Sample records for current prosthetic hands

  1. Experiences in the creation of an electromyography database to help hand amputated persons.

    PubMed

    Atzori, Manfredo; Gijsberts, Arjan; Heynen, Simone; Hager, Anne-Gabrielle Mittaz; Castellimi, Claudio; Caputo, Barbara; Müller, Henning

    2012-01-01

    Currently, trans-radial amputees can only perform a few simple movements with prosthetic hands. This is mainly due to low control capabilities and the long training time that is required to learn controlling them with surface electromyography (sEMG). This is in contrast with recent advances in mechatronics, thanks to which mechanical hands have multiple degrees of freedom and in some cases force control. To help improve the situation, we are building the NinaPro (Non-Invasive Adaptive Prosthetics) database, a database of about 50 hand and wrist movements recorded from several healthy and currently very few amputated persons that will help the community to test and improve sEMG-based natural control systems for prosthetic hands. In this paper we describe the experimental experiences and practical aspects related to the data acquisition.

  2. Development of a Prototype Over-Actuated Biomimetic Prosthetic Hand

    PubMed Central

    Williams, Matthew R.; Walter, Wayne

    2015-01-01

    The loss of a hand can greatly affect quality of life. A prosthetic device that can mimic normal hand function is very important to physical and mental recuperation after hand amputation, but the currently available prosthetics do not fully meet the needs of the amputee community. Most prosthetic hands are not dexterous enough to grasp a variety of shaped objects, and those that are tend to be heavy, leading to discomfort while wearing the device. In order to attempt to better simulate human hand function, a dexterous hand was developed that uses an over-actuated mechanism to form grasp shape using intrinsic joint mounted motors in addition to a finger tendon to produce large flexion force for a tight grip. This novel actuation method allows the hand to use small actuators for grip shape formation, and the tendon to produce high grip strength. The hand was capable of producing fingertip flexion force suitable for most activities of daily living. In addition, it was able to produce a range of grasp shapes with natural, independent finger motion, and appearance similar to that of a human hand. The hand also had a mass distribution more similar to a natural forearm and hand compared to contemporary prosthetics due to the more proximal location of the heavier components of the system. This paper describes the design of the hand and controller, as well as the test results. PMID:25790306

  3. Bionic hand exoprosthesis – Perspectives for the future in Romania

    PubMed Central

    Pogarasteanu, ME; Barbilian, AG

    2014-01-01

    Prosthetics is a modern area of interest and a challenge in Orthopedics. Over time, there has been a transition from an artisanal method of prosthetics production to modern concepts and materials, including a re-education through virtual reality. The conditions for an efficient fitting of a prosthesis include the necessity that the prosthesis respects the form and function of the lost limb, both anatomically and biomechanically. Prosthetics are made individually, personalized according to sex, age, physiological characteristics, profession and preference. In our country, thoracic limb prosthetics has a relatively short-recorded history of approximately a century, the most preeminent centers being in Iasi, Cluj and Bucharest. Currently, thoracic limb prosthetics, and particularly hand prosthetics, are in a period of development. A technique for amputation and stump reamputation called “circumferential osteoneuromioplasty” (CONM) is currently being used in the Orthopedics and Trauma Clinic of the Central Military University Emergency Hospital in Bucharest. The method was created with the purpose of obtaining distinct myoelectric signals of better quality, following the contraction of each muscle. The CONM method can be used in conjuncture with both the new hand prostheses that are currently available in Romania, and with the model that is being developed by a mixed team from the Polytechnic University in Bucharest, in collaboration with the Central Military University Emergency Hospital in Bucharest. PMID:25713630

  4. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  5. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand.

    PubMed

    Pasquina, Paul F; Evangelista, Melissa; Carvalho, A J; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David

    2015-04-15

    Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. Implantable Myoelectric Sensors (IMES(®)) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electro-magnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. We report the status of the first FDA-approved clinical trial of the IMES(®) System. This study is currently in progress, limiting reporting to only preliminary results. Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. The interim results of this study indicate the feasibility of utilizing IMES(®) technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Upper extremity transplantation: current concepts and challenges in an emerging field.

    PubMed

    Elliott, River M; Tintle, Scott M; Levin, L Scott

    2014-03-01

    Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.

  7. Literature Review on Needs of Upper Limb Prosthesis Users.

    PubMed

    Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses.

  8. Literature Review on Needs of Upper Limb Prosthesis Users

    PubMed Central

    Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses. PMID:27242413

  9. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review.

    PubMed

    Belter, Joseph T; Segil, Jacob L; Dollar, Aaron M; Weir, Richard F

    2013-01-01

    In this article, we set forth a detailed analysis of the mechanical characteristics of anthropomorphic prosthetic hands. We report on an empirical study concerning the performance of several commercially available myoelectric prosthetic hands, including the Vincent, iLimb, iLimb Pulse, Bebionic, Bebionic v2, and Michelangelo hands. We investigated the finger design and kinematics, mechanical joint coupling, and actuation methods of these commercial prosthetic hands. The empirical findings are supplemented with a compilation of published data on both commercial and prototype research prosthetic hands. We discuss numerous mechanical design parameters by referencing examples in the literature. Crucial design trade-offs are highlighted, including number of actuators and hand complexity, hand weight, and grasp force. Finally, we offer a set of rules of thumb regarding the mechanical design of anthropomorphic prosthetic hands.

  10. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids

    NASA Astrophysics Data System (ADS)

    Saharan, Lokesh; Tadesse, Yonas

    2016-04-01

    This paper presents a biomimetic, lightweight, 3D printed and customizable robotic hand with locking mechanism consisting of Twisted and Coiled Polymer (TCP) muscles based on nylon precursor fibers as artificial muscles. Previously, we have presented a small-sized biomimetic hand using nylon based artificial muscles and fishing line muscles as actuators. The current study focuses on an adult-sized prosthetic hand with improved design and a position/force locking system. Energy efficiency is always a matter of concern to make compact, lightweight, durable and cost effective devices. In natural human hand, if we keep holding objects for long time, we get tired because of continuous use of energy for keeping the fingers in certain positions. Similarly, in prosthetic hands we also need to provide energy continuously to artificial muscles to hold the object for a certain period of time, which is certainly not energy efficient. In this work we, describe the design of the robotic hand and locking mechanism along with the experimental results on the performance of the locking mechanism.

  11. Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.

    PubMed

    Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi

    2015-01-01

    EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.

  12. First-in-Man Demonstration of Fully Implanted Myoelectric Sensors for Control of an Advanced Electromechanical Arm by Transradial Amputees

    PubMed Central

    Pasquina, Paul F.; Evangelista, Melissa; Carvalho, Antonio J.; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David

    2014-01-01

    Background Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. New Method Implantable Myoelectric Sensors (IMES®) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electromagnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. Results We report the status of the first FDA-approved clinical trial of the IMES® System. This study is currently in progress, limiting reporting to only preliminary results. Comparison with Existing Methods Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. Conclusion The interim results of this study indicate the feasibility of utilizing IMES® technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. PMID:25102286

  13. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations

    NASA Astrophysics Data System (ADS)

    Wodlinger, B.; Downey, J. E.; Tyler-Kabara, E. C.; Schwartz, A. B.; Boninger, M. L.; Collinger, J. L.

    2015-02-01

    Objective. In a previous study we demonstrated continuous translation, orientation and one-dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject with tetraplegia using a brain-machine interface (BMI). The current study, in the same subject, immediately followed the previous work and expanded the scope of the control signal by also extracting hand-shape commands from the two 96-channel intracortical electrode arrays implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D) translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results. Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance well above chance levels in all tests. Neural unit preferred directions were broadly distributed through the 10D space, with the majority of units significantly tuned to all ten dimensions, instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The addition of hand shaping emphasized object-interaction behavior. A fundamental component of BMIs is the calibration used to associate neural activity to intended movement. We found that the presence of an object during calibration enhanced successful shaping of the prosthetic hand as it closed around the object during grasping. Significance. Our results show that individual motor cortical neurons encode many parameters of movement, that object interaction is an important factor when extracting these signals, and that high-dimensional operation of prosthetic devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier: NCT01364480.

  14. Application of dexterous space robotics technology to myoelectric prostheses

    NASA Astrophysics Data System (ADS)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-02-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  15. Application of dexterous space robotics technology to myoelectric prostheses

    NASA Technical Reports Server (NTRS)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-01-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  16. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    PubMed

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  17. Viability of Controlling Prosthetic Hand Utilizing Electroencephalograph (EEG) Dataset Signal

    NASA Astrophysics Data System (ADS)

    Miskon, Azizi; A/L Thanakodi, Suresh; Raihan Mazlan, Mohd; Mohd Haziq Azhar, Satria; Nooraya Mohd Tawil, Siti

    2016-11-01

    This project presents the development of an artificial hand controlled by Electroencephalograph (EEG) signal datasets for the prosthetic application. The EEG signal datasets were used as to improvise the way to control the prosthetic hand compared to the Electromyograph (EMG). The EMG has disadvantages to a person, who has not used the muscle for a long time and also to person with degenerative issues due to age factor. Thus, the EEG datasets found to be an alternative for EMG. The datasets used in this work were taken from Brain Computer Interface (BCI) Project. The datasets were already classified for open, close and combined movement operations. It served the purpose as an input to control the prosthetic hand by using an Interface system between Microsoft Visual Studio and Arduino. The obtained results reveal the prosthetic hand to be more efficient and faster in response to the EEG datasets with an additional LiPo (Lithium Polymer) battery attached to the prosthetic. Some limitations were also identified in terms of the hand movements, weight of the prosthetic, and the suggestions to improve were concluded in this paper. Overall, the objective of this paper were achieved when the prosthetic hand found to be feasible in operation utilizing the EEG datasets.

  18. Applying Space Technology to Enhance Control of an Artificial Arm for Children and Adults With Amputations

    NASA Technical Reports Server (NTRS)

    Atkins, Diane J.

    1998-01-01

    The first single function myoelectric prosthetic hand was introduced in the 1960's. This hand was controlled by the electric fields generated by muscle contractions in the residual limb of the amputee user. Electrodes and amplifiers, embedded in the prosthetic socket, measured these electric fields across the skin, which increase in amplitude as the individual contracts their muscle. When the myoelectric signal reached a certain threshold amplitude, the control unit activated a motor which opened or closed a hand-like prosthetic terminal device with a pincher grip. Late in the 1990's, little has changed. Most current myoelectric prostheses still operate in this same, single-function way. To better understand the limitations of the current single-function myoelectric hand and the needs of those who use them, The Institute for Rehabilitation and Research (TIRR), sponsored by the National Institutes of Health (NUH), surveyed approximately 2,500 individuals with upper limb loss [1]. When asked to identify specific features of their current myoelectric prostheses that needed improvement, the survey respondents overwhelmingly identified the lack of wrist and finger movement, as well as poor control capability. However, simply building a mechanism with individual finger and wrist motion is not enough. In the 1960's and 1970's, engineers built a number of more dexterous prosthetic hands. Unfortunately, these were rejected during clinical trials due to a difficult and distracting control interface. The goal of this project, "Applying Space Technology to Enhance Control of an Artificial Arm for Children and Adults with Amputations," was to lay the foundation for a multi-function, intuitive myoelectric control system which requires no conscious thought to move the hand. We built an extensive myoelectric signal database for six motions from ten amputee volunteers, We also tested a control system based on new artificial intelligence techniques on the data from two of these subjects. This data is available to anyone doing myoelectric control research. Its availability is an important contribution to the prosthetics research community, as many researchers do not have access to amputee subjects. Since we collected myoelectric data from subjects' sound arms as well as their residual arms, this database will also prove useful to virtual reality and robotics researchers who want to explore myoelectric-based interfaces between any user and a machine. Currently, one small company (Intelligenta, Inc.) and one university (University of New Brunswick, Canada) are using this myoelectric database under other funding to develop multifunction control systems for prostheses. A prosthetics manufacturer (Liberty Technology, Inc.) is making plans to incorporate the results of their work into an artificial hand capable of several different movements to provide functionality only dreamed of by current myoelectric users. Methods Six adults and four children, all with unilateral, below-elbow amputations served as subjects. Five of the adults (3 male, 2 female, average age 34 years) had amputations due to traumatic injury, while one adult (female, age 32 years) and the four children (3 male, 1 female, average age 13 years) had congenital (i.e. from birth) limb deficiencies.

  19. A two DoF finger for a biomechatronic artificial hand.

    PubMed

    Carrozza, M C; Massa, B; Dario, P; Zecca, M; Micera, S; Pastacaldi, P

    2002-01-01

    Current prosthetic hands are basically simple grippers with one or two degrees of freedom, which barely restore the capability of the thumb-index pinch. Although most amputees consider this performance as acceptable for usual tasks, there is ample room for improvement by exploiting recent progresses in mechatronics design and technology. We are developing a novel prosthetic hand featured by multiple degrees of freedom, tactile sensing capabilities, and distributed control. Our main goal is to pursue an integrated design approach in order to fulfill critical requirements such as cosmetics, controllability, low weight, low energy consumption and noiselessness. This approach can be synthesized by the definition "biomechatronic design", which means developing mechatronic systems inspired by living beings and able to work harmoniously with them. This paper describes the first implementation of one single finger of a future biomechatronic hand. The finger has a modular design, which allows to obtain hands with different degrees of freedom and grasping capabilities. Current developments include the implementation of a hand comprising three fingers (opposing thumb, index and middle) and an embedded controller.

  20. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  1. Rehand: Realistic electric prosthetic hand created with a 3D printer.

    PubMed

    Yoshikawa, Masahiro; Sato, Ryo; Higashihara, Takanori; Ogasawara, Tsukasa; Kawashima, Noritaka

    2015-01-01

    Myoelectric prosthetic hands provide an appearance with five fingers and a grasping function to forearm amputees. However, they have problems in weight, appearance, and cost. This paper reports on the Rehand, a realistic electric prosthetic hand created with a 3D printer. It provides a realistic appearance that is same as the cosmetic prosthetic hand and a grasping function. A simple link mechanism with one linear actuator for grasping and 3D printed parts achieve low cost, light weight, and ease of maintenance. An operating system based on a distance sensor provides a natural operability equivalent to the myoelectric control system. A supporter socket allows them to wear the prosthetic hand easily. An evaluation using the Southampton Hand Assessment Procedure (SHAP) demonstrated that an amputee was able to operate various objects and do everyday activities with the Rehand.

  2. Structural Integration and Control of Peerless Human-like Prosthetic Hand

    NASA Astrophysics Data System (ADS)

    Dave, Ankit; Muthu, P.; Karthikraj, V.; Latha, S.

    2018-04-01

    Limb damage can create severe disturbance in movement and operative abilities wherein the prosthetic rehabilitation has the potential to replace function and enhance the quality of life. This paper presents a humanlike prosthetic hand using such unique design concept of hand model using artificial bones, ligaments, and tendons controlled using Arduino. Amongst various platforms available, Arduino is known for its adaptability, adoration and low cost. The design of prosthetic hand has a unique structure with all carpal, metacarpal, and phalanges which are bones of the hand. These bones are attached to each other following the pattern of human hand using the polymeric rubber as a functioning ligament. Furthermore, this structure of finger is driven by tendons attached to all fingers and passes through the ligaments working as pulley resulting in more degrees of freedom. The motor can twitch the tendons to achieve the action of fingers. Thus the servos, controlled by an Arduino, are used to regulate the movement mechanism of the prosthetic hand.

  3. Myoelectric control of prosthetic hands: state-of-the-art review

    PubMed Central

    Geethanjali, Purushothaman

    2016-01-01

    Myoelectric signals (MES) have been used in various applications, in particular, for identification of user intention to potentially control assistive devices for amputees, orthotic devices, and exoskeleton in order to augment capability of the user. MES are also used to estimate force and, hence, torque to actuate the assistive device. The application of MES is not limited to assistive devices, and they also find potential applications in teleoperation of robots, haptic devices, virtual reality, and so on. The myoelectric control-based prosthetic hand aids to restore activities of daily living of amputees in order to improve the self-esteem of the user. All myoelectric control-based prosthetic hands may not have similar operations and exhibit variation in sensing input, deciphering the signals, and actuating prosthetic hand. Researchers are focusing on improving the functionality of prosthetic hand in order to suit the user requirement with the different operating features. The myoelectric control differs in operation to accommodate various external factors. This article reviews the state of the art of myoelectric prosthetic hand, giving description of each control strategy. PMID:27555799

  4. Prosthetic finger phalanges with lifelike skin compliance for low-force social touching interactions

    PubMed Central

    2011-01-01

    Background Prosthetic arms and hands that can be controlled by the user's electromyography (EMG) signals are emerging. Eventually, these advanced prosthetic devices will be expected to touch and be touched by other people. As realistic as they may look, the currently available prosthetic hands have physical properties that are still far from the characteristics of human skins because they are much stiffer. In this paper, different configurations of synthetic finger phalanges have been investigated for their skin compliance behaviour and have been compared with the phalanges of the human fingers and a phalanx from a commercially available prosthetic hand. Methods Handshake tests were performed to identify which areas on the human hand experience high contact forces. After these areas were determined, experiments were done on selected areas using an indenting probe to obtain the force-displacement curves. Finite element simulations were used to compare the force-displacement results of the synthetic finger phalanx designs with that of the experimental results from the human and prosthetic finger phalanges. The simulation models were used to investigate the effects of (a) varying the internal topology of the finger phalanx and (b) varying different materials for the internal and external layers. Results and Conclusions During handshake, the high magnitudes of contact forces were observed at the areas where the full grasping enclosure of the other person's hand can be achieved. From these areas, the middle phalanges of the (a) little, (b) ring, and (c) middle fingers were selected. The indentation experiments on these areas showed that a 2 N force corresponds to skin tissue displacements of more than 2 mm. The results from the simulation model show that introducing an open pocket with 2 mm height on the internal structure of synthetic finger phalanges increased the skin compliance of the silicone material to 235% and the polyurethane material to 436%, as compared to a configuration with a solid internal geometry. In addition, the study shows that an indentation of 2 N force on the synthetic skin with an open pocket can also achieve a displacement of more than 2 mm, while the finger phalanx from a commercially available prosthetic hand can only achieve 0.2 mm. PMID:21447188

  5. 24 DOF EMG controlled hybrid actuated prosthetic hand.

    PubMed

    Atasoy, A; Kaya, E; Toptas, E; Kuchimov, S; Kaplanoglu, E; Ozkan, M

    2016-08-01

    A complete mechanical design concept of an electromyogram (EMG) controlled hybrid prosthetic hand, with 24 degree of freedom (DOF) anthropomorphic structure is presented. Brushless DC motors along with Shape Memory Alloy (SMA) actuators are used to achieve dexterous functionality. An 8 channel EMG is used for detecting 7 basic hand gestures for control purposes. The prosthetic hand will be integrated with the Neural Network (NNE) based controller in the next phase of the study.

  6. Three-Dimensional Printing of Prosthetic Hands for Children.

    PubMed

    Burn, Matthew B; Ta, Anderson; Gogola, Gloria R

    2016-05-01

    Children with hand reductions, whether congenital or traumatic, have unique prosthetic needs. They present a challenge because of their continually changing size due to physical growth as well as changing needs due to psychosocial development. Conventional prosthetics are becoming more technologically advanced and increasingly complex. Although these are welcome advances for adults, the concomitant increases in weight, moving parts, and cost are not beneficial for children. Pediatric prosthetic needs may be better met with simpler solutions. Three-dimensional printing can be used to fabricate rugged, light-weight, easily replaceable, and very low cost assistive hands for children. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Smart Prosthetic Hand Technology - Phase 2

    DTIC Science & Technology

    2011-05-01

    identification and estimation, hand motion estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The...Smart Prosthetics, Bio- Robotics , Intelligent EMG Signal Processing, Embedded Systems and Intelligent Control, Inflammatory Responses of Cells, Toxicity...estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The developed identification algorithm using a new

  8. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences.

    PubMed

    Zuniga, Jorge; Katsavelis, Dimitrios; Peck, Jean; Stollberg, John; Petrykowski, Marc; Carson, Adam; Fernandez, Cristina

    2015-01-20

    There is an increasing number of children with traumatic and congenital hand amputations or reductions. Children's prosthetic needs are complex due to their small size, constant growth, and psychosocial development. Families' financial resources play a crucial role in the prescription of prostheses for their children, especially when private insurance and public funding are insufficient. Electric-powered (i.e., myoelectric) and body-powered (i.e., mechanical) devices have been developed to accommodate children's needs, but the cost of maintenance and replacement represents an obstacle for many families. Due to the complexity and high cost of these prosthetic hands, they are not accessible to children from low-income, uninsured families or to children from developing countries. Advancements in computer-aided design (CAD) programs, additive manufacturing, and image editing software offer the possibility of designing, printing, and fitting prosthetic hands devices at a distance and at very low cost. The purpose of this preliminary investigation was to describe a low-cost three-dimensional (3D)-printed prosthetic hand for children with upper-limb reductions and to propose a prosthesis fitting methodology that can be performed at a distance. No significant mean differences were found between the anthropometric and range of motion measurements taken directly from the upper limbs of subjects versus those extracted from photographs. The Bland and Altman plots show no major bias and narrow limits of agreements for lengths and widths and small bias and wider limits of agreements for the range of motion measurements. The main finding of the survey was that our prosthetic device may have a significant potential to positively impact quality of life and daily usage, and can be incorporated in several activities at home and in school. This investigation describes a low-cost 3D-printed prosthetic hand for children and proposes a distance fitting procedure. The Cyborg Beast prosthetic hand and the proposed distance-fitting procedures may represent a possible low-cost alternative for children in developing countries and those who have limited access to health care providers. Further studies should examine the functionality, validity, durability, benefits, and rejection rate of this type of low-cost 3D-printed prosthetic device.

  9. Biomechanics principle of elbow joint for transhumeral prostheses: comparison of normal hand, body-powered, myoelectric & air splint prostheses.

    PubMed

    Abd Razak, Nasrul Anuar; Abu Osman, Noor Azuan; Gholizadeh, Hossein; Ali, Sadeeq

    2014-09-10

    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb. The study modeled the elbow as a universal joint with intersecting axes of x-axis and y-axis in a plain of upper arm and lower arm. The equations of force applied, torque, weight and length of different type of prosthetics and the anthropometry of prosthetics hand are discussed in this study. The study also compares the force, torque and pressure while using all three types of prosthetics with the normal hand. The result was measured from the elbow kinematics of seven amputees, using three different types of prosthetics. The F-Scan sensor used in the study is to determine the pressure applied at the residual limb while wearing different type of prostheses. These technological advances in assessment the biomechanics of an elbow joint for three different type of prosthetics with the normal hand bring the new information for the amputees and prosthetist to choose the most suitable device to be worn daily.

  10. Effects of ladder parameters on asymmetric patterns of force exertion during below-knee amputees climbing ladders.

    PubMed

    Li, Weidong; Li, Shiqi; Fu, Yan; Chen, Jacon

    2017-03-01

    Different from walking, ladder climbing requires four-limb coordination and more energy exertion for below-knee amputees (BKAs). We hypothesized that functional deficiency of a disabled limb shall be compensated by the other three intact limbs, showing an asymmetry pattern among limbs. Hand and foot forces of six below-knee amputees and six able-bodied people were collected. Hand, foot and hand/foot sum force variances between groups (non-BKA, intact side and prosthetic side) were carefully examined. Our hypothesis was validated that there is asymmetry between prosthetic and intact side. Results further showed that the ipsilateral hand of the prosthetic leg is stronger than the hand on the intact side, compensating weakness of the prosthetic leg. Effects of ladder rung separations and ladder slant on asymmetric force distribution of BKAs were evaluated, indicating that rung separation has a more significant interactive effect on hand/foot force of BKAs than ladder slant.

  11. Structure design for a Two-DoF myoelectric prosthetic hand to realize basic hand functions in ADLs.

    PubMed

    Hoshigawa, Suguru; Jiang, Yinlai; Kato, Ryu; Morishita, Soichiro; Nakamura, Tatsuhiro; Yabuki, Yoshiko; Yokoi, Hiroshi

    2015-01-01

    Prosthetic hands are desired by those who have lost a hand or both hands not only for decoration but also for the functions to help them with their activities of daily living (ADL). Prosthetic robotic hands that are developed to fully realize the function of a human hand are usually too expensive to be economically available, difficult to operate and maintain, or over heavy for longtime wearing. The aim of this study is therefore to develop a simplified prosthetic hand (sim-PH), which is to be controlled by myoelectric signals from the user, to realize the most important grasp motions in ADL by trading off the cost and performance. This paper reports the structure design of a two-DoF sim-PH with two motors to drive the CM joint of the thumb and the interlocked MP joints of the other four fingers. In order to optimize the structure, the model of the sim-PH was proposed based on which 7 sim-PHs with different structural parameters were manufactured and tested in a pick-and-place experiment. Correspondence analysis of the experimental results clarified the relationship between the hand functions and the shapes of fingers.

  12. Rotationally Actuated Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  13. Prosthetic Tool For Holding Small Ferromagnetic Parts

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Carden, James R.; Belcher, Jewell G., Jr.; Vest, Thomas W.

    1995-01-01

    Tool attached to prosthetic hand or arm enables user to hold nails, screws, nuts, rivets, and other small ferromagnetic objects on small magnetic tip. Device adjusted to hold nail or screw at proper angle for hammering or for use of screwdriver, respectively. Includes base connector with threaded outer surface and lower male member inserted in standard spring-action, quick-connect/quick-disconnect wrist adapter on prosthetic hand or arm.

  14. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  15. Upper extremity limb loss: functional restoration from prosthesis and targeted reinnervation to transplantation.

    PubMed

    Carlsen, Brian T; Prigge, Pat; Peterson, Jennifer

    2014-01-01

    For several decades, prosthetic use was the only option to restore function after upper extremity amputation. Recent years have seen advances in the field of prosthetics. Such advances include prosthetic design and function, activity-specific devices, improved aesthetics, and adjunctive surgical procedures to improve both form and function. Targeted reinnervation is one exciting advance that allows for more facile and more intuitive function with prosthetics following proximal amputation. Another remarkable advance that holds great promise in nearly all fields of medicine is the transplantation of composite tissue, such as hand and face transplantation. Hand transplantation holds promise as the ultimate restorative procedure that can provide form, function, and sensation. However, this procedure still comes with a substantial cost in terms of the rehabilitation and toxic immunosuppression and should be limited to carefully selected patients who have failed prosthetic reconstruction. Hand transplantation and prosthetic reconstruction should not be viewed as competing options. Rather, they are two treatment options with different risk/benefit profiles and different indications and, hence vastly different implications. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  16. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.

    PubMed

    Xiloyannis, Michele; Gavriel, Constantinos; Thomik, Andreas A C; Faisal, A Aldo

    2017-10-01

    Matching the dexterity, versatility, and robustness of the human hand is still an unachieved goal in bionics, robotics, and neural engineering. A major limitation for hand prosthetics lies in the challenges of reliably decoding user intention from muscle signals when controlling complex robotic hands. Most of the commercially available prosthetic hands use muscle-related signals to decode a finite number of predefined motions and some offer proportional control of open/close movements of the whole hand. Here, in contrast, we aim to offer users flexible control of individual joints of their artificial hand. We propose a novel framework for decoding neural information that enables a user to independently control 11 joints of the hand in a continuous manner-much like we control our natural hands. Toward this end, we instructed six able-bodied subjects to perform everyday object manipulation tasks combining both dynamic, free movements (e.g., grasping) and isometric force tasks (e.g., squeezing). We recorded the electromyographic and mechanomyographic activities of five extrinsic muscles of the hand in the forearm, while simultaneously monitoring 11 joints of hand and fingers using a sensorized data glove that tracked the joints of the hand. Instead of learning just a direct mapping from current muscle activity to intended hand movement, we formulated a novel autoregressive approach that combines the context of previous hand movements with instantaneous muscle activity to predict future hand movements. Specifically, we evaluated a linear vector autoregressive moving average model with exogenous inputs and a novel Gaussian process ( ) autoregressive framework to learn the continuous mapping from hand joint dynamics and muscle activity to decode intended hand movement. Our approach achieves high levels of performance (RMSE of 8°/s and ). Crucially, we use a small set of sensors that allows us to control a larger set of independently actuated degrees of freedom of a hand. This novel undersensored control is enabled through the combination of nonlinear autoregressive continuous mapping between muscle activity and joint angles. The system evaluates the muscle signals in the context of previous natural hand movements. This enables us to resolve ambiguities in situations, where muscle signals alone cannot determine the correct action as we evaluate the muscle signals in their context of natural hand movements. autoregression is a particularly powerful approach which makes not only a prediction based on the context but also represents the associated uncertainty of its predictions, thus enabling the novel notion of risk-based control in neuroprosthetics. Our results suggest that autoregressive approaches with exogenous inputs lend themselves for natural, intuitive, and continuous control in neurotechnology, with the particular focus on prosthetic restoration of natural limb function, where high dexterity is required for complex movements.

  17. A Compliant Four-bar Linkage Mechanism that Makes the Fingers of a Prosthetic Hand More Impact Resistant

    PubMed Central

    Choi, Kyung Yun; Akhtar, Aadeel; Bretl, Timothy

    2017-01-01

    Repeated mechanical failure due to accidental impact is one of the main reasons why people with upper-limb amputations abandon commercially-available prosthetic hands. To address this problem, we present the design and evaluation of a compliant four-bar linkage mechanism that makes the fingers of a prosthetic hand more impact resistant. Our design replaces both the rigid input and coupler links with a monolithic compliant bone, and replaces the follower link with three layers of pre-stressed spring steel. This design behaves like a conventional four-bar linkage but adds lateral compliance and eliminates a pin joint, which is a main site of failure on impact. Results from free-end and fixed-end impact tests show that, compared to those made with a conventional four-bar linkage, fingers made with our design absorb up to 11% more energy on impact with no mechanical failure. We also show the integration of these fingers in a prosthetic hand that is low-cost, light-weight, and easy to assemble, and that has grasping performance comparable to commercially-available hands. PMID:29527386

  18. Prosthetic design directives: Low-cost hands within reach.

    PubMed

    Jones, G K; Rosendo, A; Stopforth, R

    2017-07-01

    Although three million people around the world suffer from the lack of one or both upper limbs 80% of this number is located within developing countries. While prosthetic prices soar with technology 3D printing and low cost electronics present a sensible solution for those that cannot afford expensive prosthetics. The electronic and control design of a low-cost prosthetic hand, the Touch Hand II, is discussed. This paper shows that sensorless techniques can be used to reduce design complexities, costs, and provide easier access to the electronics. A closing and opening finite state machine (COFSM) was developed to handle the actuated digit joint control state and a supervisory switching control scheme, used for speed and grip strength control. Three torque and speed settings were created to be preset for specific grasps. The hand was able to replicate ten frequently used grasps and grip some common objects. Future work is necessary to enable a user to control it with myoelectric signals (MESs) and to solve operational problems related to electromagnetic interference (EMI).

  19. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    PubMed

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-06-01

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  20. Prosthetic Hand For Holding Rods, Tools, And Handles

    NASA Technical Reports Server (NTRS)

    Belcher, Jewell G., Jr.; Vest, Thomas W.

    1995-01-01

    Prosthetic hand with quick-grip/quick-release lever broadens range of specialized functions available to lower-arm amputee by providing improved capabilities for gripping rods, tools, handles, and like. Includes two stationary lower fingers opposed by one pivoting upper finger. Lever operates in conjunction with attached bracket.

  1. Is the Prosthetic Homologue Necessary for Embodiment?

    PubMed Central

    Dornfeld, Chelsea; Swanston, Michelle; Cassella, Joseph; Beasley, Casey; Green, Jacob; Moshayev, Yonatan; Wininger, Michael

    2016-01-01

    Embodiment is the process by which patients with limb loss come to accept their peripheral device as a natural extension of self. However, there is little guidance as to how exacting the prosthesis must be in order for embodiment to take place: is it necessary for the prosthetic hand to look just like the absent hand? Here, we describe a protocol for testing whether an individual would select a hand that looks like their own from among a selection of five hands, and whether the hand selection (regardless of homology) is consistent across multiple exposures to the same (but reordered) set of candidate hands. Pilot results using healthy volunteers reveals that hand selection is only modestly consistent, and that selection of the prosthetic homologue is atypical (61 of 192 total exposures). Our protocol can be executed in minutes, and makes use of readily available equipment and softwares. We present both a face-to-face and a virtual protocol, for maximum flexibility of implementation. PMID:28066228

  2. A review of invasive and non-invasive sensory feedback in upper limb prostheses.

    PubMed

    Svensson, Pamela; Wijk, Ulrika; Björkman, Anders; Antfolk, Christian

    2017-06-01

    The constant challenge to restore sensory feedback in prosthetic hands has provided several research solutions, but virtually none has reached clinical fruition. A prosthetic hand with sensory feedback that closely imitates an intact hand and provides a natural feeling may induce the prosthetic hand to be included in the body image and also reinforces the control of the prosthesis. Areas covered: This review presents non-invasive sensory feedback systems such as mechanotactile, vibrotactile, electrotactile and combinational systems which combine the modalities; multi-haptic feedback. Invasive sensory feedback has been tried less, because of the inherent risk, but it has successfully shown to restore some afferent channels. In this review, invasive methods are also discussed, both extraneural and intraneural electrodes, such as cuff electrodes and transverse intrafascicular multichannel electrodes. The focus of the review is on non-invasive methods of providing sensory feedback to upper-limb amputees. Expert commentary: Invoking embodiment has shown to be of importance for the control of prosthesis and acceptance by the prosthetic wearers. It is a challenge to provide conscious feedback to cover the lost sensibility of a hand, not be overwhelming and confusing for the user, and to integrate technology within the constraint of a wearable prosthesis.

  3. Neural-Network Control Of Prosthetic And Robotic Hands

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  4. A review of functional outcomes related to prosthetic treatment after maxillary and mandibular reconstruction in patients with head and neck cancer.

    PubMed

    Tang, Judith A Lam; Rieger, Jana M; Wolfaardt, Johan F

    2008-01-01

    This review examined literature that reported functional outcomes across 3 categories of prosthetic treatment after microvascular reconstruction of the maxilla and mandible: (1) conventional dental/tissue-supported prosthesis, (2) implant-retained prosthesis, and (3) no prosthesis. Library databases were searched for articles related to reconstruction of the maxilla and mandible, and references of selected articles were hand searched. Relevant literature was identified and reviewed with criteria specified a priori. Forty-nine articles met the inclusion criteria. Twelve articles reported on function after maxillary reconstruction, with the majority of articles reporting on outcomes for 1 to 6 subjects. Thirty-nine articles reported on function after mandibular reconstruction. Speech outcomes were satisfactory across all groups. Swallowing reports indicated that many patients who received either type of prosthetic rehabilitation resumed a normal diet, whereas those without prosthetic rehabilitation were often restricted to liquid diets or feeding tubes. Patients without prosthetic rehabilitation reportedly had poor masticatory ability, whereas conventional prosthetic treatment allowed some recovery of mastication and implant-retained prosthetic treatment resulted in the most favorable masticatory outcomes. Quality-of-life outcomes were similar across all patients. Several limitations of the current literature prevented definitive conclusions from being reached within this review, especially regarding maxillary reconstruction. However, recognition of these limitations can direct functional assessment for the future.

  5. Impact of Michelangelo prosthetic hand: Findings from a crossover longitudinal study.

    PubMed

    Luchetti, Martina; Cutti, Andrea G; Verni, Gennaro; Sacchetti, Rinaldo; Rossi, Nicolino

    2015-01-01

    This work explores the functional and psychosocial impact of the multigrip Michelangelo (M) prosthetic hand. Transradial myoelectric prosthesis users (6 men, median age: 47 y) participated in a crossover longitudinal study. A multifactorial assessment protocol was applied before the application of M and after 3 mo (functional assessment) and 6 mo (psychosocial assessment) of home use. Functional assessment included both practical tests (i.e., Southampton Hand Assessment Procedure [SHAP], Box and Blocks Test [BBT], and Minnesota Manual Dexterity Test [MMDT]) and self-report functional scales. Psychosocial assessment consisted of a clinical interview and a battery of self-report questionnaires concerning current anxious-depressive symptoms and health-related quality of life, body image concerns, adjustment and satisfaction with prosthesis, social support, coping style, and personality. Increased manual dexterity was observed after 3 mo based on improvements in the SHAP, BBT, and MMDT. Two important themes emerged from the clinical interviews at the 6 mo follow-up: (1) the enhanced functionality and (2) the "like a real hand" aspect of the M, which further increased prosthesis integration to the Self. A few patients expressed concerns about M dimension, noise, and weight. The M appeared to restore hand function and natural appearance. The present findings provide preliminary evidence, and additional studies are needed.

  6. Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations.

    PubMed

    D'Alonzo, Marco; Clemente, Francesco; Cipriani, Christian

    2015-05-01

    Tactile feedback is essential to intuitive control and to promote the sense of self-attribution of a prosthetic limb. Recent findings showed that amputees can be tricked to experience this embodiment, when synchronous and modality-matched stimuli are delivered to biological afferent structures and to an alien rubber hand. Hence, it was suggested to exploit this effect by coupling touch sensors in a prosthesis to an array of haptic tactile stimulators in the prosthetic socket. However, this approach is not clinically viable due to physical limits of current haptic devices. To address this issue we have proposed modality-mismatched stimulation and demonstrated that this promotes self-attribution of an alien hand on normally limbed subjects. In this work we investigated whether similar effects could be induced in transradial amputees with referred phantom sensations in a series of experiments fashioned after the Rubber Hand Illusion using vibrotactile stimulators. Results from three independent measures of embodiment demonstrated that vibrotactile sensory substitution elicits body-ownership of a rubber hand in transradial amputees. These results open up promising possibilities in this field; indeed miniature, safe and inexpensive vibrators could be fitted into commercially available prostheses and sockets to induce the illusion every time the prosthesis manipulates an object.

  7. Control of Prosthetic Hands via the Peripheral Nervous System

    PubMed Central

    Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control. PMID:27092041

  8. Amputation and Prosthetics

    MedlinePlus

    ... Extremity Prosthetics Find a hand surgeon near you. Videos Figures Figure 1: Thumb Prosthesis - not attached Figure ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  9. Analysis and Evaluation of the Dynamic Performance of SMA Actuators for Prosthetic Hand Design

    NASA Astrophysics Data System (ADS)

    O'Toole, Kevin T.; McGrath, Mark M.; Coyle, Eugene

    2009-08-01

    It is widely acknowledged within the biomedical engineering community that shape memory alloys (SMAs) exhibit great potential for application in the actuation of upper limb prosthesis designs. These lightweight actuators are particularly suitable for prosthetic hand solutions. A four-fingered, 12 degree-of-freedom prosthetic hand has been developed featuring SMA bundle actuators embedded within the palmar structure. Joule heating of the SMA bundle actuators generates sufficient torque at the fingers to allow a wide range of everyday tasks to be carried out. Transient characterization of SMA bundles has shown that performance/response during heating and cooling differs substantially. Natural convection is insufficient to provide for adequate cooling during elongation of the actuators. An experimental test-bed has been developed to facilitate analysis of the heat transfer characteristics of the appropriately sized SMA bundle actuators for use within the prosthetic hand design. Various modes of heat sinking are evaluated so that the most effective wire-cooling solution can be ascertained. SMA bundles of varying size will be used so that a generalized model of the SMA displacement performance under natural and forced cooling conditions can be obtained. The optimum cooling solution will be implemented onto the mechanical hand framework in future work. These results, coupled with phenomenological models of SMA behavior, will be used in the development of an effective control strategy for this application in future work.

  10. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.

    PubMed

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J

    2016-02-01

    Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  11. Touch and feel? Using the rubber hand paradigm to investigate self-touch enhancement in right-hemisphere stroke patients.

    PubMed

    White, Rebekah C; Aimola Davies, Anne M; Kischka, Udo; Davies, Martin

    2010-01-01

    Following stroke, a patient may fail to report touch administered by another person but claim that she feels touch when it is self-administered. We investigated three explanations for self-touch enhancement: (1) proprioceptive information from the administering hand, (2) attentional modulation, and (3) temporal expectation. Tactile sensation was assessed with vision precluded, and with the affected hand positioned in the left and right hemispace. In four of six experiments, the somatic rubber hand paradigm was used: the Examiner administered stimulation to the patient's affected left hand while guiding the patient's right hand to administer synchronous stimulation to a prosthetic hand. Even though the patient's two hands were not in contact, patients detected the same number of stimulations as when they touched their own hand directly (self-administered condition). Moreover, there was no decline in rates of detection when potentially informative movements of the administering hand were restricted. This demonstrates that patients feel rather than infer stimulation under conditions of self-touch. When patients received stimulation to the affected hand in the opposite hemispace to the hand administering touch to the prosthetic hand, all but one showed self-touch enhancement. Thus, neither proprioceptive information nor attentional modulation at the spatial region of the administering hand provided a sufficient explanation for self-touch enhancement. A follow-up experiment indicated an important role for temporal expectation: a delay, between the patient's stimulation of the prosthetic hand and the Examiner's stimulation of the patient's affected hand, eliminated the self-touch enhancement effect.

  12. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.

  13. Prosthetic Hand With Two Gripping Fingers

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell B.; Vest, Thomas W.; Carden, James R.

    1993-01-01

    Prosthetic hand developed for amputee who retains significant portion of forearm. Outer end of device is end effector including two fingers, one moved by rotating remaining part of forearm about its longitudinal axis. Main body of end effector is end member supporting fingers, roller bearing assembly, and rack-and-pinion mechanism. Advantage of rack-and-pinion mechanism enables user to open or close gap between fingers with precision and force.

  14. Improving Fine Control of Grasping Force during Hand–Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand

    PubMed Central

    Fu, Qiushi; Santello, Marco

    2018-01-01

    The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional single-gain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pick-and-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands. PMID:29375360

  15. Adapting proportional myoelectric-controlled interfaces for prosthetic hands.

    PubMed

    Pistohl, Tobias; Cipriani, Christian; Jackson, Andrew; Nazarpour, Kianoush

    2013-01-01

    Powered hand prostheses with many degrees of freedom are moving from research into the market for prosthetics. In order to make use of the prostheses' full functionality, it is essential to find efficient ways to control their multiple actuators. Human subjects can rapidly learn to employ electromyographic (EMG) activity of several hand and arm muscles to control the position of a cursor on a computer screen, even if the muscle-cursor map contradicts directions in which the muscles would act naturally. We investigated whether a similar control scheme, using signals from four hand muscles, could be adopted for real-time operation of a dexterous robotic hand. Despite different mapping strategies, learning to control the robotic hand over time was surprisingly similar to the learning of two-dimensional cursor control.

  16. Principal components analysis based control of a multi-DoF underactuated prosthetic hand.

    PubMed

    Matrone, Giulia C; Cipriani, Christian; Secco, Emanuele L; Magenes, Giovanni; Carrozza, Maria Chiara

    2010-04-23

    Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic hands are controlled by means of non-invasive interfaces based on electromyography (EMG). Driving a multi degrees of freedom (DoF) hand for achieving hand dexterity implies to selectively modulate many different EMG signals in order to make each joint move independently, and this could require significant cognitive effort to the user. A Principal Components Analysis (PCA) based algorithm is used to drive a 16 DoFs underactuated prosthetic hand prototype (called CyberHand) with a two dimensional control input, in order to perform the three prehensile forms mostly used in Activities of Daily Living (ADLs). Such Principal Components set has been derived directly from the artificial hand by collecting its sensory data while performing 50 different grasps, and subsequently used for control. Trials have shown that two independent input signals can be successfully used to control the posture of a real robotic hand and that correct grasps (in terms of involved fingers, stability and posture) may be achieved. This work demonstrates the effectiveness of a bio-inspired system successfully conjugating the advantages of an underactuated, anthropomorphic hand with a PCA-based control strategy, and opens up promising possibilities for the development of an intuitively controllable hand prosthesis.

  17. Golf hand prosthesis performance of transradial amputees.

    PubMed

    Carey, Stephanie L; Wernke, Matthew M; Lura, Derek J; Kahle, Jason T; Dubey, Rajiv V; Highsmith, M Jason

    2015-06-01

    Typical upper limb prostheses may limit sports participation; therefore, specialized terminal devices are often needed. The purpose of this study was to evaluate the ability of transradial amputees to play golf using a specialized terminal device. Club head speed, X-factor, and elbow motion of two individuals with transradial amputations using an Eagle Golf terminal device were compared to a non-amputee during a golf swing. Measurements were collected pre/post training with various stances and grips. Both prosthesis users preferred a right-handed stance initially; however, after training, one preferred a left-handed stance. The amputees had slower club head speeds and a lower X-factor compared to the non-amputee golfer, but increased their individual elbow motion on the prosthetic side after training. Amputees enjoyed using the device, and it may provide kinematic benefits indicated by the increase in elbow flexion on the prosthetic side. The transradial amputees were able to swing a golf club with sufficient repetition, form, and velocity to play golf recreationally. Increased elbow flexion on the prosthetic side suggests a potential benefit from using the Eagle Golf terminal device. Participating in recreational sports can increase amputees' health and quality of life. © The International Society for Prosthetics and Orthotics 2014.

  18. Motion Control of Drives for Prosthetic Hand Using Continuous Myoelectric Signals

    NASA Astrophysics Data System (ADS)

    Purushothaman, Geethanjali; Ray, Kalyan Kumar

    2016-03-01

    In this paper the authors present motion control of a prosthetic hand, through continuous myoelectric signal acquisition, classification and actuation of the prosthetic drive. A four channel continuous electromyogram (EMG) signal also known as myoelectric signals (MES) are acquired from the abled-body to classify the six unique movements of hand and wrist, viz, hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD) and radial deviation (RD). The classification technique involves in extracting the features/pattern through statistical time domain (TD) parameter/autoregressive coefficients (AR), which are reduced using principal component analysis (PCA). The reduced statistical TD features and or AR coefficients are used to classify the signal patterns through k nearest neighbour (kNN) as well as neural network (NN) classifier and the performance of the classifiers are compared. Performance comparison of the above two classifiers clearly shows that kNN classifier in identifying the hidden intended motion in the myoelectric signals is better than that of NN classifier. Once the classifier identifies the intended motion, the signal is amplified to actuate the three low power DC motor to perform the above mentioned movements.

  19. Assessment of Myoelectric Controller Performance and Kinematic Behavior of a Novel Soft Synergy-Inspired Robotic Hand for Prosthetic Applications

    PubMed Central

    Fani, Simone; Bianchi, Matteo; Jain, Sonal; Pimenta Neto, José Simões; Boege, Scott; Grioli, Giorgio; Bicchi, Antonio; Santello, Marco

    2016-01-01

    Myoelectric artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of terminal devices underlies the widespread abandonment of prostheses. We believe that one key factor to improve acceptability of prosthetic devices is to attain human likeness of prosthesis movements, a goal which is being pursued by research on social and human–robot interactions. Therefore, to reduce early abandonment of terminal devices, we propose that controllers should be designed so as to ensure effective task accomplishment in a natural fashion. In this work, we have analyzed and compared the performance of three types of myoelectric controller algorithms based on surface electromyography to control an underactuated and multi-degrees of freedom prosthetic hand, the SoftHand Pro. The goal of the present study was to identify the myoelectric algorithm that best mimics the native hand movements. As a preliminary step, we first quantified the repeatability of the SoftHand Pro finger movements and identified the electromyographic recording sites for able-bodied individuals with the highest signal-to-noise ratio from two pairs of muscles, i.e., flexor digitorum superficialis/extensor digitorum communis, and flexor carpi radialis/extensor carpi ulnaris. Able-bodied volunteers were then asked to execute reach-to-grasp movements, while electromyography signals were recorded from flexor digitorum superficialis/extensor digitorum communis as this was identified as the muscle pair characterized by high signal-to-noise ratio and intuitive control. Subsequently, we tested three myoelectric controllers that mapped electromyography signals to position of the SoftHand Pro. We found that a differential electromyography-to-position mapping ensured the highest coherence with hand movements. Our results represent a first step toward a more effective and intuitive control of myoelectric hand prostheses. PMID:27799908

  20. Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation

    PubMed Central

    2010-01-01

    Background Dexterous prosthetic hands that were developed recently, such as SmartHand and i-LIMB, are highly sophisticated; they have individually controllable fingers and the thumb that is able to abduct/adduct. This flexibility allows implementation of many different grasping strategies, but also requires new control algorithms that can exploit the many degrees of freedom available. The current study presents and tests the operation of a new control method for dexterous prosthetic hands. Methods The central component of the proposed method is an autonomous controller comprising a vision system with rule-based reasoning mounted on a dexterous hand (CyberHand). The controller, termed cognitive vision system (CVS), mimics biological control and generates commands for prehension. The CVS was integrated into a hierarchical control structure: 1) the user triggers the system and controls the orientation of the hand; 2) a high-level controller automatically selects the grasp type and size; and 3) an embedded hand controller implements the selected grasp using closed-loop position/force control. The operation of the control system was tested in 13 healthy subjects who used Cyberhand, attached to the forearm, to grasp and transport 18 objects placed at two different distances. Results The system correctly estimated grasp type and size (nine commands in total) in about 84% of the trials. In an additional 6% of the trials, the grasp type and/or size were different from the optimal ones, but they were still good enough for the grasp to be successful. If the control task was simplified by decreasing the number of possible commands, the classification accuracy increased (e.g., 93% for guessing the grasp type only). Conclusions The original outcome of this research is a novel controller empowered by vision and reasoning and capable of high-level analysis (i.e., determining object properties) and autonomous decision making (i.e., selecting the grasp type and size). The automatic control eases the burden from the user and, as a result, the user can concentrate on what he/she does, not on how he/she should do it. The tests showed that the performance of the controller was satisfactory and that the users were able to operate the system with minimal prior training. PMID:20731834

  1. Neuro-prosthetic interplay. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by M. Santello et al.

    NASA Astrophysics Data System (ADS)

    Schieber, Marc H.

    2016-07-01

    Control of the human hand has been both difficult to understand scientifically and difficult to emulate technologically. The article by Santello and colleagues in the current issue of Physics of Life Reviews[1] highlights the accelerating pace of interaction between the neuroscience of controlling body movement and the engineering of robotic hands that can be used either autonomously or as part of a motor neuroprosthesis, an artificial body part that moves under control from a human subject's own nervous system. Motor neuroprostheses typically involve a brain-computer interface (BCI) that takes signals from the subject's nervous system or muscles, interprets those signals through a decoding algorithm, and then applies the resulting output to control the artificial device.

  2. Object discrimination using electrotactile feedback.

    PubMed

    Arakeri, Tapas J; Hasse, Brady A; Fuglevand, Andrew J

    2018-04-09

    A variety of bioengineering systems are being developed to restore tactile sensations in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or amputation. These systems typically detect tactile force with sensors placed on an insensate hand (or prosthetic hand in the case of amputees) and deliver touch information by electrically or mechanically stimulating sensate skin above the site of injury. Successful object manipulation, however, also requires proprioceptive feedback representing the configuration and movements of the hand and digits. Therefore, we developed a simple system that simultaneously provides information about tactile grip force and hand aperture using current amplitude-modulated electrotactile feedback. We evaluated the utility of this system by testing the ability of eight healthy human subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test objects. We were also interested to determine the degree to which subjects could learn to use such feedback when tested over five consecutive sessions. The average percentage correct identifications on day 1 (28.5%  ±  8.2% correct) was well above chance (3.7%) and increased significantly with training to 49.2%  ±  10.6% on day 5. Furthermore, this training transferred reasonably well to a set of novel objects. These results suggest that simple, non-invasive methods can provide useful multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.

  3. Fabrication, sensation and control of fluidic elastomer actuators and their application towards hand orthotics and prosthetics

    NASA Astrophysics Data System (ADS)

    Zhao, Huichan

    Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have shown potential in a range of robotic applications including prosthetics and orthotics. Despite their advantages and rapid developments, robots using these actuators still have several challenging issues to be addressed. First, the reliable production of low cost and complex actuators that can apply high forces is necessary, yet none of existing fabrication methods are both easy to implement and of high force output. Next, compliant or stretchable sensors that can be embedded into their bodies for sophisticated functions are required, however, many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Finally, feedback control for FEAs is necessary to achieve better performance, but most soft robots are still "open-loop". In this dissertation, I intend to help solve the above issues and drive the applications of soft robotics towards hand orthotics and prosthetics. First, I adapt rotational casting as a new manufacturing method for soft actuators. I present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold increase over similar actuators previously reported. Next, I propose a soft orthotic finger with position control enabled via embedded optical fiber. I monitor both the static and dynamic states via the optical sensor and achieve the prescribed curvatures accurately and with stability by a gain-scheduled proportional-integral-derivative controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop controlled, soft orthotic glove that can be worn by a typical human hand and helpful for grasping light objects, while also providing finger position control. I achieve motion control with inexpensive, binary pneumatic switches controlled by a simple finite-state-machine. Finally, I report the first use of stretchable optical waveguides for strain sensing in a soft prosthetic hand. These optoelectronic strain sensors are easy to fabricate, chemically inert, and demonstrate low hysteresis and high precision in their output signals. I use the optoelectronically innervated prosthetic hand to conduct various active sensation experiments inspired by the capabilities of a real hand.

  4. Transtibial Prosthetic Socket Shape in a Developing Country: A study to compare initial outcomes in Pressure Cast hydrostatic and Patella Tendon Bearing designs.

    PubMed

    Laing, Sheridan; Lythgo, Noel; Lavranos, Jim; Lee, Peter Vee Sin

    2017-10-01

    This study compared the physical function and comfort level of patients with unilateral transtibial amputation after being fitted with a hand-cast Patella Tendon Bearing (PTB) socket and a pressure-cast (PCAST) hydrocast socket. The latter technique aims to reduce the skill dependency currently required for socket manufacture and fit. The study was conducted at the Vietnamese Training Centre for Orthopaedic Technologies and involved seventeen Vietnamese participants with unilateral transtibial amputation, all of whom were long term users of prosthetics. All participants were fitted with two sockets manufactured using both hand-cast and PCAST techniques with International Committee of the Red Cross components. Walking tests (timed up and go test and six-minute-walk-test), spatio-temporal gait analyses and subjective comfort assessments were completed after a short acclimatisation period with each socket. The participant-preferred socket was also noted. No significant differences were found for the measures of mobility, functional capacity, spatio-temporal gait parameters, gait symmetry, perceived comfort or participant socket preference. The results show the initial patient outcomes are similar when participants are fitted with a hand-cast PTB socket and a PCAST hydrocast sockets. Future work should confirm these findings in a longer trial. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization

    NASA Astrophysics Data System (ADS)

    Anghel, Ion; Grumezescu, Alexandru Mihai

    2013-01-01

    Prosthetic medical device-associated infections are responsible for significant morbidity and mortality rates. Novel improved materials and surfaces exhibiting inappropriate conditions for microbial development are urgently required in the medical environment. This study reveals the benefit of using natural Mentha piperita essential oil, combined with a 5 nm core/shell nanosystem-improved surface exhibiting anti-adherence and antibiofilm properties. This strategy reveals a dual role of the nano-oil system; on one hand, inhibiting bacterial adherence and, on the other hand, exhibiting bactericidal effect, the core/shell nanosystem is acting as a controlled releasing machine for the essential oil. Our results demonstrate that this dual nanobiosystem is very efficient also for inhibiting biofilm formation, being a good candidate for the design of novel material surfaces used for prosthetic devices.

  6. Proceedings, 1972 Carahan Conference on Electronic Prosthetics.

    ERIC Educational Resources Information Center

    Jackson, John S., Ed.; DeVore, R. William, Ed.

    Presented are 28 papers given at a 1972 conference on electronic prosthetics for the handicapped. Among the papers are the following titles: "Therapy for Cerebral Palsy Employing Artifician Sense Organs for Alternatives to Proprioceptive Feedback"; "Excessive Neuromuscular Time Delay as a Possible Cause of Poor Hand-Eye Coordination and…

  7. Mechanical design of a shape memory alloy actuated prosthetic hand.

    PubMed

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  8. A Low-Cost, Open-Source, Compliant Hand for Enabling Sensorimotor Control for People with Transradial Amputations

    PubMed Central

    Akhtar, Aadeel; Choi, Kyung Yun; Fatina, Michael; Cornman, Jesse; Wu, Edward; Sombeck, Joseph; Yim, Chris; Slade, Patrick; Lee, Jason; Moore, Jack; Gonzales, Daniel; Wu, Alvin; Anderson, Garrett; Rotter, David; Shin, Cliff; Bretl, Timothy

    2017-01-01

    In this paper, we describe the design and implementation of a low-cost, open-source prosthetic hand that enables both motor control and sensory feedback for people with transradial amputations. We integrate electromyographic pattern recognition for motor control along with contact reflexes and sensory substitution to provide feedback to the user. Compliant joints allow for robustness to impacts. The entire hand can be built for around $550. This low cost makes research and development of sensorimotor prosthetic hands more accessible to researchers worldwide, while also being affordable for people with amputations in developing nations. We evaluate the sensorimotor capabilites of our hand with a subject with a transradial amputation. We show that using contact reflexes and sensory substitution, when compared to standard myoelectric prostheses that lack these features, improves grasping of delicate objects like an eggshell and a cup of water both with and without visual feedback. Our hand is easily integrated into standard sockets, facilitating long-term testing of sensorimotor capabilities. PMID:28261008

  9. Upper-limb prosthetic control using wearable multichannel mechanomyography.

    PubMed

    Wilson, Samuel; Vaidyanathan, Ravi

    2017-07-01

    In this paper we introduce a robust multi-channel wearable sensor system for capturing user intent to control robotic hands. The interface is based on a fusion of inertial measurement and mechanomyography (MMG), which measures the vibrations of muscle fibres during motion. MMG is immune to issues such as sweat, skin impedance, and the need for a reference signal that is common to electromyography (EMG). The main contributions of this work are: 1) the hardware design of a fused inertial and MMG measurement system that can be worn on the arm, 2) a unified algorithm for detection, segmentation, and classification of muscle movement corresponding to hand gestures, and 3) experiments demonstrating the real-time control of a commercial prosthetic hand (Bebionic Version 2). Results show recognition of seven gestures, achieving an offline classification accuracy of 83.5% performed on five healthy subjects and one transradial amputee. The gesture recognition was then tested in real time on subsets of two and five gestures, with an average accuracy of 93.3% and 62.2% respectively. To our knowledge this is the first applied MMG based control system for practical prosthetic control.

