Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.
1962-06-12
S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)
Using RADFET for the real-time measurement of gamma radiation dose rate
NASA Astrophysics Data System (ADS)
Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.
2015-02-01
RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20 and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65 to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.
Radiation dose-reduction strategies in thoracic CT.
Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I
2017-05-01
Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Patient Dose Management: Focus on Practical Actions
2016-01-01
Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988
Current Status and Future Challenges in Risk-Based Radiation Engineering
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This presentation covers the basis and challenges for radiation effects in electronic systems. The three main types of radiation effects in electronics are: 1) total ionizing dose (TID), 2) total non-ionizing dose (TNID) / displacement damage dose (DDD), and 3) single-event effect (SEE). Some content on relevant examples of effects, current concerns, and possible environmental model-driven solutions are also included.
2018-01-01
Objective To compare radiation doses between conventional and chest pain protocols using dual-source retrospectively electrocardiography (ECG)-gated cardiothoracic computed tomography (CT) in children and adults and assess the effect of tube current saturation on radiation dose reduction. Materials and Methods This study included 104 patients (16.6 ± 7.7 years, range 5–48 years) that were divided into two groups: those with and those without tube current saturation. The estimated radiation doses of retrospectively ECG-gated spiral cardiothoracic CT were compared between conventional, uniphasic, and biphasic chest pain protocols acquired with the same imaging parameters in the same patients by using paired t tests. Dose reduction percentages, patient ages, volume CT dose index values, and tube current time products per rotation were compared between the two groups by using unpaired t tests. A p value < 0.05 was considered significant. Results The volume CT dose index values of the biphasic chest pain protocol (10.8 ± 3.9 mGy) were significantly lower than those of the conventional protocol (12.2 ± 4.7 mGy, p < 0.001) and those of the uniphasic chest pain protocol (12.9 ± 4.9 mGy, p < 0.001). The dose-saving effect of biphasic chest pain protocol was significantly less with a saturated tube current (4.5 ± 10.2%) than with unsaturated tube current method (14.8 ± 11.5%, p < 0.001). In 76 patients using 100 kVp, patient age showed no significant differences between the groups with and without tube current saturation in all protocols (p > 0.05); the groups with tube current saturation showed significantly higher volume CT dose index values (p < 0.01) and tube current time product per rotation (p < 0.001) than the groups without tube current saturation in all protocols. Conclusion The radiation dose of dual-source retrospectively ECG-gated spiral cardiothoracic CT can be reduced by approximately 15% by using the biphasic chest pain protocol instead of the conventional protocol in children and adults if radiation dose parameters are further optimized to avoid tube current saturation. PMID:29353996
Ultra-Low-Dose Fetal CT With Model-Based Iterative Reconstruction: A Prospective Pilot Study.
Imai, Rumi; Miyazaki, Osamu; Horiuchi, Tetsuya; Asano, Keisuke; Nishimura, Gen; Sago, Haruhiko; Nosaka, Shunsuke
2017-06-01
Prenatal diagnosis of skeletal dysplasia by means of 3D skeletal CT examination is highly accurate. However, it carries a risk of fetal exposure to radiation. Model-based iterative reconstruction (MBIR) technology can reduce radiation exposure; however, to our knowledge, the lower limit of an optimal dose is currently unknown. The objectives of this study are to establish ultra-low-dose fetal CT as a method for prenatal diagnosis of skeletal dysplasia and to evaluate the appropriate radiation dose for ultra-low-dose fetal CT. Relationships between tube current and image noise in adaptive statistical iterative reconstruction and MBIR were examined using a 32-cm CT dose index (CTDI) phantom. On the basis of the results of this examination and the recommended methods for the MBIR option and the known relationship between noise and tube current for filtered back projection, as represented by the expression SD = (milliamperes) -0.5 , the lower limit of the optimal dose in ultra-low-dose fetal CT with MBIR was set. The diagnostic power of the CT images obtained using the aforementioned scanning conditions was evaluated, and the radiation exposure associated with ultra-low-dose fetal CT was compared with that noted in previous reports. Noise increased in nearly inverse proportion to the square root of the dose in adaptive statistical iterative reconstruction and in inverse proportion to the fourth root of the dose in MBIR. Ultra-low-dose fetal CT was found to have a volume CTDI of 0.5 mGy. Prenatal diagnosis was accurately performed on the basis of ultra-low-dose fetal CT images that were obtained using this protocol. The level of fetal exposure to radiation was 0.7 mSv. The use of ultra-low-dose fetal CT with MBIR led to a substantial reduction in radiation exposure, compared with the CT imaging method currently used at our institution, but it still enabled diagnosis of skeletal dysplasia without reducing diagnostic power.
ISO radiation sterilization standards
NASA Astrophysics Data System (ADS)
Lambert, Byron J.; Hansen, Joyce M.
1998-06-01
This presentation provides an overview of the current status of the ISO radiation sterilization standards. The ISO standards are voluntary standards which detail both the validation and routine control of the sterilization process. ISO 11137 was approved in 1994 and published in 1995. When reviewing the standard you will note that less than 20% of the standard is devoted to requirements and the remainder is guidance on how to comply with the requirements. Future standards developments in radiation sterilization are being focused on providing additional guidance. The guidance that is currently provided in informative annexes of ISO 11137 includes: device/packaging materials, dose setting methods, and dosimeters and dose measurement, currently, there are four Technical Reports being developed to provide additional guidance: 1. AAMI Draft TIR, "Radiation Sterilization Material Qualification" 2. ISO TR 13409-1996, "Sterilization of health care products — Radiation sterilization — Substantiation of 25 kGy as a sterilization dose for small or infrequent production batches" 3. ISO Draft TR, "Sterilization of health care products — Radiation sterilization Selection of a sterilization dose for a single production batch" li]4. ISO Draft TR, "Sterilization of health care products — Radiation sterilization-Product Families, Plans for Sampling and Frequency of Dose Audits."
Study of the dose rate effect of 180 nm nMOSFETs
NASA Astrophysics Data System (ADS)
He, Bao-Ping; Yao, Zhi-Bin; Sheng, Jiang-Kun; Wang, Zu-Jun; Huang, Shao-Yan; Liu, Min-Bo; Xiao, Zhi-Gang
2015-01-01
Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A “true” dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space.
NASA Astrophysics Data System (ADS)
Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.
2009-02-01
Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.
Radiation and breast cancer: a review of current evidence
Ronckers, Cécile M; Erdmann, Christine A; Land, Charles E
2005-01-01
This paper summarizes current knowledge on ionizing radiation-associated breast cancer in the context of established breast cancer risk factors, the radiation dose–response relationship, and modifiers of dose response, taking into account epidemiological studies and animal experiments. Available epidemiological data support a linear dose–response relationship down to doses as low as about 100 mSv. However, the magnitude of risk per unit dose depends strongly on when radiation exposure occurs: exposure before the age of 20 years carries the greatest risk. Other characteristics that may influence the magnitude of dose-specific risk include attained age (that is, age at observation for risk), age at first full-term birth, parity, and possibly a history of benign breast disease, exposure to radiation while pregnant, and genetic factors. PMID:15642178
Current methods of monitoring radiation exposure from CT.
Talati, Ronak K; Dunkin, Jared; Parikh, Shrujal; Moore, William H
2013-09-01
Increased public and regulatory scrutiny of imaging-related radiation exposure requires familiarity with current dose-monitoring techniques and best practices. CT-related ionizing radiation exposure has been cited as the largest and fastest growing source of population-wide iatrogenic ionizing radiation exposure. Upcoming federal regulations require imaging centers to familiarize themselves with available dose-monitoring techniques and implement comprehensive strategies to track patient dose, with particular emphasis on CT. Because of institution-specific and vendor-specific technologies, there are significant barriers to adoption and implementation. In this article, the authors outline the core components of a universal dose-monitoring strategy and detail a few of the many available commercial platforms. In addition, the authors introduce a cloud-based hybrid model dose-tracking system with the goal of rapid implementation, multicenter scalability, real-time dose feedback for technologists, cumulative dose monitoring, and optional dose communication to patients and into the record; doing so results in improved patient loyalty, referring physician satisfaction, and opportunity for repeat business. Copyright © 2013 American College of Radiology. All rights reserved.
Okumura, Miwa; Ota, Takamasa; Kainuma, Kazuhisa; Sayre, James W.; McNitt-Gray, Michael; Katada, Kazuhiro
2008-01-01
Objective. For the multislice CT (MSCT) systems with a larger number of detector rows, it is essential to employ dose-reduction techniques. As reported in previous studies, edge-preserving adaptive image filters, which selectively eliminate only the noise elements that are increased when the radiation dose is reduced without affecting the sharpness of images, have been developed. In the present study, we employed receiver operating characteristic (ROC) analysis to assess the effects of the quantum denoising system (QDS), which is an edge-preserving adaptive filter that we have developed, on low-contrast resolution, and to evaluate to what degree the radiation dose can be reduced while maintaining acceptable low-contrast resolution. Materials and Methods. The low-contrast phantoms (Catphan 412) were scanned at various tube current settings, and ROC analysis was then performed for the groups of images obtained with/without the use of QDS at each tube current to determine whether or not a target could be identified. The tube current settings for which the area under the ROC curve (Az value) was approximately 0.7 were determined for both groups of images with/without the use of QDS. Then, the radiation dose reduction ratio when QDS was used was calculated by converting the determined tube current to the radiation dose. Results. The use of the QDS edge-preserving adaptive image filter allowed the radiation dose to be reduced by up to 38%. Conclusion. The QDS was found to be useful for reducing the radiation dose without affecting the low-contrast resolution in MSCT studies. PMID:19043565
Rühm, Werner; Azizova, Tamara; Bouffler, Simon; Cullings, Harry M; Grosche, Bernd; Little, Mark P; Shore, Roy S; Walsh, Linda; Woloschak, Gayle E
2018-01-01
Abstract In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on ‘Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes’ of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan. PMID:29432579
Advanced p-MOSFET Ionizing-Radiation Dosimeter
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.
1994-01-01
Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.
PRESERVATION OF FOOD BY LOW-DOSE IONIZING ENERGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-01-01
A review is presented of the current status of investigations on the radiation processing of foods. The technical feasibility of this preservation method is well established and the economic feasibility of the method appears promising, particularly in low-dose applications. The current status of development of radiation sources is discussed. Pork has responded best among the meats tested for radiation processing. Sausage, luncheon meats, and chicken demonstrate good potential. Beef appears acceptable at low radiation dose ranges but presents flavor problems at high dosages. The storage life of refrigerated and unrefrigerated marine products is increased by radiation processing, Vegetable s aremore » easily damaged by comparatively small doses of radiation. Shredded cabbage treated at 300,000 rad is an excellent product and asparagus, snap beans, lima beans, broccoli, carrots, and corn are promising vegetables for radiation processing. Radiation treatment inhibits sprouting of potatoes and onions. Radiation processing of strawberries, grapes, peaches, tomatoes, and citrus fruits at doses between 200,000 and 800,000 rad affects molds that cause rotting and increases the storage life of these fruits. Radiation processing of cereal grains, cereal products, and military ration components destroys adult insects, larvae, and eggs of insect pests that infest these foods. No radioactivity has been induced in food products by high radiation doses. Extensive studies have shown that radiation processing has no effect on the wholesomeness of foods. The economic feasibility and potentialities of the radiation processing of foods are discussed. (C.H.)« less
Tomita, Masanori; Maeda, Munetoshi
2015-01-01
Abstract Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549
Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment
Vaiserman, Alexander M.
2010-01-01
Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444
Lee, E J; Lee, S K; Agid, R; Howard, P; Bae, J M; terBrugge, K
2009-10-01
The combined automatic tube current modulation (ATCM) technique adapts and modulates the x-ray tube current in the x-y-z axis according to the patient's individual anatomy. We compared image quality and radiation dose of the combined ATCM technique with those of a fixed tube current (FTC) technique in craniocervical CT angiography performed with a 64-section multidetector row CT (MDCT) system. A retrospective review of craniocervical CT angiograms (CTAs) by using combined ATCM (n = 25) and FTC techniques (n = 25) was performed. Other CTA parameters, such as kilovolt (peak), matrix size, FOV, section thickness, pitch, contrast agent, and contrast injection techniques, were held constant. We recorded objective image noise in the muscles at 2 anatomic levels: radiation exposure doses (CT dose index volume and dose-length product); and subjective image quality parameters, such as vascular delineation of various arterial vessels, visibility of small arterial detail, image artifacts, and certainty of diagnosis. The Mann-Whitney U test was used for statistical analysis. No significant difference was detected in subjective image quality parameters between the FTC and combined ATCM techniques. Most subjects in both study groups (49/50, 98%) had acceptable subjective artifacts. The objective image noise values at shoulder level did not show a significant difference, but the noise value at the upper neck was higher with the combined ATCM (P < .05) technique. Significant reduction in radiation dose (18% reduction) was noted with the combined ATCM technique (P < .05). The combined ATCM technique for craniocervical CTA performed at 64-section MDCT substantially reduced radiation exposure dose but maintained diagnostic image quality.
Radiation dose response of N channel MOSFET submitted to filtered X-ray photon beam
NASA Astrophysics Data System (ADS)
Gonçalves Filho, Luiz C.; Monte, David S.; Barros, Fabio R.; Santos, Luiz A. P.
2018-01-01
MOSFET can operate as a radiation detector mainly in high-energy photon beams, which are normally used in cancer treatments. In general, such an electronic device can work as a dosimeter from threshold voltage shift measurements. The purpose of this article is to show a new way for measuring the dose-response of MOSFETs when they are under X-ray beams generated from 100kV potential range, which is normally used in diagnostic radiology. Basically, the method consists of measuring the MOSFET drain current as a function of the radiation dose. For this the type of device, it has to be biased with a high value resistor aiming to see a substantial change in the drain current after it has been irradiated with an amount of radiation dose. Two types of N channel device were used in the experiment: a signal transistor and a power transistor. The delivered dose to the device was varied and the electrical curves were plotted. Also, a sensitivity analysis of the power MOSFET response was made, by varying the tube potential of about 20%. The results show that both types of devices have responses very similar, the shift in the electrical curve is proportional to the radiation dose. Unlike the power MOSFET, the signal transistor does not provide a linear function between the dose rate and its drain current. We also have observed that the variation in the tube potential of the X-ray equipment produces a very similar dose-response.
10 CFR 20.2104 - Determination of prior occupational dose.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...
10 CFR 20.2104 - Determination of prior occupational dose.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...
10 CFR 20.2104 - Determination of prior occupational dose.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...
10 CFR 20.2104 - Determination of prior occupational dose.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...
10 CFR 20.2104 - Determination of prior occupational dose.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...
Glines, Wayne M; Markham, Anna
2018-05-01
Seventy-five years after the Hanford Site was initially created as the primary plutonium production site for atomic weapons development under the Manhattan Project, the American Nuclear Society and the Health Physics Society are sponsoring a conference from 30 September through 3 October 2018, in Pasco, Washington, titled "Applicability of Radiation Response Models to Low Dose Protection Standards." The goal of this conference is to use current scientific data to update the approach to regulating low-level radiation doses; i.e., to answer a quintessential question of radiation protection-how to best develop radiation protection standards that protect human populations against detrimental effects while allowing the beneficial uses of radiation and radioactive materials. Previous conferences (e.g., "Wingspread Conference," "Arlie Conference") have attempted to address this question; but now, almost 20 y later, the key issues, goals, conclusions, and recommendations of those two conferences remain and are as relevant as they were then. Despite the best efforts of the conference participants and increased knowledge and understanding of the science underlying radiation effects in human populations, the bases of current radiation protection standards have evolved little. This 2018 conference seeks to provide a basis and path forward for evolving radiation protection standards to be more reflective of current knowledge and understanding of low dose response models.
Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C
2009-03-01
Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.
Radiation response of industrial materials: Dose-rate and morphology implications
NASA Astrophysics Data System (ADS)
Berejka, Anthony J.
2007-08-01
Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.
Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage
NASA Technical Reports Server (NTRS)
Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.
2005-01-01
Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.
Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun
2015-10-01
To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option.
Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun
2015-01-01
Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option. PMID:26234823
Identifying and managing the risks of medical ionizing radiation in endourology.
Yecies, Todd; Averch, Timothy D; Semins, Michelle J
2018-02-01
The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.
Current status of radiological protection at nuclear power stations in Japan.
Suzuki, Akira; Hori, Shunsuke
2011-07-01
The radiation dose to workers at nuclear power stations (NPSs) in Japan was drastically reduced between the late-1970s and the early-1990s by continuous dose-reduction programmes. The total collective dose of radiation workers in FY 2008 was 84.04 person Sv, while the average collective dose was 1.5 person Sv per reactor. The average annual individual dose was 1.1 mSv and the maximum annual individual dose was 19.5 mSv. These values are sufficiently lower than the regulatory dose limits. Radioactive effluent released from NPSs is already so trivial that additional protective measures will not be necessary. Experience in radiation protection at NPSs has been accumulated over 40 y and will be very useful in establishing a rational radiation control system in the future.
Higashigaito, K; Becker, A S; Sprengel, K; Simmen, H-P; Wanner, G; Alkadhi, H
2016-09-01
To demonstrate the feasibility and accuracy of automatic radiation dose monitoring software for computed tomography (CT) of trauma patients in a clinical setting over time, and to evaluate the potential of radiation dose reduction using iterative reconstruction (IR). In a time period of 18 months, data from 378 consecutive thoraco-abdominal CT examinations of trauma patients were extracted using automatic radiation dose monitoring software, and patients were split into three cohorts: cohort 1, 64-section CT with filtered back projection, 200 mAs tube current-time product; cohort 2, 128-section CT with IR and identical imaging protocol; cohort 3, 128-section CT with IR, 150 mAs tube current-time product. Radiation dose parameters from the software were compared with the individual patient protocols. Image noise was measured and image quality was semi-quantitatively determined. Automatic extraction of radiation dose metrics was feasible and accurate in all (100%) patients. All CT examinations were of diagnostic quality. There were no differences between cohorts 1 and 2 regarding volume CT dose index (CTDIvol; p=0.62), dose-length product (DLP), and effective dose (ED, both p=0.95), while noise was significantly lower (chest and abdomen, both -38%, p<0.017). Compared to cohort 1, CTDIvol, DLP, and ED in cohort 3 were significantly lower (all -25%, p<0.017), similar to the noise in the chest (-32%) and abdomen (-27%, both p<0.017). Compared to cohort 2, CTDIvol (-28%), DLP, and ED (both -26%) in cohort 3 was significantly lower (all, p<0.017), while noise in the chest (+9%) and abdomen (+18%) was significantly higher (all, p<0.017). Automatic radiation dose monitoring software is feasible and accurate, and can be implemented in a clinical setting for evaluating the effects of lowering radiation doses of CT protocols over time. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Radiation exposure in gastroenterology: improving patient and staff protection.
Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M
2014-08-01
Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.
Yang, Feng; Waters, Katrina M; Miller, John H; Gritsenko, Marina A; Zhao, Rui; Du, Xiuxia; Livesay, Eric A; Purvine, Samuel O; Monroe, Matthew E; Wang, Yingchun; Camp, David G; Smith, Richard D; Stenoien, David L
2010-11-30
High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.
Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.
2010-01-01
Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. PMID:21152398
Gamma radiation field intensity meter
Thacker, Louis H.
1994-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Gamma radiation field intensity meter
Thacker, Louis H.
1995-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.
2016-01-01
Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.
NASA Astrophysics Data System (ADS)
Angel, Erin
Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.
Assessment of an organ-based tube current modulation in thoracic computed tomography.
Matsubara, Kosuke; Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-03-08
Recently, specific computed tomography (CT) scanners have been equipped with organ-based tube current modulation (TCM) technology. It is possible that organ-based TCM will replace the conventional dose-reduction technique of reducing the effective milliampere-second. The aim of this study was to determine if organ-based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ-based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ-based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ-based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ-based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, J.I.
1981-05-01
The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)
NASA Technical Reports Server (NTRS)
Buchner, Stephen; McMorrow, Dale; Roche, Nicholas; Dusseau, Laurent; Pease, Ron L.
2008-01-01
Shapes of single event transients (SETs) in a linear bipolar circuit (LM124) change with exposure to total ionizing dose (TID) radiation. SETs shape changes are a direct consequence of TID-induced degradation of bipolar transistor gain. A reduction in transistor gain causes a reduction in the drive current of the current sources in the circuit, and it is the lower drive current that most affects the shapes of large amplitude SETs.
Gamma radiation field intensity meter
Thacker, L.H.
1995-10-17
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Gamma radiation field intensity meter
Thacker, L.H.
1994-08-16
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Yokoyama, Sumi; Hamada, Nobuyuki; Hayashida, Toshiyuki; Tsujimura, Norio; Tatsuzaki, Hideo; Kurosawa, Tadahiro; Nabatame, Kuniaki; Ohguchi, Hiroyuki; Ohno, Kazuko; Yamauchi-Kawaura, Chiyo; Iimoto, Takeshi; Ichiji, Takeshi; Hotta, Yutaka; Iwai, Satoshi; Akahane, Keiichi
2017-09-25
Since the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens of the eye in 2011, there have been extensive discussions in various countries. This paper reviews the current situation in radiation protection of the ocular lens and the discussions on the potential impact of the new lens dose limit in Japan. Topics include historical changes to the lens dose limit, the current situation with occupational lens exposures (e.g., in medical workers, nuclear workers, and Fukushima nuclear power plant workers) and measurements, and the current status of biological studies and epidemiological studies on radiation cataracts. Our focus is on the situation in Japan, but we believe such information sharing will be useful in many other countries.
MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahesh, M; Gingold, E; Jones, A
2014-06-15
Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panelmore » digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.« less
Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.
Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G
2013-05-31
The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.
Radiation dose management in thoracic CT: an international survey.
Molinari, Francesco; Tack, Denis M; Boiselle, Philip; Ngo, Long; Mueller-Mang, Christina; Litmanovich, Diana; Bankier, Alexander A
2013-01-01
We aimed to examine current practice patterns of international thoracic radiologists regarding radiation dose management in adult thoracic computed tomography (CT) examinations. An electronic questionnaire was sent to 800 members of five thoracic radiology societies in North America, Europe, Asia, and Latin America addressing radiation dose training and education, standard kVp and mAs settings for thoracic CT, dose reduction practices, clinical scenarios, and demographics. Of the 800 radiologists, 146 responded to our survey. Nearly half (66/146, 45% [95% confidence interval, 37%-53%]) had no formal training in dose reduction, with "self-study of the literature" being the most common form of training (54/146, 37% [29%-45%]). One hundred and seventeen (80% [74%-87%]) had automatic exposure control, and 76 (65% [56%-74%]) used it in all patients. Notably, most respondents (89% [84%-94%]) used a 120 to 125 kVp standard setting, whereas none used 140 kVp. The most common average dose-length-product (DLP) value was 150 to 249 mGy.cm (75/146, 51% [43%-59%]), and 59% (51%-67%) delivered less than 250 mGy.cm in a 70 kg patient. There was a tendency towards higher DLP values with multidetector-row CT. Age, gender, and pregnancy were associated more with dose reduction than weight and clinical indication. Efforts for reducing patient radiation dose are highly prevalent among thoracic radiologists. Areas for improvement include reduction of default tube current settings, reduction of anatomical scan coverage, greater use of automatic exposure control, and eventually, reduction of current reference dose values. Our study emphasizes the need for international guidelines to foster greater conformity in dose reduction by thoracic radiologists.
Regulatory implications of a linear non-threshold (LNT) dose-based risks.
Aleta, C R
2009-01-01
Current radiation protection regulatory limits are based on the linear non-threshold (LNT) theory using health data from atomic bombing survivors. Studies in recent years sparked debate on the validity of the theory, especially at low doses. The present LNT overestimates radiation risks since the dosimetry included only acute gammas and neutrons; the role of other bomb-caused factors, e.g. fallout, induced radioactivity, thermal radiation (UVR), electromagnetic pulse (EMP), and blast, were excluded. Studies are proposed to improve the dose-response relationship.
2010-02-01
subsequent research has yielded additional in- sights. This review is a consensus report of current scien- tifi c data. Expected skin reactions for an...table has been cited and reproduced Essentials The minimum radiation dose n causing a specifi c type of reac- tion in the skin or hair is best...expressed in terms of a range of doses, rather than a single threshold dose. The times of onset and resolution n of specifi c radiation injuries
Cheng, Chee-Wai; Das, Indra J; Ndlovu, Alois M
2002-09-01
The effect of the initial pulse forming network (IPFN) on the suppression of dark current is investigated for a Siemens Primus accelerator. The dark current produces a spurious radiation, which is referred to as dark current radiation (DCR) in this study. In the step-and-shoot delivery of an intensity modulated radiation therapy (IMRT), the DCR could be of some concern for whole body dose along with leakage radiation through collimator jaws or multileaf collimator. By adjusting the IPFN-to-PFN ratio to >0.8, the DCR can be measured with an ion chamber during the "PAUSE" state of the accelerator in the IMRT mode. For 15 MV x rays, the magnitude of the DCR is approximately equal to 0.7% of the dose at dmax for a 10 x 10 cm2 field. The DCR has a similar central axis depth dose as a 15 MV beam as determined from a water phantom scan. When the IPFN-to-PFN ratio is lowered to <0.8, no DCR is detected. For low energy x rays (6 MV), no DCR is detected regardless of the IPFN-to-PFN ratio. Although the DCR is studied only for the Siemens Primus model accelerator, the same precaution applies to other models of modern accelerators from other vendors. Due to the large number of field segments used in a step-and-shoot IMRT, it is imperative therefore, that dark current evaluation be part of machine commissioning and annual calibration for high-energy photon beams. Should DCR be detected, the medical physicist should work with a service engineer to rectify the problem. In view of DCR and whole body dose, low-energy photon beams are advisable for IMRT.
Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology
Xapsos, M.A.; Stauffer, C.; Phan, A.; McClure, S.S.; Ladbury, R.L.; Pellish, J.A.; Campola, M.J.; LaBel, K.A.
2017-01-01
Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission. PMID:28804156
NASA Astrophysics Data System (ADS)
Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.
2016-03-01
In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques.
Radiation exposure in X-ray-based imaging techniques used in osteoporosis
Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.
2010-01-01
Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834
Karam, P Andrew
2003-03-01
Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.
National survey on dose data analysis in computed tomography.
Heilmaier, Christina; Treier, Reto; Merkle, Elmar Max; Alkhadi, Hatem; Weishaupt, Dominik; Schindera, Sebastian
2018-05-28
A nationwide survey was performed assessing current practice of dose data analysis in computed tomography (CT). All radiological departments in Switzerland were asked to participate in the on-line survey composed of 19 questions (16 multiple choice, 3 free text). It consisted of four sections: (1) general information on the department, (2) dose data analysis, (3) use of a dose management software (DMS) and (4) radiation protection activities. In total, 152 out of 241 Swiss radiological departments filled in the whole questionnaire (return rate, 63%). Seventy-nine per cent of the departments (n = 120/152) analyse dose data on a regular basis with considerable heterogeneity in the frequency (1-2 times per year, 45%, n = 54/120; every month, 35%, n = 42/120) and method of analysis. Manual analysis is carried out by 58% (n = 70/120) compared with 42% (n = 50/120) of departments using a DMS. Purchase of a DMS is planned by 43% (n = 30/70) of the departments with manual analysis. Real-time analysis of dose data is performed by 42% (n = 21/50) of the departments with a DMS; however, residents can access the DMS in clinical routine only in 20% (n = 10/50) of the departments. An interdisciplinary dose team, which among other things communicates dose data internally (63%, n = 76/120) and externally, is already implemented in 57% (n = 68/120) departments. Swiss radiological departments are committed to radiation safety. However, there is high heterogeneity among them regarding the frequency and method of dose data analysis as well as the use of DMS and radiation protection activities. • Swiss radiological departments are committed to and interest in radiation safety as proven by a 63% return rate of the survey. • Seventy-nine per cent of departments analyse dose data on a regular basis with differences in the frequency and method of analysis: 42% use a dose management software, while 58% currently perform manual dose data analysis. Of the latter, 43% plan to buy a dose management software. • Currently, only 25% of the departments add radiation exposure data to the final CT report.
Kovalchuk, Anna; Kolb, Bryan
2017-07-03
Based on the most recent estimates by the Canadian Cancer Society, 2 in 5 Canadians will develop cancer in their lifetimes. More than half of all cancer patients receive some type of radiation therapy, and all patients undergo radiation-based diagnostics. While radiation is one of the most important diagnostic and treatments modalities, high-dose cranial radiation therapy causes numerous central nervous system side-effects, including declines in cognitive function, memory, and attention. While the mechanisms of these effects have been studies, they still need to be further elucidated. On the other hand, the effects of low dose radiation as well as indirect radiation bystander effects on the brain remain elusive. We pioneered analysis of the molecular and cellular effects of low dose direct, bystander and scatter radiation on the brain. Using a rat model, we showed that low dose radiation exposures cause molecular and cellular changes in the brain and impacts animal behavior. Here we reflect upon our recent findings and current state of knowledge in the field, and suggest novel radiation effect biomarkers and means of prevention. We propose strategies and interventions to prevent and mitigate radiation effects on the brain.
Evaluation of the effect of low tube voltage on radiation dose and image quality
NASA Astrophysics Data System (ADS)
Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, A. T. Abdul
2017-05-01
Number of Computed Tomography (CT) examinations performed worldwide is increasing. In 2010, the FDA issued an initiative to reduce unnecessary radiation exposure from CT imaging. The aim of this study is to evaluate the effect of low tube voltage on radiation dose and image quality using CTDI phantom. The CTDI phantom was scanned with dual energy CT at 80 kV and 120 kV with the tube current from 150 mAs to 350 mAs. Pitch was 1.0 while slice thickness was 1 mm and 5 mm. Results show if mAs was increased, the SNR values also will be increased. The 5 mm slice thickness shows higher SNR value compared to 1 mm slice thickness. As the voltage and tube current increased, the amount of dose absorbed is also increased because current is proportional to photon flux.
Semelka, Richard C; Armao, Diane M; Elias, Jorge; Huda, Walter
2007-05-01
"When one admits that nothing is certain one must, I think, also admit that some things are much more nearly certain than others." Bertrand Russell (1872-1970) Computed tomography (CT) is one of the largest contributors to man-made radiation doses in medical populations. CT currently accounts for over 60 million examinations in the United States, and its use continues to grow rapidly. The principal concern regarding radiation exposure is that the subject may develop malignancies. For this systematic review we searched journal publications in MEDLINE (1966-2006) using the terms "CT," "ionizing radiation," "cancer risks," "MRI," and "patient safety." We also searched major reports issued from governmental U.S. and world health-related agencies. Many studies have shown that organ doses associated with routine diagnostic CT scans are similar to the low-dose range of radiation received by atomic-bomb survivors. The FDA estimates that a CT examination with an effective dose of 10 mSv may be associated with an increased chance of developing fatal cancer for approximately one patient in 2000, whereas the BEIR VII lifetime risk model predicts that with the same low-dose radiation, approximately one individual in 1000 will develop cancer. There are uncertainties in the current radiation risk estimates, especially at the lower dose levels encountered in CT. To address what should be done to ensure patient safety, in this review we discuss the "as low as reasonably achievable" (ALARA) principle, and the use of MRI as an alternative to CT. (c) 2007 Wiley-Liss, Inc.
Brooks, Antone L
2015-04-01
This commentary provides a very brief overview of the book "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008" ( http://lowdose.energy.gov ). The book summarizes and evaluates the research progress, publications and impact of the U.S. Department of Energy Low Dose Radiation Research Program over its first 10 years. The purpose of this book was to summarize the impact of the program's research on the current thinking and low-dose paradigms associated with the radiation biology field and to help stimulate research on the potential adverse and/or protective health effects of low doses of ionizing radiation. In addition, this book provides a summary of the data generated in the low dose program and a scientific background for anyone interested in conducting future research on the effects of low-dose or low-dose-rate radiation exposure. This book's exhaustive list of publications coupled with discussions of major observations should provide a significant resource for future research in the low-dose and dose-rate region. However, because of space limitations, only a limited number of critical references are mentioned. Finally, this history book provides a list of major advancements that were accomplished by the program in the field of radiation biology, and these bulleted highlights can be found in last part of chapters 4-10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Feng; Waters, Katrina M.; Miller, John H.
2010-11-30
Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peakmore » intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low dose radiation exposure on human health.« less
DICOM structured report to track patient's radiation dose to organs from abdominal CT exam
NASA Astrophysics Data System (ADS)
Morioka, Craig; Turner, Adam; McNitt-Gray, Michael; Zankl, Maria; Meng, Frank; El-Saden, Suzie
2011-03-01
The dramatic increase of diagnostic imaging capabilities over the past decade has contributed to increased radiation exposure to patient populations. Several factors have contributed to the increase in imaging procedures: wider availability of imaging modalities, increase in technical capabilities, rise in demand by patients and clinicians, favorable reimbursement, and lack of guidelines to control utilization. The primary focus of this research is to provide in depth information about radiation doses that patients receive as a result of CT exams, with the initial investigation involving abdominal CT exams. Current dose measurement methods (i.e. CTDIvol Computed Tomography Dose Index) do not provide direct information about a patient's organ dose. We have developed a method to determine CTDIvol normalized organ doses using a set of organ specific exponential regression equations. These exponential equations along with measured CTDIvol are used to calculate organ dose estimates from abdominal CT scans for eight different patient models. For each patient, organ dose and CTDIvol were estimated for an abdominal CT scan. We then modified the DICOM Radiation Dose Structured Report (RDSR) to store the pertinent patient information on radiation dose to their abdominal organs.
5 MeV Proton irradiation effects on 200 GHz silicon-germanium heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Gnana Prakash, A. P.; Hegde, Vinayakprasanna N.; Pradeep, T. M.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Cressler, J. D.
2017-12-01
The total dose effects of 5 MeV proton and Co-60 gamma irradiation in the dose range from 1 to 100 Mrad on advanced 200 GHz Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs) are investigated. The SRIM simulation study was conducted to understand the energy loss of 5 MeV proton ions in SiGe HBT structure. Pre- and post-radiation DC figure of merits such as forward- and inverse-mode Gummel characteristics, excess base current, DC current gain and output characteristics were used to quantify the radiation tolerance of the devices. The results show that the proton creates a significant amount of damages in the surface and bulk of the transistor when compared with gamma irradiation. The SiGe HBTs shows robust ionizing radiation tolerance even up to a total dose of 100 Mrad for both radiations.
Biological Bases for Radiation Adaptive Responses in the Lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Bobby R.; Lin, Yong; Wilder, Julie
2015-03-01
Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung, and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis, which now is known to be unsupported by a large volume of data.
