbreak Front of the Middle Atlantic Bight From Long-term ADCP and Hydrographic Data

    NASA Astrophysics Data System (ADS)

    Flagg, C. N.; Dunn, M.; Wang, D.

    2004-12-01

    Utilizing the first decade of shipboard ADCP data as well as XBT and surface salinity data obtained from the CMV Oleander, this study is focused on the mean structure, and seasonal and interannual variability of the frontal zone at the edge of the shelf of the Middle Atlantic Bight. The early analysis showed that more than half the data in the frontal zone were influenced by warm core rings and that removing the confounding influence of the rings was vital if the true structure of the front was to emerge. From the culled data set of 128 transects of the front with sufficient coverage we have proceeded to generate a velocity description following the core of the frontal jet showing a maximum, surface intensified velocity of more than 0.25 ms-1, a vertical extent of roughly 80 m, a half-amplitude width of about 20 km and an alongshore transport of ~0.34 Sv. The maximum mean relative vorticity of the jet is 0.56*f. The alongshore jet is accompanied by a substantial surface intensified convergent flow that implies a maximum down-welling in the center of the jet of ~30 m/day. The seasonally the shelfbreak jet has its minimal velocities during the summer months, increasing to maximal velocities during the winter before decreasing agin in the spring. An interesting feature that emerges from the ADCP data is that while the shelfbreak frontal jet is usually assumed to consist of a single high-speed core, in fact, the jet often exhibits multiple high velocity extrema, the existence of which appears to undergo a seasonal progression.

  18. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density gradient from intruded salinity and local sediment suspension. Meanwhile, tripods' monitoring identified a significant cross-channel component of residual current, which could produce potential bottom sediment accumulation in the channel region within the North Passage.

  19. Velocity, bathymetry, and transverse mixing characteristics of the Ohio River upstream from Cincinnati, Ohio, October 2004-March 2006

    USGS Publications Warehouse

    Koltun, G.F.; Ostheimer, Chad J.; Griffin, Michael S.

    2006-01-01

    Velocity, bathymetry, and transverse (cross-channel) mixing characteristics were studied in a 34-mile study reach of the Ohio River extending from the lower pool of the Captain Anthony Meldahl Lock and Dam, near Willow Grove, Ky, to just downstream from the confluence of the Licking and Ohio Rivers, near Newport, Ky. Information gathered in this study ultimately will be used to parameterize hydrodynamic and water-quality models that are being developed for the study reach. Velocity data were measured at an average cross-section spacing of about 2,200 feet by means of boat-mounted acoustic Doppler current profilers (ADCPs). ADCP data were postprocessed to create text files describing the three-dimensional velocity characteristics in each transect. Bathymetry data were measured at an average transect spacing of about 800 feet by means of a boat-mounted single-beam echosounder. Depth information obtained from the echosounder were postprocessed with water-surface slope and elevation information collected during the surveys to compute stream-bed elevations. The bathymetry data were written to text files formatted as a series of space-delimited x-, y-, and z-coordinates. Two separate dye-tracer studies were done on different days in overlapping stream segments in an 18.3-mile section of the study reach to assess transverse mixing characteristics in the Ohio River. Rhodamine WT dye was injected into the river at a constant rate, and concentrations were measured in downstream cross sections, generally spaced 1 to 2 miles apart. The dye was injected near the Kentucky shoreline during the first study and near the Ohio shoreline during the second study. Dye concentrations were measured along transects in the river by means of calibrated fluorometers equipped with flow-through chambers, automatic temperature compensation, and internal data loggers. The use of flow-through chambers permitted water to be pumped continuously out of the river from selected depths and through the fluorometer for measurement as the boat traversed the river. Time-tagged concentration readings were joined with horizontal coordinate data simultaneously captured from a differentially corrected Global Positioning System (GPS) device to create a plain-text, comma-separated variable file containing spatially tagged dye-concentration data. Plots showing the transverse variation in relative dye concentration indicate that, within the stream segments sampled, complete transverse mixing of the dye did not occur. In addition, the highest concentrations of dye tended to be nearest the side of the river from which the dye was injected. Velocity, bathymetry, and dye-concentration data collected during this study are available for Internet download by means of hyperlinks in this report. Data contained in this report were collected between October 2004 and March 2006.

  20. Effect of a fast-moving tropical storm Washi on phytoplankton in the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Pan, Jiayi; Han, Guoqi; Devlin, Adam T.; Zhang, Shuwen; Hou, Yijun

    2017-04-01

    Tropical cyclones may augment nutrients in the ocean surface layer through mixing, entrainment, and upwelling, triggering phytoplankton blooms in oligotrophic waters such as the South China Sea (SCS). Previous studies focused mainly on responses of marine environments to strong or slow-moving typhoons in the SCS. In this study, we analyze variations of chlorophyll a (Chl a) and oceanic conditions in the continental shelf region east of Hainan Island during the fast-moving tropical storm Washi and investigate its influences on phytoplankton bloom and related dynamic mechanisms. Results indicate that there was significant variation of Chl a concentration in the continental shelf region, with low values (about 0.1 mg m-3) before the storm and a 30% increase after the storm. This increase was spatially variable, much larger nearshore than offshore. Power spectral analysis of Acoustic Doppler Current Profiler (ADCP) data at a shelf site near the study region reveals strong near-inertial oscillations (NIOs) in the upper layer, with a period of about 36 h, close to the local inertial period. The NIOs intensified mixing and modified the stratification of the upper layer, inducing uplift of nutrients and Chl a into the mixed layer from below, and leading to surface Chl a increase. The relatively shallow nutricline and thermocline in the continental shelf region before the storm were favorable for upwelling of nutrients and generation of NIOs. Advection of nutrients from enhanced runoff during and after the storm may be responsible for the larger increase of the Chl a nearshore.

  1. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    USGS Publications Warehouse

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  2. Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods

    USGS Publications Warehouse

    Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.

  3. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions–comparison of glioblastomas and brain abscesses

    PubMed Central

    Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-01-01

    Background Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. Methods 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. Results All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10−5 mm2 × s−1. Conclusions ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA. PMID:29719596

  4. Challenges and potential solutions for European coastal ocean modelling

    NASA Astrophysics Data System (ADS)

    She, Jun; Stanev, Emil

    2017-04-01

    Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT and on-going altimetry missions, contributing to resolving (sub-)mesoscale eddies, more currents measurements from ADCPs and HF radars, geostationary data for suspended sediment and diurnal observations from satellite SST products. These developments will make it possible to generate new knowledge and build up new capacities for modelling and forecasting systems, e.g., improved currents forecast, improved water skin temperature and surface winds forecast, improved modelling and forecast of (sub) mesoscale activities and drift forecast, new forecast capabilities on SPM (Suspended Particle Matter) and algae bloom. There will be much more in-situ and satellite data available for assimilation. The assimilation of sea level, chl-a, ferrybox and profile observations will greatly improves the ocean-ice-ecosystem forecast quality.

  5. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    DTIC Science & Technology

    2016-05-01

    RESUSPENSION CHARACTERIZATION ............................................................. 11 5.3 DEEP -DRAFT RESUSPENSION STUDY IN PEARL HARBOR...RESUSPENSION FROM A DEEP -DRAFT VESSEL .............................................. 21 6.4.1 Field Observations Using ADCP...event resulted in validation of the FANS model for prediction of sediment resuspension by a deep draft vessel. While working on the resuspension

  6. Numerical analysis of internal solitary wave generation around a Island in Kuroshio Current using MITgcm.

    NASA Astrophysics Data System (ADS)

    Kodaira, Tsubasa; Waseda, Takuji

    2013-04-01

    We have conducted ADCP and CTD measurements from 31/8/2010 to 2/9/2010 at the Miyake Island, located approximately 180 km south of Tokyo. The Kuroshio Current approached the island in this period, and the PALSAR image showed parabolic bright line upstream of the island. This bright line may be a surface signature of large amplitude internal solitary wave. Although our measurements did not explicitly show evidence of the internal solitary wave, critical condition might have been satisfied because of the Kuroshio Current and strong seasonal thermocline. To discover the generation mechanism of the large amplitude internal solitary wave at the Miyake Island, we have conducted non-hydrostatic numerical simulation with the MITgcm. A simple box domain, with open boundaries at all sides, is used. The island is simplified to circular cylinder or Gaussian Bell whose radius is 3km at ocean surface level. The size of the domain is 40kmx40kmx500m for circular cylinder cases and 80kmx80kmx500m for Gaussian bell cases. By looking at our CTD data, we have chosen for initial and boundary conditions a tanh function for vertical temperature profile. Salinity was kept constant for simplicity. Vertical density profile is also described by tanh function because we adopt linear type of equation of state. Vertical velocity profile is constant or linearly changed with depth; the vertical mean speed corresponds to the linear phase speed of the first baroclinic mode obtained by solving the eigen-value problem. With these configurations, we have conducted two series of simulations: shear flow through cylinder and uniform flow going through Gaussian Bell topography. Internal solitary waves were generated in front of the cylinder for the first series of simulations with shear flow. The generated internal waves almost purely consisted of 1st baroclinic component. Their intensities were linearly related with upstream vertical shear strength. As the internal solitary wave became larger, its width became wider compared to the KdV solution described by Grimshaw (2002). This is predicted because higher order analytical solution for 2-layer fluids, i.e. the eKdV solution, gives broader solitary wave shape than that of the KdV solution because of the cubic nonlinear term. When we look at the surface velocity distribution, a parabolic shape corresponding to internal solitary wave is clearly seen. According to the fully nonlinear theoretical model for internal wave between two fluids having background linear shear flow profiles (Choi and Camassa1999), the shape of internal wave is influenced by the velocity shear as well. However, we could not clarify the effect of vertical shear because there is no fully nonlinear analytical solution for large amplitude internal wave in continuously stratified fluid. Second series of simulations with uniform flow going through Gaussian Bell topography show that internal solitary wave shows up from sides of the topography. This generation is similar to the one developed in lee side of sill topography by tidal flow. With broader bell topography, generated internal waves become larger. This makes sense because forcing region is wider. A horizontal shape of the internal solitary wave is not parabolic but the two bending line forms from the sides of the island. However, no solitary wave in front of the island develops. Our results imply that vertical shear profile is needed for the formation of the depression type internal solitary, and explains the parabolic bright line observed in the SAR image

  7. Bodega Ocean Observing Node (BOON).

    NASA Astrophysics Data System (ADS)

    Largier, J. L.; Chow, V. I.; Williams, S. L.; Botsford, L. W.; Morgan, S. G.; Nyden, B.; Tustin, J. A.; McAfee, S.; Shideler, D.

    2004-12-01

    The Bodega Ocean Observing Node (BOON) is comprised of radar mapping of surface currents, a moored current profiler, and shoreline oceanographic and meteorological observations. Ongoing shoreline data on temperature and salinity date back to 1955, with continuous records of sealevel, wind, meteorology, and chlorophyll fluorescence starting more recently. Radar observations started in 2001 with deployment of two CODAR antennae. Together with a third CODAR unit deployed in 2002, these provide coverage from Pt Reyes north to the CODE line. Real-time ADCP data from the mooring started in late 2004. Plans include nearshore wave data, CTD/fluorescence data from the mooring, and deployment of a nutrient sensor at the shoreline. This coastal ocean observing node is part of the state-funded COCMP-NC program and the CeNCOOS regional association for central and northern California. Ancillary regional data are available on offshore winds (NDBC buoys), offshore waves (CDIP buoy), river flow, and satellite observations. The value of this suite of measurements is built on (1) detailed understanding of circulation, derived from WEST, CODE, and other prior studies of this region, including mesoscale atmosphere and ocean modeling, (2) active integration of circulation patterns in ongoing studies of planktonic and benthic ecology, and (3) direct interaction with local, state and federal agencies with interest in this region. To-date, the ongoing data series have shown potential for improved understanding and monitoring of fishery populations such as salmon and crab, as well as water quality concerns including oil spills and toxic pollutants. Through an active involvement in local studies and environmental management issues, BOON seeks to develop alternatives to supply-side thinking in the design of coastal ocean observing systems. BOON is based at the Bodega Marine Laboratory and thus provides invaluable support for academic study of more fundamental questions, such as carbon budgets in coastal upwelling systems and the importance of the spatial structure of coastal pelagic habitat.

  8. Short-term variations in mesozooplankton, ichthyoplankton, and nutrients associated with semi-diurnal tides in a patagonian Gulf

    NASA Astrophysics Data System (ADS)

    Castro, L. R.; Cáceres, M. A.; Silva, N.; Muñoz, M. I.; León, R.; Landaeta, M. F.; Soto-Mendoza, S.

    2011-03-01

    The relationships between the distribution of different zooplankton and ichthyoplankton stages and physical and chemical variables were studied using samples and data (CTD profiles, ADCP and current meter measurements, nutrients, mesozooplankton, ichthyoplankton) obtained from different strata during two 24-h cycles at two oceanographic stations in a Chilean Patagonian gulf during the CIMAR 10-Fiordos cruise (November, 2004). A station located at the Chacao Channel was dominated by tidal mixing and small increments in surface stratification during high tides, leading to decreased nutrient availability. This agreed with short periods of increased phytoplankton abundance during slack waters at the end of flood currents. Increases in larval density for all zooplankton and ichthyoplankton taxa corresponded to the flooding phases of the tidal cycle. When the larval density data were fit to a sinusoidal model, the regression coefficients were high, suggesting that tides are important features that modulate short-term variations in plankton abundance. All larvae did not vary synchronously with the tidal phase; rather, time lags were observed among species. The abundances of older individuals of the copepodite Rhincalanus nasutus and all zoea stages of the squat lobster Munida gregaria increased during night flood tides, whereas younger stages increased during daytime flood tides. At a station located at the Queullin Pass, which was dominated by vertical stratification patterns, the variations in peak larval density were better fitted to the semi-diurnal sea level fluctuations. Other evidence indicated internal tides below the pycnocline, which could promote larval transport in deeper layers. In the overall picture that emerges from this study, planktonic organisms from different habitats and phylogenetic origins seem to respond to the local tidal regimes. In some cases, this response might be beneficial, transporting these individuals inshore to areas that are rich in food during the peak biological production season.

  9. Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, C.

    2012-12-01

    Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;

  10. New infrastructure at Alboran island (Western Mediterranean): a submarine and on-land Geophysical Observatory

    NASA Astrophysics Data System (ADS)

    Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Jesús García Fernández, Maria; Bullón, Mercedes; Gárate, Jorge

    2010-05-01

    The Eurasian-African plate boundary crosses the called "Ibero-Maghrebian" region from San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern of Morocco and Algeria. The low convergence rate at this plate boundary produces a continuous moderate seismic activity of low magnitude and shallow depth, where the occurrence of large earthquakes is separated by long time intervals. In this region, there are also intermediate and very deep earthquakes. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation. Currently a Broad Band seismic net (Western Mediterranean, WM net), a permanent geodetic GPS net and a Geomagnetic Observatory have been installed by ROA in this area. To complement the available data, since past October a permanent marine-on land geophysical observatory is being installed by ROA in Alboran Island and surrounding marine zones. Till now the following facilities has been installed: • Submarine: 2 km submarine fibre optics cable (power and data transmission); Broad Band Seismometer (CMG-3T, buried); Accelerometer (Guralp 3 channels), buried); Differential Pressure Gauge (DPG); Thermometer. • On land: Permanent geodetic GPS station; Automatic meteorological station; Data acquisition system for submarine equipment; Satellite Data Transmission system. Data are already being transmitted in real time to ROA headquarters via satellite Intranet. The marine part, currently installed in a 50 m depth platform, has been designed to be enlarged by extending the cable to greater depths and/or installing additional submarine equipment, such a way in short an ADCP profiler will be installed. In this work we aim to show the present status, scientific possibilities and the next future plans of this submarine-on land installation.

  11. Intense mesoscale variability in the Sardinia Sea

    NASA Astrophysics Data System (ADS)

    Russo, Aniello; Borrione, Ines; Falchetti, Silvia; Knoll, Michaela; Fiekas, Heinz-Volker; Heywood, Karen; Oddo, Paolo; Onken, Reiner

    2015-04-01

    From the 6 to 25 June 2014, the REP14-MED sea trial was conducted by CMRE, supported by 20 partners from six different nations. The at-sea activities were carried out onboard the research vessels Alliance (NATO) and Planet (German Ministry of Defense), comprising a marine area of about 110 x 110 km2 to the west of the Sardinian coast. More than 300 CTD casts typically spaced at 10 km were collected; both ships continuously recorded vertical profiles of currents by means of their ADCPs, and a ScanFish® and a CTD chain were towed for almost three days by Alliance and Planet, respectively, following parallel routes. Twelve gliders from different manufacturers (Slocum, SeaGliderTM and SeaExplorer) were continuously sampling the study area following zonal tracks spaced at 10 km. In addition, six moorings, 17 surface drifters and one ARVOR float were deployed. From a first analysis of the observations, several mesoscale features were identified in the survey area, in particular: (i) a warm-core anticyclonic eddy in the southern part of the domain, about 50 km in diameter and with the strongest signal at about 50-m depth (ii) another warm-core anticyclonic eddy of comparable dimensions in the central part of the domain, but extending to greater depth than the former one, and (iii) a small (less than 15 km in diameter) cold-core cyclonic eddy of Winter Intermediate Water in the depth range between 170 m and 370 m. All three eddies showed intensified currents, up to 50 cm s-1. The huge high-resolution observational data set and the variety of observation techniques enabled the mesoscale features and their variability to be tracked for almost three weeks. In order to obtain a deeper understanding of the mesoscale dynamic behaviour and their interactions, assimilation studies with an ocean circulation model are underway.

  12. Cross-shore flow on the inner-shelf off southwest Portugal

    NASA Astrophysics Data System (ADS)

    Lamas, L.; Peliz, A.; Oliveira, P.; Dias, J.

    2012-04-01

    Velocity measurements from 4 bottom-mounted ADCP deployments (summers of 2006, 2007, 2008 and 2011) at a 12-m depth site off Sines, Portugal, complemented with time series of winds, waves and tides, are used to study the inner-shelf cross-shore flow dependence on wave, tidal and wind forcings. During these four summers, the dominating winds are from the north (upwelling-favorable), with strong diurnal sea breeze cycle throughout these periods. This quasi-steady wind circulation is sometimes interrupted by short event-like reversals. The observed records were split in different subsets according to tidal amplitude, wave height, cross- and along-shore wind magnitudes, and the vertical structure of the cross-shore flow was studied for each of these subsets. Despite different forcing conditions, the cross-shore velocity profiles usually show a vertical parabolic structure with maximum onshore flow at mid-depth, resembling the upwelling return flow for mid-shelf conditions, but atypical for the inner-shelf and in disagreement with other inner-shelf studies from other sites. We compare the observations with simplified 2D inner-shelf models and with results from other studies.

  13. First results about current and hydrological data collected in the southern Tyrrhenian subbasin during the GEOSTAR-2 deep-sea mission

    NASA Astrophysics Data System (ADS)

    Fuda, J.-L.; Millot, C.; Cazoulat, A.; Jouve, A.; Robin, S.; Rougier, G.; Etiope, G.; Favali, P.

    2003-04-01

    GEOSTAR is a multi-instrumented (300-kHz ADCP, CTD, transmissometer + several geophysical sensors) abyssal observatory (Beranzoli et al., 2000) that was deployed from September 2000 to March 2001 at about 1900m, 20 nm south-west from Ustica Island. This location was just below the mean depth of the interface separating the dense resident waters of Western Mediterranean origin from the lighter Eastern Mediterranean waters that have cascaded from the Channel of Sicily (now named Eastern Overflow Water, EOW; see http://ciesm.org/events/RT5-WaterMassAcronyms.pdf), as reported by Sparnocchia et al (1999). In order to specify the intermediate and deep circulation in the study area, six moorings were deployed from fall 2000 to fall 2001. Two moorings (M1, M5), equipped with classical current meters, were set 3 nm westwards and 6 nm eastwards from the observatory to specify the current field nearby. One mooring (M6), with a 400-m thermistor string surmounting an upward looking 75-kHz ADCP, was set at about 600 m, 45 nm miles westwards from the westernmost edge of Sicily, to monitor EOW mainly. Here we present the first results from the oceanographic sensors set on the observatory and on the M1, M5 and M6 moorings. In addition, one mooring (M2), supporting autonomous CTD's and set 20 nm northeast of Ustica at about 3400m, allowed confirming huge hydrological trends that were evidenced by previous measurements at the same site (Fuda et al., 2002). Two moorings (M3, M4) were set on the continental slope north of Ustica Island to monitor the alongslope flow from both the western and northern parts of the Tyrrhenian subbasin (analysis on hand). The most remarkable characteristic regarding the observatory T and S records resides in the regular occurrence, roughly every 2-3 weeks, of sharp peaks deviating from the constant background (T about 13.05°C, S about 38.51 psu) with values up to about 13.45°C and about 38.63 psu. These events are clearly indicative of rapid (hours/days) lowering of the interface separating EOW from the underlying waters of western origin. Additionally, the T-S peaks are undoubtedly associated with light transmission losses, which demonstrates that EOW is relatively turbid. Since the observatory was deployed in a bathymetric trough, the observed mean current direction did not match the general eastward circulation that exists in the region far from the seafloor (as expected from general circulation diagrams; see Millot, 1999). However, the 300-kHz ADCP recorded interesting dynamical features relative to the above-mentioned T-S peaks. Most of them were associated with sharp local maxima of the horizontal speed, either simultaneously or leading them by a few days. Moreover, the temporal derivative of the speed (including the vertical component) clearly indicates higher variations at the time the T-S peaks occurred. All these features appear consistent with the sampling of the deepest part of the energetic flow of EOW during/after the episodes of interface lowering, but the speed peaks might also be partly attributed to bottom resident waters being abruptly flushed. Another remarkable characteristic revealed by the ADCP is the occurrence of cyclonic loops having a period of about 50 hours, which corresponds, to our knowledge, to neither well-known nor expected phenomena. Similar T peaks were observed at M1 and M5 at depths similar to that of the observatory. However, although the T peaks on M1, M5 and the observatory undoubtedly signed interface lowering, neither any simultaneity nor any consistent propagation lag was found between the peaks recorded at each location, despite the short distances between them. As regards the currents, speeds of 20-25 cm/s towards east (which was also the mean direction there), were recorded at 750-900 m on M1 and M5. Below, the mean direction was increasingly influenced by the local bathymetry. Similar loops having a period of about 50 h were observed on M1 and M5 but correlations between all loops have still to be specified. On M6, the 75-kHz ADCP data clearly evidenced a very energetic 200m-thick bottom layer with maximum speeds up to 30-35 cm/s canalised eastwards due to the bottom topography, which corresponds to the EOW inflow. This inflow continuously displayed a pulsation at a period of about eight days which, to our knowledge, has never been reported previously. An intermediate layer of relatively low motion was found between 200m and 400m above sea floor, with maximum speeds rarely exceeding 10-15 cm/s (which roughly corresponds to the Levantine Intermediate Water (LIW) inflow). Above, the deepest part of the energetic and much variable flow of Atlantic Water (AW) was sampled with speeds up to 35-40 cm/s. The authors were supported by E.U. MAST III - Contract CT98-0183. Thanks are due to the crew of R/V Urania, managed by the Italian CNR. REFERENCES Beranzoli L., T. Braun, M. Calcara, D. Calore, R. Campaci, J.-M. Coudeville, A. De Santis, G. Etiope, P. Favali, F. Frugoni, J.-L. Fuda, F. Gamberi, F. Gasparoni, H. Gerber, M. Marani, J. Marvaldi, C. Millot, P. Palangio, G. Romeo, G. Smriglio, 2000. GEOSTAR, the first european long term seafloor observatory, EOS Transactions, vol. 81, n.5, 45-49. Fuda J.-L. , G. Etiope, C. Millot, P. Favali, M. Calcara, G. Smriglio and E. Boschi, 2001. Warming, salting and origin of the Tyrrhenian Deep Water. Geophys. Res. Letters, 29(18), 1886, doi:10.1029/2001GL014072, 2002. Millot C., 1999b. Circulation in the Western Mediterranean sea. J. Mar. Systems, 20, 1-4, 423-442. Sparnocchia, S., G.P. Gasparini, M. Astraldi, M. Borghini, and P. Pisteck, Dynamics and mixing of the Eastern Mediterranean outflow in the Tyrrhenian Basin. J. Mar. Syst., 20, 301-317, 1999.