  10. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.

    PubMed

    Vasan, Gautham; Pilarski, Patrick M

    2017-07-01

    Prosthetic arms should restore and extend the capabilities of someone with an amputation. They should move naturally and be able to perform elegant, coordinated movements that approximate those of a biological arm. Despite these objectives, the control of modern-day prostheses is often nonintuitive and taxing. Existing devices and control approaches do not yet give users the ability to effect highly synergistic movements during their daily-life control of a prosthetic device. As a step towards improving the control of prosthetic arms and hands, we introduce an intuitive approach to training a prosthetic control system that helps a user achieve hard-to-engineer control behaviours. Specifically, we present an actor-critic reinforcement learning method that for the first time promises to allow someone with an amputation to use their non-amputated arm to teach their prosthetic arm how to move through a wide range of coordinated motions and grasp patterns. We evaluate our method during the myoelectric control of a multi-joint robot arm by non-amputee users, and demonstrate that by using our approach a user can train their arm to perform simultaneous gestures and movements in all three degrees of freedom in the robot's hand and wrist based only on information sampled from the robot and the user's above-elbow myoelectric signals. Our results indicate that this learning-from-demonstration paradigm may be well suited to use by both patients and clinicians with minimal technical knowledge, as it allows a user to personalize the control of his or her prosthesis without having to know the underlying mechanics of the prosthetic limb. These preliminary results also suggest that our approach may extend in a straightforward way to next-generation prostheses with precise finger and wrist control, such that these devices may someday allow users to perform fluid and intuitive movements like playing the piano, catching a ball, and comfortably shaking hands.

  11. Responsiveness of outcome measures for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Borgia, Matthew

    2016-02-01

    There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.

  12. Advances in upper extremity prosthetics.

    PubMed

    Zlotolow, Dan A; Kozin, Scott H

    2012-11-01

    Until recently, upper extremity prostheses had changed little since World War II. In 2006, the Defense Advanced Research Projects Agency responded to an increasing number of military amputees with the Revolutionizing Prosthetics program. The program has yielded several breakthroughs both in the engineering of new prosthetic arms and in the control of those arms. Direct brain-wave control of a limb with 22° of freedom may be within reach. In the meantime, advances such as individually powered digits have opened the door to multifunctional full and partial hand prostheses. Restoring sensation to the prosthetic limb remains a major challenge to full integration of the limb into a patient's self-image. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Illusory movement perception improves motor control for prosthetic hands

    PubMed Central

    Marasco, Paul D.; Hebert, Jacqueline S.; Sensinger, Jon W.; Shell, Courtney E.; Schofield, Jonathon S.; Thumser, Zachary C.; Nataraj, Raviraj; Beckler, Dylan T.; Dawson, Michael R.; Blustein, Dan H.; Gill, Satinder; Mensh, Brett D.; Granja-Vazquez, Rafael; Newcomb, Madeline D.; Carey, Jason P.; Orzell, Beth M.

    2018-01-01

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement’s progress. This largely non-conscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. Here we report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. PMID:29540617

  14. Surface EMG in advanced hand prosthetics.

    PubMed

    Castellini, Claudio; van der Smagt, Patrick

    2009-01-01

    One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.

  15. Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership

    PubMed Central

    Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko

    2012-01-01

    Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed. PMID:23144814

  16. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.

    PubMed

    Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko

    2012-01-01

    Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.

  17. Induced sensorimotor brain plasticity controls pain in phantom limb patients

    PubMed Central

    Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi

    2016-01-01

    The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. PMID:27807349

  18. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.

    PubMed

    Krasoulis, Agamemnon; Kyranou, Iris; Erden, Mustapha Suphi; Nazarpour, Kianoush; Vijayakumar, Sethu

    2017-07-11

    Myoelectric pattern recognition systems can decode movement intention to drive upper-limb prostheses. Despite recent advances in academic research, the commercial adoption of such systems remains low. This limitation is mainly due to the lack of classification robustness and a simultaneous requirement for a large number of electromyogram (EMG) electrodes. We propose to address these two issues by using a multi-modal approach which combines surface electromyography (sEMG) with inertial measurements (IMs) and an appropriate training data collection paradigm. We demonstrate that this can significantly improve classification performance as compared to conventional techniques exclusively based on sEMG signals. We collected and analyzed a large dataset comprising recordings with 20 able-bodied and two amputee participants executing 40 movements. Additionally, we conducted a novel real-time prosthetic hand control experiment with 11 able-bodied subjects and an amputee by using a state-of-the-art commercial prosthetic hand. A systematic performance comparison was carried out to investigate the potential benefit of incorporating IMs in prosthetic hand control. The inclusion of IM data improved performance significantly, by increasing classification accuracy (CA) in the offline analysis and improving completion rates (CRs) in the real-time experiment. Our findings were consistent across able-bodied and amputee subjects. Integrating the sEMG electrodes and IM sensors within a single sensor package enabled us to achieve high-level performance by using on average 4-6 sensors. The results from our experiments suggest that IMs can form an excellent complimentary source signal for upper-limb myoelectric prostheses. We trust that multi-modal control solutions have the potential of improving the usability of upper-extremity prostheses in real-life applications.

  19. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees

    PubMed Central

    Kim, Keehoon; Colgate, James Edward; Peshkin, Michael A.; Kuiken, Todd A.

    2011-01-01

    Existing prosthetic limbs do not provide amputees with cutaneous feedback. Tactile feedback is essential to intuitive control of a prosthetic limb and it is now clear that the sense of body self-identification is also linked to cutaneous touch. Here we have created an artificial sense of touch for a prosthetic limb by coupling a pressure sensor on the hand through a robotic stimulator to surgically redirected cutaneous sensory nerves (targeted reinnervation) that once served the lost limb. We hypothesize that providing physiologically relevant cutaneous touch feedback may help an amputee incorporate an artificial limb into his or her self image. To investigate this we used a robotic touch interface coupled with a prosthetic limb and tested it with two targeted reinnervation amputees in a series of experiments fashioned after the Rubber Hand Illusion. Results from both subjective (self-reported) and objective (physiological) measures of embodiment (questionnaires, psychophysical temporal order judgements and residual limb temperature measurements) indicate that returning physiologically appropriate cutaneous feedback from a prosthetic limb drives a perceptual shift towards embodiment of the device for these amputees. Measurements provide evidence that the illusion created is vivid. We suggest that this may help amputees to more effectively incorporate an artificial limb into their self image, providing the possibility that a prosthesis becomes not only a tool, but also an integrated body part. PMID:21252109

  20. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    PubMed

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  1. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.

    PubMed

    Amsuess, Sebastian; Goebel, Peter; Graimann, Bernhard; Farina, Dario

    2015-09-01

    Functional replacement of upper limbs by means of dexterous prosthetic devices remains a technological challenge. While the mechanical design of prosthetic hands has advanced rapidly, the human-machine interfacing and the control strategies needed for the activation of multiple degrees of freedom are not reliable enough for restoring hand function successfully. Machine learning methods capable of inferring the user intent from EMG signals generated by the activation of the remnant muscles are regarded as a promising solution to this problem. However, the lack of robustness of the current methods impedes their routine clinical application. In this study, we propose a novel algorithm for controlling multiple degrees of freedom sequentially, inherently proportionally and with high robustness, allowing a good level of prosthetic hand function. The control algorithm is based on the spatial linear combinations of amplitude-related EMG signal features. The weighting coefficients in this combination are derived from the optimization criterion of the common spatial patterns filters which allow for maximal discriminability between movements. An important component of the study is the validation of the method which was performed on both able-bodied and amputee subjects who used physical prostheses with customized sockets and performed three standardized functional tests mimicking daily-life activities of varying difficulty. Moreover, the new method was compared in the same conditions with one clinical/industrial and one academic state-of-the-art method. The novel algorithm outperformed significantly the state-of-the-art techniques in both subject groups for tests that required the activation of more than one degree of freedom. Because of the evaluation in real time control on both able-bodied subjects and final users (amputees) wearing physical prostheses, the results obtained allow for the direct extrapolation of the benefits of the proposed method for the end users. In conclusion, the method proposed and validated in real-life use scenarios, allows the practical usability of multifunctional hand prostheses in an intuitive way, with significant advantages with respect to previous systems.

  2. Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients.

    PubMed

    Fukuma, Ryohei; Yanagisawa, Takufumi; Saitoh, Youichi; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Sugata, Hisato; Yokoi, Hiroshi; Hirata, Masayuki; Kamitani, Yukiyasu; Yoshimine, Toshiki

    2016-02-24

    Neuroprosthetic arms might potentially restore motor functions for severely paralysed patients. Invasive measurements of cortical currents using electrocorticography have been widely used for neuroprosthetic control. Moreover, magnetoencephalography (MEG) exhibits characteristic brain signals similar to those of invasively measured signals. However, it remains unclear whether non-invasively measured signals convey enough motor information to control a neuroprosthetic hand, especially for severely paralysed patients whose sensorimotor cortex might be reorganized. We tested an MEG-based neuroprosthetic system to evaluate the accuracy of using cortical currents in the sensorimotor cortex of severely paralysed patients to control a prosthetic hand. The patients attempted to grasp with or open their paralysed hand while the slow components of MEG signals (slow movement fields; SMFs) were recorded. Even without actual movements, the SMFs of all patients indicated characteristic spatiotemporal patterns similar to actual movements, and the SMFs were successfully used to control a neuroprosthetic hand in a closed-loop condition. These results demonstrate that the slow components of MEG signals carry sufficient information to classify movement types. Successful control by paralysed patients suggests the feasibility of using an MEG-based neuroprosthetic hand to predict a patient's ability to control an invasive neuroprosthesis via the same signal sources as the non-invasive method.

  3. Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients

    PubMed Central

    Fukuma, Ryohei; Yanagisawa, Takufumi; Saitoh, Youichi; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Sugata, Hisato; Yokoi, Hiroshi; Hirata, Masayuki; Kamitani, Yukiyasu; Yoshimine, Toshiki

    2016-01-01

    Neuroprosthetic arms might potentially restore motor functions for severely paralysed patients. Invasive measurements of cortical currents using electrocorticography have been widely used for neuroprosthetic control. Moreover, magnetoencephalography (MEG) exhibits characteristic brain signals similar to those of invasively measured signals. However, it remains unclear whether non-invasively measured signals convey enough motor information to control a neuroprosthetic hand, especially for severely paralysed patients whose sensorimotor cortex might be reorganized. We tested an MEG-based neuroprosthetic system to evaluate the accuracy of using cortical currents in the sensorimotor cortex of severely paralysed patients to control a prosthetic hand. The patients attempted to grasp with or open their paralysed hand while the slow components of MEG signals (slow movement fields; SMFs) were recorded. Even without actual movements, the SMFs of all patients indicated characteristic spatiotemporal patterns similar to actual movements, and the SMFs were successfully used to control a neuroprosthetic hand in a closed-loop condition. These results demonstrate that the slow components of MEG signals carry sufficient information to classify movement types. Successful control by paralysed patients suggests the feasibility of using an MEG-based neuroprosthetic hand to predict a patient’s ability to control an invasive neuroprosthesis via the same signal sources as the non-invasive method. PMID:26904967

  4. sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand

    PubMed Central

    Jiang, Yinlai; Togane, Masami; Lu, Baoliang; Yokoi, Hiroshi

    2017-01-01

    One of the greatest challenges of using a myoelectric prosthetic hand in daily life is to conveniently measure stable myoelectric signals. This study proposes a novel surface electromyography (sEMG) sensor using polypyrrole-coated nonwoven fabric sheet as electrodes (PPy electrodes) to allow people with disabilities to control prosthetic limbs. The PPy electrodes are sewn on an elastic band to guarantee close contact with the skin and thus reduce the contact electrical impedance between the electrodes and the skin. The sensor is highly customizable to fit the size and the shape of the stump so that people with disabilities can attach the sensor by themselves. The performance of the proposed sensor was investigated experimentally by comparing measurements of Ag/AgCl electrodes with electrolytic gel and the sEMG from the same muscle fibers. The high correlation coefficient (0.87) between the two types of sensors suggests the effectiveness of the proposed sensor. Another experiment of sEMG pattern recognition to control myoelectric prosthetic hands showed that the PPy electrodes are as effective as Ag/AgCl electrodes for measuring sEMG signals for practical myoelectric control. We also investigated the relation between the myoelectric signals' signal-to-noise ratio and the source impedances by simultaneously measuring the source impedances and the myoelectric signals with a switching circuit. The results showed that differences in both the norm and the phase of the source impedance greatly affect the common mode noise in the signal. PMID:28220058

  5. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    PubMed

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  6. Coactivation index of children with congenital upper limb reduction deficiencies before and after using a wrist-driven 3D printed partial hand prosthesis.

    PubMed

    Zuniga, Jorge M; Dimitrios, Katsavelis; Peck, Jean L; Srivastava, Rakesh; Pierce, James E; Dudley, Drew R; Salazar, David A; Young, Keaton J; Knarr, Brian A

    2018-06-08

    Co-contraction is the simultaneous activation of agonist and antagonist muscles that produces forces around a joint. It is unknown if the use of a wrist-driven 3D printed transitional prostheses has any influence on the neuromuscular motor control strategies of the affected hand of children with unilateral upper-limb reduction deficiencies. Thus, the purpose of the current investigation was to examine the coactivation index (CI) of children with congenital upper-limb reduction deficiencies before and after 6 months of using a wrist-driven 3D printed partial hand prosthesis. Electromyographic activity of wrist flexors and extensors (flexor carpi ulnaris and extensor digitorum) was recorded during maximal voluntary contraction of the affected and non-affected wrists. Co-contraction was calculated using the coactivation index and was expressed as percent activation of antagonist over agonist. Nine children (two girls and seven boys, 6 to 16 years of age) with congenital upper-limb deficiencies participated in this study and were fitted with a wrist-driven 3D printed prosthetic hand. From the nine children, five (two girls and three boys, 7 to 10 years of age) completed a second visit after using the wrist-driven 3D printed partial hand prosthesis for 6 months. Separate two-way repeated measures ANOVAs were performed to analyze the coactivation index and strength data. There was a significant main effect for hand with the affected hand resulting in a higher coactivation index for flexion and extension than the non-affected hand. For wrist flexion there was a significant main effect for time indicating that the affected and non-affected hand had a significantly lower coactivation index after a period of 6 months. The use of a wrist-driven 3D printed hand prosthesis lowered the coactivation index by 70% in children with congenital upper limb reduction deficiencies. This reduction in coactivation and possible improvement in motor control strategies can potentially improve prosthetic rehabilitation outcomes.

  7. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas

    NASA Astrophysics Data System (ADS)

    Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.

    2013-04-01

    Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.

  8. Formation of social and household skills in children with hand defects.

    PubMed

    Klimon, Nataly; Koryukov, Alexander; Loseva, Nina; Starobina, Elena

    2015-08-01

    The aim of this study was to consider the peculiarities of forming social and household skills, and the criteria for their evaluation, as well as an assessment of functional capacity, in children with hand defects both before and after surgical treatment and rehabilitation courses using a system of games. We elaborated and implemented a program of social rehabilitation of preschool children with congenital and acquired hand defects for the development of their functional capabilities and the formation of social and household skills after surgical treatment and prosthetics using play therapy methods. As part of this work, 140 preschool children aged 3-7 years underwent social rehabilitation. Most of the children had congenital hand defects-122 children (87 %): 96 children (79 %) with ectrodactylia, adactylia, hypoplasia, aplasia, hand splitting, club hand, or partial gigantism; 26 children (21 %) with congenital syndactylism and constricted bonds and 18 children (13 %) with acquired defects (burn deformity, amputation). 110 children (79 %) had reached the stage of surgical correction; 30 children (21 %) reached the stage of prosthetics. Most of the children participating in the experiment (78 children, 56 %) had defects of fingers on one hand. The program aimed at solving specific rehabilitation tasks: formation and improvement of all possible types of grip under the existing defect including those after surgery and prosthetics; development of tactile sensations in fingers; development of fine motor skills; increase in range of motion in all joints of the damaged hand; development of attention and concentration; formation of social and household skills appropriate to age; and development of the ability to achieve the set task. Analysis of the level of social and household skills of children with hand defects undergoing rehabilitation treatment at the hospital depending on the age prior to medical and social rehabilitation showed that preschool children with hand defects in the age category of 3 years demonstrated the highest results in the level of social and household skills (31 %) as compared with children in other age categories. The indicators for children aged 4 and 5 years were slightly lower, 25 and 26 %, respectively. The lowest values were recorded among children aged 6: 20 %. Statistically significant parameters of the level of functional capacity of hand grip and social and household skills in children with hand defects obtained in the course of the investigation indicated that the use of play therapy measures significantly increased the effect of medical treatment irrespective of the type of defect. These data indicate that play therapy measures given immediately after surgery or prosthetics can significantly increase the efficiency of rehabilitation even in its early stages.

  9. Propionibacterium Acnes Infection of a Metacarpophalangeal Joint Arthroplasty.

    PubMed

    Bacle, Guillaume; Sikora, Sheena K; Ek, Eugene T H

    2017-05-01

    Neglected and underestimated in the past, Propionibacterium acnes is currently the most prevalent organism associated with deep prosthetic infections around the shoulder. Surprisingly, it has never been reported as a cause of infection in the hand. Here we report a case of a late presentation of a P. acnes infection in a metacarpophalangeal joint replacement, resulting in chronic low-grade pain with movement. The patient underwent a 2-stage revision, with initial removal of the prosthesis. Positive cultures for P. acnes required 15 days of extended incubation. The patient subsequently had 6 weeks of oral antibiotics followed by a second-stage revision with a Silastic implant. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Illusory movement perception improves motor control for prosthetic hands.

    PubMed

    Marasco, Paul D; Hebert, Jacqueline S; Sensinger, Jon W; Shell, Courtney E; Schofield, Jonathon S; Thumser, Zachary C; Nataraj, Raviraj; Beckler, Dylan T; Dawson, Michael R; Blustein, Dan H; Gill, Satinder; Mensh, Brett D; Granja-Vazquez, Rafael; Newcomb, Madeline D; Carey, Jason P; Orzell, Beth M

    2018-03-14

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Analyzing at-home prosthesis use in unilateral upper-limb amputees to inform treatment & device design.

    PubMed

    Spiers, Adam J; Resnik, Linda; Dollar, Aaron M

    2017-07-01

    New upper limb prosthetic devices are continuously being developed by a variety of industrial, academic, and hobbyist groups. Yet, little research has evaluated the long term use of currently available prostheses in daily life activities, beyond laboratory or survey studies. We seek to objectively measure how experienced unilateral upper limb prosthesis-users employ their prosthetic devices and unaffected limb for manipulation during everyday activities. In particular, our goal is to create a method for evaluating all types of amputee manipulation, including non-prehensile actions beyond conventional grasp functions, as well as to examine the relative use of both limbs in unilateral and bilateral cases. This study employs a head-mounted video camera to record participant's hands and arms as they complete unstructured domestic tasks within their own homes. A new 'Unilateral Prosthesis-User Manipulation Taxonomy' is presented based observations from 10 hours of recorded videos. The taxonomy addresses manipulation actions of the intact hand, prostheses, bilateral activities, and environmental feature-use (aiïordances). Our preliminary results involved tagging 23 minute segments of the full videos from 3 amputee participants using the taxonomy. This resulted in over 2,300 tag instances. Observations included that non-prehensile interactions outnumbered prehensile interactions in the affected limb for users with more distal amputation that allowed arm mobility.

  12. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    DTIC Science & Technology

    2015-10-01

    Modulated Sensory Feedback from, a Hand Prosthesis PRINCIPAL INVESTIGATOR: Bradley Greger, PhD CONTRACTING ORGANIZATION: Arizona State University...Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis 5a. CONTRACT NUMBER 5b. GRANT...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis , Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro

  13. Targeted Muscle Reinnervation for Real-Time Myoelectric Control of Multifunction Artificial Arms

    PubMed Central

    Kuiken, Todd A.; Li, Guanglin; Lock, Blair A.; Lipschutz, Robert D.; Miller, Laura A.; Stubblefield, Kathy A.; Englehart, Kevin

    2011-01-01

    Context Improving the function of prosthetic arms remains a challenge, as access to the neural control information for the arm is lost during amputation. We have developed a surgical technique called targeted muscle reinnervation (TMR) which transfers residual arm nerves to alternative muscle sites. After reinnervation, these target muscles produce an electromyogram (EMG) on the surface of the skin that can be measured and used to control prosthetic arms. Objective Assess the performance of TMR upper-limb amputee patients using a pattern-recognition algorithm to decode EMG signals and control prosthetic arm motions. Design Surface EMG signals were recorded on participants and decoded using a pattern-recognition algorithm. The decoding program controlled the movement of a virtual prosthetic arm. Participants were instructed to perform various arm movements, and their abilities to control the virtual prosthetic arm were measured. In addition, TMR patients used the same control system to operate advanced arm prosthesis prototypes. Setting This study was conducted between January 2007 and January 2008 at the Rehabilitation Institute of Chicago. Participants This study included five patients with shoulder disarticulation or transhumeral amputations who received TMR surgery between February 2002 and October 2006. It also included five non-amputee (control) participants. Main Outcome Measure Performance metrics measured during virtual arm movements included motion-selection time, motion-completion time, and motion-completion (or `success') rate. Three of the TMR patients were also able to test advanced arm prostheses. Results TMR patients were able to repeatedly perform 10 different elbow, wrist and hand motions with the virtual prosthetic arm. For TMR patients, the average (standard deviation (SD)) motion-selection and motion-completion times for elbow and wrist movements were 0.22 s (0.06) and 1.29 s (0.15), respectively. These times were 0.06 s and 0.21 s longer than the average times of control participants. For TMR patients, the average (SD) motion-selection and motion-completion times for hand-grasp patterns were 0.38 s (0.12) and 1.54 s (0.27), respectively. TMR patients successfully completed an average (SD) of 96.3% (3.8) of elbow and wrist movements and 86.9% (13.9) of hand movements within 5 s, compared to 100% (0) and 96.7% (4.7) completed by controls. Three of the patients were able to demonstrate the use of this control system in advanced prostheses including motorized shoulders, elbows, wrists and hands. Conclusion These results suggest that reinnervated muscles can produce sufficient EMG information to control advanced artificial arms. PMID:19211469

  14. Natural control capabilities of robotic hands by hand amputated subjects.

    PubMed

    Atzori, Manfredo; Gijsberts, Arjan; Caputo, Barbara; Muller, Henning

    2014-01-01

    People with transradial hand amputations who own a myoelectric prosthesis currently have some control capabilities via sEMG. However, the control systems are still limited and not natural. The Ninapro project is aiming at helping the scientific community to overcome these limits through the creation of publicly available electromyography data sources to develop and test machine learning algorithms. In this paper we describe the movement classification results gained from three subjects with an homogeneous level of amputation, and we compare them with the results of 40 intact subjects. The number of considered subjects can seem small at first sight, but it is not considering the literature of the field (which has to face the difficulty of recruiting trans-radial hand amputated subjects). The classification is performed with four different classifiers and the obtained balanced classification rates are up to 58.6% on 50 movements, which is an excellent result compared to the current literature. Successively, for each subject we find a subset of up to 9 highly independent movements, (defined as movements that can be distinguished with more than 90% accuracy), which is a deeply innovative step in literature. The natural control of a robotic hand in so many movements could lead to an immediate progress in robotic hand prosthetics and it could deeply change the quality of life of amputated subjects.

  15. Control of a powered prosthetic device via a pinch gesture interface

    NASA Astrophysics Data System (ADS)

    Yetkin, Oguz; Wallace, Kristi; Sanford, Joseph D.; Popa, Dan O.

    2015-06-01

    A novel system is presented to control a powered prosthetic device using a gesture tracking system worn on a user's sound hand in order to detect different grasp patterns. Experiments are presented with two different gesture tracking systems: one comprised of Conductive Thimbles worn on each finger (Conductive Thimble system), and another comprised of a glove which leaves the fingers free (Conductive Glove system). Timing tests were performed on the selection and execution of two grasp patterns using the Conductive Thimble system and the iPhone app provided by the manufacturer. A modified Box and Blocks test was performed using Conductive Glove system and the iPhone app provided by Touch Bionics. The best prosthetic device performance is reported with the developed Conductive Glove system in this test. Results show that these low encumbrance gesture-based wearable systems for selecting grasp patterns may provide a viable alternative to EMG and other prosthetic control modalities, especially for new prosthetic users who are not trained in using EMG signals.

  16. Deep learning-based artificial vision for grasp classification in myoelectric hands.

    PubMed

    Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush

    2017-06-01

    Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at [Formula: see text] intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. The classification accuracy in the offline tests reached [Formula: see text] for the seen and [Formula: see text] for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of [Formula: see text] in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb Ultra TM prosthetic hand and a motion control TM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to [Formula: see text]. In addition, we show that with training, subjects' performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. The proposed design constitutes a substantial conceptual improvement for the control of multi-functional prosthetic hands. We show for the first time that deep-learning based computer vision systems can enhance the grip functionality of myoelectric hands considerably.

  17. Deep learning-based artificial vision for grasp classification in myoelectric hands

    NASA Astrophysics Data System (ADS)

    Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush

    2017-06-01

    Objective. Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. Approach. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at {{5}\\circ} intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. Main results. The classification accuracy in the offline tests reached 85 % for the seen and 75 % for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of 84 % in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb UltraTM prosthetic hand and a motion controlTM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to 88 % . In addition, we show that with training, subjects’ performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. Significance. The proposed design constitutes a substantial conceptual improvement for the control of multi-functional prosthetic hands. We show for the first time that deep-learning based computer vision systems can enhance the grip functionality of myoelectric hands considerably.

  18. Adapting a Robot Hand to Specialized Functions

    NASA Technical Reports Server (NTRS)

    Clark, Keith H.

    1987-01-01

    Adaptor enables mechanical and electrical connections made easily between special-purpose end effector and arm of robot or remote mainpulator. Use in prosthetic devices also contemplatd. With adaptor, hand changed quickly from device designed to grasp objects of various sizes and shapes to device intended to do specific task efficiently.

  19. Dextrous robot hands

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Editor); Iberall, Thea (Editor)

    1990-01-01

    Recent studies of human hand function and their implications for the design of robot hands are discussed in reviews and reports. Topics addressed include human grasp choice and robotic grasp analysis, opposition space and human prehension, coordination in normal and prosthetic reaching, and intelligent exploration by the human hand. Consideration is given to a task-oriented dextrous manipulation architecture, the control architecture for the Belgrade/USC hand, the analysis of multifingered grasping and manipulation, and tactile sensing for shape interpretation. Diagrams, graphs, and photographs are provided.

  20. Case study: survey of patient satisfaction with prosthesis quality and design among below-knee prosthetic leg socket users.

    PubMed

    Mohd Hawari, Nurhanisah; Jawaid, Mohammad; Md Tahir, Paridah; Azmeer, Raja Ahmad

    2017-11-01

    The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients' narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design. Implications for Rehabilitation Case study will help participants to get cost effective prosthetic leg socket. Develop prosthetic leg socket comfortable as comparative to existing one. Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.

  1. [The bionic hand].

    PubMed

    Surke, Carsten; Ducommun Dit Boudry, Pascal; Vögelin, Esther

    2015-08-01

    The loss of the upper extremity implicates a grave insult in the life of the involved person. To compensate for the loss of function different powered prosthetic devices are available. Ever since their first development 70 years ago numerous improvements in terms of size, weight and wearing comfort have been developed, but issues regarding the control of upper extremity prostheses remain. Slow grasping speed, limited grip positions and especially failure to provide a sensory feedback limit the acceptance in patients. Recent developments are aimed to allow a more intuitive control of the prosthetic device and to provide a sensory feedback to the amputee. Targeted reinnervation reassignes existing muscles to different peripheral nerves thereby enabling them to fulfill alternate functions. Implanting electrodes into muscle bellies of the forearm allows a more accurate control of the prosthesis. Promising results are being achieved by implanting nerve electrodes by establishing bilateral communication between patient and prosthesis. The following review summarizes the current developments of bionic prostheses in the upper extremity.

  2. Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.

    PubMed

    Gupta, Rahul; Ashe, James

    2009-06-01

    Brain-machine interfaces (BMIs) hold a lot of promise for restoring some level of motor function to patients with neuronal disease or injury. Current BMI approaches fall into two broad categories--those that decode discrete properties of limb movement (such as movement direction and movement intent) and those that decode continuous variables (such as position and velocity). However, to enable the prosthetic devices to be useful for common everyday tasks, precise control of the forces applied by the end-point of the prosthesis (e.g., the hand) is also essential. Here, we used linear regression and Kalman filter methods to show that neural activity recorded from the motor cortex of the monkey during movements in a force field can be used to decode the end-point forces applied by the subject successfully and with high fidelity. Furthermore, the models exhibit some generalization to novel task conditions. We also demonstrate how the simultaneous prediction of kinematics and kinetics can be easily achieved using the same framework, without any degradation in decoding quality. Our results represent a useful extension of the current BMI technology, making dynamic control of a prosthetic device a distinct possibility in the near future.

  3. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.

    PubMed

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-04-15

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller.

  4. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies

    PubMed Central

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-01-01

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller. PMID:28420135

  5. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject

    PubMed Central

    Ahlberg, Johan; Lendaro, Eva; Hermansson, Liselotte; Håkansson, Bo; Ortiz-Catalan, Max

    2018-01-01

    The functionality of upper limb prostheses can be improved by intuitive control strategies that use bioelectric signals measured at the stump level. One such strategy is the decoding of motor volition via myoelectric pattern recognition (MPR), which has shown promising results in controlled environments and more recently in clinical practice. Moreover, not much has been reported about daily life implementation and real-time accuracy of these decoding algorithms. This paper introduces an alternative approach in which MPR allows intuitive control of four different grips and open/close in a multifunctional prosthetic hand. We conducted a clinical proof-of-concept in activities of daily life by constructing a self-contained, MPR-controlled, transradial prosthetic system provided with a novel user interface meant to log errors during real-time operation. The system was used for five days by a unilateral dysmelia subject whose hand had never developed, and who nevertheless learned to generate patterns of myoelectric activity, reported as intuitive, for multi-functional prosthetic control. The subject was instructed to manually log errors when they occurred via the user interface mounted on the prosthesis. This allowed the collection of information about prosthesis usage and real-time classification accuracy. The assessment of capacity for myoelectric control test was used to compare the proposed approach to the conventional prosthetic control approach, direct control. Regarding the MPR approach, the subject reported a more intuitive control when selecting the different grips, but also a higher uncertainty during proportional continuous movements. This paper represents an alternative to the conventional use of MPR, and this alternative may be particularly suitable for a certain type of amputee patients. Moreover, it represents a further validation of MPR with dysmelia cases. PMID:29637030

  6. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject.

    PubMed

    Mastinu, Enzo; Ahlberg, Johan; Lendaro, Eva; Hermansson, Liselotte; Hakansson, Bo; Ortiz-Catalan, Max

    2018-01-01

    The functionality of upper limb prostheses can be improved by intuitive control strategies that use bioelectric signals measured at the stump level. One such strategy is the decoding of motor volition via myoelectric pattern recognition (MPR), which has shown promising results in controlled environments and more recently in clinical practice. Moreover, not much has been reported about daily life implementation and real-time accuracy of these decoding algorithms. This paper introduces an alternative approach in which MPR allows intuitive control of four different grips and open/close in a multifunctional prosthetic hand. We conducted a clinical proof-of-concept in activities of daily life by constructing a self-contained, MPR-controlled, transradial prosthetic system provided with a novel user interface meant to log errors during real-time operation. The system was used for five days by a unilateral dysmelia subject whose hand had never developed, and who nevertheless learned to generate patterns of myoelectric activity, reported as intuitive, for multi-functional prosthetic control. The subject was instructed to manually log errors when they occurred via the user interface mounted on the prosthesis. This allowed the collection of information about prosthesis usage and real-time classification accuracy. The assessment of capacity for myoelectric control test was used to compare the proposed approach to the conventional prosthetic control approach, direct control. Regarding the MPR approach, the subject reported a more intuitive control when selecting the different grips, but also a higher uncertainty during proportional continuous movements. This paper represents an alternative to the conventional use of MPR, and this alternative may be particularly suitable for a certain type of amputee patients. Moreover, it represents a further validation of MPR with dysmelia cases.

  7. Abstract and proportional myoelectric control for multi-fingered hand prostheses.

    PubMed

    Pistohl, Tobias; Cipriani, Christian; Jackson, Andrew; Nazarpour, Kianoush

    2013-12-01

    Powered hand prostheses with many degrees of freedom are moving from research into the market for prosthetics. In order to make use of the prostheses' full functionality, it is essential to study efficient ways of high dimensional myoelectric control. Human subjects can rapidly learn to employ electromyographic (EMG) activity of several hand and arm muscles to control the position of a cursor on a computer screen, even if the muscle-cursor map contradicts directions in which the muscles would act naturally. But can a similar control scheme be translated into real-time operation of a dexterous robotic hand? We found that despite different degrees of freedom in the effector output, the learning process for controlling a robotic hand was surprisingly similar to that for a virtual two-dimensional cursor. Control signals were derived from the EMG in two different ways, with a linear and a Bayesian filter, to test how stable user intentions could be conveyed through them. Our analysis indicates that without visual feedback, control accuracy benefits from filters that reject high EMG amplitudes. In summary, we conclude that findings on myoelectric control principles, studied in abstract, virtual tasks can be transferred to real-life prosthetic applications.

  8. A Method for the Control of Multigrasp Myoelectric Prosthetic Hands

    PubMed Central

    Dalley, Skyler Ashton; Varol, Huseyin Atakan; Goldfarb, Michael

    2012-01-01

    This paper presents the design and preliminary experimental validation of a multigrasp myoelectric controller. The described method enables direct and proportional control of multigrasp prosthetic hand motion among nine characteristic postures using two surface electromyography electrodes. To assess the efficacy of the control method, five nonamputee subjects utilized the multigrasp myoelectric controller to command the motion of a virtual prosthesis between random sequences of target hand postures in a series of experimental trials. For comparison, the same subjects also utilized a data glove, worn on their native hand, to command the motion of the virtual prosthesis for similar sequences of target postures during each trial. The time required to transition from posture to posture and the percentage of correctly completed transitions were evaluated to characterize the ability to control the virtual prosthesis using each method. The average overall transition times across all subjects were found to be 1.49 and 0.81 s for the multigrasp myoelectric controller and the native hand, respectively. The average transition completion rates for both were found to be the same (99.2%). Supplemental videos demonstrate the virtual prosthesis experiments, as well as a preliminary hardware implementation. PMID:22180515

  9. A training platform for many-dimensional prosthetic devices using a virtual reality environment

    PubMed Central

    Putrino, David; Wong, Yan T.; Weiss, Adam; Pesaran, Bijan

    2014-01-01

    Brain machine interfaces (BMIs) have the potential to assist in the rehabilitation of millions of patients worldwide. Despite recent advancements in BMI technology for the restoration of lost motor function, a training environment to restore full control of the anatomical segments of an upper limb extremity has not yet been presented. Here, we develop a virtual upper limb prosthesis with 27 independent dimensions, the anatomical dimensions of the human arm and hand, and deploy the virtual prosthesis as an avatar in a virtual reality environment (VRE) that can be controlled in real-time. The prosthesis avatar accepts kinematic control inputs that can be captured from movements of the arm and hand as well as neural control inputs derived from processed neural signals. We characterize the system performance under kinematic control using a commercially available motion capture system. We also present the performance under kinematic control achieved by two non-human primates (Macaca Mulatta) trained to use the prosthetic avatar to perform reaching and grasping tasks. This is the first virtual prosthetic device that is capable of emulating all the anatomical movements of a healthy upper limb in real-time. Since the system accepts both neural and kinematic inputs for a variety of many-dimensional skeletons, we propose it provides a customizable training platform for the acquisition of many-dimensional neural prosthetic control. PMID:24726625

  10. Effects of a 3D segmental prosthetic system for tricuspid valve annulus remodelling on the right coronary artery: a human cadaveric coronary angiography study.

    PubMed

    Riki-Marishani, Mohsen; Gholoobi, Arash; Sazegar, Ghasem; Aazami, Mathias H; Hedjazi, Aria; Sajjadian, Maryam; Ebrahimi, Mahmoud; Aghaii-Zade Torabi, Ahmad

    2017-09-01

    A prosthetic system to repair secondary tricuspid valve regurgitation was developed. The conceptual engineering of the current device is based on 3D segmental remodelling of the tricuspid valve annulus in lieu of reductive annuloplasty. This study was designed to investigate the operational safety of the current prosthetic system with regard to the anatomical integrity of the right coronary artery (RCA) in fresh cadaveric human hearts. During the study period, from January to April 2016, the current prosthetic system was implanted on the tricuspid valve annulus in fresh cadaveric human hearts that met the study's inclusion criteria. The prepared specimens were investigated via selective coronary angiography of the RCA in the catheterization laboratory. The RCA angiographic anatomies were categorized as normal, distorted, kinked or occluded. Sixteen specimens underwent implantation of the current prosthetic system. The mean age of the cadaveric human hearts was 43.24 ± 15.79 years, with vehicle accident being the primary cause of death (59%). A dominant RCA was noticed in 62.5% of the specimens. None of the specimens displayed any injury, distortion, kinking or occlusion in the RCA due to the implantation of the prostheses. In light of the results of the present study, undertaken on fresh cadaveric human heart specimens, the current segmental prosthetic system for 3D remodelling of the tricuspid valve annulus seems to be safe vis-à-vis the anatomical integrity of the RCA. Further in vivo studies are needed to investigate the functional features of the current prosthetic system with a view to addressing the complex pathophysiology of secondary tricuspid valve regurgitation. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. A Multigrasp Hand Prosthesis for Providing Precision and Conformal Grasps

    PubMed Central

    Bennett, Daniel A.; Dalley, Skyler A.; Truex, Don; Goldfarb, Michael

    2015-01-01

    This paper presents the design of an anthropomorphic prosthetic hand that incorporates four motor units in a unique configuration to explicitly provide both precision and conformal grasp capability. The paper describes the design of the hand prosthesis, and additionally describes the design of an embedded control system located in the palm of the hand that enables self-contained control of hand movement. Following the design description, the paper provides experimental characterizations of hand performance, including digit force capability, bandwidth of digit movement, physical properties such as size and mass, and electrical power measurements during activities of daily living. PMID:26167111

  12. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    PubMed

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  13. Myoelectric intuitive control and transcutaneous electrical stimulation of the forearm for vibrotactile sensation feedback applied to a 3D printed prosthetic hand.

    PubMed

    Germany, Enrique I; Pino, Esteban J; Aqueveque, Pablo E

    2016-08-01

    This paper presents the development of a myoelectric prosthetic hand based on a 3D printed model. A myoelectric control strategy based on artificial neural networks is implemented on a microcontroller for online position estimation. Position estimation performance achieves a correlation index of 0.78. Also a study involving transcutaneous electrical stimulation was performed to provide tactile feedback. A series of stimulations with controlled parameters were tested on five able-body subjects. A single channel stimulator was used, positioning the electrodes 8 cm on the wrist over the ulnar and median nerve. Controlling stimulation parameters such as intensity, frequency and pulse width, the subjects were capable of distinguishing different sensations over the palm of the hand. Three main sensations where achieved: tickling, pressure and pain. Tickling and pressure were discretized into low, moderate and high according to the magnitude of the feeling. The parameters at which each sensation was obtained are further discussed in this paper.

  14. ACCEPTABILITY OF A FUNCTIONAL-COSMETIC ARTIFICIAL HAND FOR YOUNG CHILDREN.

    ERIC Educational Resources Information Center

    FISHMAN, SIDNEY; KAY, HECTOR W.

    SEVENTY-SEVEN CHILDREN, AGED 4 YEARS TO 12 YEARS, 4 MONTHS AND EXEMPLIFYING ALL LEVELS OF UPPER EXTREMITY AMPUTATION (PROSTHETIC TYPE) FROM WRIST-DISARTICULATION TO SHOULDER-DISARTICULATION, WORE THE APRL-SIERRA CHILD SIZE MODEL NUMBER 1 HAND FOR APPROXIMATELY 4 MONTHS. CHILD AND PARENTS MADE FOUR CLINIC VISITS FOR INITIAL SCREENING, FITTING, 2…

  15. Provision of Prosthetic Services Following Lower Limb Amputation in Malaysia

    PubMed Central

    Arifin, Nooranida; Hasbollah, Hasif Rafidee; Hanafi, Muhammad Hafiz; Ibrahim, Al Hafiz; Rahman, Wan Afezah Wan Abdul; Aziz, Roslizawati Che

    2017-01-01

    The incidence of lower limb amputation is high across the globe and continues to be a major threat to morbidity and mortality. Consequently, the provision of high quality and effective prosthetics services have been known as an essential component for a successful rehabilitation outcome. In Malaysia, amputation prevalence has been increasing in which several main components of service delivering aspects (such as service intervention, prosthetic personnel) should be anticipated to accommodate for the increasing demand. This article highlights the hurdles experienced in providing prosthetic services in Malaysia from multiple aspects such as financial burden to acquire the prosthesis and lack of expertise to produce quality prosthesis. This paramount issues consequently justify for the urgency to carry out national level survey on the current statistics of lower limb amputation and to ascertain the available workforce to provide a quality prosthetics services. Only with accurate and current information from the national survey, strategies and policies aimed at enhancing the outcome from prosthetics services can be achieved. PMID:29386978

  16. Provision of Prosthetic Services Following Lower Limb Amputation in Malaysia.

    PubMed

    Arifin, Nooranida; Hasbollah, Hasif Rafidee; Hanafi, Muhammad Hafiz; Ibrahim, Al Hafiz; Rahman, Wan Afezah Wan Abdul; Aziz, Roslizawati Che

    2017-10-01

    The incidence of lower limb amputation is high across the globe and continues to be a major threat to morbidity and mortality. Consequently, the provision of high quality and effective prosthetics services have been known as an essential component for a successful rehabilitation outcome. In Malaysia, amputation prevalence has been increasing in which several main components of service delivering aspects (such as service intervention, prosthetic personnel) should be anticipated to accommodate for the increasing demand. This article highlights the hurdles experienced in providing prosthetic services in Malaysia from multiple aspects such as financial burden to acquire the prosthesis and lack of expertise to produce quality prosthesis. This paramount issues consequently justify for the urgency to carry out national level survey on the current statistics of lower limb amputation and to ascertain the available workforce to provide a quality prosthetics services. Only with accurate and current information from the national survey, strategies and policies aimed at enhancing the outcome from prosthetics services can be achieved.

  17. Innovations in prosthetic interfaces for the upper extremity.

    PubMed

    Kung, Theodore A; Bueno, Reuben A; Alkhalefah, Ghadah K; Langhals, Nicholas B; Urbanchek, Melanie G; Cederna, Paul S

    2013-12-01

    Advancements in modern robotic technology have led to the development of highly sophisticated upper extremity prosthetic limbs. High-fidelity volitional control of these devices is dependent on the critical interface between the patient and the mechanical prosthesis. Recent innovations in prosthetic interfaces have focused on several control strategies. Targeted muscle reinnervation is currently the most immediately applicable prosthetic control strategy and is particularly indicated in proximal upper extremity amputations. Investigation into various brain interfaces has allowed acquisition of neuroelectric signals directly or indirectly from the central nervous system for prosthetic control. Peripheral nerve interfaces permit signal transduction from both motor and sensory nerves with a higher degree of selectivity. This article reviews the current developments in each of these interface systems and discusses the potential of these approaches to facilitate motor control and sensory feedback in upper extremity neuroprosthetic devices.

  18. Fused Filament Fabrication of Prosthetic Components for Trans-Humeral Upper Limb Prosthetics

    NASA Astrophysics Data System (ADS)

    Lathers, Steven M.

    Presented below is the design and fabrication of prosthetic components consisting of an attachment, tactile sensing, and actuator systems with Fused Filament Fabrication (FFF) technique. The attachment system is a thermoplastic osseointegrated upper limb prosthesis for average adult trans-humeral amputation with mechanical properties greater than upper limb skeletal bone. The prosthetic designed has: a one-step surgical process, large cavities for bone tissue ingrowth, uses a material that has an elastic modulus less than skeletal bone, and can be fabricated on one system. FFF osseointegration screw is an improvement upon the current two-part osseointegrated prosthetics that are composed of a fixture and abutment. The current prosthetic design requires two invasive surgeries for implantation and are made of titanium, which has an elastic modulus greater than bone. An elastic modulus greater than bone causes stress shielding and overtime can cause loosening of the prosthetic. The tactile sensor is a thermoplastic piezo-resistive sensor for daily activities for a prosthetic's feedback system. The tactile sensor is manufactured from a low elastic modulus composite comprising of a compressible thermoplastic elastomer and conductive carbon. Carbon is in graphite form and added in high filler ratios. The printed sensors were compared to sensors that were fabricated in a gravity mold to highlight the difference in FFF sensors to molded sensors. The 3D printed tactile sensor has a thickness and feel similar to human skin, has a simple fabrication technique, can detect forces needed for daily activities, and can be manufactured in to user specific geometries. Lastly, a biomimicking skeletal muscle actuator for prosthetics was developed. The actuator developed is manufactured with Fuse Filament Fabrication using a shape memory polymer composite that has non-linear contractile and passive forces, contractile forces and strains comparable to mammalian skeletal muscle, reaction time under one second, low operating temperature, and has a low mass, volume, and material costs. The actuator improves upon current prosthetic actuators that provide rigid, linear force with high weight, cost, and noise.

  19. Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand.

    PubMed

    Controzzi, Marco; Cipriani, Christian; Jehenne, Beryl; Donati, Marco; Carrozza, Maria Chiara

    2010-01-01

    This paper presents the preliminary design of a new dexterous upper-limb prosthesis provided with a novel anthropomorphic hand, a compact wrist based on bevel gears and a modular forearm able to cover different levels of upper-limb amputations. The hand has 20 DoFs and 11 motors, with a dexterous three fingered subsystem composed by a fully actuated thumb, and an hybrid index and middle fingers to enable dexterous manipulation and enhance grasp performance.

  20. Arthritis of the thumb and digits: current concepts.

    PubMed

    Bernstein, Richard A

    2015-01-01

    Osteoarthritis of the hand continues to be a problem in an aging population and affects the proximal and distal interphalangeal, metacarpophalangeal, and carpometacarpal joints in the hands. Heberden nodes develop in the distal interphalangeal joints and typically present as a deformed and enlarged joint and can cause pain. Surgery rarely is necessary because functional difficulties are uncommon; however, there may be problems if the metacarpophalangeal and proximal interphalangeal joints are involved because cartilage destruction generates pain and causes weakness and motion loss. Implant arthroplasty typically can improve pain but does not reliably improve range of motion, and complication and revision rates are substantial. Arthrodesis continues as a treatment for digital osteoarthritis, but the surgeon must balance the risks of complications with the benefits of improved patient outcomes. The opposable thumb, which is critical for hand dexterity and strength, can be severely disabled by basal joint arthritis. The complex architecture of the basal joint continues to be defined by its relationship to the surrounding bony and ligamentous anatomy and its effect on the trapeziometacarpal joint. Nonsurgical treatment may be beneficial, but surgical options, including arthroscopy, osteotomy, and arthroplasty, should be considered if nonsurgical management fails. Prosthetic arthroplasty has a historically poor record; therefore, trapeziectomy remains the hallmark of current reconstructive techniques. Ligament reconstruction and tendon interposition arthroplasty are the most commonly performed surgical procedures, but hematoma distraction arthroplasty and various methods of suspensionplasty also are currently used.

  1. 1 μm-thickness ultra-flexible and high electrode-density surface electromyogram measurement sheet with 2 V organic transistors for prosthetic hand control.

    PubMed

    Fuketa, Hiroshi; Yoshioka, Kazuaki; Shinozuka, Yasuhiro; Ishida, Koichi; Yokota, Tomoyuki; Matsuhisa, Naoji; Inoue, Yusuke; Sekino, Masaki; Sekitani, Tsuyoshi; Takamiya, Makoto; Someya, Takao; Sakurai, Takayasu

    2014-12-01

    A 64-channel surface electromyogram (EMG) measurement sheet (SEMS) with 2 V organic transistors on a 1 μm-thick ultra-flexible polyethylene naphthalate (PEN) film is developed for prosthetic hand control. The surface EMG electrodes must satisfy the following three requirements; high mechanical flexibility, high electrode density and high signal integrity. To achieve high electrode density and high signal integrity, a distributed and shared amplifier (DSA) architecture is proposed, which enables an in-situ amplification of the myoelectric signal with a fourfold increase in EMG electrode density. In addition, a post-fabrication select-and-connect (SAC) method is proposed to cope with the large mismatch of organic transistors. The proposed SAC method reduces the area and the power overhead by 96% and 98.2%, respectively, compared with the use of conventional parallel transistors to reduce the transistor mismatch by a factor of 10.

  2. Experimental and failure analysis of the prosthetic finger joint implants

    NASA Astrophysics Data System (ADS)

    Naidu, Sanjiv H.

    Small joint replacement arthroplasty of the hand is a well accepted surgical procedure to restore function and cosmesis in an individual with a crippled hand. Silicone elastomers have been used as prosthetic material in various small hand joints for well over three decades. Although the clinical science aspects of silicone elastomer failure are well known, the physical science aspects of prosthetic failure are scant and vague. In the following thesis, using both an animal model, and actual retrieved specimens which have failed in human service, experimental and failure analysis of silicone finger joints are presented. Fractured surfaces of retrieved silicone trapezial implants, and silicone finger joint implants were studied with both FESEM and SEM; the mode of failure for silicone trapezium is by wear polishing, whereas the finger joint implants failed either by fatigue fracture or tearing of the elastomer, or a combination of both. Thermal analysis revealed that the retrieved elastomer implants maintained its viscoelastic properties throughout the service period. In order to provide for a more functional and physiologic arthroplasty a novel finger joint (Rolamite prosthesis) is proposed using more recently developed thermoplastic polymers. The following thesis also addresses the outcome of the experimental studies of the Rolamite prosthesis in a rabbit animal model, in addition to the failure analysis of the thermoplastic polymers while in service in an in vivo synovial environment. Results of retrieved Rolamite specimens suggest that the use for thermoplastic elastomers such as block copolymer based elastomers in a synovial environment such as a mammalian joint may very well be limited.

  3. Prosthetic Engineering

    MedlinePlus

    ... torque adapter in the pylons of transtibial amputees. Energy Storage & Release Many ambulatory lower limb amputees exhibit ... Future Directions Current Project Summaries Development of Controlled Energy Storage and Release Prosthetic Foot Development of Inverting- ...

  4. 38 CFR 4.63 - Loss of use of hand or foot.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amputation stump at the site of election below elbow or knee with use of a suitable prosthetic appliance. The... case of the foot, could be accomplished equally well by an amputation stump with prosthesis. (a...

  5. 38 CFR 4.63 - Loss of use of hand or foot.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amputation stump at the site of election below elbow or knee with use of a suitable prosthetic appliance. The... case of the foot, could be accomplished equally well by an amputation stump with prosthesis. (a...

  6. Towards control of dexterous hand manipulations using a silicon Pattern Generator.

    PubMed

    Russell, Alexander; Tenore, Francesco; Singhal, Girish; Thakor, Nitish; Etienne-Cummings, Ralph

    2008-01-01

    This work demonstrates how an in silico Pattern Generator (PG) can be used as a low power control system for rhythmic hand movements in an upper-limb prosthesis. Neural spike patterns, which encode rotation of a cylindrical object, were implemented in a custom Very Large Scale Integration chip. PG control was tested by using the decoded control signals to actuate the fingers of a virtual prosthetic arm. This system provides a framework for prototyping and controlling dexterous hand manipulation tasks in a compact and efficient solution.

  7. Hybrid force-velocity sliding mode control of a prosthetic hand.

    PubMed

    Engeberg, Erik D; Meek, Sanford G; Minor, Mark A

    2008-05-01

    Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme can further improve the functionality of hand prostheses. Experimental results indicate that the sliding mode controller with force, position, and velocity feedback is less prone to unwanted force overshoot when initially grasping objects than the other controllers.

  8. An extremely lightweight fingernail worn prosthetic interface device

    NASA Astrophysics Data System (ADS)

    Yetkin, Oguz; Ahluwalia, Simranjit; Silva, Dinithi; Kasi-Okonye, Isioma; Volker, Rachael; Baptist, Joshua R.; Popa, Dan O.

    2016-05-01

    Upper limb prosthetics are currently operated using several electromyography sensors mounted on an amputee's residual limb. In order for any prosthetic driving interface to be widely adopted, it needs to be responsive, lightweight, and out of the way when not being used. In this paper we discuss the possibility of replacing such electrodes with fingernail optical sensor systems mounted on the sound limb. We present a prototype device that can detect pinch gestures and communicate with the prosthetic system. The device detects the relative position of fingers to each other by measuring light transmitted via tissue. Applications are not limited to prosthetic control, but can be extended to other human-machine interfaces.

  9. A computational method for comparing the behavior and possible failure of prosthetic implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, C.; Hollerbach, K.; Perfect, S.

    1995-05-01

    Prosthetic joint implants currently in use exhibit high Realistic computer modeling of prosthetic implants provides an opportunity for orthopedic biomechanics researchers and physicians to understand possible in vivo failure modes, without having to resort to lengthy and costly clinical trials. The research presented here is part of a larger effort to develop realistic models of implanted joint prostheses. The example used here is the thumb carpo-metacarpal (cmc) joint. The work, however, can be applied to any other human joints for which prosthetic implants have been designed. Preliminary results of prosthetic joint loading, without surrounding human tissue (i.e., simulating conditions undermore » which the prosthetic joint has not yet been implanted into the human joint), are presented, based on a three-dimensional, nonlinear finite element analysis of three different joint implant designs.« less

  10. Real-time, ultrasound-based control of a virtual hand by a trans-radial amputee.

    PubMed

    Baker, Clayton A; Akhlaghi, Nima; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha

    2016-08-01

    Advancements in multiarticulate upper-limb prosthetics have outpaced the development of intuitive, non-invasive control mechanisms for implementing them. Surface electromyography is currently the most popular non-invasive control method, but presents a number of drawbacks including poor deep-muscle specificity. Previous research established the viability of ultrasound imaging as an alternative means of decoding movement intent, and demonstrated the ability to distinguish between complex grasps in able-bodied subjects via imaging of the anterior forearm musculature. In order to translate this work to clinical viability, able-bodied testing is insufficient. Amputation-induced changes in muscular geometry, dynamics, and imaging characteristics are all likely to influence the effectiveness of our existing techniques. In this work, we conducted preliminary trials with a transradial amputee participant to assess these effects, and potentially elucidate necessary refinements to our approach. Two trials were performed, the first using a set of three motion types, and the second using four. After a brief training period in each trial, the participant was able to control a virtual prosthetic hand in real-time; attempted grasps were successfully classified with a rate of 77% in trial 1, and 71% in trial 2. While the results are sub-optimal compared to our previous able-bodied testing, they are a promising step forward. More importantly, the data collected during these trials can provide valuable information for refining our image processing methods, especially via comparison to previously acquired data from able-bodied individuals. Ultimately, further work with amputees is a necessity for translation towards clinical application.

  11. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    PubMed Central

    Kuiken, Todd A; Hargrove, Levi J

    2014-01-01

    Objective Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main Results Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. PMID:25394366

  12. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2014-12-01

    Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts’ Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts’ Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.

  13. A 'rubber-hand' illusion reveals a relationship between perceptual body image and unhealthy body change.

    PubMed

    Mussap, Alexander J; Salton, Nancy

    2006-07-01

    The 'rubber-hand' illusion, in which individuals misattribute tactile sensations felt by their hand to a rubber prosthetic hand that they see being stimulated, was employed to examine the relationship between perceptual body image and unhealthy body change in 128 volunteers. Variance in unhealthy body development in males (22%) and in bulimic symptomatology in both females and males (10%), was explained by susceptibility to the illusion. The illusion, which is relatively free from cognitive and emotional 'contamination', could be used to identify individuals most responsive to therapies designed to correct inaccurate body perceptions-individuals whose perceptual body image is malleable.

  14. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.

    PubMed

    Gonzalez, Jose; Soma, Hirokazu; Sekine, Masashi; Yu, Wenwei

    2012-06-09

    Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user's mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject's EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual "pop-out" or enhance effect. Also, the NASA TLX, the EEG's Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications.

  15. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation.

    PubMed

    Sun, Wentao; Zhu, Jinying; Jiang, Yinlai; Yokoi, Hiroshi; Huang, Qiang

    2018-01-01

    Estimating muscle force by surface electromyography (sEMG) is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs) in two steps: (1) learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2) extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  16. Periprosthetic Joint Infections: Clinical and Bench Research

    PubMed Central

    Legout, Laurence; Senneville, Eric

    2013-01-01

    Prosthetic joint infection is a devastating complication with high morbidity and substantial cost. The incidence is low but probably underestimated. Despite a significant basic and clinical research in this field, many questions concerning the definition of prosthetic infection as well the diagnosis and the management of these infections remained unanswered. We review the current literature about the new diagnostic methods, the management and the prevention of prosthetic joint infections. PMID:24288493

  17. Smart Sensing and Dynamic Fitting for Enhanced Comfort and Performance of Prosthetics

    DTIC Science & Technology

    2017-10-01

    studying microstrip resonators for bio- impedance measurement. For actuation, we have 1) improved and de -bugged the prosthetic interface control ...studying microstrip resonators for bio‐impedance measurement. For actuation, we have 1) improved and de -bugged the prosthetic interface control ...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  18. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?