Kreuzer, M; Auvinen, A; Cardis, E; Durante, M; Harms-Ringdahl, M; Jourdain, J R; Madas, B G; Ottolenghi, A; Pazzaglia, S; Prise, K M; Quintens, R; Sabatier, L; Bouffler, S
2018-03-01
MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, J.I.
1982-08-01
The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and frommore » animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.« less
Fabrikant, J. I.
1981-01-01
The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy. PMID:7043913
Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N
2017-01-01
Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development. PMID:28396725
The radiation protection problems of high altitude and space flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fry, R.J.M.
1993-04-01
This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes ofmore » transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.« less
Schindera, Sebastian T; Nelson, Rendon C; Toth, Thomas L; Nguyen, Giao T; Toncheva, Greta I; DeLong, David M; Yoshizumi, Terry T
2008-02-01
The purpose of this study was to evaluate in a phantom study the effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation. One or two 4-cm-thick circumferential layers of fat-equivalent material were added to the abdomen of an anthropomorphic phantom to simulate patients of three sizes: small (cross-sectional dimensions, 18 x 22 cm), average size (26 x 30 cm), and oversize (34 x 38 cm). Imaging was performed with a 64-MDCT scanner with combined z-axis and xy-axis tube current modulation according to two protocols: protocol A had a noise index of 12.5 H, and protocol B, 15.0 H. Radiation doses to three abdominal organs and the skin were assessed. Image noise also was measured. Despite increasing patient size, the image noise measured was similar for protocol A (range, 11.7-12.2 H) and protocol B (range, 13.9-14.8 H) (p > 0.05). With the two protocols, in comparison with the dose of the small patient, the abdominal organ doses of the average-sized patient and the oversized patient increased 161.5-190.6%and 426.9-528.1%, respectively (p < 0.001). The skin dose increased as much as 268.6% for the average-sized patient and 816.3% for the oversized patient compared with the small patient (p < 0.001). Oversized patients undergoing abdominal MDCT with tube current modulation receive significantly higher doses than do small patients. The noise index needs to be adjusted to the body habitus to ensure dose efficiency.
Ning, Peigang; Zhu, Shaocheng; Shi, Dapeng; Guo, Ying; Sun, Minghua
2014-01-01
This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.
Genetic radiation risks: a neglected topic in the low dose debate
2016-01-01
Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (Abomb) survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down’s syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back) and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and assumptions about linear dose response. PMID:26791091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaopei, E-mail: shix22@mcmaster.ca; Mothersi
Purpose: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. Methods: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. Results: In general, pretreatment with chronic radiation has no significant influence on the reaction ofmore » cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. Conclusion: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term “radiosensitive” or “adaptive” make no judgment about whether such responses are ultimately beneficial or harmful. - Highlights: • No obvious adaptive response is induced by chronic low-dose radiation from Ra-226. • Priming radiation from Ra-226 sensitized CHSE/F cells to the challenge radiation. • Linear model is inconsistent with current work using chronic low-dose radiation.« less
Radiation model predictions and validation using LDEF satellite data
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
1993-01-01
Predictions and comparisons with the radiation dose measurements on Long Duration Exposure Facility (LDEF) by thermoluminescent dosimeters were made to evaluate the accuracy of models currently used in defining the ionizing radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.
Radiation Parameters of High Dose Rate Iridium -192 Sources
NASA Astrophysics Data System (ADS)
Podgorsak, Matthew B.
A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
Bahadori, Amir A; Sato, Tatsuhiko; Slaba, Tony C; Shavers, Mark R; Semones, Edward J; Van Baalen, Mary; Bolch, Wesley E
2013-10-21
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
NASA Astrophysics Data System (ADS)
Bahadori, Amir A.; Sato, Tatsuhiko; Slaba, Tony C.; Shavers, Mark R.; Semones, Edward J.; Van Baalen, Mary; Bolch, Wesley E.
2013-10-01
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
Zheng, Xiaoming
2017-12-01
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.
Einstein, Andrew J; Pascual, Thomas N B; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V; Mahmarian, John J; Better, Nathan; Bouyoucef, Salah E; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V Peter C; Alexánderson, Erick; Allam, Adel H; Al-Mallah, Mouaz H; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A; Luxenburg, Osnat; Shaw, Leslee J; Underwood, S Richard; Rehani, Madan M; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio
2015-07-07
To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs. Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Einstein, Andrew J.; Pascual, Thomas N. B.; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V.; Mahmarian, John J.; Better, Nathan; Bouyoucef, Salah E.; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V. Peter C.; Alexánderson, Erick; Allam, Adel H.; Al-Mallah, Mouaz H.; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A.; Luxenburg, Osnat; Shaw, Leslee J.; Underwood, S. Richard; Rehani, Madan M.; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio
2015-01-01
Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices’ worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March–April 2013. Eight ‘best practices’ relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices’ had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. PMID:25898845
Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.
2015-01-01
Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the design margin concept with one of failure probability.
Grant, E J; Ozasa, K; Ban, N; de González, A Berrington; Cologne, J; Cullings, H M; Doi, K; Furukawa, K; Imaoka, T; Kodama, K; Nakamura, N; Niwa, O; Preston, D L; Rajaraman, P; Sadakane, A; Saigusa, S; Sakata, R; Sobue, T; Sugiyama, H; Ullrich, R; Wakeford, R; Yasumura, S; Milder, C M; Shore, R E
2015-05-01
The RERF International Low-Dose Symposium was held on 5-6 December 2013 at the RERF campus in Hiroshima, Japan, to discuss the issues facing the Life Span Study (LSS) and other low-dose studies. Topics included the current status of low-dose risk detection, strategies for low-dose epidemiological and statistical research, methods to improve communication between epidemiologists and biologists, and the current status of radiological studies and tools. Key points made by the participants included the necessity of pooling materials over multiple studies to gain greater insight where data from single studies are insufficient; generating models that reflect epidemiological, statistical, and biological principles simultaneously; understanding confounders and effect modifiers in the current data; and taking into consideration less studied factors such as the impact of dose rate. It is the hope of all participants that this symposium be used as a trigger for further studies, especially those using pooled data, in order to reach a greater understanding of the health effects of low-dose radiation.
Quantifying Cancer Risk from Radiation.
Keil, Alexander P; Richardson, David B
2017-12-06
Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation-related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation-related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions. © 2017 Society for Risk Analysis.
James V. Neel and Yuri E. Dubrova: Cold War debates and the genetic effects of low-dose radiation.
Goldstein, Donna M; Stawkowski, Magdalena E
2015-01-01
This article traces disagreements about the genetic effects of low-dose radiation exposure as waged by James Neel (1915-2000), a central figure in radiation studies of Japanese populations after World War II, and Yuri Dubrova (1955-), who analyzed the 1986 Chernobyl nuclear power plant accident. In a 1996 article in Nature, Dubrova reported a statistically significant increase in the minisatellite (junk) DNA mutation rate in the children of parents who received a high dose of radiation from the Chernobyl accident, contradicting studies that found no significant inherited genetic effects among offspring of Japanese A-bomb survivors. Neel's subsequent defense of his large-scale longitudinal studies of the genetic effects of ionizing radiation consolidated current scientific understandings of low-dose ionizing radiation. The article seeks to explain how the Hiroshima/Nagasaki data remain hegemonic in radiation studies, contextualizing the debate with attention to the perceived inferiority of Soviet genetic science during the Cold War.
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.
Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.
2008-01-01
Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.
Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Kaup, Moritz; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik
2017-06-01
Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration.
Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen
2010-12-01
The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.
Assessment of an organ‐based tube current modulation in thoracic computed tomography
Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-01-01
Recently, specific computed tomography (CT) scanners have been equipped with organ‐based tube current modulation (TCM) technology. It is possible that organ‐based TCM will replace the conventional dose‐reduction technique of reducing the effective milliampere‐second. The aim of this study was to determine if organ‐based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ‐based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ‐based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ‐based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ‐based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women. PACS numbers: 87.53.Bn; 87.57.Q‐; 87.57.qp PMID:22402390
Verreet, Tine; Quintens, Roel; Baatout, Sarah; Benotmane, Mohammed A.
2016-01-01
Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered. PMID:27382490
Normalized dose data for upper gastrointestinal tract contrast studies performed to infants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damilakis, John; Stratakis, John; Raissaki, Maria
The aim of the current study was to (a) provide normalized dose data for the estimation of the radiation dose from upper gastrointestinal tract contrast (UGIC) studies carried out to infants and (b) estimate the average patient dose and risks associated with radiation from UGIC examinations performed in our institution. Organ and effective doses, normalized to entrance skin dose (ESD) and dose area product (DAP) were estimated for UGIC procedures utilizing the Monte Carlo N-particle (MCNP) transport code and two mathematical phantoms, one corresponding to the size of a newborn and one to the size of a 1-year-old child. Themore » validity of the MCNP results was verified by comparison with dose data obtained in physical anthropomorphic phantoms simulating a newborn and a 1-year-old infant using thermoluminescence dosimetry (TLD). Data were also collected from 25 consecutive UGIC examinations performed to infants. Study participants were (a) 12 infants aged from 0.5 to 5.9 months (group 1) and (b) 13 infants aged from 6 to 15 months (group 2). For each examination, ESD and dose to comforters were measured using TLD. Patient effective doses were estimated using normalized dose data obtained in the simulation study. The risk for fatal cancer induction was estimated using appropriate coefficients. The results consist of tabulated dose data normalized to ESD or DAP for the estimation of patient dose. Conversion coefficients were estimated for various tube potentials and beam filtration values. The mean total fluoroscopy time was 1.26 and 1.62 min for groups 1 and 2, respectively. The average effective dose was 1.6 mSv for group 1 and 1.9 mSv for group 2. The risk of cancer attributable to the radiation exposure associated with a typical UGIC study was found to be up to 3 per 10 000 infants undergoing an UGIC examination. The mean radiation dose absorbed by the hands of comforters was 47 {mu}Gy. In conclusion, estimation of radiation doses associated with UGIC studies performed to infants can be made using the normalized dose data provided in the current study. Radiation dose values associated with UGIC examinations carried out to infants are not low and should be minimized as much as possible.« less
Radiation Therapy and Hearing Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham
2010-03-01
A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associatedmore » ototoxicity as well as a detailed approach for scoring toxicity is presented.« less
Hamada, Nobuyuki; Fujimichi, Yuki
2014-01-01
Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798
Dose assessment in environmental radiological protection: State of the art and perspectives.
Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G
2017-09-01
Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Space Radiation Organ Doses for Astronauts on Past and Future Missions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2007-01-01
We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.
NASA Astrophysics Data System (ADS)
Niu, Kai
Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute ischemic stroke patients more efficiently compared with the current clinical work-flow. The animal and patient cases presented in this thesis are focused towards but not limited to neurointerventional applications.
Dynamic CT for Parathyroid Adenoma Detection: How Does Radiation Dose Compare With Nuclear Medicine?
Czarnecki, Caroline A; Einsiedel, Paul F; Phal, Pramit M; Miller, Julie A; Lichtenstein, Meir; Stella, Damien L
2018-05-01
Dynamic CT is increasingly used for preoperative localization of parathyroid adenomas, but concerns remain about the radiation effective dose of CT compared with that of 99m Tc-sestamibi scintigraphy. The purpose of this study was to compare the radiation dose delivered by three-phase dynamic CT with that delivered by 99m Tc-sestamibi SPECT/CT performed in accordance with our current protocols and to assess the possible reduction in effective dose achieved by decreasing the scan length (i.e., z-axis) of two phases of the dynamic CT protocol. The effective dose of a 99m Tc-sestamibi nuclear medicine parathyroid study performed with and without coregistration CT was calculated and compared with the effective dose of our current three-phase dynamic CT protocol as well as a proposed protocol involving CT with reduced scan length. The median effective dose for a 99m Tc-sestamibi nuclear medicine study was 5.6 mSv. This increased to 12.4 mSv with the addition of coregistration CT, which is higher than the median effective dose of 9.3 mSv associated with the dynamic CT protocol. Reducing the scan length of two phases in the dynamic CT protocol could reduce the median effective dose to 6.1 mSv, which would be similar to that of the dose from the 99m Tc-sestamibi study alone. Dynamic CT used for the detection of parathyroid adenoma can deliver a lower radiation dose than 99m Tc-sestamibi SPECT/CT. It may be possible to reduce the dose further by decreasing the scan length of two of the phases, although whether this has an impact on accuracy of the localization needs further investigation.
Hou, Qiao-Ru; Gao, Wei; Sun, Ai-Min; Wang, Qian; Qiu, Hai-Sheng; Wang, Fang; Hu, Li-Wei; Li, Jian-Ying; Zhong, Yu-Min
2017-02-01
To the assess image quality, contrast dose and radiation dose in cardiac CT in children with congenital heart disease (CHD) using low-concentration iodinated contrast agent and low tube voltage and current in comparison with standard dose protocol. 110 patients with CHD were randomized to 1 of the 2 scan protocols: Group A (n = 45) with 120 mA tube current and contrast agent of 270 mgI/ml in concentration (Visipaque ™ ; GE Healthcare Ireland, Co., Cork, UK); and Group B (n = 65) with the conventional 160 mA and 370 mgI/ml concentration contrast (Iopamiro ® ; Shanghai Bracco Sine Pharmaceutical Corp Ltd, Shanghai, China). Both groups used 80 kVp tube voltage and were reconstructed with 70% adaptive statistical iterative reconstruction algorithm. The CT value and noise in aortic arch were measured and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. A five-point scale was used to subjectively evaluate image quality. Contrast and radiation dose were recorded. There was no difference in age and weight between the two groups (all p > 0.05). The iodine load and radiation dose in Group A were statistically lower (3976 ± 747 mgI vs 5763 ± 1018 mgI in iodine load and 0.60 ± 0.08 mSv vs 0.77 ± 0.10 mSv in effective dose; p < 0.001). However, image noise, CT value, CNR, SNR and subjective image quality for the two groups were similar (all p > 0.05), and with good agreement between the two observers. Comparing the surgery results, the diagnostic accuracy for extracardiac and intracardiac defects for Group A was 96% and 92%, respectively, while the corresponding numbers for Group B were 95% and 93%. Compared with the standard dose protocol, the use of low tube voltage (80 kVp), low tube current (120 mA) and low-concentration iodinated contrast agent (270 mgI/ml) enables a reduction of 30% in iodine load and 22% in radiation dose while maintaining compatible image quality and diagnostic accuracy. Advances in knowledge: The new cardiac CT scanning protocol can largely reduce the adverse effects of radiation and contrast media to children. Meanwhile, it also can be used effectively to examine complex CHD.
NASA Astrophysics Data System (ADS)
Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min
2017-01-01
We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.
Pohanka, Miroslav; Koch, Miroslav
2009-01-01
A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395–455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed. PMID:22346715
Radiation dose to workers due to the inhalation of dust during granite fabrication.
Zwack, L M; McCarthy, W B; Stewart, J H; McCarthy, J F; Allen, J G
2014-03-01
There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr(-1)) and limits applicable to the general public (1 mSv yr(-1)). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m(-3) over a full year had an estimated radiation dose of 0.062 mSv yr(-1). Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr(-1) and 0.002 mSv yr(-1), respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr(-1).
Status of eye lens radiation dose monitoring in European hospitals.
Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta
2014-12-01
A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers.
Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H
2015-04-01
Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients were age 5 years or younger. For 12 commonly performed pediatric nuclear medicine studies, updated radiation dose estimates can guide efforts to reduce radiation exposure and provide current information for discussing radiation exposure and risk with referring physicians, patients and families. There can be substantial differences in radiation exposure for the same procedure, depending upon which of these two guidelines is followed. This discordance identifies opportunities for harmonization of the guidelines, which may lead to further reduction in nuclear medicine radiation doses in children.
Dose rate constants for the quantity Hp(3) for frequently used radionuclides in nuclear medicine.
Szermerski, Bastian; Bruchmann, Iris; Behrens, Rolf; Geworski, Lilli
2016-12-01
According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H p (3), which is supposed to estimate the dose to the lens of the eye. For this, H p (3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely. Copyright © 2015. Published by Elsevier GmbH.
Mortality among Canadian military personnel exposed to low-dose radiation.
Raman, S; Dulberg, C S; Spasoff, R A; Scott, T
1987-05-15
We carried out a cohort study of mortality among 954 Canadian military personnel exposed to low-dose ionizing radiation during nuclear reactor clean-up operations at Chalk River Nuclear Laboratories, Chalk River, Ont., and during observation of atomic test blasts in the United States and Australia in the 1950s. Two controls matched for age, service, rank and trade were selected for each exposed subject. Mortality among the exposed and control groups was ascertained by means of record linkage with the Canadian Mortality Data Base. Survival analysis with life-table techniques did not reveal any difference in overall mortality between the exposed and control groups. Analysis of cause-specific mortality showed similar mortality patterns in the two groups; there was no elevation in the exposed group in the frequency of death from leukemia or thyroid cancer, the causes of death most often associated with radiation exposure. Analysis of survival by recorded gamma radiation dose also did not show any effect of radiation dose on mortality. The findings are in agreement with the current scientific literature on the risk of death from exposure to low-dose radiation.
Occupational radiation exposure in nuclear medicine department in Kuwait
NASA Astrophysics Data System (ADS)
Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.
2017-11-01
Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.
Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
O'Bryan, Martha V.; Label, Kenneth A.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Lauenstein, Jean-Marie; Pellish, Jonathan A.; Ladbury, Raymond L.; Berg, Melanie D.
2015-01-01
NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al.
Tan, J S P; Tan, K-L; Lee, J C L; Wan, C-M; Leong, J-L; Chan, L-L
2009-02-01
To our knowledge, there has been no study that compares the radiation dose delivered to the eye lens by 16- and 64-section multidetector CT (MDCT) for standard clinical neuroimaging protocols. Our aim was to assess radiation-dose differences between 16- and 64-section MDCT from the same manufacturer, by using near-identical neuroimaging protocols. Three cadaveric heads were scanned on 16- and 64-section MDCT by using standard neuroimaging CT protocols. Eye lens dose was measured by using thermoluminescent dosimeters (TLD), and each scanning was repeated to reduce random error. The dose-length product, volume CT dose index (CTDI(vol)), and TLD readings for each imaging protocol were averaged and compared between scanners and protocols, by using the paired Student t test. Statistical significance was defined at P < .05. The radiation dose delivered and eye lens doses were lower by 28.1%-45.7% (P < .000) on the 64-section MDCT for near-identical imaging protocols. On the 16-section MDCT, lens dose reduction was greatest (81.1%) on a tilted axial mode, compared with a nontilted helical mode for CT brain scans. Among the protocols studied, CT of the temporal bone delivered the greatest radiation dose to the eye lens. Eye lens radiation doses delivered by the 64-section MDCT are significantly lower, partly due to improvements in automatic tube current modulation technology. However, where applicable, protection of the eyes from the radiation beam by either repositioning the head or tilting the gantry remains the best way to reduce eye lens dose.
Radiation epidemiology: old and new challenges.
Shore, R E
1989-01-01
Over the last 40 years the amount of knowledge about human radiation effects has increased dramatically. During that interval, radiation epidemiologists have documented a number of additional types of radiation-induced cancer and have established rough estimates of the magnitude of cancer risks. Nevertheless, we currently have inadequate knowledge about a number of factors that help define the magnitude of radiation risks. These include questions of estimating risk over the lifetime, shapes of dose-effect curves, magnitude of risks at low doses, potentiation between radiation and other agents, and the nature and role of host susceptibility factors. Data from various studies are used to illustrate these questions. PMID:2759057
Radiation techniques for esophageal cancer.
Zhang, Minsi; Wu, Abraham J
2017-10-01
Radiotherapy plays a crucial role in the curative management of localized esophageal cancer, both as definitive and preoperative therapy. For definitive therapy, the standard radiation dose is 50.4 Gy in 28 fractions and should be delivered with concurrent chemotherapy. Chemoradiotherapy also has a wellestablished benefit in the preoperative setting, as established in the CROSS randomized trial. Radiation fields are typically generous, to account for subclinical extension of disease along the esophagus and to regional nodes. Three-dimensional conformal radiation is the current standard technique for esophageal cancer, though intensity-modulated radiation therapy is increasingly utilized and may improve the outcomes of esophageal radiotherapy by reducing radiation dose to critical normal tissues.
Three micron silicon-on-sapphire technology evaluation programme
NASA Astrophysics Data System (ADS)
Wootten, D.
1988-01-01
CellSOS, a standard design and manufacturable route used to produce radiation hardened SOS integrated circuits was evaluated. Single event upset (SEU) and total-dose aspects of radiation with extended life test data were considered. Worst case bias during irradiation for SOS RAMs is with 5V on VDD and inputs held high. The parameter with the major movement with radiation is standby current; no other parameter shows significant change with accumulated dose. The functional failure point of both RAMs with radiation is caused by this increase in current and not by the Vt shift preventing correct transistor operation. Life testing of irradiated and nonirradiated devices shows very little movement in parametrics over the 2000 hr except for standby current. The ability of the 3 micron SOS cell and SLM gate array products to maintain functionality and acceptable performance characteristic to total dose gamma radiation levels exceeding 1MRad (Si) is proved. The 3 micron SOS process has very good immunity to SEU within the space environment. Tests on the 4K RAM confirm that there is no latch-up mechanism present in SOS. The results also demonstrate that, provided the six transistors cell and layout is used for all 3 micron SOS RAMs, similar upset rates will be achieved.
Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P
2018-01-01
Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.
Current issues and actions in radiation protection of patients.
Holmberg, Ola; Malone, Jim; Rehani, Madan; McLean, Donald; Czarwinski, Renate
2010-10-01
Medical application of ionizing radiation is a massive and increasing activity globally. While the use of ionizing radiation in medicine brings tremendous benefits to the global population, the associated risks due to stochastic and deterministic effects make it necessary to protect patients from potential harm. Current issues in radiation protection of patients include not only the rapidly increasing collective dose to the global population from medical exposure, but also that a substantial percentage of diagnostic imaging examinations are unnecessary, and the cumulative dose to individuals from medical exposure is growing. In addition to this, continued reports on deterministic injuries from safety related events in the medical use of ionizing radiation are raising awareness on the necessity for accident prevention measures. The International Atomic Energy Agency is engaged in several activities to reverse the negative trends of these current issues, including improvement of the justification process, the tracking of radiation history of individual patients, shared learning of safety significant events, and the use of comprehensive quality audits in the clinical environment. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Space radiation risk limits and Earth-Moon-Mars environmental models
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Hu, Shaowen; Schwadron, Nathan A.; Kozarev, K.; Townsend, Lawrence W.; Kim, Myung-Hee Y.
2010-12-01
We review NASA's short-term and career radiation limits for astronauts and methods for their application to future exploration missions outside of low Earth orbit. Career limits are intended to restrict late occurring health effects and include a 3% risk of exposure-induced death from cancer and new limits for central nervous system and heart disease risks. Short-term dose limits are used to prevent in-flight radiation sickness or death through restriction of the doses to the blood forming organs and to prevent clinically significant cataracts or skin damage through lens and skin dose limits, respectively. Large uncertainties exist in estimating the health risks of space radiation, chiefly the understanding of the radiobiology of heavy ions and dose rate and dose protraction effects, and the limitations in human epidemiology data. To protect against these uncertainties NASA estimates the 95% confidence in the cancer risk projection intervals as part of astronaut flight readiness assessments and mission design. Accurate organ dose and particle spectra models are needed to ensure astronauts stay below radiation limits and to support the goal of narrowing the uncertainties in risk projections. Methodologies for evaluation of space environments, radiation quality, and organ doses to evaluate limits are discussed, and current projections for lunar and Mars missions are described.
A method to reduce patient's eye lens dose in neuro-interventional radiology procedures
NASA Astrophysics Data System (ADS)
Safari, M. J.; Wong, J. H. D.; Kadir, K. A. A.; Sani, F. M.; Ng, K. H.
2016-08-01
Complex and prolonged neuro-interventional radiology procedures using the biplane angiography system increase the patient's risk of radiation-induced cataract. Physical collimation is the most effective way of reducing the radiation dose to the patient's eye lens, but in instances where collimation is not possible, an attenuator may be useful in protecting the eyes. In this study, an eye lens protector was designed and fabricated to reduce the radiation dose to the patients' eye lens during neuro-interventional procedures. The eye protector was characterised before being tested on its effectiveness in a simulated aneurysm procedure on an anthropomorphic phantom. Effects on the automatic dose rate control (ADRC) and image quality are also evaluated. The eye protector reduced the radiation dose by up to 62.1% at the eye lens. The eye protector is faintly visible in the fluoroscopy images and increased the tube current by a maximum of 3.7%. It is completely invisible in the acquisition mode and does not interfere with the clinical procedure. The eye protector placed within the radiation field of view was able to reduce the radiation dose to the eye lens by direct radiation beam of the lateral x-ray tube with minimal effect on the ADRC system.
Brodin, N Patrik; Velcich, Anna; Guha, Chandan; Tomé, Wolfgang A
2017-01-01
Currently, no readily available mitigators exist for acute abdominal radiation injury. Here, we present an animal model for precise and homogenous limb-sparing abdominal irradiation (LSAIR) to study the radiation-induced gastrointestinal syndrome (RIGS). The LSAIR technique was developed using the small animal radiation research platform (SARRP) with image guidance capabilities. We delivered LSAIR at doses between 14 and 18 Gy on 8- to 10-week-old male C57BL/6 mice. Histological analysis was performed to confirm that the observed mortality was due to acute abdominal radiation injury. A steep dose-response relationship was found for survival, with no deaths seen at doses below 16 Gy and 100% mortality at above 17 Gy. All deaths occurred between 6 and 10 days after irradiation, consistent with the onset of RIGS. This was further confirmed by histological analysis showing clear differences in the number of regenerative intestinal crypts between animals receiving sublethal (14 Gy) and 100% lethal (18 Gy) radiation. The developed LSAIR technique provides uniform dose delivery with a clear dose response, consistent with acute abdominal radiation injury on histological examination. This model can provide a useful tool for researchers investigating the development of mitigators for accidental or clinical high-dose abdominal irradiation.
Computed tomography and patient risk: Facts, perceptions and uncertainties
Power, Stephen P; Moloney, Fiachra; Twomey, Maria; James, Karl; O’Connor, Owen J; Maher, Michael M
2016-01-01
Since its introduction in the 1970s, computed tomography (CT) has revolutionized diagnostic decision-making. One of the major concerns associated with the widespread use of CT is the associated increased radiation exposure incurred by patients. The link between ionizing radiation and the subsequent development of neoplasia has been largely based on extrapolating data from studies of survivors of the atomic bombs dropped in Japan in 1945 and on assessments of the increased relative risk of neoplasia in those occupationally exposed to radiation within the nuclear industry. However, the association between exposure to low-dose radiation from diagnostic imaging examinations and oncogenesis remains unclear. With improved technology, significant advances have already been achieved with regards to radiation dose reduction. There are several dose optimization strategies available that may be readily employed including omitting unnecessary images at the ends of acquired series, minimizing the number of phases acquired, and the use of automated exposure control as opposed to fixed tube current techniques. In addition, new image reconstruction techniques that reduce radiation dose have been developed in recent years with promising results. These techniques use iterative reconstruction algorithms to attain diagnostic quality images with reduced image noise at lower radiation doses. PMID:28070242
Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide
2018-03-01
To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vives i Batlle, Jordi; Cuypers, Ann
2014-07-01
There is a need for a better understanding of biological effects of radiation exposure in non-human biota. Correct description of these effects requires a more detailed model of dosimetry than that available in current risk assessment tools, particularly for plants. In this paper, we propose a simple model for dose calculations in roots and shoots of Arabidopsis thaliana seedlings exposed to radionuclides in a hydroponic exposure setup. This model is used to compare absorbed doses for three radionuclides, (241)Am (α-radiation), (90)Sr (β-radiation) and (133)Ba (γ radiation). Using established dosimetric calculation methods, dose conversion coefficient values were determined for each organ separately based on uptake data from the different plant organs. These calculations were then compared to the DCC values obtained with the ERICA tool under equivalent geometry assumptions. When comparing with our new method, the ERICA tool appears to overestimate internal doses and underestimate external doses in the roots for all three radionuclides, though each to a different extent. These observations might help to refine dose-response relationships. The DCC values for (90)Sr in roots are shown to deviate the most. A dose-effect curve for (90)Sr β-radiation has been established on biomass and photosynthesis endpoints, but no significant dose-dependent effects are observed. This indicates the need for use of endpoints at the molecular and physiological scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
Almén, Anja; Båth, Magnus
2016-06-01
The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Task-based measures of image quality and their relation to radiation dose and patient risk
Barrett, Harrison H.; Myers, Kyle J.; Hoeschen, Christoph; Kupinski, Matthew A.; Little, Mark P.
2015-01-01
The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality. PMID:25564960
Radiation-induced bystander effect and adaptive response in mammalian cells
NASA Technical Reports Server (NTRS)
Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.
2004-01-01
Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
RADIATION PROTECTION CABIN FOR CATHETER-DIRECTED LIVER INTERVENTIONS: OPERATOR DOSE ASSESSMENT.
Maleux, Geert; Bergans, Niki; Bosmans, Hilde; Bogaerts, Ria
2016-09-01
The number and complexity of interventional radiological procedures and in particular catheter-directed liver interventions have increased substantially. The current study investigates the reduction of personal doses when using a dedicated radiation protection cabin (RPC) for these procedures. Operator and assistant doses were assessed for 3 series of 20 chemoinfusion/chemoembolisation interventions, including an equal number of procedures with and without RPC. Whole body doses, finger doses and doses at the level of knees and eyes were evaluated with different types of TLD-100 Harshaw dosemeters. Dosemeters were also attached on the three walls of the RPC. The operator doses were significantly reduced by the RPC, but also without RPC, the doses appear to be limited as a result of thorough optimisation with existing radiation protection tools. The added value of the RPC should thus be determined by the outcome of balancing dose reduction and other aspects such as ergonomic benefits. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation?
Nguyen, Huynh; Morgan, David A F; Forwood, Mark R
2007-01-01
For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10(-6). The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks.
Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates
NASA Astrophysics Data System (ADS)
Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.
2016-07-01
Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.
Commentary: Ethical Issues of Current Health-Protection Policies on Low-Dose Ionizing Radiation
Socol, Yehoshua; Dobrzyński, Ludwik; Doss, Mohan; Feinendegen, Ludwig E.; Janiak, Marek K.; Miller, Mark L.; Sanders, Charles L.; Scott, Bobby R.; Ulsh, Brant; Vaiserman, Alexander
2014-01-01
The linear no-threshold (LNT) model of ionizing-radiation-induced cancer is based on the assumption that every radiation dose increment constitutes increased cancer risk for humans. The risk is hypothesized to increase linearly as the total dose increases. While this model is the basis for radiation safety regulations, its scientific validity has been questioned and debated for many decades. The recent memorandum of the International Commission on Radiological Protection admits that the LNT-model predictions at low doses are “speculative, unproven, undetectable and ‘phantom’.” Moreover, numerous experimental, ecological, and epidemiological studies show that low doses of sparsely-ionizing or sparsely-ionizing plus highly-ionizing radiation may be beneficial to human health (hormesis/adaptive response). The present LNT-model-based regulations impose excessive costs on the society. For example, the median-cost medical program is 5000 times more cost-efficient in saving lives than controlling radiation emissions. There are also lives lost: e.g., following Fukushima accident, more than 1000 disaster-related yet non-radiogenic premature deaths were officially registered among the population evacuated due to radiation concerns. Additional negative impacts of LNT-model-inspired radiophobia include: refusal of some patients to undergo potentially life-saving medical imaging; discouragement of the study of low-dose radiation therapies; motivation for radiological terrorism and promotion of nuclear proliferation. PMID:24910586
Evaluation of background radiation dose contributions in the United Arab Emirates.
Goddard, Braden; Bosc, Emmanuel; Al Hasani, Sarra; Lloyd, Cody
2018-09-01
The natural background radiation consists of three main components; cosmic, terrestrial, and skyshine. Although there are currently methods available to measure the total dose rate from background radiation, no established methods exist that allow for the measurement of each component the background radiation. This analysis consists of a unique methodology in which the dose rate contribution from each component of the natural background radiation is measured and calculated. This project evaluates the natural background dose rate in the Abu Dhabi City region from all three of these components using the developed methodology. Evaluating and understanding the different components of background radiation provides a baseline allowing for the detection, and possibly attribution, of elevated radiation levels. Measurements using a high-pressure ion chamber with different shielding configurations and two offshore measurements provided dose rate information that were attributed to the different components of the background radiation. Additional spectral information was obtained using an HPGe detector to verify and quantify the presence of terrestrial radionuclides. By evaluating the dose rates of the different shielding configurations the comic, terrestrial, and skyshine contribution in the Abu Dhabi City region were determined to be 33.0 ± 1.7, 15.7 ± 2.5, and 2.4 ± 2.1 nSv/h, respectively. Copyright © 2018. Published by Elsevier Ltd.
Dauer, Lawrence T; Ainsbury, Elizabeth A; Dynlacht, Joseph; Hoel, David; Klein, Barbara E K; Mayer, Donald; Prescott, Christina R; Thornton, Raymond H; Vano, Eliseo; Woloschak, Gayle E; Flannery, Cynthia M; Goldstein, Lee E; Hamada, Nobuyuki; Tran, Phung K; Grissom, Michael P; Blakely, Eleanor A
2017-10-01
This review summarizes the conclusions and recommendations of the new National Council on Radiation Protection and Measurements (NCRP) Commentary No. 26 guidance on radiation dose limits for the lens of the eye. The NCRP addressed radiation protection principles in respect to the lens of the eye, discussed the current understanding of eye biology and lens effects, reviewed and evaluated epidemiology, and assessed exposed populations with the potential for significant radiation exposures to the lens while suggesting monitoring and protection practices. Radiation-induced damage to the lens of the eye can include the loss of clarity resulting in opacification or clouding several years after exposure. The impact is highly dependent on the type of radiation, how the exposure of the lens was delivered, the genetic susceptibilities of the individual exposed, and the location of the opacity relative to the visual axis of the individual. The preponderance of epidemiological evidence suggests that lens damage could occur at lower doses than previously considered and the NCRP has determined that it is prudent to reduce the recommended annual lens of the eye occupational dose limit from an equivalent dose of 150 mSv to an absorbed dose of 50 mGy. Significant additional research is still needed in the following areas: comprehensive evaluation of the overall effects of ionizing radiation on the eye, dosimetry methodology and dose-sparing optimization techniques, additional high quality epidemiology studies, and a basic understanding of the mechanisms of cataract development.