  14. Acoustic assessment of sound scattering zooplankton in warm- and cold-core eddies in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert Allen

    Zooplankton and micronekton which cause a density discontinuity with the surrounding seawater reflect acoustic energy. This acoustic backscatter intensity (ABI) was measured using a vessel mounted 153 kHz acoustic Doppler current profiler. The ABI was used to describe vertical migration and distribution of sound scatterers in several mesoscale hydrographic features commonly found in the Gulf of Mexico: cold-core rings (CCRs), warm-core Loop Current eddies (LCEs) and the Loop Current (LC). The present paradigm contends that cold- core (cyclonic) features are mesoscale areas of enhanced production due to an influx of new nitrogen to surface waters as a result of divergent flow. The null hypothesis which was tested in this study was that the acoustic signatures of these features were not significantly different from one another. Clear diel differences in all of the features and a robust, positive correlation between ABI and plankton and micronekton wet displacement volume collected in MOCNESS tows in the upper 100 m of the water column were observed. During the day, ABI in CCRs was significantly greater than in LCEs and in the LC with regards to the upper 200 m. However, ABI in the LCEs and LC were not significantly different from each other. During the night, the ABI in the upper 50 m of the CCRs was significantly greater than that in the LCEs and the LC. However, there were no differences between features when ABI at night was summed for the entire upper 200 m, due to substantial vertical migrations of organisms into the upper 200 m of the water column at night. Two LCEs were revisited at an age of 8-9 months after their initial acoustic transects. The null hypothesis that there would be no significant difference in integrated ABI when the LCEs were resampled was rejected: both LCEs showed a reduction in integrated ABI over the upper 200 m. Further investigations into the faunal changes of these features are warranted, but the ADCP should continue to be a useful tool in the examination of the distribution of sound scatterers in mesoscale features in the Gulf of Mexico.

  15. Inter-annual variability and long term predictability of exchanges through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Boutov, Dmitri; Peliz, Álvaro; Miranda, Pedro M. A.; Soares, Pedro M. M.; Cardoso, Rita M.; Prieto, Laura; Ruiz, Javier; García-Lafuente, Jesus

    2014-03-01

    Inter-annual variability of calculated barotropic (netflow) and simulated baroclinic (inflow and outflow) exchanges through the Strait of Gibraltar is analyzed and their response to the main modes of atmospheric variability is investigated. Time series of the outflow obtained by high resolution simulations and estimated from in-situ Acoustic Doppler Current Profiler (ADCP) current measurements are compared. The time coefficients (TC) of the leading empirical orthogonal function (EOF) modes that describe zonal atmospheric circulation in the vicinity of the Strait (1st and 3rd of Sea-Level Pressure (SLP) and 1st of the wind) show significant covariance with the inflow and outflow. Based on these analyses, a regression model between these SLP TCs and outflow of the Mediterranean Water was developed. This regression outflow time series was compared with estimates based on current meter observations and the predictability and reconstruction of past exchange variability based on atmospheric pressure fields are discussed. The simple regression model seems to reproduce the outflow evolution fairly reasonably, with the exception of the year 2008, which is apparently anomalous without available physical explanation yet. The exchange time series show a reduced inter-annual variability (less than 1%, 2.6% and 3.1% of total 2-day variability, for netflow, inflow and outflow, respectively). From a statistical point of view no clear long-term tendencies were revealed. Anomalously high baroclinic fluxes are reported for the years of 2000-2001 that are coincident with strong impact on the Alboran Sea ecosystem. The origin of the anomalous flow is associated with a strong negative anomaly (~ - 9 hPa) in atmospheric pressure fields settled north of Iberian Peninsula and extending over the central Atlantic, favoring an increased zonal circulation in winter 2000/2001. These low pressure fields forced intense and durable westerly winds in the Gulf of Cadiz-Alboran system. The signal of this anomaly is also seen in time coefficients of the most significant EOF modes. The predictability of the exchanges for future climate is discussed.

  16. The Impact of Adult Degree-Completion Programs on the Organizational Climate of Christian Colleges and Universities

    ERIC Educational Resources Information Center

    Giles, Pamela

    2010-01-01

    Leaders in Christian higher education are often unaware of how adult degree completion programs (ADCPs) impact a school's organizational behavior, and no research has examined employees' perceptions of its impact. This nonexperimental, descriptive study examined differences in employees' perceptions of the impact on organizational climate of the…

  17. The Characteristics of Marine Environment around the Ieodo in Aug. 2016

    NASA Astrophysics Data System (ADS)

    Choi, E.; KIM, S. H.; KIM, E.; KIM, B. N.; CHOI, B. K.

    2017-12-01

    The sea area around Ieodo is analyzed from the CTD data and the S-ADCP data observed in 23 Aug. 2016. Ieodo, an underwater reef, is located 149 km southwest of Marado in Republic of Korea. It has 4 peaks and is about 4.6 meter below sea level. It stretches about 600m north to south and 750m east to west from its top. It has the same geographical characteristics as the seamount. In the sea area around Ieodo, the northward flow appeared during the ebb tide, the southward flow appeared during the flood tide. The strong stratification formed in summer seems to change the depth depending on the sea water current. The thermocline depth becomes deeper at the north of the Ieodo when the northward current flows and the upwelling flow occurs. And the thermocline depth becomes shallower at the south when the southward current flows and the downwelling flow occurs. In this way, the upwelling and downwelling seems to be according to the tide's direction. Acknowledgements This research was a part of the projects entitled "Construction of Ocean Research Stations and their application Studies, Phase 2", funded by the Ministry of Oceans and Fisheries, Korea.

  18. Durable antitumor responses to CD47 blockade require adaptive immune stimulation

    PubMed Central

    Sockolosky, Jonathan T.; Dougan, Michael; Ingram, Jessica R.; Ho, Chia Chi M.; Kauke, Monique J.; Almo, Steven C.; Ploegh, Hidde L.; Garcia, K. Christopher

    2016-01-01

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  19. Preface to the volume Large Rivers

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  20. The Massachusetts Bay internal wave experiment, August 1998: data report

    USGS Publications Warehouse

    Butman, Bradford; Alexander, P. Soupy; Anderson, Steven P.; Lightsom, Frances L.; Scotti, Alberto; Beardsley, Robert C.

    2006-01-01

    This data report presents oceanographic observations made in Massachusetts Bay (fig. 1) in August 1998 as part of the Massachusetts Bay Internal Wave Experiment (MBIWE98). MBIWE98 was carried out to characterize large-amplitude internal waves in Massachusetts Bay and to investigate the possible resuspension and transport of bottom sediments caused by these waves. This data report presents a description of the field program and instrumentation, an overview of the data through summary plots and statistics, and the time-series data in NetCDF format. The objective of this report is to make the data available in digital form and to provide summary plots and statistics to facilitate browsing of the data set. The existence of large-amplitude internal waves in Massachusetts Bay was first described by Halpern (1971). In summer when the water is stratified, packets of waves propagate westward into the bay on the flood (westward flowing) tide at about 0.5 m/s. The internal waves are observed in packets of 5-10 waves, have periods of 5-10 minutes and wavelengths of 200-400 m, and cause downward excursions of the thermocline of as much as 30 m. The waves are generated by interaction of the barotropic tide with Stellwagen Bank (Haury and others (1979). Several papers present analyses and interpretations of the data collected during the MBIWE98. Grosenbaugh and others (2002) report on the results of the horizontal array, Scotti and others (2005) describe a strategy for processing observations made by Acoustic Doppler Current Profilers (ADCPs) in the presence of short-wavelength internal waves, Butman and others (in press) describe the effect of these waves on sediment transport, and Scotti and others (in press) describe the energetics of the internal waves.

  1. Short-Term Variability on the Scotian Shelf

    NASA Astrophysics Data System (ADS)

    Greenan, B.; Petrie, B.; Harrison, G.; Oakey, N.; Strain, P.

    2002-12-01

    The traditional view of the production cycle on the continental shelf of Nova Scotia features a spring bloom followed by a period of low production and a less intense fall bloom. The annual cycle of primary productivity thus has a large, low frequency component. However, there is increasing evidence that the production cycle has significant variability on shorter time scales. Physical, chemical and biological variability on the Scotian Shelf is examined on a daily to weekly timescale. This is accomplished through the use of a newly developed mooring platform (SeaHorse) that uses surface wave energy to enable the instrument to climb down the mooring wire and then float upwards while sampling the water column. This provides bi-hourly profiles of temperature, salinity, pressure and chlorophyll at one location over month-long periods. Results from the three-week deployment in October 2000 indicate a subsurface chlorophyll maximum below the pycnocline during the first part of the time series. An event occurred in mid-October during which the temperature, salinity and density iso-surfaces rose approximately 25 m. During this event, a small bloom, with peak chlorophyll concentrations of about 2 mg m-3 and duration of several days, began as nutrients were brought into the upper part of the water column by upwelling-favorable winds. SeaWiFS ocean color satellite images were valuable in providing a spatial context for chlorophyll concentrations, however, the lack of temporal resolution due to poor quality images means that this data set provided limited information for short-term chlorophyll variability. Gradient Richardson Numbers were estimated for 2 m vertical bins using SeaHorse CTD data and nearby ADCP current measurements. A trend of decreasing Ri in the ocean mixed layer with increasing surface wind stress is suggested.

  2. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  3. Velocity mapping in the Lower Congo River: a first look at the unique bathymetry and hydrodynamics of Bulu Reach

    USGS Publications Warehouse

    Jackson, P. Ryan; Oberg, Kevin A.; Gardiner, Ned; Shelton, John

    2009-01-01

    The lower Congo River is one of the deepest, most powerful, and most biologically diverse stretches of river on Earth. The river’s 270 m decent from Malebo Pool though the gorges of the Crystal Mountains to the Atlantic Ocean (498 km downstream) is riddled with rapids, cataracts, and deep pools. Much of the lower Congo is a mystery from a hydraulics perspective. However, this stretch of the river is a hotbed for biologists who are documenting evolution in action within the diverse, but isolated, fish populations. Biologists theorize that isolation of fish populations within the lower Congo is due to barriers presented by flow structure and bathymetry. To investigate this theory, scientists from the U.S. Geological Survey and American Museum of Natural History teamed up with an expedition crew from National Geographic in 2008 to map flow velocity and bathymetry within target reaches in the lower Congo River using acoustic Doppler current profilers (ADCPs) and echo sounders. Simultaneous biological and water quality sampling was also completed. This paper presents some preliminary results from this expedition, specifically with regard to the velocity structure andbathymetry. Results show that the flow in the bedrock controlled Bulu reach of the lower Congo is highly energetic. Turbulent and secondary flow structures can span the full depth of flow (up to 165 m), while coherent bank-to-bank cross-channel flow structures are absent. Regions of flow separation near the banks are isolated from one another and from the opposite bank by high shear, high velocity zones with depth-averaged flow velocities that can exceed 4 m/s.

  4. Wakes from submerged obstacles in an open channel flow

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey B.; Marmorino, George; Dong, Charles; Miller, W. D.; Mied, Richard

    2015-11-01

    Wakes from several submerged obstacles are examined via airborne remote sensing. The primary focus will be bathymetric features in the tidal Potomac river south of Washington, DC, but others may be included as well. In the Potomac the water depth is nominally 10 m with an obstacle height of 8 m, or 80% of the depth. Infrared imagery of the water surface reveals thermal structure suitable both for interpretation of the coherent structures and for estimating surface currents. A novel image processing technique is used to generate two independent scenes with a known time offset from a single overpass from the infrared imagery, suitable for velocity estimation. Color imagery of the suspended sediment also shows suitable texture. Both the `mountain wave' regime and a traditional turbulent wake are observed, depending on flow conditions. Results are validated with in-situ ADCP transects. A computational model is used to further interpret the results.

  5. The ESASSI-08 cruise in the South Scotia Ridge region: An inverse model property-transport analysis over the Ridge

    NASA Astrophysics Data System (ADS)

    Palmer, Margarita; Gomis, Damià; Del Mar Flexas, Maria; Jordà, Gabriel; Naveira-Garabato, Alberto; Jullion, Loic; Tsubouchi, Takamasa

    2010-05-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the most significant milestone of the ESASSI project. ESASSI is the Spanish component of the Synoptic Antarctic Shelf-Slope Interactions (SASSI) study, one of the core projects of the International Polar Year. Hydrographical and biochemical (oxygen, CFCs, nutrients, chlorophyll content, alkalinity, pH, DOC) data were obtained along 11 sections in the South Scotia Ridge (SSR) region, between Elephant and South Orkney Islands. One of the aims of the ESASSI project is to determine the northward outflow of cold and ventilated waters from the Weddell Sea into the Scotia Sea. For that purpose, the accurate estimation of mass, heat, salt, and oxygen transport over the Ridge is requested. An initial analysis of transports across the different sections was first obtained from CTD and ADCP data. The following step has been the application of an inverse method, in order to obtain a better estimation of the net flow for the different water masses present in the region. The set of property-conservation equations considered by the inverse model includes mass, heat and salinity fluxes. The "box" is delimited by the sections along the northern flank of the SSR, between Elephant Island and 50°W, the southern flank of the Ridge, between 51.5°W and 50°W, the 50°W meridian and a diagonal line between Elephant Island and 51.5°W, 61.75°S. Results show that the initial calculations of transports suffered of a significant volume imbalance, due to the inherent errors of ship-ADCP data, the complicated topography and the presence of strong tidal currents in some sections. We present the post-inversion property transports across the rim of the box (and their error bars) for the different water masses.

  6. A study of the river velocity measurement techniques and analysis methods

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating objects in water in high flow, resulting in measurement automation work still needs further study. If the priority for the safety of personnel and instruments, we can use the non-contact velocity measurement method with the theoretical analysis method to achieve real-time monitoring.

  7. Rapid Changes in Water Properties on a Shallow Reef in the Chesapeake Bay due to a Wind Driven Internal Seiche

    NASA Astrophysics Data System (ADS)

    Kilbourne, B.

    2016-12-01

    The Chesapeake Bay Interpretive Buoy System has collected oceanographic and meteorological observations in Chesapeake Bay from 2007 to the present. The relatively long and well resolved time series of wind, current, and salinity data provided by this array creates an opportunity to better understand the many finescale circulation pathways in Chesapeake Bay. The mean vertical structure of Chesapeake Bay is approximated by a three layer system: a well-mixed surface boundary layer from 1 to 8 m depth, a stratified transition layer from 8 to 15 m depth, and a well-mixed bottom boundary layer from 15 m to the bottom (typically < 30 m). The conditions in the surface and bottom boundary layers can be strikingly different with the bottom layer being saltier, lower in pH, and lower in dissolved oxygen than the surface layer. The Gooses Reef station of this array is located on `Gooses Reef', a shallow bar just 10 m in depth, dividing the Choptank River basin from the main channel of the Chesapeake Bay. This shallow bar provides habitat for oysters, a keystone species in the Chesapeake Bay, and is both commercially and ecologically critical to the region. These shallow habitats are threatened when anoxic (< 0.5 mg l-1 O2) conditions exist in the upper 10 m of the water column. The Gooses Reef station is unique in the array due to the addition of a bottom mounted sensor package; data from August 2012 show rapid changes in the salinity (11 to 17 PSU), dissolved oxygen (6 to 0.05 mg l-1) , and pH (8.3 to 7.7) at the bottom. Investigations of wind and current data before these rapid changes show along channel wind stress oscillations near the M2 tidal frequency. Current profiles from the buoy ADCP show low-frequency along-channel baroclinic oscillations. Observed currents appear to be an internal seiche, forced by resonance between the along-channel wind and diurnal tide. At the Gooses Reef bar, this internal seiche forced the bottom boundary layer up and over the bar, causing the sudden shift in water properties. These observations highlight the strong physical controls on local water conditions in the Chesapeake Bay and similar estuaries.

  8. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    Baroclinic residual circulation processes are examined in gulf type Regions Of Freshwater Influence (ROFIs), which have large rivers discharging into a rounded head wider than the Rossby internal deformation radius. Theoretical and observational investigations concentrate on Ise Bay, Japan, with supporting data from Osaka Bay and Tokyo Bay. Simplified analytical solutions are derived to describe the primary features of the circulation. Three dimensional residual current data collected using moored current meters and shipboard acoustic doppler current profilers (ADCPs), satellite imagery and density structure data observed using STDs, are presented for comparison to the theoretical predictions. There are three key points to understanding the resulting circulation in gulf type ROFIs. First, there are likely to be three distinct water masses: the river plume, a brackish upper layer, and a higher salinity lower layer. Second, baroclinic processes in gulf type ROFIs are influenced by the Earth's rotation at first order. Residual currents are quasi-geostrophic and potential vorticity is approximately conserved. Third, the combined effects of a classical longitudinal estuarine circulation and the Earth's rotation are both necessary to produce the resulting circulation. Anti-cyclonic vorticity is generated in the upper layer by the horizontal divergence associated with upward entrainment, which is part of the estuarine circulation. The interaction between anti-cyclonic vorticity and horizontal divergence results in two regions of qualitatively different circulation, with gyre-like circulation near the bay head and uniformly seaward anti-cyclonicly sheared flow further towards the mouth. The stagnation point separating the two regions is closer to (further away from) the bay head for stronger (weaker) horizontal divergence, respectively. The vorticity and spin-up time of this circulation are-(ƒ-ω 1)/2 and h/2w 0, respectively, where ƒ is the Coriolis parameter, ω 1 is the vorticity of the lower layer, h is the depth of the upper layer and w 0 is the upward entrainment velocity across the pycnocline. Under high discharge conditions the axis of the river plume proceeds in a right bounded direction, describing an inertial circle clearly seen in satellite images. Under low discharge conditions the river plume is deflected in a left bounded direction by the anti-cyclonic circulation of the upper layer.

  9. Research and Development of An In-situ Real-time Coastal Monitoring System

    NASA Astrophysics Data System (ADS)

    Deponte, D.; Cecco, R.; Laterza, R.; Medeot, N.; Nair, R.; Viezzoli, D.

    The coastal area is a complex system in which the effects of the forcing terms on the circulation and mixing present a marked space-time variability on widely differing scales. In order to study such a system, it is necessary to monitor continuously, at high frequency, oceanographic and meteorological variables. To meet this need, the OGS has developed a coastal meteo-oceanographic buoy, called MAMBO, constituted by a float, a hull, a tripod and a powering system based on batteries recharged by so- lar panels that have been expressly designed and assembled by an in-house technical team. The buoy is equipped with a mechanical winch driving a multi-parametric pro- filing probe which provides data on pressure, temperature, salinity, dissolved oxygen, chlorophyll, pH and turbidity over the entire water column. Meteorological data (air temperature, barometric pressure and wind) are also measured. Data are acquired ev- ery 3 hours and transmitted via GSM cellular phone to a receiving station at the OGS in real-time where they are automatically subjected to a first level quality-check and made available to the public at the OGS web site. The buoy also serves as a convenient platform for a separate OGS-developed controller that manages an upward-looking ADCP-600kHz positioned on the sea floor close to the buoy. This controller regu- lates the ADCP power supply and permits the real-time transmission of pressure and current data to land via GSM cellular phone. Since there are no limitations due to bat- teries or memory capacity, currents can be sampled at high spatial and time resolution. Moreover, the controller permits to remotely change the configuration of the instru- ment in order to increase, for example, vertical resolution, and eventually, to record wave data. The first buoy of this type has been operating in the Gulf of Trieste (North Adriatic Sea) since 1998, and it is being continually improved. Two others, supplied additionally with a GPS, a radiometer and a hygrometer and improved with respect to some mechanical parts, have been deployed since June 2000, in the coastal area to the north of Sardinia (Tyrrhenian Sea). The development of an effective quality control procedure, that can be applied in real-time to the acquired data and that can permit the design of an efficient maintenance program for the buoy sensors, is in progress.

  10. PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing Sites - Apra Harbor, Guam

    DTIC Science & Technology

    2017-09-01

    ADCP locations used for model calibration. ......................................................................... 12 Figure 4-3. Sample water...Example of fine sediment sample [Set d, Sample B30]. (B) Example of coarse sediment sample [Set d, sample B05...Turning Basin average sediment size distribution curve. ................................................... 21 Figure 5-5. Turning Basin average size

  11. Flow Structure and Turbulence Distributions In The Coastal Ocean From Piv Data

    NASA Astrophysics Data System (ADS)

    Nimmo Smith, W. A. M.; Luznik, L.; Zhu, W.; Katz, J.; Osborn, T. R.

    Particle Image Velocimetry (PIV) allows measurements of the instantaneous distribu- tion of two velocity components within a sample plane. This technique overcomes the inability to separate the unsteady flows associated with turbulence from those induced by surface waves in the coastal ocean, which adversely affects the data obtained using point measurement techniques. A submersible PIV system was deployed close to the LEO-15 site in 12-20m deep water. The system comprises two 2Kx2K pixels, 12bits/pixel digital cameras operating simultaneously, each with a sample area of up to 0.5x0.5m. The sample areas are illuminated by a pair of flashlamp pumped-dye lasers located at the surface, which transmit pulses along optical fibres to submerged probes used for expanding the beams into light sheets. We record two exposures within each frame of the digital cameras. A hardware based `image shifter' creates a known fixed offset between exposures on the CCD array to remove directional ambiguity. Naturally occurring particles are used as tracers. An auto-correlation method is used for data analysis. The components of the PIV system are mounted on a rigid sea bed platform, which enables us to align the sample areas with the direction of the mean current and to perform profiles from very close to the bottom up to 10m above the bed. Data were collected at different elevations and under different mean flow and wave conditions for periods in excess of 20min each, and at rates of up to 3.3Hz. The PIV data are augmented with data from an airfoil probe, a pressure transducer and ADCP profiles of the water column. The results include vertical distributions of mean velocity, dissipation rate and shear stress under different mean current and wave conditions, including periods of zero mean flow. There is clear evidence that a log layer exists only when the amplitude of the wave induced motion is significantly smaller than the mean flow. Distributions of vorticity enable us to identify and follow the transport and development of large scale eddy structures within the sample areas. The flow structure appears to consist of periods (about 70% of the time) of relatively calm flow interspersed with powerful `gusts' of giant vortical structures. The occurrence of these `gusts' does not appear to correlate with any specific phase of the surface wave motion.

  12. Development of perspective methods for modeling 3D currents for coastal systems in connection with environmental problems in South of France as well as South of Russia

    NASA Astrophysics Data System (ADS)

    Alexeenko, Elena; Sukhinov, Alexander; Roux, Bernard; Meule, Samuel; Chistyakov, Alexander

    2010-05-01

    Shallow water reservoirs are complex multi-parameter hydrodynamic systems. The current and the coupled processes occurring in them are spatially three-dimensional and unsteady, and have essentially nonlinear character. Therefore, the use of field experiments to analyse such a systems is extremely labor intensive and costly. Without underestimating the role of field experiments, it should be nevertheless noted that the most optimal in terms of cost and reliability of the results is an approach based on a combination of relatively inexpensive and safe field experiments and mathematical modeling of the processes under study. The present approach has several advantages with respect to the existing models. Three components of velocity vector from the full system of Navier-Stokes equations (and not on the basis of the hydrostatic approximation) and the equation of the surface elevation are calculated. In most hydrodynamic models of shallow water, the third component of the velocity vector is determined from the equations of continuity and the elevation surface level, which introduces significant error in the determination of the component. Calculation of the three components of velocity vector based on the equations of motion is a time-consuming process, so the hydrostatic approximation is used as an initial approximation for calculating the pressure. This approach greatly reduces the computing time and the costs. Also one of the advantages of the present model is an improved parameterization of the vertical turbulent exchange coefficient, on the basis of ADCP measurement data (Acoustic Doppler Current Profiler). In modern numerical models of vertical turbulent exchange, this coefficient often appears as a fitting parameter. Among the numerous approximations of the coefficient of vertical turbulent exchange, the algebraic subgrid model of Belotcerkovskii, which is based on the determination of turbulent flows as multiplications of averaged over time (correlation) fluctuations of the horizontal and vertical velocity's components, showed itself in the best way in comparison with expedition data. Mathematical and numerical modeling was carried out on the Azov Sea (Russia) and the lagoon Etang de Berre (France), taking into account three main forcing mechanisms: wind effect, fresh and marine water input (micro-tidal effect). Expeditions were conducted in Azov Sea (in 2005 and 2006) and in the lagoon Etang de Berre (in 2006 and 2008), for obtaining data on the status and changes in hydro-physical and hydro chemical parameters. During these expeditions data on the velocity fluctuations in certain locations on the basis of ADCP measurements (WHS600 Sentinel) were obtained. We studied the situation which can occur typically on the second half of the summer where the water, at the exit area of the waters of Taganrog Gulf in Azov Sea, can be saturated by organic compounds coming from rivers. For some wind intensity and direction, the presence of a closed vortex motion can be exhibited; then, these organic compounds can deposit on the seabed and their decomposition can lead to huge phenomena of hypoxia (as in 2001). In the north-western part of the lagoon Etang de Berre, stable vortex structures can be exhibited for different forcing mechanisms, including the discharge of water from an hydroelectric dam. A large number of organic matter falls into this area. These substances are captured by the vortex structure, and, sinking to the bottom, form the organic sediment. For temperatures typical for the summer period, begins intensive oxidation of the resulting sediment with a simultaneous decrease in the concentration of dissolved oxygen. In case of stable stratification phenomenon, occurs quite rapidly anoxia (complete lack of oxygen) and further expansion is on anaerobic cycle with the formation of hydrogen sulfide. This phenomenon was observed during the September expedition of 2006.