    PubMed Central

    Merad, Manelle; de Montalivet, Étienne; Touillet, Amélie; Martinet, Noël; Roby-Brami, Agnès; Jarrassé, Nathanaël

    2018-01-01

    Most transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can lead to an intuitive and natural prosthetic control. PMID:29456499

  19. Current standard rules of combined anteversion prevent prosthetic impingement but ignore osseous contact in total hip arthroplasty.

    PubMed

    Weber, Markus; Woerner, Michael; Craiovan, Benjamin; Voellner, Florian; Worlicek, Michael; Springorum, Hans-Robert; Grifka, Joachim; Renkawitz, Tobias

    2016-12-01

    In this prospective study of 135 patients undergoing cementless total hip arthroplasty (THA) we asked whether six current definitions of combined anteversion prevent impingement and increase postoperative patient individual impingement-free range-of-motion (ROM). Implant position was measured by an independent, external institute on 3D-CT performed six weeks post-operatively. Post-operative ROM was calculated using a CT-based algorithm detecting osseous and/or prosthetic impingement by virtual hip movement. Additionally, clinical ROM was evaluated pre-operatively and one-year post-operatively by a blinded observer. Combined component position of cup and stem according to the definitions of Ranawat, Widmer, Dorr, Hisatome and Yoshimine inhibited prosthetic impingement in over 90 %, while combined osseous and prosthetic impingement still occurred in over 40 % of the cases. The recommendations by Jolles, Widmer, Dorr, Yoshimine and Hisatome enabled higher flexion (p ≤ 0.001) and internal rotation (p ≤ 0.006). Clinically, anteversion rules of Widmer and Yoshimine provided one-year post-operatively statistically but not clinically relevant higher internal rotation (p ≤0.034). Standard rules of combined anteversion detect prosthetic but fail to prevent combined osseous and prosthetic impingement in THA. Future models will have to account for the patient-individual anatomic situation to ensure impingement-free ROM.

  20. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.

    PubMed

    Engdahl, Susannah M; Christie, Breanne P; Kelly, Brian; Davis, Alicia; Chestek, Cynthia A; Gates, Deanna H

    2015-06-13

    Novel techniques for the control of upper limb prostheses may allow users to operate more complex prostheses than those that are currently available. Because many of these techniques are surgically invasive, it is important to understand whether individuals with upper limb loss would accept the associated risks in order to use a prosthesis. An online survey of individuals with upper limb loss was conducted. Participants read descriptions of four prosthetic control techniques. One technique was noninvasive (myoelectric) and three were invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces). Participants rated how likely they were to try each technique if it offered each of six different functional features. They also rated their general interest in each of the six features. A two-way repeated measures analysis of variance with Greenhouse-Geisser corrections was used to examine the effect of the technique type and feature on participants' interest in each technique. Responses from 104 individuals were analyzed. Many participants were interested in trying the techniques - 83 % responded positively toward myoelectric control, 63 % toward targeted muscle reinnervation, 68 % toward peripheral nerve interfaces, and 39 % toward cortical interfaces. Common concerns about myoelectric control were weight, cost, durability, and difficulty of use, while the most common concern about the invasive techniques was surgical risk. Participants expressed greatest interest in basic prosthesis features (e.g., opening and closing the hand slowly), as opposed to advanced features like fine motor control and touch sensation. The results of these investigations may be used to inform the development of future prosthetic technologies that are appealing to individuals with upper limb loss.

  1. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants - a review of recent progress.

    PubMed

    Rothschild, Ryan Mark

    2010-01-01

    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.

  2. Neuroengineering Tools/Applications for Bidirectional Interfaces, Brain–Computer Interfaces, and Neuroprosthetic Implants – A Review of Recent Progress

    PubMed Central

    Rothschild, Ryan Mark

    2010-01-01

    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain–computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques. PMID:21060801

  3. Silicone Molding and Lifetime Testing of Peripheral Nerve Interfaces for Neuroprostheses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupte, Kimaya; Tolosa, Vanessa

    Implantable peripheral nerve cuffs have a large application in neuroprostheses as they can be used to restore sensation to those with upper limb amputations. Modern day prosthetics, while lessening the pain associated with phantom limb syndrome, have limited fine motor control and do not provide sensory feedback to patients. Sensory feedback with prosthetics requires communication between the nervous system and limbs, and is still a challenge to accomplish with amputees. Establishing this communication between the peripheral nerves in the arm and artificial limbs is vital as prosthetics research aims to provide sensory feedback to amputees. Peripheral nerve cuffs restore sensationmore » by electrically stimulating certain parts of the nerve in order to create feeling in the hand. Cuff electrodes have an advantage over standard electrodes as they have high selective stimulation by bringing the electrical interface close to the neural tissue in order to selectively activate targeted regions of a peripheral nerve. In order to further improve the selective stimulation of these nerve cuffs, there is need for finer spatial resolution among electrodes. One method to achieve a higher spatial resolution is to increase the electrode density on the cuff itself. Microfabrication techniques can be used to achieve this higher electrode density. Using L-Edit, a layout editor, microfabricated peripheral nerve cuffs were designed with a higher electrode density than the current model. This increase in electrode density translates to an increase in spatial resolution by at least one order of magnitude. Microfabricated devices also have two separate components that are necessary to understand before implantation: lifetime of the device and assembly to prevent nerve damage. Silicone molding procedures were optimized so that devices do not damage nerves in vivo, and lifetime testing was performed on test microfabricated devices to determine their lifetime in vivo. Future work of this project would include fabricating some of the designed devices and seeing how they compare to the current cuffs in terms of their electrical performance, lifetime, shape, and mechanical properties.« less

  4. State-space control of prosthetic hand shape.

    PubMed

    Velliste, M; McMorland, A J C; Diril, E; Clanton, S T; Schwartz, A B

    2012-01-01

    In the field of neuroprosthetic control, there is an emerging need for simplified control of high-dimensional devices. Advances in robotic technology have led to the development of prosthetic arms that now approach the look and number of degrees of freedom (DoF) of a natural arm. These arms, and especially hands, now have more controllable DoFs than the number of control DoFs available in many applications. In natural movements, high correlations exist between multiple joints, such as finger flexions. Therefore, discrepancy between the number of control and effector DoFs can be overcome by a control scheme that maps low-DoF control space to high-DoF joint space. Imperfect effectors, sensor noise and interactions with external objects require the use of feedback controllers. The incorporation of feedback in a system where the command is in a different space, however, is challenging, requiring a potentially difficult inverse high-DoF to low-DoF transformation. Here we present a solution to this problem based on the Extended Kalman Filter.

  5. Prosthetic helping hand

    NASA Technical Reports Server (NTRS)

    Vest, Thomas W. (Inventor); Carden, James R. (Inventor); Norton, William E. (Inventor); Belcher, Jewell G. (Inventor)

    1992-01-01

    A prosthetic device for below-the-elbow amputees, having a C-shaped clamping mechanism for grasping cylindrical objects, is described. The clamping mechanism is pivotally mounted to a cuff that fits on the amputee's lower arm. The present invention is utilized by placing an arm that has been amputated below the elbow into the cuff. The clamping mechanism then serves as a hand whenever it becomes necessary for the amputee to grasp a cylindrical object such as a handle, a bar, a rod, etc. To grasp the cylindrical object, the object is jammed against the opening in the C-shaped spring, causing the spring to open, the object to pass to the center of the spring, and the spring to snap shut behind the object. Various sizes of clamping mechanisms can be provided and easily interchanged to accommodate a variety of diameters. With the extension that pivots and rotates, the clamping mechanism can be used in a variety of orientations. Thus, this invention provides the amputee with a clamping mechanism that can be used to perform a number of tasks.

  6. Rehabilitation regimes based upon psychophysical studies of prosthetic vision

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Suaning, G. J.; Morley, J. W.; Lovell, N. H.

    2009-06-01

    Human trials of prototype visual prostheses have successfully elicited visual percepts (phosphenes) in the visual field of implant recipients blinded through retinitis pigmentosa and age-related macular degeneration. Researchers are progressing rapidly towards a device that utilizes individual phosphenes as the elementary building blocks to compose a visual scene. This form of prosthetic vision is expected, in the near term, to have low resolution, large inter-phosphene gaps, distorted spatial distribution of phosphenes, restricted field of view, an eccentrically located phosphene field and limited number of expressible luminance levels. In order to fully realize the potential of these devices, there needs to be a training and rehabilitation program which aims to assist the prosthesis recipients to understand what they are seeing, and also to adapt their viewing habits to optimize the performance of the device. Based on the literature of psychophysical studies in simulated and real prosthetic vision, this paper proposes a comprehensive, theoretical training regime for a prosthesis recipient: visual search, visual acuity, reading, face/object recognition, hand-eye coordination and navigation. The aim of these tasks is to train the recipients to conduct visual scanning, eccentric viewing and reading, discerning low-contrast visual information, and coordinating bodily actions for visual-guided tasks under prosthetic vision. These skills have been identified as playing an important role in making prosthetic vision functional for the daily activities of their recipients.

  7. Mechanical Properties and Simulated Aging of Silicone Maxillofacial Elastomers: Advancements in the Past 45 Years.

    PubMed

    Hatamleh, Muhanad M; Polyzois, Gregory L; Nuseir, Amjad; Hatamleh, Khaldoun; Alnazzawi, Ahmad

    2016-07-01

    To identify and discuss the findings of publications on mechanical behavior of maxillofacial prosthetic materials published since 1969. Original experimental articles reporting on mechanical properties of maxillofacial prosthetic materials were included. A two-stage search of the literature, electronic and hand search, identified relevant published studies up to May 2015. An extensive electronic search was conducted of databases including PubMed, Embase, Scopus, and Google Scholar. Included primary studies (n = 63) reported on tensile strength, tear strength, and hardness of maxillofacial prosthetic materials at baseline and after aging. The search revealed 63 papers, with more than 28 papers being published in the past 10 years, which shows an increased number of publications when compared to only 6 papers published in the 1970s. The increase is linear with significant correlation (r = 0.85). Such an increase reflects great awareness and continued developments and warrants more research in the field of maxillofacial prosthetic materials properties; however, it is difficult to directly compare results, as studies varied in maxillofacial prosthetic materials tested with various silicone elastomers being heavily investigated, standards followed in preparing test specimens, experimental testing protocols, and parameters used in setting simulated aging conditionings. It is imperative to overcome the existing variability by establishing unified national or international standards/specifications for maxillofacial prosthetic materials. Standardization organizations or bodies, the scientific community, and academia need to be coordinated to achieve this goal. In the meantime and despite all of these theoretically significant alternatives, clinical practice still faces problems with serviceability of maxillofacial prostheses. © 2016 by the American College of Prosthodontists.

  8. Attachment systems for mandibular implant overdentures: a systematic review

    PubMed Central

    Kim, Ha-Young; Lee, Jeong-Yol; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review was to address treatment outcome according to attachment systems for mandibular implant overdentures in terms of implant survival rate, prosthetic maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted using PubMed and hand searching of relevant journals considering inclusion and exclusion criteria. Clinical trial studies on mandibular implant overdentures until August, 2010 were selected if more than one type of overdenture attachment was reported. Twenty four studies from 1098 studies were finally included and the data on implant survival rate, prosthetic maintenance and complications, patient satisfaction were analyzed relative to attachment systems. RESULTS Four studies presented implant survival rates (95.8 - 97.5% for bar, 96.2 - 100% for ball, 91.7% for magnet) according to attachment system. Ten other studies presented an implant survival rate ranging from 93.3% to 100% without respect to the attachment groups. Common prosthetic maintenance and complications were replacement of an assay for magnet attachments, and activation of a matrix or clip for ball or bar attachments. Prosthetic maintenance and complications most commonly occurred in the magnet groups. Conflicting findings were found on the rate of prosthetic maintenance and complications comparing ball and bar attachments. Most studies showed no significant differences in patient satisfaction depending upon attachment systems. CONCLUSION The implant survival rate of mandibular overdentures seemed to be high regardless attachment systems. The prosthetic maintenance and complications may be influenced by attachment systems. However patient satisfaction may be independent of the attachment system. PMID:23236571

  9. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.

    PubMed

    Witteveen, Heidi J B; Rietman, Hans S; Veltink, Peter H

    2015-06-01

    User feedback about grasping force and hand aperture is very important in object handling with myoelectric forearm prostheses but is lacking in current prostheses. Vibrotactile feedback increases the performance of healthy subjects in virtual grasping tasks, but no extensive validation on potential users has been performed. Investigate the performance of upper-limb loss subjects in grasping tasks with vibrotactile stimulation, providing hand aperture, and grasping force feedback. Cross-over trial. A total of 10 subjects with upper-limb loss performed virtual grasping tasks while perceiving vibrotactile feedback. Hand aperture feedback was provided through an array of coin motors and grasping force feedback through a single miniature stimulator or an array of coin motors. Objects with varying sizes and weights had to be grasped by a virtual hand. Percentages correctly applied hand apertures and correct grasping force levels were all higher for the vibrotactile feedback condition compared to the no-feedback condition. With visual feedback, the results were always better compared to the vibrotactile feedback condition. Task durations were comparable for all feedback conditions. Vibrotactile grasping force and hand aperture feedback improves grasping performance of subjects with upper-limb loss. However, it should be investigated whether this is of additional value in daily-life tasks. This study is a first step toward the implementation of sensory vibrotactile feedback for users of myoelectric forearm prostheses. Grasping force feedback is crucial for optimal object handling, and hand aperture feedback is essential for reduction of required visual attention. Grasping performance with feedback is evaluated for the potential users. © The International Society for Prosthetics and Orthotics 2014.

  10. Ergonomic workplace assessment in orthotic and prosthetic workshops.

    PubMed

    Salmani Nodooshan, H; Koohi Booshehri, S; Daneshmandi, H; Choobineh, A R

    2016-10-17

    In Iranian orthotic and prosthetic workshops, the majority of activities are carried out by manpower and the tasks are labor-intensive. In these workshops, ergonomic aspects of working conditions are seldom considered. This study was conducted in orthotic and prosthetic workshops with the objectives of determination of prevalence rate of MSDs among employees and assessment of ergonomics working conditions. In this cross-sectional study, all employees (n = 42; 29 males and 13 females) in 11 active orthotic and prosthetic production centers of Shiraz city participated. Data were collected using Nordic Musculoskeletal disorders Questionnaire (NMQ) and observational technique by an ergonomics checklist for assessment of working conditions. The means (SD) of age and job tenure (years) in the study individuals were 37.26 (10.21) and 12.8 (9.39), respectively. The most prevalent MSD symptoms in the past 12 months were reported in the lower back (42.9%), shoulders (40.5%) and knees (40.5%). Working conditions assessment showed that the main ergonomic problems in the workshops studied originated from awkward working posture, improper workstation design, poorly designed hand tools and incorrect manual material handling. Any interventional program for working conditions improvement should, therefore, focus on these areas.

  11. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole

    2012-04-01

    The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. High-performance neuroprosthetic control by an individual with tetraplegia.

    PubMed

    Collinger, Jennifer L; Wodlinger, Brian; Downey, John E; Wang, Wei; Tyler-Kabara, Elizabeth C; Weber, Douglas J; McMorland, Angus J C; Velliste, Meel; Boninger, Michael L; Schwartz, Andrew B

    2013-02-16

    Paralysis or amputation of an arm results in the loss of the ability to orient the hand and grasp, manipulate, and carry objects, functions that are essential for activities of daily living. Brain-machine interfaces could provide a solution to restoring many of these lost functions. We therefore tested whether an individual with tetraplegia could rapidly achieve neurological control of a high-performance prosthetic limb using this type of an interface. We implanted two 96-channel intracortical microelectrodes in the motor cortex of a 52-year-old individual with tetraplegia. Brain-machine-interface training was done for 13 weeks with the goal of controlling an anthropomorphic prosthetic limb with seven degrees of freedom (three-dimensional translation, three-dimensional orientation, one-dimensional grasping). The participant's ability to control the prosthetic limb was assessed with clinical measures of upper limb function. This study is registered with ClinicalTrials.gov, NCT01364480. The participant was able to move the prosthetic limb freely in the three-dimensional workspace on the second day of training. After 13 weeks, robust seven-dimensional movements were performed routinely. Mean success rate on target-based reaching tasks was 91·6% (SD 4·4) versus median chance level 6·2% (95% CI 2·0-15·3). Improvements were seen in completion time (decreased from a mean of 148 s [SD 60] to 112 s [6]) and path efficiency (increased from 0·30 [0·04] to 0·38 [0·02]). The participant was also able to use the prosthetic limb to do skilful and coordinated reach and grasp movements that resulted in clinically significant gains in tests of upper limb function. No adverse events were reported. With continued development of neuroprosthetic limbs, individuals with long-term paralysis could recover the natural and intuitive command signals for hand placement, orientation, and reaching, allowing them to perform activities of daily living. Defense Advanced Research Projects Agency, National Institutes of Health, Department of Veterans Affairs, and UPMC Rehabilitation Institute. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Transplants for non-lethal conditions: a case against hand transplantation in minors.

    PubMed

    Hedges, Charles E; Rosoff, Philip M

    2018-06-14

    Human allografts for life-threatening organ failure have been demonstrated to be lifesaving and are now considered to be standard of care for many conditions. Transplantation of non-vital anatomic body parts has also been accomplished. Hand transplantation after limb loss in adults has been shown to offer some promising benefits in both functional and psychological measures in preliminary studies. It has been suggested to expand eligibility criteria to include minors, with one such operation having already been performed. With this in mind, we examine the current state of hand transplantation research in the context of available alternatives. We examine the ethics of carrying out these operations in minors, including under the protections of clinical research. We argue that children should not be considered for this surgery due to the substantial risks of immunosuppressive medication, the likelihood that the graft will need to be replaced during the patient's lifetime and the lack of significant compensatory advantages over modern prosthetics. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. A global perspective on mechanical prosthetic heart valve thrombosis: Diagnostic and therapeutic challenges

    PubMed Central

    Gürsoy, Mustafa Ozan; Kalçık, Macit; Yesin, Mahmut; Karakoyun, Süleyman; Bayam, Emrah; Gündüz, Sabahattin; Özkan, Mehmet

    2016-01-01

    Prosthetic valve thrombosis is one of the major causes of primary valve failure, which can be life-threatening. Multimodality imaging is necessary for determination of leaflet immobilization, cause of underlying pathology (thrombus versus pannus or both), and whether thrombolytic therapy attempt in the patient would be successful or surgery is needed. Current guidelines for the management of prosthetic valve thrombosis lack definitive class I recommendations due to lack of randomized controlled trials, and usually leave the choice of treatment to the clinician’s experience. In this review, we aimed to summarize the pathogenesis, diagnosis, and management of mechanical prosthetic valve thrombosis. PMID:28005024

  15. Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    NASA Technical Reports Server (NTRS)

    Roberson, Luke Bennett

    2014-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa

  16. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.

    PubMed

    Matrone, Giulia C; Cipriani, Christian; Carrozza, Maria Chiara; Magenes, Giovanni

    2012-06-15

    In spite of the advances made in the design of dexterous anthropomorphic hand prostheses, these sophisticated devices still lack adequate control interfaces which could allow amputees to operate them in an intuitive and close-to-natural way. In this study, an anthropomorphic five-fingered robotic hand, actuated by six motors, was used as a prosthetic hand emulator to assess the feasibility of a control approach based on Principal Components Analysis (PCA), specifically conceived to address this problem. Since it was demonstrated elsewhere that the first two principal components (PCs) can describe the whole hand configuration space sufficiently well, the controller here employed reverted the PCA algorithm and allowed to drive a multi-DoF hand by combining a two-differential channels EMG input with these two PCs. Hence, the novelty of this approach stood in the PCA application for solving the challenging problem of best mapping the EMG inputs into the degrees of freedom (DoFs) of the prosthesis. A clinically viable two DoFs myoelectric controller, exploiting two differential channels, was developed and twelve able-bodied participants, divided in two groups, volunteered to control the hand in simple grasp trials, using forearm myoelectric signals. Task completion rates and times were measured. The first objective (assessed through one group of subjects) was to understand the effectiveness of the approach; i.e., whether it is possible to drive the hand in real-time, with reasonable performance, in different grasps, also taking advantage of the direct visual feedback of the moving hand. The second objective (assessed through a different group) was to investigate the intuitiveness, and therefore to assess statistical differences in the performance throughout three consecutive days. Subjects performed several grasp, transport and release trials with differently shaped objects, by operating the hand with the myoelectric PCA-based controller. Experimental trials showed that the simultaneous use of the two differential channels paradigm was successful. This work demonstrates that the proposed two-DoFs myoelectric controller based on PCA allows to drive in real-time a prosthetic hand emulator into different prehensile patterns with excellent performance. These results open up promising possibilities for the development of intuitive, effective myoelectric hand controllers.

  17. Tactile Sensing Reflexes for Advanced Prosthetic Hands

    DTIC Science & Technology

    2016-10-01

    mos.) 100% • Design and build “mechanical egg ” test equipment (1-2 mos.) (Abandoned, alternate approach developed) • Develop experimental protocol...of a “mechanical egg ” or force measuring object was rejected in favor of this common cracker. Page 6 • A comprehensive bench top study was

  18. Designing for scale: development of the ReMotion Knee for global emerging markets.

    PubMed

    Hamner, Samuel R; Narayan, Vinesh G; Donaldson, Krista M

    2013-09-01

    Amputees living in developing countries have a profound need for affordable and reliable lower limb prosthetic devices. The World Health Organization estimates there are approximately 30 million amputees living in low-income countries, with up to 95% lacking access to prosthetic devices. Effective prosthetics can significantly affect the lives of these amputees by increasing opportunity for employment and providing improvements to long-term health and well-being. However, current solutions are inadequate: state-of-the-art solutions from the US and Europe are cost-prohibitive, while low-cost devices have been challenged by poor quality and/or unreliable performance, and have yet to achieve large scale impact. The introduction of new devices is hampered by the lack of a cohesive prosthetics industry in low-income areas; the current network of low-cost prosthetic clinics is informal and loosely organized with significant disparities in geography, patient volume and demographics, device procurement, clinical and logistical infrastructure, and funding. At D-Rev (Design Revolution) we are creating the ReMotion Knee, which is an affordable polycentric prosthetic knee joint that performs on par with devices in more industrialized regions, like the US and Europe. As of September 2012, over 4200 amputees have been fitted with the initial version of the ReMotion Knee through a partnership with the JaipurFoot Organization, with an 79% compliance rate after 2 years. We are currently scaling production of the ReMotion Knee using centralized manufacturing and distribution to serve the existing clinics in low-income countries and increase the availability of devices for amputees without access to appropriate care. At D-Rev, we develop products that target these customers through economically-sustainable models and provide a measurable impact in the lives of the world's amputees.

  19. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    NASA Astrophysics Data System (ADS)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  20. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN

    PubMed Central

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method. PMID:28713231

  1. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN.

    PubMed

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method.

  2. Recent advancements in prosthetic hand technology.

    PubMed

    Saikia, Angana; Mazumdar, Sushmi; Sahai, Nitin; Paul, Sudip; Bhatia, Dinesh; Verma, Suresh; Rohilla, Punit Kumar

    2016-07-01

    Recently, significant advances over the past decade have been made in robotics, artificial intelligence and other cognitive related fields, allowing development of highly sophisticated bio-mimetic robotics systems. In addition, enormous number of robots have been designed and assembled by explicitly realising their biological oriented behaviours. To enhance skill behaviours and adequate grasping abilities in these devices, a new phase of dexterous hands has been developed recently with bio-mimetically oriented and bio-inspired functionalities. The aim in writing this review paper is to present a detailed insight towards the development of the bio-mimetic based dexterous robotic multi-fingered artificial hand. An "ideal" upper limb prosthesis should be perceived as a part of their natural body by the amputee and should replicate sensory-motor capabilities of the amputated limb. Upper-limb amputations are most often the result of sudden trauma to the body, although they also can be caused by malignancy, congenital deficiencies and vascular diseases. This paper discusses the different bio-mimetic approaches using a framework that permits for a common description of biological and technical based hand manipulation behaviour. In particular, the review focuses on a number of developments in the inspired robotic systems. In conclusion, the study found that a huge amount of research efforts in terms of kinematics, dynamics, modelling and control methodologies are being put in to improve the present hand technology, thereby providing more functionality to the prosthetic limb of the amputee. This would improve their quality-of-life and help in performing activities of daily living (ADL) tasks with comparative ease in the near future.

  3. Slip speed feedback for grip force control.

    PubMed

    Damian, D D; Arita, A H; Martinez, H; Pfeifer, R

    2012-08-01

    Grasp stability in the human hand has been resolved by means of an intricate network of mechanoreceptors integrating numerous cues about mechanical events, through an ontogenetic grasp practice. An engineered prosthetic interface introduces considerable perturbation risks in grasping, calling for feedback modalities that address the underlying slip phenomenon. In this study, we propose an enhanced slip feedback modality, with potential for myoelectric-based prosthetic applications, that relays information regarding slip events, particularly slip occurrence and slip speed. The proposed feedback modality, implemented using electrotactile stimulation, was evaluated in psychophysical studies of slip control in a simplified setup. The obtained results were compared with vision and a binary slip feedback that transmits on-off information about slip detection. The slip control efficiency of the slip speed display is comparable to that obtained with vision feedback, and it clearly outperforms the efficiency of the on-off slip modality in such tasks. These results suggest that the proposed tactile feedback is a promising sensory method for the restoration of stable grasp in prosthetic applications.

  4. Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.

    PubMed

    Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H

    2014-01-01

    The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.

  5. The role of vision processing in prosthetic vision.

    PubMed

    Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette

    2012-01-01

    Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.

  6. Using computed tomography and 3D printing to construct custom prosthetics attachments and devices.

    PubMed

    Liacouras, Peter C; Sahajwalla, Divya; Beachler, Mark D; Sleeman, Todd; Ho, Vincent B; Lichtenberger, John P

    2017-01-01

    The prosthetic devices the military uses to restore function and mobility to our wounded warriors are highly advanced, and in many instances not publically available. There is considerable research aimed at this population of young patients who are extremely active and desire to take part in numerous complex activities. While prosthetists design and manufacture numerous devices with standard materials and limb assemblies, patients often require individualized prosthetic design and/or modifications to enable them to participate fully in complex activities. Prosthetists and engineers perform research and implement digitally designs in collaboration to generate equipment for their patient's rehabilitation needs. 3D printing allows for these devices to be manufactured from an array of materials ranging from plastic to titanium alloy. Many designs require form fitting to a prosthetic socket or a complex surface geometry. Specialty items can be scanned using computed tomography and digitally reconstructed to produce a virtual 3D model the engineer can use to design the necessary features of the desired prosthetic, device, or attachment. Completed devices are tested for fit and function. Numerous custom prostheses and attachments have been successfully translated from the research domain to clinical reality, in particular, those that feature the use of computed tomography (CT) reconstructions. The purpose of this project is to describe the research pathways to implementation for the following clinical designs: sets of bilateral hockey skates; custom weightlifting prosthetic hands; and a wine glass holder. This article will demonstrate how to incorporate CT imaging and 3D printing in the design and manufacturing process of custom attachments and assistive technology devices. Even though some of these prosthesis attachments may be relatively simple in design to an engineer, they have an enormous impact on the lives of our wounded warriors.

  7. Restoring the sense of touch with a prosthetic hand through a brain interface.

    PubMed

    Tabot, Gregg A; Dammann, John F; Berg, Joshua A; Tenore, Francesco V; Boback, Jessica L; Vogelstein, R Jacob; Bensmaia, Sliman J

    2013-11-05

    Our ability to manipulate objects dexterously relies fundamentally on sensory signals originating from the hand. To restore motor function with upper-limb neuroprostheses requires that somatosensory feedback be provided to the tetraplegic patient or amputee. Given the complexity of state-of-the-art prosthetic limbs and, thus, the huge state space they can traverse, it is desirable to minimize the need for the patient to learn associations between events impinging on the limb and arbitrary sensations. Accordingly, we have developed approaches to intuitively convey sensory information that is critical for object manipulation--information about contact location, pressure, and timing--through intracortical microstimulation of primary somatosensory cortex. In experiments with nonhuman primates, we show that we can elicit percepts that are projected to a localized patch of skin and that track the pressure exerted on the skin. In a real-time application, we demonstrate that animals can perform a tactile discrimination task equally well whether mechanical stimuli are delivered to their native fingers or to a prosthetic one. Finally, we propose that the timing of contact events can be signaled through phasic intracortical microstimulation at the onset and offset of object contact that mimics the ubiquitous on and off responses observed in primary somatosensory cortex to complement slowly varying pressure-related feedback. We anticipate that the proposed biomimetic feedback will considerably increase the dexterity and embodiment of upper-limb neuroprostheses and will constitute an important step in restoring touch to individuals who have lost it.

  8. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study

    PubMed Central

    2012-01-01

    Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual “pop-out” or enhance effect. Also, the NASA TLX, the EEG’s Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications. PMID:22682425

  9. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves.

    PubMed

    Davis, T S; Wark, H A C; Hutchinson, D T; Warren, D J; O'Neill, K; Scheinblum, T; Clark, G A; Normann, R A; Greger, B

    2016-06-01

    An important goal of neuroprosthetic research is to establish bidirectional communication between the user and new prosthetic limbs that are capable of controlling >20 different movements. One strategy for achieving this goal is to interface the prosthetic limb directly with efferent and afferent fibres in the peripheral nervous system using an array of intrafascicular microelectrodes. This approach would provide access to a large number of independent neural pathways for controlling high degree-of-freedom prosthetic limbs, as well as evoking multiple-complex sensory percepts. Utah Slanted Electrode Arrays (USEAs, 96 recording/stimulating electrodes) were implanted for 30 days into the median (Subject 1-M, 31 years post-amputation) or ulnar (Subject 2-U, 1.5 years post-amputation) nerves of two amputees. Neural activity was recorded during intended movements of the subject's phantom fingers and a linear Kalman filter was used to decode the neural data. Microelectrode stimulation of varying amplitudes and frequencies was delivered via single or multiple electrodes to investigate the number, size and quality of sensory percepts that could be evoked. Device performance over time was assessed by measuring: electrode impedances, signal-to-noise ratios (SNRs), stimulation thresholds, number and stability of evoked percepts. The subjects were able to proportionally, control individual fingers of a virtual robotic hand, with 13 different movements decoded offline (r = 0.48) and two movements decoded online. Electrical stimulation across one USEA evoked >80 sensory percepts. Varying the stimulation parameters modulated percept quality. Devices remained intrafascicularly implanted for the duration of the study with no significant changes in the SNRs or percept thresholds. This study demonstrated that an array of 96 microelectrodes can be implanted into the human peripheral nervous system for up to 1 month durations. Such an array could provide intuitive control of a virtual prosthetic hand with broad sensory feedback.

  10. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves

    NASA Astrophysics Data System (ADS)

    Davis, T. S.; Wark, H. A. C.; Hutchinson, D. T.; Warren, D. J.; O'Neill, K.; Scheinblum, T.; Clark, G. A.; Normann, R. A.; Greger, B.

    2016-06-01

    Objective. An important goal of neuroprosthetic research is to establish bidirectional communication between the user and new prosthetic limbs that are capable of controlling >20 different movements. One strategy for achieving this goal is to interface the prosthetic limb directly with efferent and afferent fibres in the peripheral nervous system using an array of intrafascicular microelectrodes. This approach would provide access to a large number of independent neural pathways for controlling high degree-of-freedom prosthetic limbs, as well as evoking multiple-complex sensory percepts. Approach. Utah Slanted Electrode Arrays (USEAs, 96 recording/stimulating electrodes) were implanted for 30 days into the median (Subject 1-M, 31 years post-amputation) or ulnar (Subject 2-U, 1.5 years post-amputation) nerves of two amputees. Neural activity was recorded during intended movements of the subject’s phantom fingers and a linear Kalman filter was used to decode the neural data. Microelectrode stimulation of varying amplitudes and frequencies was delivered via single or multiple electrodes to investigate the number, size and quality of sensory percepts that could be evoked. Device performance over time was assessed by measuring: electrode impedances, signal-to-noise ratios (SNRs), stimulation thresholds, number and stability of evoked percepts. Main results. The subjects were able to proportionally, control individual fingers of a virtual robotic hand, with 13 different movements decoded offline (r = 0.48) and two movements decoded online. Electrical stimulation across one USEA evoked >80 sensory percepts. Varying the stimulation parameters modulated percept quality. Devices remained intrafascicularly implanted for the duration of the study with no significant changes in the SNRs or percept thresholds. Significance. This study demonstrated that an array of 96 microelectrodes can be implanted into the human peripheral nervous system for up to 1 month durations. Such an array could provide intuitive control of a virtual prosthetic hand with broad sensory feedback.

  11. Isolated Lactobacillus chronic prosthetic knee infection.

    PubMed

    Bennett, David M; Shekhel, Tatyana; Radelet, Matt; Miller, Michael D

    2014-01-01

    Lactobacillus is a gram-positive rod bacteria found primarily in the gastrointestinal and female genital tracts. Prosthetic infections in implants are being increasingly reported. The authors present a case of a 58-year-old patient with Lactobacillus septic prosthetic knee joint infection. To the authors’ knowledge, this is the first reported case of chronic prosthetic knee infection with isolated Lactobacillus species. Lactobacillus has been most commonly implicated with bacteremia and endocarditis and rarely with pneumonia, meningitis, and endovascular infection, and a vast majority of the cases are reported in immunocompromised patients. In the current case, diabetes mellitus, hepatitis, malnutrition, anemia, and liver failure were comorbid conditions, placing the patient at increased risk of infection. The findings suggest that further case series are necessary to establish the significance of Lactobacillus as an etiologic agent in chronic low-virulence, and potentially vancomycin-resistant, prosthetic joint infection. The need also exists for further research aimed at the risk of prosthetic joint infection with oral intake of certain probiotic foods and supplements. The goal of this case report is to bring to light the potential of this organism to be a cause of subtle chronic prosthetic joint infection.

  12. Undergraduate prosthetics and orthotics teaching methods: A baseline for international comparison.

    PubMed

    Aminian, Gholamreza; O'Toole, John M; Mehraban, Afsoon Hassani

    2015-08-01

    Education of Prosthetics and Orthotics is a relatively recent professional program. While there has been some work on various teaching methods and strategies in international medical education, limited publication exists within prosthetics and orthotics. To identify the teaching and learning methods that are used in Bachelor-level prosthetics and orthotics programs that are given highest priority by expert prosthetics and orthotics instructors from regions enjoying a range of economic development. Mixed method. The study partly documented by this article utilized a mixed method approach (qualitative and quantitative methods) within which each phase provided data for other phases. It began with analysis of prosthetics and orthotics curricula documents, which was followed by a broad survey of instructors in this field and then a modified Delphi process. The expert instructors who participated in this study gave high priority to student-centered, small group methods that encourage critical thinking and may lead to lifelong learning. Instructors from more developed nations placed higher priority on student's independent acquisition of prosthetics and orthotics knowledge, particularly in clinical training. Application of student-centered approaches to prosthetics and orthotics programs may be preferred by many experts, but there appeared to be regional differences in the priority given to different teaching methods. The results of this study identify the methods of teaching that are preferred by expert prosthetics and orthotics instructors from a variety of regions. This treatment of current instructional techniques may inform instructor choice of teaching methods that impact the quality of education and improve the professional skills of students. © The International Society for Prosthetics and Orthotics 2014.

  13. The History of Nontraditional or Ectopic Placement of Reservoirs in Prosthetic Urology.

    PubMed

    Perito, Paul; Wilson, Steven

    2016-04-01

    Reservoir placement during implantation of prosthetic urology devices has been problematic throughout the history of the surgical treatment of erectile dysfunction and urinary incontinence. We thought it would be interesting to review the history of reservoir placement leading up to current surgical techniques. To provide an overview of the past and present techniques for reservoir placement and discuss the evolutionary process leading to safe and effective placement of prosthetic reservoirs. We reviewed data pertaining to inflatable penile prosthesis (IPP) reservoirs and pressure-regulating balloons (PRB) in a chronological fashion, spanning 25 years. Main outcomes included a historical review of techniques for IPP reservoir and PRB placement leading to the subsequent incremental improvements in safety and efficacy when performing penile implants and artificial urinary sphincters. Prosthetic urologic reservoirs have traditionally been placed in the retropubic space. Over the years, urologists have attempted use of alternative spaces including peritoneal, epigastric, "ectopic," posterior to transversalis, and high submuscular. Current advances in prosthetic urologic reservoir placement allow safe and effective abdominal wall placement of reservoirs. These novel approaches appear to be so effective that urologists may now be able to cease using the traditional retropubic space for reservoir placement, even in the case of virgin pelves. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  14. Image segmentation for enhancing symbol recognition in prosthetic vision.

    PubMed

    Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming

    2012-01-01

    Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.

  15. Bionic limbs: clinical reality and academic promises.

    PubMed

    Farina, Dario; Aszmann, Oskar

    2014-10-08

    Three recent articles in Science Translational Medicine (Tan et al. and Ortiz-Catalan et al., this issue; Raspopovic et al., 5 Feb 2014 issue, 222ra19) present neuroprosthetic systems in which sensory information is delivered through direct nerve stimulation while controlling an action of the prosthesis--in all three cases, arm and hand movement. We discuss such sensory-motor integration and other key issues in prosthetic reconstruction, with an emphasis on the gap existing between clinically available systems and more advanced, custom-designed academic systems. In the near future, osseointegration, implanted muscle, and nerve electrodes for decoding and stimulation may be components of prosthetic systems for clinical use, available to a large patient population. Copyright © 2014, American Association for the Advancement of Science.

  16. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    PubMed

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  17. Surface EMG and intra-socket force measurement to control a prosthetic device

    NASA Astrophysics Data System (ADS)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  18. Classification of EMG signals using artificial neural networks for virtual hand prosthesis control.

    PubMed

    Mattioli, Fernando E R; Lamounier, Edgard A; Cardoso, Alexandre; Soares, Alcimar B; Andrade, Adriano O

    2011-01-01

    Computer-based training systems have been widely studied in the field of human rehabilitation. In health applications, Virtual Reality presents itself as an appropriate tool to simulate training environments without exposing the patients to risks. In particular, virtual prosthetic devices have been used to reduce the great mental effort needed by patients fitted with myoelectric prosthesis, during the training stage. In this paper, the application of Virtual Reality in a hand prosthesis training system is presented. To achieve this, the possibility of exploring Neural Networks in a real-time classification system is discussed. The classification technique used in this work resulted in a 95% success rate when discriminating 4 different hand movements.

  19. Engineering Encounters: Creating a Prosthetic Hand

    ERIC Educational Resources Information Center

    Cook, Kristin Leigh; Bush, Sarah B.; Cox, Richard

    2015-01-01

    The power of 3D printing technology has grown exponentially in just the past few years--people around the world are using 3D printers to prepare food, create tailored clothing, build cars and homes, and advance the medical field in ways that never seemed possible. In classrooms across the nation, 3D printers have become increasingly common because…

  20. Tensile strength and impact resistance properties of materials used in prosthetic check sockets, copolymer sockets, and definitive laminated sockets.

    PubMed

    Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek M; Colvin, James M

    2011-01-01

    Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn Rigid and Orfitrans Stiff check socket materials produced significantly lower tensile strength and impact resistance than polyethylene terephthalate glycol (PETG). Copolymer socket materials exhibited greater resistance to impact forces than the check socket materials but lower tensile strengths than PETG. The heated molding processes, for the check socket and copolymer materials, reduced both tensile strength and elongation at break. Definitive laminated sockets were sorted according to fabrication techniques. Nyglass material had significantly higher elongation, indicating a more ductile material than carbon-based laminations. Carbon sockets with pigmented resin had higher tensile strength and modulus at break than nonpigmented carbon sockets. Elongation at yield and elongation at break were similar for both types of carbon-based laminations. The material properties determined in this study provide a foundation for understanding and improving the quality of prosthetic sockets using current fabrication materials and a basis for evaluating future technologies.

  1. Overview: Mechanism and Control of a Prosthetic Arm.

    PubMed

    Kulkarni, Tushar; Uddanwadiker, Rashmi

    2015-09-01

    Continuous growth in industrialization and lack of awareness in safety parameters the cases of amputations are growing. The search of safer, simpler and automated prosthetic arms for managing upper limbs is expected. Continuous efforts have been made to design and develop prosthetic arms ranging from simple harness actuated to automated mechanisms with various control options. However due the cost constraints, the automated prosthetic arms are still out of the reach of needy people. Recent data have shown that there is a wide scope to develop a low cost and light weight upper limb prosthesis. This review summarizes the various designs methodologies, mechanisms and control system developed by the researchers and the advances therein. Educating the patient to develop acceptability to prosthesis and using the same for the most basic desired functions of human hand, post amputation care and to improve patient's independent life is equally important. In conclusion it can be interpreted that there is a wide scope in design in an adaptive mechanism for opening and closing of the fingers using other methods of path and position synthesis. Simple mechanisms and less parts may optimize the cost factor. Reduction in the weight of the prosthesis may be achieved using polymers used for engineering applications. Control system will remain never ending challenge for the researchers, but it is essential to maintain the simplicity from the patients perspective.

  2. Salmonella Typhimurium gastroenteritis leading to chronic prosthetic vascular graft infection.

    PubMed

    Cullinan, Milo; Clarke, Michael; Dallman, Tim; Peart, Steven; Wilson, Deborah; Weiand, Daniel

    2017-08-01

    Introduction. It is estimated up to 6 % of prosthetic vascular grafts become infected. Staphylococcus aureus is predominant in early infection and coagulase-negative staphylococci are predominant in late infections. Enterobacteriaceae cause 14-40 % of prosthetic vascular graft infections. This is, to our knowledge the first reported case of Salmonella gastroenteritis causing chronic prosthetic vascular graft infection (PVGI). Case presentation. A 57 years old lady presented with signs and symptoms of prosthetic vascular graft infection. Three years earlier, she had undergone a prosthetic axillo-femoral bypass graft for critical limb ischaemia. The infected prosthetic vascular graft was removed and Salmonella Typhimurium was isolated on culture. In the intervening period, Salmonella Typhimurium was isolated from a faecal specimen, collected during an episode of acute gastroenteritis. Whole-genome sequencing (WGS) showed that the respective Salmonella Typhimurium isolates differed by only a single nucleotide polymorphism (SNP). Salmonella Typhimurium was not isolated on culture of a faecal specimen collected five days following cessation of antimicrobial therapy. Six months after removal of the prosthetic graft, the patient remains under follow-up for her peripheral vascular disease, which currently requires no further surgical intervention. Conclusion. This case has clear implications for the management of chronic PVGI. It is vital to collect high-quality surgical specimens for microbiological analysis and empirical choices of antibiotics are unlikely to cover all potential pathogens. It may also be prudent to enquire about a history of acute gastroenteritis when assessing patients presenting with chronic PVGI.

  3. Influence of Inter-Training Intervals on Intermanual Transfer Effects in Upper-Limb Prosthesis Training: A Randomized Pre-Posttest Study.

    PubMed

    Romkema, Sietske; Bongers, Raoul M; van der Sluis, Corry K

    2015-01-01

    Improvement in prosthetic training using intermanual transfer (the transfer of motor skills from the trained, “unaffected” hand to the untrained, “affected” hand) has been shown in previous studies. The aim of this study is to determine the influence of the inter-training interval on the magnitude of the intermanual transfer effects. This was done using a mechanistic, randomized, single-blinded pretest-posttest design. Sixty-four able-bodied, right-handed participants were randomly assigned to the Short and Long Interval Training Groups and the Short and Long Interval Control Groups. The Short and Long Interval Training Groups used a prosthesis simulator in their training program. The Short and Long Interval Control Groups executed a sham training program, that is, a dummy training program in which the same muscles were trained as with the prosthesis simulator. The Short Interval Training Group and the Short Interval Control Groups trained on consecutive days, while the Long Interval Training Group and Long Interval Control Group trained twice a week. To determine the improvement in skills, a test was administered before, immediately after, and at two points in time after the training. Training was performed with the “unaffected” arm; tests were performed with the “affected” arm. The outcome measurements were: the movement time (the time from the beginning of the movement until completion of the task); the duration of maximum hand opening, (the opening of the prosthetic hand while grasping an object); and the grip-force control (the error from the required grip-force during a tracking task). Intermanual transfer was found in movement times, but not in hand opening or grip-force control. The length of the inter-training interval did not affect the magnitude of intermanual transfer effects. No difference in the intermanual transfer effect in upper-limb prosthesis training was found for training on a daily basis as compared to training twice a week. Nederlands Trial Register NTR3888.

  4. Influence of Inter-Training Intervals on Intermanual Transfer Effects in Upper-Limb Prosthesis Training: A Randomized Pre-Posttest Study

    PubMed Central

    Romkema, Sietske; Bongers, Raoul M.; van der Sluis, Corry K.

    2015-01-01

    Improvement in prosthetic training using intermanual transfer (the transfer of motor skills from the trained, “unaffected” hand to the untrained, “affected” hand) has been shown in previous studies. The aim of this study is to determine the influence of the inter-training interval on the magnitude of the intermanual transfer effects. This was done using a mechanistic, randomized, single-blinded pretest-posttest design. Sixty-four able-bodied, right-handed participants were randomly assigned to the Short and Long Interval Training Groups and the Short and Long Interval Control Groups. The Short and Long Interval Training Groups used a prosthesis simulator in their training program. The Short and Long Interval Control Groups executed a sham training program, that is, a dummy training program in which the same muscles were trained as with the prosthesis simulator. The Short Interval Training Group and the Short Interval Control Groups trained on consecutive days, while the Long Interval Training Group and Long Interval Control Group trained twice a week. To determine the improvement in skills, a test was administered before, immediately after, and at two points in time after the training. Training was performed with the “unaffected” arm; tests were performed with the “affected” arm. The outcome measurements were: the movement time (the time from the beginning of the movement until completion of the task); the duration of maximum hand opening, (the opening of the prosthetic hand while grasping an object); and the grip-force control (the error from the required grip-force during a tracking task). Intermanual transfer was found in movement times, but not in hand opening or grip-force control. The length of the inter-training interval did not affect the magnitude of intermanual transfer effects. No difference in the intermanual transfer effect in upper-limb prosthesis training was found for training on a daily basis as compared to training twice a week. Trial Registration Nederlands Trial Register NTR3888 PMID:26075396

  5. Strength evaluation of prosthetic check sockets, copolymer sockets, and definitive laminated sockets.

    PubMed

    Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek; Colvin, James M

    2012-01-01

    A prosthesis encounters loading through forces and torques exerted by the person with amputation. International Organization for Standardization (ISO) standard 10328 was designed to test most lower-limb prosthetic components. However, this standard does not include prosthetic sockets. We measured static failure loads of prosthetic sockets using a modified ISO 10328 and then compared them with the criteria set by this standard for other components. Check socket (CS) strengths were influenced by thickness, material choice, and fabrication method. Copolymer socket (CP) strengths depended on thickness and fabrication methods. A majority of the CSs and all of the CPs failed to pass the ISO 10328 ductile loading criterion. In contrast, the strengths of definitive laminated sockets (DLs) were influenced more by construction material and technique. A majority of the DLs failed to pass the ISO 10328 brittle loading criterion. Analyzing prosthetic sockets from a variety of facilities demonstrated that socket performance varies considerably between and within facilities. The results from this article provide a foundation for understanding the quality of prosthetic sockets, some insight into possible routes for improving the current care delivered to patients, and a comparative basis for future technology.

  6. Design and fabrication of an end effector

    NASA Technical Reports Server (NTRS)

    Crossley, F. R. E.; Umholtz, F. G.

    1975-01-01

    The construction is described of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. A model was tested and found capable of both these operations.

  7. Neuronal ensemble control of prosthetic devices by a human with tetraplegia

    NASA Astrophysics Data System (ADS)

    Hochberg, Leigh R.; Serruya, Mijail D.; Friehs, Gerhard M.; Mukand, Jon A.; Saleh, Maryam; Caplan, Abraham H.; Branner, Almut; Chen, David; Penn, Richard D.; Donoghue, John P.

    2006-07-01

    Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent. Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a `neural cursor' with which MN opened simulated e-mail and operated devices such as a television, even while conversing. Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis.

  8. Granulicatella adiacens prosthetic hip joint infection after dental treatment.

    PubMed

    Aweid, Osama; Sundararajan, Sabapathy; Teferi, Abraham

    2016-06-01

    Granulicatella adiacens is a Gram-positive bacteria and a normal component of oral flora. It is also found in dental plaques, endodontic abscesses and can rarely cause more serious infections. We describe a prosthetic hip joint infection in an 81-year-old fit and healthy man due to Granulicatella adiacens who underwent a prolonged dental intervention two days earlier without antibiotic prophylaxis. The infection was successfully treated with surgical intervention and a combination of antibiotics. The patient eventually succumbed to severe community-acquired pneumonia two months later. Current guidelines recommend avoidance of antibiotic prophylaxis prior to dental treatment in patients who have no co-morbidities and no prior operation on the index prosthetic joint. This case report indicates that infections of prosthetic joints may be associated with dental procedures even in fit and healthy patients without the recognized risk factors.

  9. Electromyography data for non-invasive naturally-controlled robotic hand prostheses

    PubMed Central

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible. PMID:25977804

  10. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis

    NASA Astrophysics Data System (ADS)

    Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario

    2015-12-01

    Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.

  11. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.

    PubMed

    Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario

    2015-12-01

    Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.

  12. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies

    NASA Astrophysics Data System (ADS)

    Jung, Jung Mo; Cha, Doo Yeol; Kim, Deok Su; Yang, Hee Jun; Choi, Kyo Sang; Choi, Jong Myoung; Chang, Sung Pil

    2014-09-01

    The authors developed PDMS (polydimethylsiloxane)-based dry type surface electromyography (SEMG) electrodes for myoelectric prosthetic hands. The SEMG electrodes were strongly recommended to be fabricated on a flexible substrate to be compatible with the surface of skin. In this study, the authors designed a bar-shaped dry-type flexible SEMG electrodes comprised of two input electrodes and a reference electrode on a flexible PDMS substrate to measure EMG signals. The space distance between each electrode with a size of 10 mm × 2 mm was chosen to 18 mm to get optimal result according to the simulation result with taking into consideration the conduction velocity and the median frequency of EMG signals. Raw EMG signals were measured from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles, to drive the application of the myoelectric hand prosthesis. Measured raw EMG signals were transformed to root mean square (RMS) EMG signals using Acqknowledge4.2. The experimental peak voltage values of RMS EMG signals from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles were 2.96 V, 4.45 V, 1.74 V, and 2.62 V, respectively. Values from the dry type flexible SEMG electrodes showed higher peak values than a commercially available wet type Ag-AgCl electrode. The study shows that the PDMS-based flexible electrode devised for measuring myoelectric signals from the surface of skin is more useful for prosthetic hands because of its greater sensitivity and flexibility.

  13. Stump sensibility in children with upper limb reduction deficiency.

    PubMed

    Reinkingh, Marianne; Reinders-Messelink, Heleen A; Dijkstra, Pieter U; Maathuis, Karel G B; van der Sluis, Corry K

    2014-01-01

    To compare stump sensibility in children with upper limb reduction deficiency with sensibility of the unaffected arm and hand. In addition, to evaluate the associations between stump sensibility, stump length and activity level. Cross-sectional study. Children and young adults aged 6-25 years with upper limb reduction deficiency. Threshold of touch was measured with Semmes-Weinstein monofilaments, stereognosis was measured with the Shape-Texture Identification test and kinaesthesia and activity level was measured with the Child Amputee Prosthetics Project - Functional Status Inventory and the Prosthetic Upper Extremity Functional Index. A total of 31 children with upper limb reduction deficiency (mean age 15 years, 3 prosthesis wearers) were investigated. The threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm (p = 0.006), hand (p = 0.004) and stump end-point (p = < 0.001). Long stumps had higher threshold of touch (indicating lower sensibility) than short stumps (p = 0.046). Twenty-nine children recognized 1 or more shapes or textures with the stump. Kinaesthesia in the affected and unaffected sides was comparable. Sensibility was not correlated with activity level. Threshold of touch, stereognosis and kinaesthesia of the affected sides were excellent. Threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm and hand. High stump sensibility may clarify good functioning in the children without prostheses and contribute to prosthesis rejection.

  14. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    PubMed Central

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  15. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    PubMed

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  16. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task.

    PubMed

    Ernst, Michael; Altenburg, Björn; Bellmann, Malte; Schmalz, Thomas

    2017-11-16

    Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.

  17. Speech and Swallowing Data in Individual Patients Who Underwent Glossectomy after Prosthetic Rehabilitation

    PubMed Central

    Sennes, Luiz Ubirajara

    2016-01-01

    Maintaining oral function in patients undergoing glossectomy boosts interventions such as prosthetic rehabilitation. However, current literature still fails in the presentation of results of prosthetic rehabilitation in relation to speech or swallowing. The objective of this research is to evaluate the effectiveness of prosthetic rehabilitation on voice, speech, and swallowing in patients undergoing glossectomy by performing a systematic literature review and meta-analysis of individual cases. Studies were identified by relevant electronic database and included all dates available. The criteria used were sample with any n; resection due to malignant tumors, restricted to tongue and/or floor of mouth; type of prosthetic rehabilitation; and description of the oral functions outcomes with prosthesis. For the meta-analysis of individual data, associations between the variables of interest and the type of prosthesis were evaluated. Thirty-three of 471 articles met the selection criteria. Results on speech and/or voice and swallowing were reported in 27 and 28 articles, respectively. There were improvement of speech intelligibility and swallowing in 96 patients and in 73 patients, respectively, with prosthesis. Based on the available evidences, this article showed that prosthetic rehabilitation was able to improve oral functions and can be a strategy used with surgical reconstruction in selected cases. PMID:28042295

  18. Preferences for rehabilitation services among women with major limb amputations.

    PubMed

    Elnitsky, Christine A; Latlief, Gail A; Andrews, Erin E; Adams-Koss, Laurel B; Phillips, Samuel L

    2013-01-01

    We present five cases of adult females with major limb amputations, their concerns and preferences for services across the life span. A convenience sample of five veteran and nonveteran women aged 19-58 with major limb amputations participating in a regional VA Prosthetics Conference in 2010 took part in a panel interview. The concerns identified by these women as high priorities included independence and participation in a full range of life activities, limitations in access, patient decision-making and body image concerns, and preferences for selected services. Maximizing function and quality of life for women amputees requires identifying patient preferences for rehabilitation and prosthetic services. Lessons learned could inform development of clinic-based rehabilitation care, prosthetic services, and studies of women with major limb amputations. As the current conflicts in Iraq and Afghanistan wind down, the number of women veterans seeking rehabilitation and prosthetic services will increase. With this information, rehabilitation and prosthetic service providers and organizations will be uniquely positioned to provide prevention and treatment of amputations for this growing population of women veterans in national care delivery systems and in communities. An open-ended facilitated discussion among a panel of women with major limb amputations provided insights for providers and organizations with respect to needs, concerns, and preferences for rehabilitation and prosthetic services. © 2013 Association of Rehabilitation Nurses.

  19. Prognostic factors of a satisfactory functional result in patients with unilateral amputations of the upper limb above the wrist that use an upper limb prosthesis.

    PubMed

    Dabaghi-Richerand, A; Haces-García, F; Capdevila-Leonori, R

    2015-01-01

    The purpose of this study is to determine the prognostic factors of a satisfactory functional outcome in patients using upper extremity prosthetics with a proximal third forearm stump, and above, level of amputation. All patients with longitudinal deficiencies and traumatic amputations of upper extremity with a level of amputation of proximal third forearm and above were included. A total of 49 patients with unilateral upper extremity amputations that had used the prosthetic for a minimum of 2 years were included in the protocol. The Disability arm shoulder hand (DASH) scale was used to determine a good result with a cut-off of less than 40%. The independent variables were the level of amputation, the etiology for its use, initial age of use and number of hours/day using the prosthesis. It was found that patients with a congenital etiology and those that started using the prosthetic before 6 years of age had better functional results. It was found that when adapting a patient with an upper extremity prosthetic, which has a high rejection rate of up to 49%, better functional outcomes are found in those who started using it before 6 years of age, and preferably because of a congenital etiology. It was also found that the number of hours/day strongly correlates with a favorable functional outcome. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  20. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K

    2007-01-01

    The paper reports the use of fractal theory and fractal dimension to study the non-linear properties of surface electromyogram (sEMG) and to use these properties to classify subtle hand actions. The paper reports identifying a new feature of the fractal dimension, the bias that has been found to be useful in modelling the muscle activity and of sEMG. Experimental results demonstrate that the feature set consisting of bias values and fractal dimension of the recordings is suitable for classification of sEMG against the different hand gestures. The scatter plots demonstrate the presence of simple relationships of these features against the four hand gestures. The results indicate that there is small inter-experimental variation but large inter-subject variation. This may be due to differences in the size and shape of muscles for different subjects. The possible applications of this research include use in developing prosthetic hands, controlling machines and computers.

  1. The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations.

    PubMed

    Nowak, Markus; Castellini, Claudio

    2016-01-01

    Simultaneous and proportional myocontrol of dexterous hand prostheses is to a large extent still an open problem. With the advent of commercially and clinically available multi-fingered hand prostheses there are now more independent degrees of freedom (DOFs) in prostheses than can be effectively controlled using surface electromyography (sEMG), the current standard human-machine interface for hand amputees. In particular, it is uncertain, whether several DOFs can be controlled simultaneously and proportionally by exclusively calibrating the intended activation of single DOFs. The problem is currently solved by training on all required combinations. However, as the number of available DOFs grows, this approach becomes overly long and poses a high cognitive burden on the subject. In this paper we present a novel approach to overcome this problem. Multi-DOF activations are artificially modelled from single-DOF ones using a simple linear combination of sEMG signals, which are then added to the training set. This procedure, which we named LET (Linearly Enhanced Training), provides an augmented data set to any machine-learning-based intent detection system. In two experiments involving intact subjects, one offline and one online, we trained a standard machine learning approach using the full data set containing single- and multi-DOF activations as well as using the LET-augmented data set in order to evaluate the performance of the LET procedure. The results indicate that the machine trained on the latter data set obtains worse results in the offline experiment compared to the full data set. However, the online implementation enables the user to perform multi-DOF tasks with almost the same precision as single-DOF tasks without the need of explicitly training multi-DOF activations. Moreover, the parameters involved in the system are statistically uniform across subjects.