Cancer risk above 1 Gy and the impact for space radiation protection
NASA Astrophysics Data System (ADS)
Schneider, Uwe; Walsh, Linda
2009-07-01
Analyses of the epidemiological data on the Japanese A-bomb survivors, who were exposed to γ-rays and neutrons, provide most current information on the dose-response of radiation-induced cancer. Since the dose span of main interest is usually between 0 and 1 Gy, for radiation protection purposes, the analysis of the A-bomb survivors is often focused on this range. However, estimates of cancer risk for doses larger than 1 Gy are becoming more important for long-term manned space missions. Therefore in this work, emphasis is placed on doses larger than 1 Gy with respect to radiation-induced solid cancer and leukemia mortality. The present analysis of the A-bomb survivors data was extended by including two extra high-dose categories and applying organ-averaged dose instead of the colon-weighted dose. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear and a linear-exponential dose-response relationship using a dose and dose-rate effectiveness factor (DDREF) of both one and two. The work presented here implies that the use of organ-averaged dose, a dose-dependent neutron RBE and the bending-over of the dose-response relationship for radiation-induced cancer could result in a reduction of radiation risk by around 50% above 1 Gy. This could impact radiation risk estimates for space crews on long-term mission above 500 days who might be exposed to doses above 1 Gy. The consequence of using a DDREF of one instead of two increases cancer risk by about 40% and would therefore balance the risk decrease described above.
Reducing rectal injury in men receiving prostate cancer radiation therapy: current perspectives
Serrano, Nicholas A; Kalman, Noah S; Anscher, Mitchell S
2017-01-01
Dose escalation is now the standard of care for the treatment of prostate cancer with radiation therapy. However, the rectum tends to be the dose-limiting structure when treating prostate cancer, given its close proximity. Early and late toxicities can occur when the rectum receives large doses of radiation therapy. New technologies allow for prevention of these toxicities. In this review, we examine the evidence that supports various dose constraints employed to prevent these rectal injuries from occurring. We also examine the use of intensity-modulated radiation therapy and how this compares to older radiation therapy techniques that allow for further sparing of the rectum during a radiation therapy course. We then review the literature on endorectal balloons and the effects of their daily use throughout a radiation therapy course. Tissue spacers are now being investigated in greater detail; these devices are injected into the rectoprostatic fascia to physically increase the distance between the prostate and the anterior rectal wall. Last, we review the use of systemic drugs, specifically statin medications and antihypertensives, as well as their impact on rectal toxicity. PMID:28814898
LDEF satellite radiation study
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
1994-01-01
Some early results are summarized from a program under way to utilize LDEF satellite data for evaluating and improving current models of the space radiation environment in low earth orbit. Reported here are predictions and comparisons with some of the LDEF dose and induced radioactivity data, which are used to check the accuracy of current models describing the magnitude and directionality of the trapped proton environment. Preliminary findings are that the environment models underestimate both dose and activation from trapped protons by a factor of about two, and the observed anisotropy is higher than predicted.
Environmental Radiation Effects: A Need to Question Old Paradigms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinton, T.G.; Bedford, J.; Ulsh, B.
2003-03-27
A historical perspective is given of the current paradigm that does not explicitly protect the environment from radiation, but instead, relies on the concept that if dose limits are set to protect humans then the environment is automatically protected as well. We summarize recent international questioning of this paradigm and briefly present three different frameworks for protecting biota that are being considered by the U.S. DOE, the Canadian government and the International Commission on Radiological Protection. We emphasize that an enhanced collaboration is required between what has traditionally been separated disciplines of radiation biology and radiation ecology if we aremore » going to properly address the current environmental radiation problems. We then summarize results generated from an EMSP grant that allowed us to develop a Low Dose Irradiation Facility that specifically addresses effects of low-level, chronic irradiation on multiple levels of biological organization.« less
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)
1994-01-01
A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Bobby, R., Ph.D.
2003-06-27
OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer.more » Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for combined exposure to low- and high-LET radiations when based on the LNT or other models that exclude RR < 1. Our results for high-LET radiation are consistent with the LNT hypothesis but only where there is no additional low-LET contribution (e.g., gamma rays) to the total dose. For high-LET neutron sources, gamma rays arise (especially in vivo) for large mammals such as humans from neutron interactions with tissue. The gamma rays might provide some protection from low-dose-related stochastic effects via inducing the protective bystander apoptosis effect that is considered to contribute to tissue cleansing via removal of problematic cells.« less
Sommers, Christopher H; Cooke, Peter H
2009-04-01
Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.
Boone, John M.; Hendee, William R.; McNitt-Gray, Michael F.
2012-01-01
This article summarizes the proceedings of a portion of the Radiation Dose Summit, which was organized by the National Institute of Biomedical Imaging and Bioengineering and held in Bethesda, Maryland, in February 2011. The current understandings of ways to optimize the benefit-risk ratio of computed tomography (CT) examinations are summarized and recommendations are made for priority areas of research to close existing gaps in our knowledge. The prospects of achieving a submillisievert effective dose CT examination routinely are assessed. © RSNA, 2012 PMID:22966066
Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates
NASA Technical Reports Server (NTRS)
Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce;
2011-01-01
We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, K; Lee, H; Kim, C
2016-06-15
Purpose: To reduce radiation dose to the patients, tube current modulation (TCM) method has been actively used in diagnostic CT systems. However, TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate whether the use of TCM method is desirable in kV-CBCT system for IGRT. We have developed an attenuation-based tube current modulation (a-TCM) method using the prior knowledge of treatment CT image of a patient. Methods: Patients go through a diagnostic CT scan for RT planning; therefore, using this prior information of CT images, one canmore » estimate the total attenuation of an x-ray through the patient body in a CBCT setting for radiation therapy. We performed a numerical study incorporating major factors into account such as polychromatic x-ray, scatter, noise, and bow-tie filter to demonstrate that a-TCM method can produce equivalent quality of images at reduced imaging radiation doses. Using the CT projector program, 680 projection images of the pediatric XCAT phantom were obtained both in conventional scanning condition, i.e., without modulating the tube current, and in the proposed a-TCM scanning condition. FDK reconstruction algorithm was used for image reconstruction, and the organ dose due to imaging radiation has been calculated in both cases and compared using GATE/Geant4 simulation toolkit. Results: Reconstructed CT images in the a-TCM method showed similar SSIM values and noise properties to the reference images acquired by the conventional CBCT. In addition, reduction of organ doses ranged from 12% to 27%. Conclusion: We have successfully demonstrated the feasibility and dosimetric merit of the a-TCM method for kV-CBCT, and envision that it can be a useful option of CBCT scanning that provides patient dose reduction without degrading image quality.« less
Dauer, Lawrence T; Ainsbury, Elizabeth A; Dynlacht, Joseph; Hoel, David; Klein, Barbara E K; Mayer, Don; Prescott, Christina R; Thornton, Raymond H; Vano, Eliseo; Woloschak, Gayle E; Flannery, Cynthia M; Goldstein, Lee E; Hamada, Nobuyuki; Tran, Phung K; Grissom, Michael P; Blakely, Eleanor A
2016-02-01
Previous National Council on Radiation Protection and Measurements (NCRP) publications have addressed the issues of risk and dose limitation in radiation protection and included guidance on specific organs and the lens of the eye. NCRP decided to prepare an updated commentary intended to enhance the previous recommendations provided in earlier reports. The NCRP Scientific Committee 1-23 (SC 1-23) is charged with preparing a commentary that will evaluate recent studies on the radiation dose response for the development of cataracts and also consider the type and severity of the cataracts as well as the dose rate; provide guidance on whether existing dose limits to the lens of the eye should be changed in the United States; and suggest research needs regarding radiation effects on and dose limits to the lens of the eye. A status of the ongoing work of SC 1-23 was presented at the Annual Meeting, "Changing Regulations and Radiation Guidance: What Does the Future Hold?" The following represents a synopsis of a few main points in the current draft commentary. It is likely that several changes will be forthcoming as SC 1-23 responds to subject matter expert review and develops a final document, expected by mid 2016.
Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina
2015-01-01
We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 ((137)Cs) in Seoul. Using information regarding the frequency and duration of passing via the (137)Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of (137)Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline.
McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; ...
2014-11-11
This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaO x) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×10 7 rad(Si)/s to 4.7 ×10 8 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×10 8 rad(Si)/s. This is the first dose rate study on any type ofmore » memristive memory technology. In addition to assessing the tolerance of TaO x memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less
Monitoring the eye lens: which dose quantity is adequate?
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.
2010-07-01
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity Hp(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity Hp(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of Hp(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of Hp(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of Hp(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.
Monitoring the eye lens: which dose quantity is adequate?
Behrens, R; Dietze, G
2010-07-21
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H(p)(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H(p)(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H(p)(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H(p)(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H(p)(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.
EVA dosimetry in manned spacecraft.
Thomson, I
1999-12-06
Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.
Shafirkin, A V; Kolomenskiĭ, A V; Mitrikas, V G; Petrov, V M
2010-01-01
The current design philosophy of a Mars orbiting vehicle, takeoff and landing systems and the transport return vehicle was taken into consideration for calculating the equivalent doses imparted to cosmonaut's organs and tissues by galactic cosmic rays, solar rays and the Earth's radiation belts, values of the total radiation risk over the lifespan following the mission and over the whole career period, and possible shortening of life expectancy. There are a number of uncertainties that should be evaluated, and radiation limits specified before setting off to Mars.
The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa
NASA Astrophysics Data System (ADS)
de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim
2017-02-01
The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.
Rock, Jack P; Ryu, Samuel; Yin, Fang-Fang; Schreiber, Faye; Abdulhak, Muwaffak
2004-01-01
Traditional management strategies for patients with spinal tumors have undergone considerable changes during the last 15 years. Significant improvements in digital imaging, computer processing, and treatment planning have provided the basis for the application of stereotactic techniques, now the standard of care for intracranial pathology, to spinal pathology. In addition, certain of these improvements have also allowed us to progress from frame-based to frameless systems which now act to accurately assure the delivery of high doses of radiation to a precisely defined target volume while sparing injury to adjacent normal tissues. In this article we will describe the evolution from yesterday's standards for radiation therapy to the current state of the art for the treatment of patients with spinal tumors. This presentation will include a discussion of radiation dosing and toxicity, the overall process of extracranial radiation delivery, and the current state of the art regarding Cyberknife, Novalis, and tomotherapy. Additional discussion relating current research protocols and future directions for the management of benign tumors of the spine will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov; Gilbert, Ethel; Curtis, Rochelle
Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studiesmore » of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.« less
The features of radiation dose variations onboard ISS and Mir space station: comparative study.
Tverskaya, L V; Panasyuk, M I; Reizman, S Ya; Sosnovets, E N; Teltsov, M V; Tsetlin, V V
2004-01-01
The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, S; Wang, Y; Weng, H
Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiationmore » dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.« less
NASA Astrophysics Data System (ADS)
Nelson, Johanna; Yang, Yuan; Misra, Sumohan; Andrews, Joy C.; Cui, Yi; Toney, Michael F.
2013-09-01
Radiation damage is a topic typically sidestepped in formal discussions of characterization techniques utilizing ionizing radiation. Nevertheless, such damage is critical to consider when planning and performing experiments requiring large radiation doses or radiation sensitive samples. High resolution, in situ transmission X-ray microscopy of Li-ion batteries involves both large X-ray doses and radiation sensitive samples. To successfully identify changes over time solely due to an applied current, the effects of radiation damage must be identified and avoided. Although radiation damage is often significantly sample and instrument dependent, the general procedure to identify and minimize damage is transferable. Here we outline our method of determining and managing the radiation damage observed in lithium sulfur batteries during in situ X-ray imaging on the transmission X-ray microscope at Stanford Synchrotron Radiation Lightsource.
Mind the Gap: Exploring the Underground of the NASA Space Cancer Risk Model
NASA Technical Reports Server (NTRS)
Chappell, L. J.; Elgart, S. R.; Milder, C. M.; Shavers, M. R.; Semones, E. J.; Huff, J. L.
2017-01-01
The REID quantifies the lifetime risk of death from radiation-induced cancer in an exposed astronaut. The NASA Space Cancer Risk (NSCR) 2012 mode incorporates elements from physics, biology, epidemiology, and statistics to generate the REID distribution. The current model quantifies the space radiation environment, radiation quality, and dose-rate effects to estimate a NASA-weighted dose. This weighted dose is mapped to the excess risk of radiation-induced cancer mortality from acute exposures to gamma rays and then transferred to an astronaut population. Finally, the REID is determined by integrating this risk over the individual's lifetime. The calculated upper 95% confidence limit of the REID is used to restrict an astronaut's permissible mission duration (PMD) for a proposed mission. As a statistical quantity characterized by broad, subjective uncertainties, REID estimates for space missions result in wide distributions. Currently, the upper 95% confidence level is over 350% larger than the mean REID value, which can severely limit an astronaut's PMD. The model incorporates inputs from multiple scientific disciplines in the risk estimation process. Physics and particle transport models calculate how radiation moves through space, penetrates spacecraft, and makes its way to the human beings onboard. Epidemiological studies of exposures from atomic bombings, medical treatments, and power plants are used to quantify health risks from acute and chronic low linear energy transfer (LET) ionizing radiation. Biological studies in cellular and animal models using radiation at various LETs and energies inform quality metrics for ions present in space radiation. Statistical methodologies unite these elements, controlling for mathematical and scientific uncertainty and variability. Despite current progress, these research platforms contain knowledge gaps contributing to the large uncertainties still present in the model. The NASA Space Radiation Program Element (SRPE) defines the knowledge gaps that impact our understanding of the cancer risks. These gaps are outlined in NASA's Human Research Roadmap [4], which identifies the research questions and actions recommended for reducing the uncertainty in the current NSCR model and for formulation of future models. The greatest contributors to uncertainty in the current model include radiation quality, dose rate effects, and the transfer of exposure-based risk from other populations to an astronaut population. Future formulations of the risk model may benefit from including other potential sources of uncertainty such as space dosimetry, errors in human epidemiology data, and the impact of microgravity and other spaceflight stressors. Here, we discuss the current capabilities of the NSCR-2012 model and several immediate research needs, highlighting areas expected to have an operational impact on the current model schema. The following subway-style route map outlines the NSCR-2012 model (Green Line), emphasizing the research gaps in the Human Research Roadmap for risk of radiation-induced carcinogenesis (Stops on Dashed Lines). The map diagrams how these research gaps feed specific portions of the model.
NASA Astrophysics Data System (ADS)
El-Jaby, Samy; Richardson, Richard B.
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.
El-Jaby, Samy; Richardson, Richard B
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Matthew A.; Ramakrishnan, Narayani
In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate those individuals who must receive medical attention. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation the cellular machinery is modified. For example: large-scale changes occur in the gene expression profiles involving a broad variety of cellular pathways after a wide range of both low dose (<10 cGy) and high dose (>10 cGy) ionizing radiation exposures. Symposium 12 was organized to address a wide range of biological effects using the latestmore » technologies. To address current models following ionizing radiation exposure, methods in biodosimetry and dose effects the symposia featured a general overview titled “Model Systems and Current Approaches in Biodosimetry” by Matthew A. Coleman, from Lawrence Livermore National Laboratory and a talk entitled “Brief Overview of Biodosimetry Projects in the NIH Rad/Nuc Program” by Dr. Narayani Ramakrishnan, National Institute of Allergy and Infectious Diseases. These two talk set the tone for issues in data and model integration as well as addressing the national need for robust technologies for biological dosimetry. The report continues with more description of the presentations, along with the agenda and abstracts of the papers presented.« less
2018-01-01
Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p < 0.0001). Image noise (4.6 ± 0.5 Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p < 0.01) with the CTDIvol before and after the CT scan. The CTDIvol after CT scan showed modest positive correlation (r = 0.49; p ≤ 0.001) with image noise in group 1 but no significant correlation (p > 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.
Marty, V N; Vlkolinsky, R; Minassian, N; Cohen, T; Nelson, G A; Spigelman, I
2014-12-01
The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions.
Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells
Neumaier, Teresa; Swenson, Joel; Pham, Christopher; Polyzos, Aris; Lo, Alvin T.; Yang, PoAn; Dyball, Jane; Asaithamby, Aroumougame; Chen, David J.; Bissell, Mina J.; Thalhammer, Stefan; Costes, Sylvain V.
2012-01-01
The concept of DNA “repair centers” and the meaning of radiation-induced foci (RIF) in human cells have remained controversial. RIFs are characterized by the local recruitment of DNA damage sensing proteins such as p53 binding protein (53BP1). Here, we provide strong evidence for the existence of repair centers. We used live imaging and mathematical fitting of RIF kinetics to show that RIF induction rate increases with increasing radiation dose, whereas the rate at which RIFs disappear decreases. We show that multiple DNA double-strand breaks (DSBs) 1 to 2 μm apart can rapidly cluster into repair centers. Correcting mathematically for the dose dependence of induction/resolution rates, we observe an absolute RIF yield that is surprisingly much smaller at higher doses: 15 RIF/Gy after 2 Gy exposure compared to approximately 64 RIF/Gy after 0.1 Gy. Cumulative RIF counts from time lapse of 53BP1-GFP in human breast cells confirmed these results. The standard model currently in use applies a linear scale, extrapolating cancer risk from high doses to low doses of ionizing radiation. However, our discovery of DSB clustering over such large distances casts considerable doubts on the general assumption that risk to ionizing radiation is proportional to dose, and instead provides a mechanism that could more accurately address risk dose dependency of ionizing radiation. PMID:22184222
Establishment and validation of a method for multi-dose irradiation of cells in 96-well microplates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abatzoglou, Ioannis; Zois, Christos E.; Pouliliou, Stamatia
2013-02-15
Highlights: ► We established a method for multi-dose irradiation of cell cultures within a 96-well plate. ► Equations to adjust to preferable dose levels are produced and provided. ► Up to eight different dose levels can be tested in one microplate. ► This method results in fast and reliable estimation of radiation dose–response curves. -- Abstract: Microplates are useful tools in chemistry, biotechnology and molecular biology. In radiobiology research, these can be also applied to assess the effect of a certain radiation dose delivered to the whole microplate, to test radio-sensitivity, radio-sensitization or radio-protection. Whether different radiation doses can bemore » accurately applied to a single 96-well plate to further facilitate and accelerated research by one hand and spare funds on the other, is a question dealt in the current paper. Following repeated ion-chamber, TLD and radiotherapy planning dosimetry we established a method for multi-dose irradiation of cell cultures within a 96-well plate, which allows an accurate delivery of desired doses in sequential columns of the microplate. Up to eight different dose levels can be tested in one microplate. This method results in fast and reliable estimation of radiation dose–response curves.« less
Restoration of low-dose digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Borges, Lucas R.; Azzari, Lucio; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.; Foi, Alessandro
2018-06-01
In breast cancer screening, the radiation dose must be kept to the minimum necessary to achieve the desired diagnostic objective, thus minimizing risks associated with cancer induction. However, decreasing the radiation dose also degrades the image quality. In this work we restore digital breast tomosynthesis (DBT) projections acquired at low radiation doses with the goal of achieving a quality comparable to that obtained from current standard full-dose imaging protocols. A multiframe denoising algorithm was applied to low-dose projections, which are filtered jointly. Furthermore, a weighted average was used to inject a varying portion of the noisy signal back into the denoised one, in order to attain a signal-to-noise ratio comparable to that of standard full-dose projections. The entire restoration framework leverages a signal-dependent noise model with quantum gain which varies both upon the projection angle and on the pixel position. A clinical DBT system and a 3D anthropomorphic breast phantom were used to validate the proposed method, both on DBT projections and slices from the 3D reconstructed volume. The framework is shown to attain the standard full-dose image quality from data acquired at 50% lower radiation dose, whereas progressive loss of relevant details compromises the image quality if the dosage is further decreased.
Automated extraction of radiation dose information for CT examinations.
Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W
2010-11-01
Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas
2016-01-01
To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.
NASA Astrophysics Data System (ADS)
Chen, Liang-Kuang; Wu, Tung-Hsin; Yang, Ching-Ching; Tsai, Chia-Jung; Lee, Jason J. S.
2010-07-01
The aim of this study is to assess radiation dose and the corresponding image quality from suggested CT protocols which depends on different mean heart rate and high heart rate variability by using 256-slice CT. Fifty consecutive patients referred for a cardiac CT examination were included in this study. All coronary computed tomographic angiography (CCTA) examinations were performed on a 256-slice CT scanner with one of five different protocols: retrospective ECG-gating (RGH) with full dose exposure in all R-R intervals (protocol A), RGH of 30-80% pulsing window with tube current modulation (B), RGH of 78±5% pulsing window with tube current modulation (C), prospective ECG-triggering (PGT) of 78% R-R interval with 5% padding window (D) and PGT of 78% R-R interval without padding window (E). Radiation dose parameters and image quality scoring were determined and compared. In this study, no significant differences were found in comparison on image quality of the five different protocols. Protocol A obtained the highest radiation dose comparing with those of protocols B, C, D and E by a factor of 1.6, 2.4, 2.5 and 4.3, respectively ( p<0.001), which were ranged between 2.7 and 11.8 mSv. The PGT could significantly reduce radiation dose delivered to patients, as compared to the RGH. However, the use of PGT has limitations and is only good in assessing cases with lower mean heart rate and stable heart rate variability. With higher mean heart rate and high heart rate variability circumstances, the RGH within 30-80% of R-R interval pulsing window is suggested as a feasible technique for assessing diagnostic performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benahmed, A.; Elkarch, H.
This new portable radiological environmental monitor consists of 2 main components, Gamma ionization chamber and a FPGA-based electronic enclosure linked to convivial software for treatment and analyzing. The HPIC ion chamber is the heart of this radiation measurement system and is running in range from 0 to 100 mR/h, so that the sensitivity at the output is 20 mV/μR/h, with a nearly flat energy response from 0,07 to 10 MEV. This paper presents a contribution for developing a new nuclear measurement data acquisition system based on Cyclone III FPGA Starter Kit ALTERA, and a user-friendly software to run real-time controlmore » and data processing. It was developed to substitute the older radiation monitor RSS-112 PIC installed in CNESTEN's Laboratory in order to improve some of its functionalities related to acquisition time and data memory capacity. As for the associated acquisition software, it was conceived under the virtual LabView platform from National Instrument, and offers a variety of system setup for radiation environmental monitoring. It gives choice to display both the statistical data and the dose rate. Statistical data shows a summary of current data, current time/date and dose integrator values, and the dose rate displays the current dose rate in large numbers for viewing from a distance as well as the date and time. The prototype version of this new instrument and its data processing software has been successfully tested and validated for viewing and monitoring the environmental radiation of Moroccan nuclear center. (authors)« less
OCCUPATIONAL RADIATION DOSES TO OPERATORS PERFORMING FLUOROSCOPICALLY-GUIDED PROCEDURES
Kim, Kwang Pyo; Miller, Donald L.; de Gonzalez, Amy Berrington; Balter, Stephen; Kleinerman, Ruth A.; Ostroumova, Evgenia; Simon, Steven L.; Linet, Martha S.
2012-01-01
In the past 30 years, the numbers and types of fluoroscopically-guided (FG) procedures have increased dramatically. The objective of the present study is to provide estimated radiation doses to physician specialists, other than cardiologists, who perform FG procedures. We searched Medline to identify English-language journal articles reporting radiation exposures to these physicians. We then identified several primarily therapeutic FG procedures that met specific criteria: well-defined procedures for which there were at least five published reports of estimated radiation doses to the operator, procedures performed frequently in current medical practice, and inclusion of physicians from multiple medical specialties. These procedures were percutaneous nephrolithotomy (PCNL), vertebroplasty, orthopedic extremity nailing for treatment of fractures, biliary tract procedures, transjugular intrahepatic portosystemic shunt creation (TIPS), head/neck endovascular therapeutic procedures, and endoscopic retrograde cholangiopancreatography (ERCP). We abstracted radiation doses and other associated data, and estimated effective dose to operators. Operators received estimated doses per patient procedure equivalent to doses received by interventional cardiologists. The estimated effective dose per case ranged from 1.7 – 56μSv for PCNL, 0.1 – 101 μSv for vertebroplasty, 2.5 – 88μSv for orthopedic extremity nailing, 2.0 – 46μSv for biliary tract procedures, 2.5 – 74μSv for TIPS, 1.8 – 53μSv for head/neck endovascular therapeutic procedures, and 0.2 – 49μSv for ERCP. Overall, mean operator radiation dose per case measured over personal protective devices at different anatomic sites on the head and body ranged from 19 – 800 (median = 113) μSv at eye level, 6 – 1180 (median = 75)μSv at the neck, and 2 – 1600 (median = 302) μSv at the trunk. Operators’ hands often received greater doses than the eyes, neck or trunk. Large variations in operator doses suggest that optimizing procedure protocols and proper use of protective devices and shields might reduce occupational radiation dose substantially. PMID:22647920
UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH
Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.
2009-01-01
The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, Cheng B., E-mail: cheng.saw@aol.com; Battin, Frank; McKeague, Janice
2016-01-01
Dose or treatment planning management is necessary for the re-irradiation of intracranial relapses after focal irradiation, radiosurgery, or stereotactic radiotherapy. The current clinical guidelines for metastatic brain tumors are the use of focal irradiation if the patient presents with 4 lesions or less. Salvage treatments with the use of whole brain radiation therapy (WBRT) can then be used to limit disease progression if there is an intracranial relapse. However, salvage WBRT poses a number of challenges in dose planning to limit disease progression and preserve neurocognitive function. This work presents the dose planning management that addresses a method of delineatingmore » previously treated volumes, dose level matching, and the dose delivery techniques for WBRT.« less
Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight
NASA Technical Reports Server (NTRS)
Blue, Rebecca; Chancellor, Jeffery; Suresh, Rahul; Carnell, Lisa; Reyes, David; Nowadly, Craig; Antonsen, Erik
2018-01-01
Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight.
LNT IS THE BEST WE CAN DO - TO-DAY
Abstract
The form of the dose-response curve for radiation-induced cancers, particularly at low doses, is the subject of an ongoing and spirited debate. The present review describes the current data base and basis for establishing a low dose, linear no threshold (LNT) mode...
Radiation hazard during a manned mission to Mars.
Jäkel, Oliver
2004-01-01
The radiation hazard of interplanetary flights is currently one of the major obstacles to manned missions to Mars. Highly energetic, heavy-charged particles from galactic cosmic radiation can not be sufficiently shielded in space vehicles. The long-term radiation effects to humans of these particles are largely unknown. In addition, unpredictable storms of solar particles may expose the crew to doses that lead to acute radiation effects. A manned flight to Mars currently seems to be a high-risk adventure. This article provides an overview on the radiation sources and risks for a crew on a manned flight to Mars, as currently estimated by scientists of the US National Administration for Space and Aeronautics (NASA) and the Space Studies Board (SSB) of the US National Research Council.
NASA Astrophysics Data System (ADS)
Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal
2017-05-01
Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor frequency and size was similar irrespective of energetic heavy ion radiation dose rate suggesting that carcinogenic potential of energetic heavy ions is independent of dose rate.
Gustafsson, H; Lund, E; Olsson, S
2008-09-07
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
NASA Astrophysics Data System (ADS)
Gustafsson, H.; Lund, E.; Olsson, S.
2008-09-01
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose
Chin, Cynthia; Cody, Dianna D.; Gupta, Rajiv; Hess, Christopher P.; Kalra, Mannudeep K.; Kofler, James M.; Krishnam, Mayil S.; Einstein, Andrew J.
2014-01-01
The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities and various indications require unique protocols, but there remains room for standardization and optimization. In this paper we summarize approaches to reduce dose, as discussed in lectures comprising the first session of the 2013 UCSF Virtual Symposium on Radiation Safety in Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing-tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose. PMID:24589403
Carpeggiani, Clara; Picano, Eugenio
2016-06-01
Every radiological and nuclear medicine examination confers a definite long-term risk of cancer, but most patients undergoing such examinations receive no or inaccurate information about radiation dose and corresponding risk related to the dose received. Informed consent is a procedure to support (not substitute) the physician/patient dialogue and relationship, facilitating a free, informed and aware expression of the patient's will in the principle of patient autonomy. Physicians are responsible for providing patients with all the information on risks, benefits and alternatives useful to the patient to make the decision. In current radiological practice the information on the radiation dose and long-term cancer risks is difficult to find and not easy to understand. The form using plain language should spell-out the type of examination, the effective dose (mSv), the effective dose expressed in number of chest radiographs and the risk of cancer. The current practice clashes against the guidelines and the law.
Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Michael B.; Kane, Jave; Nasstrom, John
Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction,more » that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).« less
A Critique of Recent Epidemiologic Studies of Cancer Mortality Among Nuclear Workers.
Scott, Bobby R
2018-01-01
Current justification by linear no-threshold (LNT) cancer risk model advocates for its use in low-dose radiation risk assessment is now mainly based on results from flawed and unreliable epidemiologic studies that manufacture small risk increases (ie, phantom risks). Four such studies of nuclear workers, essentially carried out by the same group of epidemiologists, are critiqued in this article. Three of the studies that forcibly applied the LNT model (inappropriate null hypothesis) to cancer mortality data and implicated increased mortality risk from any radiation exposure, no matter how small the dose, are demonstrated to manufacture risk increases for doses up to 100 mSv (or 100 mGy). In a study where risk reduction (hormetic effect/adaptive response) was implicated for nuclear workers, it was assumed by the researchers to relate to a "strong healthy worker effect" with no consideration of the possibility that low radiation doses may help prevent cancer mortality (which is consistent with findings from basic radiobiological research). It was found with basic research that while large radiation doses suppress our multiple natural defenses (barriers) against cancer, these barriers are enhanced by low radiation doses, thereby decreasing cancer risk, essentially rendering the LNT model to be inconsistent with the data.
Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina
2015-01-01
Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047
Effect of topogram-tube angle combination on CT radiation dose reduction
NASA Astrophysics Data System (ADS)
Shim, J.; Yoon, M.
2017-09-01
This study assessed the ability of various types of topograms, when used with an automatic tube current modulation (ATCM) technique, to reduce radiation dose from computed tomography (CT) scans. Three types of topograms were used with the ATCM technique: (i) anteroposterior (AP) topograms alone, (ii) AP topograms followed by lateral topograms, and (iii) lateral topograms followed by AP topograms. Various regions (chest, abdomen and whole-body) of a humanoid phantom were scanned at several tube voltages (80, 100 and 120 kVp) with the selected topograms. Although the CT dose depended on the order of topograms, the CT dose with respect to patient positioning depended on the number of topograms performed. The magnitude of the difference in CT dose between number and order of topograms was greater for the scans of the abdomen than the chest. These results suggest that, for the Siemens SOMATOM Definition AS CT scanner, choosing the right combination of CT scan conditions with the ATCM technique can minimize radiation dose to a patient.
NASA Astrophysics Data System (ADS)
Efstathopoulos, E. P.; Kelekis, N. L.; Pantos, I.; Brountzos, E.; Argentos, S.; Grebáč, J.; Ziaka, D.; Katritsis, D. G.; Seimenis, I.
2009-09-01
Computed tomography (CT) coronary angiography has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but high radiation doses have been reported. Prospective ECG-gating using a 'step-and-shoot' axial scanning protocol has been shown to reduce radiation exposure effectively while maintaining diagnostic accuracy. 256-slice scanners with 80 mm detector coverage have been currently introduced into practice, but their impact on radiation exposure has not been adequately studied. The aim of this study was to assess radiation doses associated with CT coronary angiography using a 256-slice CT scanner. Radiation doses were estimated for 25 patients scanned with either prospective or retrospective ECG-gating. Image quality was assessed objectively in terms of mean CT attenuation at selected regions of interest on axial coronary images and subjectively by coronary segment quality scoring. It was found that radiation doses associated with prospective ECG-gating were significantly lower than retrospective ECG-gating (3.2 ± 0.6 mSv versus 13.4 ± 2.7 mSv). Consequently, the radiogenic fatal cancer risk for the patient is much lower with prospective gating (0.0176% versus 0.0737%). No statistically significant differences in image quality were observed between the two scanning protocols for both objective and subjective quality assessments. Therefore, prospective ECG-gating using a 'step-and-shoot' protocol that covers the cardiac anatomy in two axial acquisitions effectively reduces radiation doses in 256-slice CT coronary angiography without compromising image quality.
The New Radiobiology: Returning to Our Roots
Ulsh, Brant A.
2012-01-01
In 2005, two expert advisory bodies examined the evidence on the effects of low doses of ionizing radiation. The U.S. National Research Council concluded that current scientific evidence is consistent with the linear no-threshold dose-response relationship (NRCNA 2005) while the French National Academies of Science and Medicine concluded the opposite (Aurengo et al. 2005). These contradictory conclusions may stem in part from an emphasis on epidemiological data (a “top down” approach) versus an emphasis on biological mechanisms (a “bottom up” approach). In this paper, the strengths and limitations of the top down and bottom up approaches are discussed, and proposals for strengthening and reconciling them are suggested. The past seven years since these two reports were published have yielded increasing evidence of nonlinear responses of biological systems to low radiation doses delivered at low dose-rates. This growing body of evidence is casting ever more doubt on the extrapolation of risks observed at high doses and dose-rates to estimate risks associated with typical environmental and occupational exposures. This paper compares current evidence on low dose, low dose-rate effects against objective criteria of causation. Finally, some questions for a post-LNT world are posed. PMID:23304107
NASA Astrophysics Data System (ADS)
Fry, R. J. M.
The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committe 75 of the National Council on Radiation Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and the induction of cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, -a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised.
Low-dose or low-dose-rate ionizing radiation–induced bioeffects in animal models
Loke, Weng Keong; Khoo, Boo Cheong
2017-01-01
Abstract Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (<6 mSv/h) exposures may be harmful. It induces genetic and epigenetic changes and is associated with a range of physiological disturbances that includes altered immune system, abnormal brain development with resultant cognitive impairment, cataractogenesis, abnormal embryonic development, circulatory diseases, weight gain, premature menopause in female animals, tumorigenesis and shortened lifespan. Paternal or prenatal LDIR/LDRIR exposure is associated with reduced fertility and number of live fetuses, and transgenerational genomic aberrations. On the other hand, in some experimental studies, LDIR/LDRIR exposure has also been reported to bring about beneficial effects such as reduction in tumorigenesis, prolonged lifespan and enhanced fertility. The differences in reported effects of LDIR/LDRIR exposure are dependent on animal genetic background (susceptibility), age (prenatal or postnatal days), sex, nature of radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies. PMID:28077626
Meeting the Needs for Radiation Protection: Diagnostic Imaging.