  13. First oceanographic observations on the Wandel Sea shelf in Northeast Greenland: Tracing the Arctic Ocean outflow through the western Fram Strait

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Igor A.; Kirillov, Sergei A.; Rudels, Bert; Babb, David G.; Pedersen, Leif T.; Rysgaard, Soeren; Kristoffersen, Yngve; Barber, David G.

    2016-04-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in North Eastern Greenland were collected from the land-fast ice in April-May 2015 as a part of the Arctic Science Partnership collaboration during the first research campaign at the Villum Research Station. They were complemented by (i) the ice-tethered profiler (ITP) and Acoustic Dopler Current Profiler (ADCP) mooring observations in ~300 m of the tidewater glacier outlet from the Flade Isblink Ice Cap and (ii) CTDs taken in June-July 2015 along the Wandel Sea continental slope during the Norwegian FRAM 2014-15 sea ice drift. The CTD profiles deeper than 100 m are used to reveal the origin of water masses and determine the extent to which these water masses have interacted with ambient water from the continental slope. The subsurface water layer from ~20-70 m depth is comprised of freshened water (30-32 psu) that is likely associated with the Pacific Water outflow from the Arctic Ocean through the western Fram Strait. The underlying halocline layer centered at ~80 m (~33 psu) separates the Pacific Water layer from a deeper (<140 m) layer of modified Polar Water that has interacted with the warm Atlantic Water outflow through Fram Strait. The Atlantic Water layer with temperature above 0°C is recorded below 140 m. Over the outer shelf, the halocline layer shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient Polar Water mass across the continental slope. Mooring data shows an enhanced shelf-slope interaction responding the storm event in 23-24 April 2015 with northerly winds exceeding 10 m/s. The on-shelf transport of a cold and turbid water from the upper continental slope results in enhanced interleaving within the depth range of the halocline layer (~70-100 m). Our observations of Pacific Water in the Wandel Sea subsurface layer are set in the context of upstream observations in the Beaufort Sea for 2002-2011 and downstream observations from the Northeast Water Polynya (1992-1993), and clearly show the modification of Pacific Water during its advection across the Arctic Ocean from the Bering Strait to Fram Strait. Moreover, the Wandel Sea shelf and continental slope water shows a different water mass structure indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the Western Fram Strait.

  14. Can small zooplankton enhance turbulence in a lake during vertical migration?

    NASA Astrophysics Data System (ADS)

    Wain, D.; Simoncelli, S.; Thackeray, S.

    2016-02-01

    Recent research in both oceanic and freshwater systems suggests that the Diel Vertical Migration (DVM), a predator-avoidance mechanism adopted by many zooplankton, may be an underrepresented source of turbulence and mixing. In particular, the migration can play a crucial role when organisms cross the thermocline; this could be particularly important in enhancing the mixing in lakes, where the pelagic zone is often quiescent, with a consequent impact on lake ecosystem functioning. A field experiment was performed to directly measure the temperature fluctuations and kinetic energy dissipation rate generated by DVM of Daphnia spp., a 1 mm crustacean zooplankton genus. Profiles of turbulence were acquired with a temperature microstructure profiler in Vobster Quay (UK), a small quarry with small wind fetch, steep sides, and with a maximum depth of approximately 25 m. Sixteen profiles were measured over the course of two hours during sunset on 16 July 2015, during which there was no wind. Backscatter strength from bottom-mounted ADCP was used as a proxy to assess DVM. Zooplankton vertical distribution was also quantified by sampling with a 100 μm mesh net before and after the turbulence profiling in 8 layers to verify the distribution of Daphnia spp. before and after the migration. Zooplankton tows show higher abundance (450 ind./L) of Daphnia at 9m and near the bottom before sunset (8PM). Samples after dusk (11.20PM) showed an increase in the surface layer, from 0 up to 250 ind./L. However, migration also appears to happen horizontally. Ensemble-averaged profiles show a great variation of the dissipation rates over the course of the time series with a peak of 10-7 W/kg between 6m and 12m where the DVM is happening and with respect to profiles before sunset. Given the uncertainty in measuring the length scales of turbulence associated with small zooplankton, further analysis is required to determine if the observed turbulence during the time of migration was due the migration or due to other causes, such as the onset of penetrative convection associated with night-time cooling. Three further datasets were collected during sunset in August and September 2015 and will be used to determine if turbulence is always present during the migrations.

  15. Acoustic estimates of zooplankton and micronekton biomass in cyclones and anticyclones of the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick Henry

    2001-12-01

    In the Gulf of Mexico (GOM), coarse to mesoscale eddies can enhance the supply of limiting nutrients into the euphotic zone, elevating primary production. This leads to 'oases' of enriched standing stocks of zooplankton and micronekton in otherwise oligotrophic deepwater (>200 m bottom depth). A combination of acoustic volume backscattering (Sv) measurements with an acoustic Doppler current profiler (ADCP) and concurrent net sampling of zooplankton and micronekton biomass in GOM eddy fields between October 1996 and November 1998 confirmed that cyclones and flow confluences were areas of locally enhanced Sv and standing stock biomass. Net samples were used both to 'sea-truth' the acoustic measurements and to assess the influence of taxonomic composition on measured Sv. During October 1996 and August 1997, a mesoscale (200--300 km diameter) cyclone-anticyclone pair in the northeastern GOM was surveyed as part of a cetacean (whale and dolphin) and seabird habitat, study. Acoustic estimates of biomass in the upper 10--50 m of the water column showed that the cyclone and flow confluence were enriched relative to anticyclonic Loop Current Eddies during both years. Cetacean and seabird survey results reported by other project researchers imply that these eddies provide preferential habitat because they foster locally higher concentrations of higher-trophic-level prey. Sv measurements in November 1997 and 1998 showed that coarse scale eddies (30--150 km diameter) probably enhanced nutrients and S, in the deepwater GOM within 100 km of the Mississippi delta, an area suspected to be important habitat for cetaceans and seabirds. Finally, Sv, data collected during November-December 1997 and October-December 1998 from a mooring at the head of DeSoto Canyon in the northeastern GOM revealed temporal variability at a single location: characteristic temporal decorrelation scales were 1 day (diel vertical migration of zooplankton and micronekton) and 5 days (advective processes). A combination of acoustic and net sampling is a useful way to survey temporal and spatial patterns in zooplankton and micronekton biomass in coarse to mesoscale eddies. Further research should employ such a combination of methods to investigate plankton patterns in eddies and their implications for cetacean and seabird habitat.

  16. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    NASA Astrophysics Data System (ADS)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D model could best simulate observed tidal wave propagation and water surface slope. The complexity of the 2D model requires further quantification of parameter sensitivity and improvement of the parametrization routine.

  17. Evaluating the NOAA Coastal and Marine Ecological Classification Standard in estuarine systems: A Columbia River Estuary case study

    NASA Astrophysics Data System (ADS)

    Keefer, Matthew L.; Peery, Christopher A.; Wright, Nancy; Daigle, William R.; Caudill, Christopher C.; Clabough, Tami S.; Griffith, David W.; Zacharias, Mark A.

    2008-06-01

    A common first step in conservation planning and resource management is to identify and classify habitat types, and this has led to a proliferation of habitat classification systems. Ideally, classifications should be scientifically and conceptually rigorous, with broad applicability across spatial and temporal scales. Successful systems will also be flexible and adaptable, with a framework and supporting lexicon accessible to users from a variety of disciplines and locations. A new, continental-scale classification system for coastal and marine habitats—the Coastal and Marine Ecological Classification Standard (CMECS)—is currently being developed for North America by NatureServe and the National Oceanic and Atmospheric Administration (NOAA). CMECS is a nested, hierarchical framework that applies a uniform set of rules and terminology across multiple habitat scales using a combination of oceanographic (e.g. salinity, temperature), physiographic (e.g. depth, substratum), and biological (e.g. community type) criteria. Estuaries are arguably the most difficult marine environments to classify due to large spatio-temporal variability resulting in rapidly shifting benthic and water column conditions. We simultaneously collected data at eleven subtidal sites in the Columbia River Estuary (CRE) in fall 2004 to evaluate whether the estuarine component of CMECS could adequately classify habitats across several scales for representative sites within the estuary spanning a range of conditions. Using outputs from an acoustic Doppler current profiler (ADCP), CTD (conductivity, temperature, depth) sensor, and PONAR (benthic dredge) we concluded that the CMECS hierarchy provided a spatially explicit framework in which to integrate multiple parameters to define macro-habitats at the 100 m 2 to >1000 m 2 scales, or across several tiers of the CMECS system. The classification's strengths lie in its nested, hierarchical structure and in the development of a standardized, yet flexible classification lexicon. The application of the CMECS to other estuaries in North America should therefore identify similar habitat types at similar scales as we identified in the CRE. We also suggest that the CMECS could be improved by refining classification thresholds to better reflect ecological processes, by direct integration of temporal variability, and by more explicitly linking physical and biological processes with habitat patterns.

  18. Circulation in the region of the Reykjanes Ridge in June-July 2015

    NASA Astrophysics Data System (ADS)

    Tillys, Petit; Herle, Mercier; Virginie, Thierry

    2017-04-01

    The Reykjanes Ridge is a major topographic feature of the North-Atlantic Ocean lying south of Iceland that strongly influences the pathways of the upper and lower limbs of the meridional overturning cell. The circulation in the vicinity of the Reykjanes Ridge is anticyclonic and characterized by a southwestward flow (the East Reykjanes Ridge Current, ERRC) along the eastern flank and a northeastward flow (the Irminger Current, IC) along the western flank. Even if it is admitted that the ERRC feeds the IC through a cross-ridge flow, details and magnitude of this circulation remain unclear. In this study, the circulation in the region of the Reykjanes Ridge was investigated based on ADCP and CTDO2 measurements carried out from the R/V Thalassa during the RREX cruise, which provided a snapshot of the water mass distribution and circulation during summer 2015. One hydrographic section followed the top of the Reykjanes Ridge between Iceland and 50˚ N and three other sections were carried out perpendicularly to the ridge at 62˚ N, 58.5˚ N and 56˚ N. Geostrophic transports were estimated by combining ADCP and hydrographic data. Those observations were used to provide an estimate of the circulation around the Ridge and to discuss the meridional evolutions of the ERRC and IC transports along the Ridge and their connection to the cross-Ridge flows. The section along the top of the Reykjanes Ridge allowed us to describe the cross ridge exchanges. A westward flow crossed the Ridge between Iceland and 53˚ N. Its top to bottom integrated transport was estimated at 17.7 Sv. Two main passages were identified for the westward crossing. A first passage is located near 57˚ N (Bight Fracture Zone, BFZ) in agreement with previous studies. More surprisingly, a second passage is located near 59˚ N. The top-to-bottom transports of those two main flows were estimated at 6.5 and 8 Sv respectively. The IC and ERRC top-to-bottom integrated transports were maximum at 58.5˚ N and estimated at 24.7 Sv and 17.6 Sv respectively. At 58.5˚ N, the IC was composed of two baroclinic branches while the ERRC was composed of one barotropic branch. The analysis also suggested that the IC was partly fed by the subpolar branch of the North Atlantic Current characterized by relatively low salinity and temperature. This subpolar branch would directly feed the IC without entering in the Iceland Basin. The northward increase in salinity and temperature of the IC core between 56˚ N and 62˚ N highlights the entrainment in the IC of saltier and warmer subtropical waters coming from the eastern side of the Ridge.

  19. Integrated synoptic surveys of the hydrodynamics and water-quality distributions in two Lake Michigan rivermouth mixing zones using an autonomous underwater vehicle and a manned boat

    USGS Publications Warehouse

    Jackson, P. Ryan; Reneau, Paul C.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the National Monitoring Network for U.S. Coastal Waters and Tributaries, launched a pilot project in 2010 to determine the value of integrated synoptic surveys of rivermouths using autonomous underwater vehicle technology in response to a call for rivermouth research, which includes study domains that envelop both the fluvial and lacustrine boundaries of the rivermouth mixing zone. The pilot project was implemented at two Lake Michigan rivermouths with largely different scales, hydrodynamics, and settings, but employing primarily the same survey techniques and methods. The Milwaukee River Estuary Area of Concern (AOC) survey included measurements in the lower 2 to 3 miles of the Milwaukee, Menomonee, and Kinnickinnic Rivers and inner and outer Milwaukee Harbor. This estuary is situated in downtown Milwaukee, Wisconsin, and is the most populated basin that flows directly into Lake Michigan. In contrast, the Manitowoc rivermouth has a relatively small harbor separating the rivermouth from Lake Michigan, and the Manitowoc River Watershed is primarily agricultural. Both the Milwaukee and Manitowoc rivermouths are unregulated and allow free exchange of water with Lake Michigan. This pilot study of the Milwaukee River Estuary and Manitowoc rivermouth using an autonomous underwater vehicle (AUV) paired with a manned survey boat resulted in high spatial and temporal resolution datasets of basic water-quality parameter distributions and hydrodynamics. The AUV performed well in these environments and was found primarily well-suited for harbor and nearshore surveys of three-dimensional water-quality distributions. Both case studies revealed that the use of a manned boat equipped with an acoustic Doppler current profiler (ADCP) and multiparameter sonde (and an optional flow-through water-quality sampling system) was the best option for riverine surveys. To ensure that the most accurate and highest resolution velocity data were collected concurrently with the AUV surveys, the pilot study used a manned boat equipped with an ADCP. Combining the AUV and manned boat datasets resulted in datasets that are essentially continuous from the fluvial through the lacustrine zones of a rivermouth. Whereas the pilot studies were completed during low flows on the tributaries, completion of surveys at higher flows using the same techniques is possible, but the use of the AUV would be limited to areas with relatively low velocities (less than 2 feet per second) such as the harbors and nearshore zones of Lake Michigan. Overall, this pilot study aimed at evaluation of AUV technology for integrated synoptic surveys of rivermouth mixing zones was successful, and the techniques and methods employed in this pilot study should be transferrable to other sites with similar success. The use of the AUV provided significant time savings compared to traditional sampling techniques. For example, the survey of outer Milwaukee Harbor using the AUV required less than 7 hours for approximately 600 profiles compared to the 150 hours it would have taken using traditional methods in a manned boat (a 95 percent reduction in man-hours). The integrated datasets resulting from the AUV and manned survey boat are of high value and present a picture of the mixing and hydrodynamics of these highly dynamic, highly variable rivermouth mixing zones from the relatively well-mixed fluvial environment through the rivermouth to the stratified lacustrine receiving body of Lake Michigan. Such datasets not only allow researchers to understand more about the physical processes occurring in these rivermouths, but they provide high spatial resolution data required for interpretation of relations between disparate point samples and calibration and validation of numerical models.

  20. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells

    PubMed Central

    Estupina, Pauline; Fontayne, Alexandre; Barret, Jean-Marc; Kersual, Nathalie; Dubreuil, Olivier; Le Blay, Marion; Pichard, Alexandre; Jarlier, Marta; Pugnière, Martine; Chauvin, Maëva; Chardès, Thierry; Pouget, Jean-Pierre; Deshayes, Emmanuel; Rossignol, Alexis; Abache, Toufik; de Romeuf, Christophe; Terrier, Aurélie; Verhaeghe, Lucie; Gaucher, Christine; Prost, Jean-François

    2017-01-01

    Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10−11 M vs 7.9 × 10−10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was then investigated. 3C23K-dependent (100 ng/ml) ADCP was more active with murine than human macrophages (only 10% of living target cells vs. about 25%). These in vitro results suggest that the reduced ADCC with murine effectors could be partially balanced by ADCP activity in in vivo experiments. Taken together, these preclinical data indicate that 3C23K is a new promising therapeutic candidate for ovarian cancer immunotherapy and justify its recent introduction in a phase I clinical trial. PMID:28427157

  1. Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Toublanc, F.; Ayoub, N. K.; Lyard, F.; Marsaleix, P.; Allain, D. J.

    2018-04-01

    Downscaling physical processes from a large scale to a regional scale 3D model is a recurrent issue in coastal processes studies. The choice of boundary conditions will often greatly influence the solution within the 3D circulation model. In some regions, tides play a key role in coastal dynamics and must be accurately represented. The Bay of Biscay is one of these regions, with highly energetic tides influencing coastal circulation and river plume dynamics. In this study, three strategies are tested to force with barotropic tides a 3D circulation model with a variable horizontal resolution. The tidal forcings, as well as the tidal elevations and currents resulting from the 3D simulations, are compared to tidal harmonics extracted from satellite altimetry and tidal gauges, and tidal currents harmonics obtained from ADCP data. The results show a strong improvement of the M2 solution within the 3D model with a "tailored" tidal forcing generated on the same grid and bathymetry as the 3D configuration, compared to a global tidal atlas forcing. Tidal harmonics obtained from satellite altimetry data are particularly valuable to assess the performance of each simulation. Comparisons between sea surface height time series, a sea surface salinity database, and daily averaged 2D currents also show a better agreement with this tailored forcing.

  2. Flows in the Tasman Front south of Norfolk Island

    NASA Astrophysics Data System (ADS)

    Sutton, Philip J. H.; Bowen, Melissa

    2014-05-01

    The Tasman Front is a narrow band of eastward flowing subtropical water crossing the Tasman Sea from Australia to North Cape, New Zealand. It is the link between the two subtropical western boundary currents of the South Pacific, the East Australian Current (EAC) off eastern Australia, and the East Auckland Current (EAUC) off northeastern New Zealand. Here we report the first direct measurements of flow in the Tasman Front from a moored array deployed across gaps in the submarine ridges south of Norfolk Island and hydrographic and ADCP measurements during the deployment and recovery voyages. The mean flow through the array over July 2003 to August 2004 was found to be eastward only in the upper 800 m with a transport of ˜6 Sv. Below 800 m a weak westward mean flow (˜1.5 Sv) was measured, associated with Antarctic Intermediate Water (AAIW). Using sea surface height to account for additional transport south of the moored array results in a total mean eastward transport between Norfolk Island and North Cape, New Zealand of ˜8 Sv, varying between -4 and 18 Sv. The measurements show that the Tasman Front is much shallower than either the EAC or EAUC, both of which extend below 2000 m depth, has less transport than either the EAC or EAUC and has instances of flow reversal. Thus, the Tasman Front is a weaker connection between the EAC and EAUC than the paradigm of a contiguous South Pacific western boundary current system would suggest.

  3. Atmospheric and tidal forcing of the exchange between Prince William Sound and the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Halverson, Mark J.

    2014-03-01

    Current meter data from a series of oceanographic moorings spanning a total of five years was analyzed to quantify the tidal and subtidal exchange of water between Prince William Sound and the adjacent continental shelf in the northern Gulf of Alaska. Velocity profiles were used to quantify the exchange in terms of a transport through each of the two largest passages: Montague Strait and Hinchinbrook Entrance. Buoy wind and atmospheric pressure observations, as well as bottom pressure records, are then used to elucidate the role of atmospheric forcing on the exchange. An EOF analysis shows that the barotropic component accounts for 62% or more of the variance in the velocity profiles even after tides are removed by low-pass filtering, and thus the analysis is concerned primarily with depth-integrated transport. The estimated depth-integrated transport can reach ±0.6 Sv in Montague Strait, and ±1.5 Sv in Hinchinbrook Entrance. The largest fluctuations occur in response to the semidiurnal tides. Transport variations on subtidal time scales, which can reach -0.2 Sv in Montague Strait, and +0.6 Sv in Hinchinbrook Entrance, are shown by a frequency domain analysis to be dominated by easterly wind stress events which occur at periods of 2-5 days in both summer and winter. Atmospheric pressure has much less impact on transport, but there is some evidence that it might play a small role on time scales of a few weeks. Bottom pressure records suggest that easterly wind events set up a sea level height gradient in Hinchinbrook Entrance such that it tilts up to the east, which under geostrophy drives a barotropic flow into Prince William Sound. The same winds also raise the sea level in Hinchinbrook Entrance relative to Montague Strait, encouraging an outflow there in agreement with the ADCP observations. There is no evidence that the wind drives a vertically sheared bi-directional flow in either entrance, as has been observed in some estuaries. It is hypothesized that the lack of such a flow is possible because Prince William Sound has two major connections to the shelf, which alters the mass conservation requirement for each passage when compared to a system with just one entrance.

  4. Effects of waves on water dispersion in a semi-enclosed estuarine bay

    NASA Astrophysics Data System (ADS)

    Delpey, M. T.; Ardhuin, F.; Otheguy, P.

    2012-04-01

    The bay of Saint Jean de Luz - Ciboure is a touristic destination located in the south west of France on the Basque coast. This small bay is 1.5km wide for 1km long. It is semi-enclosed by breakwaters, so that the area is mostly protected from waves except in its eastern part, where wave breaking is regularly observed over a shallow rock shelf. In the rest of the area the currents are generally weak. The bay receives fresh water inflows from two rivers. During intense raining events, the rivers can introduce pollutants in the bay. The input of pollutants combined with the low level dynamic of the area can affect the water quality for several days. To study such a phenomenon, mechanisms of water dispersion in the bay are investigated. The present paper focuses on the effects of waves on bay dynamics. Several field experiments were conducted in the area, combining wave and current measurements from a set of ADCP and ADV, lagrangian difter experiments in the surfzone, salinity and temperature profile measurements. An analysis of this set of various data is provided. It reveals that the bay combines remarkable density stratification due to fresh water inflows and occasionally intense wave-induced currents in the surfzone. These currents have a strong influence on river plume dynamics when the sea state is energetic. Moreover, modifications of hydrodynamics in the bay passes are found to be remarkably correlated with sea state evolutions. This result suggests a significant impact of waves on the bay flushing. To further analyse these phenomena, a three dimensional numerical model of bay hydrodynamics is developed. The model aims at reproducing fresh water inflows combined with wind-, tide- and wave-induced currents and mixing. The model of the bay is implemented using the code MOHID , which has been modified to allow the three dimensional representation of wave-current interactions proposed by Ardhuin et al. [2008b] . The circulation is forced by the wave field modelled with the code WAVEWATCHIII . A first confrontation between model results and in situ observations is provided, showing a reasonable agreement. ----------------------------------------------------------- 1 Braunschweig, F., Chamble, P., Fernandes, L., Pina, P., Neves, R., The object-oriented design of the integrated modelling system MOHID, Computational Methods in Water Resources International Conference (North Carolina, USA: Chapel Hill). 2 Ardhuin, F., Rascle, N., Belibassakis, K. A., 2008b. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling 20, 35-60. 3 Tolman, H. L., 2009. User manual and system documentation of WAVEWATCHIIITM version3.14. Tech. Rep. 276, NOAA/NWS/NCEP/MMAB.