  2. Local signaling from a retinal prosthetic in a rodent retinitis pigmentosa model in vivo

    NASA Astrophysics Data System (ADS)

    Fransen, James W.; Pangeni, Gobinda; Pardue, Machelle T.; McCall, Maureen A.

    2014-08-01

    Objective. In clinical trials, retinitis pigmentosa patients implanted with a retinal prosthetic device show enhanced spatial vision, including the ability to read large text and navigate. New prosthetics aim to increase spatial resolution by decreasing pixel/electrode size and limiting current spread. To examine spatial resolution of a new prosthetic design, we characterized and compared two photovoltaic array (PVA) designs and their interaction with the retina after subretinal implantation in transgenic S334ter line 3 rats (Tg S334ter-3). Approach. PVAs were implanted subretinally at two stages of degeneration and assessed in vivo using extracellular recordings in the superior colliculus (SC). Several aspects of this interaction were evaluated by varying duration, irradiance and position of a near infrared laser focused on the PVA. These characteristics included: activation threshold, response linearity, SC signal topography and spatial localization. The major design difference between the two PVA designs is the inclusion of local current returns in the newer design. Main results. When tested in vivo, PVA-evoked response thresholds were independent of pixel/electrode size, but differ between the new and old PVA designs. Response thresholds were independent of implantation age and duration (⩽7.5 months). For both prosthesis designs, threshold intensities were within established safety limits. PVA-evoked responses require inner retina synaptic transmission and do not directly activate retinal ganglion cells. The new PVA design evokes local retinal activation, which is not found with the older PVA design that lacks local current returns. Significance. Our study provides in vivo evidence that prosthetics make functional contacts with the inner nuclear layer at several stages of degeneration. The new PVA design enhances local activation within the retina and SC. Together these results predict that the new design can potentially harness the inherent processing within the retina and is likely to produce higher spatial resolution in patients.

  3. Prosthetic Hand Technology-Phase II

    DTIC Science & Technology

    2013-02-01

    Corporation; model number HV 1100. The motor location of the ring finger was identified and chosen for the experiments. The EMG detection system...model parameters for the experiments, where the subject performed a random series of flexion’s of the ring finger. Figure 1.6 shows the output of the...obtained from specific Motor Unit locations corresponding to the index, middle and ring finger, and the corresponding force data is presented. This is a

  4. The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries

    PubMed Central

    Sturma, Agnes

    2018-01-01

    Background Global brachial plexopathies cause major sensory and motor deficits in the affected arm and hand. Many patients report of psychosocial consequences including chronic pain, decreased self-sufficiency, and poor body image. Bionic reconstruction, which includes the amputation and prosthetic replacement of the functionless limb, has been shown to restore hand function in patients where classic reconstructions have failed. Patient selection and psychological evaluation before such a life-changing procedure are crucial for optimal functional outcomes. In this paper we describe a psychosocial assessment procedure for bionic reconstruction in patients with complete brachial plexopathies and present psychosocial outcome variables associated with bionic reconstruction. Methods Between 2013 and 2017 psychosocial assessments were performed in eight patients with global brachial plexopathies. We conducted semi-structured interviews exploring the psychosocial adjustment related to the accident, the overall psychosocial status, as well as motivational aspects related to an anticipated amputation and expectations of functional prosthetic outcome. During the interview patients were asked to respond freely. Their answers were transcribed verbatim by the interviewer and analyzed afterwards on the basis of a pre-defined item scoring system. The interview was augmented by quantitative evaluation of self-reported mental health and social functioning (SF-36 Health Survey), body image (FKB-20) and deafferentation pain (VAS). Additionally, psychosocial outcome variables were presented for seven patients before and after bionic reconstruction. Results Qualitative data revealed several psychological stressors with long-term negative effects on patients with complete brachial plexopathies. 88% of patients felt functionally limited to a great extent due to their disability, and all of them reported constant, debilitating pain in the deafferented hand. After bionic reconstruction the physical component summary scale increased from 30.80 ± 5.31 to 37.37 ± 8.41 (p-value = 0.028), the mental component summary scale improved from 43.19 ± 8.32 to 54.76 ± 6.78 (p-value = 0.018). VAS scores indicative of deafferentation pain improved from 7.8 to 5.6 after prosthetic hand replacement (p-value = 0.018). Negative body evaluation improved from 60.71 ± 12.12 to 53.29 ± 11.03 (p-value = 0.075). Vital body dynamics increased from 38.57 ± 13.44 to 44.43 ± 16.15 (p-value = 0.109). Conclusions Bionic reconstruction provides hope for patients with complete brachial plexopathies who have lived without hand function for years or even decades. Critical patient selection is crucial and the psychosocial assessment procedure including a semi-structured interview helps identify unresolved psychological issues, which could preclude or delay bionic reconstruction. Bionic reconstruction improves overall quality of life, restores an intact self-image and reduces deafferentation pain. PMID:29298304

  5. The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries.

    PubMed

    Hruby, Laura Antonia; Pittermann, Anna; Sturma, Agnes; Aszmann, Oskar Christian

    2018-01-01

    Global brachial plexopathies cause major sensory and motor deficits in the affected arm and hand. Many patients report of psychosocial consequences including chronic pain, decreased self-sufficiency, and poor body image. Bionic reconstruction, which includes the amputation and prosthetic replacement of the functionless limb, has been shown to restore hand function in patients where classic reconstructions have failed. Patient selection and psychological evaluation before such a life-changing procedure are crucial for optimal functional outcomes. In this paper we describe a psychosocial assessment procedure for bionic reconstruction in patients with complete brachial plexopathies and present psychosocial outcome variables associated with bionic reconstruction. Between 2013 and 2017 psychosocial assessments were performed in eight patients with global brachial plexopathies. We conducted semi-structured interviews exploring the psychosocial adjustment related to the accident, the overall psychosocial status, as well as motivational aspects related to an anticipated amputation and expectations of functional prosthetic outcome. During the interview patients were asked to respond freely. Their answers were transcribed verbatim by the interviewer and analyzed afterwards on the basis of a pre-defined item scoring system. The interview was augmented by quantitative evaluation of self-reported mental health and social functioning (SF-36 Health Survey), body image (FKB-20) and deafferentation pain (VAS). Additionally, psychosocial outcome variables were presented for seven patients before and after bionic reconstruction. Qualitative data revealed several psychological stressors with long-term negative effects on patients with complete brachial plexopathies. 88% of patients felt functionally limited to a great extent due to their disability, and all of them reported constant, debilitating pain in the deafferented hand. After bionic reconstruction the physical component summary scale increased from 30.80 ± 5.31 to 37.37 ± 8.41 (p-value = 0.028), the mental component summary scale improved from 43.19 ± 8.32 to 54.76 ± 6.78 (p-value = 0.018). VAS scores indicative of deafferentation pain improved from 7.8 to 5.6 after prosthetic hand replacement (p-value = 0.018). Negative body evaluation improved from 60.71 ± 12.12 to 53.29 ± 11.03 (p-value = 0.075). Vital body dynamics increased from 38.57 ± 13.44 to 44.43 ± 16.15 (p-value = 0.109). Bionic reconstruction provides hope for patients with complete brachial plexopathies who have lived without hand function for years or even decades. Critical patient selection is crucial and the psychosocial assessment procedure including a semi-structured interview helps identify unresolved psychological issues, which could preclude or delay bionic reconstruction. Bionic reconstruction improves overall quality of life, restores an intact self-image and reduces deafferentation pain.

  6. Consumer design priorities for upper limb prosthetics.

    PubMed

    Biddiss, Elaine; Beaton, Dorcas; Chau, Tom

    2007-11-01

    To measure consumer satisfaction with upper limb prosthetics and provide an enumerated list of design priorities for future developments. A self-administered, anonymous survey collected information on participant demographics, history of and goals for prosthesis use, satisfaction, and design priorities. The questionnaire was available online and in paper format and was distributed through healthcare providers, community support groups, and one prosthesis manufacturer; 242 participants of all ages and levels of upper limb absence completed the survey. Rates of rejection for myoelectric hands, passive hands, and body-powered hooks were 39%, 53%, and 50%, respectively. Prosthesis wearers were generally satisfied with their devices while prosthesis rejecters were dissatisfied. Reduced prosthesis weight emerged as the highest priority design concern of consumers. Lower cost ranked within the top five design priorities for adult wearers of all device types. Life-like appearance is a priority for passive/cosmetic prostheses, while improved harness comfort, wrist movement, grip control and strength are required for body-powered devices. Glove durability, lack of sensory feedback, and poor dexterity were also identified as design priorities for electric devices. Design priorities reflect consumer goals for prosthesis use and vary depending on the type of prosthesis used and age. Future design efforts should focus on the development of more light-weight, comfortable prostheses.

  7. High-density force myography: A possible alternative for upper-limb prosthetic control.

    PubMed

    Radmand, Ashkan; Scheme, Erik; Englehart, Kevin

    2016-01-01

    Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.

  8. Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses

    PubMed Central

    Osborn, Luke; Kaliki, Rahul; Soares, Alcimar; Thakor, Nitish

    2016-01-01

    Upper limb amputees lack the valuable tactile sensing that helps provide context about the surrounding environment. Here we utilize tactile information to provide active touch feedback to a prosthetic hand. First, we developed fingertip tactile sensors for producing biomimetic spiking responses for monitoring contact, release, and slip of an object grasped by a prosthetic hand. We convert the sensor output into pulses, mimicking the rapid and slowly adapting spiking responses of receptor afferents found in the human body. Second, we designed and implemented two neuromimetic event-based algorithms, Compliant Grasping and Slip Prevention, on a prosthesis to create a local closed-loop tactile feedback control system (i.e. tactile information is sent to the prosthesis). Grasping experiments were designed to assess the benefit of this biologically inspired neuromimetic tactile feedback to a prosthesis. Results from able-bodied and amputee subjects show the average number of objects that broke or slipped during grasping decreased by over 50% and the average time to complete a grasping task decreased by at least 10% for most trials when comparing neuromimetic tactile feedback with no feedback on a prosthesis. Our neuromimetic method of closed-loop tactile sensing is a novel approach to improving the function of upper limb prostheses. PMID:27777640

  9. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control

    PubMed Central

    Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.

    2015-01-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989

  10. [The incidence and prevalence of complications after urogynaecological and reconstructive pelvic floor prosthetic surgery and management of these complications in women].

    PubMed

    Martan, A; Svabík, K; Masata, J

    2007-12-01

    The aim of this article is to review the incidence and prevalence of complications after prosthetic surgery for POP (pelvic organ prolaps) and USI (urodynamic stress incontinence) and to introduce diagnostic and therapeutic advice into clinical practice. Review article. Gynecological and Obstetric Clinic, 1st LF UK and VFN, Prague. Summary of complications, recent findings, opinions and specific diagnostic and therapeutic recommendations with special focus to vaginal erosion, post-operative voiding difficulties, persisting leakage of urine and de novo urgency. In the last decade the surgical treatment of female USI by prosthetic slings procedures has been shown to be effective with high cure rate and low morbidity. Similary, prosthetic reconstruction of pelvic organ prolapse through the different compartments has been introduced into clinical practice with good anatomical and promising functional results. The article is structured to the different sections, describing the epidemiology and management of complications after prosthetic slings procedures and after vaginal prosthetic treatment of pelvic organ prolapse. The effect of various operations of pelvic floor and USI using synthetic implants may differ, depending on the material of the implant used. Current recommendation for the implants material: a light-weight, flexible polypropylene; Amid's classification: type 1, i.e macro-porous, monofilament material. The advantage of surgical treatment of pelvic floor defect using implants comprises a low percentage of recurrence of the descensus.

  11. Treatment Challenges of Prosthetic Hip Infection with Associated Iliacus Muscle Abscess: Report of 5 Cases and Literature Review.

    PubMed

    Lawrenz, Joshua M; Mesko, Nathan W; Higuera, Carlos A; Molloy, Robert M; Simpfendorfer, Claus; Babic, Maja

    2017-01-01

    Prosthetic joint infection is an unfortunate though well-recognized complication of total joint arthroplasty. An iliacus and/or iliopsoas muscle abscess is a rarely documented presentation of hip prosthetic joint infection. It is thought an unrecognized retroperitoneal nidus of infection can be a source of continual seeding of the prosthetic hip joint, prolonging attempts to eradicate infection despite aggressive debridement and explant attempts. The current study presents five cases demonstrating this clinical scenario, and discusses various treatment challenges. In each case we report the patient's clinical history, pertinent imaging, management and outcome. Diagnosis of the iliacus muscle abscess was made using computed tomography imaging. In brief, the mean number of total drainage procedures (open and percutaneous) per patient was 4.2, and outcomes consisted of one patient with a hip girdlestone, two patients with delayed revisions, and two patients with retained prosthesis. All patients ended with functional pain and on oral antibiotic suppression with an average follow up of 18 months. This article highlights an iliacus muscle abscess as an unrecognized source of infection to a prosthetic hip. It demonstrates resilience to standard treatment protocols for prosthetic hip infection, and is associated with poor patient outcomes. Aggressive surgical debridement appears to remain critical to treatment success, and early retroperitoneal debridement of the abscess should be considered.

  12. Development and preliminary evaluation of a new anatomically based prosthetic alignment method for below-knee prosthesis.

    PubMed

    Tafti, Nahid; Karimlou, Masoud; Mardani, Mohammad Ali; Jafarpisheh, Amir Salar; Aminian, Gholam Reza; Safari, Reza

    2018-04-20

    The objectives of current study were to a) assess similarities and relationships between anatomical landmark-based angles and distances of lower limbs in unilateral transtibial amputees and b) develop and evaluate a new anatomically based static prosthetic alignment method. First sub-study assessed the anthropometrical differences and relationships between the lower limbs in the photographs taken from amputees. Data were analysed via paired t-test and regression analysis. Results show no significant differences in frontal and transverse planes. In the sagittal plane, the anthropometric parameters of the amputated limb were significantly correlated to the corresponding variables of the sound limb. The results served as bases for the development of a new prosthetic alignment method. The method was evaluated on a single subject study. Prosthetic alignment carried out by an experienced prosthetist was compared with such alignment adjusted by an inexperienced prosthetist but with the use of the developed method. In sagittal and frontal planes, the socket angle was tuned with respect to the shin angle, and the position of the prosthetic foot was tuned in relation to the pelvic landmarks. Further study is needed to assess the proposed method on a larger sample of amputees and prosthetists.

  13. Historical Aspects of Inner Ear Anatomy and Biology that Underlie the Design of Hearing and Balance Prosthetic Devices.

    PubMed

    Van De Water, Thomas R

    2012-11-01

    This review presents some of the major historical events that advanced the body of knowledge of the anatomy of the inner ear and its sensory receptors as well as the biology of these receptors that underlies the sensory functions of hearing and balance. This knowledge base of the inner ear's structure/function has been an essential factor for the design and construction of prosthetic devices to aid patients with deficits in their senses of hearing and balance. Prosthetic devices are now available for severely hearing impaired and deaf patients to restore hearing and are known as cochlear implants and auditory brain stem implants. A prosthetic device for patients with balance disorders is being perfected and is in an animal model testing phase with another prosthetic device for controlling intractable dizziness in Meniere's patients currently being evaluated in clinical testing. None of this would have been possible without the pioneering studies and discoveries of the investigators mentioned in this review and with the work of many other talented investigators to numerous to be covered in this review. Copyright © 2012 Wiley Periodicals, Inc.

  14. A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints

    PubMed Central

    Chyr, Anthony; Qiu, Mingfeng; Speltz, Jared; Jacobsen, Ronald L.; Sanders, Anthony P.; Raeymaekers, Bart

    2014-01-01

    More than 285,000 total hip replacement surgeries are performed in the US each year. Most prosthetic hip joints consist of a cobalt-chromium (CoCr) femoral head that articulates with a polyethylene acetabular component, lubricated with synovial fluid. The statistical survivorship of these metal-on-polyethylene prosthetic hip joints declines significantly after 10 to 15 years of use, primarily as a result of polyethylene wear and wear debris incited disease. The current engineering paradigm to increase the longevity of prosthetic hip joints is to improve the mechanical properties of the polyethylene component, and to manufacture ultra-smooth articulating surfaces. In contrast, we show that adding a patterned microtexture to the ultra-smooth CoCr femoral head reduces friction when articulating with the polyethylene acetabular liner. The microtexture increases the load-carrying capacity and the thickness of the joint lubricant film, which reduces contact between the articulating surfaces. As a result, friction and wear is reduced. We have used a lubrication model to design the geometry of the patterned microtexture, and experimentally demonstrate reduced friction for the microtextured compared to conventional smooth surrogate prosthetic hip joints. PMID:25013240

  15. Comparison of mechanical energy profiles of passive and active below-knee prostheses: a case study.

    PubMed

    Takahashi, Kota Z; Horne, John R; Stanhope, Steven J

    2015-04-01

    With the recent technological advancements of prosthetic lower limbs, there is currently a great desire to objectively evaluate existing prostheses. Using a novel biomechanical analysis, the purpose of this case study was to compare the mechanical energy profiles of anatomical and two disparate prostheses: a passive prosthesis and an active prosthesis. An individual with a transtibial amputation who customarily wears a passive prosthesis (Elation, Össur) and an active prosthesis (BiOM, iWalk, Inc.) and 11 healthy subjects participated in an instrumented gait analysis. The total mechanical power and work of below-knee structures during stance were quantified using a unified deformable segment power analysis. Active prosthesis generated greater peak power and total positive work than passive prosthesis and healthy anatomical limbs. The case study will enhance future efforts to objectively evaluate prosthetic functions during gait in individuals with transtibial amputations. A prosthetic limb should closely replicate the mechanical energy profiles of anatomical limbs. The unified deformable (UD) analysis may be valuable to facilitate future clinical prescription and guide fine adjustments of prosthetic componentry to optimize gait outcomes. © The International Society for Prosthetics and Orthotics 2014.

  16. Selection of suitable hand gestures for reliable myoelectric human computer interface.

    PubMed

    Castro, Maria Claudia F; Arjunan, Sridhar P; Kumar, Dinesh K

    2015-04-09

    Myoelectric controlled prosthetic hand requires machine based identification of hand gestures using surface electromyogram (sEMG) recorded from the forearm muscles. This study has observed that a sub-set of the hand gestures have to be selected for an accurate automated hand gesture recognition, and reports a method to select these gestures to maximize the sensitivity and specificity. Experiments were conducted where sEMG was recorded from the muscles of the forearm while subjects performed hand gestures and then was classified off-line. The performances of ten gestures were ranked using the proposed Positive-Negative Performance Measurement Index (PNM), generated by a series of confusion matrices. When using all the ten gestures, the sensitivity and specificity was 80.0% and 97.8%. After ranking the gestures using the PNM, six gestures were selected and these gave sensitivity and specificity greater than 95% (96.5% and 99.3%); Hand open, Hand close, Little finger flexion, Ring finger flexion, Middle finger flexion and Thumb flexion. This work has shown that reliable myoelectric based human computer interface systems require careful selection of the gestures that have to be recognized and without such selection, the reliability is poor.

  17. Recent advances in bioelectric prostheses

    PubMed Central

    Pasquina, Paul F.; Perry, Briana N.; Miller, Matthew E.; Ling, Geoffrey S.F.; Tsao, Jack W.

    2015-01-01

    Summary Worldwide prevalence of amputation has created an increasing demand for improved upper and lower extremity prostheses. Current prosthetics are often uncomfortable and difficult to control and provide limited functional restoration. Moreover, the inability to normalize anthropomorphic biomechanics with a prosthesis increases one's risk of developing long-term health risks such as arthritis, skin breakdown, and pain. Recent advances in bionic prosthetic development hold great promise for rehabilitation and improving quality of life with limb loss. This brief review discusses the current state of advanced prostheses, the integration of robotics in the care of individuals with major limb amputation, and some innovative surgical techniques that are being explored for clinical feasibility. PMID:29443190

  18. Towards Humanlike Social Touch for Prosthetics and Sociable Robotics: Three-Dimensional Finite Element Simulations of Synthetic Finger Phalanges

    NASA Astrophysics Data System (ADS)

    Cabibihan, John-John; Ge, Shuzhi Sam

    Synthetic skins with humanlike characteristic would make it possible to address some of the psychosocial requirements of prosthetic hands as well as the safety and acceptance issues in social robotics. This paper describes the development of three-dimensional finite element models of synthetic finger phalanges. With the aim of duplicating the skin compliance of human finger phalanges, the model was used to investigate the effects of (i) introducing open pockets in the internal structure and (ii) combining different materials as external and internal layers. The results show that having pockets in the internal structure of the design can increase the skin compliance of the synthetic phalanges and make it comparable with the human counterpart. Moreover, having different layers can be used to satisfy skin compliance and other design requirements such as wear and tear.

  19. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P < 0.001] and Össur Flex-Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P < 0.001) averaged from both legs. Metabolic cost was reduced with more symmetric peak vertical ground reaction forces (β = 0.007; P = 0.003) but was unrelated to stride kinematic symmetry ( P ≥ 0.636). Therefore, prosthetic recommendations based on symmetric stride kinematics do not necessarily minimize the metabolic cost of running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with increased in-series surface stiffness, biological limb stiffness for athletes with unilateral transtibial amputations is positively correlated with increased in-series (prosthetic) stiffness.

  20. Upper limb amputees can be induced to experience a rubber hand as their own

    PubMed Central

    Rosén, Birgitta; Stockselius, Anita; Ragnö, Christina; Köhler, Peter; Lundborg, Göran

    2008-01-01

    We describe how upper limb amputees can be made to experience a rubber hand as part of their own body. This was accomplished by applying synchronous touches to the stump, which was out of view, and to the index finger of a rubber hand, placed in full view (26 cm medial to the stump). This elicited an illusion of sensing touch on the artificial hand, rather than on the stump and a feeling of ownership of the rubber hand developed. This effect was supported by quantitative subjective reports in the form of questionnaires, behavioural data in the form of misreaching in a pointing task when asked to localize the position of the touch, and physiological evidence obtained by skin conductance responses when threatening the hand prosthesis. Our findings outline a simple method for transferring tactile sensations from the stump to a prosthetic limb by tricking the brain, thereby making an important contribution to the field of neuroprosthetics where a major goal is to develop artificial limbs that feel like a real parts of the body. PMID:19074189

  1. Development and performance of a new prosthesis system using ultrasonic sensor for wrist movements: a preliminary study

    PubMed Central

    2014-01-01

    Background The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user. Methods The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements. Results The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45° - 55° of rotation or about 14 cm – 16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation. Conclusion The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics. PMID:24755242

  2. Current strategies with 1-stage prosthetic breast reconstruction

    PubMed Central

    2015-01-01

    Background 1-stage prosthetic breast reconstruction is gaining traction as a preferred method of breast reconstruction in select patients who undergo mastectomy for cancer or prevention. Methods Critical elements to the procedure including patient selection, technique, surgical judgment, and postoperative care were reviewed. Results Outcomes series reveal that in properly selected patients, direct-to-implant (DTI) reconstruction has similar low rates of complications and high rates of patient satisfaction compared to traditional 2-stage reconstruction. Conclusions 1-stage prosthetic breast reconstruction may be the procedure of choice in select patients undergoing mastectomy. Advantages include the potential for the entire reconstructive process to be complete in one surgery, the quick return to normal activities, and lack of donor site morbidity. PMID:26005643

  3. Three-dimensional-printed upper limb prosthesis for a child with traumatic amputation of right wrist: A case report.

    PubMed

    Xu, Guisheng; Gao, Liang; Tao, Ke; Wan, Shengxiang; Lin, Yuning; Xiong, Ao; Kang, Bin; Zeng, Hui

    2017-12-01

    For traumatic upper limb amputees, the prohibitive cost of a custom-made prosthesis brings an insufferable financial burden for their families in developing countries. Three-dimensional (3D) printing allows for creating affordable, lightweight, customized, and well-fitting prosthesis, especially for the growing children. We presented a case of an 8-year-old boy, who suffered a traumatic right wrist amputation as result of a mincing machine accident. The patient was immediately sent to the emergency orthopedics department after the accident. He was diagnosed as severed mangled limb crash injury at the level of the right wrist with a Mangled Extremity Severity Score of 8. A wrist disarticulation was performed and a 3D-printed prosthetic hand was designed and manufactured for this child. A personalized prosthetic rehabilitation training was applied after the prosthesis installation at 6 months postoperatively. The function of the prosthesis was evaluated at 1-month and 3-month follow-up using the Children Amputee Prosthetics Projects (CAPP) score and the University Of New Brunswick Test Of Prosthetic Function for Unilateral Amputees (UNB test). The materials cost <20 dollars. The printing took <8 hours and the component assembling was completed within 20 minutes. During the 3-month follow-up, the child's parents were satisfied with the prosthesis and the UNB test showed the significantly improved function of the prosthesis. This novel 3D-printed upper limb prosthesis in a child with the traumatic wrist amputation might serve as a practical and affordable alternative for children in developing countries and those lacking access to health care providers. A personalized prosthetic rehabilitation needs to be undertaken and more clinical studies are warranted to validate the potential superiority of similar 3D-printed prostheses. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  4. The effect that energy storage and return feet have on the propulsion of the body: a pilot study.

    PubMed

    Crimin, Anthony; McGarry, Anthony; Harris, Elena Jane; Solomonidis, Stephan Emanuel

    2014-09-01

    A variety of energy storage and return prosthetic feet are currently available for use within lower limb prostheses. Designs claim to provide a beneficial energy return during push-off, but the extent to which this occurs remains disputed. Techniques currently used to measure energy storage, dissipation and return within the structure of the prosthetic foot are debatable, with limited evidence to support substantial elastic energy storage and return from existing designs. The aim of this study was to evaluate the performance of energy storage and return foot designs through considering the ankle power during push-off and the effect on body centre of mass propulsion. To achieve this aim, the gait patterns of six trans-tibial prosthetic users wearing different designs of energy storage and return feet were analysed while ascending a ramp. Three examples of energy storage and return feet (suitable for moderate activity) were selected and randomly evaluated: the Blatchford's Epirus, Össur Assure and College Park Tribute feet. The power at the anatomical and mechanical ankle joints was integrated to evaluate the work done over the gait cycle. The direction of the inertial force, and therefore propulsion of the body centre of mass, was used to indicate the effect of the energy return by the energy storage and return feet. Results indicate that although energy storage and return feet may provide energy return, the work done around the prosthetic ankle indicates net power absorption. Therefore, the prosthetic limb is unable to contribute to the body centre of mass propulsion to the same extent as the biological limb. © IMechE 2014.

  5. Prosthetic metal implants and airport metal detectors.

    PubMed

    Ismail, A; Dancey, A; Titley, O G

    2013-04-01

    Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination.

  6. Prosthetic metal implants and airport metal detectors

    PubMed Central

    Dancey, A; Titley, OG

    2013-01-01

    Introduction Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. Methods A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. Results No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Conclusions Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination. PMID:23827294

  7. Acute Infection in Total Knee Arthroplasty: Diagnosis and Treatment

    PubMed Central

    Martínez-Pastor, Juan Carlos; Maculé-Beneyto, Francisco; Suso-Vergara, Santiago

    2013-01-01

    Infection is one of the most serious complications after total knee arthroplasty (TKA). The current incidence of prosthetic knee infection is 1-3%, depending on the series. For treatment and control to be more cost effective, multidisciplinary groups made up of professionals from different specialities who can work together to eradicate these kinds of infections need to be assembled. About the microbiology, Staphylococcus aureus and coagulase-negative staphylococcus were among the most frequent microorganisms involved (74%). Anamnesis and clinical examination are of primary importance in order to determine whether the problem may point to a possible acute septic complication. The first diagnosis may then be supported by increased CRP and ESR levels. The surgical treatment for a chronic prosthetic knee infection has been perfectly defined and standardized, and consists in a two-stage implant revision process. In contrast, the treatment for acute prosthetic knee infection is currently under debate. Considering the different surgical techniques that already exist, surgical debridement with conservation of the prosthesis and polythene revision appears to be an attractive option for both surgeon and patient, as it is less aggressive than the two-stage revision process and has lower initial costs. The different results obtained from this technique, along with prognosis factors and conclusions to keep in mind when it is indicated for an acute prosthetic infection, whether post-operative or haematogenous, will be analysed by the authors. PMID:23919094

  8. Interface Prostheses With Classifier-Feedback-Based User Training.

    PubMed

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.

  9. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2011-09-01

    Placed above the medial border of the scapula on the level of T3 T7 T7 spinous process CLAV Placed in the center of the clavicles RCLAV, LCLAV...Right Shoulder  Right Hand B  Right Elbow  Right Toe  Right Wrist  Upper Neck    Lower Neck    Head Right    Right  Clavicle     Left  Clavicle     Head

  10. Peri-prosthetic femoral fractures of hip or knee arthroplasty. Analysis of 34 cases and a review of Spanish series in the last 20 years.

    PubMed

    Gracia-Ochoa, M; Miranda, I; Orenga, S; Hurtado-Oliver, V; Sendra, F; Roselló-Añón, A

    2016-01-01

    To evaluate peri-prosthetic femoral fractures by analysing type of patient, treatment and outcomes, and to compare them with Spanish series published in the last 20 years. A retrospective review of the medical records of patients with peri-prosthetic femoral fractures treated in our hospital from 2010 to 2014, and telephone survey on the current status. A total of 34 peri-prosthetic femoral fractures were analysed, 20 in hip arthroplasty and 14 in knee arthroplasty. The mean age of the patients was 79.9 years, and 91% had previous comorbidity, with up to 36% having at least 3 prior systemic diseases. Mean hospital stay was 8.7 days, and was higher in surgically-treated than in conservative-treated patients. The majority (60.6%) of patients had complications, and mortality was 18%. Functional status was not regained in 61.5% of patients, and pain was higher in hip than in knee arthroplasty. Peri-prosthetic femoral fractures are increasing in frequency. This is due to the increasing number of arthroplasties performed and also to the increasing age of these patients. Treatment of these fractures is complex because of the presence of an arthroplasty component, low bone quality, and comorbidity of the patients. Peri-prosthetic femoral fractures impair quality of life. They need individualised treatment, and have frequent complications and mortality. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Selected applications for current polymers in prosthetic dentistry - state of the art.

    PubMed

    Kawala, Maciej; Smardz, Joanna; Adamczyk, Lukasz; Grychowska, Natalia; Wieckiewicz, Mieszko

    2018-05-10

    Polymers are widely applied in medicine, including dentistry, i.e. in prosthodontics. The following paper is aimed at demonstrating the applications of selected modern polymers in prosthetic dentistry based on the reported literature. The study was conducted using the PubMed, SCOPUS and CINAHL databases in relation to documents published during 1999-2017. The following keywords were used: polymers with: prosthetic dentistry, impression materials, denture base materials, bite registration materials, denture soft liners, occlusal splint materials and 3D printing. Original papers and reviews which were significant from the modern clinical viewpoint and practical validity in relation to the possibility of using polymeric materials in prosthetic dentistry, were presented. Denture base materials were most commonly modified polymers. Modifications mainly concerned antimicrobial properties and reinforcement of the material structure by introducing additional fibers. Antimicrobial modifications were also common in case of relining materials. Polymeric materials have widely been used in prosthetic dentistry. Modifications of their composition allow achieving new, beneficial properties that affect quality of patients' life. Progress in science allows for a more methodologically-advanced research on the synthesis of new polymeric materials and incorporation of new substances into already known polymeric materials, that will require systematization and appropriate classification. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Microbiological Aetiology, Epidemiology, and Clinical Profile of Prosthetic Joint Infections: Are Current Antibiotic Prophylaxis Guidelines Effective?

    PubMed Central

    Cheng, Allen C.; Buising, Kirsty L.; Choong, Peter F. M.

    2012-01-01

    Prosthetic joint infections remain a major complication of arthroplasty. At present, local and international guidelines recommend cefazolin as a surgical antibiotic prophylaxis at the time of arthroplasty. This retrospective cohort study conducted across 10 hospitals over a 3-year period (January 2006 to December 2008) investigated the epidemiology and microbiological etiology of prosthetic joint infections. There were 163 cases of prosthetic joint infection identified. From a review of the microbiological culture results, methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci were isolated in 45% of infections. In addition, polymicrobial infections, particularly those involving Gram-negative bacilli and enterococcal species, were common (36%). The majority (88%) of patients received cefazolin as an antibiotic prophylaxis at the time of arthroplasty. In 63% of patients in this cohort, the microorganisms subsequently obtained were not susceptible to the antibiotic prophylaxis administered. The results of this study highlight the importance of ongoing reviews of the local ecology of prosthetic joint infection, demonstrating that the spectrum of pathogens involved is broad. The results should inform empirical antibiotic therapy. This report also provokes discussion about infection control strategies, including changing surgical antibiotic prophylaxis to a combination of glycopeptide and cefazolin, to reduce the incidence of infections due to methicillin-resistant staphylococci. PMID:22314530

  13. [Acrylic resin reinforcement with metallic and nonmetallic inserts].

    PubMed

    Preoteasa, Elena; Murariu, Cătălina Măgureanu; Ionescu, Ecaterina; Preoteasa, Cristina Teodora

    2007-01-01

    In the current use of acrylic resin for removable dentures and orthodontic treatments we are frequently facing the fact of base fracture. The repairing of this, determine most of the time, discomfort of the patient, by excluding the prosthetic device, affecting the treatment, loosing patient's time, doctor's time, implying the dental laboratory and extra expenses. The causes of fractures are many, from clinical cases with some specific anatomic and functional particularities, or parafunctional, to the incorrect designing, manufacturing or wearing of the prosthetic part, being connected with the materials characteristics. The consequences and costs of these fractures are leading to unsatisfying results in some of the clinical cases, in presence of parafunctions like bruxism or clenching and specifically for the new types of prosthetic rehabilitation, on natural teeth or implants.

  14. Grasp frequency and usage in daily household and machine shop tasks.

    PubMed

    Bullock, Ian M; Zheng, Joshua Z; De La Rosa, Sara; Guertler, Charlotte; Dollar, Aaron M

    2013-01-01

    In this paper, we present results from a study of prehensile human hand use during the daily work activities of four subjects: two housekeepers and two machinists. Subjects wore a head-mounted camera that recorded their hand usage during their daily work activities in their typical place of work. For each subject, 7.45 hours of video was analyzed, recording the type of grasp being used and its duration. From this data, we extracted overall grasp frequency, duration distributions for each grasp, and common transitions between grasps. The results show that for 80 percent of the study duration the housekeepers used just five grasps and the machinists used 10. The grasping patterns for the different subjects were compared, and the overall top 10 grasps are discussed in detail. The results of this study not only lend insight into how people use their hands during daily tasks, but can also inform the design of effective robotic and prosthetic hands.

  15. Shoulder arthroplasty in osteoarthritis: current concepts in biomechanics and surgical technique

    PubMed Central

    Merolla, G; Nastrucci, G; Porcellini, G

    Shoulder arthroplasty is a technically demanding procedure to restore shoulder function in patients with severe osteoarthritis of the glenohumeral joint. The modern prosthetic system exploit the benefits of modularity and the availibility of additional sizes of the prosthetic components. In this paper we describe the biomechanics of shoulder arthroplasty and the technique for shoulder replacement including total shoulder arthroplasty (TSA) with all-polyethylene and metal-backed glenoid component, humeral head resurfacing and stemless humeral replacement. PMID:24251240

  16. More with less: A comparative kinematical analysis of Django Reinhardt's adaptations to hand injury.

    PubMed

    Wininger, Michael; Williams, David J

    2015-06-01

    At the age of 18 years, jazz guitarist Django Reinhardt (1910-1953) sustained significant burns to his left-hand ring and little fingers; yet, subsequently, he relearned to play and achieved international fame, despite his injuries. Archive film footage and novel motion analysis software were used to compare movements of Django's fretting hand with that of six other guitarists of the same genre. Django employed greater abduction of index and middle fingers (-9.11 ± 6.52° vs -5.78 ± 2.41°; p < 0.001) and more parallel alignment of fingers to the guitar neck (157.7 ± 3.37° vs 150.59 ± 2.67°; p < 0.001) compared to controls. In response to debilitating hand injury, Django developed quantifiable compensatory adaptation of function of his remaining functional fingers by developing an original playing technique. Hand function following injury may be optimized by maximizing latent degrees of freedom in remaining digits, rather than through extensive surgical reconstruction or complex prostheses. Further study of adaptation strategies may inform prosthesis design. © The International Society for Prosthetics and Orthotics 2014.

  17. Intermanual transfer effect in young children after training in a complex skill: mechanistic, pseudorandomized, pretest-posttest study.

    PubMed

    Romkema, Sietske; Bongers, Raoul M; van der Sluis, Corry K

    2015-05-01

    Intermanual transfer implies that motor skills learned on one side of the body transfer to the untrained side. This effect was previously noted in adults practicing with a prosthesis simulator. The study objective was to determine whether intermanual transfer is present in children practicing prosthetic handling. A mechanistic, pseudorandomized, pretest-posttest design was used. The study was conducted in a primary school in the Netherlands. The participants were children who were able-bodied (N=48; 25 boys, 23 girls; mean age=5.1 years) and randomly assigned to an experimental group or a control group. The experimental group performed 5 training sessions using a prosthesis simulator on the training arm. Before (pretest), immediately after (posttest), and 6 days after (retention test) the training program, their ability to handle the prosthesis with the contralateral (test) arm was measured. The control group only performed the tests. Half of the children performed the tests with the dominant hand, and the other half performed the tests with the nondominant hand. During the tests, movement time and control of force were measured. An interaction effect of group by test was found for movement time. Post hoc tests revealed significant improvement in the experimental group between the posttest and the retention test. No force control effect was found. Only children who were able-bodied were included. Measurements should have been masked and obtained without tester interference. The fact that 4 children whose results were slower than the mean result discontinued training may have biased the findings. The intermanual transfer effect was present in 5-year-old children undergoing training in prosthetic handling. After training of one hand, children's movement times for the other, untrained hand improved. This finding may be helpful for training children who are novice users of a prosthesis. © 2015 American Physical Therapy Association.

  18. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements.

    PubMed

    Deijs, M; Bongers, R M; Ringeling-van Leusen, N D M; van der Sluis, C K

    2016-03-15

    The current study examines the relevance of prosthetic wrist movement to facilitate activities of daily living or to prevent overuse complaints. Prosthesis hands with wrist flexion/extension capabilities are commercially available, but research on the users' experiences with flexible wrists is limited. In this study, eight transradial amputees using a myoelectric prosthesis tested two prosthesis wrists with flexion/extension capabilities, the Flex-wrist (Otto Bock) and Multi-flex wrist (Motion Control), in their flexible and static conditions. Differences between the wrists were assessed on the levels of functionality, user satisfaction and compensatory movements after two weeks use. No significant differences between flexible and static wrist conditions were found on activity performance tests and standardized questionnaires on satisfaction. Inter-individual variation was remarkably large. Participants' satisfaction tended to be in favour of flexible wrists. All participants but one indicated that they would choose a prosthesis hand with wrist flexion/extension capabilities if allowed a new prosthesis. Shoulder joint angles, reflecting compensatory movements, showed no clear differences between wrist conditions. Overall, positive effects of flexible wrists are hard to objectify. Users seem to be more satisfied with flexible wrists. A person's needs, work and prosthesis skills should be taken into account when prescribing a prosthesis wrist. Nederlands Trial Register NTR3984 .

  19. Categorization of compensatory motions in transradial myoelectric prosthesis users.

    PubMed

    Hussaini, Ali; Zinck, Arthur; Kyberd, Peter

    2017-06-01

    Prosthesis users perform various compensatory motions to accommodate for the loss of the hand and wrist as well as the reduced functionality of a prosthetic hand. Investigate different compensation strategies that are performed by prosthesis users. Comparative analysis. A total of 20 able-bodied subjects and 4 prosthesis users performed a set of bimanual activities. Movements of the trunk and head were recorded using a motion capture system and a digital video recorder. Clinical motion angles were calculated to assess the compensatory motions made by the prosthesis users. The video recording also assisted in visually identifying the compensations. Compensatory motions by the prosthesis users were evident in the tasks performed (slicing and stirring activities) as compared to the benchmark of able-bodied subjects. Compensations took the form of a measured increase in range of motion, an observed adoption of a new posture during task execution, and prepositioning of items in the workspace prior to initiating a given task. Compensatory motions were performed by prosthesis users during the selected tasks. These can be categorized into three different types of compensations. Clinical relevance Proper identification and classification of compensatory motions performed by prosthesis users into three distinct forms allows clinicians and researchers to accurately identify and quantify movement. It will assist in evaluating new prosthetic interventions by providing distinct terminology that is easily understood and can be shared between research institutions.

  20. Evaluation of Pressure Capacitive Sensors for Application in Grasping and Manipulation Analysis.

    PubMed

    Pessia, Paola; Cordella, Francesca; Schena, Emiliano; Davalli, Angelo; Sacchetti, Rinaldo; Zollo, Loredana

    2017-12-08

    The analysis of the human grasping and manipulation capabilities is paramount for investigating human sensory-motor control and developing prosthetic and robotic hands resembling the human ones. A viable solution to perform this analysis is to develop instrumented objects measuring the interaction forces with the hand. In this context, the performance of the sensors embedded in the objects is crucial. This paper focuses on the experimental characterization of a class of capacitive pressure sensors suitable for biomechanical analysis. The analysis was performed in three loading conditions (Distributed load, 9 Tips load, and Wave-shaped load, thanks to three different inter-elements) via a traction/compression testing machine. Sensor assessment was also carried out under human- like grasping condition by placing a silicon material with the same properties of prosthetic cosmetic gloves in between the sensor and the inter-element in order to simulate the human skin. Data show that the input-output relationship of the analyzed, sensor is strongly influenced by both the loading condition (i.e., type of inter-element) and the grasping condition (with or without the silicon material). This needs to be taken into account to avoid significant measurement error. To go over this hurdle, the sensors have to be calibrated under each specific condition in order to apply suitable corrections to the sensor output and significantly improve the measurement accuracy.

  1. Defining brain-machine interface applications by matching interface performance with device requirements.

    PubMed

    Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo

    2008-01-15

    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.

  2. Evaluation of Pressure Capacitive Sensors for Application in Grasping and Manipulation Analysis

    PubMed Central

    Pessia, Paola; Cordella, Francesca; Davalli, Angelo; Sacchetti, Rinaldo; Zollo, Loredana

    2017-01-01

    The analysis of the human grasping and manipulation capabilities is paramount for investigating human sensory-motor control and developing prosthetic and robotic hands resembling the human ones. A viable solution to perform this analysis is to develop instrumented objects measuring the interaction forces with the hand. In this context, the performance of the sensors embedded in the objects is crucial. This paper focuses on the experimental characterization of a class of capacitive pressure sensors suitable for biomechanical analysis. The analysis was performed in three loading conditions (Distributed load, 9 Tips load, and Wave-shaped load, thanks to three different inter-elements) via a traction/compression testing machine. Sensor assessment was also carried out under human- like grasping condition by placing a silicon material with the same properties of prosthetic cosmetic gloves in between the sensor and the inter-element in order to simulate the human skin. Data show that the input–output relationship of the analyzed, sensor is strongly influenced by both the loading condition (i.e., type of inter-element) and the grasping condition (with or without the silicon material). This needs to be taken into account to avoid significant measurement error. To go over this hurdle, the sensors have to be calibrated under each specific condition in order to apply suitable corrections to the sensor output and significantly improve the measurement accuracy. PMID:29292717

  3. The modular socket system in a rural setting in Indonesia.

    PubMed

    Giesberts, Bob; Ennion, Liezel; Hjelmstrom, Olle; Karma, Agusni; Lechler, Knut; Hekman, Edsko; Bergsma, Arjen

    2018-06-01

    Prosthetic services are inaccessible to people living in rural areas. Systems like the modular socket system have the potential to be fabricated outside of the prosthetic workshop. This study aimed to evaluate the patient's performance and satisfaction with the use of the modular socket system, and the technical feasibility of its implementation in a rural setting. A quantitative longitudinal descriptive study design was followed. A total of 15 persons with a lower limb amputation were fitted with the modular socket system and followed over 4-6 months. Performance was measured using a 2-min walk test, 10-m walk test and mobility and function questionnaire. Satisfaction was measured by the Socket Fit Comfort Score, Prosthesis Evaluation Questionnaire and EuroQoL 5 Dimensions 5 Levels. Notes on technical feasibility were taken at the moment of fitting ( t 0 ), at 1-3 months post fitting ( t 1 ) and at the end evaluation at 4-6 months post fitting ( t 2 ). Performance did not change between t 0 and t 2 . The comfort of the socket fit reduced between t 0 and t 2 . Satisfaction with prosthesis and general health status stayed constant over time. The average fitting-time for the modular socket system was 6.4 h. The modular socket system can be considered a useful alternative for use in rural settings. Clinical relevance The use of the modular socket system is feasible and can improve accessibility to prosthetic technology in rural areas. Experienced prosthetic users were satisfied with the performance and the device. The shorter manufacturing time and use of only hand-held tools makes it an ideal alternative for use in remote and rural settings.

  4. Patient Management with Metallic Valve Prosthesis during Pregnancy and Postpartum Period.

    PubMed

    Garcez, Juliane Dantas Seabra; Rosa, Vitor Emer Egypto; Lopes, Antonio Sergio de Santis Andrade; Accorsi, Tarso Augusto Duenhas; Fernandes, João Ricardo Cordeiro; Pomerantzeff, Pablo Maria; Avila, Walkiria Samuel; Tarasoutchi, Flavio

    2015-10-01

    Prosthetic thrombosis is a rare complication, but it has high mortality and morbidity. Young women of childbearing age that have prosthetic heart valves are at increased risk of thrombosis during pregnancy due to changes in coagulation factors. Anticoagulation with adequate control and frequent follow-up if pregnancy occurs must be performed in order to prevent complications related to anticoagulant use. Surgery remains the treatment of choice for prosthetic heart valve thrombosis in most clinical conditions. Patients with metallic prosthetic valves have an estimated 5% risk of thrombosis during pregnancy and maternal mortality of 1.5% related to the event. Anticoagulation with vitamin K antagonists during pregnancy is related to varying degrees of complications at each stage of the pregnancy and postpartum periods. Warfarin sodium crosses the placental barrier and when used in the first trimester of pregnancy is a teratogenic agent, causing 1-3% of malformations characterized by fetal warfarin syndrome and also constitutes a major cause of miscarriage in 10-30% of cases. In the third trimester and at delivery, the use of warfarin is associated with maternal and neonatal bleeding in approximately 5 to 15% of cases, respectively. On the other hand, inadequate anticoagulation, including the suspension of the oral anticoagulants aiming at fetal protection, carries a maternal risk of about 25% of metallic prosthesis thrombosis, particularly in the mitral valve. This fact is also due to the state of maternal hypercoagulability with activation of coagulation factors V, VI, VII, IX, X, platelet activity and fibrinogen synthesis, and decrease in protein S levels. The Registry of Pregnancy and Cardiac Disease (ROPAC), assessing 212 pregnant women with metal prosthesis, showed that prosthesis thrombosis occurred in 10 (4.7%) patients and maternal hemorrhage in 23.1%, concluding that only 58% of patients with metallic prosthesis had a complication-free pregnancy.

  5. Surgery for rheumatic mitral valve disease in sub-saharan African countries: why valve repair is still the best surgical option.

    PubMed

    Mvondo, Charles Mve; Pugliese, Marta; Giamberti, Alessandro; Chelo, David; Kuate, Liliane Mfeukeu; Boombhi, Jerome; Dailor, Ellen Marie

    2016-01-01

    Rheumatic valve disease, a consequence of acute rheumatic fever, remains endemic in developing countries in the sub-Saharan region where it is the leading cause of heart failure and cardiovascular death, involving predominantly a young population. The involvement of the mitral valve is pathognomonic and mitral surgery has become the lone therapeutic option for the majority of these patients. However, controversies exist on the choice between valve repair or prosthetic valve replacement. Although the advantages of mitral valve repair over prosthetic valve replacement in degenerative mitral disease are well established, this has not been the case for rheumatic lesions, where the use of prosthetic valves, specifically mechanical devices, even in poorly compliant populations remains very common. These patients deserve more accurate evaluation in the choice of the surgical strategy which strongly impacts the post-operative outcomes. This report discusses the factors supporting mitral repair surgery in rheumatic disease, according to the patients' characteristics and the effectiveness of the current repair techniques compared to prosthetic valve replacement in developing countries.

  6. Prosthetic Jamming Terminal Device: A Case Study of Untethered Soft Robotics

    PubMed Central

    Amend, John; Farrell, Todd; Latour, Debra; Martinez, Carlos; Johansson, Jen; McNicoll, Anthony; Wartenberg, Marek; Naseef, Samuel; Hanson, William; Culley, William

    2016-01-01

    Abstract This article illuminates the major and often overlooked challenge of untethering soft robotic systems through the context of recent work, in which soft robotic gripper technology enabled by jamming of granular media was applied to a prosthetic jamming terminal device (PJTD). The PJTD's technical and market feasibility was evaluated in a pilot study with two upper-limb amputees. A PJTD prototype was tested against a commercial device (Motion Control electric terminal service with a one degree-of-freedom pinching mechanism) using two existing hand function tests: the first quantified the device's speed in picking and placing small blocks and the second evaluated a person's ability to perform activities of daily living (ADLs). The PJTD prototype performed slightly slower than its commercial counterpart in the first test. While both participants successfully completed all the ADLs with both devices in the second test, the commercial device scored marginally higher. Results suggested that PJTD can have potential benefits over existing terminal devices, such as providing the capability to firmly grasp tools due to the ability of PJTD to conform to arbitrary surfaces and reducing compensatory shoulder movements due to its axisymmetric design. Some downsides were that users reported fatigue while operating the PJTD, as most operations require pushing the PJTD against target objects to adequately conform to them. The greatest drawback for the PJTD is also a major roadblock preventing a number of soft robotic research projects from making an impact in real-world applications: pneumatic technology required for operating the PJTD is currently too large and heavy to enable compact untethered operation. PMID:28078196

  7. Chronic recording of hand prosthesis control signals via a regenerative peripheral nerve interface in a rhesus macaque

    NASA Astrophysics Data System (ADS)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Tat, D. M.; Bullard, A. J.; Woo, S. L.; Sando, I. C.; Urbanchek, M. G.; Cederna, P. S.; Chestek, C. A.

    2016-08-01

    Objective. Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. Approach. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. Main results. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey’s finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. Significance. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.

  8. Chronic recording of hand prosthesis control signals via a regenerative peripheral nerve interface in a rhesus macaque.

    PubMed

    Irwin, Z T; Schroeder, K E; Vu, P P; Tat, D M; Bullard, A J; Woo, S L; Sando, I C; Urbanchek, M G; Cederna, P S; Chestek, C A

    2016-08-01

    Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey's finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.

  9. Representing high-dimensional data to intelligent prostheses and other wearable assistive robots: A first comparison of tile coding and selective Kanerva coding.

    PubMed

    Travnik, Jaden B; Pilarski, Patrick M

    2017-07-01

    Prosthetic devices have advanced in their capabilities and in the number and type of sensors included in their design. As the space of sensorimotor data available to a conventional or machine learning prosthetic control system increases in dimensionality and complexity, it becomes increasingly important that this data be represented in a useful and computationally efficient way. Well structured sensory data allows prosthetic control systems to make informed, appropriate control decisions. In this study, we explore the impact that increased sensorimotor information has on current machine learning prosthetic control approaches. Specifically, we examine the effect that high-dimensional sensory data has on the computation time and prediction performance of a true-online temporal-difference learning prediction method as embedded within a resource-limited upper-limb prosthesis control system. We present results comparing tile coding, the dominant linear representation for real-time prosthetic machine learning, with a newly proposed modification to Kanerva coding that we call selective Kanerva coding. In addition to showing promising results for selective Kanerva coding, our results confirm potential limitations to tile coding as the number of sensory input dimensions increases. To our knowledge, this study is the first to explicitly examine representations for realtime machine learning prosthetic devices in general terms. This work therefore provides an important step towards forming an efficient prosthesis-eye view of the world, wherein prompt and accurate representations of high-dimensional data may be provided to machine learning control systems within artificial limbs and other assistive rehabilitation technologies.

  10. Esthetic and Clinical Performance of Implant-Supported All-Ceramic Crowns Made with Prefabricated or CAD/CAM Zirconia Abutments: A Randomized, Multicenter Clinical Trial.

    PubMed

    Wittneben, J G; Gavric, J; Belser, U C; Bornstein, M M; Joda, T; Chappuis, V; Sailer, I; Brägger, U

    2017-02-01

    Patients' esthetic expectations are increasing, and the options of the prosthetic pathways are currently evolving. The objective of this randomized multicenter clinical trial was to assess and compare the esthetic outcome and clinical performance of anterior maxillary all-ceramic implant crowns (ICs) based either on prefabricated zirconia abutments veneered with pressed ceramics or on CAD/CAM zirconia abutments veneered with hand buildup technique. The null hypothesis was that there is no statistically significant difference between the 2 groups. Forty implants were inserted in sites 14 to 24 (FDI) in 40 patients in 2 centers, the Universities of Bern and Geneva, Switzerland. After final impression, 20 patients were randomized into group A, restored with a 1-piece screw-retained single crown made of a prefabricated zirconia abutment with pressed ceramic as the veneering material using the cut-back technique, or group B using an individualized CAD/CAM zirconia abutment (CARES abutment; Institut Straumann AG) with a hand buildup technique. At baseline, 6 mo, and 1 y clinical, esthetic and radiographic parameters were assessed. Group A exhibited 1 dropout patient and 1 failure, resulting in a survival rate of 94.7% after 1 y, in comparison to 100% for group B. No other complications occurred. Clinical parameters presented stable and healthy peri-implant soft tissues. Overall, no or only minimal crestal bone changes were observed with a mean DIB (distance from the implant shoulder to the first bone-to-implant contact) of -0.15 mm (group A) and 0.12 mm (group B) at 1 y. There were no significant differences at baseline, 6 mo, and 1 y for DIB values between the 2 groups. Pink esthetic score (PES) and white esthetic score (WES) values at all 3 examinations indicated stability over time for both groups and pleasing esthetic outcomes. Both implant-supported prosthetic pathways represent a valuable treatment option for the restoration of single ICs in the anterior maxilla ( ClinicalTrials.gov NCT02905838).

  11. The current status of fluoroscopy and echocardiography in the diagnosis of prosthetic valve thrombosis-a review article.

    PubMed

    Gürsoy, Mustafa Ozan; Kalçik, Macit; Karakoyun, Süleyman; Özkan, Mehmet

    2015-01-01

    Prosthetic valve thrombosis (PVT) is a potentially life-threatening complication of heart valve replacement. Early diagnosis is crucial for the prevention of significantly morbid and lethal complications. Cinefluoroscopy (CF) and echocardiography have been widely used for diagnosing PVT. In recent years, the role of CF has declined since the introduction of transesophageal echocardiography and the great improvements in ultrasound technology including real time three-dimensional imaging. Nevertheless, both echocardiography and CF provide different kinds of information on prosthesis function, and therefore they are considered as complementary and not alternative. In this review, we aimed to summarize the current status of CF and echocardiography in the diagnosis of PVT. © 2014, Wiley Periodicals, Inc.

  12. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study.

    PubMed

    Choi, Jae-Won; Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-04-06

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups ( p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention ( p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention ( p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice.

  13. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study

    PubMed Central

    Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-01-01

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups (p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention (p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention (p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice. PMID:29642407

  14. Is There an Association Between Smoking Status and Prosthetic Joint Infection After Primary Total Joint Arthroplasty?

    PubMed

    Gonzalez, Amanda I; Luime, Jolanda J; Uçkay, Ilker; Hannouche, Didier; Hoffmeyer, Pierre; Lübbeke, Anne

    2018-02-23

    Recent reports highlighted the association between smoking and higher risk of postsurgical infections. The aim was to compare the incidence of prosthetic joint infection after primary total joint arthroplasty (TJA) according to smoking status. A prospective hospital registry-based cohort study was performed including all primary knee and hip TJAs performed between March 1996 and December 2013. Smoking status preoperatively was classified into never, former, and current smoker. Incidence rates and hazard ratios (HRs) for prosthetic joint infection according to smoking status were assessed within the first year and beyond. We included 8559 primary TJAs (mean age 69.5 years), and median follow-up was 67 months. There were 5722 never, 1315 former, and 1522 current smokers. Incidence rates of infection within the first year for never, former, and current smokers were, respectively, 4.7, 10.1, and 10.9 cases/1000 person-years, comparing ever vs never smokers, crude and adjusted HRs were 2.35 (95% confidence interval [CI] 1.39-3.98) and 1.8 (95% CI 1.04-3.2). Beyond the first year, crude and adjusted HRs were 1.37 (95% CI 0.78-2.39) and 1.12 (95% CI 0.61-2.04). Smoking increased the infection risk about 1.8 times after primary hip or knee TJA in both current and former smokers. Beyond the first year, the infection risk was similar to never smokers. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Modeling and Bayesian Parameter Estimation for Shape Memory Alloy Bending Actuators

    DTIC Science & Technology

    2012-02-01

    prosthetic hand,” Technology and Health Care 10, 91–106 (2002). 4. Hartl , D., Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization,” Smart Materials and Structures 19, 1–14 (2010). 5. Hartl , D...Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated

  16. Bariatric amputee: A growing problem?

    PubMed

    Kulkarni, Jai; Hannett, Dominic P; Purcell, Steven

    2015-06-01

    This study reviewed prevalence of patients with lower limb amputations with above normal weight profile, with body mass index over 25, in seven disablement services centres managing their amputee rehabilitation in the United Kingdom. To review two clinical standards of practice in amputee rehabilitation. Ambulant lower limb amputees should have their body weight recorded on an electronic information system, with identification of cohort with body weight >100 kg. Lower limb amputees to be provided with suitable weight-rated prosthesis. Observational study of clinical practice. Data were collected from the Clinical Information Management Systems. Inclusion criteria--subjects were ambulant prosthetic users with some prosthetic intervention in the last 5 years and had at least one lower limb amputation. In 96% of patients, the weight record profile was maintained. In addition, 86% were under 100 kg, which is the most common weight limit of prosthetic componentry. Of 15,204 amputation levels, there were 1830 transfemoral and transtibial sites in users with body weight over 100 kg. In 60 cases, the prosthetic limb build was rated to be below the user body weight. In 96% of our patients, body weight was documented, and in 97%, the prosthetic limb builds were within stated body weight limits, but this may not be the case in all the other disablement services centres in the United Kingdom. Also, the incidence of obesity in the United Kingdom is a growing problem, and the health issues associated with obesity are further compounded in the amputee population. Prosthetic componentry has distinct weight limits which must be considered during prescription. As people with amputation approach the limits of specific components, clinicians are faced with the challenge of continued provision in a safe and suitable manner. This article reviews the amputee population and the current national profile to consider trends in provision and the incidence of these challenges. © The International Society for Prosthetics and Orthotics 2014.