Frush, Donald P
2017-02-01
Radiation and potential risk during medical imaging is one of the foremost issues for the imaging community. Because of this, there are growing demands for accountability, including appropriate use of ionizing radiation in diagnostic and image-guided procedures. Factors contributing to this include increasing use of medical imaging; increased scrutiny (from awareness to alarm) by patients/caregivers and the public over radiation risk; and mounting calls for accountability from regulatory, accrediting, healthcare coverage (e.g., Centers for Medicare and Medicaid Services), and advisory agencies and organizations as well as industry (e.g., NEMA XR-29, Standard Attributes on CT Equipment Related to Dose Optimization and Management). Current challenges include debates over uncertainty with risks with low-level radiation; lack of fully developed and targeted products for diagnostic imaging and radiation dose monitoring; lack of resources for and clarity surrounding dose monitoring programs; inconsistencies across and between practices for design, implementation and audit of dose monitoring programs; lack of interdisciplinary programs for radiation protection of patients; potential shortages in personnel for these and other consensus efforts; and training concerns as well as inconsistencies for competencies throughout medical providers' careers for radiation protection of patients. Medical care providers are currently in a purgatory between quality- and value-based imaging paradigms, a state that has yet to mature to reward this move to quality-based performance. There are also deficits in radiation expertise personnel in medicine. For example, health physics academic programs and graduates have recently declined, and medical physics residency openings are currently at a third of the number of graduates. However, leveraging solutions to the medical needs will require money and resources, beyond personnel alone. Energy and capital will need to be directed to:• innovative and cooperative cross-disciplinary institutional/practice oversight of and guidance for the use of diagnostic imaging (e.g., radiology, surgical specialties, cardiologists, and intensivists);• initiatives providing practical benchmarks (e.g., dose index registries);• comprehensive (consisting of access, integrity, metrology, analytics, informatics) and effective and efficient dose monitoring programs;• collaboration with industry;• improved use of imaging, such as through decision support combined with evidence-based appropriateness for imaging use;• integration with e-health such as medical records;• education, including information extending beyond the medical imaging community that is relevant to patients, public, and providers and administration;• identification of opportunities for alignment with salient media and advocacy organizations to deliver balanced information regarding medical radiation and risk;• open lines of communication between medical radiation experts and appropriate bodies such as the U.S. Environmental Protection Agency, the U.S. Food and Drug Administration, and the Joint Commission to assure appropriate guidance on documents and actions originating from these organizations; and• increased grant funding to foster translational work that advances understanding of low-level radiation and biological effects.
Current Status of Treatment of Radiation Injury in the United States
2005-01-01
radiation accident victims receiving CSFs, and c) improved sur- vival in irradiated canines and nonhuman primates treated with CSFs. Colony-stimulating...more: Adults over 40 (to prevent hypothyroidism ) The FDA revised the KI dosing and action levels in part as a result of case control study evidence of...and hypothyroidism may occur but generally require chronic high doses of KI. Individuals, usually adults, with multinodular goiter, Grave’s disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu
2014-11-01
Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less
Below-Background Ionizing Radiation as an Environmental Cue for Bacteria
Castillo, Hugo; Smith, Geoffrey B.
2017-02-14
All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less
Below-Background Ionizing Radiation as an Environmental Cue for Bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo, Hugo; Smith, Geoffrey B.
All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less
Potential pre-cataractous markers induced by low-dose radiation effects in cultured human lens cells
NASA Astrophysics Data System (ADS)
Blakely, E.; McNamara, M.; Bjornstad, K.; Chang, P.
The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. Recent evidence indicates that exposure to relatively low doses of space radiation are associated with an increased incidence and early appearance of human cataracts (Cucinotta et al., Radiat. Res. 156:460-466, 2001). Basic research in this area is needed to integrate the early responses of various late-responding tissues into our understanding and estimation of radiation risk for space travel. In addition, these studies may contribute to the development of countermeasures for the early lenticular changes, in order to prevent the late sequelae. Radiation damage to the lens is not life threatening but, if severe, can affect vision unless surgically corrected with synthetic lens replacement. The lens, however, may be a sensitive detector of radiation effects for other cells of ectodermal origin in the body for which there are not currently clear endpoints of low-dose radiation effects. We have investigated the dose-dependent expression of several radiation-responsive endpoints using our in vitro model of differentiating human lens epithelial cells (Blakely et al., Investigative Ophthalmology &Visual Sciences, 41(12):3898-3907, 2000). We have investigated radiation effects on several gene families that include, or relate to, DNA damage, cytokines, cell-cycle regulators, cell adhesion molecules, cell cytoskeletal function and apoptotic cell death. In this paper we will summarize some of our dose-dependent data from several radiation types, and describe the model of molecular and cellular events that we believe may be associated with precataractous events in the human lens after radiation exposure. This work was supported by NASA Grant #T-965W.
Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives.
Boos, J; Meineke, A; Bethge, O T; Antoch, G; Kröpil, P
2016-05-01
The number of computed tomography examinations has continuously increased over the last decades and accounts for a major part of the collective radiation dose from medical investigations. For purposes of quality assurance in modern radiology a systematic monitoring and analysis of dose related data from radiological examinations is mandatory. Various ways of collecting dose data are available today, for example the Digital Imaging and Communication in Medicine - Structured Report (DICOM-SR), optical character recognition and DICOM-modality performed procedure steps (MPPS). The DICOM-SR is part of the DICOM-standard and provides the DICOM-Radiation Dose Structured Report, which is an easily applicable and comprehensive solution to collect radiation dose parameters. This standard simplifies the process of data collection and enables comprehensive dose monitoring. Various commercial dose monitoring software devices with varying characteristics are available today. In this article, we discuss legal obligations, various ways to monitor dose data, current dose monitoring software solutions and future perspectives in regard to the EU Council Directive 2013/59/EURATOM. • Automated, systematic dose monitoring is an important element in quality assurance of radiology departments. • DICOM-RDSR-capable CT scanners facilitate the monitoring of dose data. • A variety of commercial and non-commercial dose monitoring software tools are available today. • Successful dose monitoring requires comprehensive infrastructure for monitoring, analysing and optimizing radiation exposure. Citation Format: • Boos J, Meineke A, Bethge OT et al. Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives. Fortschr Röntgenstr 2016; 188: 443 - 450. © Georg Thieme Verlag KG Stuttgart · New York.
Ionizing radiation sensitivity of the ocular lens and its dose rate dependence.
Hamada, Nobuyuki
2017-10-01
In 2011, the International Commission on Radiological Protection reduced the threshold for the lens effects of low linear energy transfer (LET) radiation. On one hand, the revised threshold of 0.5 Gy is much lower than previously recommended thresholds, but mechanisms behind high radiosensitivity remain incompletely understood. On the other hand, such a threshold is independent of dose rate, in contrast to previously recommended separate thresholds each for single and fractionated/protracted exposures. Such a change was made predicated on epidemiological evidence suggesting that a threshold for fractionated/protracted exposures is not higher than an acute threshold, and that a chronic threshold is uncertain. Thus, the dose rate dependence is still unclear. This paper therefore reviews the current knowledge on the radiosensitivity of the lens and the dose rate dependence of radiation cataractogenesis, and discusses its mechanisms. Mounting biological evidence indicates that the lens cells are not necessarily radiosensitive to cell killing, and the high radiosensitivity of the lens thus appears to be attributable to other mechanisms (e.g., excessive proliferation, abnormal differentiation, a slow repair of DNA double-strand breaks, telomere, senescence, crystallin changes, non-targeted effects and inflammation). Both biological and epidemiological evidence generally supports the lack of dose rate effects. However, there is also biological evidence for the tissue sparing dose rate (or fractionation) effect of low-LET radiation and an enhancing inverse dose fractionation effect of high-LET radiation at a limited range of LET. Emerging epidemiological evidence in chronically exposed individuals implies the inverse dose rate effect. Further biological and epidemiological studies are warranted to gain deeper knowledge on the radiosensitivity of the lens and dose rate dependence of radiation cataractogenesis.
Patient-specific radiation dose and cancer risk for pediatric chest CT.
Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P
2011-06-01
To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (<10% variation). The correlations of dose and risk with patient size and age can be used to estimate patient-specific dose and risk. They can further guide the design and optimization of pediatric chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011
Measurements and Modeling of Radiation Exposure Due to Solar Particle Events
NASA Astrophysics Data System (ADS)
Beck, P.; Conrad Wp6-Sgb Team
Dose assessment procedures of cosmic radiation to aircraft crew are introduced in most of the European countries according the corresponding European directive and national regulations 96 29 Euratom However the radiation exposure due to solar particle events is still a matter of scientific research Several in-flight measurements were performed during solar storm conditions First models to estimate the exposure due to solar particle events were discussed previously Recently EURADOS European Radiation Dosimetry Group http www eurados org started to coordinate research activities in model improvements for dose assessment of solar particle events The coordinated research is a work package of the European research project CONRAD Coordinated Network for Radiation Dosimetry on complex mixed radiation fields at workplaces Major aim of sub group B of that work package is the validation of models for dose assessment of solar particle events using data from neutron ground level monitors in-flight measurement results obtained during a solar particle event and proton satellite data The paper describes the current status of obtainable solar storm measurements and gives an overview of the existing models for dose assessment of solar particle events in flight altitudes
NAIRAS aircraft radiation model development, dose climatology, and initial validation.
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-10-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing
2013-10-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-01-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway. PMID:26213513
Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo
2014-05-01
To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. CT scans were performed on a chest phantom containing various nodules (10 and 12mm; +100, -630 and -800HU) at 120kVp with tube current-time settings of 10, 20, 50, and 100mAs. Each CT was reconstructed using filtered back projection (FBP), iDose(4) and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p>0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose(4) at all radiation dose settings (p<0.05). Semi-automated nodule volumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S; Department of Biomedical Engineering, University of North Carolina- Chapel Hill/ North Carolina State University, Chapel Hill, North Carolina; Lineberger Clinical Cancer Center, University of North Carolina, Chapel Hill, NC
Purpose: Ultrahigh dose-rate radiation at >40Gy/s has demonstrated astonishing normal-tissue sparing and tumor control in recent preclinical naive and tumor-bearing rodent studies when compared to the same radiation dose at a conventional dose-rate. The working mechanism of this fascinating dose-rate effect is currently under investigation. The aims of this work include investigating 1) whether LINAC FFF mode radiation at approximately 1Gy/s also has an improved therapeutic ratio compared to the same radiation dose at the conventional dose-rate of 0.05Gy/s, and 2) the dose-rate effect’s potential working mechanism by studying the expression of the P53 gene, linked to tumor suppression andmore » cell regulation after radiation damage. Methods: We used mouse model C57BL/6J, the same as that used in the ultrahigh dose-rate studies, and exposed them to total body irradiation (TBI) using the Elekta Versa accelerator 10MV photons. Mice (N=20) were given a total dose of 12Gy in both the high dose-rate group (n=10) using the FFF-mode and the conventional dose-rate group (n=10) using the conventional does rate mode. The FFF-mode treatment setup consisted of a 15cm×15cm field size setting at 53.2cm SSD while the conventional-mode set-up consisted of a 10cm×10cm field size at 100SSD. Post-radiation, animals were monitored daily for survival analysis and signs of moribundity requiring euthanasia. In addition, mouse spleens were harvested for P53 analysis at different time points. Results: For 12Gy TBI, the 1.3Gy/s FFF-mode high dose-rate produced a statistically significant (p=0.02) improvement in mouse survival compared to the 0.05Gy/s conventional dose-rate. An initial P53 study at the time of death time-point indicates that high dose-rate radiation induced a stronger expression of P53 than conventional dose-rate radiation. Conclusion: Our pilot study indicates that the FFF-mode high dose-rate radiation, which has been used largely to improve clinical throughput, may provide the added clinical benefit of improving treatment therapeutic ratio. Animal Studies were performed within the LCCC Animal Studies Core Facility at the University of North Carolina at Chapel Hill. The LCCC Animal Studies Core is supported in part by an NCI Center Core Support Grant (CA16086) to the UNC Lineberger Comprehensive Cancer Center.« less
Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers
NASA Technical Reports Server (NTRS)
Williams, J. R.; Zhang, Y.; Zhou, H.; Osman, M.; Cha, D.; Kavet, R.; Cuccinotta, F.; Dicello, J. F.; Dillehay, L. E.
1999-01-01
The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such understanding is critical in extrapolating databases between cellular response, animal carcinogenesis and human carcinogenesis, and we suggest that the SAO model is a useful tool for such extrapolation.
Proactive strategy for long-term biological research aimed at low-dose radiation risk in Korea.
Seong, Ki Moon; Kwon, TaeWoo; Park, Jina; Youn, BuHyun; Cha, Hyuk-Jin; Kim, Yonghwan; Moon, Changjong; Lee, Seung-Sook; Jin, Young Woo
2018-06-19
Since the 2011 Fukushima nuclear power plant accident, Korean radiation experts have agreed that reliable data on health risks of low-dose radiation (LDR) are needed to ease the anxiety of lay people. The intent of this study was to devise a sustainable biological program suited for the research environment in Korea and aimed at the health effects of radiation exposures <100 millisieverts (mSv). To address pressing public concerns over LDR risk, we investigated the current understanding of LDR effects by analyzing the previous reports of international authorities for radiation protection and research publications that appeared after the Chernobyl accident. A research program appropriate for societal and scientific inclinations of Korea was then devised based on input from Korean radiation scientists. After review by our advisory committee, program priorities were set, calling for an agenda that focused on dose-response relationships in carcinogenesis, health span responses to lifestyle variations, and systemic metabolic changes. Our long-term biological research program may contribute scientific evidence to reduce the uncertainties of LDR health risks and help stakeholders formulate policies for radiation protection.
Radiometric and Radiation Response of Visible FPAs
NASA Technical Reports Server (NTRS)
Hubbs, John
2007-01-01
The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased
The U.S.-Russian radiation health effects research program in the Southern Urals.
Seligman, P J
2000-07-01
The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral U.S.-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Association (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.
The effects of low doses of ionizing radiation - A question of ethics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tschaeche, A.N.
1996-12-31
Three ethical questions are asked and answered about the current state of affairs concerning how those in power manipulate public understanding of the effects of low doses of ionizing radiation. The questions are as follows: (1) Is it ethical to frighten people when you do not know that there is anything to be frightened of? (2) Is it ethical to be so conservative that resources are spent to solve a problem that may not exist? (3) Is it ethical not to tell the whole truth about the effects of low levels of ionizing radiation?
2011-05-30
affect chemical agents. Therefore no change in the methods for chemical or radiological decontamination would be necessary. 14. Radiation...here is the high radiation doses do affect the ability to polymerase chain reaction methods. It appears, depending on the dose and target, these...2001) Bacillus spore inactivation methods affect detection assays. Appl Environ Microbiol. 67(8): p. 3665‐70. DeCarlos, A. and Paez, E. (1991
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit
The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements contribute essentially to radiation risk estimations for future interplanetary space exploration by humans, putting them on a solid experimental and theoretical basis. The talk will give an overview of the current status of the MATROSHKA data evaluation and results and comparisons of the first three MTR experimental phases (MTR-1, 2A and 2B). The HAMLET project is funded by the European Commission under the EUs Seventh Frame-work Programme (FP7) under Project Nr: 218817 and coordinated by the German Aerospace Center (DLR) http://www-fp7-hamlet.eu
Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas
2017-12-01
Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Kino, A; Newman, B
2014-06-01
Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CTmore » Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.« less
Status of LDEF radiation modeling
NASA Technical Reports Server (NTRS)
Watts, John W.; Armstrong, T. W.; Colborn, B. L.
1995-01-01
The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.
Stomach Cancer Risk After Treatment for Hodgkin Lymphoma
Morton, Lindsay M.; Dores, Graça M.; Curtis, Rochelle E.; Lynch, Charles F.; Stovall, Marilyn; Hall, Per; Gilbert, Ethel S.; Hodgson, David C.; Storm, Hans H.; Johannesen, Tom Børge; Smith, Susan A.; Weathers, Rita E.; Andersson, Michael; Fossa, Sophie D.; Hauptmann, Michael; Holowaty, Eric J.; Joensuu, Heikki; Kaijser, Magnus; Kleinerman, Ruth A.; Langmark, Frøydis; Pukkala, Eero; Vaalavirta, Leila; van den Belt-Dusebout, Alexandra W.; Fraumeni, Joseph F.; Travis, Lois B.; Aleman, Berthe M.; van Leeuwen, Flora E.
2013-01-01
Purpose Treatment-related stomach cancer is an important cause of morbidity and mortality among the growing number of Hodgkin lymphoma (HL) survivors, but risks associated with specific HL treatments are unclear. Patients and Methods We conducted an international case-control study of stomach cancer nested in a cohort of 19,882 HL survivors diagnosed from 1953 to 2003, including 89 cases and 190 matched controls. For each patient, we quantified cumulative doses of specific alkylating agents (AAs) and reconstructed radiation dose to the stomach tumor location. Results Stomach cancer risk increased with increasing radiation dose to the stomach (Ptrend < .001) and with increasing number of AA-containing chemotherapy cycles (Ptrend = .02). Patients who received both radiation to the stomach ≥ 25 Gy and high-dose procarbazine (≥ 5,600 mg/m2) had strikingly elevated stomach cancer risk (25 cases, two controls; odds ratio [OR], 77.5; 95% CI, 14.7 to 1452) compared with those who received radiation < 25 Gy and procarbazine < 5,600 mg/m2 (Pinteraction < .001). Risk was also elevated (OR, 2.8; 95% CI, 1.3 to 6.4) among patients who received radiation to the stomach ≥ 25 Gy but procarbazine < 5,600 mg/m2; however, no procarbazine-related risk was evident with radiation < 25 Gy. Treatment with dacarbazine also increased stomach cancer risk (12 cases, nine controls; OR, 8.8; 95% CI, 2.1 to 46.6), after adjustment for radiation and procarbazine doses. Conclusion Patients with HL who received subdiaphragmatic radiotherapy had dose-dependent increased risk of stomach cancer, with marked risks for patients who also received chemotherapy containing high-dose procarbazine. For current patients, risks and benefits of exposure to both procarbazine and subdiaphragmatic radiotherapy should be weighed carefully. For patients treated previously, GI symptoms should be evaluated promptly. PMID:23980092
Filgrastim for the treatment of hematopoietic acute radiation syndrome.
Farese, A M; MacVittie, T J
2015-09-01
The U.S. Food and Drug Administration (FDA) recently approved Neupogen(®) (filgrastim) for the treatment of patients with radiation-induced myelosuppression following a radiological/nuclear incident. It is the first medical countermeasure currently approved by the FDA for this indication under the criteria of the FDA "animal rule". This article summarizes the consequences of high-dose radiation exposure, a description of the hematopoietic acute radiation syndrome (H-ARS), the use of hematopoietic growth factors in radiation accident victims and current available treatments for H-ARS with an emphasis on the use of Neupogen in this scenario. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.
TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushberg, J; Boreham, D; Ulsh, B
2014-06-15
At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased belowmore » background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at what dose level are risk vs. benefit discussions with patients appropriate, 3) at what dose level should we tell a pregnant woman that the baby’s health risk from a prenatal radiation exposure is “significant”, 4) is informed consent needed for patients undergoing medical imaging, and 5) at what dose level is evacuation appropriate after a radiological accident. Examples of the tremendous impact that choosing different risks models can have on the answers to these types of questions will be given.A moderated panel discussion will allow audience members to pose questions to the faculty members, each of whom is an established expert in his respective discipline. Learning Objectives: Understand the fundamental principles, strengths and limitations of radiation epidemiology and radiation biology for determining the risk from exposures to low doses of ionizing radiation Become familiar with common models of risk used to describe the dose-response relationship at low dose levels Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation Understand the implications of different risk models on public policy and health care decisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraybill, H.F.
1960-04-01
A comprehensive research and development program on radiation preservation of foods has revealed some products having potential for early commercialization. Radiation sterilization of some meats, especially beef, has been somewhat disappointing. Other items such as chicken, fish, and pork products show promise as completely sterile products. Surveys of the food industry have been made on these items but lack of a competitive position. radiation processing costs higher than thermal processing, and lack of Food & Drug clearance at this time have held up an immediate commercial advance in this area. Radiopasteurization currently, however, offers raore promise since effect on qualitymore » (flavor, texture. and color) is not encountered and processing cost now approaches that of conventional processing methods. Extension of shelf life, by radiopasteurization of fish, chicken, pork, and beef, is ready for industry- wide exploitation when Food & Drug clearance is provided. Elimination of parasites in meat by very-low dose treatment such as trichina in perk and tapeworm in beef has current interest in industry and may be the first industrial application. The wholesomeness clearance studies are progressing successfully with no evidence that would indicate any toxicity prevailing from eating irradiated foods in tests on animals and man. The ultimate development of " ionizing radiation centers" will advance radiation applications in the food industry since appraisal of performance and costs can be more satisfactorily made than in laboratory projects. Reduction in costs of gamma radiation sources should also hold much promise for a preferential competitive position for low- dose radiation treatment of meats, fruits, and vegetables. The unique opportunities afforded by radiation processing of foods in underdeveloped countries for reduction in food spoilage and waste and elimination of food poisoning are of current and immediate importance. (auth)« less
Estimation of radiation cancer risk in CT-KUB
NASA Astrophysics Data System (ADS)
Karim, M. K. A.; Hashim, S.; Bakar, K. A.; Bradley, D. A.; Ang, W. C.; Bahrudin, N. A.; Mhareb, M. H. A.
2017-08-01
The increased demand for computed tomography (CT) in radiological scanning examinations raises the question of a potential health impact from the associated radiation exposures. Focusing on CT kidney-ureter-bladder (CT-KUB) procedures, this work was aimed at determining organ equivalent dose using a commercial CT dose calculator and providing an estimate of cancer risks. The study, which included 64 patients (32 males and 32 females, mean age 55.5 years and age range 30-80 years), involved use of a calibrated CT scanner (Siemens-Somatom Emotion 16-slice). The CT exposures parameter including tube potential, pitch factor, tube current, volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded and analyzed using CT-EXPO (Version 2.3.1, Germany). Patient organ doses, including for stomach, liver, colon, bladder, red bone marrow, prostate and ovaries were calculated and converted into cancer risks using age- and sex-specific data published in the Biological Effects of Ionizing Radiation (BEIR) VII report. With a median value scan range of 36.1 cm, the CTDIvol, DLP, and effective dose were found to be 10.7 mGy, 390.3 mGy cm and 6.2 mSv, respectively. The mean cancer risks for males and females were estimated to be respectively 25 and 46 out of 100,000 procedures with effective doses between 4.2 mSv and 10.1 mSv. Given the increased cancer risks from current CT-KUB procedures compared to conventional examinations, we propose that the low dose protocols for unenhanced CT procedures be taken into consideration before establishing imaging protocols for CT-KUB.
Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware
NASA Technical Reports Server (NTRS)
Zee, Frank
1995-01-01
The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.
Martian Radiation Environment: Model Calculations and Recent Measurements with "MARIE"
NASA Technical Reports Server (NTRS)
Saganti, P. B.; Cucinotta, F. A.; zeitlin, C. J.; Cleghorn, T. F.
2004-01-01
The Galactic Cosmic Ray spectra in Mars orbit were generated with the recently expanded HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations are compared with the first eighteen months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculated predictions. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with the available particle flux distribution. Model calculated particle flux includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current MARIE mapping period are reviewed and presented.
Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-01-01
Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322
Koteshwar, Prakashini; Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-05-01
Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13-53.8% reduction in low dose protocol. The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose.
Weisenthal, Karrin; Karthik, Priyadarshini; Shaw, Melissa; Sengupta, Debapriya; Bhargavan-Chatfield, Mythreyi; Burleson, Judy; Mustafa, Adel; Kalra, Mannudeep; Moore, Christopher
2018-02-01
Purpose To determine if the use of reduced-dose computed tomography (CT) for evaluation of kidney stones increased in 2015-2016 compared with that in 2011-2012, to determine variability in radiation exposure according to facility for this indication, and to establish a current average radiation dose for CT evaluation for kidney stones by querying a national dose registry. Materials and Methods This cross-sectional study was exempt from institutional review board approval. Data were obtained from the American College of Radiology dose registry for CT examinations submitted from July 2015 to June 2016. Study descriptors consistent with single-phase unenhanced CT for evaluation of kidney stones and associated RadLex® Playbook identifiers (RPIDs) were retrospectively identified. Facilities actively submitting data on kidney stone-specific CT examinations were included. Dose metrics including volumetric CT dose index, dose-length product, and size-specific dose estimate, when available, were reported, and a random effects model was run to account for clustering of CT examinations at facilities. A z-ratio was calculated to test for a significant difference between the proportion of reduced-radiation dose CT examinations (defined as those with a dose-length product of 200 mGy · cm or less) performed in 2015-2016 and the proportion performed in 2011-2012. Results Three hundred four study descriptors for kidney stone CT corresponding to data from 328 facilities that submitted 105 334 kidney stone CT examinations were identified. Reduced-dose CT examinations accounted for 8040 of 105 334 (7.6%) CT examinations, a 5.6% increase from the 1010 of 49 903 (2%) examinations in 2011-2012 (P < .001). Mean overall dose-length product was 689 mGy · cm (95% confidence interval: 667, 712), decreased from the mean of 746 mGy · cm observed in 2011-2012. Median facility dose-length product varied up to sevenfold, from less than 200 mGy · cm to greater than 1600 mGy · cm. Conclusion Use of reduced-radiation dose CT for evaluation of kidney stones has increased since 2011-2012, but remains low; variability of radiation dose according to facility continues to be wide. National mean CT radiation exposure for evaluation of renal colic during 2015-2016 decreased relative to 2011-2012 values, but remained well above what is reasonably achievable. © RSNA, 2017.
Gramatyka, Michalina; Skorupa, Agnieszka; Sokół, Maria
2018-01-01
Several lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system. Cardiotoxicity of ionizing radiation is associated with metabolic changes observed in cardiac cells injured by radiation. In this study, we used human cardiomyocytes as a model system, and studied their metabolic response to radiation using high-resolution magic angle spinning nuclear magnetic resonance techniques (HR-MAS NMR). Human cardiomyocytes cultured in vitro were exposed to ionizing radiation and their survival was assessed by clonogenic assay. Changes in apoptosis intensity and cell cycle distribution after the irradiation were measured as well. NMR spectra of cardiomyocytes were acquired using Bruker Avance 400 MHz spectrometer at a spinning rate of 3200 Hz. Survival of cardiomyocytes after NMR experiments was assessed by the Trypan blue exclusion assay. Exposure of cardiomyocytes to small doses of ionizing radiation had no effect on cell proliferation potential and intensity of cell death. However, analysis of metabolic profiles revealed changes in lipids, threonine, glycine, glycerophosphocholine, choline, valine, isoleucine, glutamate, reduced glutathione and taurine metabolism. The results of this study showed that ionizing radiation affects metabolic profiles of cardiomyocytes even at low doses, which potentially have no effect on cell viability.
Method and apparatus for measuring low currents in capacitance devices
Kopp, M.K.; Manning, F.W.; Guerrant, G.C.
1986-06-04
A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.
Chang, Meng-Ya; Shiau, Ai-Li; Chen, Yu-Hung; Chang, Chih-Jui; Chen, Helen H-W; Wu, Chao-Liang
2008-07-01
High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P = 0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P < 0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P < 0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy.
Lambrecht, Maarten; Eekers, Daniëlle B P; Alapetite, Claire; Burnet, Neil G; Calugaru, Valentin; Coremans, Ida E M; Fossati, Piero; Høyer, Morten; Langendijk, Johannes A; Romero, Alejandra Méndez; Paulsen, Frank; Perpar, Ana; Renard, Laurette; de Ruysscher, Dirk; Timmermann, Beate; Vitek, Pavel; Weber, Damien C; van der Weide, Hiske L; Whitfield, Gillian A; Wiggenraad, Ruud; Roelofs, Erik; Nyström, Petra Witt; Troost, Esther G C
2018-05-17
For unbiased comparison of different radiation modalities and techniques, consensus on delineation of radiation sensitive organs at risk (OARs) and on their dose constraints is warranted. Following the publication of a digital, online atlas for OAR delineation in neuro-oncology by the same group, we assessed the brain OAR-dose constraints in a follow-up study. We performed a comprehensive search to identify the current papers on OAR dose constraints for normofractionated photon and particle therapy in PubMed, Ovid Medline, Cochrane Library, Embase and Web of Science. Moreover, the included articles' reference lists were cross-checked for potential studies that met the inclusion criteria. Consensus was reached among 20 radiation oncology experts in the field of neuro-oncology. For the OARs published in the neuro-oncology literature, we summarized the available literature and recommended dose constraints associated with certain levels of normal tissue complication probability (NTCP) according to the recent ICRU recommendations. For those OARs with lacking or insufficient NTCP data, a proposal for effective and efficient data collection is given. The use of the European Particle Therapy Network-consensus OAR dose constraints summarized in this article is recommended for the model-based approach comparing photon and proton beam irradiation as well as for prospective clinical trials including novel radiation techniques and/or modalities. Copyright © 2018 Elsevier B.V. All rights reserved.
Current global and Korean issues in radiation safety of nuclear medicine procedures.
Song, H C
2016-06-01
In recent years, the management of patient doses in medical imaging has evolved as concern about radiation exposure has increased. Efforts and techniques to reduce radiation doses are focussed not only on the basis of patient safety, but also on the fundamentals of justification and optimisation in cooperation with international organisations such as the International Commission on Radiological Protection, the International Atomic Energy Agency, and the World Health Organization. The Image Gently campaign in children and Image Wisely campaign in adults to lower radiation doses have been initiated in the USA. The European Association of Nuclear Medicine paediatric dosage card, North American consensus guidelines, and Nuclear Medicine Global Initiative have recommended the activities of radiopharmaceuticals that should be administered in children. Diagnostic reference levels (DRLs), developed predominantly in Europe, may be an important tool to manage patient doses. In Korea, overexposure to radiation, even from the use of medical imaging, has become a public issue, particularly since the accident at the Fukushima nuclear power plant. As a result, the Korean Nuclear Safety and Security Commission revised the technical standards for radiation safety management in medical fields. In parallel, DRLs for nuclear medicine procedures have been collected on a nationwide scale. Notice of total effective dose from positron emission tomography-computed tomography for cancer screening has been mandatory since mid-November 2014. © The International Society for Prosthetics and Orthotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.O.
1986-01-01
Before an employee of the nuclear power industry can be assigned to work in an area with radiation hazards, the total dose rate from all radiation present should be known to determine the risk. As the plants age, the level of maintenance has increased and certain tasks have required the workers to be exposed to intense beta radiation fields. Currently available survey instruments do not accurately assess the beta dose or dose rate in many circumstances due to several factors, including the fluctuation of the response of the detector due to the variation in the energy of the beta particlesmore » comprising the radiation field. This research involved developing a technique for calculating the beta dose rate, using the differential energy spectrum and the fluence rate for the beta particles, the fundamental features of the beta radiation. The energy spectrum was used to determine a spectrum weighted average mass stopping power (SWAMPS). The SWAMPS, when multiplied by the fluence rate, gives the energy deposited per unit mass per second, which is the absorbed dose rate for the beta radiation. Reference sources were developed and calibrated using an extrapolation chamber that had, itself, been calibrated using beta sources at the National Bureau of Standards. Different spectrometry systems were tested for applicability to the SWAMPS technique.« less
Imaging doses in radiation therapy from kilovoltage cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Hyer, Daniel Ellis
Advances in radiation treatment delivery, such as intensity modulated radiation therapy (IMRT), have made it possible to deliver large doses of radiation with a high degree of conformity. While highly conformal treatments offers the advantage of sparing surrounding normal tissue, this benefit can only be realized if the patient is accurately positioned during each treatment fraction. The need to accurately position the patient has led to the development and use of gantry mounted kilovoltage cone-beam computed tomography (kV-CBCT) systems. These systems are used to acquire high resolution volumetric images of the patient which are then digitally registered with the planning CT dataset to confirm alignment of the patient on the treatment table. While kV-CBCT is a very useful tool for aligning the patient prior to treatment, daily use in a high fraction therapy regimen results in a substantial radiation dose. In order to quantify the radiation dose associated with CBCT imaging, an anthropomorphic phantom representing a 50th percentile adult male and a fiber-optic coupled (FOC) dosimetry system were both constructed as part of this dissertation. These tools were then used to directly measure organ doses incurred during clinical protocols for the head, chest, and pelvis. For completeness, the dose delivered from both the X-ray Volumetric Imager (XVI, Elekta Oncology Systems, Crawley, UK) and the On-Board Imager (OBI, Varian Medical Systems, Palo Alto, CA) were investigated. While this study provided a direct measure of organ doses for estimating risk to the patient, a practical method for estimating organ doses that could be performed with phantoms and dosimeters currently available at most clinics was also desired. To accomplish this goal, a 100 mm pencil ion chamber was used to measure the "cone beam dose index" (CBDI) inside standard CT dose index (CTDI) acrylic phantoms. A weighted CBDI (CBDIw), similar to the weighted CT dose index (CTDIw), was then calculated to represent the average dose in the acrylic phantom. By comparing this value to the measured organ doses, organ dose conversion coefficients were developed. These conversion coefficients allow specific organ doses to be estimated quickly and easily using readily available clinical equipment.
NASA Astrophysics Data System (ADS)
Gnana Prakash, A. P.; Pradeep, T. M.; Hegde, Vinayakprasanna N.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Bhushan, K. G.
2017-12-01
NPN transistors and N-channel depletion metal oxide semiconductor field effect transistors (MOSFETs) were irradiated with 5 MeV protons and 60Co gamma radiation in the dose ranging from 1 Mrad(Si) to 100 Mrad(Si). The different electrical characteristics of the NPN transistor such as Gummel characteristics, excess base current (ΔIB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied as a function of total dose. The different electrical characteristics of N-channel MOSFETs such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (µ) and drain saturation current (IDSat) were studied systematically before and after irradiation in the same dose ranges. A considerable increase in the base current (IB) and decrease in the hFE, gm and collector saturation current (ICSat) were observed after irradiation in the case of the NPN transistor. In the N-channel MOSFETs, the ΔNit and ΔNot were found to increase and Vth, gm, µ and IDSat were found to decrease with increase in the radiation dose. The 5 MeV proton irradiation results of both the NPN transistor and N-channel MOSFETs were compared with 60Co gamma-irradiated devices in the same dose ranges. It was observed that the degradation in 5 MeV proton-irradiated devices is more when compared with the 60Co gamma-irradiated devices at higher total doses.
Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams.
Poppinga, D; Halbur, J; Lemmer, S; Delfs, B; Harder, D; Looe, H K; Poppe, B
2017-09-05
The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm -3 ) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm × 10 cm field size agreed with the results of ionization chamber measurements within ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.
Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams
NASA Astrophysics Data System (ADS)
Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.
2017-09-01
The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm × 10 cm field size agreed with the results of ionization chamber measurements within ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.
Van Hoeck, Arne; Horemans, Nele; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde; Blust, Ronny
2017-04-01
Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation. Copyright © 2017 Elsevier B.V. All rights reserved.
SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction
NASA Astrophysics Data System (ADS)
Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo
2017-03-01
State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.
The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation
Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.
2013-01-01
Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938
Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael
2016-09-08
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. © 2016 The Authors.
Gupta, Sandeep Kumar; Trethewey, Scott; Brooker, Bree; Rutherford, Natalie; Diffey, Jenny; Viswanathan, Suresh; Attia, John
2017-01-01
The CT component of SPECT-CT is required for attenuation correction and anatomical localization of the uptake on SPECT but there is no guideline about the optimal CT acquisition parameters. In our department, a standard CT acquisition protocol was changed in 2013 to give lower radiation dose to the patient. In this study, we retrospectively compared the effects on patient dose as well as the CT image quality with current versus older CT protocols. Ninety nine consecutive patients [n=51 Standard dose ‘old’ protocol (SDP); n=48 lower dose ‘new’ protocol (LDP)] with lumbar spine SPECT-CT for bone scan were examined. The main differences between the two protocols were that SDP used 130 kVp tube voltage and reference current-time product of 70 mAs whereas the LDP used 110 kVp and 40 mAs respectively. Various quantitative parameters from the CT images were obtained and the images were also rated blindly by two experienced nuclear medicine physicians for bony definition and noise. The mean calculated dose length product of the LDP group (121.5±39.6 mGy.cm) was significantly lower compared to the SDP group patients (266.9±96.9 mGy.cm; P<0.0001). This translated into a significant reduction in the mean effective dose to 1.8 mSv from 4.0 mSv. The physicians reported better CT image quality for the bony structures in LDP group although for soft tissue structures, the SDP group had better image quality. The optimized new CT acquisition protocol significantly reduced the radiation dose to the patient and in-fact improved CT image quality for the assessment of bony structures. PMID:28533938
Suppression of E. multilocularis Hydatid Cysts after Ionizing Radiation Exposure
Zhou, Rong; Zhang, Hong
2013-01-01
Background Heavy-ion therapy has an advantage over conventional radiotherapy due to its superb biological effectiveness and dose conformity in cancer therapy. It could be a potential alternate approach for hydatid cyst treatment. However, there is no information currently available on the cellular and molecular basis for heavy-ion irradiation induced cell death in cystic echinococcosis. Methododology/Principal Findings LD50 was scored by protoscolex death. Cellular and ultrastructural changes within the parasite were studied by light and electron microscopy, mitochondrial DNA (mtDNA) damage and copy number were measured by QPCR, and apoptosis was determined by caspase 3 expression and caspase 3 activity. Ionizing radiation induced sparse cytoplasm, disorganized and clumped organelles, large vacuoles and devoid of villi. The initial mtDNA damage caused by ionizing radiation increased in a dose-dependent manner. The kinetic of DNA repair was slower after carbon-ion radiation than that after X-rays radiation. High dose carbon-ion radiation caused irreversible mtDNA degradation. Cysts apoptosis was pronounced after radiation. Carbon-ion radiation was more effective to suppress hydatid cysts than X-rays. Conclusions These studies provide a framework to the evaluation of attenuation effect of heavy-ion radiation on cystic echinococcosis in vitro. Carbon-ion radiation is more effective to suppress E. multilocularis than X-rays. PMID:24205427
7th International Workshop on Microbeam Probes of Cellular Radiation Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenner, David J.
2009-07-21
The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations withmore » a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.« less
Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study.
Mathieu, Kelsey B; Ai, Hua; Fox, Patricia S; Godoy, Myrna Cobos Barco; Munden, Reginald F; de Groot, Patricia M; Pan, Tinsu
2014-03-06
The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back-projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast-to-noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening.
Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.
Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P
2014-01-24
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
Morciano, Patrizia; Cipressa, Francesca; Porrazzo, Antonella; Esposito, Giuseppe; Tabocchini, Maria Antonella; Cenci, Giovanni
2018-06-04
Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and/or end points and the possible role of radiation quality in triggering the biological response.
Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.
Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N
2016-04-01
Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.
Brodecki, Marcin; Domienik, Joanna U; Zmyślony, Marek
2012-01-01
The current system of dosimetric quantities has been defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU). Complexity of the system implies the physical nature of ionizing radiation, resulting from the presence of different types of radiation of different ionization capabilities, as well as the individual radiation sensitivity of biological material exposed. According to the latest recommendations, there are three types of dosimeter quantities relevant to radiation protection and radiological assessment of occupational exposure. These are the basic quantities, safety quantities and operational quantities. Dose limits for occupational exposure relate directly to the protection quantities, i.e. the equivalent dose and effective dose, while these quantities are practically unmeasurable in real measurement conditions. For this reason, in the system of dosimetric quantities directly measurable operating volumes were defined. They represent equivalents of the protection quantities that allow for a reliable assessment of equivalent and effective dose by conducting routine monitoring of occupational exposure. This paper presents the characteristics of these quantities, their relationships and importance in assessing individual effects of radiation. Also the methods for their implementation in personal and environmental dosimetry were showcased. The material contained in the article is a compendium of essential information about dosimetric quantities with reference to the contemporary requirements of the law, including the changed annual occupational exposure limit for the lens of the eye. The material is especially addressed to those responsible for dosimetry monitoring in the workplace, radiation protection inspectors and occupational health physicians.
Reverse Current Blocking Diodes for Flexible Solar Array Protection
1975-04-01
the general ’ Tic, ici~cjluir; foreign nations. T1->*.:. ti~c!chnical report has been reviewed and is approved for L .D. Man i c/GS - 3 :P’rojcct nm r...To generate the figures, a set of thermal radiative properties for the diodes and substrate had to be assumed. A second surface mirror made of...simulated nuclear weapon generated gamma pulses. Dose rates of varying levels were delivered by "two radiation effects machines. Lower dose rate
Brooks, Antone L.; Hoel, David G.; Preston, R. Julian
2016-01-01
Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588
Logan, Clinton M.
1994-01-01
An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.
Iatrogenic radiation exposure to patients with early onset spine and chest wall deformities.
Khorsand, Derek; Song, Kit M; Swanson, Jonathan; Alessio, Adam; Redding, Gregory; Waldhausen, John
2013-08-01
Retrospective cohort series. Characterize average iatrogenic radiation dose to a cohort of children with thoracic insufficiency syndrome (TIS) during assessment and treatment at a single center with vertically expandable prosthetic titanium rib. Children with TIS undergo extensive evaluations to characterize their deformity. No standardized radiographical evaluation exists, but all reports use extensive imaging. The source and level of radiation these patients receive is not currently known. We evaluated a retrospective consecutive cohort of 62 children who had surgical treatment of TIS at our center from 2001-2011. Typical care included obtaining serial radiographs, spine and chest computed tomographic (CT) scans, ventilation/perfusion scans, and magnetic resonance images. Epochs of treatment were divided into time of initial evaluation to the end of initial vertically expandable prosthetic titanium rib implantation with each subsequent epoch delineated by the next surgical intervention. The effective dose for each examination was estimated within millisieverts (mSv). Plain radiographs were calculated from references. Effective dose was directly estimated for CT scans since 2007 and an average of effective dose from 2007-2011 was used for scans before 2007. Effective dose from fluoroscopy was directly estimated. All doses were reported in mSv. A cohort of 62 children had a total of 447 procedures. There were a total of 290 CT scans, 4293 radiographs, 147 magnetic resonance images, and 134 ventilation/perfusion scans. The average accumulated effective dose was 59.6 mSv for children who had completed all treatment, 13.0 mSv up to initial surgery, and 3.2 mSv for each subsequent epoch of treatment. CT scans accounted for 74% of total radiation dose. Children managed for TIS using a consistent protocol received iatrogenic radiation doses that were on average 4 times the estimated average US background radiation exposure of 3 mSv/yr. CT scans comprised 74% of the total dose. 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.
Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and,more » because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”.« less
Radiation and chemical pretreatment of cellulosic waste
NASA Astrophysics Data System (ADS)
Chosdu, Rahayu; Hilmy, Nazly; Erizal; Erlinda, T. B.; Abbas, B.
1993-10-01
RADIATION AND CHEMICAL PRETREATMENT OF CELLULOSIC WASTE. Combination pretreatment of cellulosic wastes such as corn stalk, cassava bark and peanut husk were studied using chemical and irradiation of electron beam. The effect of 2 % NaOH and irradiation at the doses of 100, 300 and 500 kGy on the cellulosic wastes were evaluated by measurement of the glucose yield in enzymatic hydrolysis. Irradiation was carried out with an electron beam machine EPS-300 (Energy 300 kev, current 50 mA). The result shows that the glucose yield were higher by increasing of dose irradiation and treated with 2 % of NaOH especially in corn stalk. The glucose yield of corn stalk were 20 % in untreated samples and increases to 43 % after treated with electron beam irradiation at the dose of 500 kGy and 2 % NaOH. Cassava bark and peanut husk show the glucose yield are only 3.5, and 2.5% respectively. The effect of E-beam current in enzymatic hydrolysis of corn stalk, and preliminary studied E-beam radiation pretreatment of cassava bark are also reported.
Human biodistribution and radiation dosimetry of 82Rb.
Senthamizhchelvan, Srinivasan; Bravo, Paco E; Esaias, Caroline; Lodge, Martin A; Merrill, Jennifer; Hobbs, Robert F; Sgouros, George; Bengel, Frank M
2010-10-01
Prior estimates of radiation-absorbed doses from (82)Rb, a frequently used PET perfusion tracer, yielded discrepant results. We reevaluated (82)Rb dosimetry using human in vivo biokinetic measurements. Ten healthy volunteers underwent dynamic PET/CT (6 contiguous table positions, each with separate (82)Rb infusion). Source organ volumes of interest were delineated on the CT images and transferred to the PET images to obtain time-integrated activity coefficients. Radiation doses were estimated using OLINDA/EXM 1.0. The highest mean absorbed organ doses (μGy/MBq) were observed for the kidneys (5.81), heart wall (3.86), and lungs (2.96). Mean effective doses were 1.11 ± 0.22 and 1.26 ± 0.20 μSv/MBq using the tissue-weighting factors of the International Commission on Radiological Protection (ICRP), publications 60 and 103, respectively. Our current (82)Rb dosimetry suggests reasonably low radiation exposure. On the basis of this study, a clinical (82)Rb injection of 2 × 1,480 MBq (80 mCi) would result in a mean effective dose of 3.7 mSv using the weighting factors of the ICRP 103-only slightly above the average annual natural background exposure in the United States (3.1 mSv).
Kajimura, Junko; Lynch, Heather E; Geyer, Susan; French, Benjamin; Yamaoka, Mika; Shterev, Ivo D; Sempowski, Gregory D; Kyoizumi, Seishi; Yoshida, Kengo; Misumi, Munechika; Ohishi, Waka; Hayashi, Tomonori; Nakachi, Kei; Kusunoki, Yoichiro
2017-11-30
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Kajimura, Junko; Lynch, Heather E; Geyer, Susan; French, Benjamin; Yamaoka, Mika; Shterev, Ivo D; Sempowski, Gregory D; Kyoizumi, Seishi; Yoshida, Kengo; Misumi, Munechika; Ohishi, Waka; Hayashi, Tomonori; Nakachi, Kei; Kusunoki, Yoichiro
2018-01-01
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Funama, Yoshinori; Taguchi, Katsuyuki; Utsunomiya, Daisuke; Oda, Seitaro; Murasaki, Hiroo; Yamashita, Yasuyuki; Awai, Kazuo
2012-01-01
The purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA). Using a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions. In prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation. The OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.
2017-05-01
Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.
2015-02-01
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.
NASA Astrophysics Data System (ADS)
Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.
2017-11-01
In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.
Absorbed radiation doses to staff after implementation of a radiopharmacy clean room.
Ponto, James A
2014-12-01
In response to U.S. Pharmacopeia general chapter <797> standards, a clean room was constructed for our in-house radiopharmacy. Previously, most patient doses were prepared as needed just before injection. Currently, to minimize repeated entries into the clean room, most patient doses are prepared in batches; that is, early morning and noontime preparation of doses to be injected at various times throughout the morning and the afternoon, respectively. Because these patient doses may be prepared well before injection time, radioactive decay necessitates higher amounts of radioactivity to be handled for patient dose preparation. Hence, absorbed radiation doses to staff, all of whom rotate into the radiopharmacy clean room in addition to their regular patient-related activities, were retrospectively evaluated. Monthly dosimetry reports for body (chest badge) and extremities (finger ring) were retrospectively reviewed for each staff member for 12 mo before and 12 mo after implementation of the radiopharmacy clean room. Monthly data were evaluated for average and SD, and 12-mo groups were evaluated using a paired t test. Data for the second 12-mo period were also normalized to the same number of patient doses to account for an increase in procedure volume and were reevaluated. Before the radiopharmacy clean room had been implemented, average monthly absorbed radiation doses to body and extremities were 23 ± 15 mrem (0.23 ± 0.15 mSv) and 93 ± 59 mrem (0.93 ± 0.59 mSv), respectively. After the clean room had been implemented, average monthly absorbed radiation doses increased to 32 ± 16 mrem (0.32 ± 0.16 mSv) (P < 0.001) and 121 ± 89 mrem (1.21 ± 0.89 mSv) (P = 0.0015), respectively. When normalized for procedure volume, average monthly absorbed radiation doses after implementation of the clean room were still higher, at 29 ± 15 mrem (0.29 ± 0.15 mSv) (P = 0.001) and 110 ± 80 mrem (1.10 ± 0.80 mSv) (P = 0.039), respectively. After implementation of a radiopharmacy clean room, absorbed radiation doses to body and extremities increased by 26% and 18%, respectively, even after normalizing for procedure volume. Because absorbed radiation doses from other activities, such as patient dose administration and patient imaging, are assumed to remain relatively constant, these increases in absorbed radiation doses to staff are attributed to changes in work flow after implementation of the radiopharmacy clean room. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Thomas E.; Kiehna, Erin N.; Li Chenghong
2006-05-01
Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had amore » significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts.« less
Lata, M; Prasad, J; Singh, S; Kumar, R; Singh, L; Chaudhary, P; Arora, R; Chawla, R; Tyagi, S; Soni, N L; Sagar, R K; Devi, M; Sharma, R K; Puri, S C; Tripathi, R P
2009-01-01
The current study has concentrated on assessment of the radioprotective potential of REC-2001, a semi-purified fraction of rhizomes of Podophyllum hexandrum, in Swiss albino Strain 'A' mice exposed to 10 Gy whole-body gamma radiation. Animals were treated with 10 and 15 mg/kg b wt (i.p.) of REC-2001 1h prior to exposure to a lethal dose of gamma-radiation (10 Gy) and observed upto 30 days. For analysis of maximum tolerable dose (MTD), LD(50) and acute toxic dose, different concentrations of the extract were administered to animals and their mortality and morbidity status was observed upto 72 h and one week, respectively. Dose reduction factor (DRF) was determined by exposing REC-2001 pre-treated mice to supra-lethal doses of gamma-radiation. Endogenous spleen colony forming units (CFU), DNA strand breaks in thymocytes (alkaline halo assay) and lipid degradation was studied to understand the mechanism of radioprotection. A single dose of REC-2001 (10 and 15 mg/kg b wt i.p.) exhibited >90% survival in the pre-treated irradiated group versus no survival in radiation control group. Single doses of upto 75 mg/kg b wt (i.p.) did not cause any mortality (MTD) in mice. REC-2001, a dose of 90 mg/kg b wt, resulted in 50% mortality (LD(50)), while the LD(100) was 115 mg/kg b wt REC-2001 exhibited a DRF of 1.62. CFU counts in the REC-2001 treated group were found significantly high (5.33/spleen) as compared to controls. Exposure of thymocytes to 10 Gy radiation resulted in increased halo diameter (45+/-3 microm) in comparison to untreated controls (8+/-1 microm). REC-2001 administration (500 microg/ml) decreased the halo diameter to 15+/-2 microm. Radiation-induced lipid degradation was also inhibited by REC-2001. The present study has revealed that REC-2001 is a promising radioprotective fraction that can be effectively used against lethal doses of gamma-radiation after further investigations in higher animal models.
Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleiman, Norman Jay
The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiationmore » exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.« less
Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radev, R
2009-01-13
In June 2007, 10 CFR 835 [1] was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 [2]. The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring [3,4,5] including the ambient dose equivalent H*(d) tomore » be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of {+-}25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22%. The health physicists should consider this increase for any areas that have dose rates near a posting limit, such as near the 100 mrem/hr for a high radiation area, as this increase in measured dose rate may result in some changes to postings and consequent radiological controls.« less
Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina
2018-06-01
Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.
Defense Threat Reduction Agency > Contracts > Business Opportunities >
Reporting Nuclear Test Personnel Review NTPR Fact Sheets NTPR Radiation Dose Assessment Documents US Atmospheric Nuclear Test History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Current Contractors & Partners Cost Proposals & DCAA Pre-Award Surveys DTRA Cost Proposal
NASA Astrophysics Data System (ADS)
Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka
2018-01-01
The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.
Female gonadal shielding with automatic exposure control increases radiation risks.
Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei
2018-02-01
Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.
The Role of Alveolar Epithelium in Radiation-Induced Lung Injury
Almeida, Celine; Nagarajan, Devipriya; Tian, Jian; Leal, Sofia Walder; Wheeler, Kenneth; Munley, Michael; Blackstock, William; Zhao, Weiling
2013-01-01
Pneumonitis and fibrosis are major lung complications of irradiating thoracic malignancies. In the current study, we determined the effect of thoracic irradiation on the lungs of FVB/N mice. Survival data showed a dose-dependent increase in morbidity following thoracic irradiation with single (11–13 Gy) and fractionated doses (24–36 Gy) of 137Cs γ-rays. Histological examination showed a thickening of vessel walls, accumulation of inflammatory cells, collagen deposition, and regional fibrosis in the lungs 14 weeks after a single 12 Gy dose and a fractionated 30 Gy dose; this damage was also seen 5 months after a fractionated 24 Gy dose. After both single and fractionated doses, i] aquaporin-5 was markedly decreased, ii] E-cadherin was reduced and iii] prosurfactant Protein C (pro-SP-c), the number of pro-SP-c+ cells and vimentin expression were increased in the lungs. Immunofluorescence analysis revealed co-localization of pro-SP-c and α-smooth muscle actin in the alveoli after a single dose of 12 Gy. These data suggest that, i] the FVB/N mouse strain is sensitive to thoracic radiation ii] aquaporin-5, E-cadherin, and pro-SP-c may serve as sensitive indicators of radiation-induced lung injury; and iii] the epithelial-to-mesenchymal transition may play an important role in the development of radiation-induced lung fibrosis. PMID:23326473
Weighting factors for radiation quality: how to unite the two current concepts.
Kellerer, Albrecht M
2004-01-01
The quality factor, Q(L), used to be the universal weighting factor to account for radiation quality, until--in its 1991 Recommendations--the ICRP established a dichotomy between 'computable' and 'measurable' quantities. The new concept of the radiation weighting factor, w(R), was introduced for use with the 'computable' quantities, such as the effective dose, E. At the same time, the application of Q(L) was restricted to 'measurable' quantities, such as the operational quantities ambient dose equivalent or personal dose equivalent. The result has been a dual system of incoherent dosimetric quantities. The most conspicuous inconsistency resulted for neutrons, for which the new concept of wR had been primarily designed. While its definition requires an accounting for the gamma rays produced by neutron capture in the human body, this effect is not adequately reflected in the numerical values of wR, which are now suitable for mice, but are--at energies of the incident neutrons below 1 MeV--conspicuously too large for man. A recent Report 92 to ICRP has developed a proposal to correct the current imbalance and to define a linkage between the concepts Q(L) and wR. The proposal is here considered within a broader assessment of the rationale that led to the current dual system of dosimetric quantities.
Thyroid Consequences of the Fukushima Nuclear Reactor Accident
Nagataki, Shigenobu
2012-01-01
Background A special report, ‘The Fukushima Accident’, was delivered at the 35th Annual Meeting of the European Thyroid Association in Krakow on September 11, 2011, and this study is the follow-up of the special report. Objectives To present a preliminary review of potential thyroid consequences of the 2011 Fukushima nuclear reactor accident. Methods Numerous new data have been presented in Japanese, and most of them are available on the website from each research institute and/or from each municipality. The review was made using these data from the website. Results When individual radiation doses were expressed as values in more than 99% of residents, radiation doses by behavior survey in evacuation and deliberate evacuation areas were less than 10 mSv in the first 4 months, and internal radiation doses measured by whole body counters were less than 1 mSv/year. Individual thyroid radiation doses were less than 50 mSv (intervention levels) even in evacuation areas. As for health consequences, no one died and no one suffered from acute effects. The thyroid ultrasound examination is in progress and following examination of almost 40,000 children, 35% of them have nodules and/or cysts but no cancers. Conclusions Countermeasures against radiation must consider current individual measured values, although every effort must be taken to reconstruct radiation doses as precisely as possible. At present, the difference of thyroid radiation dose between Chernobyl and Fukushima appears to be due to the strict control of milk started within a week after the accident in Fukushima. Since the iodine-131 plume moved around in wide areas and for a long time, the method of thyroid protection must be reconsidered. PMID:24783014
NASA Astrophysics Data System (ADS)
Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.
2012-09-01
Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.
Romanyukha, Alex; Schauer, David A; Malikov, Yurii K
2006-02-01
Between 1949 and 1989 the Semipalatinsk nuclear test site (SNTS), an area of 19,000 square km in northeastern Kazakhstan, was the location of over 400 nuclear test explosions with a total explosive energy of 6.6 Mt TNT (trinitrotoluene or trotyl) equivalent. It is estimated that the bulk of the radiation exposure to the population resulted from three tests, conducted in 1949, 1951, and 1953 although estimations of radiation doses received by the local population have varied significantly. Analysis of the published ESR dose reconstruction results for residents of the villages near the SNTS show that they do not correlate well with other methods of dose assessment (e.g. model dose calculation and thermo luminescence dosimetry (TLD) in bricks). The most significant difference in dose estimations was found for the population of Dolon, which was exposed as result of the first Soviet nuclear test in 1949. Published results of ESR measurements in tooth enamel are considerably lower than other dose estimations. Detailed analysis of these results is provided and a possible explanation for this discrepancy and ways to eliminate it are suggested.
Enhancement of radiation effect on cancer cells by gold-pHLIP
Antosh, Michael P.; Wijesinghe, Dayanjali D.; Shrestha, Samana; Lanou, Robert; Huang, Yun Hu; Hasselbacher, Thomas; Fox, David; Neretti, Nicola; Sun, Shouheng; Katenka, Natallia; Cooper, Leon N; Andreev, Oleg A.; Reshetnyak, Yana K.
2015-01-01
Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement. PMID:25870296
Modeling radiation loads in the ILC main linac and a novel approach to treat dark current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokhov, Nilolai V.; Rakhno, Igor L.; Tropin, Igor S.
Electromagnetic and hadron showers generated by electrons of dark current (DC) can represent a significant radiation threat to the ILC linac equipment and personnel. In this study, a commissioning scenario is analysed which is considered as the worst-case scenario for the main linac regarding the DC contribution to the radiation environment in the tunnel. A normal operation scenario is analysed as well. An emphasis is made on radiation load to sensitive electronic equipment—cryogenic thermometers inside the cryomodules. Prompt and residual dose rates in the ILC main linac tunnels were also calculated in these new high-statistics runs. A novel approach wasmore » developed—as a part of general purpose Monte Carlo code MARS15—to model generation, acceleration and transport of DC electrons in electromagnetic fields inside SRF cavities. Comparisons were made with a standard approach when a set of pre-calculated DC electron trajectories is used, with a proper normalization, as a source for Monte Carlo modelling. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the peak absorbed dose in the cryogenic thermometers in the main tunnel for 20 years of operation is about 0.8 MGy. The calculated contact residual dose on cryomodules and tunnel walls in the main tunnel for typical irradiation and cooling conditions is 0.1 and 0.01 mSv/hr, respectively.« less
Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung
2015-01-01
Abstract Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2–5 years), 23.5 to 44.1 (6–10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2–5 years), 3.9 to 9.3 (6–10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2–5 years), 5.7 to 12.4 (6–10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in certain age groups. PMID:26683922
Principals Of Radiation Toxicology: Important Aspects.
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Slava; Jones, Jeffrey
“All things are poison, and nothing is without poison; only the dose permits something not to be poisonous.” Paracelsus Key Words: Radiation Toxins (RT), Radiation Toxicants (RTc), Radiation Poisons (RP), Radiation Exposure (RE), Radiation Toxicology is the science about radiation poisons. [D.Popov et al. 2012,J.Zhou et al. 2007,] Radiation Toxins is a specific proteins with high enzymatic activity produced by living irradiated mammals. [D.Popov et al. 2012,] Radiation Toxicants is a substances that produce radiomimetics effects, adverse biological effects which specific for radiation. [D.Popov et al. 2012,] Radiation Toxic agent is specific proteins that can produce pathological biological effects specific for physical form of radiation.[D.Popov et al. 1990,2012,V. Maliev 2007] Different Toxic Substances isolated from cells or from blood or lymph circulation. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007,] Radiation Toxins may affects many organs or specific organ, tissue, specific group of cells. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007] For example: Radiation Toxins could induce collective toxic clinical states to include: systemic inflammatory response syndrome (SIRS),toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [T. Azizova et al. 2005, Konchalovsky et al., 2005, D. Popov et al 2012] However, Radiation Toxins could induce specific injury of organs or tissue and induce Acute Radiation Syndromes such as Acute Radiation Cerebrovascular Syndrome, Acute Radiation Cardiovascular Syndrome, Acute Radiation Hematopoietic Syndrome, Acute Radiation GastroIntestinal Syndrome. [ D.Popov et al. 1990, 2012, V. Maliev et al. 2007] Radiation Toxins correlates with Radiation Exposure and the dose-response relationship is a fundamental and essential concept in classic Toxicology and Radiation Toxicology.[ D.Popov et al. 1990, 2012] Moderate and high doses of radiation induces necrosis of radiosensitive cells with the subsequent formation of radiation toxins and their induced acute inflammatory processes. Radiation necrosis is the most substantial and most severe form of radiation induced injury, and when widespread, has grave therapeutic implications. [D. Popov et al. 1990, 2012,Claudio A. et al. 2002, Robertson J. et al. 2002, ] Relatively small doses of Radiation Toxins induce apoptosis and high doses of Radiation Toxins induce necrosis. [Rastogi P. et al. 2009, D. Popov et al. 1990, 2012,] Threshold of Toxic Effects occurs and can be defined. [D. Popov et al. 2012, ] Radiation Toxins affects Somatic cells and Germ Cells. Radiation Toxins can induce teratogenic processes. Specific Toxicity of Radiation Toxins can affects developing fetus. Material and Methods, Results: http://www.intechopen.com/books/current-topics-in-ionizing-radiation-research/radiation-toxins-molecular-mechanisms-of-toxicity-and-radiomimetic-properties- Conclusion: Radiation is a physical agent - induce activation of some secretory proteins with high enzymatic activity. This proteins called as Radiation Toxins can produce specific for radiation biological and toxic effects after administration to radiation naive mammals. [V. Maliev et al. 2007, D. Popov et al. 1990, 2012] Radiation Toxins are teratogenic and oncogenic. Radiation Toxins effects depend on Administered Dose and Radiation effects depend on Exposure Dose and Absorbed Dose. The levels of Radiation Toxins correlates with Radiation Exposure.
Conceptus radiation dose and risk from chest screen-film radiography.
Damilakis, John; Perisinakis, Kostas; Prassopoulos, Panos; Dimovasili, Evangelia; Varveris, Haralambos; Gourtsoyiannis, Nicholas
2003-02-01
The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d(a)) was estimated for 51 women of childbearing age from chest CT examinations. The value of d(a) was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10(-3) mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d(a) estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for individual conceptus dose estimations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miglicco, P.S.; Spears, A.B.; Howell, D.B.
1957-11-22
Several types of vacuum tubes, transistors and transformers were irradiated with the Convair-Fort Worth Ground Test Reactor. The components were subjected to five different fluxes ranging from 10/sup 6/ to 10/sup 10/n/sub F// cm/sup 2/-sec and 10/sup 8/ to 10/sup 12/ gamma /cm/sup 2/-sec. The total integrated flux received was 10/sup 14/n/sub F//cm/sup 2/ and 10/sup 16/ gamma / cm/sup 2/. An attempt was made to separate radiation damage as a function of dose rate from radiation damage as a function of dose. The components were irradiated first at several low dose rates so that dose rate effects could bemore » studied while the accumulated dose was small, and then at a high dose rate to obtain the desired dose. However, because of the long time required to complete a data gathering cycle, the accumulated dose hindered the separation of dose rate and dose effects. Thus, in the report, the damage to the components is reported as a function of integrated flux. For reference, the integrated flux accumulated at each power level is given. The transformers exhibited the greatest resistance to irradiation. Every important parameter of the transistors deteriorated in the radiation field. Postirradiation tests at room temperature showed no significant recovery in the transistor's characteristics. The plate current of 65% of the tubes tested increased during irradiation. This effect, based on postirradiation tests, is considered permanent. (auth)« less
The U.S.-Russian radiation health effects research program in the Southern Urals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seligman, P.J.
2000-07-01
The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral US-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), the Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Associationmore » (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.« less
Models for Total-Dose Radiation Effects in Non-Volatile Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Philip Montgomery; Wix, Steven D.
The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models andmore » compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.« less
Defense Threat Reduction Agency > Contracts > Business Opportunities >
Reporting Nuclear Test Personnel Review NTPR Fact Sheets NTPR Radiation Dose Assessment Documents US Atmospheric Nuclear Test History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Information Office of Small Business Programs Current Contractors & Partners Cost Proposals & DCAA Pre
Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.
Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei
2017-03-01
The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.
NASA Astrophysics Data System (ADS)
Heo, Y. J.; Kim, K. T.; Oh, K. M.; Lee, Y. K.; Ahn, K. J.; Cho, H. L.; Kim, J. Y.; Min, B. I.; Mun, C. W.; Park, S. K.
2017-09-01
The most widely used form of radiotherapy to treat tumors uses a linear accelerator, and the apparatus requires regular quality assurance (QA). QA for a linear accelerator demands accuracy throughout, from mock treatment and treatment planning, up to treatment itself. Therefore, verifying a radiation dose is essential to ensure that the radiation is being applied as planned. In current clinical practice, ionization chambers and diodes are used for QA. However, using conventional gaseous ionization chambers presents drawbacks such as complex analytical procedures, difficult measurement procedures, and slow response time. In this study, we discuss the potential of a lead(II) iodide (PbI2)-based radiation dosimeter for radiotherapy QA. PbI2 is a semiconductor material suited to measurements of X-rays and gamma rays, because of its excellent response properties to radiation signals. Our results show that the PbI2-based dosimeter offers outstanding linearity and reproducibility, as well as dose-independent characteristics. In addition, percentage depth dose (PDD) measurements indicate that the error at a fixed reference depth Dmax was 0.3%, very similar to the measurement results obtained using ionization chambers. Based on these results, we confirm that the PbI2-based dosimeter has all the properties required for radiotherapy: stable dose detection, dose linearity, and rapid response time. Based on the evidence of this experimental verification, we believe that the PbI2-based dosimeter could be used commercially in various fields for precise measurements of radiation doses in the human body and for measuring the dose required for stereotactic radiosurgery or localized radiosurgery.
Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daila S. Gridley, PhD
2012-03-30
FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findingsmore » remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information that will be useful in estimating human health risks due to radiation that may occur during exposures in the work environment, nuclear/radiological catastrophes, as well as radiotherapy. Several papers have been published, accepted for publication or are in preparation. A number of poster and oral presentations have been made at scientific conferences and workshops. Archived tissues of various types will continue to be evaluated via funding from other sources (the DoE Low Dose Radiation Research Program, Office of Science and this specific grant will be appropriately included in the Acknowledgements of all subsequent publications/presentations). A post-doc and several students have participated in this study. More detailed description of the accomplishments is described in attached file.« less
Development of Safety Assessment Code for Decommissioning of Nuclear Facilities
NASA Astrophysics Data System (ADS)
Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori
A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.
Yasui, Shojiro
2016-10-01
With respect to radiation protection for decontamination efforts involving radioactive fallout emitted by the accident at the Fukushima Daiichi Atomic Power Plant, new regulations were established and obligated employers to monitor, record, and store of workers' dose records, and to check their past dose records at the time of employment. However, cumulative doses may not be properly maintained if a worker declares incorrect values for past doses. In response, with facilitation from the Ministry of Health, Labour and Welfare, primary contractors of decontamination works decided to establish a central dose registration system. There are four major issues in the design of the system to be resolved, included the following: primary contractors (a) do not have a legal responsibility to perform dose control for subcontractors, (b) do not have the right to control decontamination sites, (c) often organize joint ventures, and (d) correspond to a wide range of ambient dose rates. To resolve the issues, requirements of the system included the following: (a) centralize the operation of radiation passbooks, which records past doses and the results of medical examinations to each worker; (b) develop a database system that could register all dose data and accept inquiry from primary contractors; (c) establish a permanent data storage system for transferred records; and (d) provide graded type of services that are appropriate to the risk of radiation exposure. The system started its operation in December 2013 and provided dose distributions in April and July 2015. The average yearly dose in 2014 was 0.7 mSv, which increased by 0.2 mSv from 0.5 mSv in 2012 and 2013. However, no cumulative dose from 2012-2014 exceeded 20 mSv, which was far below than the dose limits (100 mSv/5 years and 50 mSv/year). Although current dose distributions of decontamination workers were within appropriate levels, careful monitoring of dose distribution is necessary for preserving the proper implementation of radiation protection prescribed in the regulations.
Radiation immune RAM semiconductor technology for the 80's. [Random Access Memory
NASA Technical Reports Server (NTRS)
Hanna, W. A.; Panagos, P.
1983-01-01
This paper presents current and short term future characteristics of RAM semiconductor technologies which were obtained by literature survey and discussions with cognizant Government and industry personnel. In particular, total ionizing dose tolerance and high energy particle susceptibility of the technologies are addressed. Technologies judged compatible with spacecraft applications are ranked to determine the best current and future technology for fast access (less than 60 ns), radiation tolerant RAM.
Manheimer, Eric D.; Peters, M. Robert; Wolff, Steven D.; Qureshi, Mehreen A.; Atluri, Prashanth; Pearson, Gregory D.N.; Einstein, Andrew J.