  5. Rip Channels, Megacusps, and Shoreline Change: Measurements and Modeling

    DTIC Science & Technology

    2010-06-01

    and October 2007 with correlation coefficients (r) and slopes (m) in upper left corner. While the correlation of CDIP - and ADCP-predicted rms wave...about ±5º). In spite of this, CDIP -model- based predictions of offshore radiation stress, Syx,s, and sediment transport rates, qs, in the surf zone...73 Figure 12. Wave roses showing mean wave directions and frequencies at 15 m depth, offshore of Stilwell site, as estimated by CDIP

  6. Tidal Channel Dynamics and Muddy Substrates: A Comparison between a Wave Dominated and a Tidal Dominated System

    DTIC Science & Technology

    2012-09-30

    standard linear wave theory. Suspended sediment concentration (SSC) was estimated using the backscatter signal of the ADCP and the turbidity value...measured by the OBS when present. The OBS turbidity signal was calibrated against SSC measured in a laboratory tank, using sediments collected on the...link the geotechnical properties of sediment substrates to the spatial and hydrodynamic characteristics of tidal channels • To develop new

  7. R/V Kilo Moana's New Geophysical Instrumentation, Processing Methods, and Online Data Repository

    NASA Astrophysics Data System (ADS)

    Miller, J. E.; Chandler, M. T.; Taylor, B.; Shor, A.; Ferguson, J. S.; Wessel, P.

    2012-12-01

    In 2012 several upgrades were made to the underway geophysical systems on R/V Kilo Moana, which the University of Hawaii School of Ocean and Earth Science and Technology (SOEST) operates as part of the University-National Oceanographic Laboratory System (UNOLS) fleet. New instrumentation includes a Bell BGM-3 forced feedback-type gravimeter, a Kongsberg EM 122 12-kHz receiver array, and a high resolution 70-100 kHz EM 710 multibeam echo sounder. Multibeam acceptance trials carried out in June by the Multibeam Advisory Committee, Gates Acoustic Services and UH-SOEST found that both sonars are performing within expected levels with ~5x water depth (WD) for the EM 710 system in shallow water and ~19 km swath width at 4,700 m depth (~4x WD) for the EM 122 deep water system. UH-SOEST also took steps this year to fulfill its obligation to make Kilo Moana's geophysical data more accessible to the public. After an audit of Kilo Moana data at SOEST, Lamont's Rolling Deck to Repository (R2R) and the National Geophysical Data Center (NGDC), as of July 2012 all National Science Foundation-funded Kilo Moana multibeam, gravity, magnetics, center beam depth and Acoustic Doppler Current Profiler (ADCP) data have been submitted to R2R and any multibeam data over 2 years old is being transferred to NGDC. Because it had previously been difficult to access some of SOEST's geophysical data, updated data processing routines have been developed for converting raw gravity, magnetics, and centerbeam depth data to NGDC's standard marine data exchange format (MGD77) for archival and dissemination by NGDC. MGD77 files are being generated and inspected using rigorous along-track analytical techniques for ~270 surveys dating from 2002 to the present and are being submitted to NGDC. We are also developing an online data portal to further facilitate access to SOEST data.

  8. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  9. Estimating the Total Heat Flux from the ASHES Hydrothermal Vent Field Using the Sentry Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.

    2017-12-01

    Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.

  10. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    USGS Publications Warehouse

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  11. Feasibility of Wave Energy in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lu, M.; Hodgson, P.

    2014-12-01

    Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.

  12. Residual circulation and suspended sediment transport in the Dutch Wadden Sea

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Sassi, Maximiliano; de Boer, Gerben; Grawë, Ulf; Gerkema, Theo; van Kessel, Thijs; Cronin, Katherine

    2014-05-01

    The Dutch Wadden Sea (DWS), situated between continental Europe and the Dutch Wadden Islands, is a semi enclosed basin connected to the North Sea by a series of tidal inlets and composed mainly of tidal flats and sea gullies. The DWS is of high ecological importance due to its biodiversity and has been declared a World Heritage site by UNESCO. It is a dynamic area subject to regional relative sea level rise due to global sea level rise, postglacial rebound and gas exploitation. For intertidal areas to continue to serve as feeding ground for migratory birds, a net import of sediment is required. Observations are crucial but provide only scarce information in space and time. Hence, to estimate the net influx of suspended sediment into the DWS, realistic high resolution three-dimensional numerical simulations have been carried out using the General Estuarine Transport Model (GETM). The hydrodynamics are mainly governed by the tides, the fresh water discharge from several sluices into the DWS and wind variability. It is expected that the transport of suspended particulate matter (SPM) is governed by the same factors, too, in combination with sediment sink and source terms. For validation, the results are compared against different observational data sets, such as tidal gauges, temperature and salinity at a fixed station, and the volumetric flux rate through one of the inlets obtained from an acoustic Doppler current profiler (ADCP) attached to a ferry. SPM transport is modeled for four different sediment classes each of which is defined by the critical shear stress and the settling velocity. Results show a clear net import of SPM through one of the inlets, which is in agreement with the observations. First estimates of the total sediment fluxes through the different inlets are presented together with an analysis on their variability and sensibility to the external forcing. Of particular importance is the net export of SPM during storms as well as the role of storms on sub-tidal variability.

  13. Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data

    NASA Astrophysics Data System (ADS)

    McCaffrey, Katherine

    Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing the tidal channel. TurbSim models statistics at the height of a turbine hub (5m) well, but do not model coherent events, while the LES does create these events, but not realistically in this configuration, based on comparisons with observations. Each of the datasets have disadvantages when it comes to observing turbulence. The Argo network is sparse in space, and few measurements are taken simultaneously in time. Therefore spatial and temporal averaging is needed, which requires the turbulence to be homogeneous and stationary if it is to be generalized. Though the acoustic Doppler current profiler provides a vertical profile of velocities, the fluctuations are dominated by instrument noise and beam spread, preventing it from being used for most turbulence metrics. ADV measurements have much less noise, and no beam spread, but the observations are made at one point in space, limiting us to temporal statistics or an assumption of "frozen turbulence" to infer spatial scales. As for the models, TurbSim does not have any real-world forcing, and uses parameterized spectra, and coherence functions and randomizes phase information, while LES models must make assumptions about sub-grid scales, which may be inaccurate. Additionally, all models are set up with idealizations of the forcing and domain, which may make the results unlike observations in a particular location and time. Despite these difficulties in observing and characterizing turbulence, I present several quantities that use the imperfect, yet still valuable observations, to attain a better description of the turbulence in the oceans.

  14. Observations of the Evolution of Turbulent Dissipation within the Ocean Surface Boundary Layer: an OSMOSIS study

    NASA Astrophysics Data System (ADS)

    Lucas, N. S.; Allen, J.; Belcher, S. E.; Boyd, T.; Brannigan, L.; Inall, M.; Palmer, M.; Polton, J.; Rippeth, T. P.

    2016-02-01

    This study presents a new 9.5 day dataset showing the evolution of the Ocean Surface Boundary Layer (OSBL) and dissipation of turbulence kinetic energy (TKE), carried out as part of OSMOSIS[i], at a location in the North East Atlantic Ocean in September 2012. The TKE dissipation measurements were made using three methods; (i) repeated profiling between 100m and the surface by an Ocean Microstructure glider, (ii) three series of profiles made using a loosely tethered velocity microstructure glider and (iii) a moored pulse-pulse coherent high frequency ADCP. Supporting measurements show the evolution of the water column structure, including surface wave measurements from a TRIAXYS wave buoy. This data shows two distinct regimes; the first, spanning 4 days with relatively low winds, displays a distinct diurnal cycle with the deepening of the active mixing layer during the night which shoaled during the day. The second spanned a significant storm, (with maximum winds speeds reaching 20 m s-1 and significant wave heights reaching 6 m), during which, rather than a deepening of the mixed layer as predicted by classical theory, the primary effect was a broadening of the transition layer, similar to that found by Dohan and Davies (2011). During the storm, significant dissipation was observed throughout the surface mixed layer and into the transition layer, driving fluxes of heat downwards through the base of the surface mixed layer. [i] Ocean Surface Mixing and Submesoscale Interaction Study Dohan, K. & Davis, R.E., 2011. Mixing in the Transition Layer during Two Storm Events. Journal of Physical Oceanography. 41 (1). pp. 42-66.

  15. Quantifying Acoustic Uncertainty Due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2015-09-30

    an AUV mounted acoustic source, 2) moored multi-element SHRU acoustic receiver arrays, 3) a shipboard acoustic resonator, 4) fish-attraction...devices (FAD’s), 5) a three- AUV fish-field mapping effort (employing sidescan sonar plus optics) and 6) ScanFish, ADCP, and moored sensor oceanographic...The acoustic model has been further refined. To obtain a better estimate of source positions, the navigation data of the source AUV (Snoopy) was

  16. The Gulf of Cadiz Expedition: R/V Oceanus Cruise 202

    DTIC Science & Technology

    1989-04-01

    Barrie Walden, Alden Cook, and Lenny Boutin of WHOI for their promptness in getting the ADCP repaired. We also ack- nowledge Marv Stalcup of WHO! for...24 35 59.97 8 37.48 LC 2020 18 09/12/88 14:14 35 54.37 8 37.53 LC 2018 (line 8) I 19 09/13/88 09:14 3645.44 901.79 LC 584 20 09/13/88 10:19 36 40.19 9

  17. Cross-Shore Exchange on Natural Beaches

    DTIC Science & Technology

    2014-09-01

    87   Figure 2.   Wave conditions measured by the ADCP in 13 m water depth of (a) root- mean-square wave height Hrms...horizontal velocity, Umean, measured in the reference level, ∑Tsig,pulse T3−hour ∑Tsig,pulse T3−hour xi (e) local water depth, h, and (f) local root...mean-square wave height normalized by the local water depth, Hrms/h, measured by ADCPin (blue) and ADCPout (red) during the 3HRLTs. Colored lines

  18. Red Sea Outflow Experiment (REDSOX): Descent and initial spreading of Red Sea Water in the northwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bower, A.; Johns, W.; Peters, H.; Fratantoni, D.

    2003-04-01

    Two comprehensive surveys were carried out during 2001 to investigate the dense overflow and initial spreading of Red Sea Water (RSW) in the Gulf of Aden. The cruises were timed to coincide with the climatological maximum (February) and minimum (August) periods of outflow transport. The surveys included high-resolution CTD/lowered ADCP/shipboard ADCP observations in the descending plume and in the western gulf, and trajectories from 50 acoustically-tracked RAFOS floats released at the center of the equilibrated RSW (650 m). The measurements reveal a complicated descending plume structure in the western gulf with three main pathways for the high salinity RSW. Different mixing intensities along these pathways lead to variable penetration depths of the Red Sea plume between 450-900 m in the Gulf of Aden. The observations also revealed the hydrographic and velocity structure of large, energetic, deep-reaching mesoscale eddies in the gulf that fundamentally impact the spreading rates and pathways of RSW. Both cyclones and anticyclones were observed, with horizontal scales up to 250 km and azimuthal speeds as high as 0.5 m/s. The eddies appear to reach nearly to the sea floor and entrain RSW from the western gulf at mid-depth. Post-cruise analysis of SeaWiffs imagery suggests that some of these eddies form in the Indian Ocean and propagate into the gulf.

  19. Performance efficiency of feed utilization, relative growth rate, and survival rate of common carp (Cyprinus carpio) through the addition of phytase in the feed

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Samidjan, I.

    2018-04-01

    The purpose of this study was to determine the effect of adding phytase enzyme in the feed on digestibility of feed, efficiency of feed utilization, relative growth rate and survival rate of Common carp (Cyprinus carpio). Fish samples in this research were Common carp with an average - weight of 3.34 ± 0,16 g/fish. The treatments were adding the phytase enzyme in the feed with the different level of doses. Those were A (0 U kg-1 feed), B (500 U kg-1 feed), C (1.000 U kg-1 feed g) and D (1.500 U kg-1 feed). Observation was conducted on digestibility of protein (ADCP), digestibility of phosphor (ADCF), efficiency of feed utilization (EFU), relative growth rate (RGR), protein efficiency ratio (PER), feed conversion ratio (FCR), survival rate (SR) and water quality parameters. The results show that the addition of phytase enzyme significantly (P<0.01) affected on ADCP, ADCF, EFU, RGR, FCR, and PER, on the other hand it insignificantly (P>0.05) affected on SR of common carp. Based on results, it was concluded that optimum doses of phytase enzyme feed in terms of digestibility of feed, efficiency utilization of Feed and growth rate of Common carp ranges from 943 to 1100 U kg-1 feed

  20. Effect of The Phytase Enzyme Addition in The Artificial Feed on Digestibility of Feed, Feed Conversion Ratio and Growth of Gift Tilapia Saline Fish (Oreochromis niloticus) Nursery Stadia I

    NASA Astrophysics Data System (ADS)

    Rachmawati, Diana; Samidjan, Istiyanto; Elfitasari, Tita

    2018-02-01

    The purpose of this study was to determine the effect of adding the phytase enzyme in the artificial feed on digestibility of feed, feed conversion ratio and growth of gift tilapia saline fish (Oreochromis niloticus) nursery stadia I. The fish samples in this study used gift tilapia saline fish (O. niloticus) with an average weight of 0,62 ± 0,008 g/fish and the stocking density of 1 fish1 L. Experimental method used in this study was completely randomized design with 4 treatments and 3 repetitions. The treatments were by adding phytase enzyme in artificial feed with the different level of doses those were A (0 FTU kg1 feed), B (500 FTU kg1 feed), C (1000 FTU kg1 feed) and D (1500 FTU kg1 feed). The results show that the addition of phytase enzyme was significantly (P<0.01) affected on apparent digestibility coefficient of protein (ADCP), apparent digestibility coefficient of Phospor (ADCF), feed conversion ratio (FCR), protein efficiency ratio (PER), and relative growth rate (RGR), on the other hand it insignificantly (P>0.05) affected on Survival Rate (SR) of gift tilapia saline fish. The optimum doses of phytase enzyme on RGR, FCR, PER, ADCP and ADCF of gift tilapia saline fish ranged from 1060 to 1100 FTU kg-1 feed.

  1. Circulation and multiple-scale variability in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Dong, Changming; Idica, Eileen Y.; McWilliams, James C.

    2009-09-01

    The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent ( i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy, the Central-SCB Eddy, and the Catalina-Clemente Eddy. Comparisons with observational data reveal that ROMS reproduces a realistic mean state of the SCB oceanic circulation, as well as its interannual (mainly as a local manifestation of an ENSO event), seasonal, and intraseasonal (eddy-scale) variations. We find high correlations of the wind curl with both the alongshore pressure gradient (APG) and the eddy kinetic energy level in their variations on time scales of seasons and longer. The geostrophic currents are much stronger than the wind-driven Ekman flows at the surface. The model exhibits intrinsic eddy variability with strong topographically related heterogeneity, westward-propagating Rossby waves, and poleward-propagating coastally-trapped waves (albeit with smaller amplitude than observed due to missing high-frequency variations in the southern boundary conditions).

  2. Estimation of Freshwater Flow to Joe Bay, South Florida.

    NASA Astrophysics Data System (ADS)

    Zucker, M. A.; Hittle, C. D.

    2002-05-01

    During the last century, drainage canals were constructed as part of the Central and Southern Flood Control (C&SF) project. Flood control was achieved but degradation to the Everglades ecosystem was evident. Problems related to Florida Bay include sea grass die off, algae blooms, and extreme salinity conditions. Modifications to the C&SF project are proposed as part of the Comprehensive Everglades Restoration Plan (CERP). One objective of CERP is to improve the timing and distribution of freshwater flow within the Everglades ecosystem and to Florida Bay. Several CERP projects propose changes to the existing canal network that borders Everglades National Park (ENP) in southern Miami-Dade County. An examination of flows to Joe Bay, a small embayment on the northeastern shores of Florida Bay, has provided baseline information on current spatial and temporal water deliveries prior to CERP modifications. Understanding the existing complex water delivery system and the effects the system has on Everglades hydrology will provide a necessary benchmark against which to measure restoration success. The study was initiated by the U.S. Geological Survey (USGS) in May 1999 to estimate creek flows to Joe Bay and determine the relative amounts derived from Taylor Slough and overflow from the C-111 Canal. It is important to understand the source of freshwater to Joe Bay before it enters Florida Bay. Taylor Slough transports freshwater to northeastern Florida Bay from the northwest while overflow from the C-111 Canal provides freshwater to northeastern Florida Bay from the northeast. Joe Bay, receives part of the freshwater from each of these sources via sheet flow and small estuarine creeks, and subsequently discharges southward to northeastern Florida Bay via Trout Creek. Trout Creek contributes approximately 50 percent of the total freshwater flow to northeastern Florida Bay (Hittle 2001). Eight non-gaged creeks entering Joe Bay were selected for acoustic Doppler current profiler (ADCP) measurements. The ADCP discharge measurements were then correlated with computed real-time discharge measurements from nearby USGS flow stations. Regression analysis was used to estimate flow at the Joe Bay creeks from June 1999 to April 2000. The R2 values for the estimated flow at eight Joe Bay creeks ranged between 0.51 and 0.93. From June 1999 to April 2000, flow volumes to eastern and western Joe Bay equaled 6.8 x 107m3 and 5.6 x 107 m3 respectively; flow into eastern Joe Bay was 21 percent greater than flow into western Joe Bay. Maximum freshwater discharge to Florida Bay occurred following Tropical Storm Harvey and Hurricane Irene, which occurred on September 21 1999, and October 15, 1999, respectively. Flow into western Joe Bay (3.5 x 107 m3) during the storms was 26 percent greater than flow into eastern Joe Bay (2.7 x 107 m3). However, dry season flow (January to April 2000) into eastern Joe Bay (2.6 x 107 m3) which was supplied primarily by the C-111 Canal, was much greater than flow into western Joe Bay (2.5 x 106 m3). Thus, the total flow into eastern Joe Bay exceeded total flow into western Joe Bay, even though western Joe Bay received more freshwater during storm events. During the storms, the S-197 structure was opened to allow the C-111 Canal to discharge outside of Florida Bay. This reduced the overflow from the C-111 Canal to both Joe and northeastern Florida Bays. Hittle, C.D., Patino, E, and Zucker, M. 2000, Freshwater Flow From Estuarine Creeks into Northeastern Florida Bay. U.S. Geological Survey Water-Resources Investigation 01-4164,p.32.

  3. Bay of Bengal Surface and Thermocline and the Arabian Sea

    DTIC Science & Technology

    2014-09-30

    to the atmosphere. How low the SSS gets in the Bay of Bengal or how high in the Arabian Sea, depends on the oceanic exchanges between them via a...potential impact on the SST. 3 Figure 1a: Sea surface temperature (SST) and salinity ( SSS ) relationship during ASIRI 2013 cruises. The left panel...shows the hull ADCP vector, color-coded for SSS . The SST/ SSS scatter falls along a line from the warm/salty southern regions to the cool/fresher

  4. Optimal Estimation of Glider’s Underwater Trajectory with Depth-Dependent Correction Using the Navy Coastal Ocean Model with Application to Antisubmarine Warfare

    DTIC Science & Technology

    2014-09-01

    deployed simultaneously. For example, a fleet of gliders would be able to act as an intelligence network by gathering underwater target information ...and to verify our novel method, a glider’s real underwater trajectory information must be obtained by using additional sensors like ADCP or DVL (see...lacks of inexpensive and efficient localization sensors during its subsurface mission. Therefore, knowing its precise underwater position is a

  5. Low-Frequency Oceanographic Variability Near Flemish Cap and Sackville Spur

    NASA Astrophysics Data System (ADS)

    Layton, Chantelle; Greenan, Blair J. W.; Hebert, Dave; Kelley, Dan E.

    2018-03-01

    To address a need for science-based advice on issues of resource exploration, two oceanographic moorings were placed on the abyssal slope of northwest Flemish Cap from July 2013 to July 2014. These yielded some of the first long-term moored measurements of velocity, temperature, and salinity in the region. Hydrographic and lowered-ADCP measurements made during mooring deployment and recovery reveal that the deep Labrador Current flows approximately along isobaths between water depths of 1,200 and 2,200 m. However, these snapshots differ significantly, with stronger currents observed during the deployment survey. The mooring data, obtained near the 1,500 m isobath, reveal a complex temporal variation of the current. The velocity spectrum is dominated by a peak at a period of approximately 21 days, with power increasing with depth in the water column and varying through the year. In other boundary-current studies, variations in the several-week band have been attributed to baroclinic topographic Rossby waves, but with just two widely spaced moorings, we cannot infer the wave number and test for such waves using the dispersion relationship. However, an indirect estimate of wave number can be made by examining the variation of spectral power with depth, and doing this yields results that are reasonably consistent with a linear theory of baroclinic topographic Rossby waves for water of constant stratification over a planar slope. This agreement is somewhat surprising, given the simplicity of the theory and the complexity of the domain, but it appears to offer a clear indication of the importance of baroclinic vorticity dynamics in this region.

  6. Along-shelf current variability on the Catalan inner-shelf (NW Mediterranean)

    USGS Publications Warehouse

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Espino, Manuel; Warner, John C.

    2012-01-01

    We examine the circulation over the inner shelf of the Catalan Sea using observations of currents obtained from three ADCPs within the inner-shelf (24 and 50 m depth) during March-April 2011. The along-shelf current fluctuations during that period are mainly controlled by the local wind stress on short time scales and by remote pressure gradients on synoptic time scales. Different forcing mechanisms are involved in the along-shelf momentum balance. During storm conditions, wind stress, sea level gradients and the non-linear terms dominate the balance. During weak wind conditions, the momentum balance is controlled by the pressure gradient, while during periods of moderate wind in the presence of considerable stratification, the balance is established between the Coriolis and wind stress terms. Vertical variations of velocity are affected by the strong observed density gradient. The increased vertical shear is accompanied by the development of stratified conditions due to local heating when the wind is not able to counteract (and destroy) stratification. The occasional influence of the Besòs river plume is observed in time scales of hours to days in a limited area in front of Barcelona. The area affected by the plume depends on the vertical extend of the fresher layer, the fast river discharge peak, and the relaxation of cross-shore velocities after northeast storm events. This contribution provides a first interpretation of the inner-shelf dynamics in the Catalan Sea.

  7. Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo

    NASA Astrophysics Data System (ADS)

    Barton, E. D.; Largier, J. L.; Torres, R.; Sheridan, M.; Trasviña, A.; Souza, A.; Pazos, Y.; Valle-Levinson, A.

    2015-05-01

    Semi-enclosed bays in upwelling regions are exposed to forcing related to winds, currents and buoyancy over the shelf. The influence of this external forcing is moderated by factors such as connectivity to the open ocean, shelter by surrounding topography, dimensions of the bay, and freshwater outflows. Such bays, preferred locations for ports, mariculture, marine industry, recreational activities and coastal settlement, present a range of characteristics, understanding of which is necessary to their rational management. Observations in such a semi-enclosed bay, the Ria de Vigo in Spain, are used to characterize the influence of upwelling and downwelling pulses on its circulation. In this location, near the northern limit of the Iberian upwelling system, upwelling events dominate during a short summer season and downwelling events the rest of the year. The ria response to the external forcing is central to nutrient supply and resultant plankton productivity that supports its high level of cultured mussel production. Intensive field studies in September 2006 and June 2007 captured a downwelling event and an upwelling event, respectively. Data from eight current profiler moorings and boat-based MiniBat/ADCP surveys provided an unprecedented quasi-synoptic view of the distribution of water masses and circulation patterns in any ria. In the outer ria, circulation was dominated by the introduction of wind-driven alongshore flow from the external continental shelf through the ria entrances and its interaction with the topography. In the middle ria, circulation was primarily related to the upwelling/downwelling cycle, with a cool, salty and dense lower layer penetrating to the inner ria during upwelling over the shelf. A warmer, lower salinity and less dense surface layer of coastal waters flowed inward during downwelling. Without external forcing, the inner ria responded primarily to tides and buoyancy changes related to land runoff. Under both upwelling and downwelling conditions, the flushing of the ria involved shelf responses to wind pulses. Their persistence for a few days was sufficient to allow waters from the continental shelf to penetrate the innermost ria. Longer term observations supported by numerical modeling are required to confirm the generality of such flushing events in the ria and determine their typical frequency, while comparative studies should explore how these scenarios fit into the range of conditions experienced in other semi-enclosed bays.

  8. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    PubMed

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes), software (data acquisition, transmission, processing, and storage), and multiparametric measurement (habitat and bio-data time series) capabilities. A one-month multiparametric survey of habitat parameters was conducted during 2009 and 2010 to demonstrate these functions. An automated video image analysis protocol was also developed for fish counting in the water column, a method that can be used with cabled coastal observatories working with still images. Finally, bio-data time series were coupled with data from other oceanographic sensors to demonstrate the utility of OBSEA in studies of ecosystem dynamics.