  17. 3D-printed upper limb prostheses: a review.

    PubMed

    Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul

    2017-04-01

    This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.

  18. [Past, present and future of vascularised bone transfers in the hand and wrist].

    PubMed

    Allieu, Y

    2010-12-01

    The author specifies the aims and indications for simple or compound pedicle or free vascularised bone and bone and joint grafts (VBGs and VBJGs). He relates the history of VBGs whose indications for the wrist are often many and varied for the treatment of scaphoid non-union and Kienböch's disease. Within the hand the indication for compound VBGs is dominated by thumb reconstruction (skin and bone grafts). Compound VBGs and VBJGs used in an emergency for hand trauma, harvested from another irrecoverable long finger (bank finger) are extremely varied and adapted to each particular case. For secondary joint reconstruction in the adult, VBJGs must be discussed along with prosthetic arthroplasties (radio-carpal, lower radio-ulnar, trapezo-metacarpal, interphalangeal). For children VBJGs with an included growth plate maintain their indication. The immediate future of VBGs is that of a better knowledge of bone necrosis and bone innervation as well as an improvement in surgical techniques: microsurgery and robotics, mini-invasive surgery (wrist arthroscopy). The near future for VBGs is to control bone consolidation thanks to progress in the bio-engineering of bone tissue, which may make them obsolete and, for VBJGs, vascularised joint allografts, thanks to progress in immunosuppressant treatments. Although the immediate future and this near future may be envisaged according to the current advances, the same is not true for the distant future which remains totally unforeseeable, although this might involve regeneration and construction of organs by man himself. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. Biomechanical Reconstruction Using the Tacit Learning System: Intuitive Control of Prosthetic Hand Rotation.

    PubMed

    Oyama, Shintaro; Shimoda, Shingo; Alnajjar, Fady S K; Iwatsuki, Katsuyuki; Hoshiyama, Minoru; Tanaka, Hirotaka; Hirata, Hitoshi

    2016-01-01

    Background: For mechanically reconstructing human biomechanical function, intuitive proportional control, and robustness to unexpected situations are required. Particularly, creating a functional hand prosthesis is a typical challenge in the reconstruction of lost biomechanical function. Nevertheless, currently available control algorithms are in the development phase. The most advanced algorithms for controlling multifunctional prosthesis are machine learning and pattern recognition of myoelectric signals. Despite the increase in computational speed, these methods cannot avoid the requirement of user consciousness and classified separation errors. "Tacit Learning System" is a simple but novel adaptive control strategy that can self-adapt its posture to environment changes. We introduced the strategy in the prosthesis rotation control to achieve compensatory reduction, as well as evaluated the system and its effects on the user. Methods: We conducted a non-randomized study involving eight prosthesis users to perform a bar relocation task with/without Tacit Learning System support. Hand piece and body motions were recorded continuously with goniometers, videos, and a motion-capture system. Findings: Reduction in the participants' upper extremity rotatory compensation motion was monitored during the relocation task in all participants. The estimated profile of total body energy consumption improved in five out of six participants. Interpretation: Our system rapidly accomplished nearly natural motion without unexpected errors. The Tacit Learning System not only adapts human motions but also enhances the human ability to adapt to the system quickly, while the system amplifies compensation generated by the residual limb. The concept can be extended to various situations for reconstructing lost functions that can be compensated.

  20. Advances in Retinal Prosthetic Research: A Systematic Review of Engineering and Clinical Characteristics of Current Prosthetic Initiatives.

    PubMed

    Cheng, Derrick L; Greenberg, Paul B; Borton, David A

    2017-03-01

    To date, reviews of retinal prostheses have focused primarily on devices undergoing human trials in the Western Hemisphere and fail to capture significant advances in materials and engineering research in countries such as Japan and Korea, as well as projects in early stages of development. To address these gaps, this systematic review examines worldwide advances in retinal prosthetic research, evaluates engineering characteristics and clinical progress of contemporary device initiatives, and identifies potential directions for future research in the field of retinal prosthetics. A literature search using PubMed, Google Scholar, and IEEExplore was conducted following the PRISMA Guidelines for Systematic Review. Inclusion criteria were peer-reviewed papers demonstrating progress in human or animal trials and papers discussing the prosthetic engineering design. For each initiative, a description of the device, its engineering considerations, and recent clinical results were provided. Ten prosthetic initiatives met our inclusion criteria and were organized by stimulation location. Of these initiatives, four have recently completed human trials, three are undergoing multi- or single-center human trials, and three are undergoing preclinical animal testing. Only the Argus II (FDA 2013, CE 2011) has obtained FDA approval for use in the United States; the Alpha-IMS (CE 2013) has achieved the highest visual acuity using a Landolt-C test to date and is the only device presently undergoing a multicenter clinical trial. Several distinct approaches to retinal stimulation have been successful in eliciting visual precepts in animals and/or humans. However, many clinical needs are still not met and engineering challenges must be addressed before a retinal prosthesis with the capability to fully and safely restore functional vision can be realized.

  1. Acinetobacter Prosthetic Joint Infection Treated with Debridement and High-Dose Tigecycline.

    PubMed

    Vila, Andrea; Pagella, Hugo; Amadio, Claudio; Leiva, Alejandro

    2016-12-01

    Prosthesis retention is not recommended for multidrug-resistant Acinetobacter prosthetic joint infection due to its high failure rate. Nevertheless, replacing the prosthesis implies high morbidity and prolonged hospitalization. Although tigecycline is not approved for the treatment of prosthetic joint infection due to multidrug resistant Acinetobacter baumannii, its appropriate use may preclude prosthesis exchange. Since the area under the curve divided by the minimum inhibitory concentration is the best pharmacodynamic predictor of its efficacy, we used tigecycline at high dose, in order to optimize its efficacy and achieve implant retention in 3 patients who refused prosthesis exchange. All patients with prosthetic joint infections treated at our Institution are prospectively registered in a database. Three patients with early prosthetic joint infection of total hip arthroplasty due to multidrug resistant A. baumannii were treated with debridement, antibiotics and implant retention, using a high maintenance dose of tigecycline (100 mg every 12 hours). The cases were retrospectively reviewed. All patients signed informed consent for receiving off-label use of tigecycline. Tigecycline was well tolerated, allowing its administration at high maintenance dose for a median of 40 days (range 30-60). Two patients were then switched to minocycline at standard doses for a median of 3.3 months in order to complete treatment. Currently, none of the patients showed relapse. Increasing the dose of tigecycline could be considered as a means to better attain pharmacodynamic targets in patients with severe or difficult-to-treat infections. Tigecycline at high maintenance dose might be useful when retention of the implant is attempted for treatment for prosthetic joint infections due to multidrug resistant Acinetobacter. Although this approach might be promising, off-label use of tigecycline should be interpreted cautiously until prospective data are available. Tigecycline is probably under-dosed for the treatment of implant and biofilm associated infections.

  2. Prosthetic Device Infections.

    PubMed

    Martinez, Raquel M; Bowen, Thomas R; Foltzer, Michael A

    2016-08-01

    The immunocompromised host is a particularly vulnerable population in whom routine and unusual infections can easily and frequently occur. Prosthetic devices are commonly used in these patients and the infections associated with those devices present a number of challenges for both the microbiologist and the clinician. Biofilms play a major role in device-related infections, which may contribute to failed attempts to recover organisms from routine culture methods. Moreover, device-related microorganisms can be difficult to eradicate by antibiotic therapy alone. Changes in clinical practice and advances in laboratory diagnostics have provided significant improvements in the detection and accurate diagnosis of device-related infections. Disruption of the bacterial biofilm plays an essential role in recovering the causative agent in culture. Various culture and nucleic acid amplification techniques are more accurate to guide directed treatment regimens. This chapter reviews the performance characteristics of currently available diagnostic assays and summarizes published guidelines, where available, for addressing suspected infected prosthetic devices.

  3. A synergy-driven approach to a myoelectric hand.

    PubMed

    Godfrey, S B; Ajoudani, A; Catalano, M; Grioli, G; Bicchi, A

    2013-06-01

    In this paper, we present the Pisa/IIT SoftHand with myoelectric control as a synergy-driven approach for a prosthetic hand. Commercially available myoelectric hands are more expensive, heavier, and less robust than their body-powered counterparts; however, they can offer greater freedom of motion and a more aesthetically pleasing appearance. The Pisa/IIT SoftHand is built on the motor control principle of synergies through which the immense complexity of the hand is simplified into distinct motor patterns. As the SoftHand grasps, it follows a synergistic path with built-in flexibility to allow grasping of a wide variety of objects with a single motor. Here we test, as a proof-of-concept, 4 myoelectric controllers: a standard controller in which the EMG signal is used only as a position reference, an impedance controller that determines both position and stiffness references from the EMG input, a standard controller with vibrotactile force feedback, and finally a combined vibrotactile-impedance (VI) controller. Four healthy subjects tested the control algorithms by grasping various objects. All controllers were sufficient for basic grasping, however the impedance and vibrotactile controllers reduced the physical and cognitive load on the user, while the combined VI mode was the easiest to use of the four. While these results need to be validated with amputees, they suggest a low-cost, robust hand employing hardware-based synergies is a viable alternative to traditional myoelectric prostheses.

  4. Performance of Optimized Prosthetic Ankle Designs That Are Based on a Hydraulic Variable Displacement Actuator (VDA).

    PubMed

    Gardiner, James; Bari, Abu Zeeshan; Kenney, Laurence; Twiste, Martin; Moser, David; Zahedi, Saeed; Howard, David

    2017-12-01

    Current energy storage and return prosthetic feet only marginally reduce the cost of amputee locomotion compared with basic solid ankle cushioned heel feet, possibly due to their lack of push-off at the end of stance. To the best of our knowledge, a prosthetic ankle that utilizes a hydraulic variable displacement actuator (VDA) to improve push-off performance has not previously been proposed. Therefore, here we report a design optimization and simulation feasibility study for a VDA-based prosthetic ankle. The proposed device stores the eccentric ankle work done from heel strike to maximum dorsiflexion in a hydraulic accumulator and then returns the stored energy to power push-off. Optimization was used to establish the best spring characteristic and gear ratio between ankle and VDA. The corresponding simulations show that, in level walking, normal push-off is achieved and, per gait cycle, the energy stored in the accumulator increases by 22% of the requirements for normal push-off. Although the results are promising, there are many unanswered questions and, for this approach to be a success, a new miniature, low-losses, and lightweight VDA would be required that is half the size of the smallest commercially available device.

  5. A smartphone photogrammetry method for digitizing prosthetic socket interiors.

    PubMed

    Hernandez, Amaia; Lemaire, Edward

    2017-04-01

    Prosthetic CAD/CAM systems require accurate 3D limb models; however, difficulties arise when working from the person's socket since current 3D scanners have difficulties scanning socket interiors. While dedicated scanners exist, they are expensive and the cost may be prohibitive for a limited number of scans per year. A low-cost and accessible photogrammetry method for socket interior digitization is proposed, using a smartphone camera and cloud-based photogrammetry services. 15 two-dimensional images of the socket's interior are captured using a smartphone camera. A 3D model is generated using cloud-based software. Linear measurements were comparing between sockets and the related 3D models. 3D reconstruction accuracy averaged 2.6 ± 2.0 mm and 0.086 ± 0.078 L, which was less accurate than models obtained by high quality 3D scanners. However, this method would provide a viable 3D digital socket reproduction that is accessible and low-cost, after processing in prosthetic CAD software. Clinical relevance The described method provides a low-cost and accessible means to digitize a socket interior for use in prosthetic CAD/CAM systems, employing a smartphone camera and cloud-based photogrammetry software.

  6. Five years follow-up of implant-prosthetic rehabilitation on a patient after mandibular ameloblastoma removal and ridge reconstruction by fibula graft and bone distraction

    PubMed Central

    Oteri, Giacomo; Ponte, Francesco Saverio De; Pisano, Michele; Cicciù, Marco

    2012-01-01

    This case report presents a combination of surgical and prosthetic solutions applied to a case of oral implant rehabilitation in post-oncologic reconstructed mandible. Bone resection due to surgical treatment of large mandibular neoplasm can cause long-span defects. Currently, mandibular fibula free flap graft is widely considered as a reliable technique for restoring this kind of defect. It restores the continuity of removed segment and re-establishes the contour of the lower jaw. However, the limited height of grafted fibula does not allow the insertion of regular length implants, therefore favouring vertical distraction osteogenesis as an important treatment choice. This report presents a patient affected by extensive mandibular ameloblastoma who underwent surgical reconstruction by fibula free flap because of partial mandibular resection. Guided distraction osteoneogenesis technique was applied to grafted bone, in order to obtain adequate bone height and to realize a prosthetically guided placement of 8 fixtures. After osseointegration, the patient was rehabilitated with a full arch, screw-retained prosthetic restoration. At five-years follow up, excellent integration of grafted tissue, steady levels of bone around the fixtures and healthy peri-implant tissues were reported. PMID:22623943

  7. Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss

    PubMed Central

    Whelan, Lynsay R.; Wagner, Nathan

    2011-01-01

    While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP) videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss. Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states. PMID:25945186

  8. Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand

    NASA Astrophysics Data System (ADS)

    Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel

    2018-03-01

    We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.

  9. The effect of 3 torque delivery systems on gold screw preload at the gold cylinder-abutment screw joint.

    PubMed

    Tan, Keson B; Nicholls, Jack I

    2002-01-01

    This study measured the gold screw preload at the gold cylinder-abutment screw joint interface obtained by 3 torque delivery systems. Using a precalibrated, strain-gauged standard abutment as the load cell, 3 torque delivery systems tested were shown to have significant differences in gold screw preload when a gold cylinder was attached. Mean preloads measured were 291.2 N for hand torque drivers set at 10 Ncm, 340.3 N for electronic torque controllers at low setting/10 Ncm, 384.4 N for electronic torque controllers at high setting/10 Ncm; and 140.8 N for hand-tightening with a prosthetic slot screwdriver. Significant differences in screw preload were also found between operators using a hand torque driver. Hand-tightening delivered insufficient preload and cannot be recommended for final gold screw tightening. Different electronic torque controller units set at 10 Ncm induced mean gold screw preloads that ranged from 264.1 N to as high as 501.2 N. Electronic torque controllers should be regularly recalibrated to ensure optimal output.

  10. Illusory sense of human touch from a warm and soft artificial hand.

    PubMed

    Cabibihan, John-John; Joshi, Deepak; Srinivasa, Yeshwin Mysore; Chan, Mark Aaron; Muruganantham, Arrchana

    2015-05-01

    To touch and be touched are vital to human development, well-being, and relationships. However, to those who have lost their arms and hands due to accident or war, touching becomes a serious concern that often leads to psychosocial issues and social stigma. In this paper, we demonstrate that the touch from a warm and soft rubber hand can be perceived by another person as if the touch were coming from a human hand. We describe a three-step process toward this goal. First, we made participants select artificial skin samples according to their preferred warmth and softness characteristics. At room temperature, the preferred warmth was found to be 28.4 °C at the skin surface of a soft silicone rubber material that has a Shore durometer value of 30 at the OO scale. Second, we developed a process to create a rubber hand replica of a human hand. To compare the skin softness of a human hand and artificial hands, a robotic indenter was employed to produce a softness map by recording the displacement data when constant indentation force of 1 N was applied to 780 data points on the palmar side of the hand. Results showed that an artificial hand with skeletal structure is as soft as a human hand. Lastly, the participants' arms were touched with human and artificial hands, but they were prevented from seeing the hand that touched them. Receiver operating characteristic curve analysis suggests that a warm and soft artificial hand can create an illusion that the touch is from a human hand. These findings open the possibilities for prosthetic and robotic hands that are life-like and are more socially acceptable.

  11. Update on Bioengineering.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Discusses the human, plant and animal, and industrial dimensions of biotechnology, focusing on current uses in such fields as: (1) genetics; (2) electronics; (3) prosthetics; (4) drugs; (5) agriculture; and (6) the environment. (JN)

  12. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.

    PubMed

    Macé, Marc J-M; Guivarch, Valérian; Denis, Grégoire; Jouffrais, Christophe

    2015-07-01

    Clinical trials with blind patients implanted with a visual neuroprosthesis showed that even the simplest tasks were difficult to perform with the limited vision restored with current implants. Simulated prosthetic vision (SPV) is a powerful tool to investigate the putative functions of the upcoming generations of visual neuroprostheses. Recent studies based on SPV showed that several generations of implants will be required before usable vision is restored. However, none of these studies relied on advanced image processing. High-level image processing could significantly reduce the amount of information required to perform visual tasks and help restore visuomotor behaviors, even with current low-resolution implants. In this study, we simulated a prosthetic vision device based on object localization in the scene. We evaluated the usability of this device for object recognition, localization, and reaching. We showed that a very low number of electrodes (e.g., nine) are sufficient to restore visually guided reaching movements with fair timing (10 s) and high accuracy. In addition, performance, both in terms of accuracy and speed, was comparable with 9 and 100 electrodes. Extraction of high level information (object recognition and localization) from video images could drastically enhance the usability of current visual neuroprosthesis. We suggest that this method-that is, localization of targets of interest in the scene-may restore various visuomotor behaviors. This method could prove functional on current low-resolution implants. The main limitation resides in the reliability of the vision algorithms, which are improving rapidly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Illusory movements induced by tendon vibration in right- and left-handed people.

    PubMed

    Tidoni, Emmanuele; Fusco, Gabriele; Leonardis, Daniele; Frisoli, Antonio; Bergamasco, Massimo; Aglioti, Salvatore Maria

    2015-02-01

    Frequency-specific vibratory stimulation of peripheral tendons induces an illusion of limb movement that may be useful for restoring proprioceptive information in people with sensorimotor disability. This potential application may be limited by inter- and intra-subject variability in the susceptibility to such an illusion, which may depend on a variety of factors. To explore the influence of stimulation parameters and participants' handedness on the movement illusion, we vibrated the right and left tendon of the biceps brachii in a group of right- and left-handed people with five stimulation frequencies (from 40 to 120 Hz in step of 20 Hz). We found that all participants reported the expected illusion of elbow extension, especially after 40 and 60 Hz. Left-handers exhibited less variability in reporting the illusion compared to right-handers across the different stimulation frequencies. Moreover, the stimulation of the non-dominant arm elicited a more vivid illusion with faster onset relative to the stimulation of the dominant arm, an effect that was independent from participants' handedness. Overall, our data show that stimulation frequency, handedness and arm dominance influence the tendon vibration movement illusion. The results are discussed in reference to their relevance in linking motor awareness, improving current devices for motor ability recovery after brain or spinal damage and developing prosthetics and virtual embodiment systems.

  14. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.

    PubMed

    Haverkate, Liz; Smit, Gerwin; Plettenburg, Dick H

    2016-02-01

    The functional performance of currently available body-powered prostheses is unknown. The goal of this study was to objectively assess and compare the functional performance of three commonly used body-powered upper limb terminal devices. Experimental trial. A total of 21 able-bodied subjects (n = 21, age = 22 ± 2) tested three different terminal devices: TRS voluntary closing Hook Grip 2S, Otto Bock voluntary opening hand and Hosmer Model 5XA hook, using a prosthesis simulator. All subjects used each terminal device nine times in two functional tests: the Nine-Hole Peg Test and the Box and Blocks Test. Significant differences were found between the different terminal devices and their scores on the Nine-Hole Peg Test and the Box and Blocks Test. The Hosmer hook scored best in both tests. The TRS Hook Grip 2S scored second best. The Otto Bock hand showed the lowest scores. This study is a first step in the comparison of functional performances of body-powered prostheses. The data can be used as a reference value, to assess the performance of a terminal device or an amputee. The measured scores enable the comparison of the performance of a prosthesis user and his or her terminal device relative to standard scores. © The International Society for Prosthetics and Orthotics 2014.

  15. Identifying the values and preferences of prosthetic users: a case study series using the repertory grid technique.

    PubMed

    Schaffalitzky, Elisabeth; NiMhurchadha, Sinead; Gallagher, Pamela; Hofkamp, Susan; MacLachlan, Malcolm; Wegener, Stephen T

    2009-06-01

    The matching of prosthetic devices to the needs of the individual is a challenge for providers and patients. The aims of this study are to explore the values and preferences that prosthetic users have of their prosthetic devices; to investigate users' perceptions of alternative prosthetic options and to demonstrate a novel method for exploring the values and preferences of prosthetic users. This study describes four case studies of upper limb and lower limb high tech and conventional prosthetic users. Participants were interviewed using the repertory grid technique (RGT), a qualitative technique to explore individual values and preferences regarding specific choices and events. The participants generated distinctive patterns of personal constructs and ratings regarding prosthetic use and different prosthetic options available. The RGT produced a unique profile of preferences regarding prosthetic technologies for each participant. User choice is an important factor when matching prosthetic technology to the user. The consumer's values regarding different prosthetic options are likely to be a critical factor in prosthetic acceptance and ultimate quality of life. The RGT offers a structured method of exploring these attitudes and values without imposing researcher or practitioner bias and identifies personalized dimensions for providers and users to evaluate the individuals' preferences in prosthetic technology.

  16. Reflexology treatment for patients with lower limb amputations and phantom limb pain--an exploratory pilot study.

    PubMed

    Brown, Christine Ann; Lido, Catherine

    2008-05-01

    The objectives of the study were to evaluate the possibility of reflexology being used as a non-invasive form of phantom limb pain relief and of empowering patients to maintain any positive results with self-treatment. Prosthetic Services Centre, Herbert Street, Wolverhampton, West Midlands, England. A same-subject, experimental pilot study, recording the intensity of phantom limb pain in weekly pain diaries over a 30-week period, which was divided into five phases: phase 1 gave a baseline of pain, whilst phase 3 was a resting phase. Phases 2, 4 and 5 provided the reflexology interventions. Ten participants with unilateral lower limb amputations and phantom limb pain were selected from the database at the Prosthetic Centre. REFLEXOLOGY INTERVENTIONS: In phase 2, six weekly reflexology treatments were given, which consisted of: full foot reflexology to the remaining foot and full hand reflexology to the hand of the amputated side of the body. In phase 4, six weekly hand reflexology teaching sessions were carried out; patients copied on their own hands what the therapist did on hers. A hand reflexology booklet gave the sequence of the treatment and was used as a reference. In phase 5, the patients self-treated for 6 weeks at home, using the reference material. Over the 30-week period, there was an improvement in the perception of the presence and the intensity of the phantom limb pain, with a corresponding improvement in the duration of the pain and the affect on the person's lifestyle. The improvement was maintained when the clients self-treated. FOLLOW-UP QUESTIONNAIRE: A follow-up questionnaire was carried out in 2007--12 months after the project had ended--to elicit whether the patients had suffered from phantom pain over the previous 12 months, whether they still had relief from phantom limb pain and whether they still self-treated. The project indicated that reflexology treatment, teaching and self-treatment were effective in eradicating or reducing the intensity and duration of phantom limb pain, in this group of clients. The follow-up questionnaire revealed that there was a maintained improvement in the intensity of phantom limb pain the patients experienced and that the majority still self-treated.

  17. Material Science in Cervical Total Disc Replacement.

    PubMed

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  18. Material Science in Cervical Total Disc Replacement

    PubMed Central

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  19. Prosthetic leg powered by MR brake and SMA wires

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Munguia, Vicente; Calderon, Jose

    2014-04-01

    Current knee designs for prosthetic legs rely on electric motors for both moving and stationary states. The electric motors draw an especially high level of current to sustain a fixed position. The advantage of using magnetorheological (MR) fluid is that it requires less current and can have a variable braking torque. Besides, the proposed prosthetic leg is actuated by NiTinol wire, a popular shape memory alloy (SMA). The incorporation of NiTinol gives the leg more realistic weight distribution with appropriate arrangement of the batteries and wires. The prosthesis in this research was designed with MR brake as stopping component and SMA wire network as actuating component at the knee. The MR brake was designed with novel non-circular shape for the rotor that improved the braking torque while minimizing the power consumption. The design also helped simplify the control of braking process. The SMA wire network was design so that the knee motion was actively rotated in both directions. The SMA wires were arranged and played very similar role as the leg's muscles. The study started with the overall solid design of the knee including both MR and SMA parts. Theoretical models were derived and programmed in Simulink for both components. The simulation was capable of predicting the power required for moving the leg or hold it in a fixed position for a certain amount of time. Subsequently, the design was prototyped and tested to validate the theoretical prediction. The theoretical models were updated accordingly to correlate with the experimental data.

  20. Nanotechnology applications in plastic and reconstructive surgery: a review.

    PubMed

    Parks, Joe; Kath, Melissa; Gabrick, Kyle; Ver Halen, Jon Peter

    2012-01-01

    Although nanotechnology is a relatively young field, there are already countless biomedical applications. Plastic and reconstructive surgery has significantly benefited from nanoscale refinements of diagnostic and therapeutic techniques. Plastic surgery is an incredibly diverse specialty, encompassing craniofacial surgery, hand surgery, cancer/trauma/congenital reconstruction, burn care, and aesthetic surgery. In particular, wound care, topical skin care, implant and prosthetic design, tissue engineering, regenerative medicine, and drug delivery have all been influenced by advances in nanotechnology. Nanotechnology will continue to witness growth and expansion of its biomedical applications, especially those in plastic surgery.

  1. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats

    NASA Astrophysics Data System (ADS)

    Pardue, Machelle T.; Phillips, Michael J.; Yin, Hang; Fernandes, Alcides; Cheng, Yian; Chow, Alan Y.; Ball, Sherry L.

    2005-03-01

    Current retinal prosthetics are designed to stimulate existing neural circuits in diseased retinas to create a visual signal. However, implantation of retinal prosthetics may create a neurotrophic environment that also leads to improvements in visual function. Possible sources of increased neuroprotective effects on the retina may arise from electrical activity generated by the prosthetic, mechanical injury due to surgical implantation, and/or presence of a chronic foreign body. This study evaluates these three neuroprotective sources by implanting Royal College of Surgeons (RCS) rats, a model of retinitis pigmentosa, with a subretinal implant at an early stage of photoreceptor degeneration. Treatment groups included rats implanted with active and inactive devices, as well as sham-operated. These groups were compared to unoperated controls. Evaluation of retinal function throughout an 18 week post-implantation period demonstrated transient functional improvements in eyes implanted with an inactive device at 6, 12 and 14 weeks post-implantation. However, the number of photoreceptors located directly over or around the implant or sham incision was significantly increased in eyes implanted with an active or inactive device or sham-operated. These results indicate that in the RCS rat localized neuroprotection of photoreceptors from mechanical injury or a chronic foreign body may provide similar results to subretinal electrical stimulation at the current output evaluated here.

  2. Mechanical resistance of zirconium implant abutments: A review of the literature

    PubMed Central

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  3. Prosthetic Aortic Valve Fixation Study: 48 Replacement Valves Analyzed Using Digital Pressure Mapping.

    PubMed

    Lee, Candice Y; Wong, Joshua K; Ross, Ronald E; Liu, David C; Khabbaz, Kamal R; Martellaro, Angelo J; Gorea, Heather R; Sauer, Jude S; Knight, Peter A

    Prostheses attachment is critical in aortic valve replacement surgery, yet reliable prosthetic security remains a challenge. Accurate techniques to analyze prosthetic fixation pressures may enable the use of fewer sutures while reducing the risk of paravalvular leaks (PVL). Customized digital thin film pressure transducers were sutured between aortic annulus models and 21-mm bioprosthetic valves with 15 × 4-mm, 12 × 4-mm, or 9 × 6-mm-wide pledgeted mattress sutures. Simulating open and minimally invasive access, 4 surgeons, blinded to data acquisition, each secured 12 valves using manual knot-tying (hand-tied [HT] or knot-pusher [KP]) or automated titanium fasteners (TFs). Real-time pressure measurements and times were recorded. Two-dimensional (2D) and 3D pressure maps were generated for all valves. Pressures less than 80 mm Hg were considered at risk for PVL. Pressures under each knot (intrasuture) fell less than 80 mm Hg for 12 of 144 manual knots (5/144 HT, 7/144 KP) versus 0 of 288 TF (P < 0.001). Pressures outside adjacent sutures (extrasuture) were less than 80 mm Hg in 10 of 60 HT, zero of 60 KP, and zero of 120 TF sites for 15 × 4-mm valves; 17 of 48 HT, 25 of 48 KP, and 12 of 96 TF for 12 × 4-mm valves; and 15 of 36 HT, 17 of 36 KP, and 9 and 72 TF for 9 × 6-mm valves; P < 0.001 all manual versus TF. Annular areas with pressures less than 80 mm Hg ranged from 0% of the sewing-ring area (all open TF) to 31% (12 × 4 mm, KP). The average time per manual knot, 46 seconds (HT, 31 seconds; KP, 61 seconds), was greater than TF, 14 seconds (P < 0.005). Reduced operative times and PVL risk would fortify the advantages of surgical aortic valve replacement. This research encourages continued exploration of technical factors in optimizing prosthetic valve security.

  4. Clinically Relevant Outcome Measures Following Limb Osseointegration; Systematic Review of the Literature.

    PubMed

    Al Muderis, Munjed M; Lu, William Y; Li, Jiao Jiao; Kaufman, Kenton; Orendurff, Michael; Highsmith, M Jason; Lunseth, Paul A; Kahle, Jason T

    2018-02-01

    The current standard of care for an amputee is a socket-based prostheses. An osseointegrated implant (OI) is an alternative for prosthetic attachment. Osseointegration addresses reported problems related to wearing a socket interface, such as skin issues, discomfort, diminished function, quality of life, prosthetic use, and abandonment. The purpose of this report is to systematically review current literature regarding OI to identify and categorize the reported clinically relevant outcome measures, rate the quality of available evidence, and synthesize the findings. A multidisciplinary team used PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methods. Search methodology was based on identifying clinically relevant articles. Three databases were searched: PubMed, CINAHL, and Web of Science. Clinical studies with aggregated data reporting at least 1 clinically relevant outcome measure were included. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criterion was used for critical appraisal and recommendations. This review identified 21 clinically relevant observational studies. Outcome measures were categorized into the following 9 categories: vibratory stimulation, complications, biomechanics, economics, patient-reported outcome measures, electromyography, x-ray, physical functional performance, and energy consumption. This systematic review consisted of Level III and IV observational studies. Homogeneous outcome measures with strong psychometric properties across prospective studies do not exist to date. Higher-level, prospective, randomized, long-term, clinically relevant trials are needed to prove efficacy of OI compared with socket prosthetic attachment. Osseointegration was at least equivalent to sockets in most studies. In some cases, it was superior. Osseointegration represents a promising alternative to socket prosthetic attachments for extremity amputees. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  5. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  6. Analyse of socket-prosthesis-blunt complex for lower limb amputee using objective measure of patient's gait cycle.

    PubMed

    Rotariu, Mariana; Filep, R; Turnea, M; Ilea, M; Arotăriţei, D; Popescu, Marilena

    2015-01-01

    The prosthetic application is a highly complex process. Modeling and simulation of biomechanics processes in orthopedics is a certainly field of interest in current medical research. Optimization of socket in order to improve the quality of patient's life is a major objective in prosthetic rehabilitation. A variety of numerical methods for prosthetic application have been developed and studied. An objective method is proposed to evaluate the performance of a prosthetic patient according to surface pressure map over the residual limb. The friction coefficient due to various liners used in transtibial and transfemoral prosthesis is taken into account also. Creation of a bio-based modeling and mathematical simulation allows the design, construction and optimization of contact between the prosthesis cup and lack of functionality of the patient amputated considering the data collected and processed in real time and non-invasively. The von Mises stress distribution in muscle flap tissue at the bone ends shows a larger region subjected to elevated von Mises stresses in the muscle tissue underlying longer truncated bones. Finite element method was used to conduct a stress analysis and show the force distribution along the device. The results contribute to a better understanding the design of an optimized prosthesis that increase the patient's performance along with a god choice of liner, made by an appropriate material that fit better to a particular blunt. The study of prosthetic application is an exciting and important topic in research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical orthopedics.

  7. Factors influencing the cost of prosthetic joint infection treatment.

    PubMed

    Peel, T N; Cheng, A C; Lorenzo, Y P; Kong, D C M; Buising, K L; Choong, P F M

    2013-11-01

    Prosthetic joint infection (PJI) is associated with significant costs to the healthcare system. Current literature examines the cost of specific treatment modalities without assessing other cost drivers for PJI. To examine the overall cost of the treatment of PJI and to identify factors associated with management costs. The costs of treatment of prosthetic joint infections were examined in 139 patients across 10 hospitals over a 3-year period (January 2006 to December 2008). Cost calculations included hospitalization costs, surgical costs, hospital-in-the-home costs and antibiotic therapy costs. Negative binomial regression analysis was performed to model factors associated with total cost. The median cost of treating prosthetic joint infection per patient was Australian $34,800 (interquartile range: 20,305, 56,929). The following factors were associated with increased treatment costs: septic revision arthroplasty (67% increase in treatment cost; P = 0.02), hypotension at presentation (70% increase; P = 0.03), polymicrobial infections (41% increase; P = 0.009), surgical treatment with one-stage exchange (100% increase; P = 0.002) or resection arthroplasty (48% increase; P = 0.001) were independently associated with increased treatment costs. Culture-negative prosthetic joint infections were associated with decreased costs (29% decrease in treatment cost; P = 0.047). Treatment failure was associated with 156% increase in treatment costs. This study identifies clinically important factors influencing treatment costs that may be of relevance to policy-makers, particularly in the setting of hospital reimbursement and guiding future research into cost-effective preventive strategies. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Improved Diagnosis of Prosthetic Joint Infection by Culturing Periprosthetic Tissue Specimens in Blood Culture Bottles.

    PubMed

    Peel, Trisha N; Dylla, Brenda L; Hughes, John G; Lynch, David T; Greenwood-Quaintance, Kerryl E; Cheng, Allen C; Mandrekar, Jayawant N; Patel, Robin

    2016-01-05

    Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs) is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM) in addition to applying the Infectious Diseases Society of America (IDSA) criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014) at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32%) met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively); this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003). The time to microorganism detection was shorter with BCBs than with standard media (P < 0.0001), with aerobic and anaerobic BCBs yielding positive results within a median of 21 and 23 h, respectively. Results of our study demonstrate that the semiautomated method of periprosthetic tissue culture in blood culture bottles is more sensitive than and as specific as agar and thioglycolate broth cultures and yields results faster. Prosthetic joint infections are a devastating complication of arthroplasty surgery. Despite this, current microbiological techniques to detect and diagnose infections are imperfect. This study examined a new approach to diagnosing infections, through the inoculation of tissue samples from around the prosthetic joint into blood culture bottles. This study demonstrated that, compared to current laboratory practices, this new technique increased the detection of infection. These findings are important for patient care to allow timely and accurate diagnosis of infection. Copyright © 2016 Peel et al.

  9. Sensory feedback add-on for upper-limb prostheses.

    PubMed

    Fallahian, Nader; Saeedi, Hassan; Mokhtarinia, Hamidreza; Tabatabai Ghomshe, Farhad

    2017-06-01

    Sensory feedback systems have been of great interest in upper-limb prosthetics. Despite tremendous research, there are no commercial modality-matched feedback systems. This article aims to introduce the first detachable and feedback add-on option that can be attached to in-use prostheses. A sensory feedback system was tested on a below-elbow myoelectric prosthesis. The aim was to have the amputee grasp fragile objects without crushing while other accidental feedback sources were blocked. A total of 8 successful trials (out of 10) showed that sensory feedback system decreased the amputee's visual dependency by improving awareness of his prosthesis. Sensory feedback system can be used either as post-fabrication (prosthetic add-on option) or para-fabrication (incorporated into prosthetic design). The use of these direct feedback systems can be explored with a current prosthesis before ordering new high-tech prosthesis. Clinical relevance This technical note introduces the first attach/detach-able sensory feedback system that can simply be added to in-use (myo)electric prosthesis, with no obligation to change prosthesis design or components.

  10. Neuroprosthetic limb control with electrocorticography: approaches and challenges.

    PubMed

    Thakor, Nitish V; Fifer, Matthew S; Hotson, Guy; Benz, Heather L; Newman, Geoffrey I; Milsap, Griffin W; Crone, Nathan E

    2014-01-01

    Advanced upper limb prosthetics, such as the Johns Hopkins Applied Physics Lab Modular Prosthetic Limb (MPL), are now available for research and preliminary clinical applications. Research attention has shifted to developing means of controlling these prostheses. Penetrating microelectrode arrays are often used in animal and human models to decode action potentials for cortical control. These arrays may suffer signal loss over the long-term and therefore should not be the only implant type investigated for chronic BMI use. Electrocorticographic (ECoG) signals from electrodes on the cortical surface may provide more stable long-term recordings. Several studies have demonstrated ECoG's potential for decoding cortical activity. As a result, clinical studies are investigating ECoG encoding of limb movement, as well as its use for interfacing with and controlling advanced prosthetic arms. This overview presents the technical state of the art in the use of ECoG in controlling prostheses. Technical limitations of the current approach and future directions are also presented.

  11. Quadriceps muscle injury in trans-femoral amputees.

    PubMed

    Alsindi, Z; Datta, D

    1998-12-01

    Two male trans-femoral amputees using modular trans-femoral prostheses lost control and fell to the ground when their prosthetic knees gave way. The semi-automatic knee lock malfunctioned in the first case while the free knee stabilising mechanics gave way in the second case. This resulted in a high tensile force acting on the contralateral quadriceps muscle causing it to rupture. As there are a significant number of patients with both kinds of prostheses it is important to be aware of this possibility so that necessary actions can be taken to minimise its occurrence. Even with the currently available weight activated stance phase control, the prosthetic knee will give way if the knee is flexed more than 20 degrees on weight bearing. Good power and control of hip extensors on the amputation side is needed to control the prosthetic knee joint, especially in the early stage of the walking cycle, i.e., from heel strike to mid-stance. Quadriceps muscle injury in amputees, as far as the authors are aware, has not been reported previously.

  12. Peri‐prosthetic tissue cells show osteogenic capacity to differentiate into the osteoblastic lineage

    PubMed Central

    Schoeman, Monique A.E.; Oostlander, Angela E.; Rooij, Karien Ede; Valstar, Edward R.

    2017-01-01

    ABSTRACT During the process of aseptic loosening of prostheses, particulate wear debris induces a continuous inflammatory‐like response resulting in the formation of a layer of fibrous peri‐prosthetic tissue at the bone‐prosthesis interface. The current treatment for loosening is revision surgery which is associated with a high‐morbidity rate, especially in old patients. Therefore, less invasive alternatives are necessary. One approach could be to re‐establish osseointegration of the prosthesis by inducing osteoblast differentiation in the peri‐prosthetic tissue. Therefore, the aim of this study was to investigate the capacity of peri‐prosthetic tissue cells to differentiate into the osteoblast lineage. Cells isolated from peri‐prosthetic tissue samples (n = 22)−obtained during revision surgeries−were cultured under normal and several osteogenic culture conditions. Osteogenic differentiation was assessed by measurement of Alkaline Phosphatse (ALP), mineralization of the matrix and expression of several osteogenic genes. Cells cultured in osteogenic medium showed a significant increase in ALP staining (p = 0.024), mineralization of the matrix (p < 0.001) and ALP gene expression (p = 0.014) compared to normal culture medium. Addition of bone morphogenetic proteins (BMPs), a specific GSK3β inhibitor (GIN) or a combination of BMP and GIN to osteogenic medium could not increase ALP staining, mineralization, and ALP gene expression. In one donor, addition of GIN was required to induce mineralization of the matrix. Overall, we observed a high‐inter‐donor variability in response to osteogenic stimuli. In conclusion, peri‐prosthetic tissue cells, cultured under osteogenic conditions, can produce alkaline phosphatase and mineralized matrix, and therefore show characteristics of differentiation into the osteoblastic lineage. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1732–1742, 2017. PMID:27714894

  13. Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation-Part 1: Description of technique.

    PubMed

    Fatone, Stefania; Caldwell, Ryan

    2017-06-01

    Current transfemoral prosthetic sockets restrict function, lack comfort, and cause residual limb problems. Lower proximal trim lines are an appealing way to address this problem. Development of a more comfortable and possibly functional subischial socket may contribute to improving quality of life of persons with transfemoral amputation. The purpose of this study was to (1) describe the design and fabrication of a new subischial socket and (2) describe efforts to teach this technique. Development project. Socket development involved defining the following: subject and liner selection, residual limb evaluation, casting, positive mold rectification, check socket fitting, definitive socket fabrication, and troubleshooting of socket fit. Three hands-on workshops to teach the socket were piloted and attended by 30 certified prosthetists and their patient models. Patient models responded positively to the comfort, range of motion, and stability of the new socket while prosthetists described the technique as "straight forward, reproducible." To our knowledge, this is the first attempt to create a teachable subischial socket, and while it appears promising, more definitive evaluation is needed. Clinical relevance We developed the Northwestern University Flexible Subischial Vacuum (NU-FlexSIV) Socket as a more comfortable alternative to current transfemoral sockets and demonstrated that it could be taught successfully to prosthetists.

  14. Online myoelectric control of a dexterous hand prosthesis by transradial amputees.

    PubMed

    Cipriani, Christian; Antfolk, Christian; Controzzi, Marco; Lundborg, Göran; Rosen, Birgitta; Carrozza, Maria Chiara; Sebelius, Fredrik

    2011-06-01

    A real-time pattern recognition algorithm based on k-nearest neighbors and lazy learning was used to classify, voluntary electromyography (EMG) signals and to simultaneously control movements of a dexterous artificial hand. EMG signals were superficially recorded by eight pairs of electrodes from the stumps of five transradial amputees and forearms of five able-bodied participants and used online to control a robot hand. Seven finger movements (not involving the wrist) were investigated in this study. The first objective was to understand whether and to which extent it is possible to control continuously and in real-time, the finger postures of a prosthetic hand, using superficial EMG, and a practical classifier, also taking advantage of the direct visual feedback of the moving hand. The second objective was to calculate statistical differences in the performance between participants and groups, thereby assessing the general applicability of the proposed method. The average accuracy of the classifier was 79% for amputees and 89% for able-bodied participants. Statistical analysis of the data revealed a difference in control accuracy based on the aetiology of amputation, type of prostheses regularly used and also between able-bodied participants and amputees. These results are encouraging for the development of noninvasive EMG interfaces for the control of dexterous prostheses.

  15. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  16. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  17. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  18. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  19. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  20. Gesture-Based Robot Control with Variable Autonomy from the JPL Biosleeve

    NASA Technical Reports Server (NTRS)

    Wolf, Michael T.; Assad, Christopher; Vernacchia, Matthew T.; Fromm, Joshua; Jethani, Henna L.

    2013-01-01

    This paper presents a new gesture-based human interface for natural robot control. Detailed activity of the user's hand and arm is acquired via a novel device, called the BioSleeve, which packages dry-contact surface electromyography (EMG) and an inertial measurement unit (IMU) into a sleeve worn on the forearm. The BioSleeve's accompanying algorithms can reliably decode as many as sixteen discrete hand gestures and estimate the continuous orientation of the forearm. These gestures and positions are mapped to robot commands that, to varying degrees, integrate with the robot's perception of its environment and its ability to complete tasks autonomously. This flexible approach enables, for example, supervisory point-to-goal commands, virtual joystick for guarded teleoperation, and high degree of freedom mimicked manipulation, all from a single device. The BioSleeve is meant for portable field use; unlike other gesture recognition systems, use of the BioSleeve for robot control is invariant to lighting conditions, occlusions, and the human-robot spatial relationship and does not encumber the user's hands. The BioSleeve control approach has been implemented on three robot types, and we present proof-of-principle demonstrations with mobile ground robots, manipulation robots, and prosthetic hands.

  1. Medical Applications for 3D Printing: Current and Projected Uses.

    PubMed

    Ventola, C Lee

    2014-10-01

    3D printing is expected to revolutionize health care through uses in tissue and organ fabrication; creation of customized prosthetics, implants, and anatomical models; and pharmaceutical research regarding drug dosage forms, delivery, and discovery.

  2. Parastomal hernia – current knowledge and treatment

    PubMed Central

    Styliński, Roman; Rudzki, Sławomir

    2018-01-01

    Intestinal stoma creation is one of the most common surgical procedures. The most common long-term complication following stoma creation is parastomal hernia, which according to some authors is practically unavoidable. Statistical differences of its occurrence are mainly due to patient observation time and evaluation criteria. Consequently, primary prevention methods such as placement of prosthetic mesh and newly developed minimally invasive methods of stoma creation are used. It seems that in the light of evidence-based medicine, the best way to treat parastomal hernia is the one that the surgeon undertaking therapy is the most experienced in and is suited to the individuality of each patient, his condition and comorbidities. As a general rule, reinforcing the abdominal wall with a prosthetic mesh is the treatment of choice, with a low rate of complications and relapses over a long period of time. The current trend is to use lightweight, large pore meshes. PMID:29643952

  3. Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation

    NASA Astrophysics Data System (ADS)

    Chai, Guohong; Sui, Xiaohong; Li, Si; He, Longwen; Lan, Ning

    2015-12-01

    Objective. The goal of this study is to characterize the phenomenon of evoked tactile sensation (ETS) on the stump skin of forearm amputees using transcutaneous electrical nerve stimulation (TENS). Approach. We identified the projected finger map (PFM) of ETS on the stump skin in 11 forearm amputees, and compared perceptual attributes of the ETS in nine forearm amputees and eight able-bodied subjects using TENS. The profile of perceptual thresholds at the most sensitive points (MSPs) in each finger-projected area was obtained by modulating current amplitude, pulse width, and frequency of the biphasic, rectangular current stimulus. The long-term stability of the PFM and the perceptual threshold of the ETS were monitored in five forearm amputees for a period of 11 months. Main results. Five finger-specific projection areas can be independently identified on the stump skin of forearm amputees with a relatively long residual stump length. The shape of the PFM was progressively similar to that of the hand with more distal amputation. Similar sensory modalities of touch, pressure, buzz, vibration, and numb below pain sensation could be evoked both in the PFM of the stump skin of amputees and in the normal skin of able-bodied subjects. Sensory thresholds in the normal skin of able-bodied subjects were generally lower than those in the stump skin of forearm amputees, however, both were linearly modulated by current amplitude and pulse width. The variation of the MSPs in the PFM was confined to a small elliptical area with 95% confidence. The perceptual thresholds of thumb-projected areas were found to vary less than 0.99 × 10-2 mA cm-2. Significance. The stable PFM and sensory thresholds of ETS are desirable for a non-invasive neural interface that can feed back finger-specific tactile information from the prosthetic hand to forearm amputees.

  4. A Prosthetic Foot Emulator to Optimize Prescription of Prosthetic Feet in Veterans and Service Members with Leg Amputations

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0569 TITLE: A Prosthetic Foot Emulator to Optimize Prescription of Prosthetic Feet in Veterans and Service Members...Headquarters Services , Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302...GRANT NUMBER A Prosthetic Foot Emulator to Optimize Prescription of Prosthetic Feet in Veterans and Service Members with Leg Amputations 5c

  5. Prosthesis use in adult acquired major upper-limb amputees: patterns of wear, prosthetic skills and the actual use of prostheses in activities of daily life.

    PubMed

    Østlie, Kristin; Lesjø, Ingrid Marie; Franklin, Rosemary Joy; Garfelt, Beate; Skjeldal, Ola Hunsbeth; Magnus, Per

    2012-11-01

    To describe patterns of prosthesis wear and perceived prosthetic usefulness in adult acquired upper-limb amputees (ULAs). To describe prosthetic skills in activities of daily life (ADL) and the actual use of prostheses in the performance of ADL tasks. To estimate the influence of prosthetic skills on actual prosthesis use and the influence of background factors on prosthetic skills and actual prosthesis use. Cross-sectional study analysing population-based questionnaire data (n = 224) and data from interviews and clinical testing in a referred/convenience sample of prosthesis-wearing ULAs (n = 50). Effects were analysed using linear regression. 80.8% wore prostheses. 90.3% reported their most worn prosthesis as useful. Prosthetic usefulness profiles varied with prosthetic type. Despite demonstrating good prosthetic skills, the amputees reported actual prosthesis use in only about half of the ADL tasks performed in everyday life. In unilateral amputees, increased actual use was associated with sufficient prosthetic training and with the use of myoelectric vs cosmetic prostheses, regardless of amputation level. Prosthetic skills did not affect actual prosthesis use. No background factors showed significant effect on prosthetic skills. Most major ULAs wear prostheses. Individualised prosthetic training and fitting of myoelectric rather than passive prostheses may increase actual prosthesis use in ADL.

  6. Rothia mucilaginosa Prosthetic Device Infections: a Case of Prosthetic Valve Endocarditis

    PubMed Central

    Tokarczyk, Mindy J.; Jungkind, Donald; DeSimone, Joseph A.

    2013-01-01

    Rothia mucilaginosa is increasingly recognized as an emerging opportunistic pathogen associated with prosthetic device infections. Infective endocarditis is one of the most common clinical presentations. We report a case of R. mucilaginosa prosthetic valve endocarditis and review the literature of prosthetic device infections caused by this organism. PMID:23467598

  7. Clinical Presentation, Risk Factors, and Outcomes of Hematogenous Prosthetic Joint Infection in Patients with Staphylococcus aureus Bacteremia.

    PubMed

    Tande, Aaron J; Palraj, Bharath Raj; Osmon, Douglas R; Berbari, Elie F; Baddour, Larry M; Lohse, Christine M; Steckelberg, James M; Wilson, Walter R; Sohail, M Rizwan

    2016-02-01

    Staphylococcus aureus bacteremia is a life-threatening condition that may lead to metastatic infection, including prosthetic joint infection. To assess clinical factors associated with hematogenous prosthetic joint infection, we retrospectively reviewed all patients with a joint arthroplasty in place at the time of a first episode of S. aureus bacteremia over a 5-year period at our institution. Patients with postsurgical prosthetic joint infection without hematogenous prosthetic joint infection were excluded. There were 85 patients (143 arthroplasties) with either no prosthetic joint infection (n = 50; 58.8%) or hematogenous prosthetic joint infection in at least one arthroplasty (n = 35; 41.2%). The odds of hematogenous prosthetic joint infection was significantly increased among patients with community-acquired S. aureus bacteremia (odds ratio [OR] 18.07; 95% confidence interval [CI] 2.64-infinity; P = .001), as compared with nosocomial S. aureus bacteremia, in which there were no patients with hematogenous prosthetic joint infection. After adjusting for S. aureus bacteremia classification, the presence of ≥3 joint arthroplasties in place was associated with a nearly ninefold increased odds of hematogenous prosthetic joint infection as compared with those with 1-2 joint arthroplasties in place (OR 8.55; 95% CI 1.44-95.71; P = .012). All but one joint with prosthetic joint infection demonstrated at least one clinical feature suggestive of infection. There were 4 additional S. aureus prosthetic joint infections diagnosed during a median of 3.4 years of follow-up post hospitalization for S. aureus bacteremia. Prosthetic joint infection is frequent in patients with existing arthroplasties and concomitant S. aureus bacteremia, particularly with community-acquired S. aureus bacteremia and multiple prostheses. In contrast, occult S. aureus prosthetic joint infection without clinical features suggestive of prosthetic joint infection at the time of S. aureus bacteremia is rare. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

    PubMed

    Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel

    2017-07-26

    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.

  9. Paré and prosthetics: the early history of artificial limbs.

    PubMed

    Thurston, Alan J

    2007-12-01

    There is evidence for the use of prostheses from the times of the ancient Egyptians. Prostheses were developed for function, cosmetic appearance and a psycho-spiritual sense of wholeness. Amputation was often feared more than death in some cultures. It was believed that it not only affected the amputee on earth, but also in the afterlife. The ablated limbs were buried and then disinterred and reburied at the time of the amputee's death so the amputee could be whole for eternal life. One of the earliest examples comes from the 18th dynasty of ancient Egypt in the reign of Amenhotep II in the fifteenth century bc. A mummy in the Cairo Museum has clearly had the great toe of the right foot amputated and replaced with a prosthesis manufactured from leather and wood. The first true rehabilitation aids that could be recognized as prostheses were made during the civilizations of Greece and Rome. During the Dark Ages prostheses for battle and hiding deformity were heavy, crude devices made of available materials - wood, metal and leather. Such were the materials available to Ambroise Paré who invented both upper-limb and lower-limb prostheses. His 'Le Petit Lorrain', a mechanical hand operated by catches and springs, was worn by a French Army captain in battle. Subsequent refinements in medicine, surgery and prosthetic science greatly improved amputation surgery and the function of prostheses. What began as a modified crutch with a wooden or leather cup and progressed through many metamorphoses has now developed into a highly sophisticated prosthetic limb made of space-age materials.

  10. 7 degree-of-freedom neuroprosthetic control by an individual with tetraplegia

    PubMed Central

    Collinger, Jennifer L; Wodlinger, Brian; Downey, John E; Wang, Wei; Tyler-Kabara, Elizabeth C; Weber, Douglas J; McMorland, Angus JC; Velliste, Meel; Boninger, Michael L; Schwartz, Andrew B

    2013-01-01

    SUMMARY Background We use our arms to transport and orient the hand which is used to grasp and manipulate objects. Upper limb paralysis or amputation limits a person’s ability to interact with their environment to accomplish activities of daily living. Brain-machine interfaces (BMIs) may provide a solution to restoring much of this function. Methods Two 96-channel intracortical microelectrodes were implanted in the motor cortex of an individual with tetraplegia. Thirteen weeks of BMI training were conducted with the goal of controlling an anthropomorphic prosthetic limb with 7 degrees-of-freedom (3D translation, 3D orientation, 1D grasping). Clinical measures of upper-limb function were used to assess the participant’s ability to use the prosthetic limb. Findings The participant demonstrated the ability to move the device freely in the three-dimensional (3D) workspace on the second day of training. After 13 weeks, robust 7 degree-of-freedom movements were performed routinely. Over time, performance on target-based reaching tasks improved in terms of success rate, completion time, and path efficiency. The participant was also able to use the prosthetic limb to perform skillful and coordinated reach and grasp movements that resulted in clinically significant gains in tests of upper-limb function. Interpretation This study demonstrates that a person with chronic tetraplegia can perform consistent, natural, and complex movements with an anthropomorphic robotic arm to regain clinically significant function. Funding Defense Advanced Research Projects Agency, National Institutes of Health, Department of Veterans Affairs, and UPMC Rehabilitation Institute PMID:23253623

  11. Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review.

    PubMed

    Bauermeister, Adam J; Zuriarrain, Alexander; Newman, Martin I

    2016-11-01

    Increasingly affordable three-dimensional (3D) printing technologies now make it possible for surgeons to create highly customizable patient-tailored products. This process provides the potential to produce individualized artificial and biologic implants, regenerative scaffolds, and cell-specific replacement tissue and organs. The combination of accurate volumetric analysis and production of 3D printed biologic materials are evolving techniques that demonstrate great promise in achieving an accurate and naturally appearing anthropomorphic reconstruction. This systematic review summarizes the current published literature and known ongoing research on 3D printing in the field of plastic and reconstructive surgery (PRS). Three medical databases (PubMed, Ovid MEDLINE, and Google Scholar) as well as recent news articles and university websites were searched using PRS and industry-related search terms. Inclusion criteria consisted of any publication or reputable news or academic article in electronic or printed media directly studying or commenting on the use of 3D printing technology in relation to PRS. The current literature was critically appraised, and quality of selected articles was assessed and manually filtered for relevance by 2 reviewers. A total of 1092 articles were identified from the aforementioned sources discussing 3D printing in medicine. The 3D printing in relation to biologic and surgical applications was discussed in 226 articles. Within this subset, 103 articles were included in the review. Of those selected, 5 were pertinent to surgical planning, training, and patient education; 4 to upper extremity and hand prosthetics; 24 to bone and craniomaxillofacial (CMF) reconstruction; 10 to breast reconstruction; 20 to nose, ear, and cartilage reconstruction; 20 to skin; and finally 20 involving overlapping general topics in 3D printing and PRS. The 3D printing provides the ability to construct complex individualized implants that not only improve patient outcomes but also increase economic feasibility. The technology offers a potential level of accessibility that is paramount for remote and resource-limited locations where health care is most often limited. The 3D printing-based technologies will have an immense impact on the reconstruction of traumatic injuries, facial and limb prosthetic development, as well as advancements in biologic and synthetic implants.

  12. International normalized ratio self-management lowers the risk of thromboembolic events after prosthetic heart valve replacement.