2011-01-01
Triple-rule-out computed tomography angiography (TRO CTA), performed to evaluate the coronary arteries, pulmonary arteries, and thoracic aorta, has been associated with high radiation exposure. Utilization of sequential scanning for coronary computed tomography angiography (CCTA) reduces radiation dose. The application of sequential scanning to TRO CTA is much less well defined. We analyzed radiation dose and image quality from TRO CTA performed in a single outpatient center, comparing scans from a period during which helical scanning with electrocardiographically controlled tube current modulation was used for all patients (n=35) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=35). Sequential scanning was able to be employed in 86% of cases. The sequential-if-appropriate strategy, compared to the helical-only strategy, was associated with a 61.6% dose decrease (mean dose-length product [DLP] of 439 mGy×cm vs 1144 mGy×cm and mean effective dose of 7.5 mSv vs 19.4 mSv, respectively, p<0.0001). Similarly, there was a 71.5% dose reduction among 30 patients scanned with the sequential protocol compared to 40 patients scanned with the helical protocol under either strategy (326 mGy×cm vs 1141 mGy×cm and 5.5 mSv vs 19.4 mSv, respectively, p<0.0001). Although image quality did not differ between strategies, there was a non-statistically significant trend towards better quality in the sequential protocol compared to the helical protocol. In conclusion, approaching TRO CTA with a diagnostic strategy of sequential scanning as appropriate offers a marked reduction in radiation dose while maintaining image quality. PMID:21306693
Mitigation Strategies for Acute Radiation Exposure during Space Flight
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Epelman, Slava
2006-01-01
While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.
Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf
2014-12-01
The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.
Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Hu, Shaowen; Nounu, Hateni N.; Kim, Myung-Hee
2011-01-01
The integration of human space applications risk projection models of organ dose and acute radiation risk has been a key problem. NASA has developed an organ dose projection model using the BRYNTRN with SUM DOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUM DOSE are a Baryon transport code and an output data processing code, respectively. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN. A GUI for the ARR and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. BRYNTRN code operation requires extensive input preparation. Only a graphical user interface (GUI) can handle input and output for BRYNTRN to the response models easily and correctly. The purpose of the GUI development for ARRBOD is to provide seamless integration of input and output manipulations for the operations of projection modules (BRYNTRN, SLMDOSE, and the ARR probabilistic response model) in assessing the acute risk and the organ doses of significant Solar Particle Events (SPEs). The assessment of astronauts radiation risk from SPE is in support of mission design and operational planning to manage radiation risks in future space missions. The ARRBOD GUI can identify the proper shielding solutions using the gender-specific organ dose assessments in order to avoid ARR symptoms, and to stay within the current NASA short-term dose limits. The quantified evaluation of ARR severities based on any given shielding configuration and a specified EVA or other mission scenario can be made to guide alternative solutions for attaining determined objectives set by mission planners. The ARRBOD GUI estimates the whole-body effective dose, organ doses, and acute radiation sickness symptoms for astronauts, by which operational strategies and capabilities can be made for the protection of astronauts from SPEs in the planning of future lunar surface scenarios, exploration of near-Earth objects, and missions to Mars.
Is dosimetry still a necessity in current dental practice?
Reddy, S S; Rakesh, N; Chauhan, Pallavi; Clint, Joseph Ben; Sharma, Shivani
2015-12-01
Today, dentists have a wide range of imaging modalities to choose from, the film based techniques, digital techniques, and the recent introduction of 3D volumetric or cone beam computed tomography (CBCT). The inherent design features of the new generation dental x-ray equipment has significantly improved over the years with no evidence of substandard x-ray units in operation. In dental facilities radiological workload is comparatively low, newer radiation equipments and accessories follow safety guidelines and employ better radiation protection measures for the patient and the operator. Dentists' knowledge and expertise in radiation protection measures is good, enabling them to carry out riskfree radiation procedures in their practice. Therefore, the present study is aimed at assessing the need for dosimeters in current dental scenario. 'Is there currently a significant risk from dental radiography to merit the use of personal dosimetery in dental practice. 'Dental health professionals (Oral radiologists) and radiographic assistants of fourteen dental colleges in Karnataka state participated in this questionnaire study. The questionnaire consisted of the following questions--the make, type, year of manufacture of radiographic machines used in their setup, number of radiographs made per day in the institution, type of receptors used, number of personnel at risk for radiation exposure, radiation protection measures used, regular monitoring by personal dosimeters, equivalent dosage readings for the past 12 months and whether the reading of thermoluminescent dosimeters (TLD) for any personnel had exceeded the recommended exposure value in the last 3 years. Dosimetry records of the radiology staff in the last three years shows doses no more than 1.50 mSv per year. The various institutions' dose (person mSv) was in the range of 3.70 mSv-3.90 mSv. Personal monitoring for Dentists can be omitted in the dental colleges since the estimated dose of oral radiologists contributed less than 0.01 mSv to the total average annual effective dose equivalent. Hence personal monitoring services (TLD Badges) for dentists employed in dental colleges should not be made mandatory.
Future directions for LDEF ionizing radiation modeling and assessments
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
1993-01-01
A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.
Methods and compositions for protection of cells and tissues from computed tomography radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grdina, David J.
Described are methods for preventing or inhibiting genomic instability and in cells affected by diagnostic radiology procedures employing ionizing radiation. Embodiments include methods of preventing or inhibiting genomic instability and in cells affected by computed tomography (CT) radiation. Subjects receiving ionizing radiation may be those persons suspected of having cancer, or cancer patients having received or currently receiving cancer therapy, and or those patients having received previous ionizing radiation, including those who are approaching or have exceeded the recommended total radiation dose for a person.
Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study
Mathieu, Kelsey B.; Ai, Hua; Fox, Patricia S.; Godoy, Myrna Cobos Barco; Munden, Reginald F.; de Groot, Patricia M.
2014-01-01
The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground‐glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model‐based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back‐projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast‐to‐noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening. PACS numbers: 87.57.Q‐, 87.57.nf PMID:24710436
Protons and more: state of the art in radiotherapy.
Hoskin, Peter J; Bhattacharya, Indrani S
2014-12-01
The purpose of modern radiotherapy is to deliver a precise high dose of radiation which will result in reproductive death of the cells. Radiation should transverse within the tumour volume whilst minimising damage to surrounding normal tissue. Overall 40% of cancers which are cured will have received radiotherapy. Current state of the art treatment will incorporate cross-sectional imaging and multiple high energy X-ray beams in processes called intensity modulated radiotherapy and image guided radiotherapy. Brachytherapy enables very high radiation doses to be delivered by the direct passage of a radiation source through or within the tumour volume and similar results can be achieved using rotational stereotactic X-ray beam techniques. Protons have the characteristics of particle beams which deposit their energy in a finite fixed peak at depth in tissue with no dose beyond this point - the Bragg peak. This has advantages in certain sites such as the spine adjacent to the spinal cord and particularly in children when the overall volume of tissue receiving radiation can be minimised. © 2014 Royal College of Physicians.
Logan, C.M.
1994-12-20
An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.
Radiation exposures due to fossil fuel combustion
NASA Astrophysics Data System (ADS)
Beck, Harold L.
The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.
Inada, Satoshi; Masuda, Takanori; Maruyama, Naoya; Yamashita, Yukari; Sato, Tomoyasu; Imada, Naoyuki
2016-01-01
To evaluate the image quality and effect of radiation dose reduction by setting for computed tomography automatic exposure control system (CT-AEC) in computed tomographic angiography (CTA) of lower extremity artery. Two methods of setting were compared for CT-AEC [conventional and contrast-to-noise ratio (CNR) methods]. Conventional method was set noise index (NI): 14and tube current threshold: 10-750 mA. CNR method was set NI: 18, minimum tube current: (X+Y)/2 mA (X, Y: maximum X (Y)-axis tube current value of leg in NI: 14), and maximum tube current: 750 mA. The image quality was evaluated by CNR, and radiation dose reduction was evaluated by dose-length-product (DLP). In conventional method, mean CNRs for pelvis, femur, and leg were 19.9±4.8, 20.4±5.4, and 16.2±4.3, respectively. There was a significant difference between the CNRs of pelvis and leg (P<0.001), and between femur and leg (P<0.001). In CNR method, mean CNRs for pelvis, femur, and leg were 15.2±3.3, 15.3±3.2, and 15.3±3.1, respectively; no significant difference between pelvis, femur, and leg (P=0.973) in CNR method was observed. Mean DLPs were 1457±434 mGy⋅cm in conventional method, and 1049±434 mGy·cm in CNR method. There was a significant difference in the DLPs of conventional method and CNR method (P<0.001). CNR method gave equal CNRs for pelvis, femur, and leg, and was beneficial for radiation dose reduction in CTA of lower extremity artery.
Induction of chromosomal aberrations at fluences of less than one HZE particle per cell nucleus.
Hada, Megumi; Chappell, Lori J; Wang, Minli; George, Kerry A; Cucinotta, Francis A
2014-10-01
The assumption of a linear dose response used to describe the biological effects of high-LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high-energy charged (HZE) nuclei. Human fibroblast and lymphocyte cells were irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with oxygen (77 keV/μm), silicon (99 keV/μm) or Fe (175 keV/μm), Fe (195 keV/μm) or Fe (240 keV/μm) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Nonlinear regression models were used to evaluate possible linear and nonlinear dose-response models based on these data. Dose responses for simple exchanges for human fibroblasts irradiated under confluent culture conditions were best fit by nonlinear models motivated by a nontargeted effect (NTE). The best fits for dose response data for human lymphocytes irradiated in blood tubes were a linear response model for all particles. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low-particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high-LET radiation at the relevant range of low doses.
NASA Astrophysics Data System (ADS)
Joyce, C. J.
2016-12-01
The current state of the Sun and solar wind, with uncommonly low densities and weak magnetic fields, has resulted in galactic cosmic ray fluxes that are elevated to levels higher than have ever before been observed in the space age. Given the continuing trend of declining solar activity, it is clear that accurate modeling of GCR radiation is becoming increasingly important in the field of space weather. Such modelling is essential not only in the planning of future manned space missions, but is also important for assessing the radiation risks to airline passengers, particularly given NASA's plans to develop supersonic aircraft that will fly at much higher altitudes than commercial aircraft and thus be more vulnerable to radiation from GCRs. We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). Newly available measurements of atmospheric dose rates from instruments aboard commercial and research aircraft enable evaluation of the accuracy of the model in computing atmospheric dose rates. Additionally, a newly available dataset of balloon-based measurements, including simultaneous balloon launches from California and New Hampshire, provide an additional means of comparison to the model. When compared to the available observations of atmospheric radiation levels, the computed dose rates seem to be sufficiently accurate, falling within recommended radiation uncertainty limits.
An Evaluation of Bipolar Junction Transistors as Dosimeter for Megavoltage Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos, Renan Garcia de; Vidal da Silva, Rogerio Matias; Silva, Malana Marcelina Almeida
Dosimetry is an extremely important field in medical applications of radiation and nowadays, electron beam is a good option for superficial tumor radiotherapy. Normally, the applied dose to the patient both in diagnostic and therapy must be monitored to prevent injuries and ensure the success of the treatment, therefore, we should always look for improving of the dosimetric methods. Accordingly, the aim of this work is about the use of a bipolar junction transistor (BJT) for electron beam dosimetry. After previous studies, such an electronic device can work as a dosimeter when submitted to ionizing radiation of photon beam. Actually,more » a typical BJT consists of two PN semiconductor junctions resulting in the NPN structure device, for while, and each semiconductor is named as collector (C), base (B) and emitter (E), respectively. Although the transistor effect, which corresponds to the current amplification, be accurately described by the quantum physics, one can utilize a simple concept from the circuit theory: the base current IB (input signal) is amplified by a factor of β resulting in the collector current IC (output signal) at least one hundred times greater the IB. In fact, the BJT is commonly used as a current amplifier with gain β=I{sub C}/I{sub B}, therefore, it was noticed that this parameter is altered when the device is exposed to ionizing radiation. The current gain alteration can be explained by the trap creation and the positive charges build up, beside the degradation of the lattice structure. Then, variations of the gain of irradiated transistors may justify their use as a dosimeter. Actually, the methodology is based on the measurements of the I{sub C} variations whereas I{sub B} is maintained constant. BC846 BJT type was used for dose monitoring from passive-mode measurements: evaluation of its electrical characteristic before and after irradiation procedure. Thus, IC readings were plotted as a function of the applied dose in 6 MeV electron beam from a linear accelerator, Clinac iX. The results show that this new methodology could be an alternative to study the dose in superficial tumors in radiation oncology. (authors)« less
A Radiation Dosimeter Concept for the Lunar Surface Environment
NASA Technical Reports Server (NTRS)
Adams, James H.; Christl, Mark J.; Watts, John; Kuznetsov, Eugeny N.; Parnell, Thomas A.; Pendleton, Geoff N.
2007-01-01
A novel silicon detector configuration for radiation dose measurements in an environment where solar energetic particles are of most concern is described. The dosimeter would also measure the dose from galactic cosmic rays. In the lunar environment a large range in particle flux and ionization density must be measured and converted to dose equivalent. This could be accomplished with a thick (e.g. 2mm) silicon detector segmented into cubic volume elements "voxels" followed by a second, thin monolithic silicon detector. The electronics needed to implement this detector concept include analog signal processors (ASIC) and a field programmable gate array (FPGA) for data accumulation and conversion to linear energy transfer (LET) spectra and to dose-equivalent (Sievert). Currently available commercial ASIC's and FPGA's are suitable for implementing the analog and digital systems.
Occupational exposure assessment: Practices in Malaysian nuclear agency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarowi, S. Muhd, E-mail: suzie@nuclearmalaysia.gov.my; Ramli, S. A.; Kontol, K. Mohamad
Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia includingmore » the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H{sub 0}) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304)« less
NASA Astrophysics Data System (ADS)
Koleva, Rositza; Semkova, Jordanka; Krastev, Krasimir; Bankov, Nikolay; Malchev, Stefan; Benghin, Victor; Shurshakov, Vyacheslav
2017-04-01
The radiation field around the Earth is complex, composed of galactic cosmic rays, trapped particles of the Earth's radiation belts, solar energetic particles, albedo particles from the Earth's atmosphere and secondary radiation produced in the space vehicle shielding materials around the biological objects. Dose characteristics in near Earth and space radiation environment also depend on many other parameters such as the orbit parameters, solar cycle phase and current helio-and geophysical conditions. Since June 2007 till 2015 the Liulin-5 charged particle telescope has been observing the radiation characteristics in two different modules of the International Space Station (ISS). In the period from 2007 to 2009 measurements were conducted in the spherical tissue-equivalent phantom of MATROSHKA-R project located in the PIRS module of ISS. In the period from 2012 to 2015 measurements were conducted in and outside the phantom located in the Small Research Module of ISS. In this presentation attention is drawn to the obtained results for the dose rates, particle fluxes and dose equivalent rates in and outside the phantom from the galactic cosmic rays, trapped protons and solar energetic particle events which occurred in that period.
Occupational exposure assessment: Practices in Malaysian nuclear agency
NASA Astrophysics Data System (ADS)
Sarowi, S. Muhd; Ramli, S. A.; Kontol, K. Mohamad; Rahman, N. A. H. Abd.
2016-01-01
Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H₀) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304).
NASA Astrophysics Data System (ADS)
Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin
2011-10-01
Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.
Are current guidelines for sun protection optimal for health? Exploring the evidence.
Lucas, Robyn M; Neale, Rachel E; Madronich, Sasha; McKenzie, Richard L
2018-06-15
Exposure of the skin to ultraviolet (UV) radiation is the main risk factor for skin cancer, and a major source of vitamin D, in many regions of the world. Sun protection messages to minimize skin cancer risks but avoid vitamin D deficiency are challenging, partly because levels of UV radiation vary by location, season, time of day, and atmospheric conditions. The UV Index provides information on levels of UV radiation and is a cornerstone of sun protection guidelines. Current guidelines from the World Health Organization are that sun protection is required only when the UV Index is 3 or greater. This advice is pragmatic rather than evidence based. The UV Index is a continuous scale; more comprehensive sun protection is required as the UV Index increases. In addition, a wide range of UVA doses is possible with a UVI of 3, from which there may be health consequences, while full sun protection when the UVI is "moderate" (between 3 and 5) may limit vitamin D production. Finally, the duration of time spent in the sun is an essential component of a public health message, in addition to the intensity of ambient UV radiation as measured by the UV Index. Together these provide the dose of UV radiation that is relevant to both skin cancer genesis and vitamin D production. Further education is required to increase the understanding of the UV Index; messages framed using the UV Index need to incorporate the importance of duration of exposure and increasing sun protection with increasing dose of UV radiation.
Dosimetry procedures for an industrial irradiation plant
NASA Astrophysics Data System (ADS)
Grahn, Ch.
Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw; Liu, Shu-Hsin; Mok, Greta S. P.
Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate riskmore » estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.« less
Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods
NASA Astrophysics Data System (ADS)
Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.
2012-03-01
In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.
Non-targeted effects of ionizing radiation–implications for low dose risk
Kadhim, Munira; Salomaa, Sisko; Wright, Eric; Hildebrandt, Guido; Belyakov, Oleg V.; Prise, Kevin M.; Little, Mark P.
2014-01-01
Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionizing radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the Non-targeted effects of ionizing radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. PMID:23262375
Epidemiology of radiation-induced cancer.
Radford, E P
1983-01-01
The epidemiology of radiation-induced cancer is important for theoretical and practical insights that these studies give to human cancer in general and because we have more evidence from radiation-exposed populations than for any other environmental carcinogen. On theoretical and experimental grounds, the linear no-threshold dose-response relationship is a reasonable basis for extrapolating effects to low doses. Leukemia is frequently the earliest observed radiogenic cancer but is now considered to be of minor importance, because the radiation effect dies out after 25 or 30 years, whereas solid tumors induced by radiation develop later and the increased cancer risk evidently persists for the remaining lifetime. Current estimates of the risk of particular cancers from radiation exposure cannot be fully evaluated until the population under study have been followed at least 40 or 50 years after exposure. Recent evidence indicates that for lung cancer induction, combination of cigarette smoking and radiation exposure leads to risks that are not multiplicative but rather nearly additive. PMID:6653538
Radiation Dose and Cancer Risk Estimates in 16-Slice Computed Tomography Coronary Angiography
Einstein, Andrew J.; Sanz, Javier; Dellegrottaglie, Santo; Milite, Margherita; Sirol, Marc; Henzlova, Milena; Rajagopalan, Sanjay
2008-01-01
Background Recent advances have led to a rapid increase in the number of computed tomography coronary angiography (CTCA) studies performed. While several studies have reported effective dose (E), there is no data available on cancer risk for current CTCA protocols. Methods and Results E and organ doses were estimated, using scanner-derived parameters and Monte Carlo methods, for 50 patients having 16-slice CTCA performed for clinical indications. Lifetime attributable risks (LARs) were estimated with models developed in the National Academies’ Biological Effects of Ionizing Radiation VII report. E of a complete CTCA averaged 9.5 mSv, while that of a complete study, including calcium scoring when indicated, averaged 11.7 mSv. Calcium scoring increased E by 25%, while tube current modulation reduced it by 34% and was more effective at lower heart rates. Organ doses were highest to the lungs and female breast. LAR of cancer incidence from CTCA averaged approximately 1 in 1600, but varied widely between patients, being highest in younger women. For all patients, the greatest risk was from lung cancer. Conclusions CTCA is associated with non-negligible risk of malignancy. Doses can be reduced by careful attention to scanning protocol. PMID:18371595
Kim, K. P.; Berrington de González, A.; Pearce, M. S.; Salotti, J. A.; Parker, L.; McHugh, K.; Craft, A. W.; Lee, C.
2012-01-01
Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240 000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries. PMID:22228685
Kim, K P; Berrington de González, A; Pearce, M S; Salotti, J A; Parker, L; McHugh, K; Craft, A W; Lee, C
2012-07-01
Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240,000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries.
Harderian Gland Tumorigenesis: Low-Dose and LET Response.
Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A
2016-05-01
Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the results from single 0.13 or 0.26 Gy acute titanium exposures. Theoretical modeling of the data show that a nontargeted effect model provides a better fit than the targeted effect model, providing important information at space-relevant doses of heavy ions.
Harderian Gland Tumorigenesis: Low-Dose and LET Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Polly Y.; Cucinotta, Francis A.; Bjornstad, Kathleen A.
Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSvmore » are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ~70 keV/μm) and 1,000 MeV/u titanium (LET ~100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the results from single 0.13 or 0.26 Gy acute titanium exposures. Theoretical modeling of the data show that a nontargeted effect model provides a better fit than the targeted effect model, providing important information at space-relevant doses of heavy ions.« less
NASA Astrophysics Data System (ADS)
Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.
2014-03-01
Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose optimization.
Zahnreich, Sebastian; Ebersberger, Anne; Kaina, Bernd; Schmidberger, Heinz
2015-04-01
The aim of this current study was to quantitatively describe radiation-induced DNA damage and its distribution in leukocytes of cancer patients after fractionated partial- or total-body radiotherapy. Specifically, the impact of exposed anatomic region and administered dose was investigated in breast and prostate cancer patients receiving partial-body radiotherapy. DNA double-strand breaks (DSBs) were quantified by γ-H2AX immunostaining. The frequency of unstable chromosomal aberrations in stimulated lymphocytes was also determined and compared with the frequency of DNA DSBs in the same samples. The frequency of radiation-induced DNA damage was converted into dose, using ex vivo generated calibration curves, and was then compared with the administered physical dose. This study showed that 0.5 h after partial-body radiotherapy the quantity of radiation-induced γ-H2AX foci increased linearly with the administered equivalent whole-body dose for both tumor entities. Foci frequencies dropped 1 day thereafter but proportionality to the equivalent whole-body dose was maintained. Conversely, the frequency of radiation-induced cytogenetic damage increased from 0.5 h to 1 day after the first partial-body exposure with a linear dependence on the administered equivalent whole-body dose, for prostate cancer patients only. Only γ-H2AX foci assessment immediately after partial-body radiotherapy was a reliable measure of the expected equivalent whole-body dose. Local tumor doses could be approximated with both assays after one day. After total-body radiotherapy satisfactory dose estimates were achieved with both assays up to 8 h after exposure. In conclusion, the quantification of radiation-induced γ-H2AX foci, but not cytogenetic damage in peripheral leukocytes was a sensitive and rapid biodosimeter after acute heterogeneous irradiation of partial body volumes that was able to primarily assess the absorbed equivalent whole-body dose.
NASA Technical Reports Server (NTRS)
Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther
2010-01-01
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The initial focus of the present experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on, the results of the passive dosimetry within the anthropomorphic phantoms represent the best tool to generate reliable data to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study.
Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware
NASA Technical Reports Server (NTRS)
Kniffin, Scott
2016-01-01
X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the level of exposure to ionizing radiation is total ionizing dose (TID). The unit of TID is the rad, which is defined as 100 ergs absorbed per gram of material. Dose can be expressed in other units, for example grays (gy), where 1 gy = 100 rads. The actual fluence of radiation needed to deliver a rad depends on the absorbing material, so units of dose are usually stated in reference to the material of interest. That is, for microelectronic devices, the unit of dose is generally rad (Si) or rad (SiO2). However, the definition of absorbed dose in this fashion has the advantage that the type of radiation causing the ionization can be normalized so that a realistic and adequate comparison can be made. The sensitivity of microelectronic parts to TID varies over many orders of magnitude. (Note: Doses to humans are typically expressed in rems-or roentgen-equivalent-man-which measures tissue damage, and depends on the type of radiation, as well as the dose in rads.) Thus far, the "softest" parts tested at NASA showed damage at 500 rads (Si), while parts that are radiation-hardened by design can remain functional to doses on the order of 107 rads (Si). This broad range of sensitivity highlights one of the most important considerations when considering the effects of radiation on electronic parts: In order to determine whether a radiation exposure is a concern for a particular part, one must understand the technologies used in the part and their vulnerabilities to TID damage. A NASA radiation expert should be consulted to obtain such information.
2004-06-01
address the need for triage, based on early physical assessments, bioindicators , and biological assessments, in order to aid clinical management of... bioindicator for radiation exposure, Strahlentherapy Onkol., 166: 688-95. [IAEA] Cytogenetic analysis for radiation dose assessment. A manual...Name: Dr Rios-Tejada (SP) Question: Is there relevance of biodosimetry in air crews who fly high and at high latitudes? Author’s Reply: The
TID Simulation of Advanced CMOS Devices for Space Applications
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
2016-07-01
This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.
Recent Developments in Computed Tomography for Urolithiasis: Diagnosis and Characterization
Mc Laughlin, P. D.; Crush, L.; Maher, M. M.; O'Connor, O. J.
2012-01-01
Objective. To critically evaluate the current literature in an effort to establish the current role of radiologic imaging, advances in computed tomography (CT) and standard film radiography in the diagnosis, and characterization of urinary tract calculi. Conclusion. CT has a valuable role when utilized prudently during surveillance of patients following endourological therapy. In this paper, we outline the basic principles relating to the effects of exposure to ionizing radiation as a result of CT scanning. We discuss the current developments in low-dose CT technology, which have resulted in significant reductions in CT radiation doses (to approximately one-third of what they were a decade ago) while preserving image quality. Finally, we will discuss an important recent development now commercially available on the latest generation of CT scanners, namely, dual energy imaging, which is showing promise in urinary tract imaging as a means of characterizing the composition of urinary tract calculi. PMID:22952473
The effect of dose heterogeneity on radiation risk in medical imaging.
Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert
2013-06-01
The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.
Basics of particle therapy I: physics
Park, Seo Hyun
2011-01-01
With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest. PMID:22984664
Requirements for radiation emergency urine bioassay techniques for the public and first responders.
Li, Chunsheng; Vlahovich, Slavica; Dai, Xiongxin; Richardson, Richard B; Daka, Joseph N; Kramer, Gary H
2010-11-01
Following a radiation emergency, the affected public and the first responders may need to be quickly assessed for internal contamination by the radionuclides involved. Urine bioassay is one of the most commonly used methods for assessing radionuclide intake and radiation dose. This paper attempts to derive the sensitivity requirements (from inhalation exposure) for the urine bioassay techniques for the top 10 high-risk radionuclides that might be used in a terrorist attack. The requirements are based on a proposed reference dose to adults of 0.1 Sv (CED, committed effective dose). In addition, requirements related to sample turnaround time and field deployability of the assay techniques are also discussed. A review of currently available assay techniques summarized in this paper reveals that method development for ²⁴¹Am, ²²⁶Ra, ²³⁸Pu, and ⁹⁰Sr urine bioassay is needed.
Studying radiation hardness of a cadmium tungstate crystal based radiation detector
NASA Astrophysics Data System (ADS)
Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu
2016-06-01
The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.
Kim, Hyun Gi; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang
2015-01-01
Purpose To investigate the optimal blending percentage of adaptive statistical iterative reconstruction (ASIR) in a reduced radiation dose while preserving a degree of image quality and texture that is similar to that of standard-dose computed tomography (CT). Materials and Methods The CT performance phantom was scanned with standard and dose reduction protocols including reduced mAs or kVp. Image quality parameters including noise, spatial, and low-contrast resolution, as well as image texture, were quantitatively evaluated after applying various blending percentages of ASIR. The optimal blending percentage of ASIR that preserved image quality and texture compared to standard dose CT was investigated in each radiation dose reduction protocol. Results As the percentage of ASIR increased, noise and spatial-resolution decreased, whereas low-contrast resolution increased. In the texture analysis, an increasing percentage of ASIR resulted in an increase of angular second moment, inverse difference moment, and correlation and in a decrease of contrast and entropy. The 20% and 40% dose reduction protocols with 20% and 40% ASIR blending, respectively, resulted in an optimal quality of images with preservation of the image texture. Conclusion Blending the 40% ASIR to the 40% reduced tube-current product can maximize radiation dose reduction and preserve adequate image quality and texture. PMID:25510772
Low-voltage chest CT: another way to reduce the radiation dose in asbestos-exposed patients.
Macía-Suárez, D; Sánchez-Rodríguez, E; Lopez-Calviño, B; Diego, C; Pombar, M
2017-09-01
To assess whether low voltage chest computed tomography (CT) can be used to successfully diagnose disease in patients with asbestos exposure. Fifty-six former employees of the shipbuilding industry, who were candidates to receive a standard-dose chest CT due to their occupational exposure to asbestos, underwent a routine CT. Immediately after this initial CT, they underwent a second acquisition using low-dose chest CT parameters, based on a low potential (80 kV) and limited tube current. The findings of the two CT protocols were compared based on typical diseases associated with asbestos exposure. The kappa coefficient for each parameter and for an overall rating (grouping them based on mediastinal, pleural, and pulmonary findings) were calculated in order to test for correlations between the two protocols. A good correlation between routine and low-dose CT was demonstrated for most parameters with a mean radiation dose reduction of up to 83% of the effective dose based on the dose-length product between protocols. Low-dose chest CT, based on a limited tube potential, is useful for patients with an asbestos exposure background. Low-dose chest CT can be successfully used to minimise the radiation dose received by patients, as this protocol produced an estimated mean effective dose similar to that of an abdominal or pelvis plain film. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Low dose radiation damage effects in silicon strip detectors
NASA Astrophysics Data System (ADS)
Wiącek, P.; Dąbrowski, W.
2016-11-01
The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.
Examples for the importance of radiophysical measurements in clinical phototherapy.
Schneider, Lars Alexander; Wlaschek, Meinhard; Dissemond, Joachim; Scharffetter-Kochanek, Karin
2007-05-01
Optimal UV therapy requires regular surveillance of the variables that influence therapeutic success. In daily practice, phototherapy equipment is often operated with an attitude of "autocontrol." This implies that thorough control measurements of the emission spectra and calibration of UV fluences are not routinely performed. For both quality control and patient safety, it is essential to regularly check whether a UV source is providing the right target spectrum with the correct dose to the skin. We have exemplarily taken three UV sources currently used in clinical practice and performed radiophysical measurements, i. e. determined emission spectra, radiation output and correctness of dose calculation. All three sources revealed either a largely inhomogeneous distribution pattern of radiation intensity, variation of radiation intensity over time or insufficient filtering of the UV lamp emission spectrum. Furthermore the dose calculation procedures had to be revised because of significant differences between the estimated and the administered UV doses. Radiophysical measurement of all UV-equipment in clinical use is a simple and effective way to improve the safety and reliability of phototherapy. Such measurements help to uncover technical flaws in radiation sources and prevent unnecessary side effects and UV exposure risks for the patient.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.
Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C
2012-08-01
The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.
Rollet, S; Autischer, M; Beck, P; Latocha, M
2007-01-01
The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.
Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site.
Pitonzo, B J; Amy, P S; Rudin, M
1999-07-01
A time-course experiment was conducted to evaluate the effects of gamma radiation on the indigenous microbiota present in rock obtained from Yucca Mountain, Nevada Test Site. Microcosms were constructed by placing pulverized Yucca Mountain rock in polystyrene cylinders. Continuous exposure (96 h) at a dose rate of 1.63 Gy/min was used to mimic the near-field environment surrounding waste canisters. The expected maximum surface dose rate from one unbreached canister designed to contain spent nuclear fuels is 0.06 Gy/min. Considering the current repository packing design, multiple canisters within one vault, the cumulative dose rate may well approach that used in this experiment. The microbial communities were characterized after receiving cumulative doses of 0, 0.098, 0. 58, 2.33, 4.67, 7.01 and 9.34 kGy. Radiation-resistant microorganisms in the pulverized rock became viable but nonculturable (VBNC) after a cumulative dose of 2.33 kGy. VBNC microorganisms lose the ability to grow on media on which they have routinely been cultured in response to the environmental stress imposed (i.e. radiation) but can be detected throughout the time course using direct fluorescence microscopy techniques. Two representative exopolysaccharide-producing isolates from Yucca Mountain were exposed to the same radiation regimen in sand microcosms. One isolate was much more radiation-resistant than the other, but both had greater resistance than the general microbial community based on culturable counts. However, when respiring cell counts (VBNC) were compared after irradiation, the results would indicate much more radiation resistance of the individual isolates and the microbial community in general. These results have significant implications for underground storage of nuclear waste as they indicate that indigenous microorganisms are capable of surviving gamma irradiation in a VBNC state.
Definitions and outlook targeting x-ray exposure of patients in diagnostic imaging
NASA Astrophysics Data System (ADS)
Regulla, Dieter F.
2011-03-01
Computer tomography (CT) is vital and currently irreplaceable in diagnostic radiology. But CT operates with ionizing radiation which may cause cancer or non-cancer diseases in humans. The degree of radiation impact depends on the dose administered by an investigation. And this is the core issue: Even CT exams executed lege artis, administer doses to patients which by magnitude are far beyond the level of hitherto known doses of conventional film-screen techniques. Patients undergoing one or multiple CT examinations, digital angiographies or interventions will be exposed to effective doses between roughly several mSv and several 100 mSv depending on type and frequency of the diagnostic investigations. From the radiation protection point of view, there is therefore the worldwide problem of formulating firm rules for the control of these high-dose investigations, as dose limits can not be established for reasons of the medical benefit. This makes the difference compared with radiation protection for occupationally exposed persons. What remains is "software", namely "justification" and "optimization". Justification requires balancing the interests between the health benefit and the potential harm of an exam which has to be responsibly executed by the physician himself; therefore the radiologists' associations are in the duty to prepare practicable rules for justification. Optimization again needs a cooperative solution, and that is the establishment of reference doses for diagnostic examinations, to be checked by the technical service of the producers' companies. Experts and authorities have been aware of the high-dose dilemma in diagnostic imaging since long. It is time for the reflection of active solutions and their implementation into practice.
Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa
2011-04-01
The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.
Zavgorodni, S F
2001-09-01
With modern urbanization trends, situations occur where a general-purpose multi-storey building would have to be constructed adjacent to a radiotherapy facility. In cases where the building would not be in the primary x-ray beam, "skyshine" radiation is normally accounted for. The radiation scattered from the roof side-wise towards the building can also be a major contributing factor. However, neither the NCRP reports nor recently published literature considered this. The current paper presents a simple formula to calculate the dose contribution from scattered radiation in such circumstances. This equation includes workload, roof thickness, field size, distance to the reference point and a normalized angular photon distribution function f(theta), where theta is the angle between central axis of the primary beam and photon direction. The latter was calculated by the Monte Carlo method (EGS4 code) for each treatment machine in our department. For angles theta exceeding approximately 20 degrees (i.e., outside the primary beam and its penumbra) the angular distribution function f(theta) was found to have little dependence on the shielding barrier thickness and the beam energy. An analytical approximation of this function has been obtained. Measurements have been performed to verify this calculation technique. An agreement within 40% was found between calculated and measured dose rates. The latter combined the scattered radiation and the dose from "skyshine" radiation. Some overestimation of the dose resulted from uncertainties in the radiotherapy building drawings and in evaluation of the "skyshine" contribution.