  9. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring

    PubMed Central

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes), software (data acquisition, transmission, processing, and storage), and multiparametric measurement (habitat and bio-data time series) capabilities. A one-month multiparametric survey of habitat parameters was conducted during 2009 and 2010 to demonstrate these functions. An automated video image analysis protocol was also developed for fish counting in the water column, a method that can be used with cabled coastal observatories working with still images. Finally, bio-data time series were coupled with data from other oceanographic sensors to demonstrate the utility of OBSEA in studies of ecosystem dynamics. PMID:22163931

  10. Bridging Scales: A Model-Based Assessment of the Technical Tidal-Stream Energy Resource off Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Cowles, G. W.; Hakim, A.; Churchill, J. H.

    2016-02-01

    Tidal in-stream energy conversion (TISEC) facilities provide a highly predictable and dependable source of energy. Given the economic and social incentives to migrate towards renewable energy sources there has been tremendous interest in the technology. Key challenges to the design process stem from the wide range of problem scales extending from device to array. In the present approach we apply a multi-model approach to bridge the scales of interest and select optimal device geometries to estimate the technical resource for several realistic sites in the coastal waters of Massachusetts, USA. The approach links two computational models. To establish flow conditions at site scales ( 10m), a barotropic setup of the unstructured grid ocean model FVCOM is employed. The model is validated using shipboard and fixed ADCP as well as pressure data. For device scale, the structured multiblock flow solver SUmb is selected. A large ensemble of simulations of 2D cross-flow tidal turbines is used to construct a surrogate design model. The surrogate model is then queried using velocity profiles extracted from the tidal model to determine the optimal geometry for the conditions at each site. After device selection, the annual technical yield of the array is evaluated with FVCOM using a linear momentum actuator disk approach to model the turbines. Results for several key Massachusetts sites including comparison with theoretical approaches will be presented.

  11. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    NASA Astrophysics Data System (ADS)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are not particularly powerful with values around 40-50 cm/s. However a detailed assessment, based on field measurements, will be conducted in the near future with the aim to identify specific areas close to the coast with stronger currents which make suitable the deployment of marine current turbines. Although the base Platform is not still available, PLOCAN has already started the activity as an ocean testbed providing services to a wave energy converter patented by the Spanish company PIPO Systems. A scaled 1:5 prototype will be deployed during January 2010 and monitored for several months. Current facilities available include some ODAS buoys (temperature, salinity, pH, oxygen, turbidity, wind, etc.), wave rider buoy, current meter profilers (ADCP and electromagnetic), system for data management, remote operated vehicles (ROV), autonomous underwater vehicles (AUV), and an oceanographic vessel. Future facilities include high frequency radar for wave and current measurements and submarine electro-optical cables to connect the Platform with the energy converters and with the shore station.

  12. The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): drift morphology and Plio-Quaternary stratigraphic evolution

    NASA Astrophysics Data System (ADS)

    Miramontes Garcia, Elda; Cattaneo, Antonio; Jouet, Gwenael; Thereau, Estelle; Thomas, Yannick; Rovere, Marzia; Cauquil, Eric; Trincardi, Fabio

    2016-04-01

    The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7-0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.

  13. Evaluation of acoustic Doppler velocimetry (ADV) performance under various probe configurations

    NASA Astrophysics Data System (ADS)

    Liu, Da; Valyrakis, Manousos

    2017-04-01

    Acoustic Doppler velocimetry (ADV) is widely used as one of the most versatile and robust flow diagnostics tools for both laboratory and field studies across a range of research and applied themes spanning engineering eco-hydraulics and geomorphology. A range of specific ADV probes with varying specifications, are readily available for use by professionals and researchers. However, in practice using certain ADV equipment under certain default configurations can easily result in obtaining flow diagnostics that are non-representative of the real flow conditions. This appears to be true for most probes but even more those with which higher temporal resolution can be achieved - which many times is desired for assessing turbulence levels, amongst others. A preliminary examination revealed that there is a varying level of dependency on a number of the probes' configuration parameters, which even though detailed in the user manual, a definite guide for the user is lacking. Subsequently users of this equipment may end up underutilizing or using it in a manner that returns inaccurate results. There are little, if any, resources in obtaining a better understanding on how to use the probe effectively. To this goal a series of laboratory experiments are conducted, under the same open channel flow conditions, using a profiler (ADCP VectrinoII from Nortek®) aiming to cover the full range of probe configuration combinations that can be used in practice. For each experiment, single or multiple point measurements are taken to reconstruct velocity and turbulence intensity profiles. These are conducted at the same location (mid-channel) under the same flow conditions (referring to steady uniform flow and fully developed turbulence) for all probe configurations. In particular, the effect of tested parameters (including Range length, Range to fist cell, Sampling rate, Ping algorithm, Transmit pulse size and Cell size) on the sensitivity and accuracy of the obtained results is assessed. The signal to noise ratio (SNR) and the correlation of the measurement are used in evaluating the data quality, while a qualitative comparison of the resulting profiles for flow diagnostics is enabled using reference profiles obtained via a VectrinoI ADV (from Nortek®) and MicroADV (from Sontek®) respectively under the exactly same flow condition at the same location. These observations are important to identify its best configuration for a given probe towards improving the data quality and accuracy.

  14. Observations of the southern East Madagascar Current and undercurrent and countercurrent system

    NASA Astrophysics Data System (ADS)

    Nauw, J. J.; van Aken, H. M.; Webb, A.; Lutjeharms, J. R. E.; de Ruijter, W. P. M.

    2008-08-01

    In April 2001 four hydrographic sections perpendicular to the southern East Madagascar Current were surveyed as part of the Agulhas Current Sources Experiment. Observations with a vessel mounted and a lowered ADCP produced information on the current field while temperature, salinity, oxygen and nutrient data obtained with a CTD-Rosette system, gave information on the water mass structure of the currents southeast of Madagascar. The peak velocity in the pole-ward East Madagascar Current through these four sections had a typical magnitude of ˜110 cm/s, while the width of this current was of the order of 120 km. The mean pole-ward volume transport rate of this current during the survey above the 5°C isotherm was estimated to be 37 ± 10 Sv. On all four sections an undercurrent was observed at intermediate depths below the East Madagascar Current. Its equator-ward transport rate amounted to 2.8 ± 1.4 Sv. Offshore of the East Madagascar Current the shallow South Indian Ocean Countercurrent was observed. This eastward frontal jet coincided with the barotropic and thermohaline front that separates the saline Subtropical Surface Water from the fresher Tropical Surface Water in the East Madagascar Current. The near-surface geostrophic flow of the East Madagascar Current, derived from satellite altimetry data from 1992 to 2005, suggests a strong variability of this transport due to eddy variability and interannual changes. The long-term pole-ward mean transport of the East Madagascar Current, roughly estimated from those altimetry data amounts to 32 Sv. The upper-ocean water mass of the East Madagascar Current was very saline in 2001, compared to WOCE surveys from 1995. Comparison of our undercurrent data with those of the WOCE surveys in 1995 confirms that the undercurrent is a recurrent feature. Its water mass properties are relatively saline, due to the presence of water originating from the Red Sea outflow at intermediate levels. The saline water was advected from the Mozambique Channel to the eastern slope of Madagascar.

  15. Observations of turbulence in a partially stratified estuary

    USGS Publications Warehouse

    Stagey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    The authors present a field study of estuarine turbulence in which profiles of Reynolds stresses were directly measured using an ADCP throughout a 25-h tidal day. The dataset that is discussed quantifies turbulent mixing for a water column in northern San Francisco Bay that experiences a sequence of states that includes a weak ebb and flood that are stratified, followed by a strong, and eventually unstratified, ebb and flood. These measurements show that energetic turbulence is confined to a bottom mixed layer by the overlying stratification. Examination of individual Reynolds stress profiles along with profiles of Richardson number and turbulent Froude number shows that the water column can be divided into regions based on the relative importance of buoyancy effects. Using the measured turbulence production rate P, the dissipation rate e. is estimated. The observed turbulence had values of e/vN2 > 20 all of the time and e/vN2 > 200 most of the time, suggesting that the observed motions were buoyancy affected turbulence rather than internal waves. However, at times, turbulent Froude numbers in much of the upper-water column were less than one, indicating important stratification effects. Taken as a whole, the data show that stratification affects the turbulent velocity variance q2 most severely; that is, observed reductions in u'w' are largely associated with small values of q2 rather than with a dramatic reduction in the efficiency with which turbulent motions produce momentum fluxes. Finally, the dataset is compared to predictions made using the popular Mellor-Yamada level 2.5 closure. These comparisons show that the model tends to underestimate the turbulent kinetic energy in regions of strong stratification where the turbulence is strongly inhomogeneous and to overestimate the turbulent kinetic energy in weakly stratified regions. The length scale does not appear to compensate for these errors, and, as a result, similar errors are seen in the eddy viscosity predictions. It is hypothesized that the underestimation of q2 is due to an inaccurate parameterization of turbulence self-transport from the near-bed region to the overlying stratification. ?? 1999 American Meteorological Society.

  16. Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel

    Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less

  17. A data-assimilative ocean forecasting system for the Prince William sound and an evaluation of its performance during sound Predictions 2009

    NASA Astrophysics Data System (ADS)

    Farrara, John D.; Chao, Yi; Li, Zhijin; Wang, Xiaochun; Jin, Xin; Zhang, Hongchun; Li, Peggy; Vu, Quoc; Olsson, Peter Q.; Schoch, G. Carl; Halverson, Mark; Moline, Mark A.; Ohlmann, Carter; Johnson, Mark; McWilliams, James C.; Colas, Francois A.

    2013-07-01

    The development and implementation of a three-dimensional ocean modeling system for the Prince William Sound (PWS) is described. The system consists of a regional ocean model component (ROMS) forced by output from a regional atmospheric model component (the Weather Research and Forecasting Model, WRF). The ROMS ocean model component has a horizontal resolution of 1km within PWS and utilizes a recently-developed multi-scale 3DVAR data assimilation methodology along with freshwater runoff from land obtained via real-time execution of a digital elevation model. During the Sound Predictions Field Experiment (July 19-August 3, 2009) the system was run in real-time to support operations and incorporated all available real-time streams of data. Nowcasts were produced every 6h and a 48-h forecast was performed once a day. In addition, a sixteen-member ensemble of forecasts was executed on most days. All results were published at a web portal (http://ourocean.jpl.nasa.gov/PWS) in real time to support decision making.The performance of the system during Sound Predictions 2009 is evaluated. The ROMS results are first compared with the assimilated data as a consistency check. RMS differences of about 0.7°C were found between the ROMS temperatures and the observed vertical profiles of temperature that are assimilated. The ROMS salinities show greater discrepancies, tending to be too salty near the surface. The overall circulation patterns observed throughout the Sound are qualitatively reproduced, including the following evolution in time. During the first week of the experiment, the weather was quite stormy with strong southeasterly winds. This resulted in strong north to northwestward surface flow in much of the central PWS. Both the observed drifter trajectories and the ROMS nowcasts showed strong surface inflow into the Sound through the Hinchinbrook Entrance and strong generally northward to northwestward flow in the central Sound that was exiting through the Knight Island Passage and Montague Strait entrance. During the latter part of the second week when surface winds were light and southwesterly, the mean surface flow at the Hinchinbrook Entrance reversed to weak outflow and a cyclonic eddy formed in the central Sound. Overall, RMS differences between ROMS surface currents and observed HF radar surface currents in the central Sound were generally between 5 and 10cm/s, about 20-40% of the time mean current speeds.The ROMS reanalysis is then validated against independent observations. A comparison of the ROMS currents with observed vertical current profiles from moored ADCPs in the Hinchinbrook Entrance and Montague Strait shows good qualitative agreement and confirms the evolution of the near surface inflow/outflow at these locations described above. A comparison of the ROMS surface currents with drifter trajectories provided additional confirmation that the evolution of the surface flow described above was realistic. Forecasts of drifter locations had RMS errors of less than 10km for up to 36h. One and two-day forecasts of surface temperature, salinity and current fields were more skillful than persistence forecasts. In addition, ensemble mean forecasts were found to be slightly more skillful than single forecasts. Two case studies demonstrated the system's qualitative skill in predicting subsurface changes within the mixed layer measured by ships and autonomous underwater vehicles. In summary, the system is capable of producing a realistic evolution of the near-surface circulation within PWS including forecasts of up to two days of this evolution. Use of the products provided by the system during the experiment as part of the asset deployment decision making process demonstrated the value of accurate regional ocean forecasts in support of field experiments.

  18. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2016-10-27

    supported research related to the NPAL project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown...Heaney, K. D., D’Spain, G. L., Colosi, J. A., Stephen, R. A., Kemp, J. N., Howe, B. M., Van Uffelen, L. J., and Wage, K. E ., The North Pacific...α0 ≈ 107°, and is an estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof

  19. Deducing noninductive current profile from surface voltage evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Wukitch, S.; Hershkowitz, N.

    Solving the resistive diffusion equation in the presence of a noninductive current source determines the time-evolution of the surface voltage. By inverting the problem the current drive profile can be determined from the surface voltage evolution. We show that under wide range of conditions the deduced profile is unique. If the conductivity profile is known, this method can be employed to infer the noninductive current profile, and, ipso facto, the profile of the total current. We discuss the application of this method to analyze the Alfven wave current drive experiments in Phaedrus-T.

  20. Applicability of a numerical model to predict vertical distribution of suspended sediment concentration along the depth in Dithmarschen Bight

    NASA Astrophysics Data System (ADS)

    Rahbani, M.

    2012-04-01

    A three dimensional numerical model of Delft3d-flow was developed to simulate the current velocity and sediment transport of Piep tidal channel system. This channel system is part of Dithmarschen Bight located in the German North Sea coast. It consists of two main channel namely Norderpiep, and Süderpiep. These two channels conjunct together to form Piep channel near the land on tidal flat. The source of the required field data for this study was those collected under "Prediction of Medium Term Coastal Morphodynamics", known as the PROMORPH project. It was executed during the period May 1999 to June 2002. Those measured data used for calibration and validation of the model were current velocity and suspended sediment concentration (SSC). Current velocities were collected using ADCP devise. Suspended sediment concentration data was prepared by converting the measured values of light transmission. These data was collected using transmissometer. On the basis of some in situ mechanical sampler data an equation was developed to convert light transmission to the SSC. Field data were carried out at several stations along the width of three cross sections from the surface to the bottom, taking into account the limitations. To verify the performance of the calibrated model, its results were compared with the field data. The comparison between the modeled and measured current velocity shows an accuracy of about 0.2 m/s. Factor of two of measured SSC were used to evaluate the performance of the model regarding these values. Some dissimilarity was found between the modeled SSC and those of the field data.To verify the cause of this dissimilarity, two comparing procedures were carried out. First the evolution of the vertical profile of the SSC from the model and those from the field were prepared and compared. In another procedure the snapshot of distribution of SSC at each cross section during different phases of a tidal cycle were prepared using the model results and compared with those derived from the field. It was found that the predicted SSC values are in good agreement with the field data during the periods of flood phase and low slack water. However, spatial dissimilarities are observed in the distribution of the SSC, during the periods of high slack water and the ebb phase. It was also found that the model could not simulate the peak SSC during the ebb current at Piep cross section which is located near the land. An insufficient supply of sediment from the tidal flat area in the model was considered to be responsible. several parameters and/or factors found to be responsible among them the usage of constant settling velocity and also constant erosion rate. The input of different values of the critical bed shear stress for erosion for the tidal flat areas and the tidal channel eastward of the cross section did improve the model results.

  1. Antibody distance from the cell membrane regulates antibody effector mechanisms

    PubMed Central

    Cleary, Kirstie L.S.; Chan, H.T. Claude; James, Sonja; Glennie, Martin J.; Cragg, Mark S.

    2017-01-01

    Immunotherapy using monoclonal antibodies (mAb) such as rituximab is an established means of treating haematological malignancies. Antibodies can elicit a number of mechanisms to delete target cells, including complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP). The inherent properties of the target molecule help define which of these mechanisms are more important for efficacy. However, why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity, is often unclear. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules were generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains, to produce a panel of chimeric molecules which held the target epitope at different distances along the protein. It was shown that CDC and ADCC favoured a membrane proximal epitope, whilst ADCP favoured an epitope positioned further away. These findings were then confirmed using reagents targeting the membrane proximal or distal domains of CD137 itself before investigating these properties in vivo where a clear difference in the splenic clearance of transfected tumour cells was observed. Together, this work demonstrates how altering the position of the antibody epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents. PMID:28404636

  2. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  3. Integrated Monitoring of the Soya Warm Current Using HF Ocean Radars, Satellite Altimeters, Coastal Tide Gauges, and a Bottom-Mounted ADCP

    NASA Astrophysics Data System (ADS)

    Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.

    2007-12-01

    The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  4. Quasi-planktonic behavior of foraging top marine predators

    NASA Astrophysics Data System (ADS)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  5. Quasi-planktonic behavior of foraging top marine predators.

    PubMed

    Della Penna, Alice; De Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; d'Ovidio, Francesco

    2015-12-15

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  6. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; Dias de Paiva, Rodrigo; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stephane; Garambois, Pierre-André; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frederique

    2016-05-01

    In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by Manning's equation to obtain a data set containing the elevations of the river beds throughout the basin. The second advancement is the provision of parameter uncertainties and, therefore, the uncertainties in the rated discharge. The third advancement concerns estimating the discharge while considering backwater effects. We analyzed the Amazon Basin using nearly one thousand series that were obtained from ENVISAT and Jason-2 altimetry for more than 100 tributaries. Discharge values and related uncertainties were obtained from the rain-discharge MGB-IPH model. We used a global optimization algorithm based on the Monte Carlo Markov Chain and Bayesian framework to determine the rating curves. The data were randomly allocated into 80% calibration and 20% validation subsets. A comparison with the validation samples produced a Nash-Sutcliffe efficiency (Ens) of 0.68. When the MGB discharge uncertainties were less than 5%, the Ens value increased to 0.81 (mean). A comparison with the in situ discharge resulted in an Ens value of 0.71 for the validation samples (and 0.77 for calibration). The Ens values at the mouths of the rivers that experienced backwater effects significantly improved when the mean monthly slope was included in the RC. Our RCs were not mission-dependent, and the Ens value was preserved when applying ENVISAT rating curves to Jason-2 altimetry at crossovers. The cease-to-flow parameter of our RCs provided a good proxy for determining river bed elevation. This proxy was validated against Acoustic Doppler current profiler (ADCP) cross sections with an accuracy of more than 90%. Altimetry measurements are routinely delivered within a few days, and this RC data set provides a simple and cost-effective tool for predicting discharge throughout the basin in nearly real time.

  7. Energy Extraction from a Hypothetical MHK Array in a Section of the Mississippi River

    NASA Astrophysics Data System (ADS)

    Barco, J.; James, S. C.; Roberts, J. D.; Jones, C. A.; Jepsen, R. A.

    2010-12-01

    The world is facing many challenges meeting the energy demands for the future. Growing populations and developing economies as well as increasing energy expenditures highlight the need for a spectrum of energy sources. Concerns about pollution and climate change have led to increased interest in all forms of renewable energy to stabilize or decrease consumption of fossil fuels. One promising renewable is marine and hydrokinetic (MHK) energy, which has the potential to make important contributions to energy portfolios of the future. However, a primary question remains: How much energy can be extracted from MHK devices in rivers and oceans without significant environmental effects? This study focuses on the potential energy extraction from different hypothetical MHK array configurations in a section of the Mississippi River located near to Scotlandville Bend, Louisiana. Bathymetry data, obtained from Free Flow Power Corporation (FFP) via the US Army Corps bathymetry survey library, were interpolated onto a DELFT3D curvilinear, orthogonal grid of the system using ArcGIS 9.3.1. Boundary conditions are constrained by the upstream and downstream river flow rates and gage heights obtained from USGS website. Acoustic Doppler Current Profiler (ADCP) measurements obtained from FFP are used for pre-array model validation. Energy extraction is simulated using momentum sinks recently coded into SNL-EFDC, which is an augmented version of US EPA’s Environmental Fluid Dynamics Code (EFDC). SNL-EFDC model includes a new module which considers energy removal by MHK devices and commensurate changes to the turbulent kinetic energy and turbulent kinetic energy dissipation rate. As expected, average velocities decrease downstream of each MHK device due to energy extraction and blunt-body form drag from the MHK support structures. Changes in the flow field can alter sediment transport dynamics around and downstream of an MHK array; various hypothetical scenarios are examined. This study highlights concepts that should be considered when planning, designing, and optimizing MHK devices arrays in riverine resources. Future efforts will focus on validating and verifying these sorts of models as data become available.

  8. Trawling-induced daily sediment resuspension in the flank of a Mediterranean submarine canyon

    NASA Astrophysics Data System (ADS)

    Martín, Jacobo; Puig, Pere; Palanques, Albert; Ribó, Marta

    2014-06-01

    Commercial bottom trawling is one of the anthropogenic activities causing the biggest impact on the seafloor due to its recurrence and global distribution. In particular, trawling has been proposed as a major driver of sediment dynamics at depths below the reach of storm waves, but the issue is at present poorly documented with direct observations. This paper analyses changes in water turbidity in a tributary valley of the La Fonera (=Palamós) submarine canyon, whose flanks are routinely exploited by a local trawling fleet down to depths of 800 m. A string of turbidimeters was deployed at 980 m water depth inside the tributary for two consecutive years, 2010-2011. The second year, an ADCP profiled the currents 80 m above the seafloor. The results illustrate that near-bottom water turbidity at the study site is heavily dominated, both in its magnitude and temporal patterns, by trawling-induced sediment resuspension at the fishing ground. Resuspended sediments are channelised along the tributary in the form of sediment gravity flows, being recorded only during working days and working hours of the trawling fleet. These sediment gravity flows generate turbid plumes that extend to at least 100 m above the bottom, reaching suspended sediment concentrations up to 236 mg l-1 close to the seafloor (5 m above bottom). A few hours after the end of daily trawling activities, water turbidity progressively decreases but resuspended particles remain in suspension for several hours, developing bottom and intermediate nepheloid layers that reach background levels ˜2 mg l-1 before trawling activities resume. The presence of these nepheloid layers was recorded in a CTD+turbidimeter transect conducted across the fishing ground a few hours after the end of a working day. These results highlight that deep bottom trawling can effectively replace natural processes as the main driving force of sediment resuspension on continental slope regions and generate increased near-bottom water turbidity that propagates from fishing grounds to wider and deeper areas via sediment gravity flows and nepheloid layer development.

  9. Physical Oceanography of the Caribbean Sea: Some Recent Observations

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Johns, W. E.

    2001-12-01

    Recent oceanographic observations in the Caribbean Sea and Gulf of Mexico (the Intra-Americas Sea) have contributed to our understanding of IAS circulation, the dynamics forcing the circulation, and the role of the IAS in hemispheric ocean processes. Specifically, recent results from several programs will be presented and discussed: The Windward Islands Passages Program, designed to measure upper ocean transport and water mass properties of the exchange between the Atlantic Ocean and the Caribbean Sea, is entering its tenth year of observations. Mean transport estimates based on 10 to 20 sections now exist for the major passages between Trinidad and the Virgin Islands. Approximately 19 of the estimated 32 Sv in the Florida Straits enter through these passages, of which approximately 12 enter south of Dominica, 6 in the Grenada Passage. The Caribbean Inflow Variability Experiment is designed to continuously monitor the transport through the Grenada Passage. Plans are in place to monitor a submarine telephone cable between Grenada and Trinidad to estimate transport; at present several shipboard velocity sections and year-long pressure gauge records are available as part of the program. Dominant low-frequency signals in the cross-passage pressure difference are 30 - 60 days. The NOPP Year of the Ocean Drifting Buoy Program placed over 150 WOCE-style surface drifting buoys in the IAS during 1998 - 2000. Analysis of drifter tracks shows the best picture to date of IAS surface currents, including well-resolved gyres in the SW Caribbean (Panama-Colombia) region. Monitoring of Florida Straits transport via submarine cable is once again active, complemented by quarterly CD and transport cruises. Analyses of historical transport data (Baringer & Larson, 2001) have shown correlations between low frequency transport variability and climate indices (e. g., NAO). Additionally, full-depth velocity profiles across the straits are available weekly from the 38 kHz ADCP mounted on the Explorer of the Seas cruise ship. Availability of these and other observational resources, its semi-enclosed and well-bounded geography, and its significance to downstream North American oceanic and atmospheric conditions make the IAS an excellent region for model development and validation.