    PubMed

    Eitz, Thomas; Schenk, Soren; Fritzsche, Dirk; Bairaktaris, Andreas; Wagner, Otto; Koertke, Heinrich; Koerfer, Reiner

    2008-03-01

    Although prosthetic valves are durable and easy to implant, the need for lifetime warfarin-based anticoagulation restricts their exclusive usage. We investigated if anticoagulation self-management improves outcome in a single-center series. Between 1994 and 1998, 765 patients with prosthetic valve replacements were prospectively enrolled and randomized to receive conventional anticoagulation management by their primary physician (group 1, n = 295) or to pursue anticoagulation self-management (group 2, n = 470). A study head office was implemented to coordinate and monitor anticoagulation protocols, international normalized ratios (INR), and adverse events. Patients were instructed on how to obtain and test their own blood samples and to adjust warfarin dosages according to the measured INR (target range, 2.5 to 4). Mean INR values were slightly yet significantly smaller in group 1 than in group 2 (2.8 +/- 0.7 vs 3.0 +/- .6, p < 0.001). Moreover, INR values of patients with conventional INR management were frequently measured outside the INR target range, whereas those with anticoagulation self-management mostly remained within the range (35% vs 21%, p < 0.001). In addition, the scatter of INR values was smaller if self-managed. Freedom from thromboembolism at 3, 12, and 24 months, respectively, was 99%, 95%, and 91% in group 1 compared with 99%, 98%, and 96% in group 2 (p = 0.008). Bleeding events were similar in both groups. Time-related multivariate analysis identified INR self-management and higher INR as independent predictors for better outcome. Anticoagulation self-management can improve INR profiles up to 2 years after prosthetic valve replacement and reduce adverse events. Current indications of prosthetic rather than biologic valve implantations may be extended if the benefit of INR self-management is shown by future studies with longer follow-up.

  13. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves.

    PubMed

    Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M

    2008-12-01

    Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.

  14. Retinal Prosthetics, Optogenetics, and Chemical Photoswitches

    PubMed Central

    2015-01-01

    Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream implementations. Even so, given the high density of human foveal ganglion cells, the ultimate chemical photoswitch treatment could deliver cost-effective, high-resolution vision for the blind. PMID:25089879

  15. Comparison of Rectified and Unrectified Sockets for Transtibial Amputees.

    PubMed

    Engsberg, Jack R; Sprouse, S Wayne; Uhrich, Mary L; Ziegler, Barbara R; Luitjohan, F Daniel

    2008-01-01

    The current method for fabricating prosthetic sockets is to modify a positive mold to account for the non-homogeneity of the residual limb to tolerate load (i.e., rectified socket). We tested unrectified sockets by retaining the shape of the residual limb, except for a distal end pad, using an alginate gel process instead of casting. This investigation compared rectified and unrectified sockets. Forty-three adults with unilateral transtibial amputations were tested after randomly wearing both rectified and unrectified sockets for at least 4 weeks. Testing included a gait analysis, energy expenditure and Prosthesis Evaluation Questionnaire (PEQ). Results indicated no differences between sockets for gait speed and timing, gait kinematics and kinetics, and gait energy expenditure. There were also no differences in the Prosthetic Evaluation Questionnaire and 16 subjects selected the rectified socket, 25 selected the unrectified socket, and 2 subjects selected to use both sockets as their exit socket. Results seemed to indicate that more than one paradigm exists for shaping prosthetic sockets, and this paradigm may be helpful in understanding the mechanisms of socket fit. The alginate gel fabrication method was simpler than the traditional method. The method could be helpful in other countries where prosthetic care is lacking, may be helpful with new amputees, and may be helpful in typical clinics to reduce costs and free the prosthetist to focus more time on patient needs.

  16. Comparison of Rectified and Unrectified Sockets for Transtibial Amputees

    PubMed Central

    Engsberg, Jack R.; Sprouse, S. Wayne; Uhrich, Mary L.; Ziegler, Barbara R.; Luitjohan, F. Daniel

    2008-01-01

    The current method for fabricating prosthetic sockets is to modify a positive mold to account for the non-homogeneity of the residual limb to tolerate load (i.e., rectified socket). We tested unrectified sockets by retaining the shape of the residual limb, except for a distal end pad, using an alginate gel process instead of casting. This investigation compared rectified and unrectified sockets. Forty-three adults with unilateral transtibial amputations were tested after randomly wearing both rectified and unrectified sockets for at least 4 weeks. Testing included a gait analysis, energy expenditure and Prosthesis Evaluation Questionnaire (PEQ). Results indicated no differences between sockets for gait speed and timing, gait kinematics and kinetics, and gait energy expenditure. There were also no differences in the Prosthetic Evaluation Questionnaire and 16 subjects selected the rectified socket, 25 selected the unrectified socket, and 2 subjects selected to use both sockets as their exit socket. Results seemed to indicate that more than one paradigm exists for shaping prosthetic sockets, and this paradigm may be helpful in understanding the mechanisms of socket fit. The alginate gel fabrication method was simpler than the traditional method. The method could be helpful in other countries where prosthetic care is lacking, may be helpful with new amputees, and may be helpful in typical clinics to reduce costs and free the prosthetist to focus more time on patient needs. PMID:18776945

  17. 3D simulation of an audible ultrasonic electrolarynx using difference waves.

    PubMed

    Mills, Patrick; Zara, Jason

    2014-01-01

    A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper.

  18. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans.

    PubMed

    Oddo, Calogero Maria; Raspopovic, Stanisa; Artoni, Fiorenzo; Mazzoni, Alberto; Spigler, Giacomo; Petrini, Francesco; Giambattistelli, Federica; Vecchio, Fabrizio; Miraglia, Francesca; Zollo, Loredana; Di Pino, Giovanni; Camboni, Domenico; Carrozza, Maria Chiara; Guglielmelli, Eugenio; Rossini, Paolo Maria; Faraguna, Ugo; Micera, Silvestro

    2016-03-08

    Restoration of touch after hand amputation is a desirable feature of ideal prostheses. Here, we show that texture discrimination can be artificially provided in human subjects by implementing a neuromorphic real-time mechano-neuro-transduction (MNT), which emulates to some extent the firing dynamics of SA1 cutaneous afferents. The MNT process was used to modulate the temporal pattern of electrical spikes delivered to the human median nerve via percutaneous microstimulation in four intact subjects and via implanted intrafascicular stimulation in one transradial amputee. Both approaches allowed the subjects to reliably discriminate spatial coarseness of surfaces as confirmed also by a hybrid neural model of the median nerve. Moreover, MNT-evoked EEG activity showed physiologically plausible responses that were superimposable in time and topography to the ones elicited by a natural mechanical tactile stimulation. These findings can open up novel opportunities for sensory restoration in the next generation of neuro-prosthetic hands.

  19. Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger

    PubMed Central

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569

  20. On the way to total integration of prosthetic pylon with residuum

    PubMed Central

    Pitkin, Mark

    2010-01-01

    Two decades after introducing threaded titanium dental implants, Dr. Per-Ingvar Brånemark used a similar technique in the 1980s to pioneer the direct skeletal attachment (DSA) of limb prostheses. He and his colleagues used convincing clinical experience to overcome the skepticism of their peers, affording a new dimension of prosthetic rehabilitation to almost 100 individuals with amputation. As a result, more research has been initiated worldwide to move DSA to a level of greater safety, longevity, and reliability. This review highlights the trends and milestones in current DSA development. It also identifies ideas from previous studies in various fields that may be useful in future DSA development. PMID:19675987

  1. A novel four-bar linkage prosthetic knee based on magnetorheological effect: principle, structure, simulation and control

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wang, Dai-Hua; Fu, Qiang; Yuan, Gang; Hu, Lei-Zi

    2016-11-01

    In this paper, the principle and structure of the four-bar linkage prosthetic knee based on the magnetorheological effect (FLPKME) are proposed and realized by individually integrating the upper and lower link rods of the four-bar linkage with the piston rod and the outer cylinder of the magnetorheological (MR) damper. The integrated MR damper, in which the MR fluid is operated in the shear mode, has a double-ended structure. The prototype of the FLPKME is designed and fabricated. Utilizing the developed FLPKME, the lower limb prosthesis is developed, modeled, and simulated. On these bases, the control algorithm for the FLPKME is developed. A test platform for the FLPKME is developed and the performance of the FLPKME with seven constant currents and controlled currents by the control algorithm developed in this paper are experimentally tested. The results show that the FLPKME with a constant current of 1.6 A possesses the basic stable gait, and the FLPKME with the controlled currents by the control algorithm developed in this paper is able to track the motions well and to imitate the natural motions of a healthy human knee joint.

  2. Factors Associated with Prosthetic Looseness in Lower Limb Amputees.

    PubMed

    Phonghanyudh, Thong; Sutpasanon, Taweesak; Hathaiareerug, Chanasak; Devakula, M L Buddhibongsa; Kumnerddee, Wipoo

    2015-12-01

    To determine the factors associated with prosthetic looseness in lower limb amputees in Sisaket province. The present was a cross-sectional descriptive study. Subjects were lower limb amputees who previously obtained prostheses and required prosthetic replacements at the mobile prosthetic laboratory unit under the Prostheses Foundation of H.R.H. the Princess Mother at Khun Han Hospital, Sisaket province, in February 2013. Data including participant characteristics, prosthetic looseness data, and various variables were collected by direct semi-structured interview. Energy expenditures in physical activities were measured using the Thai version of the short format international physical activity questionnaire. Data between participants with and without prosthetic looseness were compared to determine prosthetic loosening associated factors. Among 101 participants enrolled, 33 (32.7%) had prosthetic looseness with average onset of 1.76 ± 1.67 years. Diabetes mellitus was the only significant factor associated with prosthetic looseness from both univariate and multivariate analyses (HR = 7.05, p = 0.002 and HR = 5.93, p = 0.007 respectively). Among the lower limb amputees in Sisaket province, diabetes mellitus was the only factor associated with prosthetic looseness. Therefore, diabetic screening should be supplemented in lower limb amputee assessment protocol. In addition, we recommend that amputees with diabetes mellitus should receive prosthesis check out at approximately

  3. Threshold concepts in prosthetics.

    PubMed

    Hill, Sophie

    2017-12-01

    Curriculum documents identify key concepts within learning prosthetics. Threshold concepts provide an alternative way of viewing the curriculum, focussing on the ways of thinking and practicing within prosthetics. Threshold concepts can be described as an opening to a different way of viewing a concept. This article forms part of a larger study exploring what students and staff experience as difficult in learning about prosthetics. To explore possible threshold concepts within prosthetics. Qualitative, interpretative phenomenological analysis. Data from 18 students and 8 staff at two universities with undergraduate prosthetics and orthotics programmes were generated through interviews and questionnaires. The data were analysed using an interpretative phenomenological analysis approach. Three possible threshold concepts arose from the data: 'how we walk', 'learning to talk' and 'considering the person'. Three potential threshold concepts in prosthetics are suggested with possible implications for prosthetics education. These possible threshold concepts involve changes in both conceptual and ontological knowledge, integrating into the persona of the individual. This integration occurs through the development of memories associated with procedural concepts that combine with disciplinary concepts. Considering the prosthetics curriculum through the lens of threshold concepts enables a focus on how students learn to become prosthetists. Clinical relevance This study provides new insights into how prosthetists learn. This has implications for curriculum design in prosthetics education.

  4. Factors influencing evidence-based practice in prosthetics and orthotics.

    PubMed

    Andrysek, Jan; Christensen, James; Dupuis, Annie

    2011-03-01

    The importance of evidence-based practice is being recognized across a broad range of healthcare disciplines as a means for improving patient outcomes and also efficiently managing healthcare resources. The objective of this work was to obtain information from clinicians about the underlying barriers and facilitators relating to evidence-based practice in prosthetics and orthotics. Cross sectional survey. An internet survey was developed and distributed to 300 prosthetists and orthotists currently practicing in Canada. A principal component factor analysis of the survey results revealed ten primary factors affecting evidence-based practice. These include time constraints, workload and system demands, limited relevant evidence from research, and gaps in skills and knowledge required to perform evidence-based practice. Clinicians value research as a means of improving clinical practice, but they are faced with a number of practical barriers in performing evidence-based practice. This study provides empirical data about the underlying barriers and facilitators relating to evidence-based practice in prosthetics and orthotics. Such data are essential in order to inform those involved in improving existing clinical practices, including educators, professional organizations, and governing bodies.

  5. Lightweight custom composite prosthetic components using an additive manufacturing-based molding technique.

    PubMed

    Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M

    2015-01-01

    Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.

  6. A powered prosthetic ankle joint for walking and running.

    PubMed

    Grimmer, Martin; Holgate, Matthew; Holgate, Robert; Boehler, Alexander; Ward, Jeffrey; Hollander, Kevin; Sugar, Thomas; Seyfarth, André

    2016-12-19

    Current prosthetic ankle joints are designed either for walking or for running. In order to mimic the capabilities of an able-bodied, a powered prosthetic ankle for walking and running was designed. A powered system has the potential to reduce the limitations in range of motion and positive work output of passive walking and running feet. To perform the experiments a controller capable of transitions between standing, walking, and running with speed adaptations was developed. In the first case study the system was mounted on an ankle bypass in parallel with the foot of a non-amputee subject. By this method the functionality of hardware and controller was proven. The Walk-Run ankle was capable of mimicking desired torque and angle trajectories in walking and running up to 2.6 m/s. At 4 m/s running, ankle angle could be matched while ankle torque could not. Limited ankle output power resulting from a suboptimal spring stiffness value was identified as a main reason. Further studies have to show to what extent the findings can be transferred to amputees.

  7. Nitinol for Prosthetic and Orthotic Applications

    NASA Astrophysics Data System (ADS)

    Henderson, Emma; Buis, Arjan

    2011-07-01

    As global populations age, conditions such as stroke and diabetes require individuals to use rehabilitation technology for many years to come due to chronic musculoskeletal, sensory, and other physical impairments. One in four males currently aged 45 will experience a stroke within 40 years and will often require access to prolonged rehabilitation. In addition, worldwide, one individual loses a limb every 30 s due to the complications of diabetes. As a result, innovative ideas are required to devise more effective prosthetic and orthotic devices to enhance quality of life. While Nitinol has already found much favor within the biomedical industry, one area, which has not yet exploited its unique properties, is in the field of physical rehabilitation, ranging from prosthetic and orthotic devices to assistive technology such as wheelchairs. Improved intervention capabilities based on materials such as Nitinol have the potential to vastly improve patients' quality of life and in the case of orthoses, may even reduce the severity of the condition over time. It is hoped that this study will spark discussion and interest for the materials community in a field which has yet to be fully exploited.

  8. A financial analysis of revision hip arthroplasty: the economic burden in relation to the national tariff.

    PubMed

    Vanhegan, I S; Malik, A K; Jayakumar, P; Ul Islam, S; Haddad, F S

    2012-05-01

    Revision arthroplasty of the hip is expensive owing to the increased cost of pre-operative investigations, surgical implants and instrumentation, protracted hospital stay and drugs. We compared the costs of performing this surgery for aseptic loosening, dislocation, deep infection and peri-prosthetic fracture. Clinical, demographic and economic data were obtained for 305 consecutive revision total hip replacements in 286 patients performed at a tertiary referral centre between 1999 and 2008. The mean total costs for revision surgery in aseptic cases (n = 194) were £11 897 (sd 4629), for septic revision (n = 76) £21 937 (sd 10 965), for peri-prosthetic fracture (n = 24) £18 185 (sd 9124), and for dislocation (n = 11) £10 893 (sd 5476). Surgery for deep infection and peri-prosthetic fracture was associated with longer operating times, increased blood loss and an increase in complications compared to revisions for aseptic loosening. Total inpatient stay was also significantly longer on average (p < 0.001). Financial costs vary significantly by indication, which is not reflected in current National Health Service tariffs.

  9. Laparoscopic surgical treatment of umbilical hernia and small eventrations with prosthetic mesh using omentum overlay.

    PubMed

    Bratu, D; Sabău, A; Dumitra, A; Sabău, D; Miheţiu, A; Beli, L; Hulpuş, R

    2014-01-01

    Umbilical hernias and abdominal incisional hernias represent current pathologies which require numerous surgical alternative ways of treatment in prosthetic or non prosthetic,open or minimally invasive surgery. The method proposed by us is a less expensive option with no additional risks compared to other similar procedures as surgical technique. We conducted a retrospective study between 01.01.2008 - 01.06.2013 in which we considered a number of 23 patients with umbilical hernia and eventration, patients who received laparoscopic intraperitoneal polyester mesh covered with omentum, procedure applied at the IInd Surgery Clinic, Clinical County Emergency Hospital Sibiu. Out of 23 patients with postoperative umbilical hernia and eventration cases in which we used this surgical technique,16 were umbilical hernias and 7 post incisional hernias. The average time of surgery was 1 hour and 40 minutes, recording 4 postoperative complications remitted under conservative treatment, with a mean hospitalization of 4.1 days. Proepiploic laparoscopic treatment using omentum is a reliable alternative to a more expensive and difficult procedure involving Dual Mesh. Celsius.

  10. AB0 blood types: impact on development of prosthetic mechanical valve thrombosis

    PubMed Central

    Astarcıoğlu, Mehmet Ali; Kalçık, Macit; Yesin, Mahmut; Gürsoy, Mustafa Ozan; Şen, Taner; Karakoyun, Süleyman; Gündüz, Sabahattin; Özkan, Mehmet

    2016-01-01

    Objective: The non-O alleles of the ABO genotype have been associated with an increased risk of thrombosis. We aimed to assess the association between blood group status and prosthetic valve thrombosis. Methods: The association between AB0 blood group status and prosthetic valve thrombosis was assessed in this retrospective study. Transesophageal echocardiography was performed in 149 patients with a diagnosis of prosthetic valve thrombosis and in 192 control subjects. Results: Non-0 blood group type (p<0.001), presence of NYHA class III-IV status (p<0.001), and central nervous system (p<0.001) and non-central nervous system (p<0.001) emboli were significantly more prevalent in prosthetic valve thrombosis patients than in the control subjects. The incidence of ineffective anticoagulation was higher in patients with prosthetic valve thrombosis than in controls (p<0.001), as was the presence of moderate to severe left atrial spontaneous echo contrast (p<0.001). The non-0 blood prosthetic valve thrombosis subgroup had a higher incidence of obstructive thrombi and central nervous system thrombotic events than having 0 blood prosthetic valve thrombosis subgroup. Non-0 blood group, ineffective anticoagulation, left atrial spontaneous echo contrast, and a poor NYHA functional capacity were identified to be the predictors of prosthetic valve thrombosis. Conclusion: Our data demonstrate that patients with non-0 compared with 0 blood groups have higher incidence of prosthetic valve thrombosis and central nervous system embolism and similar rates of non-central nervous system embolism at presentation compared with 0 blood group type. Thus, non-O blood group may be a risk factor that may be prone to the development of prosthetic valve thrombosis in patients with prosthetic heart valves. PMID:27488753

  11. The Effect of Prosthetic Foot Push-off on Mechanical Loading Associated with Knee Osteoarthritis in Lower Extremity Amputees

    PubMed Central

    Morgenroth, David C.; Segal, Ava D.; Zelik, Karl E.; Czerniecki, Joseph M.; Klute, Glenn K.; Adamczyk, Peter G.; Orendurff, Michael S.; Hahn, Michael E.; Collins, Steven H.; Kuo, Art D.

    2011-01-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope = −0.72 +/− 0.22; p=0.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope = −0.34 +/− 0.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. PMID:21803584

  12. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.

    PubMed

    Morgenroth, David C; Segal, Ava D; Zelik, Karl E; Czerniecki, Joseph M; Klute, Glenn K; Adamczyk, Peter G; Orendurff, Michael S; Hahn, Michael E; Collins, Steven H; Kuo, Art D

    2011-10-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope=-.72±.22; p=.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope=-.34±.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. Published by Elsevier B.V.

  13. Perceived self-efficacy and specific self-reported outcomes in persons with lower-limb amputation using a non-microprocessor-controlled versus a microprocessor-controlled prosthetic knee.

    PubMed

    Möller, Saffran; Hagberg, Kerstin; Samulesson, Kersti; Ramstrand, Nerrolyn

    2018-04-01

    To measure self-efficacy in a group of individuals who have undergone a lower-limb amputation and investigate the relationship between self-efficacy and prosthetic-specific outcomes including prosthetic use, mobility, amputation-related problems and global health. A second purpose was to examine if differences exist in outcomes based upon the type of prosthetic knee unit being used. Cross-sectional study using the General Self-Efficacy (GSE) Scale and the Questionnaire for Persons with a Transfemoral Amputation (Q-TFA). Forty-two individuals participated in the study. Twenty-three used a non-microprocessor-controlled prosthetic knee joint (non-MPK) and 19 used a microprocessor-controlled prosthetic knee joint (MPK). The study sample had quite high GSE scores (32/40). GSE scores were significantly correlated to the Q-TFA prosthetic use, mobility and problem scores. High GSE scores were related to higher levels of prosthetic use, mobility, global scores and negatively related to problem score. No significant difference was observed between individuals using a non-MPK versus MPK joints. Individuals with high self-efficacy used their prosthesis to a higher degree and high self-efficacy was related to higher level of mobility, global scores and fewer problems related to the amputation in individuals who have undergone a lower-limb amputation and were using a non-MPK or MPK knee. Implications for rehabilitation Perceived self-efficacy has has been shown to be related to quality of life, prosthetic mobility and capability as well as social activities in daily life. Prosthetic rehabilitation is primary focusing on physical improvement rather than psychological interventions. More attention should be directed towards the relationship between self-efficacy and prosthetic related outcomes during prosthetic rehabilitation after a lower-limb amputation.

  14. Utilising three-dimensional printing techniques when providing unique assistive devices: A case report.

    PubMed

    Day, Sarah Jane; Riley, Shaun Patrick

    2018-02-01

    The evolution of three-dimensional printing into prosthetics has opened conversations about the availability and cost of prostheses. This report will discuss how a prosthetic team incorporated additive manufacture techniques into the treatment of a patient with a partial hand amputation to create and test a unique assistive device which he could use to hold his French horn. Case description and methods: Using a process of shape capture, photogrammetry, computer-aided design and finite element analysis, a suitable assistive device was designed and tested. The design was fabricated using three-dimensional printing. Patient satisfaction was measured using a Pugh's Matrix™, and a cost comparison was made between the process used and traditional manufacturing. Findings and outcomes: Patient satisfaction was high. The three-dimensional printed devices were 56% cheaper to fabricate than a similar laminated device. Computer-aided design and three-dimensional printing proved to be an effective method for designing, testing and fabricating a unique assistive device. Clinical relevance CAD and 3D printing techniques can enable devices to be designed, tested and fabricated cheaper than when using traditional techniques. This may lead to improvements in quality and accessibility.

  15. Target of physiological gait: Realization of speed adaptive control for a prosthetic knee during swing flexion.

    PubMed

    Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Li, Jin; Wei, Xiaodong

    2018-01-01

    Prosthetic knee is the most important component of lower limb prosthesis. Speed adaptive for prosthetic knee during swing flexion is the key method to realize physiological gait. This study aims to discuss the target of physiological gait, propose a speed adaptive control method during swing flexion and research the damping adjustment law of intelligent hydraulic prosthetic knee. According to the physiological gait trials of healthy people, the control target during swing flexion is defined. A new prosthetic knee with fuzzy logical control during swing flexion is designed to realize the damping adjustment automatically. The function simulation and evaluation system of intelligent knee prosthesis is provided. Speed adaptive control test of the intelligent prosthetic knee in different velocities are researched. The maximum swing flexion of the knee angle is set between sixty degree and seventy degree as the target of physiological gait. Preliminary experimental results demonstrate that the prosthetic knee with fuzzy logical control is able to realize physiological gait under different speeds. The faster the walking, the bigger the valve closure percentage of the hydraulic prosthetic knee. The proposed fuzzy logical control strategy and intelligent hydraulic prosthetic knee are effective for the amputee to achieve physiological gait.

  16. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-04-01

    Inspired by the springlike action of biological legs, running-specific prostheses are designed to enable athletes with lower-limb amputations to run. However, manufacturer's recommendations for prosthetic stiffness and height may not optimize running performance. Therefore, we investigated the effects of using different prosthetic configurations on the metabolic cost and biomechanics of running. Five athletes with bilateral transtibial amputations each performed 15 trials on a force-measuring treadmill at 2.5 or 3.0 m/s. Athletes ran using each of 3 different prosthetic models (Freedom Innovations Catapult FX6, Össur Flex-Run, and Ottobock 1E90 Sprinter) with 5 combinations of stiffness categories (manufacturer's recommended and ± 1) and heights (International Paralympic Committee's maximum competition height and ± 2 cm) while we measured metabolic rates and ground reaction forces. Overall, prosthetic stiffness [fixed effect (β) = 0.036; P = 0.008] but not height ( P ≥ 0.089) affected the net metabolic cost of transport; less stiff prostheses reduced metabolic cost. While controlling for prosthetic stiffness (in kilonewtons per meter), using the Flex-Run (β = -0.139; P = 0.044) and 1E90 Sprinter prostheses (β = -0.176; P = 0.009) reduced net metabolic costs by 4.3-4.9% compared with using the Catapult prostheses. The metabolic cost of running improved when athletes used prosthetic configurations that decreased peak horizontal braking ground reaction forces (β = 2.786; P = 0.001), stride frequencies (β = 0.911; P < 0.001), and leg stiffness values (β = 0.053; P = 0.009). Remarkably, athletes did not maintain overall leg stiffness across prosthetic stiffness conditions. Rather, the in-series prosthetic stiffness governed overall leg stiffness. The metabolic cost of running in athletes with bilateral transtibial amputations is influenced by prosthetic model and stiffness but not height. NEW & NOTEWORTHY We measured the metabolic rates and biomechanics of five athletes with bilateral transtibial amputations while running with different prosthetic configurations. The metabolic cost of running for these athletes is minimized by using an optimal prosthetic model and reducing prosthetic stiffness. The metabolic cost of running was independent of prosthetic height, suggesting that longer legs are not advantageous for distance running. Moreover, the in-series prosthetic stiffness governs the leg stiffness of athletes with bilateral leg amputations.

  17. Histopathological and Immunohistochemical Evaluation of Pannus Tissue in Patients with Prosthetic Valve Dysfunction.

    PubMed

    Karakoyun, Süleyman; Ozan Gürsoy, Mustafa; Yesin, Mahmut; Kalçık, Macit; Astarcıoğlu, Mehmet Ali; Gündüz, Sabahattin; Emrah Oğuz, Ali; Çoban Kökten, Şermin; Nimet Karadayı, Ayşe; Tuncer, Altuğ; Köksal, Cengiz; Gökdeniz, Tayyar; Özkan, Mehmet

    2016-01-01

    Prosthetic valve dysfunction due to pannus formation is a rare but serious complication. Currently, limited data are available concerning the pathogenesis and immunohistochemical properties of pannus. The study aim was to investigate the morphological, histopathological and immunohistochemical characteristics of pannus formation in patients with prosthetic valve dysfunction. A total of 35 patients (10 males, 25 females; mean age 44 ± 16 years) who had undergone re-do valve surgery due to prosthetic valve obstruction was enrolled in the study. Immunohistochemical studies were aimed at evaluating the expression of alphasmooth muscle actin (α-SMA) and desmin in myofibroblasts and smooth muscle cells; epithelial membrane antigen (EMA) in epithelial cells; and CD34, Factor VIII and vascular endothelial growth factor (VEGF) in endothelial cells. Matrix metalloproteinases (MMPs) -2 and -9, and transforming growth factor-beta (TGF-β) were used to demonstrate cytokine release from macrophages, leukocytes, fibroblasts and myofibroblasts. Pannus appeared as a tough and thick tissue hyperplasia which began from outside the suture ring in the periannular region and extended to the inflow and outflow surfaces of the prosthetic valves. Histopathological analysis showed the pannus tissue to consist of chronic inflammatory cells (lymphocytes, plasma cells, macrophages and foreign body giant cells), spindle cells such as myofibroblasts, capillary blood vessels and endothelial cells laying down the lumens. Calcification was present in the pannus tissue of 19 explanted prostheses. Immunohistochemical studies revealed positive α-SMA expression in all patients, whereas 60.5% of patients were positive for desmin, 50% for EMA, 42.1% for VEGF, 39.5% for TBF-β, 42.1% for MMP-2, 86.8% for CD34, and 97.4% for Factor VIII. MMP-9 was negative in all patients. Pannus tissue appears to be formed as the result of a neointimal response in periannular regions of prosthetic valves that consist of periannular tissue migration, myofibroblast and extracellular matrix proliferation with vascular components. It is a chronic active process in which mediators such as TGF-β, VEGF and MMP-2 play roles in both matrix formation and degradation.

  18. Custom-made silicone hand prosthesis: A case study.

    PubMed

    Nayak, S; Lenka, P K; Equebal, A; Biswas, A

    2016-09-01

    Up to now, a cosmetic glove was the most common method for managing transmetacarpal (TMC) and carpometacarpal (CMC) amputations, but it is devoid of markings and body color. At this amputation level, it is very difficult to fit a functional prosthesis because of the short available length, unsightly shape, grafted skin, contracture and lack of functional prosthetic options. A 30-year-old male came to our clinic with amputation at the 1st to 4th carpometacarpal level and a 5th metacarpal that was projected laterally and fused with the carpal bone. The stump had grafted skin, redness, and an unhealed suture line. He complained of pain projected over the metacarpal and suture area. The clinical team members decided to fabricate a custom-made silicone hand prosthesis to accommodate the stump, protect the grafted skin, improve the hand's appearance and provide some passive function. The custom silicone hand prosthesis was fabricated with modified flexible wires to provide passive interphalangeal movement. Basic training, care and maintenance instructions for the prosthesis were given to the patient. The silicone hand prosthesis was able to restore the appearance of the lost digits and provide some passive function. His pain (VAS score) was reduced. Improvement in activities of daily living was found in the DASH questionnaire and Jebsen-Taylor Hand Function test. A silicone glove is a good option for more distal amputations, as it can accommodate any deformity, protect the skin, enhance the appearance and provide functional assistance. This case study provides a simple method to get passively movable fingers after proximal hand amputation. Copyright © 2016. Published by Elsevier Masson SAS.

  19. Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles.

    PubMed

    Akhlaghi, Nima; Baker, Clayton A; Lahlou, Mohamed; Zafar, Hozaifah; Murthy, Karthik G; Rangwala, Huzefa S; Kosecka, Jana; Joiner, Wilsaan M; Pancrazio, Joseph J; Sikdar, Siddhartha

    2016-08-01

    Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.

  20. 77 FR 14989 - Medicare Program; Revisions to the Durable Medical Equipment, Prosthetics, Orthotics, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... wheelchairs. Prosthetic devices are included in the definition of ``medical and other health services'' in section 1861(s)(8) of the Act. Prosthetic devices are defined as devices (other than dental) which replace... examples of prosthetic devices include cardiac pacemakers, cochlear implants, electrical continence aids...

  1. 75 FR 52629 - Medicare Program; Establishing Additional Medicare Durable Medical Equipment, Prosthetics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... wheelchairs. Prosthetic devices are included in the definition of ``medical and other health services'' under section 1861(s)(8) of the Act. Prosthetic devices are defined in this section of the Act as ``devices... insertion of an intraocular lens.'' Other examples of prosthetic devices include cardiac pacemakers...

  2. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.

    PubMed

    Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian

    2014-01-01

    A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.

  3. Gaze Compensation as a Technique for Improving Hand–Eye Coordination in Prosthetic Vision

    PubMed Central

    Titchener, Samuel A.; Shivdasani, Mohit N.; Fallon, James B.; Petoe, Matthew A.

    2018-01-01

    Purpose Shifting the region-of-interest within the input image to compensate for gaze shifts (“gaze compensation”) may improve hand–eye coordination in visual prostheses that incorporate an external camera. The present study investigated the effects of eye movement on hand-eye coordination under simulated prosthetic vision (SPV), and measured the coordination benefits of gaze compensation. Methods Seven healthy-sighted subjects performed a target localization-pointing task under SPV. Three conditions were tested, modeling: retinally stabilized phosphenes (uncompensated); gaze compensation; and no phosphene movement (center-fixed). The error in pointing was quantified for each condition. Results Gaze compensation yielded a significantly smaller pointing error than the uncompensated condition for six of seven subjects, and a similar or smaller pointing error than the center-fixed condition for all subjects (two-way ANOVA, P < 0.05). Pointing error eccentricity and gaze eccentricity were moderately correlated in the uncompensated condition (azimuth: R2 = 0.47; elevation: R2 = 0.51) but not in the gaze-compensated condition (azimuth: R2 = 0.01; elevation: R2 = 0.00). Increased variability in gaze at the time of pointing was correlated with greater reduction in pointing error in the center-fixed condition compared with the uncompensated condition (R2 = 0.64). Conclusions Eccentric eye position impedes hand–eye coordination in SPV. While limiting eye eccentricity in uncompensated viewing can reduce errors, gaze compensation is effective in improving coordination for subjects unable to maintain fixation. Translational Relevance The results highlight the present necessity for suppressing eye movement and support the use of gaze compensation to improve hand–eye coordination and localization performance in prosthetic vision. PMID:29321945

  4. [Dental insurance systems in light of present-day prevention potentials].

    PubMed

    Marthaler, T; Zollinger, E

    1979-05-01

    The situation of public dental insurance systems of several countries in Western Europe was examined in the light of the fact that caries and periodontitis may be prevented. Available epidemiological data were discussed as to their relevance. In Switzerland, dental insurance systems are of minor importance. In voluntary insurance plans for adults, prevention is scarcely included. On the other hand, the communities provide subsidies for dental care of schoolchildren, and prevention is an integral part of this system. In the German Federal Republic, dental insurance costs have quadrupled during the period 1970-1977. Preventive measures are not subsidized, and in recent years, more than half of the insurance payments were used for prosthetic dentistry. The few dental statistics available show that dental treatment of children is unsatisfactory. In Sweden, preventive measures are refunded at 75%. Since the introduction of the public insurance system in 1974 prosthetic dental work has increased at the expense of conservative treatment. In France, the social security system pays for about three quarters of conservative and simple prosthetic work. Prevention has so far not been included. Despite liberal refunding of restorative work markedly higher prevalence of tooth loss was found in lower social levels as compared to higher levels. In Great Britain, the National Health Service was introduced in 1948. As in France, tooth loss is most frequent in lower social levels. The findings are discussed with respect to cost developments and oral health prospects in Switzerland. Attention is focused upon the observation that the insurance systems were conceived at a time when realistic preventive programs were unavailable and their success had not yet been demonstrated in large groups.

  5. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.

    PubMed

    Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu

    2018-01-01

    Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Osseointegrated Implants and Prosthetic Reconstruction Following Skull Base Surgery.

    PubMed

    Hu, Shirley; Arnaoutakis, Demetri; Kadakia, Sameep; Vest, Allison; Sawhney, Raja; Ducic, Yadranko

    2017-11-01

    Rehabilitation following ablative skull base surgery remains a challenging task, given the complexity of the anatomical region, despite the recent advances in reconstructive surgery. Remnant defects following resection of skull base tumors are often not amenable to primary closure. As such, numerous techniques have been described for reconstruction, including local rotational muscle flaps, pedicled flaps with skin paddle, or even free tissue transfer. However, not all patients are appropriate surgical candidates and therefore may instead benefit from nonsurgical options for functional and aesthetic restoration. Osseointegrated implants and biocompatible prostheses provide a viable alternative for such a patient population. The purpose of this review serves to highlight current options for prosthetic rehabilitation of skull base defects and describe their indications, advantages, and disadvantages.

  7. Prosthetic joint infection caused by Trueperella bernardiae.

    PubMed

    Gilarranz, Raul; Chamizo, Francisco; Horcajada, Iballa; Bordes-Benítez, Ana

    2016-09-01

    Trueperella bernardiae is a Gram-positive coryneform bacilli which role as human pathogen is unknown because it has been usually considered a contaminant. Furthermore its identification by biochemical test was difficult. We describe a prosthetic joint infection in a women who years ago underwent a total knee replacement with superinfection and necrosis of the patellar tendon as major complications. In the sample of synovial fluid collected grew a gram-positive bacilli which was identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) as T. bernardiae. The patient was treated with ciprofloxacin and currently preserves the prosthesis without signs of infection. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Virtual Preoperative Planning and Intraoperative Navigation in Facial Prosthetic Reconstruction: A Technical Note.

    PubMed

    Verma, Suzanne; Gonzalez, Marianela; Schow, Sterling R; Triplett, R Gilbert

    This technical protocol outlines the use of computer-assisted image-guided technology for the preoperative planning and intraoperative procedures involved in implant-retained facial prosthetic treatment. A contributing factor for a successful prosthetic restoration is accurate preoperative planning to identify prosthetically driven implant locations that maximize bone contact and enhance cosmetic outcomes. Navigational systems virtually transfer precise digital planning into the operative field for placing implants to support prosthetic restorations. In this protocol, there is no need to construct a physical, and sometimes inaccurate, surgical guide. The report addresses treatment workflow, radiologic data specifications, and special considerations in data acquisition, virtual preoperative planning, and intraoperative navigation for the prosthetic reconstruction of unilateral, bilateral, and midface defects. Utilization of this protocol for the planning and surgical placement of craniofacial bone-anchored implants allows positioning of implants to be prosthetically driven, accurate, precise, and efficient, and leads to a more predictable treatment outcome.

  9. Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation-Part 1: Description of technique

    PubMed Central

    Fatone, Stefania; Caldwell, Ryan

    2017-01-01

    Background: Current transfemoral prosthetic sockets restrict function, lack comfort, and cause residual limb problems. Lower proximal trim lines are an appealing way to address this problem. Development of a more comfortable and possibly functional subischial socket may contribute to improving quality of life of persons with transfemoral amputation. Objectives: The purpose of this study was to (1) describe the design and fabrication of a new subischial socket and (2) describe efforts to teach this technique. Study design: Development project. Methods: Socket development involved defining the following: subject and liner selection, residual limb evaluation, casting, positive mold rectification, check socket fitting, definitive socket fabrication, and troubleshooting of socket fit. Three hands-on workshops to teach the socket were piloted and attended by 30 certified prosthetists and their patient models. Results: Patient models responded positively to the comfort, range of motion, and stability of the new socket while prosthetists described the technique as “straight forward, reproducible.” Conclusion: To our knowledge, this is the first attempt to create a teachable subischial socket, and while it appears promising, more definitive evaluation is needed. Clinical relevance We developed the Northwestern University Flexible Subischial Vacuum (NU-FlexSIV) Socket as a more comfortable alternative to current transfemoral sockets and demonstrated that it could be taught successfully to prosthetists. PMID:28094686

  10. Effects of electrode size and spacing on sensory modalities in the phantom thumb perception area for the forearm amputees.

    PubMed

    Li, P; Chai, G H; Zhu, K H; Lan, N; Sui, X H

    2015-01-01

    Tactile sensory feedback plays a key role in accomplishing the dexterous manipulation of prosthetic hands for the amputees, and the non-invasive transcutaneous electrical nerve stimulation (TENS) of the phantom finger perception (PFP) area would be an effective way to realize sensory feedback clinically. In order to realize the high-spatial-resolution tactile sensory feedback in the PFP region, we investigated the effects of electrode size and spacing on the tactile sensations for potentially optimizing the surface electrode array configuration. Six forearm-amputated subjects were recruited in the psychophysical studies. With the diameter of the circular electrode increasing from 3 mm to 12 mm, the threshold current intensity was enhanced correspondingly under different sensory modalities. The smaller electrode could potentially lead to high sensation spatial resolution. Whereas, the smaller the electrode, the less the number of sensory modalities. For an Φ-3 mm electrode, it is even hard for the subject to perceive any perception modalities under normal stimulating current. In addition, the two-electrode discrimination distance (TEDD) in the phantom thumb perception area decreased with electrode size decreasing in two directions of parallel or perpendicular to the forearm. No significant difference of TEDD existed along the two directions. Studies in this paper would guide the configuration optimization of the TENS electrode array for potential high spatial-resolution sensory feedback.

  11. 21 CFR 895.101 - Prosthetic hair fibers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic hair fibers. 895.101 Section 895.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES BANNED DEVICES Listing of Banned Devices § 895.101 Prosthetic hair fibers. Prosthetic hair fibers are devices intended for implantation...

  12. 38 CFR 17.122 - Payment or reimbursement of the expenses of repairs to prosthetic appliances and similar devices...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the expenses of repairs to prosthetic appliances and similar devices furnished without prior... Payment or reimbursement of the expenses of repairs to prosthetic appliances and similar devices furnished without prior authorization. The expenses of repairs to prosthetic appliances, or similar appliances...

  13. 76 FR 18472 - Medicare Program; Revisions to the Durable Medical Equipment, Prosthetics, Orthotics, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ....Prosthetic devices are included in the definition of ``medical and other health services'' under section 1861(s)(8) of the Act. Prosthetic devices are defined in this section of the Act as ``devices (other than... intraocular lens.'' Other examples of prosthetic devices include cardiac pacemakers, cochlear implants...

  14. The effect of anti-gravity treadmill training for prosthetic rehabilitation of a case with below-knee amputation.

    PubMed

    Mikami, Yukio; Fukuhara, Kouki; Kawae, Toshihiro; Kimura, Hiroaki; Ochi, Mitsuo

    2015-12-01

    The aim of this case study was to verify the efficacy and safety of anti-gravity treadmill training for prosthetic rehabilitation following below-knee amputation. The patient underwent left below-knee amputation as a result of diabetic foot gangrene. Since his physical strength and vitality had declined during the perioperative period, anti-gravity treadmill training was introduced for his outpatient prosthetic rehabilitation. Stable prosthetic gait exercise could be carried out under guidance on the anti-gravity treadmill, quickly resulting in improved gait. Furthermore, the patient's self-efficacy and exercise tolerance were elevated after the period of anti-gravity treadmill training. At the final evaluation following 6 weeks of rehabilitation with the anti-gravity treadmill, he had acquired prosthetic gait with the assistance of a T-cane. The anti-gravity treadmill was found to be a useful instrument for prosthetic rehabilitation following below-knee amputation. Anti-gravity treadmill training has the potential to support the prosthetic rehabilitation of below-knee amputees, especially for patients whose physical strength and vitality are decreased. © The International Society for Prosthetics and Orthotics 2014.

  15. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.

    PubMed

    Mâaref, Khaled; Martinet, Noël; Grumillier, Constance; Ghannouchi, Slaheddine; André, Jean Marie; Paysant, Jean

    2010-06-01

    To analyze the spatiotemporal parameters in the terminal swing phase of the prosthetic limb in unilateral transfemoral amputees (TFAs) compared with a group of asymptomatic subjects, and to identify a latency period (LP) in the TFA between the full extension of the prosthetic knee and the initial ground contact of the ipsilateral foot. To study the correlation between the LP and the duration of the swing phase. To evaluate the influence of the type of knee, the time since amputation, and the amputation level on the latency period. Three-dimensional gait analysis with an optoelectronic device. Gait analysis laboratory of a re-education and functional rehabilitation service. TFA (n=29) and able-bodied (n=15) subjects. Not applicable. Spatiotemporal and kinematics gait parameters. The swing phase and the LP of the prosthetic limb, associated with a consequently longer single-limb stance phase in the intact limb, were significantly longer than those measured in the intact limbs of these subjects, as well as those measured on both lower limbs of the able-bodied subjects (P<.05). There is a positive correlation (P<.05; r(2)=.58 between the LP and the swing phase on the TFA's prosthetic side. The LP measured in the prosthetic limb of TFA with a swing-phase control prosthetic knee is significantly greater than in those using the microprocessor-controlled prosthetic knee (P<.05). Of negligible duration in able-bodied subjects and in the intact limb of TFA, the LP is significantly greater in the prosthetic limb. It can explain the lengthened swing phase on the prosthetic side of those subjects. The use of a microprocessor-controlled prosthetic knee allows the LP to be reduced. This LP appears to be necessary to insure the stability of the prosthetic knee. We suggest calling this time "confidence time." Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Melorheostosis--an unusual cause of amputation.

    PubMed

    Graham, L E; Parke, R C

    2005-04-01

    A 24-year-old female developed, in infancy, progressive right upper and lower limb muscle and soft tissue contractures and had a diagnosis of melorheostosis made on X-ray and pathological specimens. At the age of 11 years she began to have pain in the right hip and lower limb and this later became the dominant feature. She ultimately required amputation through the right hip joint and prosthetic fitting. She now has independent mobility with her prosthesis and has had no recurrence of pain. Her right arm remains flexed, shortened and contracted, but some hand function is retained. A review of the medical literature is discussed.

  17. Artificial Ligaments: Promise or Panacea?

    ERIC Educational Resources Information Center

    Lubell, Adele

    1987-01-01

    The Food and Drug Administration has approved a prosthetic ligament for limited use in persons with damaged anterior cruciate ligaments (ACL). This article addresses ligament repair, ACL tears, current treatment, development of the Gore-Tex artificial ligament, other artificial ligaments in process, and arguments for and against their use.…

  18. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...October 2014 2. REPORT TYPE Annual Report 3. DATES COVERED 20 Sep 2013 to 19 Sep 2014 4. TITLE AND SUBTITLE Advanced Prosthetic Gait Training...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care

  19. Prosthetic Consideration in Implant-supported Prosthesis: A Review of Literature

    PubMed Central

    Gowd, Manga Snigdha; Shankar, Thatapudi; Ranjan, Rajeev; Singh, Arpita

    2017-01-01

    Modern dentistry has changed tremendously with implant therapy. For the successful implant therapy, making a proper treatment plan considering both surgical and prosthetic part in mind is the key of success. Often practitioners tend to create a treatment plan overlooking the basic principles of prosthetic part. This present review has discussed various prosthetic consideration of implant-supported prosthesis. A step-by-step detailed prosthetic option with their indications has been discussed to help all dental implant practitioners in making of an optimal treatment plan for each case. PMID:28713760

  20. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    PubMed

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  1. Mandible reconstruction: History, state of the art and persistent problems.

    PubMed

    Ferreira, José J; Zagalo, Carlos M; Oliveira, Marta L; Correia, André M; Reis, Ana R

    2015-06-01

    Mandibular reconstruction has been experiencing an amazing evolution. Several different approaches are used to reconstruct this bone and therefore have a fundamental role in the recovery of oral functions. This review aims to highlight the persistent problems associated with the approaches identified, whether bone grafts or prosthetic devices are used. A brief summary of the historical evolution of the surgical procedures is presented, as well as an insight into possible future pathways. A literature review was conducted from September to December 2012 using the PubMed database. The keyword used was "mandible reconstruction." Articles published in the last three years were included as well as the relevant references from those articles and the "historical articles" were referred. This research resulted in a monograph that this article aims to summarize. Titanium plates, bone grafts, pediculate flaps, free osteomyocutaneous flaps, rapid prototyping, and tissue engineering strategies are some of the identified possibilities. The classical approaches present considerable associated morbidity donor-site-related problems. Research that results in the development of new prosthetics devices is needed. A new prosthetic approach could minimize the identified problems and offer the patients more predictable, affordable, and comfortable solutions. This review, while affirming the evolution and the good results found with the actual approaches, emphasizes the negative aspects that still subsist. Thus, it shows that mandible reconstruction is not a closed issue. On the contrary, it remains as a research field where new findings could have a direct positive impact on patients' life quality. The identification of the persistent problems reveals the characteristics to be considered in a new prosthetic device. This could overcome the current difficulties and result in more comfortable solutions. Medical teams have the responsibility to keep patients informed about the predictable problems related with each elected approach, even understanding that a perfect reconstruction is a secondary goal when compared with maintenance of life. © The International Society for Prosthetics and Orthotics 2014.

  2. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.

    PubMed

    Sun, Yuanxi; Ge, Wenjie; Zheng, Jia; Dong, Dianbiao

    2015-11-01

    This paper presents the mechanical design, dynamics analysis and ankle trajectory analysis of a prosthetic knee joint using the geared five-bar mechanism. Compared with traditional four-bar or six-bar mechanisms, the geared five-bar mechanism is better at performing diverse movements and is easy to control. This prosthetic knee joint with the geared five-bar mechanism is capable of fine-tuning its relative instantaneous center of rotation and ankle trajectory. The centrode of this prosthetic knee joint, which is mechanically optimized according to the centrode of human knee joint, is better in the bionic performance than that of a prosthetic knee joint using the four-bar mechanism. Additionally, the stability control of this prosthetic knee joint during the swing and stance phase is achieved by a motor. By adjusting the gear ratio of this prosthetic knee joint, the ankle trajectories of both unilateral and bilateral amputees show less deviations from expected than that of the four-bar knee joint.

  3. Developing prescribing guidelines for microprocessor-controlled prosthetic knees in the South East England.

    PubMed

    Sedki, Imad; Fisher, Keren

    2015-06-01

    Microprocessor-controlled prosthetic knees have gained increasing popularity over the last decade. Research supports their provision to address specific problems or to achieve certain rehabilitation goals. However, there are yet no agreed protocols or prescribing criteria to assist clinicians in the identification and appropriate selection of suitable users. The aim is to reach professionals' agreement on specific prescribing guidelines for microprocessor-controlled prosthetic knees. The study involved multidisciplinary teams from the Inter Regional Prosthetic Audit Group, representing nine Prosthetic Rehabilitation Centres in the South East England region. We used the Delphi technique with a total of three rounds to reach professionals' agreement. The prescribing guidelines were agreed and will be reviewed and updated depending on new research evidence and technical advances. This project is highly useful for professionals in a clinic setting to aid in appropriate patient selection and to justify the cost of prescribing microprocessor-controlled prosthetic knees. © The International Society for Prosthetics and Orthotics 2014.

  4. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.

    PubMed

    Sinitski, Emily H; Hansen, Andrew H; Wilken, Jason M

    2012-02-02

    Unilateral lower limb prosthesis users display temporal, kinematic, and kinetic asymmetries between limbs while ascending and descending stairs. These asymmetries are due, in part, to the inability of current prosthetic devices to effectively mimic normal ankle function. The purpose of this study was to provide a comprehensive set of biomechanical data for able-bodied and unilateral transtibial amputee (TTA) ankle-foot systems for level-ground (LG), stair ascent (SA), and stair descent (SD), and to characterize deviations from normal performance associated with prosthesis use. Ankle joint kinematics, kinetics, torque-angle curves, and effective shapes were calculated for twelve able-bodied individuals and twelve individuals with TTA. The data from this study demonstrated the prosthetic limb can more effectively mimic the range of motion and power output of a normal ankle-foot during LG compared to SA and SD. There were larger differences between the prosthetic and able-bodied limbs during SA and SD, most evident in the torque-angle curves and effective shapes. These data can be used by persons designing ankle-foot prostheses and provide comparative data for assessment of future ankle-foot prosthesis designs. Published by Elsevier Ltd.

  5. Thrombolytic therapy for mitral valve thrombosis.

    PubMed

    Lin, T K; Tsai, L M; Chen, J H; Yang, Y J

    1997-05-01

    A 44-year-old man with a St. Jude mitral valve was admitted because of progressive pulmonary edema. He was diagnosed with prosthetic heart valve thrombosis (PHVT) based on the findings of "muffled" prosthetic valve clicks. Doppler echocardiographic evidence of severe mitral stenosis and transesophageal echocardiographic evidence of limited mitral valve motility. Because the patient hesitated to undergo our recommended surgical treatment, he was immediately treated with intravenous recombinant tissue plasminogen activator (100 mg over 3 h) followed by heparinization. Two hours after the thrombolytic therapy, the prosthetic valve clicks became clearly audible and his congestive symptoms were dramatically improved. Follow-up echocardiography no longer-showed significant mitral valve obstruction. A transient cerebral ischemic attack occurred at the end of thrombolytic therapy but there were no neurologic sequalae. The patient, on warfarin therapy, was well at follow-up 8 months after discharge. Surgical intervention has long been the standard therapy for patients with PHVT. Our case experience suggests that thrombolytic therapy may be considered as an effective alternative to surgical intervention for selected patients with PHVT. In this report, we also review the current literature regarding the indications, effectiveness and safety of thrombolytic therapy in PHVT.

  6. Evaluation of mitral valve replacement anchoring in a phantom

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John; Lang, Pencilla; Bainbridge, Dan; Campbell, Gordon; Jones, Doug L.; Guiraudon, Gerard M.; Peters, Terry M.

    2012-02-01

    Conventional mitral valve replacement requires a median sternotomy and cardio-pulmonary bypass with aortic crossclamping and is associated with significant mortality and morbidity which could be reduced by performing the procedure off-pump. Replacing the mitral valve in the closed, off-pump, beating heart requires extensive development and validation of surgical and imaging techniques. Image guidance systems and surgical access for off-pump mitral valve replacement have been previously developed, allowing the prosthetic valve to be safely introduced into the left atrium and inserted into the mitral annulus. The major remaining challenge is to design a method of securely anchoring the prosthetic valve inside the beating heart. The development of anchoring techniques has been hampered by the expense and difficulty in conducting large animal studies. In this paper, we demonstrate how prosthetic valve anchoring may be evaluated in a dynamic phantom. The phantom provides a consistent testing environment where pressure measurements and Doppler ultrasound can be used to monitor and assess the valve anchoring procedures, detecting pararvalvular leak when valve anchoring is inadequate. Minimally invasive anchoring techniques may be directly compared to the current gold standard of valves sutured under direct vision, providing a useful tool for the validation of new surgical instruments.

  7. Evolution and update on current devices for prosthetic breast reconstruction

    PubMed Central

    2015-01-01

    Over the past decade, the leading breast reconstruction modality has shifted from autologous tissue to implants. This trend reversal is multi-factorial but includes increasing bilateral mastectomies and the more widespread acceptance of implants due to stringent quality and safety regulatory surveillance by the US Food and Drug Administration (FDA). Since 2012, the US FDA has approved several new implant styles, shapes and textures, increasing the choices for patients and surgeons. Predictable, superior aesthetic results after prosthetic breast reconstruction are attainable, but require thoughtful planning, precise surgical technique and appropriate device selection based on several different patient and surgeon parameters, such as patient desires, body mass index, breast shape, mastectomy flap quality and tissue based bio-dimensional assessment. This article briefly reviews historic devices used in prosthetic breast reconstruction beginning in the 1960s through the modern generation devices used today. We reflect on the rigorous hurdles endured over the last several decades leading to the approval of silicone gel devices, along with their well-established safety and efficacy. The various implant characteristics can affect feel and performance of the device. The many different styles and features of implants and expanders are described emphasizing surgical indications, advantages and disadvantages of each device. PMID:26005642

  8. Wireless radio channel for intramuscular electrode implants in the control of upper limb prostheses.

    PubMed

    Stango, Antonietta; Yazdandoost, Kamya Yekeh; Farina, Dario

    2015-01-01

    In the last few years the use of implanted devices has been considered also in the field of myoelectric hand prostheses. Wireless implanted EMG (Electromyogram) sensors can improve the functioning of the prosthesis, providing information without the disadvantage of the wires, and the usability by amputees. The solutions proposed in the literature are based on proprietary communication protocols between the implanted devices and the prosthesis controller, using frequency bands that are already assigned to other purposes. This study proposes the use of a standard communication protocol (IEEE 802.15.6), specific for wireless body area networks (WBANs), which assign a specific bandwidth to implanted devices. The propagation losses from in-to-on body were investigated by numerical simulation with a 3D human model and an electromagnetic solver. The channel model resulting from the study represents the first step towards the development of myoelectric prosthetic hands which are driven by signals acquired by implanted sensors. However these results can provide important information to researchers for further developments, and manufacturers, which can decrease the production costs for hand prostheses having a common standard of communication with assigned frequencies of operation.

  9. Microprocessor prosthetic knees.

    PubMed

    Berry, Dale

    2006-02-01

    This article traces the development of microprocessor prosthetic knees from early research in the 1970s to the present. Read about how microprocessor knees work, functional options, patient selection, and the future of this prosthetic.

  10. EEG-Based Brain-Computer Interface for Decoding Motor Imagery Tasks within the Same Hand Using Choi-Williams Time-Frequency Distribution

    PubMed Central

    Alwanni, Hisham; Baslan, Yara; Alnuman, Nasim; Daoud, Mohammad I.

    2017-01-01

    This paper presents an EEG-based brain-computer interface system for classifying eleven motor imagery (MI) tasks within the same hand. The proposed system utilizes the Choi-Williams time-frequency distribution (CWD) to construct a time-frequency representation (TFR) of the EEG signals. The constructed TFR is used to extract five categories of time-frequency features (TFFs). The TFFs are processed using a hierarchical classification model to identify the MI task encapsulated within the EEG signals. To evaluate the performance of the proposed approach, EEG data were recorded for eighteen intact subjects and four amputated subjects while imagining to perform each of the eleven hand MI tasks. Two performance evaluation analyses, namely channel- and TFF-based analyses, are conducted to identify the best subset of EEG channels and the TFFs category, respectively, that enable the highest classification accuracy between the MI tasks. In each evaluation analysis, the hierarchical classification model is trained using two training procedures, namely subject-dependent and subject-independent procedures. These two training procedures quantify the capability of the proposed approach to capture both intra- and inter-personal variations in the EEG signals for different MI tasks within the same hand. The results demonstrate the efficacy of the approach for classifying the MI tasks within the same hand. In particular, the classification accuracies obtained for the intact and amputated subjects are as high as 88.8% and 90.2%, respectively, for the subject-dependent training procedure, and 80.8% and 87.8%, respectively, for the subject-independent training procedure. These results suggest the feasibility of applying the proposed approach to control dexterous prosthetic hands, which can be of great benefit for individuals suffering from hand amputations. PMID:28832513

  11. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency.

    PubMed

    Sarkar, S; Salacinski, H J; Hamilton, G; Seifalian, A M

    2006-06-01

    When autologous vein is unavailable, prosthetic graft materials, particularly expanded polytetrafluoroethylene are used for peripheral arterial revascularisation. Poor long term patency of prosthetic materials is due to distal anastomotic intimal hyperplasia. Intimal hyperplasia is directly linked to shear stress abnormalities at the vessel wall. Compliance and calibre mismatch between native vessel and graft, as well as anastomotic line stress concentration contribute towards unnatural wall shear stress. High porosity reduces graft compliance by causing fibrovascular infiltration, whereas low porosity discourages the development of an endothelial lining and hence effective antithrombogenicity. Therefore, consideration of mechanical properties is necessary in graft development. Current research into synthetic vascular grafts concentrates on simulating the mechanical properties of native arteries and tissue engineering aims to construct a new biological arterial conduit.