Schreiner, Markus M; Platzgummer, Hannes; Unterhumer, Sylvia; Weber, Michael; Mistelbauer, Gabriel; Loewe, Christian; Schernthaner, Ruediger E
2017-08-01
To investigate radiation exposure, objective image quality, and the diagnostic accuracy of a BMI-adjusted ultra-low-dose CT angiography (CTA) protocol for the assessment of peripheral arterial disease (PAD), with digital subtraction angiography (DSA) as the standard of reference. In this prospective, IRB-approved study, 40 PAD patients (30 male, mean age 72 years) underwent CTA on a dual-source CT scanner at 80kV tube voltage. The reference amplitude for tube current modulation was personalized based on the body mass index (BMI) with 120 mAs for [BMI≤25] or 150 mAs for [25
Methods of in vivo radiation measurement
Huffman, Dennis D.; Hughes, Robert C.; Kelsey, Charles A.; Lane, Richard; Ricco, Antonio J.; Snelling, Jay B.; Zipperian, Thomas E.
1990-01-01
Methods of and apparatus for in vivo radiation measurements relay on a MOSFET dosimeter of high radiation sensitivity with operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.
Huffman, D.D.; Hughes, R.C.; Kelsey, C.A.; Lane, R.; Ricco, A.J.; Snelling, J.B.; Zipperian, T.E.
1986-08-29
Methods of and apparatus for in vivo radiation measurements rely on a MOSFET dosimeter of high radiation sensitivity which operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.
Noël, Peter B; Engels, Stephan; Köhler, Thomas; Muenzel, Daniela; Franz, Daniela; Rasper, Michael; Rummeny, Ernst J; Dobritz, Martin; Fingerle, Alexander A
2018-01-01
Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax-abdomen-pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose 4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.
Monitoring cosmic radiation on aircraft
NASA Astrophysics Data System (ADS)
Bentley, Robert D.; Iles, R. H. A.; Jones, J. B. L.; Hunter, R.; Taylor, G. C.; Thomas, D. J.
2002-03-01
The Earth is constantly bombarded by cosmic radiation that can be either galactic or solar in origin. At aircraft altitudes, the radiation levels are much higher than at sea level and recent European legislation has classified aircrew as radiation workers. University College London is working with Virgin Atlantic Airways on a 3 year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether models currently used to predict radiation exposure of aircrew are adequate. It will also try to determine whether solar flare activity can cause significant enhancement to the predicted doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinnaiyan, Prakash, E-mail: prakash.chinnaiyan@moffitt.org; Won, Minhee; Wen, Patrick Y.
Purpose: To determine the safety of the mammalian target of rapamycin inhibitor everolimus (RAD001) administered daily with concurrent radiation and temozolomide in newly diagnosed glioblastoma patients. Methods and Materials: Everolimus was administered daily with concurrent radiation (60 Gy in 30 fractions) and temozolomide (75 mg/m{sup 2} per day). Everolimus was escalated from 2.5 mg/d (dose level 1) to 5 mg/d (dose level 2) to 10 mg/d (dose level 3). Adjuvant temozolomide was delivered at 150 to 200 mg/m{sup 2} on days 1 to 5, every 28 days, for up to 12 cycles, with concurrent everolimus at the previously established dailymore » dose of 10 mg/d. Dose escalation continued if a dose level produced dose-limiting toxicities (DLTs) in fewer than 3 of the first 6 evaluable patients. Results: Between October 28, 2010, and July 2, 2012, the Radiation Therapy Oncology Group 0913 protocol initially registered a total of 35 patients, with 25 patients successfully meeting enrollment criteria receiving the drug and evaluable for toxicity. Everolimus was successfully escalated to the predetermined maximum tolerated dose of 10 mg/d. Two of the first 6 eligible patients had a DLT at each dose level. DLTs included gait disturbance, febrile neutropenia, rash, fatigue, thrombocytopenia, hypoxia, ear pain, headache, and mucositis. Other common toxicities were grade 1 or 2 hypercholesterolemia and hypertriglyceridemia. At the time of analysis, there was 1 death reported, which was attributed to tumor progression. Conclusions: Daily oral everolimus (10 mg) combined with both concurrent radiation and temozolomide followed by adjuvant temozolomide is well tolerated, with an acceptable toxicity profile. A randomized phase 2 clinical trial with mandatory correlative biomarker analysis is currently under way, designed to both determine the efficacy of this regimen and identify molecular determinants of response.« less
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Walsh, Timothy J.; Beltran, Chris J.; Stoker, Joshua B.; Mundy, Daniel W.; Parry, Mark D.; Bues, Martin; Fatyga, Mirek
2016-04-01
The use of radiation therapy for the treatment of cancer has been carried out clinically since the late 1800's. Early on however, it was discovered that a radiation dose sufficient to destroy cancer cells can also cause severe injury to surrounding healthy tissue. Radiation oncologists continually strive to find the perfect balance between a dose high enough to destroy the cancer and one that avoids damage to healthy organs. Spot scanning or "pencil beam" proton radiotherapy offers another option to improve on this. Unlike traditional photon therapy, proton beams stop in the target tissue, thus better sparing all organs beyond the targeted tumor. In addition, the beams are far narrower and thus can be more precisely "painted" onto the tumor, avoiding exposure to surrounding healthy tissue. To safely treat patients with proton beam radiotherapy, dose verification should be carried out for each plan prior to treatment. Proton dose verification systems are not currently commercially available so the Department of Radiation Oncology at the Mayo Clinic developed its own, called DOSeCHECK, which offers two distinct dose simulation methods: GPU-based Monte Carlo and CPU-based analytical. The three major components of the system include the web-based user interface, the Linux-based dose verification simulation engines, and the supporting services and components. The architecture integrates multiple applications, libraries, platforms, programming languages, and communication protocols and was successfully deployed in time for Mayo Clinic's first proton beam therapy patient. Having a simple, efficient application for dose verification greatly reduces staff workload and provides additional quality assurance, ultimately improving patient safety.
McCunney, Robert J; Li, Jessica
2014-03-01
The National Lung Cancer Screening Trial (NLST) demonstrated that screening with low-dose CT (LDCT) scan reduced lung cancer and overall mortality by 20% and 7%, respectively. The LDCT scanning involves an approximate 2-mSv dose, whereas full-chest CT scanning, the major diagnostic study used to follow up nodules, may involve a dose of 8 mSv. Radiation associated with CT scanning and other diagnostic studies to follow up nodules may present an independent risk of lung cancer. On the basis of the NLST, we estimated the incidence and prevalence of nodules detected in screening programs. We followed the Fleischner guidelines for follow-up of nodules to assess cumulative radiation exposure over 20- and 30-year periods. We then evaluated nuclear worker cohort studies and atomic bomb survivor studies to assess the risk of lung cancer from radiation associated with long-term lung cancer screening programs. The findings indicate that a 55-year-old lung screening participant may experience a cumulative radiation exposure of up to 280 mSv over a 20-year period and 420 mSv over 30 years. These exposures exceed those of nuclear workers and atomic bomb survivors. This assessment suggests that long-term (20-30 years) LDCT screening programs are associated with nontrivial cumulative radiation doses. Current lung cancer screening protocols, if conducted over 20- to 30-year periods, can independently increase the risk of lung cancer beyond cigarette smoking as a result of cumulative radiation exposure. Radiation exposures from LDCT screening and follow-up diagnostic procedures exceed lifetime radiation exposures among nuclear power workers and atomic bomb survivors.
Uncertainties in estimating health risks associated with exposure to ionising radiation.
Preston, R Julian; Boice, John D; Brill, A Bertrand; Chakraborty, Ranajit; Conolly, Rory; Hoffman, F Owen; Hornung, Richard W; Kocher, David C; Land, Charles E; Shore, Roy E; Woloschak, Gayle E
2013-09-01
The information for the present discussion on the uncertainties associated with estimation of radiation risks and probability of disease causation was assembled for the recently published NCRP Report No. 171 on this topic. This memorandum provides a timely overview of the topic, given that quantitative uncertainty analysis is the state of the art in health risk assessment and given its potential importance to developments in radiation protection. Over the past decade the increasing volume of epidemiology data and the supporting radiobiology findings have aided in the reduction of uncertainty in the risk estimates derived. However, it is equally apparent that there remain significant uncertainties related to dose assessment, low dose and low dose-rate extrapolation approaches (e.g. the selection of an appropriate dose and dose-rate effectiveness factor), the biological effectiveness where considerations of the health effects of high-LET and lower-energy low-LET radiations are required and the transfer of risks from a population for which health effects data are available to one for which such data are not available. The impact of radiation on human health has focused in recent years on cancer, although there has been a decided increase in the data for noncancer effects together with more reliable estimates of the risk following radiation exposure, even at relatively low doses (notably for cataracts and cardiovascular disease). New approaches for the estimation of hereditary risk have been developed with the use of human data whenever feasible, although the current estimates of heritable radiation effects still are based on mouse data because of an absence of effects in human studies. Uncertainties associated with estimation of these different types of health effects are discussed in a qualitative and semi-quantitative manner as appropriate. The way forward would seem to require additional epidemiological studies, especially studies of low dose and low dose-rate occupational and perhaps environmental exposures and for exposures to x rays and high-LET radiations used in medicine. The development of models for more reliably combining the epidemiology data with experimental laboratory animal and cellular data can enhance the overall risk assessment approach by providing biologically refined data to strengthen the estimation of effects at low doses as opposed to the sole use of mathematical models of epidemiological data that are primarily driven by medium/high doses. NASA's approach to radiation protection for astronauts, although a unique occupational group, indicates the possible applicability of estimates of risk and their uncertainty in a broader context for developing recommendations on: (1) dose limits for occupational exposure and exposure of members of the public; (2) criteria to limit exposures of workers and members of the public to radon and its short-lived decay products; and (3) the dosimetric quantity (effective dose) used in radiation protection.
Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.
Hamada, Nobuyuki; Maeda, Munetoshi; Otsuka, Kensuke; Tomita, Masanori
2011-06-01
For nearly a century, ionizing radiation has been indispensable to medical diagnosis. Furthermore, various types of electromagnetic and particulate radiation have also been used in cancer therapy. However, the biological mechanism of radiation action remains incompletely understood. In this regard, a rapidly growing body of experimental evidence indicates that radiation exposure induces biological effects in cells whose nucleus has not been irradiated. This phenomenon termed the 'non-targeted effects' challenges the long-held tenet that radiation traversal through the cell nucleus is a prerequisite to elicit genetic damage and biological responses. The non-targeted effects include biological effects in cytoplasm-irradiated cells, bystander effects that arise in non-irradiated cells having received signals from irradiated cells, and genomic instability occurring in the progeny of irradiated cells. Such non-targeted responses are interrelated, and the bystander effect is further related with an adaptive response that manifests itself as the attenuated stressful biological effects of acute high-dose irradiation in cells that have been pre-exposed to low-dose or low-dose-rate radiation. This paper reviews the current body of knowledge about the bystander effect with emphasis on experimental approaches, in vitro and in vivo manifestations, radiation quality dependence, temporal and spatial dependence, proposed mechanisms, and clinical implications. Relations of bystander responses with the effects in cytoplasm-irradiated cells, genomic instability and adaptive response will also be briefly discussed.
NASA Astrophysics Data System (ADS)
Goiffon, Vincent; Rolando, Sébastien; Corbière, Franck; Rizzolo, Serena; Chabane, Aziouz; Girard, Sylvain; Baer, Jérémy; Estribeau, Magali; Magnan, Pierre; Paillet, Philippe; Van Uffelen, Marco; Mont Casellas, Laura; Scott, Robin; Gaillardin, Marc; Marcandella, Claude; Marcelot, Olivier; Allanche, Timothé
2017-01-01
The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed.
Space radiation concerns for manned exploration.
Stanford, M; Jones, J A
1999-07-01
Spaceflight exposes astronaut crews to natural ionizing radiation. To date, exposures in manned spaceflight have been well below the career limits recommended to NASA by the National Council of Radiation Protection and Measurements (NCRP). This will not be the case for long-duration exploratory class missions. Additionally. International Space Station (ISS) crews will receive higher doses than earlier flight crews. Uncertainties in our understanding of long-term bioeffects, as well as updated analyses of the Hiroshima. Nagasaki and Chernobyl tumorigenesis data, have prompted the NCRP to recommend further reductions by 30-50% for career dose limit guidelines. Intelligent spacecraft design and material selection can provide a shielding strategy capable of maintaining crew exposures within recommended guidelines. Current studies on newer radioprotectant compounds may find combinations of agents which further diminish the risk of radiation-induced bioeffects to the crew.
Shielding Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.
2015-01-01
Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.
The risk of radiation exposure to the eyes of the interventional pain physician.
Fish, David E; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog
2011-01-01
It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them.
A Review of Radiation Protection Solutions for the Staff in the Cardiac Catheterisation Laboratory.
Badawy, Mohamed Khaldoun; Deb, Pradip; Chan, Robert; Farouque, Omar
2016-10-01
Adverse health effects of radiation exposure to staff in cardiac catheterisation laboratories have been well documented in the literature. Examples include increased risk of cataracts as well as possible malignancies. These risks can be partly mitigated by reducing scatter radiation exposure to staff during diagnostic and interventional cardiac procedures. There are currently commercially available radiation protection tools, including radioprotective caps, gloves, eyewear, thyroid collars, aprons, mounted shields, table skirts and patient drapes to protect staff from excessive radiation exposure. Furthermore, real-time dose feedback could lead to procedural changes that reduce operator dose. The objective of this review is to examine the efficacy of these tools and provide practical recommendations to reduce occupational radiation exposure with the aim of minimising long-term adverse health outcomes. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
The Risk of Radiation Exposure to the Eyes of the Interventional Pain Physician
Fish, David E.; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog
2011-01-01
It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them. PMID:22091381
Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu
2018-01-01
Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.
Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus
2013-06-01
The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550 mA (450-600) vs. 650 mA (500-711.25) (median (interquartile range)), respectively, P < 0.001. There was 27% effective radiation dose reduction in the ASIR group compared with FBP group, 4.29 mSv (2.84-6.02) vs. 5.84 mSv (3.88-8.39) (median (interquartile range)), respectively, P < 0.001. Although ASIR was associated with increased image noise compared with FBP (39.93 ± 10.22 vs. 37.63 ± 18.79 (mean ± standard deviation), respectively, P < 0.001), it did not affect the signal intensity, signal-to-noise ratio, contrast-to-noise ratio or the diagnostic quality of CCTA. Application of ASIR reduces the radiation dose of CCTA without affecting the image quality. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.
Patient-specific CT dosimetry calculation: a feasibility study.
Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W
2011-11-15
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.
Development of a primary standard for absorbed dose from unsealed radionuclide solutions
NASA Astrophysics Data System (ADS)
Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.
2016-12-01
Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k = 1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation dose assessment methods based on MIRD and RADAR data for 90Y have been validated with experimental absorbed dose determination and they agree within the stated expanded uncertainty (k = 2).
NASA Astrophysics Data System (ADS)
Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).
SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Inst., Troy, NY; Liu, T
Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, andmore » the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)« less
Omar-Nazir, Laila; Shi, Xiaopei; Moller, Anders; Mousseau, Timothy; Byun, Soohyun; Hancock, Samuel; Seymour, Colin; Mothersill, Carmel
2018-08-01
The impact of the Chernobyl NPP accident on the environment is documented to be greater than expected, with higher mutation rates than expected at the current, chronic low dose rate. In this paper we suggest that the historic acute exposure and resulting non-targeted effects (NTE) such as delayed mutations and genomic instability could account at least in part for currently measured mutation rates and provide an initial test of this concept. Data from Møller and Mousseau on the phenotypic mutation rates of Chernobyl birds 9-11 generations post the Chernobyl accident were used and the reconstructed dose response for mutations was compared with delayed reproductive death dose responses (as a measure of genomic instability) in cell cultures exposed to a similar range of doses. The dose to birds present during the Chernobyl NPP accident was reconstructed through the external pathway due to Cs-137 with an estimate of the uncertainty associated with such reconstruction. The percentage of Chernobyl birds several generations after the accident without mutations followed the general shape of the clonogenic survival percentage of the progeny of irradiated cells, and it plateaued at low doses. This is the expected result if NTE of radiation are involved. We suggest therefore, that NTE induced by the historic dose may play a role in generating mutations in progeny many generations following the initial disaster. Copyright © 2018 Elsevier Inc. All rights reserved.
Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients
Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.
2011-01-01
Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient’s clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDIvol) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDIvol underestimated dose to large organs in the scan coverage by 30%–48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by −57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by −63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients’ clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols. PMID:21361209
Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiang; Samei, Ehsan; Segars, W. Paul
2011-01-15
Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GEmore » Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDI{sub vol} underestimated dose to large organs in the scan coverage by 30%-48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by -57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by -63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients' clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols.« less
Cullings, Harry M
2012-03-01
The Radiation Effects Research Foundation (RERF) uses a dosimetry system to calculate radiation doses received by the Japanese atomic bomb survivors based on their reported location and shielding at the time of exposure. The current system, DS02, completed in 2003, calculates detailed doses to 15 particular organs of the body from neutrons and gamma rays, using new source terms and transport calculations as well as some other improvements in the calculation of terrain and structural shielding, but continues to use methods from an older system, DS86, to account for body self-shielding. Although recent developments in models of the human body from medical imaging, along with contemporary computer speed and software, allow for improvement of the calculated organ doses, before undertaking changes to the organ dose calculations, it is important to evaluate the improvements that can be made and their potential contribution to RERF's research. The analysis provided here suggests that the most important improvements can be made by providing calculations for more organs or tissues and by providing a larger series of age- and sex-specific models of the human body from birth to adulthood, as well as fetal models.
NASA Astrophysics Data System (ADS)
Fortkamp, Jonathan C.
Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.
A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies
NASA Technical Reports Server (NTRS)
De Angelis, G.; Clem, J. M.; Goldhagen, P. E.; Wilson, J. W.
2003-01-01
A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events. Published by Elsevier Ltd on behalf of COSPAR.
Heart in space: effect of the extraterrestrial environment on the cardiovascular system.
Hughson, Richard L; Helm, Alexander; Durante, Marco
2018-03-01
National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
Recent international regulations: low dose-low rate radiation protection and the demise of reason.
Okkalides, Demetrios
2008-01-01
The radiation protection measures suggested by the International Committee for Radiation Protection (ICRP), national regulating bodies and experts, have been becoming ever more strict despite the decrease of any information supporting the existence of the Linear no Threshold model (LNT) and of any adverse effects of Low Dose Low Rate (LDLR) irradiation. This tendency arises from the disproportionate response of human society to hazards that are currently in fashion and is unreasonable. The 1 mSv/year dose limit for the public suggested by the ICRP corresponds to a 1/18,181 detriment-adjusted cancer risk and is much lower than other hazards that are faced by modern societies such as e.g. driving and smoking which carry corresponding rate risks of 1/2,100 and 1/2,000. Even worldwide deadly work accidents rate is higher at 1/ 8,065. Such excessive safety measures against minimal risks from man made radiation sources divert resources from very real and much greater hazards. In addition they undermine research and development of radiation technology and tend to subjugate science and the quest for understanding nature to phobic practices.
Shen, Yaqi; Hu, Xuemei; Zou, Xianlun; Zhu, Di; Li, Zhen; Hu, Daoyu
2016-09-01
Imaging communities have already reached a consensus that the radiation dose of computed tomography (CT) should be reduced as much as reasonably achievable to lower population risks. Increasing attention is being paid to iodinated contrast media (CM) induced nephrotoxicity (CIN); a decrease in the intake of iodinated CM is required by increasingly more radiologists. Theoretically, the radiation dose varies with the tube current time and square of the tube voltage, with higher iodine contrast at low photon energies (Huda et al. [2000] Radiology, 21 7, 430-435).The use of low tube voltage is a promising strategy to reduce both the radiation dose and CM burden. The term 'double low' has been coined to describe scanning protocols that reduce radiation dose and iodine intake synchronously. These protocols are becoming increasingly popular in the clinical setting. The aim of this review was to describe all original studies using the 'double low' strategy in the last 5 years. We searched an online electronic database (PubMed) from January 2011 to December 2015 for original studies published on the relationship of low tube voltage with low radiation dose and low iodine contrast media burden in patients undergoing CT scans. Studies that failed to reduce radiation dose or iodine CM burden were excluded in this study. Thirty-seven studies aimed at reducing radiation dose using low tube voltage combined with iodine CM reduced protocols were included in this study. Most studies evaluated conditions associated with arteries. Four were cerebral and neck computed tomography angiography (CTA) studies, 15 were pulmonary CTA (pCTA) and coronary CTA (cCTA) studies, one concerned myocardial perfusion, five studies focused on the thoracic and abdominal aorta, and one investigated renal arteries. Three studies consisted of CT venography (CTV) of the pelvis and lower extremities. Six publications examined the liver, and two focused on the kidney. Overall, this review demonstrates that the low tube voltage CT protocol is a powerful tool to reduce the radiation dose in CTA, especially with pCTA and cCTA. © 2016 John Wiley & Sons Ltd.
Romm, Horst; Wilkins, Ruth C; Coleman, C Norman; Lillis-Hearne, Patricia K; Pellmar, Terry C; Livingston, Gordon K; Awa, Akio A; Jenkins, Mark S; Yoshida, Mitsuaki A; Oestreicher, Ursula; Prasanna, Pataje G S
2011-03-01
Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.
Allmendinger, Thomas; Kunz, Andreas S; Veyhl-Wichmann, Maike; Ergün, Süleyman; Bley, Thorsten A; Petritsch, Bernhard
2017-01-01
Background Coronary artery calcium (CAC) scoring is a widespread tool for cardiac risk assessment in asymptomatic patients and accompanying possible adverse effects, i.e. radiation exposure, should be as low as reasonably achievable. Purpose To evaluate a new iterative reconstruction (IR) algorithm for dose reduction of in vitro coronary artery calcium scoring at different tube currents. Material and Methods An anthropomorphic calcium scoring phantom was scanned in different configurations simulating slim, average-sized, and large patients. A standard calcium scoring protocol was performed on a third-generation dual-source CT at 120 kVp tube voltage. Reference tube current was 80 mAs as standard and stepwise reduced to 60, 40, 20, and 10 mAs. Images were reconstructed with weighted filtered back projection (wFBP) and a new version of an established IR kernel at different strength levels. Calcifications were quantified calculating Agatston and volume scores. Subjective image quality was visualized with scans of an ex vivo human heart. Results In general, Agatston and volume scores remained relatively stable between 80 and 40 mAs and increased at lower tube currents, particularly in the medium and large phantom. IR reduced this effect, as both Agatston and volume scores decreased with increasing levels of IR compared to wFBP (P < 0.001). Depending on selected parameters, radiation dose could be lowered by up to 86% in the large size phantom when selecting a reference tube current of 10 mAs with resulting Agatston levels close to the reference settings. Conclusion New iterative reconstruction kernels may allow for reduction in tube current for established Agatston scoring protocols and consequently for substantial reduction in radiation exposure. PMID:28607763
Ultralow Dose MSCT Imaging in Dental Implantology
Widmann, Gerlig; Al-Ekrish, Asma'a A.
2018-01-01
Introduction: The Council Directive 2013/59 Euratom has a clear commitment for keeping medical radiation exposure as low as reasonably achievable and demands a regular review and use of diagnostic reference levels. Methods: In dental implantology, the range of effective doses for cone beam computed tomography (CBCT) shows a broad overlap with multislice computed tomography (MSCT). More recently, ultralow dose imaging with new generations of MSCT scanners may impart radiation doses equal to or lower than CBCT. Dose reductions in MSCT have been further facilitated by the introduction of iterative image reconstruction technology (IRT), which provides substantial noise reduction over the current standard of filtered backward projection (FBP). Aim: The aim of this article is to review the available literature on ultralow dose CT imaging and IRTs in dental implantology imaging and to summarize their influence on spatial and contrast resolution, image noise, tissue density measurements, and validity of linear measurements of the jaws. Conclusion: Application of ultralow dose MSCT with IRT technology in dental implantology offers the potential for very large dose reductions compared with standard dose imaging. Yet, evaluation of various diagnostic tasks related to dental implantology is still needed to confirm the results obtained with various IRTs and ultra-low doses so far. PMID:29492174
Space radiation effects on plant and mammalian cells
NASA Astrophysics Data System (ADS)
Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.
2014-11-01
The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.
Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures
Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington
2012-01-01
The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Chung, J
2015-06-15
Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less
Calibration factors for the SNOOPY NP-100 neutron dosimeter
NASA Astrophysics Data System (ADS)
Moscu, D. F.; McNeill, F. E.; Chase, J.
2007-10-01
Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.
Takam, R; Bezak, E; Marcu, L G; Yeoh, E
2011-10-01
Determination and understanding of out-of-field neutron and photon doses in accelerator-based radiotherapy is an important issue since linear accelerators operating at high energies (>10 MV) produce secondary radiations that irradiate parts of the patient's anatomy distal to the target region, potentially resulting in detrimental health effects. This paper provides a compilation of data (technical and clinical) reported in the literature on the measurement and Monte Carlo simulations of peripheral neutron and photon doses produced from high-energy medical linear accelerators and the reported risk and/or incidence of second primary cancer of tissues distal to the target volume. Information in the tables facilitates easier identification of (1) the various methods and measurement techniques used to determine the out-of-field neutron and photon radiations, (2) reported linac-dependent out-of-field doses, and (3) the risk/incidence of second cancers after radiotherapy due to classic and modern treatment methods. Regardless of the measurement technique and type of accelerator, the neutron dose equivalent per unit photon dose ranges from as low as 0.1 mSv/Gy to as high as 20.4 mSv/Gy. This radiation dose potentially contributes to the induction of second primary cancer in normal tissues outside the treated area.
Fung, Mitchell; Bowsher, John G; Van Citters, Douglas W
2018-06-01
Ultra-high molecular weight polyethylene (UHMWPE) is the current gold standard for bearing materials used in total joint arthroplasty. High-dose radiation is commonly used to crosslink UHMWPE, thereby improving its wear resistance. A subsequent remelting step eliminates trapped residual free radicals to promote oxidative stability on the shelf, and to prevent material degradation over the long term. Assessment of clinically retrieved, highly crosslinked UHMWPE devices shows signs of unanticipated oxidation occurring in vivo, despite the absence of free radicals prior to implantation. These findings warrant further investigation into possible factors impacting this phenomenon along with its clinical implications. The overall objective of this work is to quantify the influence of irradiation dose and source on UHMWPE's oxidative stability, along with the effects of oxidation on the ultimate mechanical properties, including strength, ductility, and toughness. The results showed a strong positive correlation between maximum oxidation and initial transvinylene content. Critical oxidation levels in the context of mechanical property loss were determined for e-beam and gamma treatments at various radiation doses. Further, it was shown that critical oxidation was more dependent on radiation dose and less dependent on source. If in vivo oxidation persists in these devices, this can potentially lead to mechanical failure (e.g. fatigue damage) as observed in terminally gamma-sterilized devices. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sub-mSV breast XACT scanner: concept and design
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Ren, Liqiang; Samant, Pratik; Chen, Jian; Liu, Hong; Xiang, Liangzhong
2016-04-01
Excessive exposure to radiation increases the risk of cancer. We present the concept and design of a new imaging paradigm, X-ray induced acoustic computed tomography (XACT). Applying this innovative technology to breast imaging, one single X-ray exposure can generate a 3D acoustic image, which dramatically reduces the radiation dose to patients when compared to beast CT. A theoretical model is developed to analyze the sensitivity of XACT. A noise equivalent pressure model is used for calculating the minimal radiation dose in XACT imaging. Furthermore, K-Wave simulation is employed to study the acoustic wave propagation in breast tissue. Theoretical analysis shows that the X-ray induced acoustic signal has a 100% relative sensitivity to the X-ray absorption (given that the percentage change in the X-ray absorption coefficient yields the same percentage change in the acoustic signal amplitude), but not to X-ray scattering. The final detection sensitivity is primarily limited by the thermal noise. The radiation dose can be reduced by a factor of 100 compared with the newly FDA approved breast CT. Reconstruction result shows that breast calcification with diameter of 80 μm can be observed in XACT image by using ultrasound transducers with 5.5 MHz center frequency. Therefore, with the proposed innovative technology, one can potentially reduce radiation dose to patient in breast imaging as compared with current x-ray modalities.
NASA Astrophysics Data System (ADS)
McBeth, Rafe A.
Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.
A U.S. Multicenter Study of Recorded Occupational Radiation Badge Doses in Nuclear Medicine.
Villoing, Daphnée; Yoder, R Craig; Passmore, Christopher; Bernier, Marie-Odile; Kitahara, Cari M
2018-05-01
Purpose To summarize occupational badge doses recorded for a sample of U.S. nuclear medicine technologists. Materials and Methods Nine large U.S. medical institutions identified 208 former and current nuclear medicine technologists certified after 1979 and linked these individuals to historic badge dose records maintained by a commercial dosimetry company (Landauer), yielding a total of 2618 annual dose records. The distributions of annual and cumulative occupational doses were described by using summary statistics. Results Between 1992 and 2015, the median annual personal dose equivalent per nuclear medicine technologist was 2.18 mSv (interquartile range [IQR], 1.25-3.47 mSv; mean, 2.69 mSv). Median annual personal dose equivalents remained relatively constant over this period (range, 1.40-3.30 mSv), while maximum values generally increased over time (from 8.00 mSv in 1992 to 13.9 mSv in 2015). The median cumulative personal dose equivalent was 32.9 mSv (IQR, 18.1-65.5 mSv; mean, 51.4 mSv) for 45 technologists who had complete information and remained employed through 2015. Conclusion Occupational radiation doses were well below the established occupational limits and were consistent with those observed for nuclear medicine technologists worldwide and were greater than those observed for nuclear and general medical workers in the United States These results should be informative for radiation monitoring and safety efforts in nuclear medicine departments. © RSNA, 2018 Online supplemental material is available for this article.
A new Gamma Knife radiosurgery paradigm: Tomosurgery
NASA Astrophysics Data System (ADS)
Hu, Xiaoliang
The Leksell (Elekta, Stockholm, Sweden) Gamma Knife(TM) (LGK) is the worldwide standard-of-care for the radiosurgical treatment of a wide variety of intracranial lesions. The current LGK utilizes a step-and-shoot dose delivery mechanism where the centroid of each conformal radiation dose (i.e., the shot isocenter) requires repositioning the patient outside of the irradiation field. Perhaps the greatest challenge the LGK treatment team faces is planning the treatment of large and/or complexly shaped lesions that may be in close proximity to critical neural or vascular structures. The standard manual treatment planning approach is a time consuming procedure where additional time spent does not guarantee the identification of an increasingly optimal treatment plan. I propose a new radiosurgery paradigm which I refer to as "Tomosurgery". The Tomosurgery paradigm begins with the division of the target volume into a series of adjacent treatment slices, each with a carefully determined optimal thickness. The use of a continuously moving disk-shaped radiation shot that moves through the lesion in a raster-scanning pattern is expected to improve overall radiation dose conformality and homogeneity. The Tomosurgery treatment planning algorithm recruits a two-stage optimization strategy, which first plans each treatment slice as a simplified 2D problem and secondly optimally assembles the 2D treatment plans into the final 3D treatment plan. Tested on 11 clinical LGK cases, the automated inversely-generated Tomosurgery treatment plans performed as well or better than the neurosurgeon's manually created treatment plans across all criteria: (a) dose volume histograms, (b) dose homogeneity, (c) dose conformality, and (d) critical structure damage, where applicable. LGK Tomosurgery inverse treatment planning required much less time than standard of care, manual (i.e., forward) LGK treatment planning procedures. These results suggest that Tomosurgery might provide an improvement over the current LGK radiosurgery treatment planning software. As regards treatment delivery, a Tomosurgery Investigational Platform (TIP) is proposed to perform the physical validation of radiation dose delivery. The TIP should facilitate translation of the Tomosurgery paradigm to several other radiosurgery and/or radiotherapy devices without the need for expensive modification of commercial devices until the feasibility of delivering Tomosurgical treatment plans has been well established.
Paudel, Nava Raj; Shvydka, Diana
2016-01-01
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in‐house‐built inexpensive thin‐film Cadmium Telluride (CdTe) photodetector to study this effect at the gold‐tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three‐micron thick thin‐film CdTe photodetectors were fabricated in our lab. One‐, ten‐ or one hundred‐micron thick gold foils placed in a tissue‐equivalent‐phantom were irradiated with a clinical Ir‐192 high‐dose‐rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue‐equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5 μm from the interface were 42.6±10.8, 137.0±11.9, and 203.0±15.4, respectively. The corresponding MC modeled PDEs were 38.1±1., 164±1, and 249±1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold‐tissue interface was successfully measured using an in‐house‐built, high‐resolution CdTe‐based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. PACS number(s): 29.40.Wk, 73.50.Pz, 87.53.Jw, 87.55.K‐ PMID:27685139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, H; Jeon, H; Nam, J
Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less
... Offices Regional Offices Labs and Research Centers Radiation Protection Contact Us Share Dose Calculator Use the Radiation ... the Office of Air and Radiation (OAR) Radiation Protection Radiation Sources and Doses Calculate Your Radiation Dose ...
Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations
NASA Astrophysics Data System (ADS)
Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.
2011-10-01
In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.
Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul
2018-05-07
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.
NASA Astrophysics Data System (ADS)
Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul
2018-05-01
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Fontenot, Jonas David
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100.
May, Matthias S; Kramer, Manuel R; Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Saake, Marc; Schmidt, Bernhard; Uder, Michael; Lell, Michael M
2014-09-01
Low tube voltage allows for computed tomography (CT) imaging with increased iodine contrast at reduced radiation dose. We sought to evaluate the image quality and potential dose reduction using a combination of attenuation based tube current modulation (TCM) and automated tube voltage adaptation (TVA) between 100 and 120 kV in CT of the head and neck. One hundred thirty consecutive patients with indication for head and neck CT were examined with a 128-slice system capable of TCM and TVA. Reference protocol was set at 120 kV. Tube voltage was reduced to 100 kV whenever proposed by automated analysis of the localizer. An additional small scan aligned to the jaw was performed at a fixed 120 kV setting. Image quality was assessed by two radiologists on a standardized Likert-scale and measurements of signal- (SNR) and contrast-to-noise ratio (CNR). Radiation dose was assessed as CTDIvol. Diagnostic image quality was excellent in both groups and did not differ significantly (p = 0.34). Image noise in the 100 kV data was increased and SNR decreased (17.8/9.6) in the jugular veins and the sternocleidomastoid muscle when compared to 120 kV (SNR 24.4/10.3), but not in fatty tissue and air. However, CNR did not differ statistically significant between 100 (23.5/14.4/9.4) and 120 kV data (24.2/15.3/8.6) while radiation dose was decreased by 7-8%. TVA between 100 and 120 kV in combination with TCM led to a radiation dose reduction compared to TCM alone, while keeping CNR constant though maintaining diagnostic image quality.