  10. Suspended Sediment Character in the Tidal Mekong River: Observations from LISST Profiling

    NASA Astrophysics Data System (ADS)

    Di Leonardo, D. R.; Allison, M. A.

    2016-02-01

    In two recent cooperative field campaigns, teams of researchers from the US and Vietnam collected hydrological and sedimentological data during a low flow season and a high flow season on the lower 100 km of the Song Hau distributary of the Mekong River. The objective of this study is to describe the forcing controls (e.g., tidal and riverine flow, water column stratification, resuspension) on suspended sediment grain size (e.g. mass, volume, granulometry, degree of flocculation) as measured by a Sequoia Scientific LISST 100X mounted on a profiling CTD. LISST (Type C, 2.5-500 µm size range) casts were collected at five transects in the Song Hau distributary. Four transects were located in the Dinh An and the Tran De channels immediately above the ocean interface with one additional transect located above the channel bifurcation, 40 km from the river mouth. Casts were collected at multiple stations across each channel transect for 12 hour and 24 hour continuous periods. Stationary ADCP data was collected during each 5-15 minute cast period and used to characterize shear stress. Preliminary results from the LISST suggest that the majority of suspended sediment is in the silt and very fine sand range. Increasing concentrations of all size fractions towards the bed suggests a local sediment source. Bimodal grain size distributions, with the coarser peak in the 150 µm to 250 µm range, are observed frequently, especially in the low discharge study. Grain size frequencies from the high discharge study tend to be more often unimodal. While there was effectively no salinity observed during the October 2014 high flow season, a maximum of 25.8 PSU was observed in the March 2015 low flow season. These results suggest that flocculation is an important process in the Mekong River, particularly during periods of higher salinity.

  11. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Ohno, N.; Shibata, Y.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less

  12. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.

    PubMed

    Richardson, Simone I; Chung, Amy W; Natarajan, Harini; Mabvakure, Batsirai; Mkhize, Nonhlanhla N; Garrett, Nigel; Abdool Karim, Salim; Moore, Penny L; Ackerman, Margaret E; Alter, Galit; Morris, Lynn

    2018-04-01

    While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.

  13. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies

    PubMed Central

    Richardson, Simone I.; Mabvakure, Batsirai; Mkhize, Nonhlanhla N.; Moore, Penny L.; Alter, Galit

    2018-01-01

    While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies. PMID:29630668

  14. The ESASSI-08 cruise in the South Scotia Ridge region: preliminary analysis of hydrodynamic and biogeochemical data

    NASA Astrophysics Data System (ADS)

    Gomis, D.; Flexas, M. M.; Palmer, M.; Jordà, G.; Orsi, A. H.; Yvon-Lewis, S. A.

    2009-04-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the major milestone of ESASSI, the Spanish component of SASSI (a core project of the International Polar Year devoted to study the shelf-slope exchanges in different locations of Antarctica). The sampling strategy of the cruise consisted of 11 full-depth CTD/ADCP sections across the northern and southern slope of the South Scotia Ridge (SSR), between Elephant and Orkney Islands. The sections extend from shelf waters to open sea and the profiles were gathered at an unprecedented spatial resolution over the slope (about 2 nm). Water samples for chemical and biological analysis were also collected at each station; the analyzed parameters include trace gases (CFCs), oxygen isotopes, carbon-related parameters, and nutrients. In this presentation we show the overall distribution of the main variables across the different sections. Namely, we present: a water mass analysis (in terms of potential temperature, salinity and neutral density), estimates of velocities and fluxes across different transects and distributions of biogeochemical parameters. The ultimate aims of the ESASSI project are: 1) to elucidate the fate of the ASF when it enters the SSR from the Weddell Sea; 2) to estimate the shelf-slope exchanges for different parameters; and 3) to quantify the importance of the ventilation associated with intermediate waters flowing over the SSR with respect to the ventilation associated with bottom waters that are blocked by the SSR and flow around the Orkney Plateau.

  15. Sediment Transport Processes During Flood Events in the Middle LoireGauging and First Results

    NASA Astrophysics Data System (ADS)

    Gautier, J.; Rodrigues, S.; Juge, P.; Peters, J.

    2008-12-01

    A hydraulic and sediment transport survey campaign was organised in March 2007 on the Loire River, at the Bréhémont site. The aim was to collect data useful for the understanding of fluviomorphological mechanisms. A survey procedure, established at the end of the 1960's and relying on a follow-up bathymetric surveys and ancient sediments samplers was combined with modern technologies such as DGPS satellite positioning and ADCP flow gauging. The survey campaign allowed quantifying the sediment transport rates of the size fractions larger than 50 microns. The results confirm the earlier made hypothesis concerning the existence of a sediment load moving close to the bottom and distinct from the suspended load as described in the theories. This load was called "morphological" and is composed of solids having sizes between those of the river bed and those moving in suspension at higher elevations. This statement, made on the basis of surveys on other large streams in Africa, Asia and the America's questions the concepts on which have been based the majority of the sediment transport theories. The analysis shows also that the rate of bedload transport can be very high up to 60% in some verticals and nearly 50% on all a profil, that is much more than the rate usually admits. The present surveys show that campaigns as these are necessary in order to comprehend the processes, a condition prior to investigating solutions.

  16. Advancing Data assimilation for Baltic Monitoring and Forecasting Center: implementation and evaluation of HBP-PDAF system

    NASA Astrophysics Data System (ADS)

    Korabel, Vasily; She, Jun; Huess, Vibeke; Woge Nielsen, Jacob; Murawsky, Jens; Nerger, Lars

    2017-04-01

    The potential of an efficient data assimilation (DA) scheme to improve model forecast skill was successfully demonstrated by many operational centres around the world. The Baltic-North Sea region is one of the most heavily monitored seas. Ferryboxes, buoys, ADCP moorings, shallow water Argo floats, and research vessels are providing more and more near-real time observations. Coastal altimetry has now providing increasing amount of high resolution sea level observations, which will be significantly expanded by the launch of SWOT satellite in next years. This will turn operational DA into a valuable tool for improving forecast quality in the region. This motivated us to focus on advancing DA for the Baltic Monitoring and Forecasting Centre (BAL MFC) in order to create a common framework for operational data assimilation in the Baltic Sea. We have implemented HBM-PDAF system based on the Parallel Data Assimilation Framework (PDAF), a highly versatile and optimised parallel suit with a choice of sequential schemes originally developed at AWI, and a hydrodynamic HIROMB-BOOS Model (HBM). At initial phase, only the satellite Sea Surface Temperature (SST) Level 3 data has been assimilated. Several related aspects are discussed, including improvements of the forecast quality for both surface and subsurface fields, the estimation of ensemble-based forecast error covariance, as well as possibilities of assimilating new types of observations, such as in-situ salinity and temperature profiles, coastal altimetry, and ice concentration.

  17. Effect of internal tides in the distribution and abundance of microzooplankton in Todos Santos Bay (Ensenada, B.C.)

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Ibañez Tejero, L.; Ladah, L. B.; Sanchez Velasco, L.; Barton, E. D.

    2016-02-01

    Microzooplankton trophically connects phytoplankton and zooplanktonic adults. Their distribution and abundance can be directly related to the inherent physical processes in the marine environment. In coastal waters, the distribution and transport of zooplankton, including microzooplankton, can be influenced by high frequency effects such as internal tides. To date, most of the work on planktonic organisms and their interaction with the internal tide has been focused on a few species, such as barnacles, bryozoans and crabs. The aim of this study was to determine the effect of internal tide on the vertical distribution and abundance of microzooplankton, with an emphasis on copepod nauplii, during the evolution of the internal tide in a summer period of strong thermal stratification. Samples were obtained by vertical plankton net (150 micron mesh) hauls at three depth strata (surface, mid-water and bottom in 25 m depth), independently, with a sampling frequency of every hour. The internal tide was detected by rapid changes in temperature and currents observed with thermistor chains and a bottom-mounted upward looking ADCP. Preliminary results shows a strong mode-1 baroclinic tidal signal. The highest abundance of copepod nauplii and microzooplankton biomass occurred at depth, associated with a strong tidal current. The abundance of copepod nauplii and the abundance of microzooplankton biomass in the surface and intermediate strata showed strong vertical displacements between both strata. Data suggest the vertical distribution of microzooplankton can be dependent on the internal tide.

  18. Determining the near-surface current profile from measurements of the wave dispersion relation

    NASA Astrophysics Data System (ADS)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  19. First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2014-10-01

    Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.

  20. Heat and Freshwater Budgets in the Eastern Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Rudnick, D.; Paulson, C. A.; Pierce, S.

    2002-12-01

    Heat and freshwater budgets of the upper ocean in the Eastern Equatorial Pacific warm pool at 10N, 95W are investigated for the 20-day R/V New Horizon survey made as a part of the EPIC-2001 program. We collected underway hydrographic data from a SeaBird CTD mounted on an undulating platform, SeaSoar, and horizontal velocity data from the ship mounted ADCP, along a butterfly pattern centered near 10N, 95W. The time of completion of a single butterfly pattern (146x146 km) at a speed of 8 knots was approximately 36 hours, which is about half an inertial period at 10N. The butterfly survey lasted from September 14 to October 03, 2001. During the 20-day period, temperature and salinity in the upper 20 m dropped by 1.5C and 0.5 psu, respectively, and most of these changes took place over two days of heavy rainfall between September 23 and 24. The near surface became strongly stratified during these rain events. The rainfall signature weakened and mixed down to the top of the pycnocline (~30-m depth) within a few days after the rainfall. The change in fresh water content of the upper 30 m which occurred during the 2-day period of heavy rainfall is equivalent to about 0.12 m of rainfall, which is significantly less than the rainfall observed on the New Horizon. The difference may be due to spatial inhomogeneity in the rainfall and to the neglect of advection. Estimates of advection are presented using ADCP velocities and SeaSoar hydrography. Heat and fresh water budgets are presented by combining surface fluxes, and advection and storage terms.

  1. Observations of Near-Bed Deposition and Resuspension Processes at the Fluvial-Tidal Transition Using High Resolution Adcp, Adv, and Lisst

    NASA Astrophysics Data System (ADS)

    Haught, D. R.; Stumpner, P.

    2012-12-01

    Processes that determine deposition and resuspension of sediment in fluvial and tidal systems are complicated and difficult to predict because of turbulence-sediment interaction. In fluvial systems net sediment deposition rates near the bed are determined by shear stresses that occur when turbulence interacts with the bed and the entrained sediment above. In tidal systems, processes are driven primarily by the confounding factors of slack water and reversing flow. In this study we investigate near-bed sediment fluxes, settling velocities and sediment size distributions during a change from a fluvial signal to a tidal signal. In order to examine these processes a high resolution, high frequency ADCP, ADV, water quality sonde and LISST data were collocated at the fluvial-tidal transition in the Sacramento River at Freeport, CA. Data were collected at 15-30 minute increments for a month`. Data were dissevered into fluvial and tidal components. Acoustic backscatterence was used as a surrogate to sediment concentration and sediment flux () was calculated from the turbulence properties. Settling velocities were computed from the diffusion-advection equation assuming equilibrium of settling and re-suspension fluxes. Particle density was back-calculated from median particle diameter and calculated settling velocities (Reynolds number<0.5) using Stokes' law. Preliminary results suggest that during peak fluvial discharge that the diffusion-advection gives poor estimates of settling velocities as inferred from particle densities above 3500 kg/m3. During the transition from fluvial to tidal signal and throughout the tidal signal particle densities range from 2650 kg/m3 to 1000 kg/m3, suggesting that settling velocities were accurately estimated. Thus the equilibrium assumption appears poor during high fluvial discharge and reasonable during low fluvial discharge when tidal signal is dominant.

  2. Zooplankton in the Arctic outflow

    NASA Astrophysics Data System (ADS)

    Soloviev, K. A.; Dritz, A. V.; Nikishina, A. B.

    2009-04-01

    Climate changes in the Arctic cause the changes in the current system that may have cascading effect on the structure of plankton community and consequently on the interlinked and delicately balanced food web. Zooplankton species are by definition incapable to perform horizontal moving. Their transport is connected with flowing water. There are zooplankton species specific for the definite water masses and they can be used as markers for the different currents. That allows us to consider zooplankton community composition as a result of water mixing in the studied area. Little is known however about the mechanisms by which spatial and temporal variability in advection affect dynamics of local populations. Ice conditions are also very important in the function of pelagic communities. Melting time is the trigger to all "plankton blooming" processes, and the duration of ice-free conditions determines the food web development in the future. Fram Strait is one of the key regions for the Arctic: the cold water outflow comes through it with the East Greenland Current and meets warm Atlantic water, the West Spitsbergen Current, producing complicated hydrological situation. During 2007 and 2008 we investigated the structure functional characteristics of zooplankton community in the Fram Strait region onboard KV "Svalbard" (April 2007, April and May 2008) and RV "Jan Mayen" (May 2007, August 2008). This study was conducted in frame of iAOOS Norway project "Closing the loop", which, in turn, was a part of IPY. During this cruises multidisciplinary investigations were performed, including sea-ice observations, CTD and ADCP profiling, carbon flux, nutrients and primary production measurements, phytoplankton sampling. Zooplankton was collected with the Hydro-Bios WP2 net and MultiNet Zooplankton Sampler, (mouth area 0.25 m2, mesh size 180 um).Samples were taken from the depth strata of 2000-1500, 1500-1000, 1000-500,500-200, 200-100, 100-60, 60-30, 30-0 m. Gut fluorescence content were measured in dominant species to investigate effect of Chl a concentration and phytoplankton composition on ingestion rate. Egg production experiments were carried out under different food conditions. Rare deep water zooplankton species were also investigated to increase our knowledge in the Arctic biodiversity. Copepods Calanus finmarchicus is known as a marker of the Atlantic water mass, Calanus glacialis and Calanus hyperboreus, vice versa, are the coldwater Arctic species. In our study we investigated three Calanus species distribution and analyzed their ecological status. Changes in zooplankton composition results in the alteration of energy transfer within the pelagic food web ("cold" and "warm" scenarios) with potential consequences for growth and survival of seabirds Little Auk (Alle alle) and Black-legged kittiwake (Rissa tridactyla). We discuss the advection effect on the zooplankton community, compare the population development phases with phytoplankton bloom phases (match-mismatch), estimate grazing impact on phytoplankton community and consider different life strategies for the three different Calanus species.

  3. Intercomparison and validation of operational coastal-scale models, the experience of the project MOMAR.

    NASA Astrophysics Data System (ADS)

    Brandini, C.; Coudray, S.; Taddei, S.; Fattorini, M.; Costanza, L.; Lapucci, C.; Poulain, P.; Gerin, R.; Ortolani, A.; Gozzini, B.

    2012-04-01

    The need for regional governments to implement operational systems for the sustainable management of coastal waters, in order to meet the requirements imposed by legislation (e.g. EU directives such as WFD, MSFD, BD and relevant national legislation) often lead to the implementation of coastal measurement networks and to the construction of computational models that surround and describe parts of regional seas without falling in the classic definition of regional/coastal models. Although these operational models may be structured to cover parts of different oceanographic basins, they can have considerable advantages and highlight relevant issues, such as the role of narrow channels, straits and islands in coastal circulation, as both in physical and biogeochemical processes such as in the exchanges of water masses among basins. Two models of this type were made in the context of cross-border European project MOMAR: an operational model of the Tuscan Archipelago sea and one around the Corsica coastal waters, which are both located between the Tyrrhenian and the Algerian-Ligurian-Provençal basins. Although these two models were based on different computer codes (MARS3D and ROMS), they have several elements in common, such as a 400 m resolution, boundary conditions from the same "father" model, and an important area of overlap, the Corsica channel, which has a key role in the exchange of water masses between the two oceanographic basins. In this work we present the results of the comparison of these two ocean forecasting systems in response to different weather and oceanographic forcing. In particular, we discuss aspects related to the validation of the two systems, and a systematic comparison between the forecast/hindcast based on such hydrodynamic models, as regards to both operational models available at larger scale, both to in-situ measurements made by fixed or mobile platforms. In this context we will also present the results of two oceanographic cruises in the marine area between Tuscany and Corsica, named MELBA (May 2011) and Milonga (October 2011). In both campaigns, in addition to standard oceanographic measurements (profiles, samples), currentemeter data were collected along tracks using vessel mounted ADCPs, which have allowed us to identify some of the most interesting hydrodynamic features of the area. During MELBA, such current measurements were also carried out through the use of an Autonomous Underwater Vehicle (AUV), while during MILONGA a large survey of the area and a mapping of currents and water masses were carried out by a large number of Lagrangian instruments (drifters and floats). First results allow a hydrodynamic characterization of the Corsica channel, highlighting the three-dimensional structure of the currents along the channel, and characterizing the current reversals (from North to South and vice versa) in dependence to different oceanographic and weather conditions. Collected data provides a basis for a first validation of such operational models, and allow the evaluation of their relative reliability under different conditions.

  4. Profiles of childhood adversities in pathological gamblers - A latent class analysis.

    PubMed

    Lotzin, Annett; Ulas, Mehmet; Buth, Sven; Milin, Sascha; Kalke, Jens; Schäfer, Ingo

    2018-06-01

    Despite of high rates of adverse childhood experiences (ACEs) in pathological gamblers, researchers have rarely studied which types of ACEs often co-occur and how these profiles of ACEs are related to current psychopathology. We aimed to identify profiles of ACEs in pathological gamblers and examined how these profiles were related to gambling-related characteristics and current general psychopathology. In 329 current or lifetime pathological gamblers, diagnosed with the Composite Diagnostic Interview for DSM-IV, 10 types of ACEs were measured using the Adverse Childhood Experiences Questionnaire. Global psychopathology was assessed using the Symptom Checklist SCL-27. ACE profiles were identified using latent class analysis. Differences between ACE profiles in gambling-related characteristics and global psychopathology were analyzed using MANOVA. We found that four out of five gamblers (n=257, 78.1%) reported at least one ACE. Four distinct ACE profiles were identified: 'Low ACE', 'High ACE', 'Physical and emotional abuse', and 'Neglect'. The number of the fulfilled pathological gambling criteria and the severity of current global psychopathology differed between the ACE profiles: Gamblers with a 'High ACE' profile fulfilled more pathological gambling criteria and showed a more severe current psychopathology than gamblers of the 'Low ACE' profile. Gamblers with a 'Physical and emotional abuse' or an 'Emotion neglect' profile showed an intermediate severity of psychopathology. Our findings indicate that four different ACE profiles can be distinguished in pathological gamblers that differed in their gambling-related characteristics and current psychopathology. Systematic assessment of profiles of ACEs in pathological gamblers may inform about the severity of current global psychopathology that might be important to be addressed in addition to gambling-specific treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less

  6. RF current profile control studies in the alcator C-mod tokamak

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.

    1999-09-01

    Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.

  7. Quasi-planktonic behavior of foraging top marine predators

    PubMed Central

    Della Penna, Alice; De Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; d’Ovidio, Francesco

    2015-01-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1–100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels. PMID:26666350

  8. Particle transport model sensitivity on wave-induced processes

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  9. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less

  10. A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Lozovatsky, Iossif; Wijesekera, Hemantha; Jarosz, Ewa; Lilover, Madis-Jaak; Pirro, Annunziata; Silver, Zachariah; Centurioni, Luca; Fernando, H. J. S.

    2016-08-01

    Measurements conducted in the southern Bay of Bengal (BoB) as a part of the ASIRI-EBoB Program portray the characteristics of high-frequency internal waves in the upper pycnocline as well as the velocity structure with episodic events of shear instability. A 20 h time series of CTD, ADCP, and acoustic backscatter profiles down to 150 m as well as temporal CTD measurements in the pycnocline at z = 54 m were taken to the east of Sri Lanka. Internal waves of periods ˜10-40 min were recorded at all depths below a shallow (˜20-30 m) surface mixed layer in the background of an 8 m amplitude internal tide. The absolute values of vertical displacements associated with high-frequency waves followed the Nakagami distribution with a median value of 2.1 m and a 95% quintile 6.5 m. The internal wave amplitudes are normally distributed. The tails of the distribution deviate from normality due to episodic high-amplitude displacements. The sporadic appearance of internal waves with amplitudes exceeding ˜5 m usually coincided with patches of low Richardson numbers, pointing to local shear instability as a possible mechanism of internal-wave-induced turbulence. The probability of shear instability in the summer BoB pycnocline based on an exponential distribution of the inverse Richardson number, however, appears to be relatively low, not exceeding 4% for Ri < 0.25 and about 10% for Ri < 0.36 (K-H billows). The probability of the generation of asymmetric breaking internal waves and Holmboe instabilities is above ˜25%.

  11. Chicken embryo fibroblasts exposed to weak, time-varying magnetic fields share cell proliferation, adenosine deaminase activity, and membrane characteristics of transformed cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parola, A.H.; Porat, N.; Kiesow, L.A.

    1993-01-01

    Chicken embryo fibroblasts (CEF) exposed to a sinusoidally varying magnetic field (SVMF) (100 Hz, 700 microT, for 24 h) showed a remarkable rise of segmental rotational relaxation rate of adenosine deaminase (ADA, EC 3.5.4.4) as determined by multifrequency phase fluorometry. Pyrene-labeled, small subunit ADA was applied to cultured (normal) CEF, which have available and abundant ADA complexing protein (ADCP) on their plasma membranes. Sine-wave-modulated fluorometry of the pyrene yielded a profile of phase angle vs. modulation frequency. In SVMF-treated cells and in Rous-sarcoma-virus (RSV) transformed cells the differential phase values at low modulation frequencies of the excitation are remarkably reduced.more » This effect is magnetic rather than thermal, because the temperature was carefully controlled and monitored; nevertheless to further check this matter we studied CEF, infected by the RSV-Ts68 temperature-sensitive mutant (36 degrees C transformed, 41 degrees C revertant). When grown at 36 degrees C in the SVMF, cells did not show the slightest trend towards reversion, as would be expected had there been local heating. Concomitant with the increased segmental rotational relaxation rate of ADA, there was a decrease in fluorescence lifetime and a slight, yet significant, increase in membrane lipid microfluidity. These biophysical observations prompted us to examine the effect of SVMF on cell proliferation and ADA activity (a malignancy marker): higher rates of cell proliferation and reduced specific activity of ADA were observed.« less

  12. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model

    USGS Publications Warehouse

    Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas

    2011-01-01

    Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.

  13. Performance Assessment of Model-Based Optimal Feedforward and Feedback Current Profile Control in NSTX-U using the TRANSP Code

    NASA Astrophysics Data System (ADS)

    Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.

    2015-11-01

    Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.

  14. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  15. Neural network evaluation of tokamak current profiles for real time control

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-02-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental datais demonstrated.

  16. Neural network evaluation of tokamak current profiles for real time control (abstract)

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated.

  17. Observation of instability-induced current redistribution in a spherical-torus plasma.

    PubMed

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  18. Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure

    NASA Astrophysics Data System (ADS)

    Brown, W. S.; Marques, G. M.

    2013-07-01

    High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.

  19. Bootstrap current in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  20. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electricmore » field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.« less

  1. Surface currents associated with external kink modes in tokamak plasmas during a major disruption

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    2017-10-01

    The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.

  2. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  3. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele

    2017-01-01

    SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS reproduced the observations well (temperature RMSE equal to 0.11 °C). Furthermore, SANIFS simulations were compared with hourly time series of temperature, sea level and velocity measured on the coastal-harbour scale, showing a good agreement. Simulations in the Gulf of Taranto described a circulation mainly characterized by an anticyclonic gyre with the presence of cyclonic vortexes in shelf-coastal areas. A surface water inflow from the open sea to Mar Grande characterizes the coastal-harbour scale.

  4. Dynamics of tropical oxygen minium zones (OMZ): The role of vertical mixing and eddy stirring in ventilating the OMZ in the tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Visbeck, M.; Banyte, D.; Brandt, P.; Dengler, M.; Fischer, T.; Karstensen, J.; Krahmann, G.; Tanhua, T. S.; Stramma, L.