  12. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-05-19

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.

  13. Towards the control of individual fingers of a prosthetic hand using surface EMG signals.

    PubMed

    Tenore, Francesco; Ramos, Ander; Fahmy, Amir; Acharya, Soumyadipta; Etienne-Cummings, Ralph; Thakor, Nitish V

    2007-01-01

    The fast pace of development of upper-limb prostheses requires a paradigm shift in EMG-based controls. Traditional control schemes are only capable of providing 2 degrees of freedom, which is insufficient for dexterous control of individual fingers. We present a framework where myoelectric signals from natural hand and finger movements can be decoded with a high accuracy. 32 surface-EMG electrodes were placed on the forearm of an able-bodied subject while performing individual finger movements. Using time-domain feature extraction methods as inputs to a neural network classifier, we show that 12 individuated flexion and extension movements of the fingers can be decoded with an accuracy higher than 98%. To our knowledge, this is the first instance in which such movements have been successfully decoded using surface-EMG. These preliminary findings provide a framework that will allow the results to be extended to non-invasive control of the next generation of upper-limb prostheses for amputees.

  14. Biomechanical characteristics, patient preference and activity level with different prosthetic feet: a randomized double blind trial with laboratory and community testing.

    PubMed

    Raschke, Silvia U; Orendurff, Michael S; Mattie, Johanne L; Kenyon, David E A; Jones, O Yvette; Moe, David; Winder, Lorne; Wong, Angie S; Moreno-Hernández, Ana; Highsmith, M Jason; J Sanderson, David; Kobayashi, Toshiki

    2015-01-02

    Providing appropriate prosthetic feet to those with limb loss is a complex and subjective process influenced by professional judgment and payer guidelines. This study used a small load cell (Europa™) at the base of the socket to measure the sagittal moments during walking with three objective categories of prosthetic feet in eleven individuals with transtibial limb loss with MFCL K2, K3 and K4 functional levels. Forefoot stiffness and hysteresis characteristics defined the three foot categories: Stiff, Intermediate, and Compliant. Prosthetic feet were randomly assigned and blinded from participants and investigators. After laboratory testing, participants completed one week community wear tests followed by a modified prosthetics evaluation questionnaire to determine if a specific category of prosthetic feet was preferred. The Compliant category of prosthetic feet was preferred by the participants (P=0.025) over the Stiff and Intermediate prosthetic feet, and the Compliant and Intermediate feet had 15% lower maximum sagittal moments during walking in the laboratory (P=0.0011) compared to the Stiff feet. The activity level of the participants did not change significantly with any of the wear tests in the community, suggesting that each foot was evaluated over a similar number of steps, but did not inherently increase activity. This is the first randomized double blind study in which prosthetic users have expressed a preference for a specific biomechanical characteristic of prosthetic feet: those with lower peak sagittal moments were preferred, and specifically preferred on slopes, stairs, uneven terrain, and during turns and maneuvering during real world use. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Cost analysis of debridement and retention for management of prosthetic joint infection.

    PubMed

    Peel, T N; Dowsey, M M; Buising, K L; Liew, D; Choong, P F M

    2013-02-01

    Prosthetic joint infection remains one of the most devastating complications of arthroplasty. Debridement and retention of the prosthesis is an attractive management option in carefully selected patients. Despite this, there are no data investigating the cost of this management modality for prosthetic joint infections. The aim of this case-control study was to calculate the cost associated with debridement and retention for management of prosthetic joint infection compared with primary joint replacement surgery without prosthetic joint infection. From 1 January 2008 to 30 June 2010, there were 21 prosthetic joint infections matched to 42 control patients. Controls were matched to cases according to the arthroplasty site, age and sex. Cases had a greater number of unplanned readmissions (100% vs. 7.1%; p <0.001), more additional surgery (3.3 vs. 0.07; p <0.001) and longer total bed days (31.6 vs. 7.9 days; p <0.001). In addition they had more inpatient, outpatient and emergency department visits (p <0.001, respectively). For patients with prosthetic joint infection the total cost, including index operation and costs of management of the prosthetic joint infection, was 3.1 times the cost of primary arthoplasty; the mean cost for cases was Australian dollars (AUD) $69,414 (±29,869) compared with $22,085 (±8147) (p <0.001). The demand for arthroplasty continues to grow and with that, the number of prosthetic joint infections will also increase, placing significant burden on the health system. Our study adds significantly to the growing body of evidence highlighting the substantial costs associated with prosthetic joint infection. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  16. Fiber-array based optogenetic prosthetic system for stimulation therapy

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra

    2012-02-01

    Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

  17. Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices

    NASA Astrophysics Data System (ADS)

    Kemp, Stephen W. P.; Urbanchek, Melanie G.; Irwin, Zachary T.; Chestek, Cynthia A.; Cederna, Paul S.

    2017-05-01

    Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.

  18. Diagnostic performance of FDG PET or PET/CT in prosthetic infection after arthroplasty: a meta-analysis.

    PubMed

    Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J

    2014-03-01

    The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.

  19. The Evolution and Utility of the Small-Carrion Prosthesis, Its Impact, and Progression to the Modern-Day Malleable Penile Prosthesis.

    PubMed

    Martinez, Daniel R; Terlecki, Ryan; Brant, William O

    2015-11-01

    Erectile dysfunction has plagued humanity for millennia. For years, treatment had been in the hands of mental health professionals. It was not until the 1970s that urologists created a modality that was marketable, reproducible, and consistently successful at treating impotence, the Small-Carrion Penile Prosthesis. We present the evolution of the malleable/semi-rigid penile prosthesis, concentrating our efforts reviewing and critiquing the pivotal article published by Drs. Michael P. Small, Hernan M. Carrion, and Julian A. Gordon. We then discuss its continued advancement, current-day utilization, and the future of the malleable prosthesis. From the early 1900s, surgeons have been toying with the idea of creating a penile implant. These initial attempts utilized rib cartilage, and eventually synthetic materials, including acrylic, silicone, and polyethylene. In 1975, Drs. Carrion and Small presented their initial experience of 31 patients utilizing their silicone implant. In their manuscript titled, "The Small-Carrion Penile Prosthesis: New Implant for the Management of Impotence," they discuss their technique, perioperative management of complications, and results. The malleable penile prosthesis continued to evolve throughout the years to the current day Genesis and Spectra. Although the current market is dominated by the inflatable penile prosthesis, there are specific situations where the malleable is ideally utilized. The pivotal article by Drs. Carrion and Small helped pave the way for the "New Era" of penile prosthetics and still remains one of the most impactful contributions to the management of erectile dysfunction. © 2015 International Society for Sexual Medicine.

  20. Development of Subischial Prosthetic Sockets with Vacuum-Assisted Suspension for Highly Active Persons with Transfemoral Amputations

    DTIC Science & Technology

    2014-10-01

    Award Number: W81XWH-10-1-0744 TITLE: Development of Subischial Prosthetic Sockets with Vacuum...REPORT TYPE Annual 3. DATES COVERED 15 Sep 2013 – 14 Sep 2014 4. TITLE AND SUBTITLE Development of Subischial Prosthetic Sockets with Vacuum...to develop a highly flexible sub-ischial prosthetic socket with assisted-vacuum suspension for highly active persons with transfemoral amputation. The

  1. Comparison of prosthetic feet prescribed to active individuals using ISO standards.

    PubMed

    Mason, Zachary D; Pearlman, Jon; Cooper, Rory A; Laferrier, Justin Z

    2011-12-01

    Little research has been done on the robustness of prosthetic feet prescribed to military personnel, and manufacturers are not required to test their products prior to sale. This is problematic because the prosthetic feet used by active individuals are subjected to loading conditions not seen in normal gait. To evaluate whether commercially available heavy-duty prosthetic feet intended for use by military personnel meet ISO 10328 standards. Bench testing of heavy-duty prosthetic feet using ISO 10328 standards. Prosthetic feet from three different manufacturers were tested according to ISO 10328 standards, using a testing frame fitted with axial load and displacement transducers. Pass/fail information was recorded as well as the stiffness and creep of each foot before and after cyclic testing. All feet passed the ISO 10328 standards at the highest loading level, and some significant differences were found within a given model of prosthesis when comparing stiffness and creep before and after cyclic testing. This study demonstrated that manufacturers of heavy-duty prosthetic feet adhere to the voluntary ISO 10328 standards. However, these standards may be insufficient because the tests simulate only idealized gait. Further development of the standards may be necessary to reproduce the circumstances that occur during extreme usage to ensure that prosthetic feet do not fail.

  2. Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration.

    PubMed

    Esquenazi, Alberto

    The purpose of this review is to summarize the literature related to the advances that have taken place in the management and rehabilitation care of limb amputation. Prostheses for the lower and upper limb amputee have changed greatly over the past several years, with advances in components, socket fabrication and fitting techniques, suspension systems and sources of power and electronic controls. Higher levels of limb amputation can now be fitted with functional prostheses, which allow more patients to achieve independent life styles. This is of particular importance for the multi-limb amputee. The rehabilitation of more traditional lower limb levels of amputation have also greatly benefited from the technological advances including energy storing feet, electronic control hydraulic knees, ankle rotators and shock absorbers to mention a few. For the upper limb amputee, myoelectric and proportional controlled terminal devices and elbow joints are now used routinely in some rehabilitation facilities. Experimental prosthetic fitting techniques and devices such as the use of osseo-implantation for suspension of the prosthesis, tension control hands or electromagnetic fluids for knee movement control will also be briefly discussed in this paper. It is possible to conclude from this review that many advances have occurred that have greatly impacted the functional outcomes of patients with limb amputation.

  3. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application.

    PubMed

    Johansen, Daniel; Cipriani, Christian; Popovic, Dejan B; Struijk, Lotte N S A

    2016-07-01

    The aim of this study was to investigate the feasibility of using an inductive tongue control system (ITCS) for controlling robotic/prosthetic hands and arms. This study presents a novel dual modal control scheme for multigrasp robotic hands combining standard electromyogram (EMG) with the ITCS. The performance of the ITCS control scheme was evaluated in a comparative study. Ten healthy subjects used both the ITCS control scheme and a conventional EMG control scheme to complete grasping exercises with the IH1 Azzurra robotic hand implementing five grasps. Time to activate a desired function or grasp was used as the performance metric. Statistically significant differences were found when comparing the performance of the two control schemes. On average, the ITCS control scheme was 1.15 s faster than the EMG control scheme, corresponding to a 35.4% reduction in the activation time. The largest difference was for grasp 5 with a mean AT reduction of 45.3% (2.38 s). The findings indicate that using the ITCS control scheme could allow for faster activation of specific grasps or functions compared with a conventional EMG control scheme. For transhumeral and especially bilateral amputees, the ITCS control scheme could have a significant impact on the prosthesis control. In addition, the ITCS would provide bilateral amputees with the additional advantage of environmental and computer control for which the ITCS was originally developed.

  4. A neural interface provides long-term stable natural touch perception.

    PubMed

    Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J

    2014-10-08

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without "tingling," or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects' ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. Copyright © 2014, American Association for the Advancement of Science.

  5. A neural interface provides long-term stable natural touch perception

    PubMed Central

    Tan, Daniel W.; Schiefer, Matthew A.; Keith, Michael W.; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J.

    2017-01-01

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without “tingling,” or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects’ ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. PMID:25298320

  6. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.

    PubMed

    Agashe, H A; Paek, A Y; Contreras-Vidal, J L

    2016-01-01

    Upper limb amputation results in a severe reduction in the quality of life of affected individuals due to their inability to easily perform activities of daily living. Brain-machine interfaces (BMIs) that translate grasping intent from the brain's neural activity into prosthetic control may increase the level of natural control currently available in myoelectric prostheses. Current BMI techniques demonstrate accurate arm position and single degree-of-freedom grasp control but are invasive and require daily recalibration. In this study we tested if transradial amputees (A1 and A2) could control grasp preshaping in a prosthetic device using a noninvasive electroencephalography (EEG)-based closed-loop BMI system. Participants attempted to grasp presented objects by controlling two grasping synergies, in 12 sessions performed over 5 weeks. Prior to closed-loop control, the first six sessions included a decoder calibration phase using action observation by the participants; thereafter, the decoder was fixed to examine neuroprosthetic performance in the absence of decoder recalibration. Ability of participants to control the prosthetic was measured by the success rate of grasping; ie, the percentage of trials within a session in which presented objects were successfully grasped. Participant A1 maintained a steady success rate (63±3%) across sessions (significantly above chance [41±5%] for 11 sessions). Participant A2, who was under the influence of pharmacological treatment for depression, hormone imbalance, pain management (for phantom pain as well as shoulder joint inflammation), and drug dependence, achieved a success rate of 32±2% across sessions (significantly above chance [27±5%] in only two sessions). EEG signal quality was stable across sessions, but the decoders created during the first six sessions showed variation, indicating EEG features relevant to decoding at a smaller timescale (100ms) may not be stable. Overall, our results show that (a) an EEG-based BMI for grasping is a feasible strategy for further investigation of prosthetic control by amputees, and (b) factors that may affect brain activity such as medication need further examination to improve accuracy and stability of BMI performance. © 2016 Elsevier B.V. All rights reserved.

  7. Periprosthetic joint infection: are patients with multiple prosthetic joints at risk?

    PubMed

    Jafari, S Mehdi; Casper, David S; Restrepo, Camilo; Zmistowski, Benjamin; Parvizi, Javad; Sharkey, Peter F

    2012-06-01

    Patients who present with a periprosthetic joint infection in a single joint may have multiple prosthetic joints. The risk of these patients developing a subsequent infection in another prosthetic joint is unknown. Our purposes were (1) to identify the risk of developing a subsequent infection in another prosthetic joint and (2) to describe the time span and organism profile to the second prosthetic infection. We retrospectively identified 55 patients with periprosthetic joint infection who had another prosthetic joint in place at the time of presentation. Of the 55 patients, 11 (20%) developed a periprosthetic joint infection in a second joint. The type of organism was the same as the first infection in 4 (36%) of 11 patients. The time to developing a second infection averaged 2.0 years (range, 0-6.9 years). Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Review of Prosthetic Joint Infection from Listeria monocytogenes.

    PubMed

    Bader, Gilbert; Al-Tarawneh, Mohammed; Myers, James

    2016-12-01

    Prosthetic joint infection from Listeria monocytogenes is rare. We decided to shed light on this illness and review the reported cases to better understand its characteristics. We conducted a comprehensive review of the English literature using PubMed. We also included one case that we had managed. We found 25 cases of prosthetic joint infection from L. monocytogenes reported individually and a retrospective study of 43 cases of joint and bone listerial infection, including 34 with prosthetic joint infection, conducted in France. We have described their clinical and para-clinical features and tried to elaborate on the pathophysiology, treatment, and prevention. Prosthetic joint infection from L. monocytogenes is mainly late. Systemic inflammation may be absent. Although rare, it must be suspected in patients at high risk for both prosthetic joint and listerial infections. In addition, those patients must be instructed on appropriate preventive measures.

  9. The SmartHand transradial prosthesis

    PubMed Central

    2011-01-01

    Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent) sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial amputees and employed as a bi-directional instrument for investigating -during realistic experiments- different interfaces, control and feedback strategies in neuro-engineering studies. PMID:21600048

  10. Cetacean Swimming with Prosthetic Limbs

    NASA Astrophysics Data System (ADS)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  11. Characterizing the Mechanical Properties of Running-Specific Prostheses

    PubMed Central

    Beck, Owen N.; Taboga, Paolo; Grabowski, Alena M.

    2016-01-01

    The mechanical stiffness of running-specific prostheses likely affects the functional abilities of athletes with leg amputations. However, each prosthetic manufacturer recommends prostheses based on subjective stiffness categories rather than performance based metrics. The actual mechanical stiffness values of running-specific prostheses (i.e. kN/m) are unknown. Consequently, we sought to characterize and disseminate the stiffness values of running-specific prostheses so that researchers, clinicians, and athletes can objectively evaluate prosthetic function. We characterized the stiffness values of 55 running-specific prostheses across various models, stiffness categories, and heights using forces and angles representative of those measured from athletes with transtibial amputations during running. Characterizing prosthetic force-displacement profiles with a 2nd degree polynomial explained 4.4% more of the variance than a linear function (p<0.001). The prosthetic stiffness values of manufacturer recommended stiffness categories varied between prosthetic models (p<0.001). Also, prosthetic stiffness was 10% to 39% less at angles typical of running 3 m/s and 6 m/s (10°-25°) compared to neutral (0°) (p<0.001). Furthermore, prosthetic stiffness was inversely related to height in J-shaped (p<0.001), but not C-shaped, prostheses. Running-specific prostheses should be tested under the demands of the respective activity in order to derive relevant characterizations of stiffness and function. In all, our results indicate that when athletes with leg amputations alter prosthetic model, height, and/or sagittal plane alignment, their prosthetic stiffness profiles also change; therefore variations in comfort, performance, etc. may be indirectly due to altered stiffness. PMID:27973573

  12. Design and analysis of an underactuated anthropomorphic finger for upper limb prosthetics.

    PubMed

    Omarkulov, Nurdos; Telegenov, Kuat; Zeinullin, Maralbek; Begalinova, Ainur; Shintemirov, Almas

    2015-01-01

    This paper presents the design of a linkage based finger mechanism ensuring extended range of anthropomorphic gripping motions. The finger design is done using a path-point generation method based on geometrical dimensions and motion of a typical index human finger. Following the design description, and its kinematics analysis, the experimental evaluation of the finger gripping performance is presented using the finger 3D printed prototype. The finger underactuation is achieved by utilizing mechanical linkage system, consisting of two crossed four-bar linkage mechanisms. It is shown that the proposed finger design can be used to design a five-fingered anthropomorphic hand and has the potential for upper limb prostheses development.

  13. New Prostheses and Orthoses Step Up their Game: Motorized Knees, Robotic Hands, and Exosuits Mark Advances in Rehabilitation Technology.

    PubMed

    Allen, Summer

    2016-01-01

    Forty years ago, Les Baugh lost both of his arms in an electrical accident. With bilateral shoulder-level amputations, his options for prosthetic arms were limited. That changed two years ago, when Baugh underwent a surgical procedure at Johns Hopkins Hospital in Baltimore that allowed him to control state-of-the-art robotic arms using nerves that had been rerouted to his chest. Within ten days of training, he was able to control both arms simultaneously and move a cup from a lower shelf to a higher shelf-a task that previously had been impossible-just by thinking about how he wanted to move his arm.

  14. Upper Extremity Amputations and Prosthetics

    PubMed Central

    Ovadia, Steven A.; Askari, Morad

    2015-01-01

    Upper extremity amputations are most frequently indicated by severe traumatic injuries. The location of the injury will determine the level of amputation. Preservation of extremity length is often a goal. The amputation site will have important implications on the functional status of the patient and options for prosthetic reconstruction. Advances in amputation techniques and prosthetic reconstructions promote improved quality of life. In this article, the authors review the principles of upper extremity amputation, including techniques, amputation sites, and prosthetic reconstructions. PMID:25685104

  15. Influence of the prosthetic arm length (palatal position) of zygomatic implants upon patient satisfaction

    PubMed Central

    Pellicer-Chover, Hilario; Cervera-Ballester, Juan; Peñarrocha-Oltra, David; Bagán, Leticia; Peñarrocha-Diago, María

    2016-01-01

    Background To assess the influence of the prosthetic arm length (palatal position) of zygomatic implants upon patient comfort and stability, speech, functionality and overall satisfaction. Material and Methods A retrospective clinical study was made of patients subjected to rehabilitation of atrophic maxilla with complete maxillary implant-supported fixed prostheses involving a minimum of two zygomatic implants (one on each side) in conjunction with premaxillary implants, and with 12 months of follow-up after implant loading. Subjects used a VAS to score general satisfaction, comfort and stability, speech and functionality, and the results were analyzed in relation to the prosthetic arm length of the zygomatic implants 12 months after prosthetic delivery. Results Twenty-two patients participated in the study, receiving 22 prostheses anchored on 148 implants (44 were zygomatic and 94 were conventional implants). The mean right and left prosthetic arm length was 5.9±2.4 mm and 6.1±2.7 mm, respectively, with no statistically significant differences between them (p=0.576). The mean scores referred to comfort/retention, speech, functionality and overall satisfaction were high - no correlation being found between prosthetic arm length and patient satisfaction (p=0.815). Conclusions No relationship could be identified between prosthetic arm length (palatal position) and patient satisfaction. Key words:Zygomatic implants, patient satisfaction, zygomatic prosthesis, prosthetic arm length. PMID:26946206

  16. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion.

    PubMed

    Davidson, Matthew; Bodine, Cathy; Weir, Richard F Ff

    2018-03-07

    Prosthetic devices are not meeting the needs of people with upper limb amputations. Due to controlsidelimitations, prosthetic wrists cannot yet be fully articulated. This study sought to determine which wrist motions users felt were most important for completing activities of daily living. We specifically invstigated whether adding a combinationof flexion and deviation known as the Dart Thrower's Motion to a prosthetic wrist would help improve functionality. Fifteen participants with a trans-radial amputation, aged 25-64 years, who use a prosthesis completed an online survey and answered interview questions to determine which types of tasks pose particular challenges. Participants were asked what kinds of improvements they would like to see in a new prosthesis. A subset of five participants were interviewed in-depth to provide further information about difficulties they face using their device. The survey showed that participants had difficulty performing activities of daily living that involve a combination of wrist flexion and deviation known as the "Dart Throwers Motion". Interview responses confirmed that users have difficulty performing these tasks, especially those that require tools. Additionally, users said that they were more interested in having flexion and deviation than rotation in a prosthetic wrist. This research indicates that including the Dart Thrower's Motion in future designs of prosthetic wrists would improve these devices and people with upper limb amputations would be excited to see this improvement in their devices. Implications for Rehabilitation • Over one third of people with upper limb amputations do not use a prosthesis because prosthetic devices do not meet their needs.• The number of motions possible in state of the art prosthetic devices is limited by the small number of control sites available.• The Dart Thrower?s Motion is a wrist motion used for many activities of daily living but unavailable in commercial prosthetics leading many prosthetics users to have difficulty with these tasks.• Prosthetic use, and therefore quality of life, could be improved by including the Dart Thrower's Motion in a prosthesis.

  17. 38 CFR 17.150 - Prosthetic and similar appliances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appliances. 17.150 Section 17.150 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Prosthetic, Sensory, and Rehabilitative Aids § 17.150 Prosthetic and similar appliances... appliances including invalid lifts and therapeutic and rehabilitative devices, and special clothing made...

  18. Conventional and molecular diagnostic strategies for prosthetic joint infections.

    PubMed

    Esteban, Jaime; Sorlí, Luisa; Alentorn-Geli, Eduard; Puig, Lluís; Horcajada, Juan P

    2014-01-01

    An accurate diagnosis of prosthetic joint infection (PJI) is the mainstay for an optimized clinical management. This review analyzes different diagnostic strategies of PJI, with special emphasis on molecular diagnostic tools and their current and future applications. Until now, the culture of periprosthetic tissues has been considered the gold standard for the diagnosis of PJI. However, sonication of the implant increases the sensitivity of those cultures and is being increasingly adopted by many centers. Molecular diagnostic methods compared with intraoperative tissue culture, especially if combined with sonication, have a higher sensitivity, a faster turnaround time and are not influenced by previous antimicrobial therapy. However, they still lack a system for detection of antimicrobial susceptibility, which is crucial for an optimized and less toxic therapy of PJI. More studies are needed to assess the clinical value of these methods and their cost-effectiveness.

  19. Electronic approaches to restoration of sight

    NASA Astrophysics Data System (ADS)

    Goetz, G. A.; Palanker, D. V.

    2016-09-01

    Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field.

  20. Electronic Approaches to Restoration of Sight

    PubMed Central

    Goetz, G A; Palanker, D V

    2016-01-01

    Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex-vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field. PMID:27502748

  1. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard.

    PubMed

    Tsai, I-Chen; Lin, Yung-Kai; Chang, Yen; Fu, Yun-Ching; Wang, Chung-Chi; Hsieh, Shih-Rong; Wei, Hao-Ji; Tsai, Hung-Wen; Jan, Sheng-Ling; Wang, Kuo-Yang; Chen, Min-Chi; Chen, Clayton Chi-Chang

    2009-04-01

    The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Björk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders.

  2. Effects of a flat prosthetic foot rocker section on balance and mobility.

    PubMed

    Hansen, Andrew; Nickel, Eric; Medvec, Joseph; Brielmaier, Steven; Pike, Alvin; Weber, Marilyn

    2014-01-01

    Previous studies have shown that the effective rocker shape of the physiologic ankle-foot system during standing and fore-aft swaying is much flatter than that used during walking, which indicates a more stable base of support for the standing/swaying activity. Previous work suggests that flat regions within the effective rocker shapes of prosthetic ankle-foot systems could provide enhanced stability for standing balance tasks. An experimental prosthetic foot was altered to provide three different flat region lengths within its effective rocker shape. It was hypothesized that longer flat regions of the effective rocker shape would lead to improved standing balance outcomes and reduced walking performance for unilateral transtibial prosthesis users. However, no significant changes were seen in the balance and mobility outcomes of 12 unilateral transtibial prosthesis users when using the three prosthetic foot conditions. Subjects in the study significantly preferred prosthetic feet with relatively low to moderate flat regions over those with long flat regions. All the subjects without loss of light touch or vibratory sensation selected the prosthetic foot with the shortest flat region. More work is needed to investigate the effects of prosthetic foot properties on balance and mobility of prosthesis users.

  3. Rapidly growing non-tuberculous mycobacteria infection of prosthetic knee joints: A report of two cases.

    PubMed

    Kim, Manyoung; Ha, Chul-Won; Jang, Jae Won; Park, Yong-Beom

    2017-08-01

    Non-tuberculous mycobacteria (NTM) cause prosthetic knee joint infections in rare cases. Infections with rapidly growing non-tuberculous mycobacteria (RGNTM) are difficult to treat due to their aggressive clinical behavior and resistance to antibiotics. Infections of a prosthetic knee joint by RGNTM have rarely been reported. A standard of treatment has not yet been established because of the rarity of the condition. In previous reports, diagnoses of RGNTM infections in prosthetic knee joints took a long time to reach because the condition was not suspected, due to its rarity. In addition, it is difficult to identify RGNTM in the lab because special identification tests are needed. In previous reports, after treatment for RGNTM prosthetic infections, knee prostheses could not be re-implanted in all cases but one, resulting in arthrodesis or resection arthroplasty; this was most likely due to the aggressiveness of these organisms. In the present report, two cases of prosthetic knee joint infection caused by RGNTM (Mycobacterium abscessus) are described that were successfully treated, and in which prosthetic joints were finally reimplanted in two-stage revision surgery. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rotationplasty with vascular reconstruction for prosthetic knee joint infection.

    PubMed

    Fujiki, Masahide; Miyamoto, Shimpei; Nakatani, Fumihiko; Kawai, Akira; Sakuraba, Minoru

    2015-01-01

    Rotationplasty is used most often as a function-preserving salvage procedure after resection of sarcomas of the lower extremity; however, it is also used after infection of prosthetic knee joints. Conventional vascular management during rotationplasty is to preserve and coil major vessels, but recently, transection and reanastomosis of the major vessels has been widely performed. However, there has been little discussion regarding the optimal vascular management of rotationplasty after infection of prosthetic knee joints because rotationplasty is rarely performed for this indication. We reviewed four patients who had undergone resection of osteosarcomas of the femur, placement of a prosthetic knee joint, and rotationplasty with vascular reconstruction from 2010 to 2013. The mean interval between prosthetic joint replacement and rotationplasty was 10.4 years and the mean interval between the diagnosis of prosthesis infection and rotationplasty was 7.9 years. Rotationplasty was successful in all patients; however, in one patient, arterial thrombosis developed and necessitated urgent surgical removal and arterial reconstruction. All patients were able to walk independently with a prosthetic limb after rehabilitation. Although there is no consensus regarding the most appropriate method of vascular management during rotationplasty for revision of infected prosthetic joints, vascular transection and reanastomosis is a useful option.

  5. 38 CFR 3.810 - Clothing allowance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... prosthetic or orthopedic appliance (including, but not limited to, a wheelchair) which tends to wear or tear... service-connected disability or disabilities, wears or uses one qualifying prosthetic or orthopedic... allowance for each prosthetic or orthopedic appliance (including, but not limited to, a wheelchair) or...

  6. Prosthetic Aortic Valves: Challenges and Solutions

    PubMed Central

    Musumeci, Lucia; Jacques, Nicolas; Hego, Alexandre; Nchimi, Alain; Lancellotti, Patrizio; Oury, Cécile

    2018-01-01

    Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting millions of people worldwide. Severe AVD is treated in most cases with prosthetic aortic valve replacement, which involves the substitution of the native aortic valve with a prosthetic one. In this review we will discuss the different types of prosthetic aortic valves available for implantation and the challenges faced by patients, medical doctors, researchers and manufacturers, as well as the approaches that are taken to overcome them. PMID:29868612

  7. Remote transient Lactobacillus animalis bacteremia causing prosthetic hip joint infection: a case report.

    PubMed

    Somayaji, R; Lynch, T; Powell, J N; Gregson, D

    2016-11-04

    Lactobacillus spp. are uncommon pathogens in immunocompetent hosts, and even rarer causes of prosthetic device infections. A case of chronic hip prosthetic joint infection (PJI) caused by L. animalis is described. This occurred 5 years after a transient bacteremia with the same organism. Whole genome sequencing of both isolates proved this PJI infection resulted from this remote bacteremia. We document that prosthetic joint infections may be a consequence of bacteremia as much as 3 years before the onset of symptoms.

  8. Concerns of anophthalmic patients-a comparison between cryolite glass and polymethyl methacrylate prosthetic eye wearers.

    PubMed

    Rokohl, Alexander C; Koch, Konrad R; Adler, Werner; Trester, Marc; Trester, Wolfgang; Pine, Nicola S; Pine, Keith R; Heindl, Ludwig M

    2018-06-01

    To compare the concerns of experienced cryolite glass and (poly)methyl methacrylate (PMMA) prosthetic eye wearers. One hundred six experienced cryolite glass and 63 experienced PMMA prosthetic eye wearers completed an anonymous questionnaire regarding general and specific prosthetic eye concerns at least 2 years after natural eye loss. From these independent anophthalmic populations, we identified 34 case-control pairs matched for the known influencing demographic variables of gender, occupation, age, and time since natural eye loss. The levels of concern were significantly lower in the cryolite glass group than those in the PMMA group for the following: loss of balance (p < 0.001), phantom sight vision (p < 0.001), pain (p < 0.001), receiving good advice (p = 0.001), fullness of orbit (p = 0.001), size (p = 0.007), direction of gaze relative to the healthy fellow eye (p = 0.005), eye lid contour (p = 0.037), comfort of the prosthetic eye (p < 0.001), colour relative to the healthy fellow eye (p < 0.001), and retention of the prosthetic eye (p < 0.001). Concerns about watering, crusting, discharge, visual perception, appearance, movement of the prosthetic eye, and health of the remaining eye were not significantly different between both groups. The results of this study showed that many general and specific levels of concern were significantly lower for cryolite glass prosthetic eye wearers than for PMMA prosthetic eye wearers. The question of why there are significant differences and to what extent the material of the prosthesis (cryolite glass or PMMA) has an impact on various concerns remains unanswered and should be addressed in a prospective comparative multicentre trial.

  9. Major lower limb amputations in the Marshall Islands: incidence, prosthetic prescription, and prosthetic use after 6-18 months.

    PubMed

    Harding, Katherine

    2005-03-01

    The Republic of the Marshall Islands has been recognised anecdotally to have high rates of major lower limb amputations secondary to diabetes. During 2001, a prosthetics service was introduced as part of the rehabilitation service at Majuro Hospital. 1. To determine the incidence of major lower limb amputations over a one year period from 2002 to 2003. 2. To evaluate the proportion of patients suitable for prosthetic fitting. 3. Determine survival rates and usage of prostheses six to eighteen months after prosthetic fitting. Amputation rates were established through review of the surgical logs at the two hospitals in the Marshall Islands. Prosthetic fitting rates were determined using records from Majuro hospital rehabilitation service. Follow up interviews were conducted with fifteen surviving patients who received prostheses during the study period, to investigate prosthetic use. The incidence of major lower limb amputation was found to be 79.5 per 100,000 population, with all forty-five amputations being associated with diabetes. Just over a third of these patients were discharged from rehabilitation with a prosthesis. Fifteen of the patients were followed up post discharge. All of the thirteen with transtibial amputations were found to be using their prosthesis at least some of the day. The two patients with transfemoral amputations had ceased to walk with their prosthesis. This study identified a very high rate of lower limb amputation in the Marshall Islands by world standards. Prosthetic fitting rates and follow up results were comparable to those reported by others, and indicate that small, geographically isolated island nations such as the Marshall Islands are able to provide a successful prosthetics and rehabilitation service locally.

  10. Good quality of life outcomes after treatment of prosthetic joint infection with debridement and prosthesis retention.

    PubMed

    Aboltins, Craig; Dowsey, Michelle; Peel, Trish; Lim, Wen K; Choong, Peter

    2016-05-01

    Patients treated for early prosthetic joint infection (PJI) with surgical debridement and prosthesis retention have a rate of successful infection eradication that is similar to patients treated with the traditional approach of prosthesis exchange. It is therefore important to consider other outcomes after prosthetic joint infection treatment that may influence management decisions, such as quality of life (QOL). Our aim was to describe infection cure rates and quality of life for patients with prosthetic joint infection treated with debridement and prosthesis retention and to determine if treatment with this approach was a risk factor for poor quality of life outcomes. Prospectively collected pre and post-arthroplasty data were available for 2,134 patients, of which PJI occurred in 41. For patients treated for prosthetic joint infection, the 2-year survival free of treatment failure was 87% (95%CI 84-89). Prosthetic joint infection cases treated with debridement and retention had a similar improvement from pre-arthroplasty to 12-months post-arthroplasty as patients without PJI in QOL according to the SF-12 survey. Prosthetic joint infection treated with debridement and retention was not a risk factor for poor quality of life on univariate or multivariate analysis. Prosthetic joint infection treated with debridement and prosthesis retention results in good cure rates and quality of life. Further studies are required that directly compare quality of life for different surgical approaches for prosthetic joint infection to better inform management decisions. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:898-902, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Systematic review of effects of current transtibial prosthetic socket designs--Part 2: Quantitative outcomes.

    PubMed

    Safari, Mohammad Reza; Meier, Margrit Regula

    2015-01-01

    This review is an attempt to untangle the complexity of transtibial prosthetic socket fit and perhaps find some indication of whether a particular prosthetic socket type might be best for a given situation. In addition, we identified knowledge gaps, thus providing direction for possible future research. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, using medical subject headings and standard key words to search for articles in relevant databases. No restrictions were made on study design and type of outcome measure used. From the obtained search results (n = 1,863), 35 articles were included. The relevant data were entered into a predefined data form that included the Downs and Black risk of bias assessment checklist. This article presents the results from the systematic review of the quantitative outcomes (n = 27 articles). Trends indicate that vacuum-assisted suction sockets improve gait symmetry, volume control, and residual limb health more than other socket designs. Hydrostatic sockets seem to create less inconsistent socket fittings, reducing a problem that greatly influences outcome measures. Knowledge gaps exist in the understanding of clinically meaningful changes in socket fit and its effect on biomechanical outcomes. Further, safe and comfortable pressure thresholds under various conditions should be determined through a systematic approach.

  12. Development of a model osseo-magnetic link for intuitive rotational control of upper-limb prostheses.

    PubMed

    Rouse, Elliott J; Nahlik, David C; Peshkin, Michael A; Kuiken, Todd A

    2011-04-01

    The lack of proprioceptive feedback is a serious deficiency of current prosthetic control systems. The Osseo-Magnetic Link (OML) is a novel humeral or wrist rotation control system that could preserve proprioception. It utilizes a magnet implanted within the residual bone and sensors mounted in the prosthetic socket to detect magnetic field vectors and determine the bone's orientation. This allows the use of volitional bone rotation to control a prosthetic rotator. We evaluated the performance of the OML using a physical model of a transhumeral residual limb. A small Neodymium-Iron-Boron magnet was placed in a model humerus, inside a model upper arm. Four three-axis Hall-effect sensors were mounted on a ring 3 cm distal to the magnet. An optimization algorithm based on Newton's method determined the position and orientation of the magnet within the model humerus under various conditions, including bone translations, interference, and magnet misalignment. The orientation of the model humerus was determined within 3° for rotations centered in the arm; an additional 6° error was found for translations 20 mm from center. Adjustments in sensor placement may reduce these errors. The results demonstrate that the OML is a feasible solution for providing prosthesis rotation control while preserving rotational proprioception.

  13. Rapid synthesis of maleimide functionalized fluorine-18 labeled prosthetic group using "radio-fluorination on the Sep-Pak" method.

    PubMed

    Basuli, Falguni; Zhang, Xiang; Jagoda, Elaine M; Choyke, Peter L; Swenson, Rolf E

    2018-06-30

    Following our recently published fluorine-18 labeling method, "Radio-fluorination on the Sep-Pak", we have successfully synthesized 6-[ 18 F]fluoronicotinaldehyde by passing a solution (1:4 acetonitrile: t-butanol) of its quaternary ammonium salt precursor, 6-(N,N,N-trimethylamino)nicotinaldehyde trifluoromethanesulfonate (2), through a fluorine-18 containing anion exchange cartridge (PS-HCO 3 ). Over 80% radiochemical conversion was observed using 10 mg of precursor within 1 minute. The [ 18 F]fluoronicotinaldehyde ([ 18 F]5) was then conjugated with 1-(6-(aminooxy)hexyl)-1H-pyrrole-2,5-dione to prepare the fluorine-18 labeled maleimide functionalized prosthetic group, 6-[ 18 F]fluoronicotinaldehyde O-(6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl) oxime, 6-[ 18 F]FPyMHO ([ 18 F]6). The current Sep-Pak method not only improves the overall radiochemical yield (50 ± 9%, decay-corrected, n = 9) but also significantly reduces the synthesis time (from 60-90 minutes to 30 minutes) when compared with literature methods for the synthesis of similar prosthetic groups. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  14. Graft-Sparing Strategy for Thoracic Prosthetic Graft Infection.

    PubMed

    Uchino, Gaku; Yoshida, Takeshi; Kakii, Bunpachi; Furui, Masato

    2018-04-01

     Thoracic prosthetic graft infection is a rare but serious complication with no standard management. We reported our surgical experience on graft-sparing strategy for thoracic prosthetic graft infection.  This study included patients who underwent graft-sparing surgery for thoracic prosthetic graft infection at Matsubara Tokushukai Hospital in Japan from January 2000 to October 2017.  There were 17 patients included in the analyses, with a mean age at surgery of 71.0 ± 10.5 years; 11 were men. In-hospital mortality was observed in five patients (29.4%).  Graft-sparing surgery for thoracic prosthetic graft infection is an alternative option particularly for early graft infection after hemiarch replacement. Georg Thieme Verlag KG Stuttgart · New York.

  15. Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study

    PubMed Central

    2012-01-01

    Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding. PMID:22704638

  16. Use of the DEKA Arm for amputees with brachial plexus injury: A case series.

    PubMed

    Resnik, Linda; Fantini, Christopher; Latlief, Gail; Phillips, Samuel; Sasson, Nicole; Sepulveda, Eve

    2017-01-01

    Patients with upper limb amputation and brachial plexus injuries have high rates of prosthesis rejection. Study purpose is to describe experiences of subjects with transhumeral amputation and brachial plexus injury, who were fit with, and trained to use, a DEKA Arm. This was a mixed-methods study utilizing qualitative (e.g. interview, survey) and quantitative data (e.g. self-report and performance measures). Subject 1, a current prosthesis user, had a shoulder arthrodesis. Subject 2, not a prosthesis user, had a subluxed shoulder. Both were trained in laboratory and participated in a trial of home use. Descriptive analyses of processes and outcomes were conducted. Subject 1 was fitted with the transhumeral configuration (HC) DEKA Arm using a compression release stabilized socket. He had 12 hours of prosthetic training and participated in all home study activities. Subject 1 had improved dexterity and prosthetic satisfaction with the DEKA Arm and reported better quality of life (QOL) at the end of participation. Subject 2 was fit with the shoulder configuration (SC) DEKA Arm using a modified X-frame socket. He had 30 hours of training and participated in 3 weeks of home activities. He reported less functional disability at the end of training as compared to baseline, but encountered personal problems and exacerbation of PTSD symptoms and withdrew from home use portion at 3 weeks. Both subjects reported functional benefits from use, and expressed a desire to receive a DEKA Arm in the future. This paper reported on two different strategies for prosthetic fitting and their outcomes. The advantages and limitations of each approach were discussed. Use of both the HC and SC DEKA Arm for patients with TH amputation and brachial plexus injury was reported. Lessons learned may be instructive to clinicians considering prosthetic choices for future cases.

  17. Interventions for Dental Implant Placement in Atrophic Edentulous Mandibles: Vertical Bone Augmentation and Alternative Treatments. A Meta-Analysis of Randomized Clinical Trials.

    PubMed

    Camps-Font, Octavi; Burgueño-Barris, Genís; Figueiredo, Rui; Jung, Ronald E; Gay-Escoda, Cosme; Valmaseda-Castellón, Eduard

    2016-12-01

    The purpose of the current study is to assess which vertical bone augmentation techniques are most effective for restoring atrophic posterior areas of the mandible with dental implants and compare these procedures with alternative treatments. Electronic literature searches in PubMed (MEDLINE), Ovid, and the Cochrane Library were conducted to identify all relevant articles published up to July 1, 2015. Eligibility was based on inclusion criteria, and quality assessments were conducted. The primary outcome variables were implant and prosthetic failure. After data extraction, meta-analyses were performed. Out of 527 potentially eligible papers, 14 randomized clinical trials were included. Out of these 14 studies, four trials assessed short implants (5 to 8 mm) as an alternative to vertical bone augmentation in sites with a residual ridge height of 5 to 8 mm. No statistically significant differences were found in implant (odds ratio [OR]: 1.02; 95% confidence interval [CI]: 0.31 to 3.31; P = 0.98; I 2 : 0%) or prosthetic failure (OR: 0.64; 95% CI: 0.21 to 1.96; P = 0.43; I 2 : 0%) after 12 months of loading. However, complications at treated sites increased with the augmentation procedures (OR: 8.33; 95% CI: 3.85 to 20.0; P <0.001; I 2 : 0%). There was no evidence of any vertical augmentation procedure being of greater benefit than any other for the primary outcomes (implant and prosthetic failure). Short implants in the posterior area of the mandible seem to be preferable to vertical augmentation procedures, which present similar implant and prosthetic failure rates but greater morbidity. All the vertical augmentation technique comparisons showed similar intergroup results.

  18. Current trends and outcomes of breast reconstruction following nipple-sparing mastectomy: results from a national multicentric registry with 1006 cases over a 6-year period.

    PubMed

    Casella, Donato; Calabrese, Claudio; Orzalesi, Lorenzo; Gaggelli, Ilaria; Cecconi, Lorenzo; Santi, Caterina; Murgo, Roberto; Rinaldi, Stefano; Regolo, Lea; Amanti, Claudio; Roncella, Manuela; Serra, Margherita; Meneghini, Graziano; Bortolini, Massimiliano; Altomare, Vittorio; Cabula, Carlo; Catalano, Francesca; Cirilli, Alfredo; Caruso, Francesco; Lazzaretti, Maria Grazia; Meattini, Icro; Livi, Lorenzo; Cataliotti, Luigi; Bernini, Marco

    2017-05-01

    Reconstruction options following nipple-sparing mastectomy (NSM) are diverse and not yet investigated with level IA evidence. The analysis of surgical and oncological outcomes of NSM from the Italian National Registry shows its safety and wide acceptance both for prophylactic and therapeutic cases. A further in-depth analysis of the reconstructive approaches with their trend over time and their failures is the aim of this study. Data extraction from the National Database was performed restricting cases to the 2009-2014 period. Different reconstruction procedures were analyzed in terms of their distribution over time and with respect to specific indications. A 1-year minimum follow-up was conducted to assess reconstructive unsuccessful events. Univariate and multivariate analyses were performed to investigate the causes of both prosthetic and autologous failures. 913 patients, for a total of 1006 procedures, are included in the analysis. A prosthetic only reconstruction is accomplished in 92.2 % of cases, while pure autologous tissues are employed in 4.2 % and a hybrid (prosthetic plus autologous) in 3.6 %. Direct-to-implant (DTI) reaches 48.7 % of all reconstructions in the year 2014. Prophylactic NSMs have a DTI reconstruction in 35.6 % of cases and an autologous tissue flap in 12.9 % of cases. Failures are 2.7 % overall: 0 % in pure autologous flaps and 9.1 % in hybrid cases. Significant risk factors for failures are diabetes and the previous radiation therapy on the operated breast. Reconstruction following NSM is mostly prosthetic in Italy, with DTI gaining large acceptance over time. Failures are low and occurring in diabetic and irradiated patients at the multivariate analysis.

  19. Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it.

    PubMed

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2016-10-01

    Senses of ownership (this arm belongs to me) and agency (I am controlling this arm) originate from sensorimotor system. External objects can be integrated into the sensorimotor system following long-term use, and recognized as one's own body. We examined how an (un)embodied prosthetic arm modulates whole-body control, and assessed the components of prosthetic embodiment. Nine unilateral upper-limb amputees participated. Four frequently used their prosthetic arm, while the others rarely did. Their postural sway was measured during quiet standing with or without their prosthesis. The frequent users showed greater sway when they removed the prosthesis, while the rare users showed greater sway when they fitted the prosthesis. Frequent users reported greater everyday feelings of postural stabilization by prosthesis and a larger sense of agency over the prosthesis. We suggest that a prosthetic arm maintains or perturbs postural control, depending on the prosthetic embodiment, which involves sense of agency rather than ownership. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Traumatic below-elbow amputations.

    PubMed

    Freeland, Alan E; Psonak, Rick

    2007-02-01

    Prehension, intelligence, and erect posture distinguish humans from lower animals. Hands are instrumental for our survival and welfare. We use our hands when we work, recreate, and communicate. A handshake, a touch, a sign, or signal has significant social and communicative meanings. Hands play a major role in defining the skill level of our activities and our level of social expression and integration. Indeed, refined psychomotor precision of hand function may distinguish some individuals among us, gifting society with its more skilled craftsmen, surgeons, artisans, musicians, athletes, and the like in a highly digital world. For others, their hands are critical in providing and caring for their families. Injury severity scores may identify the majority of patients that require amputation; however, injury severity scoring system predictions in individual patients may be problematic and should be used with caution. Amputees require comprehensive multidisciplinary treatment and compassion so that they can successfully overcome their losses. Ultimately, the patients must change, adjust, and adapt to successfully reintegrate themselves into their families, peer groups, job settings, and society as a whole. Early amputation may decrease the incidence and severity of phantom pain compared to amputation after the failure of reconstruction. Early prosthetic fitting, training, and physical rehabilitation; early psychological and sociological support; and early return to work facilitate successful functional recovery. Psychological recovery may be a more arduous and extended process than physical recovery. We must teach our amputees from the outset to use their losses as an incentive for success, assist them to regain their quality of life, and encourage them to act as role models for and to educate others.

  1. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment.

    PubMed

    De Asha, Alan R; Johnson, Louise; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G

    2013-02-01

    Disruptions to the progress of the centre-of-pressure trajectory beneath prosthetic feet have been reported previously. These disruptions reflect how body weight is transferred over the prosthetic limb and are governed by the compliance of the prosthetic foot device and its ability to simulate ankle function. This study investigated whether using an articulating hydraulic ankle attachment attenuates centre-of-pressure trajectory fluctuations under the prosthetic foot compared to a fixed attachment. Twenty active unilateral trans-tibial amputees completed walking trials at their freely-selected, comfortable walking speed using both their habitual foot with either a rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment. Centre-of-pressure displacement and velocity fluctuations beneath the prosthetic foot, prosthetic shank angular velocity during stance, and walking speed were compared between foot conditions. Use of the hydraulic device eliminated or reduced the magnitude of posteriorly directed centre-of-pressure displacements, reduced centre-of-pressure velocity variability across single-support, increased mean forward angular velocity of the shank during early stance, and increased freely chosen comfortable walking speed (P ≤ 0.002). The attenuation of centre-of-pressure trajectory fluctuations when using the hydraulic device indicated bodyweight was transferred onto the prosthetic limb in a smoother, less faltering manner which allowed the centre of mass to translate more quickly over the foot. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    NASA Astrophysics Data System (ADS)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  <  0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9%  ±  24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  3. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands

    PubMed Central

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system’s complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs. PMID:26069961

  4. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    PubMed

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs.

  5. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence.

    PubMed

    Heim, Cortney E; Vidlak, Debbie; Odvody, Jessica; Hartman, Curtis W; Garvin, Kevin L; Kielian, Tammy

    2017-11-15

    Prosthetic joint infection (PJI) is a devastating complication of joint arthroplasty surgery typified by biofilm formation. Currently, mechanisms whereby biofilms persist and evade immune-mediated clearance in immune competent patients remain largely ill-defined. Therefore, the current study characterized leukocyte infiltrates and inflammatory mediator expression in tissues from patients with PJI compared to aseptic loosening. CD33 + HLA-DR - CD66b + CD14 -/low granulocytic myeloid-derived suppressor cells (G-MDSCs) were the predominant leukocyte population at sites of human PJI compared to aseptic tissues. MDSCs inhibit T cell proliferation, which coincided with reduced T cells in PJIs compared to aseptic tissues. IL-10, IL-6, and CXCL1 were significantly elevated in PJI tissues and have been implicated in MDSC inhibitory activity, expansion, and recruitment, respectively, which may account for their preferential increase in PJIs. This bias towards G-MDSC accumulation during human PJI could account for the chronicity of these infections by preventing the pro-inflammatory, antimicrobial actions of immune effector cells. Animal models of PJI have revealed a critical role for MDSCs and IL-10 in promoting infection persistence; however, whether this population is prevalent during human PJI and across distinct bacterial pathogens remains unknown. This study has identified that granulocytic-MDSC infiltrates are unique to human PJIs caused by distinct bacteria, which are not associated with aseptic loosening of prosthetic joints. Better defining the immune status of human PJIs could lead to novel immune-mediated approaches to facilitate PJI clearance in combination with conventional antibiotics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. 21 CFR 890.3420 - External limb prosthetic component.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...

  7. 21 CFR 890.3025 - Prosthetic and orthotic accessory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic and orthotic accessory. 890.3025 Section 890.3025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3025...

  8. 21 CFR 890.3025 - Prosthetic and orthotic accessory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic and orthotic accessory. 890.3025 Section 890.3025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3025...

  9. 21 CFR 890.3025 - Prosthetic and orthotic accessory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic and orthotic accessory. 890.3025 Section 890.3025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3025...

  10. 21 CFR 890.3420 - External limb prosthetic component.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...

  11. 21 CFR 890.3420 - External limb prosthetic component.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...

  12. 21 CFR 890.3025 - Prosthetic and orthotic accessory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic and orthotic accessory. 890.3025 Section 890.3025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3025...

  13. 21 CFR 890.3420 - External limb prosthetic component.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...

  14. 21 CFR 890.3420 - External limb prosthetic component.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...

  15. 21 CFR 890.3025 - Prosthetic and orthotic accessory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic and orthotic accessory. 890.3025 Section 890.3025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3025...

  16. Standardizing the evaluation criteria on treatment outcomes of mandibular implant overdentures: a systematic review

    PubMed Central

    Kim, Ha-Young; Shin, Sang-Wan

    2014-01-01

    PURPOSE The aim of this review was to analyze the evaluation criteria on mandibular implant overdentures through a systematic review and suggest standardized evaluation criteria. MATERIALS AND METHODS A systematic literature search was conducted by PubMed search strategy and hand-searching of relevant journals from included studies considering inclusion and exclusion criteria. Randomized clinical trials (RCT) and clinical trial studies comparing attachment systems on mandibular implant overdentures until December, 2011 were selected. Twenty nine studies were finally selected and the data about evaluation methods were collected. RESULTS Evaluation criteria could be classified into 4 groups (implant survival, peri-implant tissue evaluation, prosthetic evaluation, and patient satisfaction). Among 29 studies, 21 studies presented implant survival rate, while any studies reporting implant failure did not present cumulative implant survival rate. Seventeen studies evaluating peri-implant tissue status presented following items as evaluation criteria; marginal bone level (14), plaque Index (13), probing depth (8), bleeding index (8), attachment gingiva level (8), gingival index (6), amount of keratinized gingiva (1). Eighteen studies evaluating prosthetic maintenance and complication also presented following items as evaluation criteria; loose matrix (17), female detachment (15), denture fracture (15), denture relining (14), abutment fracture (14), abutment screw loosening (11), and occlusal adjustment (9). Atypical questionnaire (9), Visual analog scales (VAS) (4), and Oral Health Impact Profile (OHIP) (1) were used as the format of criteria to evaluate patients satisfaction in 14 studies. CONCLUSION For evaluation of implant overdenture, it is necessary to include cumulative survival rate for implant evaluation. It is suggested that peri-implant tissue evaluation criteria include marginal bone level, plaque index, bleeding index, probing depth, and attached gingiva level. It is also suggested that prosthetic evaluation criteria include loose matrix, female detachment, denture fracture, denture relining, abutment fracture, abutment screw loosening, and occlusal adjustment. Finally standardized criteria like OHIP-EDENT or VAS are required for patient satisfaction. PMID:25352954

  17. Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.

    PubMed

    Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T

    2000-04-01

    Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.

  18. Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey.

    PubMed

    Seymour, Ron; Engbretson, Brenda; Kott, Karen; Ordway, Nathaniel; Brooks, Gary; Crannell, Jessica; Hickernell, Elise; Wheeler, Katie

    2007-03-01

    This study investigated energy expenditure and obstacle course negotiation between the C-leg and various non-microprocessor control (NMC) prosthetic knees and compared a quality of life survey (SF-36v2) of use of the C-leg to national norms. Thirteen subjects with unilateral limb loss (12 with trans-femoral and one with a knee disarticulation amputation) participated in the study. The mean age was 46 years, range 30-75. Energy expenditure using both the NMC and C-leg prostheses was measured at self-selected typical and fast walking paces on a motorized treadmill. Subjects were also asked to walk through a standardized walking obstacle course carrying a 4.5 kg (10 lb) basket and with hands free. Finally, the SF-36v2 was completed for subjects while using the C-leg. Statistically significant differences were found in oxygen consumption between prostheses at both typical and fast paces with the C-leg showing decreased values. Use of the C-leg resulted in a statistically significant decrease in the number of steps and time to complete the obstacle course. Scores on a quality of life index for subjects using the C-leg were above the mean for norms for limitation in the use of an arm or leg, equal to the mean for the general United States population for the physical component score and were above this mean for the mental component score. Based on oxygen consumption and obstacle course findings, the C-leg when compared to the NMC prostheses may provide increased functional mobility and ease of performance in the home and community environment. Questionnaire results suggest a minimal quality of life impairment when using a C-leg for this cohort of individuals with amputation.

  19. Cortical Decoding of Individual Finger and Wrist Kinematics for an Upper-Limb Neuroprosthesis

    PubMed Central

    Aggarwal, Vikram; Tenore, Francesco; Acharya, Soumyadipta; Schieber, Marc H.; Thakor, Nitish V.

    2010-01-01

    Previous research has shown that neuronal activity can be used to continuously decode the kinematics of gross movements involving arm and hand trajectory. However, decoding the kinematics of fine motor movements, such as the manipulation of individual fingers, has not been demonstrated. In this study, single unit activities were recorded from task-related neurons in M1 of two trained rhesus monkey as they performed individuated movements of the fingers and wrist. The primates’ hand was placed in a manipulandum, and strain gauges at the tips of each finger were used to track the digit’s position. Both linear and non-linear filters were designed to simultaneously predict kinematics of each digit and the wrist, and their performance compared using mean squared error and correlation coefficients. All models had high decoding accuracy, but the feedforward ANN (R=0.76–0.86, MSE=0.04–0.05) and Kalman filter (R=0.68–0.86, MSE=0.04–0.07) performed better than a simple linear regression filter (0.58–0.81, 0.05–0.07). These results suggest that individual finger and wrist kinematics can be decoded with high accuracy, and be used to control a multi-fingered prosthetic hand in real-time. PMID:19964645

  20. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait

    PubMed Central

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee. PMID:27977681

  1. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    PubMed

    Rábago, Christopher A; Aldridge Whitehead, Jennifer; Wilken, Jason M

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  2. Multi-Disciplinary Antimicrobial Strategies for Improving Orthopaedic Implants to Prevent Prosthetic Joint Infections in Hip and Knee

    PubMed Central

    Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.

    2016-01-01

    Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208

  3. Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes.

    PubMed

    Childers, W Lee; Takahashi, Kota Z

    2018-03-29

    Prosthetic feet are designed to store energy during early stance and then release a portion of that energy during late stance. The usefulness of providing more energy return depends on whether or not that energy transfers up the lower limb to aid in whole body propulsion. This research examined how increasing prosthetic foot energy return affected walking mechanics across various slopes. Five people with a uni-lateral transtibial amputation walked on an instrumented treadmill at 1.1 m/s for three conditions (level ground, +7.5°, -7.5°) while wearing a prosthetic foot with a novel linkage system and a traditional energy storage and return foot. The novel foot demonstrated greater range of motion (p = 0.0012), and returned more energy (p = 0.023) compared to the traditional foot. The increased energy correlated with an increase in center of mass (CoM) energy change during propulsion from the prosthetic limb (p = 0.012), and the increased prosthetic limb propulsion correlated to a decrease in CoM energy change (i.e., collision) on the sound limb (p < 0.001). These data indicate that this novel foot was able to return more energy than a traditional prosthetic foot and that this additional energy was used to increase whole body propulsion.