    2013-12-01

    Equatorial Dynamics provide an essential influence on the ventilation pathways of well oxygenated surface water on their route to tropical oxygen minimum zones (OMZ). The large scale wind driven circulation shield OMZs from the direct ventilation pathways. They are located in the so called ';shadow zones' equator ward of the subtropical gyres. From what is known most of the oxygen is supplied via pathways from the western boundary modulated by the complex zonal equatorial current system and marginally by vertical mixing. What was less clear is which of the possible pathways are most effective in transporting dissolved oxygen towards the OMZ. A collaborative research program focused on the dynamics of oxygen minimum zones, called SFB754 "Climate - Biogeochemistry Interactions in the Tropical Ocean", allowed us to conduct two ocean tracer release experiments to investigate the vertical and horizontal mixing rates and associated oxygen transports. Specifically we report on the first deliberate tracer release experiment (GUTRE, Guinea Upwelling Tracer Release Experiment) in the tropical northeast Atlantic carried out in order to determine the diapycnal diffusivity coefficient in the upper layer of the OMZ. A tracer (CF3SF5) was injected in spring of 2008 and subsequently measured during three designated tracer survey cruises until the end of 2010. We found that, generally, the diffusivity is larger than expected for low latitudes and similar in magnitude to what has previously been experimentally determined in the Canary Basin. When combining the tracer study with estimates of diapycnal mixing based on microstructure profiling and a newly developed method using ship board ADCPs we were able to compute the vertical oxygen flux and its divergence for the OMZ. To our surprise, the vertical flux of oxygen by diapycnal mixing provides about 30% of the total ventilation. The estimate was derived from the simple advection-diffusion model taking into account moored and ship based velocity observations of the equatorial current systems along 23°W in the tropical Atlantic. However, the advective pathways are less certain and possibly more variable. Firstly, the strength of lateral eddy stirring and the role in oxygen transport is less well known, and is the focus of the ongoing second tracer release experiment (OSTRE, Oxygen Supply Tracer Release Experiment). Secondly, the analysis of historical data from the equatorial regime suggests that the observed decline in dissolved oxygen in the tropical North Atlantic might in part be a consequence of reduced horizontal ventilation by equatorial intermediate current systems. The uncertainty of the long-term variability of the circulation in the equatorial systems and additional uncertainty in the biogeochemical consumption rates provide a challenge for estimates of the future of the OMZ regimes. Model prediction of future oxygen changes depend on the models ability to reproduce the observed oxygen ventilation pathways and processes, which might limit the prediction's accuracy.

  5. Morphosedimentary dynamics of the Madeira River in Brazil

    NASA Astrophysics Data System (ADS)

    Bonthius, C.; Latrubesse, E. M.; Abad, J. D.

    2012-12-01

    The Madeira River, the largest tributary of the Amazon River in terms of water discharge, offers an opportunity to investigate extrinsic and intrinsic controls on channel morphology and pattern. With an average annual discharge of approximately 32,000 m3/s, the Madeira River is a mega-river with a unique anabranching channel pattern, a specific stream power of approximately 20 W/m2, and a width-depth ratio that ranges between 30 and 64 (Latrubesse 2008). Not only of interest for its size and discharge, the Madeira River is also a critical ecological component of the overall Amazon Basin. As the greatest contributor of sediment to the Amazon fluvial system, the Madeira River transports approximately 330 tons/km2 annually, which is about half of the Amazon River's total sediment output (Latrubesse et al 2005). This poster presents analyses of the morphology of the Madeira River and of data collected from a field campaign carried out in summer 2011 on a stretch between Porto Velho and Humaitá in Brazil. Using historical radar and satellite imagery of consistent spatial and temporal resolution, the stability and morphology of in-channel landforms are assessed and quantified. Stretches characterized by vegetated islands demonstrated overall stability; these features were temporally persistent and showed little, if any, change in area over a period of forty years. Sand bars, or un-vegetated sediment, are highly mutable features with numbers that vary between nine and twenty-seven in a same single stretch over time. The main channel also demonstrated stability in its morphology, while the presence and activation of secondary channels varied. Velocity maps and an analysis of secondary currents are presented from data collected from bathymetric surveys and an Acoustic Doppler Current Profiler (ADCP) from Porto Velho and Humaitá. Hydraulic factors in two complex and geologically controlled river reaches, a mainly meandering reach with a tendency to anabranch and a purely anabranching reach, are compared, offering insight into the roles of these intrinsic variables in the fluvial system. Sediment samples collected during the field campaign were analyzed for grain size composition. Connections between median grain size (d50), hydraulic variables, and channel morphology are discussed in context of the resulting channel pattern. These analyses also shed light on differences that exist between the Madeira River and other large fluvial systems. Currently endangered by impoundment with hydroelectric projects expected to be fully operational by January of 2013, the Madeira River is a mega-river that faces irreversible change due to human impact. As a result, the collection and analysis of data of current baseline conditions is of timely and necessary importance to assess geomorphologic and hydrologic changes in the fluvial system, model the river's behavior under a variety of natural and anthropogenic conditions, and inform management plans for the Madeira River and Amazon River basins. References Latrubesse, E.M. 2008. Patterns of anabranching channels: the ultimate end-member adjustment of mega-rivers. Geomorphology, 101, pp. 130-145. Latrubesse, E.M., Stevaux, J.C. and Sinha, R. 2005. Tropical Rivers. Geomorphology, 70, pp. 187-206.

  6. Texas Automated Buoy System 1995-2005 and Beyond

    NASA Astrophysics Data System (ADS)

    Guinasso, N. L.; Bender, L. C.; Walpert, J. N.; Lee, L. L.; Campbell, L.; Hetland, R. D.; Howard, M. K.; Martin, R. D.

    2005-05-01

    TABS was established in l995 to provide data to assess oil spill movement along Texas coast for the Texas General Land Office Oil Spill Prevention and Response Program. A system of nine automated buoys provide wind and current data in near real time. Two of these buoys are supported by the Flower Garden Banks Joint Industry Program. A TABS web site provides a public interface to view and download the data. A real time data analysis web page presents a wide variety of useful data products derived from the field measurements. Integration efforts now underway include transfer of buoy data to the National Data Buoy Center for quality control and incorporation into the Global Telecommunications Stream. The TGLO ocean circulation nowcast/forecast modeling system has been in continuous operation since 1998. Two models, POM and ROMS, are used to produce forecasts of near-surface wind driven currents up to 48 hours into the future. Both models are driven using wind fields obtained from the NAM (formerly Eta) forecast models operated by NOAA NCEP. Wind and current fields are displayed on websites in both static and animated forms and are updated four times per day. Under funding from the SURA/SCOOP program we are; 1) revamping the system to conform with the evolving Data Management and Communications (DMAC) framework adopted by the NSF Orion and OCEAN.US IOOS programs, 2) producing model-data comparisons, and 3) integrating the wind and current fields into the GNOME oil trajectory model used by NOAA/Hazmat. Academic research is planned to assimilate near real-time observations from TABS buoys and some 30-40 ADCP instruments scheduled to be mounted on offshore oil platforms in early 2005. Texas Automated Buoy System (TABS) and its associated modeling efforts provide a reliable source of accurate, up-to-date information on currents along the Texas coast. As the nation embarks on the development of an Integrated Ocean Observing System (IOOS), TABS will be an active participant as a foundational regional component to the national backbone of ocean observations.

  7. The ESASSI-08 cruise in the South Scotia Ridge region: Water masses, currents, and the ASF

    NASA Astrophysics Data System (ADS)

    Palmer, M.; Gomis, D.; Flexas, M. M.; Jordà, G.; Orsi, A. H.

    2009-04-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the major milestone of ESASSI, the Spanish component of SASSI (a core project of the International Polar Year devoted to study the shelf-slope exchanges in different locations of Antarctica). The specific objectives of ESASSI, the sampling strategy and the overall distribution of the main variables across the 11 sections covered by the cruise are presented in a poster. Here we focus on three specific issues: i) the observation of strong tidal currents over some of the sampled slopes; ii) the path of the Antarctic Slope Front (ASF) over the SSR; and iii) the outflow of dense, ventilated water from the Weddell Sea into the South Scotia Sea. The main results are: i) Strong tidal currents with a significant diurnal component were observed over the southern slope of the SSR. Three tidal models are compared with the observations and used to de-tide ADCP currents. ii) The signature of the ASF is clearly detected on the southern slopes of the SSR (on the Weddell Sea flank). Over the northern slopes (the Scotia Sea flank), however, only weak signatures of frontal structures are observed; an in-depth biochemical analysis will be required to link the structures observed over the two flanks of the SSR. What seems clear is that the ASF does not extend further than Elephant Island, since southwestward of that island the shelf and the slope are fully occupied by Circumpolar Deep Water (CDW) from the Antarctic Circumpolar Current. iii) The shallower component of Weddell Sea Deep Water (Upper WSDW) flows over the SSR and pours into the Scotia Sea except to the east of Elephant Island, where the channels are less than 1500 m deep. The densest component of WSDW (Lower WSDW) is observed at both flanks of the SSR, but again a more detailed analysis of biochemical data will be required to prove a direct flux of this water mass across the SSR. Weddell Sea Bottom Water (WSBW) is not observed in any of the sampled sections.

  8. The influence of tides on biogeochemical dynamics at the mouth of the Amazon River

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.

    2017-12-01

    A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the response of a suite of biogeochemical parameters to tide-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced response at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low tide (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low tide with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term response of aquatic systems to change.

  9. Evaluation of a Magnetically-Filtered Faraday Probe for Measuring the ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2004-07-01

    The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the

  10. Test of electical resistivity and current diffusion modelling on MAST and JET

    NASA Astrophysics Data System (ADS)

    Keeling, D. L.; Challis, C. D.; Jenkins, I.; Hawkes, N. C.; Lupelli, I.; Michael, C.; de Bock, M. F. M.; the MAST Team; contributors, JET

    2018-01-01

    Experiments have been carried out on the MAST and JET tokamaks intended to compare the electrical resistivity of the plasma with theoretical formulations. The tests consist of obtaining motional stark effect (MSE) measurements in MHD-free plasmas during plasma current ramp-up (JET and MAST), ramp-down (MAST) and in stationary state (JET and MAST). Simulations of these plasmas are then performed in which the current profile evolution is calculated according to the poloidal field diffusion equation (PFDE) with classical or neoclassical resistivity. Synthetic MSE data are produced in the simulations for direct comparison with the experimental data. It is found that the toroidal current profile evolution modelled using neoclassical resistivity did not match the experimental observations on either device during current ramp-up or ramp-down as concluded from comparison of experimental and synthetic MSE profiles. In these phases, use of neoclassical resistivity in the modelling systematically overestimates the rate of current profile evolution. During the stationary state however, the modelled toroidal current profile matched experimental observations to a high degree of accuracy on both devices using neoclassical resistivity. Whilst no solution to the mismatch in the dynamic phases of the plasma is proposed, it is suggested that some physical process other than MHD which is not captured by the simple diffusive model of current profile evolution is responsible.

  11. Role of mesoscale eddies on exchanges between coastal regions

    NASA Astrophysics Data System (ADS)

    Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Dekeyser, I.

    2012-04-01

    The general circulation in the northwestern Mediterranean Sea is characterized by a cyclonic circulation. The northern part of this gyre is formed by the Northern Current (NC), which flows along the continental slope from the Ligurian Sea towards the Catalan Shelf. The NC has an important influence on the Gulf of Lion (GoL), a large continental margin in the northern part of the basin. The NC constitutes an effective dynamical barrier which blocks coastal waters on the continental shelf. The western part of the GoL is a key region for regulating the outflow from the continental shelf to the Catalan Basin. These exchanges are mainly induced by partially ageostrophic processes originating from the interaction between the NC and mesoscale activity like meanders, filaments and eddies. Both GoL and Catalan shelf are characterized by an intense mesoscale activity. Eddies in the GoL are baroclinic structures extending throughout the mixed layer (30 to 50m), often elliptic in shape and about 20-30km in diameter. Catalan eddies are characterized by a vertical extension between 70 and 100m and a diameter of about 45km. The LAgrangian Transport EXperiment (LATEX, 2008-2011) was designed to study the mechanisms of formation of anticyclones in the western part of the GoL and their influence on cross-shelf exchanges. Mesoscale anticyclones have been observed in the western part of the GoL and over the Catalan shelf by the combined use of data from satellite observations, in situ measurements and numerical modeling. Recent numerical experiments show an anticyclonic circulation extending over a large part of the coastal area (latitudinal range : 41°50' to 43°N ; longitudinal range : 3°10' to 4°10'E). Interaction with a meander of the NC induces the separation of this circulation in two different eddies, one in the GoL and the other in the Catalan shelf. These eddies exhibit strong interaction between them, resulting in important exchanges between the two coastal regions. On one hand the Catalan eddy causes a heat transfer to the GoL; and, on the other hand, the interaction between the GoL eddy and a topographic barrier (Cap Creus) leads to a transfer of energy to the Catalan eddy. In order to quantify this exchange, a balance of kinetic energy has been analyzed from the model results. Numerical results are also discussed in comparison with in situ observations collected during the Latex09 campaign (August 24-28, 2009). The analysis of Sea Surface Temperature (SST) satellite images, Acoustic Doppler Current Profiler (ADCP) and Lagrangian drifter trajectories, confirmed the above interpretation derived from numerical model.

  12. Off-axis current drive and real-time control of current profile in JT-60U

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.; JT-60 Team

    2008-04-01

    Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (qmin) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control qmin. The real-time control of qmin is demonstrated in a high-β plasma, where qmin follows the temporally changing reference qmin,ref from 1.3 to 1.7. Applying the control to another high-β discharge (βN = 1.7, βp = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), qmin was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement.

  13. Are the spring and fall blooms on the Scotian Shelf related to short-term physical events?

    NASA Astrophysics Data System (ADS)

    Greenan, B. J. W.; Petrie, B. D.; Harrison, W. G.; Oakey, N. S.

    2004-03-01

    Physical, chemical and biological data from the Scotian Shelf indicate that short-term physical events affect the dynamics of spring and fall blooms. This is based on results from a three-week mooring deployment measuring currents, temperature, salinity and fluorescence in October 2000, combined with biweekly sampling of temperature, salinity, nutrients and chlorophyll throughout the year at this mooring site. A wind-driven upwelling event in mid-October shows temperature, salinity and density iso-surfaces rising by approximately 20 m. During this event, a bloom with peak chlorophyll concentrations of about 2.5 mg m -3 began as nutrients are brought into the upper part of the water column. Gradient Richardson Numbers ( Ri), a proxy for vertical mixing, are estimated for the mooring period in 2 m vertical bins using SeaHorse CTD data and nearby ADCP current measurements. These data indicate that vertical mixing may have played a complementary role to the upwelling in bringing nutrients into the euphotic zone. A trend of decreasing Ri in the ocean mixed layer with increasing surface wind stress is suggested. It appears that this short-term physical event is a primary factor in initiating the fall bloom on the inner Scotian Shelf in 2000. In April of that year, the termination of the spring bloom coincided with a downwelling event suggesting that it played a role in determining the duration of the bloom. SeaWiFS ocean color satellite provided a spatial context for chlorophyll observations, however, the lack of temporal resolution due to poor atmospheric conditions means that these data provide limited information on short-term chlorophyll variability.

  14. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Huei; Jan, Sen; Mensah, Vigan; Andres, Magdalena; Rainville, Luc; Yang, Yiing Jang; Cheng, Yu-Hsin

    2018-01-01

    Variability of the Kuroshio east of Taiwan was observed at a cross-stream transect 50 km south of the PCM-1 line with an array of three moored ADCPs measuring for 23 months, supplemented with eleven repeated shipboard surveys. Observations of the Kuroshio's velocity structure reveal the absence of an obvious regular seasonal signal, but significant variability at 70-200 day period for both maximum velocity axis migration and transport due to interactions with mesoscale eddies. Empirical orthogonal function (EOF) analysis shows the migration and transport modes explain 46% and 29% of the total variance, respectively, which is in contrast to the findings at the PCM-1 line where the transport mode explained more variance than did the migration mode. The Kuroshio transport in the upper 500 m across a 150 km section is 17.2 Sv with a standard deviation of 5 Sv. The estimated Kuroshio transport is 4.3 Sv lower than that reported for the PCM-1 line, likely due to the interannual variations related to abundance of mesoscale eddies in the Subtropical Counter Current (STCC) region. Transport variability east of Taiwan is mostly caused by Kuroshio-eddy interactions. When single anticyclonic (cyclonic) eddies encounter the Kuroshio, they enhance (reduce) poleward transport, presumably by increasing (decreasing) the sea level anomaly (SLA) along the eastern flank of the Kuroshio (correlation = 0.82). When a pair of eddies impinges on the Kuroshio, the upstream confluence and diffluence caused by the dipole eddies increases and decreases the Kuroshio transport, respectively. Furthermore, the eastward (westward) currents that result from either the single eddy or the dipole eddy produce flow divergence (convergence) adjacent to the Kuroshio's eastern edge, favoring the offshore (onshore) migration of the Kuroshio axis.

  15. Suspended and Bedload Sand dynamics in the Mekong River Channel and Export to the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Stephens, J. D.; Di Leonardo, D. R.; Weathers, H. D., III; Allison, M. A.

    2016-02-01

    Two field campaigns were conducted in the tidal and estuarine reach of the Song Hau distributary of the Mekong River to examine the dynamics of sand transport and export to the coastal ocean. This study examines variation in suspended sand concentration and net transport with respect to changes in discharge between the October 2014 high discharge and March 2015 low discharge studies, and over semi-diurnal and spring-neap tidal cycles between Can Tho and the Tran De and Dinh An distributary channels in the Mekong Delta. Suspended sand concentrations were measured using a P-61 isokinetic suspended sediment sampler and a Sequoia Scientific LISST-100X used in vertical profiling mode. Stationary ADCP data are used to examine bed stress at cast sites. Bed load transport rates were calculated using a repeat multibeam transect methodology and dune translation rates with flow. Preliminary results indicate that suspended sand concentration increases towards the bed and is positively correlated with increasing shear stress controlled by river discharge and tides. However, sites with non-sandy bottoms, as indicated by multibeam bathymetry, have low suspended sand concentrations, suggesting a close linkage with a bed sand source. Bed load transport rates vary cross-sectionally with shear stress and are linked to dune size. Most bed load transport is taking place in or near the thalweg. The reduction in ebb flows at low discharge and the mantling of sand fields by salinity driven mud deposition, is suspected to control the low suspended sand concentrations observed in March. Results to date suggest that net sand export (suspended plus bed load) to the ocean occurs predominantly during the high discharge monsoon season.

  16. IEOOS: the Spanish Institute of Oceanography Observing System

    NASA Astrophysics Data System (ADS)

    Tel, E.; Balbin, R.; Cabanas, J. M.; Garcia, M. J.; Garcia-Martinez, M. C.; Gonzalez-Pola, C.; Lavin, A.; Lopez-Jurado, J. L.; Rodriguez, C.; Ruiz-Villarreal, M.; Sanchez-Leal, R. F.; Vargas-Yanez, M.; Velez-Belchi, P.

    2015-10-01

    Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO) has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography (OO). Some systems like the tide gauges network has been working for more than 70 years. The IEO standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the IEO Observing System (IEOOS) includes 6 permanent moorings equipped with currentmeters, an open-sea ocean-meteorological buoy offshore Santander and an SST satellital image reception station. It also supports the Spanish contribution to the ARGO international program with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and ADCP onboard the IEO research vessels. The system is completed with the IEO contribution to the RAIA and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands as navigation, resource management, risks management, recreation, etc, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programs Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits following spatio-temporal description of some events, as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  17. Coastal counter-currents setup patterns in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Relvas, P.; Juniór, L.; Garel, E.; Drago, T.

    2017-12-01

    Alongshore coastal counter-currents (CCC) are frequent features of Eastern Boundary Upwelling Systems, where they temporally alternate with upwelling driven jets of opposite direction. Along the northern margin of the Gulf of Cadiz inner shelf, these CCCs are oriented poleward (eastward) and responsible for sharp temperature increases during the upwelling season, along with potential decline in water quality at the coast. This research is based on a multi-year ADCP velocity time-series (2008-2017), recorded at a single location (23 m water depth) over 13 deployments up to 3 months-long. The analysis focuses on the water column alongshore velocities during current inversions (i.e., the transition from equatorward upwelling jets to poleward CCCs). A set of parameters were derived from the flow structure to identify distinct types of inversions and to hypothesize about their driving mechanisms. Results show that 77% of the inversions start near the bed, propagating then to the upper layers. The bottom layer also changes direction before the surface layer for most events (71%). The vertical shear in this case is one order of magnitude greater than in the (less frequent) opposite situation. No seasonal variability is observed in the CCC occurrences. However, the parameters analysed in this study suggest different types of inversion between winter and summer. In winter, inversions are well defined (low variability), with similar patterns near the surface and bed layers as a result of a strong barotropic component. In summer the inversion patterns are more variable. In particular, the upper and bed layers are often importantly decoupled during inversions, indicating the strengthening of baroclinicity. A categorization of inversions events is proposed based on cross-correlation and multi-variable analyses of the developed parameters. Various types of inversion are obtained, suggesting that CCCs are driven by different forcings that may act separately or jointly.

  18. Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Marrec, Pierre; Grégori, Gérald; Doglioli, Andrea M.; Dugenne, Mathilde; Della Penna, Alice; Bhairy, Nagib; Cariou, Thierry; Hélias Nunige, Sandra; Lahbib, Soumaya; Rougier, Gilles; Wagener, Thibaut; Thyssen, Melilotus

    2018-03-01

    Fine-scale physical structures and ocean dynamics strongly influence and regulate biogeochemical and ecological processes. These processes are particularly challenging to describe and understand because of their ephemeral nature. The OSCAHR (Observing Submesoscale Coupling At High Resolution) campaign was conducted in fall 2015 in which a fine-scale structure (1-10 km/1-10 days) in the northwestern Mediterranean Ligurian subbasin was pre-identified using both satellite and numerical modeling data. Along the ship track, various variables were measured at the surface (temperature, salinity, chlorophyll a and nutrient concentrations) with ADCP current velocity. We also deployed a new model of the CytoSense automated flow cytometer (AFCM) optimized for small and dim cells, for near real-time characterization of the surface phytoplankton community structure of surface waters with a spatial resolution of a few kilometers and an hourly temporal resolution. For the first time with this optimized version of the AFCM, we were able to fully resolve Prochlorococcus picocyanobacteria in addition to the easily distinguishable Synechococcus. The vertical physical dynamics and biogeochemical properties of the studied area were investigated by continuous high-resolution CTD profiles thanks to a moving vessel profiler (MVP) during the vessel underway associated with a high-resolution pumping system deployed during fixed stations allowing sampling of the water column at a fine resolution (below 1 m). The observed fine-scale feature presented a cyclonic structure with a relatively cold core surrounded by warmer waters. Surface waters were totally depleted in nitrate and phosphate. In addition to the doming of the isopycnals by the cyclonic circulation, an intense wind event induced Ekman pumping. The upwelled subsurface cold nutrient-rich water fertilized surface waters and was marked by an increase in Chl a concentration. Prochlorococcus and pico- and nano-eukaryotes were more abundant in cold core waters, while Synechococcus dominated in warm boundary waters. Nanoeukaryotes were the main contributors ( > 50 %) in terms of pigment content (red fluorescence) and biomass. Biological observations based on the mean cell's red fluorescence recorded by AFCM combined with physical properties of surface waters suggest a distinct origin for two warm boundary waters. Finally, the application of a matrix growth population model based on high-frequency AFCM measurements in warm boundary surface waters provides estimates of in situ growth rate and apparent net primary production for Prochlorococcus (μ = 0.21 d-1, NPP = 0.11 mg C m-3 d-1) and Synechococcus (μ = 0.72 d-1, NPP = 2.68 mg C m-3 d-1), which corroborate their opposite surface distribution pattern. The innovative adaptive strategy applied during OSCAHR with a combination of several multidisciplinary and complementary approaches involving high-resolution in situ observations and sampling, remote-sensing and model simulations provided a deeper understanding of the marine biogeochemical dynamics through the first trophic levels.

  19. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    NASA Astrophysics Data System (ADS)

    Kraus, B. F.; Hudson, S. R.

    2017-09-01

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.

  20. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  1. Voltage Profiles for the Lead-Acid Cell: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Haaser, Robert; Ross, Joseph H.; Saslow, Wayne M.