  4. Feedforward control strategies of subjects with transradial amputation in planar reaching.

    PubMed

    Metzger, Anthony J; Dromerick, Alexander W; Schabowsky, Christopher N; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S

    2010-01-01

    The rate of upper-limb amputations is increasing, and the rejection rate of prosthetic devices remains high. People with upper-limb amputation do not fully incorporate prosthetic devices into their activities of daily living. By understanding the reaching behaviors of prosthesis users, researchers can alter prosthetic devices and develop training protocols to improve the acceptance of prosthetic limbs. By observing the reaching characteristics of the nondisabled arms of people with amputation, we can begin to understand how the brain alters its motor commands after amputation. We asked subjects to perform rapid reaching movements to two targets with and without visual feedback. Subjects performed the tasks with both their prosthetic and nondisabled arms. We calculated endpoint error, trajectory error, and variability and compared them with those of nondisabled control subjects. We found no significant abnormalities in the prosthetic limb. However, we found an abnormal leftward trajectory error (in right arms) in the nondisabled arm of prosthetic users in the vision condition. In the no-vision condition, the nondisabled arm displayed abnormal leftward endpoint errors and abnormally higher endpoint variability. In the vision condition, peak velocity was lower and movement duration was longer in both arms of subjects with amputation. These abnormalities may reflect the cortical reorganization associated with limb loss.

  5. Autologous alternative veins may not provide better outcomes than prosthetic conduits for below-knee bypass when great saphenous vein is unavailable.

    PubMed

    Avgerinos, Efthymios D; Sachdev, Ulka; Naddaf, Abdallah; Doucet, Dannielle R; Mohapatra, Abhisekh; Leers, Steven A; Chaer, Rabih A; Makaroun, Michel S

    2015-08-01

    There is a need to better define the role of alternative autologous vein (AAV) segments over contemporary prosthetic conduits in patients with critical limb ischemia when great saphenous vein (GSV) is not available for use as the bypass conduit. Consecutive patients who underwent bypass to infrageniculate targets between 2007 and 2011 were categorized in three groups: GSV, AAV, and prosthetic. The primary outcome was graft patency. The secondary outcome was limb salvage. Cox proportional hazards regression was used to adjust for baseline confounding variables. A total of 407 infrainguinal bypasses to below-knee targets were analyzed; 255 patients (63%) received a single-segment GSV, 106 patients (26%) received an AAV, and 46 patients (11%) received a prosthetic conduit. Baseline characteristics were similar among groups, with the exception of popliteal targets and anticoagulation use being more frequent in the prosthetic group. Primary patency at 2 and 5 years was estimated at 47% and 32%, respectively, for the GSV group; 24% and 23% for the AAV group; and 43% and 38% for the prosthetic group. Primary assisted patency at 2 and 5 years was estimated at 71% and 55%, respectively, for the GSV group; 53% and 51% for the AAV group; and 45% and 40% for the prosthetic group. Secondary patency at 2 and 5 years was estimated at 75% and 60%, respectively, for the GSV group; 57% and 55% for the AAV group; and 46% and 41% for the prosthetic group. In Cox analysis, primary patency (hazard ratio [HR], 0.55; P < .001; 95% confidence interval [CI], 0.404-0.758), primary assisted patency (HR, 0.57; P = .004; 95% CI, 0.388-0.831), and secondary patency (HR, 0.56; P = .005; 95% CI, 0.372-0.840) were predicted by GSV compared with AAV, but there was no difference between AAV and prosthetic grafts except for the primary patency, for which prosthetic was protective (HR, 0.38; P < .001; 95% CI, 0.224-0.629). Limb salvage was similar among groups. AAV conduits may not offer a significant patency advantage in midterm follow-up over prosthetic bypasses. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  6. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation.

    PubMed

    Fuenzalida Squella, Sara Agueda; Kannenberg, Andreas; Brandão Benetti, Ângelo

    2018-04-01

    Despite the evidence for improved safety and function of microprocessor stance and swing-controlled prosthetic knees, non-microprocessor-controlled prosthetic knees are still standard of care for persons with transfemoral amputations in most countries. Limited feature microprocessor-control enhancement of such knees could stand to significantly improve patient outcomes. To evaluate gait speed, balance, and fall reduction benefits of the new 3E80 default stance hydraulic knee compared to standard non-microprocessor-controlled prosthetic knees. Comparative within-subject clinical study. A total of 13 young, high-functioning community ambulators with a transfemoral amputation underwent assessment of performance-based (e.g. 2-min walk test, timed ramp/stair tests) and self-reported (e.g. falls, Activities-Specific Balance Confidence scale, Prosthesis Evaluation Questionnaire question #1, Satisfaction with the Prosthesis) outcome measures for their non-microprocessor-controlled prosthetic knees and again after 8 weeks of accommodation to the 3E80 microprocessor-enhanced knee. Self-reported falls significantly declined 77% ( p = .04), Activities-Specific Balance Confidence scores improved 12 points ( p = .005), 2-min walk test walking distance increased 20 m on level ( p = .01) and uneven ( p = .045) terrain, and patient satisfaction significantly improved ( p < .01) when using the 3E80 knee. Slope and stair ambulation performance did not differ between knee conditions. The 3E80 knee reduced self-reported fall incidents and improved balance confidence. Walking performance on both level and uneven terrains also improved compared to non-microprocessor-controlled prosthetic knees. Subjects' satisfaction was significantly higher than with their previous non-microprocessor-controlled prosthetic knees. The 3E80 may be considered a prosthetic option for improving gait performance, balance confidence, and safety in highly active amputees. Clinical relevance This study compared performance-based and self-reported outcome measures when using non-microprocessor and a new microprocessor-enhanced, default stance rotary hydraulic knee. The results inform rehabilitation professionals about the functional benefits of a limited-feature, microprocessor-enhanced hydraulic prosthetic knee over standard non-microprocessor-controlled prosthetic knees.

  7. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

    PubMed

    Zelik, Karl E; Collins, Steven H; Adamczyk, Peter G; Segal, Ava D; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Czerniecki, Joseph M; Kuo, Arthur D

    2011-08-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the controlled energy storage and return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return, and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. © 2011 IEEE

  8. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking

    PubMed Central

    Zelik, Karl E.; Collins, Steven H.; Adamczyk, Peter G.; Segal, Ava D.; Klute, Glenn K.; Morgenroth, David C.; Hahn, Michael E.; Orendurff, Michael S.; Czerniecki, Joseph M.; Kuo, Arthur D.

    2014-01-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the Controlled Energy Storage and Return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. PMID:21708509

  9. An evaluation of dental prosthetic status and prosthetic needs among eunuchs (trans genders) residing in bhopal city, madhya pradesh, India: a cross-sectional study.

    PubMed

    Hongal, S; Torwane, Na; Chandrashekhar, Br; Saxena, V; Chavan, Kr

    2014-11-01

    Eunuchs are considered as the most vulnerable, frustrated, and insecure community. The accessibility to medical and dental facilities for the eunuchs is nearly nonexistent. Due to these reasons, they might be at a high risk of developing severe dental problems like tooth loss. The present cross-sectional study aimed to evaluate the dental prosthetic status and prosthetic needs among eunuchs residing in Bhopal city, Madhya Pradesh, India. On the basis of convenient nonprobability snowball sampling technique, all the self-identified eunuchs residing in the city of Bhopal along with a matched control consisting of cross section of the general population residing in the same locality was examined to evaluate the prosthetic status and prosthetic needs of the population. All the obtained data were entered into a personal computer on Microsoft excel sheet and analyzed using the software; Statistical Package for Social Science version 20. Data comparison was done by applying Chi-square test. A total of 639 subjects comprised of 207 eunuchs, 218 males and 214 females. Among all participants, 2.8% (18/639) were having prosthesis. The overall prosthetic status among males was 3.2% (7/218) followed by 2.9% (6/207) eunuchs and 2.3% (5/214) females. However, need for multi-unit and combination of one and more unit prosthesis for upper and lower jaws was higher in males compared to females and eunuchs, but the difference was not statistically significant. The findings of this study clearly demonstrate a high unmet need for prosthetic care among the population surveyed.

  10. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel

    2015-01-01

    Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643

  11. The clinical significance of perivalvular pannus in prosthetic mitral valves: Can cardiac CT be helpful?

    PubMed

    Chang, Suyon; Suh, Young Joo; Han, Kyunghwa; Kim, Jin Young; Kim, Young Jin; Chang, Byung-Chul; Choi, Byoung Wook

    2017-12-15

    The clinical significance of pannus in the prosthetic mitral valve (MV) is not well documented. To investigate the clinical significance of pannus on cardiac computed tomography (CT) in patients with a prosthetic MV. A total of 130 patients with previous MV replacement who underwent cardiac CT were retrospectively included in this study. The presence of pannus, paravalvular leak (PVL) around the prosthetic MV and limitation of motion (LOM) of the MV were analyzed using CT. Between patients with MV pannus and those without pannus, CT, echocardiographic, and redo-surgery findings were compared. The diagnostic performance of CT and transesophageal echocardiography (TEE) for the detection of MV pannus was also compared, using surgical findings as a standard reference. MV pannus was observed on cardiac CT in 32.3% of the study population. Patients with MV pannus detected on CT more commonly had LOM (28.2% vs. 15.2%) and less frequently had PVL of the prosthetic MV (16.7% vs. 25%) than patients without MV pannus (P>0.05). Prosthetic valve obstruction (PVO) due prosthetic MV pannus requiring redo-surgery was present in only five patients (11.9%). Cardiac CT detected MV pannus with sensitivity of 65.2% and specificity of 80.9% and showed better diagnostic performance than TEE (P<0.05). Prosthetic MV pannus can frequently be seen on cardiac CT. However, its clinical significance should be assessed with careful consideration, because PVO due to MV pannus is relatively uncommon, and pannus can be seen in patients without any clinical problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Update on Bioactive Prosthetic Material for the Treatment of Hernias.

    PubMed

    Edelman, David S; Hodde, Jason P

    2011-12-01

    The use of mesh in the repair of hernias is commonplace. Synthetic mesh, like polypropylene, has been the workhorse for hernia repairs since the 1980s. Surgisis® mesh (Cook Surgical, Bloomington, IN), a biologic hernia graft material composed of purified porcine small intestinal submucosa (SIS), was first introduced to the United States in 1998 as an alternative to synthetic mesh materials. This mesh, composed of extracellular matrix collagen, fibronectin and associated glycosaminoglycans and growth factors, has been extensively investigated in animal models and used clinically in many types of surgical procedures. SIS acts as a scaffold for natural growth and strength. We reported our initial results in this publication in July 2006. Since then, there have been many more reports and numerous other bioactive prosthetic materials (BPMs) released. The object of this article is to briefly review some of the current literature on the use of BPM for inguinal hernias, sports hernias, and umbilical hernias.

  13. Ownership of an artificial limb induced by electrical brain stimulation

    PubMed Central

    Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.

    2017-01-01

    Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147

  14. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  15. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  16. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  17. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  18. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  19. 75 FR 9480 - Qualification of Drivers; Exemption Applications; Vision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    .... Buchanan, 56, has a prosthetic left eye due to a traumatic injury sustained in 1961. The best corrected... prosthetic right eye due to a traumatic injury sustained at age 12. The best corrected visual acuity in his..., has a prosthetic left eye due to a traumatic injury sustained during childhood. The best corrected...

  20. Options in virtual 3D, optical-impression-based planning of dental implants.

    PubMed

    Reich, Sven; Kern, Thomas; Ritter, Lutz

    2014-01-01

    If a 3D radiograph, which in today's dentistry often consists of a CBCT dataset, is available for computerized implant planning, the 3D planning should also consider functional prosthetic aspects. In a conventional workflow, the CBCT is done with a specially produced radiopaque prosthetic setup that makes the desired prosthetic situation visible during virtual implant planning. If an exclusively digital workflow is chosen, intraoral digital impressions are taken. On these digital models, the desired prosthetic suprastructures are designed. The entire datasets are virtually superimposed by a "registration" process on the corresponding structures (teeth) in the CBCTs. Thus, both the osseous and prosthetic structures are visible in one single 3D application and make it possible to consider surgical and prosthetic aspects. After having determined the implant positions on the computer screen, a drilling template is designed digitally. According to this design (CAD), a template is printed or milled in CAM process. This template is the first physically extant product in the entire workflow. The article discusses the options and limitations of this workflow.

  1. Development of novel 3D-printed robotic prosthetic for transradial amputees.

    PubMed

    Gretsch, Kendall F; Lather, Henry D; Peddada, Kranti V; Deeken, Corey R; Wall, Lindley B; Goldfarb, Charles A

    2016-06-01

    Upper extremity myoelectric prostheses are expensive. The Robohand demonstrated that three-dimensional printing reduces the cost of a prosthetic extremity. The goal of this project was to develop a novel, inexpensive three-dimensional printed prosthesis to address limitations of the Robohand. The prosthesis was designed for patients with transradial limb amputation. It is shoulder-controlled and externally powered with an anthropomorphic terminal device. The user can open and close all five fingers, and move the thumb independently. The estimated cost is US$300. After testing on a patient with a traumatic transradial amputation, several advantages were noted. The independent thumb movement facilitated object grasp, the device weighed less than most externally powered prostheses, and the size was easily scalable. Limitations of the new prosthetic include low grip strength and decreased durability compared to passive prosthetics. Most children with a transradial congenital or traumatic amputation do not use a prosthetic. A three-dimensional printed shoulder-controlled robotic prosthesis provides a cost effective, easily sized and highly functional option which has been previously unavailable. © The International Society for Prosthetics and Orthotics 2015.

  2. Pannus-related prosthetic valve dysfunction. Case report

    PubMed Central

    MOLDOVAN, MARIA-SÎNZIANA; BEDELEANU, DANIELA; KOVACS, EMESE; CIUMĂRNEAN, LORENA; MOLNAR, ADRIAN

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction. PMID:27004041

  3. Pannus-related prosthetic valve dysfunction. Case report.

    PubMed

    Moldovan, Maria-Sînziana; Bedeleanu, Daniela; Kovacs, Emese; Ciumărnean, Lorena; Molnar, Adrian

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction.

  4. Hydrodynamic endurance test of the prosthetic valve used in the various types of the ventricular assist device.

    PubMed

    Nitta, S; Yambe, T; Katahira, Y; Sonobe, T; Saijoh, Y; Naganuma, S; Akiho, H; Kakinuma, Y; Tanaka, M; Miura, M

    1991-12-01

    To evaluate the various basic designs of the pump chambers used in the ventricular assist devices (VADs), hydrodynamic endurance test was performed from the viewpoint of the durability of the prosthetic valves used in the VAD. For the hydrodynamic analysis, we designed three basic types of pump (sac type, diaphragm type, and pusher plate type) using the same material and having the same capacity and shape. Prosthetic valves in these VADs were tested from the standpoint of the water hammer effect, which affects the valve durability, to determine which pump design would be most durable as a prosthetic valve in the VAD. The water-hammer phenomenon was evaluated using the maximum pressure gradient (MPG) across the prosthetic valve in the moc circulatory loop. Maximum pump output was recorded when we used the diaphragm type model, and minimum MPG in the commonly used driving condition of the VAD were recorded when we used the sac type model. The results suggest that the sac type VAD model is the most durable design for the prosthetic value.

  5. Consistency, precision, and accuracy of optical and electromagnetic shape-capturing systems for digital measurement of residual-limb anthropometrics of persons with transtibial amputation.

    PubMed

    Geil, Mark D

    2007-01-01

    Computer-aided design (CAD) and computer-aided manufacturing systems have been adapted for specific use in prosthetics, providing practitioners with a means to digitally capture the shape of a patient's limb, modify the socket model using software, and automatically manufacture either a positive model to be used in the fabrication of a socket or the socket itself. The digital shape captured is a three-dimensional (3-D) model from which standard anthropometric measures can be easily obtained. This study recorded six common anthropometric dimensions from CAD shape files of three foam positive models of the residual limbs of persons with transtibial amputations. Two systems were used to obtain 3-D models of the residual limb, a noncontact optical system and a contact-based electromagnetic field system, and both experienced practitioners and prosthetics students conducted measurements. Measurements were consistent; the mean range (difference of maximum and minimum) across all measurements was 0.96 cm. Both systems provided similar results, and both groups used the systems consistently. Students were slightly more consistent than practitioners but not to a clinically significant degree. Results also compared favorably with traditional measurement, with differences versus hand measurements about 5 mm. These results suggest the routine use of digital shape capture for collection of patient volume information.

  6. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics

    PubMed Central

    Ackerley, Rochelle

    2017-01-01

    Our perception of skin wetness is generated readily, yet humans have no known receptor (hygroreceptor) to signal this directly. It is easy to imagine the sensation of water running over our hands or the feel of rain on our skin. The synthetic sensation of wetness is thought to be produced from a combination of specific skin thermal and tactile inputs, registered through thermoreceptors and mechanoreceptors, respectively. The present review explores how thermal and tactile afference from the periphery can generate the percept of wetness centrally. We propose that the main signals include information about skin cooling, signaled primarily by thinly myelinated thermoreceptors, and rapid changes in touch, through fast-conducting, myelinated mechanoreceptors. Potential central sites for integration of these signals, and thus the perception of skin wetness, include the primary and secondary somatosensory cortices and the insula cortex. The interactions underlying these processes can also be modeled to aid in understanding and engineering the mechanisms. Furthermore, we discuss the role that sensing wetness could play in precision grip and the dexterous manipulation of objects. We expand on these lines of inquiry to the application of the knowledge in designing and creating skin sensory feedback in prosthetics. The addition of real-time, complex sensory signals would mark a significant advance in the use and incorporation of prosthetic body parts for amputees in everyday life. PMID:28123008

  7. Assessment of brain-machine interfaces from the perspective of people with paralysis.

    PubMed

    Blabe, Christine H; Gilja, Vikash; Chestek, Cindy A; Shenoy, Krishna V; Anderson, Kim D; Henderson, Jaimie M

    2015-08-01

    One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as 'likely' to be adopted as their wired equivalents. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both restoration of upper extremity function and control of external devices such as communication interfaces.

  8. Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket.

    PubMed

    Zhang, Linlin; Zhu, Ming; Shen, Ling; Zheng, Feng

    2013-01-01

    Transfemoral amputees need prosthetic devices after amputation surgery, and the interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. The purpose of this study was to build a nonlinear finite element model to investigate the interface pressure between the above-knee residual limb and its prosthetic socket. The model was three-dimensional (3D) with consideration of nonlinear boundary conditions. Contact analysis was used to simulate the friction conditions between skin and the socket. The normal stresses up to 80.57 kPa at the distal end of the soft tissue. The longitudinal and circumferential shear stress distributions at the limb-socket interface were also simulated. This study explores the influences of load transfer between trans-femoral residual limb and its prosthetic socket.

  9. Progressive upper limb prosthetics.

    PubMed

    Lake, Chris; Dodson, Robert

    2006-02-01

    The field of upper extremity prosthetics is a constantly changing arena as researchers and prosthetists strive to bridge the gap between prosthetic reality and upper limb physiology. With the further development of implantable neurologic sensing devices and targeted muscle innervation (discussed elsewhere in this issue), the challenge of limited input to control vast outputs promises to become a historical footnote in the future annals of upper limb prosthetics. Soon multidextrous terminal devices, such as that found in the iLimb system(Touch EMAS, Inc., Edinburgh, UK), will be a clinical reality (Fig. 22). Successful prosthetic care depends on good communication and cooperation among the surgeon, the amputee, the rehabilitation team, and the scientists harnessing the power of technology to solve real-life challenges. If the progress to date is any indication, amputees of the future will find their dreams limited only by their imagination.

  10. Pre-Prosthetic surgical alterations in maxillectomy to enhance the prosthetic prognoses as part of rehabilitation of oral cancer patient

    PubMed Central

    El Fattah, Hisham; Zaghloul, Ashraf; Escuin, Tomas

    2012-01-01

    Objectives: After maxillectomy, prosthetic restoration of the resulting defect is an essential step because it signals the beginning of patient’s rehabilitation. The obturator used to restore the defect should be comfortable, restore adequate speech, deglutition, mastication, and be cosmetically acceptable, success will depend on the size and location of the defect and the quantity and integrity of the remaining structures, in addition to pre-prosthetic surgical preparation of defect site. Preoperative cooperation between the oncologist surgeon and the maxillofacial surgeon may allow obturation of a resultant defect by preservation of the premaxilla or the tuberosity on the defect side and maintaining the alveolar bone or teeth adjacent to the defect. This study evaluates the importance of pre-prosthetic surgical alterations at the time maxillectomy on the enhancement of the prosthetic prognoses as part of the rehabilitation of oral cancer patient. Study Design: The study was carried out between 2003- 2008, on 66 cancer patients(41 male-25 female) age ranged from 33 to 72 years, at National Cancer Institute, Cairo University, whom underwent maxillectomy surgery to remove malignant tumor as a part of cancer treatment. Patients were divided in two groups. Group A: Resection of maxilla followed by preprosthetic surgical preparation. Twenty-four cancer patients (13 male – 11 female). Group B: Resection of maxilla without any preprosthetic surgical preparation. Forty-two cancer patients (28 male-14 female). Results: Outcome variables measured included facial contour and aesthetic results, speech understandability, ability to eat solid foods, oronasal separation, socializing outside the home, and return-to-work status. Flap success and donor site morbidity were also studied. Conclusions: To improve the prosthetic restoration of maxillary defect resulting maxillary resection as part treatment of maxillofacial tumor depends on the close cooperation between prosthodontist and surgeon, by combination of pre-prosthetic surgery during maxillectomy and prosthodontic technique. Key words:Maxillectomy, pre-prosthetic surgery, quality of life, oral cancer. PMID:22143710

  11. Assessment of a Wearable Force- and Electromyography Device and Comparison of the Related Signals for Myocontrol

    PubMed Central

    Connan, Mathilde; Ruiz Ramírez, Eduardo; Vodermayer, Bernhard; Castellini, Claudio

    2016-01-01

    In the frame of assistive robotics, multi-finger prosthetic hand/wrists have recently appeared, offering an increasing level of dexterity; however, in practice their control is limited to a few hand grips and still unreliable, with the effect that pattern recognition has not yet appeared in the clinical environment. According to the scientific community, one of the keys to improve the situation is multi-modal sensing, i.e., using diverse sensor modalities to interpret the subject's intent and improve the reliability and safety of the control system in daily life activities. In this work, we first describe and test a novel wireless, wearable force- and electromyography device; through an experiment conducted on ten intact subjects, we then compare the obtained signals both qualitatively and quantitatively, highlighting their advantages and disadvantages. Our results indicate that force-myography yields signals which are more stable across time during whenever a pattern is held, than those obtained by electromyography. We speculate that fusion of the two modalities might be advantageous to improve the reliability of myocontrol in the near future. PMID:27909406

  12. Robo-Psychophysics: Extracting Behaviorally Relevant Features from the Output of Sensors on a Prosthetic Finger.

    PubMed

    Delhaye, Benoit P; Schluter, Erik W; Bensmaia, Sliman J

    2016-01-01

    Efforts are underway to restore sensorimotor function in amputees and tetraplegic patients using anthropomorphic robotic hands. For this approach to be clinically viable, sensory signals from the hand must be relayed back to the patient. To convey tactile feedback necessary for object manipulation, behaviorally relevant information must be extracted in real time from the output of sensors on the prosthesis. In the present study, we recorded the sensor output from a state-of-the-art bionic finger during the presentation of different tactile stimuli, including punctate indentations and scanned textures. Furthermore, the parameters of stimulus delivery (location, speed, direction, indentation depth, and surface texture) were systematically varied. We developed simple decoders to extract behaviorally relevant variables from the sensor output and assessed the degree to which these algorithms could reliably extract these different types of sensory information across different conditions of stimulus delivery. We then compared the performance of the decoders to that of humans in analogous psychophysical experiments. We show that straightforward decoders can extract behaviorally relevant features accurately from the sensor output and most of them outperform humans.

  13. Control of an electrical prosthesis with an SSVEP-based BCI.

    PubMed

    Müller-Putz, Gernot R; Pfurtscheller, Gert

    2008-01-01

    Brain-computer interfaces (BCIs) are systems that establish a direct connection between the human brain and a computer, thus providing an additional communication channel. They are used in a broad field of applications nowadays. One important issue is the control of neuroprosthetic devices for the restoration of the grasp function in spinal-cord-injured people. In this communication, an asynchronous (self-paced) four-class BCI based on steady-state visual evoked potentials (SSVEPs) was used to control a two-axes electrical hand prosthesis. During training, four healthy participants reached an online classification accuracy between 44% and 88%. Controlling the prosthetic hand asynchronously, the participants reached a performance of 75.5 to 217.5 s to copy a series of movements, whereas the fastest possible duration determined by the setup was 64 s. The number of false negative (FN) decisions varied from 0 to 10 (the maximal possible decisions were 34). It can be stated that the SSVEP-based BCI, operating in an asynchronous mode, is feasible for the control of neuroprosthetic devices with the flickering lights mounted on its surface.

  14. Extrinsic mechanism obstructing the opening of a prosthetic mitral valve: an unusual case of suture entrapment.

    PubMed

    Ozkan, Mehmet; Astarcioglu, Mehmet Ali; Karakoyun, Suleyman; Balkanay, Mehmet

    2012-02-01

    Obstruction to a prosthetic cardiac valve is a well-recognized complication of cardiac valve replacement. Malfunction of the mobile component of a prosthetic valve to open or close correctly may occur in consequence of intrinsic or extrinsic causes (thrombus, vegetation, entrapment of left ventricular myocardium, suture entanglement, and pannus formation) that may result prosthetic valve stenosis and/or insufficiency. In the case we report a 48-year-old female with valve dysfunction occurred early after surgery, as one valve leaflet was only able to partially open due to suture entrapment. © 2011, Wiley Periodicals, Inc.

  15. Analysis of maxillofacial prosthetics at university dental hospitals in the capital region of Korea

    PubMed Central

    Lee, Jong-Ho

    2016-01-01

    PURPOSE The purpose of this study was to investigate the demographic patterns of maxillofacial prosthetic treatment to identify the characteristics and geographic distribution of patients with maxillofacial prosthetics in the capital region of Korea. MATERIALS AND METHODS This retrospective analytical multicenter study was performed by chart reviews. This study included patients who visited the department of prosthodontics at four university dental hospitals for maxillofacial prosthetic rehabilitation. Patients with facial and congenital defects or with insufficient medical data were excluded. The patients were classified into three categories based on the location of the defect. Patients' sex, age, and residential area were analyzed. Pearson's chi-square test with a significance level of 0.05 was used to analyze the variables. RESULTS Among 540 patients with maxillofacial prosthetics, there were 284 (52.59%) male patients and 256 (47.41%) female patients. The number of the patients varied greatly by hospital. Most patients were older than 70, and the most common defect was a hard palate defect. Chi-square analysis did not identify any significant differences in sex, age, and distance to hospital for any defect group (P>.05). CONCLUSION The results of this study indicated that there was imbalance in the distribution of patients with maxillofacial prosthetic among the hospitals in the capital region of Korea. Considerations on specialists and insurance policies for the improvement of maxillofacial prosthetics in Korea are required. PMID:27350859

  16. Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography

    PubMed Central

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669

  17. Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet.

    PubMed

    Portnoy, Sigal; Kristal, Anat; Gefen, Amit; Siev-Ner, Itzhak

    2012-01-01

    The prosthetic foot plays an important role in propelling, breaking, balancing and supporting body loads while the amputee ambulates on different grounds. It is therefore important to quantify the effect of the prosthetic foot mechanism on biomechanical parameters, in order to prevent pressure ulcers and deep tissue injury. Our aim was to monitor the internal stresses in the residuum of transtibial amputation (TTA) prosthetic-users ambulating on different terrains, which the amputees encounter during their daily activities, i.e. paved floor, grass, ascending and descending stairs and slope. We specifically aimed to compare between the internal stresses in the TTA residuum of amputees ambulating with a novel hydraulic prosthetic foot compared to conventional energy storage and return (ESR) prosthetic feet. Monitoring of internal stresses was accomplished using a portable subject-specific real-time internal stress monitor. We found significant decrease (p<0.01) in peak internal stresses and in the loading rate of the amputated limb, while walking with the hydraulic foot, compared to walking with ESR feet. The loading rate calculated while ambulating with the hydraulic foot was at least three times lower than the loading rate calculated while ambulating with the ESR foot. Although the average decrease in internal stresses was ≈ 2-fold larger when replacing single-toe ESR feet with the hydraulic foot than when replacing split-toed ESR feet with the hydraulic foot, the differences were statistically insignificant. Our findings suggest that using a hydraulic prosthetic foot may protect the distal tibial end of the TTA residuum from high stresses, therefore preventing pressure-related injury and pain. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation

    PubMed Central

    Segal, Ava D.; Zelik, Karl E.; Klute, Glenn K.; Morgenroth, David C.; Hahn, Michael E.; Orendurff, Michael S.; Adamczyk, Peter G.; Collins, Steven H.; Kuo, Arthur D.; Czerniecki, Joseph M.

    2015-01-01

    The lack of functional ankle musculature in lower limb amputees contributes to the reduced prosthetic ankle push-off, compensations at other joints and more energetically costly gait commonly observed in comparison to non-amputees. A variety of energy storing and return prosthetic feet have been developed to address these issues but have not been shown to sufficiently improve amputee biomechanics and energetic cost, perhaps because the timing and magnitude of energy return is not controlled. The goal of this study was to examine how a prototype microprocessor-controlled prosthetic foot designed to store some of the energy during loading and return it during push-off affects amputee gait. Unilateral transtibial amputees wore the Controlled Energy Storage and Return prosthetic foot (CESR), a conventional foot (CONV), and their previously prescribed foot (PRES) in random order. Three-dimensional gait analysis and net oxygen consumption were collected as participants walked at constant speed. The CESR foot demonstrated increased energy storage during early stance, increased prosthetic foot peak push-off power and work, increased prosthetic limb center of mass (COM) push-off work and decreased intact limb COM collision work compared to CONV and PRES. The biological contribution of the positive COM work for CESR was reduced compared to CONV and PRES. However, the net metabolic cost for CESR did not change compared to CONV and increased compared to PRES, which may partially reflect the greater weight, lack of individualized size and stiffness and relatively less familiarity for CESR and CONV. Controlled energy storage and return enhanced prosthetic push-off, but requires further design modifications to improve amputee walking economy. PMID:22100728

  19. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.

    PubMed

    Weinert-Aplin, R A; Howard, D; Twiste, M; Jarvis, H L; Bennett, A N; Baker, R J

    2017-01-01

    Reduced capacity and increased metabolic cost of walking occurs in amputees, despite advances in prosthetic componentry. Joint powers can quantify deficiencies in prosthetic gait, but do not reveal how energy is exchanged between limb segments. This study aimed to quantify these energy exchanges during amputee walking. Optical motion and forceplate data collected during walking at a self-selected speed for cohorts of 10 controls, 10 unilateral trans-tibial, 10 unilateral trans-femoral and 10 bilateral trans-femoral amputees were used to determine the energy exchanges between lower limb segments. At push-off, consistent thigh and shank segment powers were observed between amputee groups (1.12W/kg vs. 1.05W/kg for intact limbs and 0.97W/kg vs. 0.99W/kg for prosthetic limbs), and reduced prosthetic ankle power, particularly in trans-femoral amputees (3.12W/kg vs. 0.87W/kg). Proximally-directed energy exchange was observed in the intact limbs of amputees and controls, while prosthetic limbs displayed distally-directed energy exchanges at the knee and hip. This study used energy flow analysis to show a reversal in the direction in which energy is exchanged between prosthetic limb segments at push-off. This reversal was required to provide sufficient energy to propel the limb segments and is likely a direct result of the lack of push-off power at the prosthetic ankle, particularly in trans-femoral amputees, and leads to their increased metabolic cost of walking. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.

    PubMed

    Segal, Ava D; Zelik, Karl E; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Adamczyk, Peter G; Collins, Steven H; Kuo, Arthur D; Czerniecki, Joseph M

    2012-08-01

    The lack of functional ankle musculature in lower limb amputees contributes to the reduced prosthetic ankle push-off, compensations at other joints and more energetically costly gait commonly observed in comparison to non-amputees. A variety of energy storing and return prosthetic feet have been developed to address these issues but have not been shown to sufficiently improve amputee biomechanics and energetic cost, perhaps because the timing and magnitude of energy return is not controlled. The goal of this study was to examine how a prototype microprocessor-controlled prosthetic foot designed to store some of the energy during loading and return it during push-off affects amputee gait. Unilateral transtibial amputees wore the Controlled Energy Storage and Return prosthetic foot (CESR), a conventional foot (CONV), and their previously prescribed foot (PRES) in random order. Three-dimensional gait analysis and net oxygen consumption were collected as participants walked at constant speed. The CESR foot demonstrated increased energy storage during early stance, increased prosthetic foot peak push-off power and work, increased prosthetic limb center of mass (COM) push-off work and decreased intact limb COM collision work compared to CONV and PRES. The biological contribution of the positive COM work for CESR was reduced compared to CONV and PRES. However, the net metabolic cost for CESR did not change compared to CONV and increased compared to PRES, which may partially reflect the greater weight, lack of individualized size and stiffness and relatively less familiarity for CESR and CONV. Controlled energy storage and return enhanced prosthetic push-off, but requires further design modifications to improve amputee walking economy. Published by Elsevier B.V.

  1. Marker-based method to measure movement between the residual limb and a transtibial prosthetic socket.

    PubMed

    Childers, Walter Lee; Siebert, Steven

    2016-12-01

    Limb movement between the residuum and socket continues to be an underlying factor in limb health, prosthetic comfort, and gait performance yet techniques to measure this have been underdeveloped. Develop a method to measure motion between the residual limb and a transtibial prosthetic socket. Single subject, repeated measures with mathematical modeling. The gait of a participant with transtibial amputation was recorded using a motion capture system using a marker set that included arrays on the anterior distal tibia and the lateral epicondyle of the femur. The proximal or distal translation, anterior or posterior translation, and angular movements were quantified. A random Monte Carlo simulation based on the precision of the motion capture system and a model of the bone moving under the skin explored the technique's accuracy. Residual limb tissue stiffness was modeled as a linear spring based on data from Papaioannou et al. Residuum movement relative to the socket went through ~30 mm, 18 mm, and 15° range of motion. Root mean squared errors were 5.47 mm, 1.86 mm, and 0.75° when considering the modeled bone-skin movement in the proximal or distal, anterior or posterior, and angular directions, respectively. The measured movement was greater than the root mean squared error, indicating that this method can measure motion between the residuum and socket. The ability to quantify movement between the residual limb and the prosthetic socket will improve prosthetic treatment through the evaluation of different prosthetic suspensions, socket designs, and motor control of the prosthetic interface. © The International Society for Prosthetics and Orthotics 2015.

  2. Dental prosthetic status and prosthetic needs of institutionalised elderly population in oldage homes of jabalpur city, madhya pradesh, India.

    PubMed

    Deogade, Suryakant C; Vinay, S; Naidu, Sonal

    2013-12-01

    Oral disorders are cumulative throughout life and hence unfavourable outcomes are likely to be greatest among the elderly. A descriptive cross-sectional study was conducted among institutionalized geriatric population in old-age homes of Jabalpur city, Madhya Pradesh, to assess their prosthetic status and prosthetic needs. A cross-sectional survey was conducted in all the four old-age homes of Jabalpur city, Madhya Pradesh state, India. All residents aged 60 years and above formed the study population. The recording of prosthetic status and prosthetic needs was carried out according to the World Health Organisation (WHO) Oral Health Assessment Form (1997). A total of 224 individuals were included in the study of which 123 were females and 101 were males. Seventy five percent of the females and 55 % of the males had no prostheses in their upper arch and 61 % of the females and 76 % of the males had no prostheses in their lower arch. More number of males presented with 'Bridges' in their upper arch when compared to females (P value = 0.006). Highest prosthetic need in males was multi-unit prosthesis (42 % in upper arch and 41 % in lower arch) whereas, females' required full prosthesis (39 % in both the upper arch and lower arches). Ageing presents some formidable challenges, particularly with the institutionalised. This study clearly demonstrates a high insufficiency of prosthetic care among the institutionalized elderly population. Any preparation towards the provision of oral health care should not be limited to treatment alone but, more importantly focus on empowering this elderly community with information and education programmes.

  3. 100 top-cited scientific papers in limb prosthetics.

    PubMed

    Eshraghi, Arezoo; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ali, Sadeeq; Shadgan, Babak

    2013-11-17

    Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.

  4. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.

    PubMed

    Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Meng, Qiaoling; Chen, Wenming

    2018-04-20

    The microprocessor-controlled prosthetic knees have been introduced to transfemoral amputees due to advances in biomedical engineering. A body of scientific literature has shown that the microprocessor-controlled prosthetic knees improve the gait and functional abilities of persons with transfemoral amputation. The aim of this study was to propose a new microprocessor-controlled prosthetic knee (MPK) and compare it with non-microprocessor-controlled prosthetic knees (NMPKs) under different walking speeds. The microprocessor-controlled prosthetic knee (i-KNEE) with hydraulic damper was developed. The comfortable self-selected walking speeds of 12 subjects with i-KNEE and NMPK were obtained. The maximum swing flexion knee angle and gait symmetry were compared in i-KNEE and NMPK condition. The comfortable self-selected walking speeds of some subjects were higher with i-KNEE while some were not. There was no significant difference in comfortable self-selected walking speed between the i-KNEE and the NMPK condition (P= 0.138). The peak prosthetic knee flexion during swing in the i-KNEE condition was between sixty and seventy degree under any walking speed. In the NMPK condition, the maximum swing flexion knee angle changed significantly. And it increased with walking speed. There is no significant difference in knee kinematic symmetry when the subjects wear the i-KNEE or NMPK. The results of this study indicated that the new microprocessor-controlled prosthetic knee was suitable for transfemoral amputees. The maximum swing flexion knee angle under different walking speeds showed different properties in the NMPK and i-KNEE condition. The i-KNEE was more adaptive to speed changes. There was little difference of comfortable self-selected walking speed between i-KNEE and NMPK condition.

  5. INTERVENTIONS TO MANAGE RESIDUAL LIMB ULCERATION DUE TO PROSTHETIC USE IN INDIVIDUALS WITH LOWER EXTREMITY AMPUTATION: A SYSTEMATIC REVIEW OF THE LITERATURE.

    PubMed

    Highsmith, M Jason; Kahle, Jason T; Klenow, Tyler D; Andrews, Casey R; Lewis, Katherine L; Bradley, Rachel C; Ward, Jessica M; Orriola, John J; Highsmith, James T

    2016-09-01

    Patients with lower extremity amputation (LEA) experience 65% more dermatologic issues than non-amputees, and skin problems are experienced by ≈75% of LEA patients who use prostheses. Continuously referring LEA patients to a dermatologist for every stump related skin condition may be impractical. Thus, physical rehabilitation professionals should be prepared to recognize and manage common non-emergent skin conditions in this population. The purpose of this study was to determine the quantity, quality, and strength of available evidence supporting treatment methods for prosthesis-related residual limb (RL) ulcers. Systematic literature review with evidence grading and synthesis of empirical evidence statements (EES) was employed. Three EESs were formulated describing ulcer etiology, conditions in which prosthetic continuance is practical, circumstances likely requiring prosthetic discontinuance, and the consideration of additional medical or surgical interventions. Continued prosthetic use is a viable option to manage minor or early-stage ulcerated residual limbs in compliant patients lacking multiple comorbidities. Prosthetic discontinuance is also a viable method of residual limb ulcer healing and may be favored in the presence of severe acute ulcerations, chronic heavy smoking, intractable pain, rapid volume and weight change, history of chronic ulceration, systemic infections, or advanced dysvascular etiology. Surgery or other interventions may also be necessary in such cases to achieve restored prosthetic ambulation. A short bout of prosthetic discontinuance with a staged re-introduction plan is another viable option that may be warranted in patients with ulceration due to poor RL volume management. High-quality prospective research with larger samples is needed to determine the most appropriate course of treatment when a person with LEA develops an RL ulcer that is associated with prosthetic use.

  6. The influence of staff training and education on prosthetic and orthotic service quality: A scoping review.

    PubMed

    Forghany, Saeed; Sadeghi-Demneh, Ebrahim; Trinler, Ursula; Onmanee, Pornsuree; Dillon, Michael P; Baker, Richard

    2018-06-01

    Education and training in prosthetics and orthotics typically comply with International Society for Prosthetics and Orthotics standards based on three categories of prosthetic and orthotic professionals. This scoping study sought to describe the evidence base available to answer the question, How are prosthetic and orthotic services influenced by the training of staff providing them? Scoping review. A structured search of the peer-reviewed literature catalogued in major electronic databases yielded 3039 papers. Following review of title and abstract, 93 articles were considered relevant. Full-text review reduced this number to 25. Only two articles were identified as providing direct evidence of the effects of training and education on service provision. While both suggested that there was an impact, it is difficult to see how the more specific conclusions of either could be generalised. The other 23 articles provide a useful background to a range of issues including the specification of competencies that training programmes should deliver (3 articles), descriptions of a range of training programmes and the effects of training and education on student knowledge and skills. Although it is considered axiomatic, the service quality is dependent on practitioner education and training. There is insufficient evidence to establish whether levels of training and education in prosthetics and orthotics have an effect on the quality of prosthetic and orthotic services. Clinical relevance There is very little evidence about the effects of training and education of prosthetists and orthotists on service quality. While this is a somewhat negative finding, we feel that it is important to bring this to the attention of the prosthetics and orthotics community.

  7. Corynebacterium minutissimum vascular graft infection: case report and review of 281 cases of prosthetic device-related Corynebacterium infection.

    PubMed

    Reece, Rebecca M; Cunha, Cheston B; Rich, Josiah D

    2014-09-01

    Corynebacterium spp. have proven their pathogenic potential in causing infections, particularly in the setting of immunosuppression and prosthetic devices. We conducted a PubMed literature review of all cases of Corynebacterium prosthetic device infections published in the English language through December 2013. The majority of cases involved peritoneal dialysis and central venous catheters, but prosthetic joints and central nervous system shunts/drains were also involved. The management of these cases in terms of retention or removal of the device was not uniform; however, the overall mortality remained the same among both groups. All of these prosthetic device infections pose potential problems in management when the device cannot be removed safely for the patient, especially with the lack of data on the pathogenicity of Corynebacterium species. However with better identification of species and sensitivities, successful treatment is possible even with retention of the device.

  8. The economic impact of surgically treated peri-prosthetic hip fractures on a university teaching hospital in Wales 7.5-year study.

    PubMed

    Jones, Andrew R; Williams, Tim; Paringe, Vishal; White, Simon P

    2016-02-01

    The number of total hip replacements taking place across the UK continues to grow. In an ageing population, with people placing greater demands on their prostheses, the number of peri-prosthetic fractures is increasing. We studied the economic impact this has on a large teaching hospital. All patients with peri-prosthetic femoral fracture in a 7.5 year period were identified. Radiographic and case note analysis was performed. Costings from the finance departments were obtained. 90 cases were identified, 58 female and 32 male, with a mean age of 76 (range: 38-91). 89 of the cases were managed surgically, 66% undergoing revision and 33% receiving open reduction and internal fixation. According to the Vancouver Classification, 3% were Type A, 79% Type B and 18% Type C. The mean length of stay was 43 days. The mean cost of management was £31,370 (range: £6885-£112,327). Patients with type C fractures had the highest mean length of stay at 53 days and mean cost of £33,417. Including rehabilitation costs, our study illustrated a mean cost of £31,370, roughly four times the current basic NHS tariff of £8552. Although implant costs are greater, treatment with revision where appropriate allows earlier weight bearing, reduced length of stay and lower overall cost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Single element ultrasonic imaging of limb geometry: an in-vivo study with comparison to MRI

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Fincke, Jonathan R.; Anthony, Brian W.

    2016-04-01

    Despite advancements in medical imaging, current prosthetic fitting methods remain subjective, operator dependent, and non-repeatable. The standard plaster casting method relies on prosthetist experience and tactile feel of the limb to design the prosthetic socket. Often times, many fitting iterations are required to achieve an acceptable fit. Use of improper socket fittings can lead to painful pathologies including neuromas, inflammation, soft tissue calcification, and pressure sores, often forcing the wearer to into a wheelchair and reducing mobility and quality of life. Computer software along with MRI/CT imaging has already been explored to aid the socket design process. In this paper, we explore the use of ultrasound instead of MRI/CT to accurately obtain the underlying limb geometry to assist the prosthetic socket design process. Using a single element ultrasound system, multiple subjects' proximal limbs were imaged using 1, 2.25, and 5 MHz single element transducers. Each ultrasound transducer was calibrated to ensure acoustic exposure within the limits defined by the FDA. To validate image quality, each patient was also imaged in an MRI. Fiducial markers visible in both MRI and ultrasound were used to compare the same limb cross-sectional image for each patient. After applying a migration algorithm, B-mode ultrasound cross-sections showed sufficiently high image resolution to characterize the skin and bone boundaries along with the underlying tissue structures.

  10. Systematic review of effects of current transtibial prosthetic socket designs-Part 1: Qualitative outcomes.

    PubMed

    Safari, Mohammad Reza; Meier, Margrit Regula

    2015-01-01

    This review is an attempt to untangle the complexity of transtibial prosthetic socket fit, determine the most important characteristic for a successful fitting, and perhaps find some indication of whether a particular prosthetic socket type might be best for a given situation. Further, it is intended to provide directions for future research. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and used medical subject headings and standard key words to search for articles in relevant databases. No restrictions were made on study design or type of outcome measure. From the obtained search results (n = 1,863), 35 articles were included. The relevant data were entered into a predefined data form that incorporated the Downs and Black risk of bias assessment checklist. Results for the qualitative outcomes (n = 19 articles) are synthesized. Total surface bearing sockets lead to greater activity levels and satisfaction in active persons with amputation, those with a traumatic cause of amputation, and younger persons with amputation than patellar tendon bearing sockets. Evidence on vacuum-assisted suction and hydrostatic sockets is inadequate, and further studies are much needed. To improve the scientific basis for prescription, comparison of and correlation between mechanical properties of interface material, socket designs, user characteristics, and outcome measures should be conducted and reported in future studies.

  11. Molecular Identification of Human Fungal Pathogens

    DTIC Science & Technology

    2008-03-01

    reported this period: Drees M, Wickes BL, Gupta M, Hadley S. Lecythophora mutabilis prosthetic valve endocarditis in a diabetic patient. Med Mycol. (2007...Wickes BL, Gupta M, Hadley S. 2007. Lecythophora mutabilis prosthetic valve endocarditis in a diabetic patient. Med Mycol. 45:463-467. 9...information: http://www.informaworld.com/smpp/title~content=t713694156 Lecythophora mutabilis prosthetic valve endocarditis in a diabetic patient Marci

  12. Custom-made laser-welded titanium implant prosthetic abutment.

    PubMed

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  13. Experimental measurement of flexion-extension movement in normal and corpse prosthetic elbow joint.

    PubMed

    TarniŢă, Daniela; TarniŢă, DănuŢ Nicolae

    2016-01-01

    This paper presents a comparative experimental study of flexion-extension movement in healthy elbow and in the prosthetic elbow joint fixed on an original experimental bench. Measurements were carried out in order to validate the functional morphology and a new elbow prosthesis type ball head. The three-dimensional (3D) model and the physical prototype of our experimental bench used to test elbow endoprosthesis at flexion-extension and pronation-supination movements is presented. The measurements were carried out on a group of nine healthy subjects and on the prosthetic corpse elbow, the experimental data being obtained for flexion-extension movement cycles. Experimental data for the two different flexion-extension tests for the nine subjects and for the corpse prosthetic elbow were acquired using SimiMotion video system. Experimental data were processed statistically. The corresponding graphs were obtained for all subjects in the experimental group, and for corpse prosthetic elbow for both flexion-extension tests. The statistical analysis has proved that the flexion angles of healthy elbows were significantly close to the values measured at the prosthetic elbow fixed on the experimental bench. The studied elbow prosthesis manages to re-establish the mobility for the elbow joint as close to the normal one.

  14. Characterisation of prosthetic feet used in low-income countries.

    PubMed

    Sam, M; Hansen, A H; Childress, D S

    2004-08-01

    Eleven kinds of prosthetic feet that were designed for use in low-income countries were mechanically characterised in this study. Masses of the different kinds of prosthetic feet varied substantially. Dynamic properties, including damping ratios and resonant frequencies, were obtained from step unloading tests of the feet while interacting with masses comparable to the human body. Data showed that for walking, the feet can be appropriately modeled using their quasistatic properties since natural frequencies were high compared to walking frequencies and since damping ratios were small. Roll-over shapes, the effective rocker (cam) geometries that the feet deform to under walking loads, were determined using a quasistatic loading technique and a spatial transformation of the ground reaction force's centre of pressure. The roll-over shapes for most of the prosthetic feet studied were similar to the roll-over shape of the SACH (solid-ankle cushioned heel) prosthetic foot. All roll-over shapes showed a lack of forefoot support, which may cause a "drop-off" experience at the end of single limb stance and shorter step lengths of the contralateral limb. The roll-over shapes of prosthetic feet appear useful in characterization of foot function.

  15. Influence of Prosthetic Screw Material on Joint Stability in Passive and Non-Passive Implant-Supported Dentures

    PubMed Central

    Spazzin, Aloísio Oro; Henriques, Guilherme Elias Pessanha; de Arruda Nóbilo, Mauro Antônio; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz

    2009-01-01

    Objectives: This study evaluated the influence of prosthetic screw material on joint stability in implantsupported dentures at two levels of fit. Methods: Ten mandibular implant-supported dentures were fabricated. Twenty cast models were fabricated using these dentures. Four groups (n=10) were tested, according to the vertical fit of the dentures [passive and non-passive] and prosthetic screw materials [titanium (Ti) or gold (Au) alloy]. The one-screw test was performed to quantify the vertical misfits using an optic microscope. The loosening torque for the prosthetic screws was measured 24 hours after the tightening torque (10 Ncm) using a digital torque meter. Data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: Overall, dentures with passive fit and Ti screws resulted in significantly higher loosening torque of the prosthetic screws (p<0.05). No significant interaction was found between fit level and screw material (p=0.199). The prosthetic screw material and fit of implant-supported dentures have an influence on screw joint stability. Ti screws presented higher joint stability than Au screws and minimum of misfit should be found clinically to improve the mechanical behavior of the screw joint. PMID:20148135

  16. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?

    PubMed Central

    Taboga, Paolo; Grabowski, Alena M.

    2017-01-01

    Limited available information describes how running-specific prostheses and running speed affect the biomechanics of athletes with bilateral transtibial amputations. Accordingly, we quantified the effects of prosthetic stiffness, height and speed on the biomechanics of five athletes with bilateral transtibial amputations during treadmill running. Each athlete performed a set of running trials with 15 different prosthetic model, stiffness and height combinations. Each set of trials began with the athlete running on a force-measuring treadmill at 3 m s−1, subsequent trials incremented by 1 m s−1 until they achieved their fastest attainable speed. We collected ground reaction forces (GRFs) during each trial. Prosthetic stiffness, height and running speed each affected biomechanics. Specifically, with stiffer prostheses, athletes exhibited greater peak and stance average vertical GRFs (β = 0.03; p < 0.001), increased overall leg stiffness (β = 0.21; p < 0.001), decreased ground contact time (β = −0.07; p < 0.001) and increased step frequency (β = 0.042; p < 0.001). Prosthetic height inversely associated with step frequency (β = −0.021; p < 0.001). Running speed inversely associated with leg stiffness (β = −0.58; p < 0.001). Moreover, at faster running speeds, the effect of prosthetic stiffness and height on biomechanics was mitigated and unchanged, respectively. Thus, prosthetic stiffness, but not height, likely influences distance running performance more than sprinting performance for athletes with bilateral transtibial amputations. PMID:28659414

  17. Energy expenditure of wheeling and walking during prosthetic rehabilitation in a woman with bilateral transfemoral amputations.

    PubMed

    Wu, Y J; Chen, S Y; Lin, M C; Lan, C; Lai, J S; Lien, I N

    2001-02-01

    To compare the energy expenditure of locomotion by wheelchair with that required for prosthetic ambulation in a person with bilateral transfemoral (TF) amputations. Observational, single patient, descriptive. An 80-meter long rectangular hallway in a rehabilitation unit. A 41-year-old woman with bilateral TF amputations that were performed 79 days before her admission to the rehabilitation unit. The oxygen uptake, oxygen cost, heart rate, speed, cadence, and stride length of walking measured during a 4-month course of prosthetic rehabilitation. Five locomotion conditions were evaluated: (1) wheelchair propulsion, (2) walking with short-leg prostheses (stubbies) and a walker, (3) long-leg prostheses and a walker, (4) long-leg prostheses without knee mechanism and axillary crutches, and (5) long-leg prostheses with right polycentric knee and left locked knee and axillary crutches. A portable and telemetric system was used to measure the metabolic parameters. An arm ergometry graded exercise test was performed at the end of rehabilitation. Oxygen cost (range, 466%--707% of that of wheeling) and heart rate (range, 106%--116% of that of wheeling) were higher during walking with various combinations of prostheses and walking aids. The speed of prosthetic walking was only 24% to 33% of that of wheeling. Our patient preferred using a wheelchair to prosthetic walking after discharge. People with bilateral TF amputations require very high cardiorespiratory endurance to fulfill the energy demand during prosthetic rehabilitation. The high energy cost of prosthetic walking will limit its application in daily activities.

  18. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-06-01

    Limited available information describes how running-specific prostheses and running speed affect the biomechanics of athletes with bilateral transtibial amputations. Accordingly, we quantified the effects of prosthetic stiffness, height and speed on the biomechanics of five athletes with bilateral transtibial amputations during treadmill running. Each athlete performed a set of running trials with 15 different prosthetic model, stiffness and height combinations. Each set of trials began with the athlete running on a force-measuring treadmill at 3 m s -1 , subsequent trials incremented by 1 m s -1 until they achieved their fastest attainable speed. We collected ground reaction forces (GRFs) during each trial. Prosthetic stiffness, height and running speed each affected biomechanics. Specifically, with stiffer prostheses, athletes exhibited greater peak and stance average vertical GRFs ( β = 0.03; p < 0.001), increased overall leg stiffness ( β = 0.21; p < 0.001), decreased ground contact time ( β = -0.07; p < 0.001) and increased step frequency ( β = 0.042; p < 0.001). Prosthetic height inversely associated with step frequency ( β = -0.021; p < 0.001). Running speed inversely associated with leg stiffness ( β = -0.58; p < 0.001). Moreover, at faster running speeds, the effect of prosthetic stiffness and height on biomechanics was mitigated and unchanged, respectively. Thus, prosthetic stiffness, but not height, likely influences distance running performance more than sprinting performance for athletes with bilateral transtibial amputations. © 2017 The Author(s).

  19. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.

    PubMed

    Eberly, Valerie J; Mulroy, Sara J; Gronley, JoAnne K; Perry, Jacquelin; Yule, William J; Burnfield, Judith M

    2014-12-01

    For individuals with transfemoral amputation, walking with a prosthesis presents challenges to stability and increases the demand on the hip of the prosthetic limb. Increasing age or comorbidities magnify these challenges. Computerized prosthetic knee joints improve stability and efficiency of gait, but are seldom prescribed for less physically capable walkers who may benefit from them. To compare level walking function while wearing a microprocessor-controlled knee (C-Leg Compact) prosthesis to a traditionally prescribed non-microprocessor-controlled knee prosthesis for Medicare Functional Classification Level K-2 walkers. Crossover. Stride characteristics, kinematics, kinetics, and electromyographic activity were recorded in 10 participants while walking with non-microprocessor-controlled knee and Compact prostheses. Walking with the Compact produced significant increase in velocity, cadence, stride length, single-limb support, and heel-rise timing compared to walking with the non-microprocessor-controlled knee prosthesis. Hip and thigh extension during late stance improved bilaterally. Ankle dorsiflexion, knee extension, and hip flexion moments of the prosthetic limb were significantly improved. Improvements in walking function and stability on the prosthetic limb were demonstrated by the K-2 level walkers when using the C-Leg Compact prosthesis. Understanding the impact of new prosthetic designs on gait mechanics is essential to improve prescription guidelines for deconditioned or older persons with transfemoral amputation. Prosthetic designs that improve stability for safety and walking function have the potential to improve community participation and quality of life. © The International Society for Prosthetics and Orthotics 2013.

  20. Implant salvage in breast reconstruction with severe peri-prosthetic infection.

    PubMed

    Meybodi, Farid; Sedaghat, Negin; French, James; Keighley, Caitlin; Mitchell, David; Elder, Elisabeth

    2017-12-01

    Although treatment of mild peri-prosthetic infection in implant-based breast reconstruction results in high rates of resolution, successful management of severe peri-prosthetic infection remains a significant challenge. In this case series, a protocol utilizing a novel dressing - negative pressure wound therapy with instillation (NPWTi) - for the management of severe peri-prosthetic infection in breast reconstruction patients is described. This is an operative technique involving: (i) explantation of the breast prosthesis and application of the NPWTi dressing to the implant pocket; (ii) change of the NPWTi dressing; (iii) intraoperative fluid/tissue cultures; and (iv) reimplantation of the breast prosthesis when cultures yield no growth. This protocol was utilized in six cases of severe peri-prosthetic infection in five patients with immediate breast reconstruction for breast cancer or risk-reducing surgery. Cultures of fluid/tissue grew typical and/or unusual organisms. Only one case did not yield an organism. The hospital length of stay upon completion of the protocol ranged from 7-16 days (mean, 12 days). Successful implant salvage was achieved in five of six cases. The protocol was aborted in one case to allow for completion of adjuvant chemotherapy. Early findings from this case series suggest that in cases of severe peri-prosthetic infection this novel operative protocol may result in successful implant salvage for breast reconstruction patients. Further studies are needed to more fully elaborate the role of NPWTi to achieve implant salvage in challenging cases of peri-prosthetic infection. © 2015 Royal Australasian College of Surgeons.

Top