    1999-10-01

    Using platinum electrodes we have measured the voltage profile in space across a lead-acid cell, for slow, steady processes. Once in the slow, steady charge or discharge regime, the experimental voltage profile is quadratic, as predicted by recent theory.^1 However, even without current flow, in the slow, steady regime the voltage profile also is quadratic, rather than a straight line with zero slope. This other quadratic voltage profile is due to nonfaradaic chemical reactions at the working electrodes, which slowly discharge the cell without drawing any current. Such a quadratic voltage profile follows from theory. The voltage jump profiles (change in voltage profile on sudden change in current) on starting or ending a charge or discharge, are linear in space, with slope consistent with the measured resistivity of battery acid. This is as expected if charge on the electrodes, but not in the electrolyte, has time to move. 1. W.M.Saslow, Phys.Rev.Lett.76, 4849 (1996).

  2. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE PAGES

    Kraus, B. F.; Hudson, S. R.

    2017-09-29

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  3. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, B. F.; Hudson, S. R.

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  4. Perspectives for Expanded Ocean Observing on the Southeast Florida Shelf and between Cuba and the Bahamas and the US

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dodge, R. E.; Proni, J.

    2012-12-01

    A long term ocean observing system was established on the Southeast Florida shelf near Ft. Lauderdale by the Nova Southeastern University Oceanographic Center (NSUOC) in late 1990s as a cooperative agreement between the NSU Oceanographic Center and USF College of Marine Science. The system has been supported and upgraded during a number of projects funded by the US federal government and private industries. Currently it consists of two ADCP moorings deployed at 240 m and 11 m isobath and coastal meteorological station and primarily serves to support the Office of Naval Research and other Federal agencies projects. During active observational phases, the area is monitored using the new generation of synthetic aperture radar (SAR) satellites (TerraSAR-X, Cosmo SkyMed, ALOS PALSAR, RADARSAT 2). The NSUOC Ocean observing system is a component of SECOORA, which has been integrating coastal and ocean observing data in the Southeast United States as a part of IOOS. In this paper we overview the results obtained during more than a decade of observations and discuss perspectives for expanded ocean observing on the Southeast Florida Shelf and between Cuba, Bahamas and US. Increased ocean observations are needed of the major western boundary current, known as the Loop Current in the Gulf of Mexico and the Florida Current in the Straits Florida. This ocean current occurs to the west and north of Cuba and along the southeast US. Observations will provide better understanding of the processes that maintain, and account for, the current variability and will be useful in myriad practical applications. A major application is the need to monitor the occurrence of, and to forecast entrainment, trajectories, and detrainment of, potential oil spills that may propagate from Cuban drilling sites located along the north coast of Cuba as well as from proposed drilling in the Bahamas. Such ocean observation information can be used as input for operational response models and result in best mitigation practices for an oil spill capable of significantly and adversely affecting US natural resources. The unique and valuable natural resources of the southeastern United States merit and need the best ocean observational system the scientific community can provide.

  5. Profiles of Childhood Trauma in Patients with Alcohol Dependence and Their Associations with Addiction-Related Problems.

    PubMed

    Lotzin, Annett; Haupt, Lena; von Schönfels, Julia; Wingenfeld, Katja; Schäfer, Ingo

    2016-03-01

    The high occurrence of childhood trauma in individuals with alcohol dependence is well-recognized. Nevertheless, researchers have rarely studied which types of childhood trauma often co-occur and how these combinations of different types and severities of childhood trauma are related to the patients' current addiction-related problems. We aimed to identify childhood trauma profiles in patients with alcohol dependence and examined relations of these trauma profiles with the patients' current addiction-related problems. In 347 alcohol-dependent patients, 5 types of childhood trauma (sexual abuse, physical abuse, emotional abuse, emotional neglect, and physical neglect) were measured using the Childhood Trauma Questionnaire. Childhood trauma profiles were identified using cluster analysis. The patients' current severity of addiction-related problems was assessed using the European Addiction Severity Index. We identified 6 profiles that comprised different types and severities of childhood trauma. The patients' trauma profiles predicted the severity of addiction-related problems in the domains of psychiatric symptoms, family relationships, social relationships, and drug use. Childhood trauma profiles may provide more useful information about the patient's risk of current addiction-related problems than the common distinction between traumatized versus nontraumatized patients. Copyright © 2016 by the Research Society on Alcoholism.

  6. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators.

    PubMed

    Brankack, J; Stewart, M; Fox, S E

    1993-07-02

    Single-electrode depth profiles of the hippocampal EEG were made in urethane-anesthetized rats and rats trained in an alternating running/drinking task. Current source density (CSD) was computed from the voltage as a function of depth. A problem inherent to AC-coupled profiles was eliminated by incorporating sustained potential components of the EEG. 'AC' profiles force phasic current sinks to alternate with current sources at each lamina, changing the magnitude and even the sign of the computed membrane current. It was possible to include DC potentials in the profiles from anesthetized rats by using glass micropipettes for recording. A method of 'subtracting' profiles of the non-theta EEG from theta profiles was developed as an approach to including sustained potentials in recordings from freely-moving animals implanted with platinum electrodes. 'DC' profiles are superior to 'AC' profiles for analysis of EEG activity because 'DC'-CSD values can be considered correct in sign and more closely represent the actual membrane current magnitudes. Since hippocampal inputs are laminated, CSD analysis leads to straightforward predictions of the afferents involved. Theta-related activity in afferents from entorhinal neurons, hippocampal interneurons and ipsi- and contralateral hippocampal pyramids all appear to contribute to sources and sinks in CA1 and the dentate area. The largest theta-related generator was a sink at the fissure, having both phasic and tonic components. This sink may reflect activity in afferents from the lateral entorhinal cortex. The phase of the dentate mid-molecular sink suggests that medial entorhinal afferents drive the theta-related granule and pyramidal cell firing. The sustained components may be simply due to different average rates of firing during theta rhythm than during non-theta EEG in afferents whose firing rates are also phasically modulated.

  7. On the Revealing Firsthand Probing of Ocean-Ice-Atmosphere Interactions off Sabrina Coast During NBP1402

    NASA Astrophysics Data System (ADS)

    Huber, B. A.; Orsi, A. H.; Zielinski, N. J.; Durkin, W. J., IV; Clark, P.; Wiederwohl, C. L.; Rosenberg, M. A.; Gwyther, D.; Greenbaum, J. S.; Lavoie, C.; Shevenell, A.; Leventer, A.; Blankenship, D. D.; Gulick, S. P. S.; Domack, E. W.

    2014-12-01

    Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form and massive floating ice shelves and glaciers melt, as well as control sea surface gas exchange and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on the unique set of synoptic shipboard measurements from NBP1402 (swath bathymetry, ADCP, underway CTD). Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice-atmosphere interactions on the characteristics of local Shelf Water (SW) sources to current outflow of newly formed Antarctic Bottom Water (AABW). A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, we found no evidence of dense SW off Sabrina Coast, which may lessen the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, there is no evidence of local cross-shelf inflow and mixing of warm Circumpolar Deep Water. Relatively cold thermocline waters from the continental slope enter the eastern trough off Sabrina Coast, and they are swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low salinity near-freezing waters drawn from intermediate levels of the adjacent westward flowing ACoC. Winds, currents and ice interactions observed off Sabrina Coast during NBP1402 are most likely widespread, in view of reported decadal freshening of upper waters over the Antarctic continental shelf and their localized AABW outflows.

  8. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  9. Uncertainty propagation in q and current profiles derived from motional Stark effect polarimetry on TFTR (abstract)a)

    NASA Astrophysics Data System (ADS)

    Batha, S. H.; Levinton, F. M.; Bell, M. G.; Wieland, R. M.; Hirschman, S. P.

    1995-01-01

    The magnetic-field pitch-angle profile, γp(R)≡arctan(Bpol/Btor), is measured on the TFTR tokamak using a motional Stark effect (MSE) polarimeter. Measured profiles are converted to q profiles with the equilibrium code vmec. Uncertainties in the q profile due to uncertainties in the γp(R), magnetics, and kinetic measurements are quantified. Subsequent uncertainties in the vmec-calculated profiles of current density and shear, both of which are important for stability and transport analyses, are also quantified. Examples of circular plasmas under various confinement modes, including the supershot and L mode, will be given.

  10. Construction of new profiler certification tracks.

    DOT National Transportation Integrated Search

    2014-04-01

    The existing smoothness specifications of the Texas Department of Transportation (TxDOT) require : certification of inertial profilers for ride quality assurance testing. Currently, inertial profilers are certified : based on profile measurements col...

  11. Application of a range of turbulence energy models to the determination of M4 tidal current profiles

    NASA Astrophysics Data System (ADS)

    Xing, Jiuxing; Davies, Alan M.

    1996-04-01

    A fully nonlinear, three-dimensional hydrodynamic model of the Irish Sea, using a range of turbulence energy sub-models, is used to examine the influence of the turbulence closure method upon the vertical variation of the current profile of the fundamental and higher harmonics of the tide in the region. Computed tidal current profiles are compared with previous calculations using a spectral model with eddy viscosity related to the flow field. The model has a sufficiently fine grid to resolve the advection terms, in particular the advection of turbulence and momentum. Calculations show that the advection of turbulence energy does not have a significant influence upon the current profile of either the fundamental or higher harmonic of the tide, although the advection of momentum is important in the region of headlands. The simplification of the advective terms by only including them in their vertically integrated form does not appear to make a significant difference to current profiles, but does reduce the computational effort by a significant amount. Computed current profiles both for the fundamental and the higher harmonic determined with a prognostic equation for turbulence and an algebraic mixing length formula, are as accurate as those determined with a two prognostic equation model (the so called q2- q2l model), provided the mixing length is specified correctly. A simple, flow-dependent eddy viscosity with a parabolic variation of viscosity also performs equally well.

  12. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2009-01-01

    Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.

  13. Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod

    NASA Astrophysics Data System (ADS)

    Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.

    2003-09-01

    The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.

  14. Lower hybrid current drive in experiments for transport barriers at high βN of JET (Joint European Torus)

    NASA Astrophysics Data System (ADS)

    Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.

    2007-09-01

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  15. Coil-current effect in Kibble balances: analysis, measurement, and optimization

    NASA Astrophysics Data System (ADS)

    Li, S.; Bielsa, F.; Stock, M.; Kiss, A.; Fang, H.

    2018-02-01

    The Kibble balance is expected to become an important instrument in the near future for realizing the unit of mass, the kilogram, in the revised international system of units (SI). The Kibble balance assumes an equality of two magnetic profiles measured in the weighing and velocity phases. A recent study conducted in the Kibble balance group at the Bureau International des Poids et Mesures (BIPM) showed that the coil current could significantly affect the magnetic profile, which should be carefully taken into account in the Kibble balance experiment. This paper gives a deeper understanding and investigation of the effect, and discusses the magnetic profile change due to the coil current, for both the classical two-mode and the one-mode Kibble balances. The coil current effect has been theoretically and experimentally investigated based on a typical magnet design with an air gap. One important conclusion found in the one-mode Kibble balance is that the magnetic profile change measured in the velocity phase is twice the change in the weighing phase. A compensation suggestion, to minimize the profile change due to the coil current in a BIPM-type magnet, is presented.

  16. Data Quality Control for Vessel Mounted Acoustic Doppler Current Profiler. Application for the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Front, J.; Candela, J.

    1997-01-01

    A systematic Data Quality Checking Protocol for vessel Mounted Acoustic Doppler Current Profiler observations is proposed. Previous-to-acquisition conditions are considered along with simultaneous ones.

  17. Method and system employing finite state machine modeling to identify one of a plurality of different electric load types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Liang; Yang, Yi; Harley, Ronald Gordon

    A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less

  18. Impacts of mesoscale activity on the water masses and circulation in the Coral Sea

    NASA Astrophysics Data System (ADS)

    Rousselet, L.; Doglioli, A. M.; Maes, C.; Blanke, B.; Petrenko, A. A.

    2016-10-01

    The climatological vision of the circulation within the Coral Sea is today well established with the westward circulation of two main jets, the North Caledonian Jet (NCJ) and the North Vanuatu Jet (NVJ) as a consequence of the separation of the South Equatorial Current (SEC) on the islands of New Caledonia, Vanuatu, and Fiji. Each jet has its own dynamic and transports different water masses across the Coral Sea. The influence of mesoscale activity on mean flow and on water mass exchanges is not yet fully explored in this region of intense activity. Our study relies on the analysis of in situ, satellite, and numerical data. Indeed, we first use in situ data from the Bifurcation cruise and from an Argo float, jointly with satellite-derived velocities, to study the eddy influence on the Coral Sea dynamics. We identify an anticyclonic eddy as participating in the transport of NVJ-like water masses into the theoretical pathway of NCJ waters. This transfer from the NVJ to the NCJ is confirmed over the long term by a Lagrangian analysis. In particular, this numerical analysis shows that anticyclonic eddies can contribute up to 70-90% of the overall eddy transfer between those seemingly independent jets. Finally, transports calculated using S-ADCP measurements (0-500 m) show an eddy-induced sensitivity that can reach up to 15 Sv, i.e., the order of the transport of the jets.

  19. Monthly Variation of Taiwan Strait Through-flow Transports and Associated Water Masses

    NASA Astrophysics Data System (ADS)

    Jan, S.; Sheu, D.; Kuo, H.

    2005-05-01

    Through-flow transports and associated water masses are analyzed using current data measured by bottom-mounted and ship-board ADCP (1999-2001) across the central Taiwan Strait and strait-wide hydrographic data acquired from 79 CTD survey cruises (1986-2003). The East Asian monsoon, from southwest in July to August and northeast in October to March, controls the transport fluctuation which peaks in August (2.34 Sv northward), is hampered by the northeast monsoon after September and diminishes to the minimum (0.26 Sv southward) in December. The standard deviation of the calculated transport ranges from 0.56 to 1.05 Sv during northeast monsoon months and is relatively small in other months. A cluster analysis together with conventional T-S diagrams identifies the saline and warm Kuroshio Branch Water (KBW), the less saline South China Sea Surface Water (SCSSW), the brackish and cold China Coastal Water (CCW), the saline Subsurface Water (SW) (depth > 100 m) and the Diluted Coastal Water (DCW). The majority of the northward transport in summer carries the SCSSW to the East China Sea. Meanwhile, the DCW appears off the northwest bank of the strait and the SW resides in the bottom layer of a deep trench in the southeastern strait. The onset of the northeast monsoon in September drives the CCW from the Yangtze river mouth to the northern strait. In the southern strait, the northward-moving KBW replaces the SCSSW and meets the southward-intruding CCW in the middle strait during November to April.

  20. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  1. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    NASA Astrophysics Data System (ADS)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  2. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  3. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  4. Vertical suspsended sediment fluxes observed from ocean gliders

    NASA Astrophysics Data System (ADS)

    Merckelbach, Lucas; Carpenter, Jeffrey

    2016-04-01

    Many studies trying to understand a coastal system in terms of sediment transport paths resort to numerical modelling - combining circulation models with sediment transport models. Two aspects herein are crucial: sediment fluxes across the sea bed-water column interface, and the subsequent vertical mixing by turbulence. Both aspects are highly complex and have relatively short time scales, so that the processes involved are implemented in numerical models as parameterisations. Due to the effort required to obtain field observations of suspended sediment concentrations (and other parameters), measurements are scarce, which makes the development and tuning of parameterisations a difficult task. Ocean gliders (autonomous underwater vehicles propelled by a buoyancy engine) provide a platform complementing more traditional methods of sampling. In this work we present observations of suspended sediment concentration (SSC) and dissipation rate taken by two gliders, each equipped with optical sensors and a microstructure sensor, along with current observations from a bottom mounted ADCP, all operated in the German Bight sector of the North Sea in Summer 2014. For about two weeks of a four-week experiment, the gliders were programmed to fly in a novel way as Lagrangian profilers to water depths of about 40 m. The benefit of this approach is that the rate of change of SSC - and other parameters - is local to the water column, as opposed to an unknown composition of temporal and spatial variability when gliders are operated in the usual way. Therefore, vertical sediment fluxes can be calculated without the need of the - often dubious - assumption that spatial variability can be neglected. During the experiment the water column was initially thermally stratified, with a cross-pycnocline diffusion coefficient estimated at 7\\cdot10-5 m2 s-1. Halfway through the experiment the remnants of tropical storm Bertha arrived at the study site and caused a complete mixing of the water column. An analysis of the data showed that resuspension and deposition were solely tidally-driven and in equilibrium prior to the arrival of the storm, with an averaged resuspension rate of 3-4 g m-2 s-1. During the storm the effect of surface waves increased the resuspension rate by an order of magnitude. The data suggest that after the passing of the storm, when the tide was the main driver again, resuspension rates are generally higher than before the storm. This provides a further indication that although a (Summer) storm might be a short-term event, its effects on sediment transport may be felt on much longer time scales.

  5. Optimizing the current ramp-up phase for the hybrid ITER scenario

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Artaud, J.-F.; Casper, T. A.; Citrin, J.; Imbeaux, F.; Köchl, F.; Litaudon, X.; Voitsekhovitch, I.; the ITM-TF ITER Scenario Modelling Group

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current ramp-up. A reference ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A heating scheme with only NBI and ECCD can also reach the target q profile; however, LHCD can play a crucial role in reducing the flux consumption during the ramp-up phase. The optimum heating scheme depends on the chosen transport model, and on assumptions of parameters like ne peaking, edge Te,i and Zeff. The sensitivity of the current diffusion on parameters that are not easily controlled, shows that development of real-time control is important to reach the target q profile. A first step in that direction has been indicated in this paper. Minimizing resistive flux consumption and optimizing the q profile turn out to be conflicting requirements. A trade-off between these two requirements has to be made. In this paper it is shown that fast current ramp with L-mode current overshoot is at the one extreme, i.e. the optimum q profile at the cost of increased resistive flux consumption, whereas early H-mode transition is at the other extreme.

  6. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE PAGES

    Piot, P.; Behrens, C.; Gerth, C.; ...

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  7. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.

    PubMed

    Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M

    2012-01-20

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides. © 2012 American Physical Society

  8. Water quality assessment of a highly polluted Mediterranean River - Oued Fez (Morocco)

    NASA Astrophysics Data System (ADS)

    Perrin, J.-L.; Bellarbi, M.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2012-04-01

    In the South of the Mediterranean basin, many rivers are characterized by an alternation of very long dry periods only cut by short flood events. Currently, the socio-economical development of these zones is limited by water scarcity and poor quality of the water resources. Indeed human activities, generally concentrated in overpopulated cities, generate large quantity of domestic and industrial effluents which are directly rejected in the environment without any treatment. In Morocco, the well known city of Fez illustrates perfectly this situation, observed in most developing countries. The oued Fez receives continuously the non-treated domestic and industrial effluents (90.000 m3/day) of the city and pollutes all the downstream water bodies. Indeed, it is a tributary of the Sebou River, a major body of great economical importance used for irrigation and freshwater supply. This study aims at characterising and quantifying the pollutant concentrations and fluxes in various points of oued Fez's hydrological network and assessing its impact on the Sebou River; this river's preservation being considered a national priority in Morocco. A coupled water quality-water quantity monitoring scheme has been implemented on oued Fez since 2008. In addition to basic hydrological data, water quality samples are collected at regular intervals at 8 locations where discharge is simultaneously measured using an Acoustic Doppler Current Profiler (ADCP). Water samples are analysed for different forms of nitrogen (nitrates, nitrites, ammonium and total nitrogen), phosphorus (soluble reactive phosphorus and total phosphorus) but also total chromium which is used in the leather tanning processes, one of the most important industrial production of the city of Fez, using a photospectrometer (Hach Lange DR 2800 VIS-photometer (Germany). The results of 17 sampling campaigns, carried out over 3 hydrological years, indicate that the rural areas contribute mostly to baseflow during the wet period while non-treated anthropogenic inputs constitute most of the flow during the dry period. The pollution levels are very high as the mean values reach 39 mg/l N, 5 mg/l P, 0.2mg/l Cr, for total nitrogen, total phosphorus and total chromium respectively at the most polluted sites. Even if the hydrological conditions induce important concentration variations, the pollution levels remain high all along the year. The nitrogen, phosphorus and chromium fluxes calculated for steady state conditions, show that more than 500 kg/hour of nitrogen, 60 kg/hour of phosphorus and 2.5 kg/hour of chromium are flushed by the oued Sebou downstream of its confluence with the oued Fez. These fluxes are due to human activities and do not vary significantly with the hydrological conditions. This study shows that a relatively limited observation network allows the characterization of the temporal and spatial variability of the pollution levels if the monitoring points are selected by taking into account the main pollution sources and the specificity of the hydrological conditions.

  9. Evaluating the Invariance of Cognitive Profile Patterns Derived from Profile Analysis via Multidimensional Scaling (PAMS): A Bootstrapping Approach

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    2010-01-01

    The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…

  10. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less

  11. Recent RF Experiments and Application of RF Waves to Real-Time Control of Safety Factor Profile in JT-60U

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Isayama, A.; Ide, S.; Fujita, T.; Oikawa, T.; Sakata, S.; Sueoka, M.; Hosoyama, H.; JT-60 Team

    2005-09-01

    Two topics of applications of RF waves to current profile control in JT-60U are presented; application of lower-hybrid (LH) waves to safety factor profile control and electron cyclotron (EC) waves to neo-classical tearing mode (NTM) control. A real-time control system of safety factor (q) profile was developed. This system, for the first time, enables 1) real time evaluation of q profile using local magnetic pitch angle measurement by motional Stark effect (MSE) diagnostic and 2) control of current drive (CD) location (ρCD) by controlling the parallel refractive index N∥ of LH waves through control of phase difference (Δφ) of LH waves between multi-junction launcher modules. The method for real-time q profile evaluation was newly developed, without time-consuming reconstruction of equilibrium, so that the method requires less computational time. Safety factor profile by the real-time calculation agrees well with that by equilibrium reconstruction with MSE. The control system controls ρCD through Δφ in such a way to decrease the largest residual between the real-time evaluated q profile q(r) and its reference profile qref(r). The real-time control system was applied to a positive shear plasma (q(0)˜1). The reference q profile was set to monotonic positive shear profile having qref(0)=1.3. The real-time q profile approached to the qref(r) during application of real-time control, and was sustained for 3s, which was limited by the duration of the injected LH power. Temporal evolution of current profile was consistent with relaxation of inductive electric field induced by theoretical LH driven current. An m/n=3/2 NTM that appeared at βN˜3 was completely stabilized by ECCD applied to a fully-developed NTM. Precise ECCD at NTM island was essential for the stabilization. ECCD that was applied to resonant rational surface (q=3/2) before an NTM onset suppressed appearance of NTM. In order to keep NTM intensity below a level, ECCD before the mode onset was more effective than that after mode saturation.

  12. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  13. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.

    2018-01-01

    Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.

  14. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE PAGES

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...

    2018-01-31

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  15. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  16. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taewoong; Seong, Tae-Yeon; School of Materials Science and Engineering, Korea University, Seoul 136-713

    Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region.more » This is because electron leakage increases with increases in current density.« less

  17. A novel feedback algorithm for simulating controlled dynamics and confinement in the advanced reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlin, J.-E.; Scheffel, J.

    2005-06-15

    In the advanced reversed-field pinch (RFP), the current density profile is externally controlled to diminish tearing instabilities. Thus the scaling of energy confinement time with plasma current and density is improved substantially as compared to the conventional RFP. This may be numerically simulated by introducing an ad hoc electric field, adjusted to generate a tearing mode stable parallel current density profile. In the present work a current profile control algorithm, based on feedback of the fluctuating electric field in Ohm's law, is introduced into the resistive magnetohydrodynamic code DEBSP [D. D. Schnack and D. C. Baxter, J. Comput. Phys. 55,more » 485 (1984); D. D. Schnack, D. C. Barnes, Z. Mikic, D. S. Marneal, E. J. Caramana, and R. A. Nebel, Comput. Phys. Commun. 43, 17 (1986)]. The resulting radial magnetic field is decreased considerably, causing an increase in energy confinement time and poloidal {beta}. It is found that the parallel current density profile spontaneously becomes hollow, and that a formation, being related to persisting resistive g modes, appears close to the reversal surface.« less

  18. Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Lauret, M.; Wehner, W.; Schuster, E.

    2015-11-01

    For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.

  19. Discharge measurements at gaging stations

    USGS Publications Warehouse

    Turnipseed, D. Phil; Sauer, Vernon B.

    2010-01-01

    The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

  20. Linear MHD stability analysis of post-disruption plasmas in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com; Huijsmans, G. T. A.; Aleynikov, P.

    2016-05-15

    Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile,more » we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.« less

Top