Shorter Exposures to Harder X-Rays Trigger Early Apoptotic Events in Xenopus laevis Embryos
Dong, JiaJia; Mury, Sean P.; Drahos, Karen E.; Moscovitch, Marko
2010-01-01
Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic purposes. PMID:20126466
Radiosensitization in prostate cancer: mechanisms and targets
2013-01-01
Prostate cancer is the second most commonly diagnosed cancer in American men over the age of 45 years and is the third most common cause of cancer related deaths in American men. In 2012 it is estimated that 241,740 men will be diagnosed with prostate cancer and 28,170 men will succumb to prostate cancer. Currently, radiation therapy is one of the most common definitive treatment options for localized prostate cancer. However, significant number of patients undergoing radiation therapy will develop locally persistent/recurrent tumours. The varying response rates to radiation may be due to 1) tumor microenvironment, 2) tumor stage/grade, 3) modality used to deliver radiation, and 4) dose of radiation. Higher doses of radiation has not always proved to be effective and have been associated with increased morbidity. Compounds designed to enhance the killing effects of radiation, radiosensitizers, have been extensively investigated over the past decade. The development of radiosensitizing agents could improve survival, improve quality of life and reduce costs, thus benefiting both patients and healthcare systems. Herin, we shall review the role and mechanisms of various agents that can sensitize tumours, specifically prostate cancer. PMID:23351141
NASA Astrophysics Data System (ADS)
Ferraro, R.; Danzeca, S.; Brucoli, M.; Masi, A.; Brugger, M.; Dilillo, L.
2017-04-01
The need for upgrading the Total Ionizing Dose (TID) measurement resolution of the current version of the Radiation Monitoring system for the LHC complex has driven the research of new TID sensors. The sensors being developed nowadays can be defined as Systems On Chip (SOC) with both analog and digital circuitries embedded in the same silicon. A radiation tolerant TID Monitoring System (TIDMon) has been designed to allow the placement of the entire dosimeter readout electronics in very harsh environments such as calibration rooms and even in the mixed radiation field such as the one of the LHC complex. The objective of the TIDMon is to measure the effect of the TID on the new prototype of Floating Gate Dosimeter (FGDOS) without using long cables and with a reliable measurement system. This work introduces the architecture of the TIDMon, the radiation tolerance techniques applied on the controlling electronics as well as the design choices adopted for the system. Finally, results of several tests of TIDMon under different radiation environments such as gamma rays or mixed radiation field at CHARM are presented.
Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus
NASA Technical Reports Server (NTRS)
Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.
2014-01-01
The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.
High-resolution low-dose scanning transmission electron microscopy.
Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning
2010-01-01
During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.
Secondary metabolite perturbations in Phaseolus vulgaris leaves due to gamma radiation.
Ramabulana, T; Mavunda, R D; Steenkamp, P A; Piater, L A; Dubery, I A; Madala, N E
2015-12-01
Oxidative stress is a condition in which the balance between the production and elimination of reactive oxygen species (ROS) is disturbed. However, plants have developed a very sophisticated mechanism to mitigate the effect of ROS by constantly adjusting the concentration thereof to acceptable levels. Electromagnetic radiation is one of the factors which results in oxidative stress. In the current study, ionizing gamma radiation generated from a Cobalt-60 source was used to induce oxidative stress in Phaseolus vulgaris seedlings. Plants were irradiated with several radiation doses, with 2 kGy found to be the optimal, non-lethal dose. Metabolite distribution patterns from irradiated and non-irradiated plants were analyzed using UHPLC-qTOF-MS and multivariate data models such as principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Metabolites such as hydroxycinnamic phenolic acids, flavonoids, terpenes, and a novel chalcone were found to be perturbed in P. vulgaris seedlings treated with the aforementioned conditions. The results suggest that there is a compensatory link between constitutive protectants and inducible responses to injury as well as defense against oxidative stress induced by ionizing radiation. The current study is also the first to illustrate the power of a metabolomics approach to decipher the effect of gamma radiation on crop plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Campola, Michael; Wyrwas, Edward
2017-01-01
The purpose of this test was to characterize the Micron MT29F128G08AJAAAs parameter degradation for total dose response and to evaluate and compare lot date codes for sensitivity. In the test, the device was exposed to both low dose and high dose rate (HDR) irradiations using gamma radiation. Device parameters such as leakage currents, quantity of upset bits and overall chip and die health were investigated to determine which lot is more robust.
Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans
NASA Astrophysics Data System (ADS)
McMillan, Kyle Lorin
Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully-, partially- and indirectly-irradiated organ dose from TCM CT exams. By accounting for the effects of patient size in the organ dose estimates, a comprehensive set of patient-specific dose estimates from TCM CT exams was developed. These patient-specific organ dose estimates from TCM CT exams will provide a more complete understanding of the dose impact and risks associated with modern body CT scanning protocols.
Radiation environment and shielding for early manned Mars missions
NASA Technical Reports Server (NTRS)
Hall, Stephen B.; Mccann, Michael E.
1986-01-01
The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding.
Tsao, Kim; Cheng, Andrew; Goss, Alastair; Donovan, David
2014-07-01
Computed tomography (CT) is currently the standard in postoperative evaluation of orbital wall fracture reconstruction, but cone beam computed tomography (CBCT) offers potential advantages including reduced radiation dose and cost. The purpose of this study is to examine objectively the image quality of CBCT in the postoperative evaluation of orbital fracture reconstruction, its radiation dose, and cost compared with CT. Four consecutive patients with orbital wall fractures in whom surgery was indicated underwent orbital reconstruction with radio-opaque grafts (bone, titanium-reinforced polyethylene, and titanium plate) and were assessed postoperatively with orbital CBCT. CBCT was evaluated for its ability to provide objective information regarding the adequacy of orbital reconstruction, radiation dose, and cost. In all patients, CBCT was feasible and provided hard tissue image quality comparable to CT with significantly reduced radiation dose and cost. However, it has poorer soft tissue resolution, which limits its ability to identify the extraocular muscles, their relationship to the reconstructive graft, and potential muscle entrapment. CBCT is a viable alternative to CT in the routine postoperative evaluation of orbital fracture reconstruction. However, in the patient who develops gaze restriction postoperatively, conventional CT is preferred over CBCT for its superior soft tissue resolution to exclude extraocular muscle entrapment.
Evaluation of a 3D diamond detector for medical radiation dosimetry
NASA Astrophysics Data System (ADS)
Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.
2017-01-01
Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.
Influence of irradiation on the osteoinductive potential of demineralized bone matrix.
Wientroub, S; Reddi, A H
1988-04-01
Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed.
Radiation Damage in Si Diodes from Short, Intense Ion Pulses
NASA Astrophysics Data System (ADS)
de Leon, S. J.; Ludewigt, B. A.; Persaud, A.; Seidl, P. A.; Schenkel, T.
2017-10-01
The Neutralized Drift Compression Experiment (NDCX-II) at Berkeley Lab is an induction accelerator studying the effects that concentrated ion beams have on various materials. Charged particle radiation damage was the focus of this research - we have characterized a series of Si diodes using an electrometer and calibrated the diodes response using an 241Am alpha source, both before and after exposing the diodes to 1 MeV He ions in the accelerator. The key part here is that the high intensity pulses from NDCX-II (>1010 ions/cm2 per pulse in <20 ns) enabled a systematic study of dose-rate effects. An example of a dose-rate effect in Si diodes is increased accumulation of defects due to damage from ions that bombard them in a short pulse. This accumulated damage leads to a reduction in the charge collection efficiency and an increase in leakage current. Testing dose-rate effects in Si diodes and other semiconductors is a crucial step in designing sustainable instruments that can encounter high doses of radiation, such as high intensity accelerators, fusion energy experiments and space applications and results from short pulses can inform models of radiation damage evolution. This work was supported by the Office of Science of the US Department of Energy under contract DE-AC0205CH11231.
Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays.
Kumar, M A Suresh; Laiakis, Evagelia C; Ghandhi, Shanaz A; Morton, Shad R; Fornace, Albert J; Amundson, Sally A
2018-05-10
There is a current interest in the development of biodosimetric methods for rapidly assessing radiation exposure in the wake of a large-scale radiological event. This work was initially focused on determining the exposure dose to an individual using biological indicators. Gene expression signatures show promise for biodosimetric application, but little is known about how these signatures might translate for the assessment of radiological injury in radiosensitive individuals, who comprise a significant proportion of the general population, and who would likely require treatment after exposure to lower doses. Using Parp1 -/- mice as a model radiation-sensitive genotype, we have investigated the effect of this DNA repair deficiency on the gene expression response to radiation. Although Parp1 is known to play general roles in regulating transcription, the pattern of gene expression changes observed in Parp1 -/- mice 24 h postirradiation to a LD 50/30 was remarkably similar to that in wild-type mice after exposure to LD 50/30 . Similar levels of activation of both the p53 and NFκB radiation response pathways were indicated in both strains. In contrast, exposure of wild-type mice to a sublethal dose that was equal to the Parp1 -/- LD 50/30 , which resulted in a lower magnitude gene expression response. Thus, Parp1 -/- mice displayed a heightened gene expression response to radiation, which was more similar to the wild-type response to an equitoxic dose than to an equal absorbed dose. Gene expression classifiers trained on the wild-type data correctly identified all wild-type samples as unexposed, exposed to a sublethal dose or exposed to an LD 50/30 . All unexposed samples from Parp1 -/- mice were also correctly classified with the same gene set, and 80% of irradiated Parp1 -/- samples were identified as exposed to an LD 50/30 . The results of this study suggest that, at least for some pathways that may influence radiosensitivity in humans, specific gene expression signatures have the potential to accurately detect the extent of radiological injury, rather than serving only as a surrogate of physical radiation dose.
Extended range radiation dose-rate monitor
Valentine, Kenneth H.
1988-01-01
An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y; Liu, B; Kalra, M
Purpose: X-rays from CT scans can increase cancer risk to patients. Lifetime Attributable Risk of Cancer Incidence for adult patients has been investigated and shown to decrease as patient age. However, a new risk model shows an increasing risk trend for several radiosensitive organs for middle age patients. This study investigates the feasibility of a general method for optimizing tube current modulation (TCM) functions to minimize risk by reducing radiation dose to radiosensitive organs of patients. Methods: Organ-based TCM has been investigated in literature for eye lens dose and breast dose. Adopting the concept in organ-based TCM, this study seeksmore » to find an optimized tube current for minimal total risk to breasts and lungs by reducing dose to these organs. The contributions of each CT view to organ dose are determined through simulations of CT scan view-by-view using a GPU-based fast Monte Carlo code, ARCHER. A Linear Programming problem is established for tube current optimization, with Monte Carlo results as weighting factors at each view. A pre-determined dose is used as upper dose boundary, and tube current of each view is optimized to minimize the total risk. Results: An optimized tube current is found to minimize the total risk of lungs and breasts: compared to fixed current, the risk is reduced by 13%, with breast dose reduced by 38% and lung dose reduced by 7%. The average tube current is maintained during optimization to maintain image quality. In addition, dose to other organs in chest region is slightly affected, with relative change in dose smaller than 10%. Conclusion: Optimized tube current plans can be generated to minimize cancer risk to lungs and breasts while maintaining image quality. In the future, various risk models and greater number of projections per rotation will be simulated on phantoms of different gender and age. National Institutes of Health R01EB015478.« less
Alpha Radiation Effects on Silicon Oxynitride Waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morichetti, Francesco; Grillanda, Stefano; Manandhar, Sandeep
2016-09-21
Photonic technologies are today of great interest for use in harsh environments, such as outer space, where they can potentially replace current communication systems based on radiofrequency components. However, very much alike to electronic devices, the behavior of optical materials and circuits can be strongly altered by high-energy and high-dose ionizing radiations. Here, we investigate the effects of alpha () radiation with MeV-range energy on silicon oxynitride (SiON) optical waveguides. Irradiation with a dose of 5×1015 cm-2 increases the refractive index of the SiON core by nearly 10-2, twice as much that of the surrounding silica cladding, leading to amore » significant increase of the refractive index contrast of the waveguide. The higher mode confinement induced by -radiation reduces the loss of tightly bent waveguides. We show that this increases the quality factor of microring resonators by 20%, with values larger than 105 after irradiation.« less
Is cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer?
Beukema, Jannet C; van Luijk, Peter; Widder, Joachim; Langendijk, Johannes A; Muijs, Christina T
2015-01-01
In recent years several papers have been published on radiation-induced cardiac toxicity, especially in breast cancer patients. However, in esophageal cancer patients the radiation dose to the heart is usually markedly higher. To determine whether radiation-induced cardiac toxicity is also a relevant issue for this group, we conducted a review of the current literature. A literature search was performed in Medline for papers concerning cardiac toxicity in esophageal cancer patients treated with radiotherapy with or without chemotherapy. The overall crude incidence of symptomatic cardiac toxicity was as high as 10.8%. Toxicities corresponded with several dose-volume parameters of the heart. The most frequently reported complications were pericardial effusion, ischemic heart disease and heart failure. Cardiac toxicity is a relevant issue in the treatment of esophageal cancer. However, valid Normal Tissue Complication Probability models for esophageal cancer are not available at present. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Altman, Michael B.
The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a given radiation pattern by concentrating the highest doses in the middle of a fraction (a "Triangle" pattern), or minimizing cell kill by placing the highest doses near the beginning and end (a "V-shaped" pattern). The conditions under which temporal optimization effects are most acute are also identified: irradiation of low alpha/beta tissues, long fraction durations, and high doses/fx. An in vitro study is then performed which verifies that the temporal effects and trends predicted by the modeling study are clearly manifested in human cells. Following this a phantom which could allow similar in vitro radiobiological experiments in a 3-dimensional clinically-based environment is designed, created, and dosimetrically assessed using TLDs, film, and biological assay-based techniques. The phantom is found to be a useful and versatile tool for such experiments. A scheme for utilizing the phantom in a clinical treatment environment is then developed. This includes a demonstration of prototype methods for optimizing the temporal pattern of applied dose in clinical IMRT plans to manipulate tissue-dependent effects. Looking toward future experimental validation of such plans using the phantom, an analysis of the suitability of biological assays for use in phantom-based in vitro experiments is performed. Finally, a discussion is provided about the steps necessary to integrate temporal optimization into in vivo experiments and ultimately into a clinical radiation therapy environment. If temporal optimization is ultimately shown to have impact in vivo, the successful implementation of the methods developed in this study could enhance the efficacy and care of thousands of patients receiving radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouffler, Simon
2010-07-28
This report provides a complete summary of the work undertaken and results obtained under US Department of Energy grant DF-FG02-05 ER 63947, Radiation leukaemogenesis at low doses. There is ample epidemiological evidence indicating that ionizing radiation is carcinogenic in the higher dose range. This evidence, however, weakens and carries increasing uncertainties at doses below 100-200 mSv. At these low dose levels the form of the dose-response curve for radiation-induced cancer cannot be determined reliably or directly from studies of human populations. Therefore animal, cellular and other experimental systems must be employed to provide supporting evidence on which to base judgementsmore » of risk at low doses. Currently in radiological protection a linear non-threshold (LNT) extrapolation of risk estimates derived from human epidemiological studies is used to estimate risks in the dose range of interest for protection purposes. Myeloid leukaemias feature prominently among the cancers associated with human exposures to ionising radiation (eg UNSCEAR 2006; IARC 2000). Good animal models of radiation-induced acute myeloid leukaemia (AML) are available including strains such as CBA, RFM and SJL (eg Major and Mole 1978; Ullrich et al 1976; Resnitzky et al 1985). Early mechanistic studies using cytogenetic methods in these mouse models established that the majority of radiation-induced AMLs carried substantial interstitial deletions in one copy of chromosome (chr) 2 (eg Hayata et al 1983; Trakhtenbrot et al 1988; Breckon et al 1991; Rithidech et al 1993; Bouffler et al 1996). Chr2 aberrations are known to occur in bone marrow cells as early as 24 hours after in vivo irradiation (Bouffler et al 1997). Subsequent molecular mapping studies defined a distinct region of chr2 that is commonly lost in AMLs (Clark et al 1996; Silver et al 1999). Further, more detailed, analysis identified point mutations at a specific region of the Sfpi1/PU.1 haemopoietic transcription factor gene which lies in the commonly deleted region of chr2 (Cook et al 2004; Suraweera et al 2005). These lines of evidence strongly implicate the Sfpi1/PU.1 gene as a tumour suppressor gene, dysregulation of which leads to myeloid leukaemia. The main focus of this project was to utilize the CBA mouse model of radiation leukaemogenesis to explore mechanisms of low dose and low dose-rate leukaemogenesis. A series of mechanistic investigations were undertaken, the central aim of which was to identify the events that convert normal cells into myeloid leukaemia cells and explore the dose-response relationships for these. Much of the work centred on the Sfpi1/PU.1 gene and its role in leukaemogenesis. Specific studies considered the dose-response and time-course relationships for loss of the gene, the functional consequences of Sfpi1/PU.1 loss and mutation on transcriptional programmes and developing an in vivo reporter gene system for radiation-induced alterations to PU.1 expression. Additional work sought further genetic changes associated with radiation-induced AMLs and a better characterization of the cell of origin or 'target cell' for radiation-induced AML. All the information gathered is of potential use in developing biologically realistic mathematical models for low dose cancer risk projection.« less
NASA Astrophysics Data System (ADS)
Zhao, Qian; Sun, Yeqing; Wang, Wei
2016-07-01
Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.
Pascual, Thomas N B; Mercuri, Mathew; El-Haj, Noura; Bom, Henry Hee-Sung; Lele, Vikram; Al-Mallah, Mouaz H; Luxenburg, Osnat; Karthikeyan, Ganesan; Vitola, Joao; Mahmarian, John J; Better, Nathan; Shaw, Leslee J; Rehani, Madan M; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio; Einstein, Andrew J
2017-03-24
This paper examines the current status of radiation exposure to patients in myocardial perfusion imaging (MPI) in Asia.Methods and Results:Laboratories voluntarily provided information on MPI performed over a 1-week period. Eight best practice criteria regarding MPI were predefined by an expert panel. Implementation of ≥6 best practices (quality index [QI] ≥6) was pre-specified as a desirable goal for keeping radiation exposure at a low level. Radiation effective dose (ED) in 1,469 patients and QI of 69 laboratories in Asia were compared against data from 239 laboratories in the rest of the world (RoW). Mean ED was significantly higher in Asia (11.4 vs. 9.6 mSv; P<0.0001), with significantly lower doses in South-East vs. East Asia (9.7 vs. 12.7 mSv; P<0.0001). QI in Asia was lower than in RoW. In comparison with RoW, Asian laboratories used thallium more frequently, used weight-based technetium dosing less frequently, and trended towards a lower rate of stress-only imaging. MPI radiation dose in Asia is higher than that in the RoW and linked to less consistent use of laboratory best practices such as avoidance of thallium, weight-based dosing, and use of stress-only imaging. Given that MPI is performed in Asia within a diverse array of medical contexts, laboratory-specific adoption of best practices offers numerous opportunities to improve quality of care.
Kim, Jin Woo; Choo, Ki Seok; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yeom, Jeong A; Jeong, Hee Seok; Choi, Yoon Young; Nam, Kyung Jin; Kim, Chang Won; Jeong, Dong Wook; Lim, Soo Jin
2016-07-01
Multi-detector computed tomography (MDCT) angiography is now used for the diagnosing patients with peripheral arterial disease. The dose of radiation is related to variable factors, such as tube current, tube voltage, and helical pitch. To assess the diagnostic performance and radiation dose of lower extremity CT angiography (CTA) using a 128-slice dual source CT at 80 kVp and high pitch in patients with critical limb ischemia (CLI). Twenty-eight patients (mean, 64.1 years; range, 39-80 years) with CLI were enrolled in this retrospective study and underwent CTA using a 128-slice dual source CT at 80 kVp and high pitch and subsequent intra-arterial digital subtraction angiography (DSA), which was used as a reference standard for assessing diagnostic performance. For arterial segments with significant disease (>50% stenosis), overall sensitivity, specificity, and accuracy of lower extremity CTA were 94.8% (95% CI, 91.7-98.0%), 91.5% (95% CI, 87.7-95.2%), and 93.1% (95% CI, 90.6-95.6%), respectively, and its positive and negative predictive values were 91.0% (95% CI, 87.1-95.0%), and 95.1% (95% CI, 92.1-98.1%), respectively. Mean radiation dose delivered to lower extremities was 266.6 mGy.cm. Lower extremity CTA using a 128-slice dual source CT at 80 kVp and high pitch was found to have good diagnostic performance for the assessment of patients with CLI using an extremely low radiation dose. © The Foundation Acta Radiologica 2015.
Risk Assessment of Radiation Exposure using Molecular Biodosimetry
NASA Technical Reports Server (NTRS)
Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.
2007-01-01
Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.
The Martian surface radiation environment - a comparison of models and MSL/RAD measurements
NASA Astrophysics Data System (ADS)
Matthiä, Daniel; Ehresmann, Bent; Lohf, Henning; Köhler, Jan; Zeitlin, Cary; Appel, Jan; Sato, Tatsuhiko; Slaba, Tony; Martin, Cesar; Berger, Thomas; Boehm, Eckart; Boettcher, Stephan; Brinza, David E.; Burmeister, Soenke; Guo, Jingnan; Hassler, Donald M.; Posner, Arik; Rafkin, Scot C. R.; Reitz, Günther; Wilson, John W.; Wimmer-Schweingruber, Robert F.
2016-03-01
Context: The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS) were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle spectra with respect to the experimental data additional information about the radiation environment is gained, and the contribution of different particle species to the dose is estimated.
Kashcheev, Valery V; Pryakhin, Evgeny A; Menyaylo, Alexander N; Chekin, Sergey Yu; Ivanov, Viktor K
2014-06-01
The current study has two aims: the first is to quantify the difference between radiation risks estimated with the use of organ or effective doses, particularly when planning pediatric and adult computed tomography (CT) examinations. The second aim is to determine the method of calculating organ doses and cancer risk using dose-length product (DLP) for typical routine CT examinations. In both cases, the radiation-induced cancer risks from medical CT examinations were evaluated as a function of gender and age. Lifetime attributable risk values from CT scanning were estimated with the use of ICRP (Publication 103) risk models and Russian national medical statistics data. For populations under the age of 50 y, the risk estimates based on organ doses usually are 30% higher than estimates based on effective doses. In older populations, the difference can be up to a factor of 2.5. The typical distributions of organ doses were defined for Chest Routine, Abdominal Routine, and Head Routine examinations. The distributions of organ doses were dependent on the anatomical region of scanning. The most exposed organs/tissues were thyroid, breast, esophagus, and lungs in cases of Chest Routine examination; liver, stomach, colon, ovaries, and bladder in cases of Abdominal Routine examination; and brain for Head Routine examinations. The conversion factors for calculation of typical organ doses or tissues at risk using DLP were determined. Lifetime attributable risk of cancer estimated with organ doses calculated from DLP was compared with the risk estimated on the basis of organ doses measured with the use of silicon photodiode dosimeters. The estimated difference in LAR is less than 29%.
In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.
Gardner, Edward A; Sumanaweera, Thilaka S; Blanck, Oliver; Iwamura, Alyson K; Steel, James P; Dieterich, Sonja; Maguire, Patrick
2012-05-10
In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X-rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20-35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
2011-10-01
Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota dosesmore » calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.« less
Charlton, Michael A; Thoreson, Kelly F; Cerecero, Jennifer A
2012-11-01
The Research Imaging Institute (RII) building at the University of Texas Health Science Center at San Antonio (UTHSCSA) houses two cyclotron particle accelerators, positron emission tomography (PET) machines, and a fluoroscopic unit. As part of the radiation protection program (RPP) and meeting the standard for achieving ALARA (as low as reasonably achievable), it is essential to minimize the ionizing radiation exposure to the general public through the use of controlled areas and area dose monitoring. Currently, thirty-four whole body Luxel+ dosimeters, manufactured by Landauer, are being used in various locations within the RII to monitor dose to the general public. The intent of this research was to determine if the nanoDot, a single point dosimeter, can be used as a general public dosimeter in a diagnostic facility. This was tested by first verifying characteristics of the nanoDot dosimeter including dose linearity, dose rate dependence, angular dependence, and energy dependence. Then, the response of the nanoDot dosimeter to the Luxel+ dosimeter when placed in a continuous, low dose environment was investigated. Finally, the nanoDot was checked for appropriate response in an acute, high dose environment. Based on the results, the current recommendation is that the nanoDot should not replace the Luxel+ dosimeter without further work to determine the energy spectra in the RII building and without considering the limitation of the microStar reader, portable on-site OSL reader, at doses below 0.1 mGy (10 mrad).
Land, Charles E
2009-11-01
Ionizing radiation is a known and well-quantified human cancer risk factor, based on a remarkably consistent body of information from epidemiological studies of exposed populations. Typical examples of risk estimation include use of Japanese atomic bomb survivor data to estimate future risk from radiation-related cancer among American patients receiving multiple computed tomography scans, persons affected by radioactive fallout, or persons whose livelihoods involve some radiation exposure, such as x-ray technicians, interventional radiologists, or shipyard workers. Our estimates of radiation-related risk are uncertain, reflecting statistical variation and our imperfect understanding of crucial assumptions that must be made if we are to apply existing epidemiological data to particular situations. Fortunately, that uncertainty is also highly quantifiable, and can be presented concisely and transparently. Radiation protection is ultimately a political process that involves consent by stakeholders, a diverse group that includes people who might be expected to be risk-averse and concerned with plausible upper limits on risk (how bad could it be?), cost-averse and concerned with lower limits on risk (can you prove there is a nontrivial risk at current dose levels?), or combining both points of view. How radiation-related risk is viewed by individuals and population subgroups also depends very much on perception of related benefit, which might be (for example) medical, economic, altruistic, or nonexistent. The following presentation follows the lead of National Council on Radiation Protection and Measurements (NCRP) Commentary 14, NCRP Report 126, and later documents in treating radiation protection from the viewpoint of quantitative uncertainty analysis.
Zarb, Francis; McEntee, Mark F; Rainford, Louise
2015-06-01
To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.
MCNP-based computational model for the Leksell gamma knife.
Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav
2007-01-01
We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large volumes such as for the total skull volume. The differences observed in treatment of scattered radiation between the MC method and the LGP may be important in this case. We have also studied the influence of differential direction sampling of primary photons and have found that, due to the anisotropic sampling, doses around the isocenter deviate from each other by up to 6%. With caution about the details of the calculation settings, it is possible to employ the MCNP Monte Carlo code for independent verification of the Leksell Gamma Knife radiation field properties.
Medical Management of Acute Radiation Syndromes : Immunoprophylaxis by Antiradiation Vaccine
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael; Kedar, Prasad
Introduction: Traditionally, the treatment of Acute Radiation Syndrome (ARS) includes supportive therapy, cytokine therapy, blood component transfusions and even stem cell transplantation. Recommendations for ARS treatment are based on clinical symptoms, laboratory results, radiation exposure doses and information received from medical examinations. However, the current medical management of ARS does not include immune prophylaxis based on antiradiation vaccines or immune therapy with hyperimmune antiradiation serum. Immuneprophylaxis of ARS could result from stimulating the immune system via immunization with small doses of radiation toxins (Specific Radiation Determinants-SRD) that possess significant immuno-stimulatory properties. Methods: Principles of immuno-toxicology were used to derive this method of immune prophylaxis. An antiradiation vaccine containing a mixture of Hematotoxic, Neurotoxic and Non-bacterial (GI) radiation toxins, underwent modification into a toxoid forms of the original SRD radiation toxins. The vaccine was administered to animals at different times prior to irradiation. The animals were subjected to lethal doses of radiation that induced different forms of ARS at LD 100/30. Survival rates and clinical symptoms were observed in both control and vaccine-treated animals. Results: Vaccination with non-toxic doses of Radiation toxoids induced immunity from the elaborated Specific Radiation Determinant (SRD) toxins. Neutralization of radiation toxins by specific antiradiation antibodies resulted in significantly improved clinical symptoms in the severe forms of ARS and observed survival rates of 60-80% in animals subjected to lethal doses of radiation expected to induce different forms of ARS at LD 100/30. The most effective vaccination schedule for the antiradiation vaccine consisted of repeated injections 24 and 34 days before irradiation. The vaccine remained effective for the next two years, although the specific immune memory probably persists for a much longer time period. Conclusion: The medical management of ARS by the application of an ARS-specific antiradiation vaccine resulted in significant increases of post-radiation survival rates, even in the absence of traditional ARS therapeutic treatments. The decreased mortality and improved clinical symptoms observed in animals treated with the antiradiation vaccine may lessen the burden of medical therapy and pharmaceuticals required for treatment. However, we hypothesize that a combination of the traditional treatment methods and specific immune prophylaxis by an antiradiation vaccine will potentially be even more effective than either alone.
Oliver, C P; Butler, D J; Webb, D V
2012-03-01
The Australian radiation protection and nuclear safety agency (ARPANSA) has continuously provided a level 1 mailed thermoluminescence dosimetry audit service for megavoltage photons since 2007. The purpose of the audit is to provide an independent verification of the reference dose output of a radiotherapy linear accelerator in a clinical environment. Photon beam quality measurements can also be made as part of the audit in addition to the output measurements. The results of all audits performed between 2007 and 2010 are presented. The average of all reference beam output measurements calculated as a clinically stated dose divided by an ARPANSA measured dose is 0.9993. The results of all beam quality measurements calculated as a clinically stated quality divided by an ARPANSA measured quality is 1.0087. Since 2011 the provision of all auditing services has been transferred from the Ionizing Radiation Standards section to the Australian Clinical Dosimetry Service (ACDS) which is currently housed within ARPANSA.
Harrison, J D; Muirhead, C R
2003-01-01
To compare quantitative estimates of lifetime cancer risk in humans for exposures to internally deposited radionuclides and external radiation. To assess the possibility that risks from radionuclide exposures may be underestimated. Risk estimates following internal exposures can be made for a small number of alpha-particle-emitting nuclides. (1) Lung cancer in underground miners exposed by inhalation to radon-222 gas and its short-lived progeny. Studies of residential (222)Rn exposure are generally consistent with predictions from the miner studies. (2) Liver cancer and leukaemia in patients given intravascular injections of Thorotrast, a thorium-232 oxide preparation that concentrates in liver, spleen and bone marrow. (3) Bone cancer in patients given injections of radium-224, and in workers exposed occupationally to (226)Ra and (228)Ra, mainly by ingestion. (4) Lung cancer in Mayak workers exposed to plutonium-239, mainly by inhalation. Liver and bone cancers were also seen, but the dosimetry is not yet sufficiently good enough to provide quantitative estimates of risks. Comparisons can be made between risk estimates for radiation-induced cancer derived for radionuclide exposure and those derived for the A-bomb survivors, exposed mainly to low-LET (linear energy transfer) external radiation. Data from animal studies, using dogs and rodents, allow comparisons of cancer induction by a range of alpha- and beta-/gamma-emitting radionuclides. They provide information on relative biological effectiveness (RBE), dose-response relationships, dose-rate effects and the location of target cells for different malignancies. For lung and liver cancer, the estimated values of risk per Sv for internal exposure, assuming an RBE for alpha-particles of 20, are reasonably consistent with estimates for external exposure to low-LET radiation. This also applies to bone cancer when risk is calculated on the basis of average bone dose, but consideration of dose to target cells on bone surfaces suggests a low RBE for alpha-particles. Similarly, for leukaemia, the comparison of risks from alpha-irradiation ((232)Th and progeny) and external radiation suggest a low alpha RBE; this conclusion is supported by animal data. Risk estimates for internal exposure are dependent on the assumptions made in calculating dose. Account is taken of the distribution of radionuclides within tissues and the distribution of target cells for cancer induction. For the lungs and liver, the available human and animal data provide support for current assumptions. However, for bone cancer and leukaemia, it may be that changes are required. Bone cancer risk may be best assessed by calculating dose to a 50 micro m layer of marrow adjacent to endosteal (inner) bone surfaces rather than to a single 10 micro m cell layer as currently assumed. Target cells for leukaemia may be concentrated towards the centre of marrow cavities so that the risk of leukaemia from bone-seeking radionuclides, particularly alpha emitters, may be overestimated by the current assumption of uniform distribution of target cells throughout red bone marrow. The lifetime risk estimates considered here for exposure to internally deposited radionuclides and to external radiation are subject to uncertainties, arising from the dosimetric assumptions made, from the quality of cancer incidence and mortality data and from aspects of risk modelling; including variations in baseline rates between populations for some cancer types. Bearing in mind such uncertainties, comparisons of risk estimates for internal emitters and external radiation show good agreement for lung and liver cancers. For leukaemia, the available data suggest that the assumption of an alpha-particle RBE of 20 can result in overestimates of risk. For bone cancer, it also appears that current assumptions will overestimate risks from alpha-particle-emitting nuclides, particularly at low doses.
Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Lee, In Kyung; Nam, Seon Young
2017-01-01
Abstract Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid–binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation. PMID:28122968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Howard, Richard H.
2016-02-26
This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up tomore » ≥15 dpa at temperatures between 200-550°C.« less
Beaulieu, Luc; Radford, Dee-Ann; Eduardo Villarreal-Barajas, J
2018-03-14
The Canadian Organization of Medical Physicists (COMP), in close partnership with the Canadian Partnership for Quality Radiotherapy (CPQR) has developed a series of Technical Quality Control (TQC) guidelines for radiation treatment equipment. These guidelines outline the performance objectives that equipment should meet in order to ensure an acceptable level of radiation treatment quality. The TQC guidelines have been rigorously reviewed and field tested in a variety of Canadian radiation treatment facilities. The development process enables rapid review and update to keep the guidelines current with changes in technology. This article contains detailed performance objectives and safety criteria for low-dose-rate (LDR) permanent seed brachytherapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Dingwall, S.; Mills, C.E.; Phan, N.; Taylor, K.; Boreham, D.R.
2011-01-01
Tritium is a radioactive form of hydrogen and is a by-product of energy production in Canadian Deuterium Uranium (CANDU) reactors. The release of this radioisotope into the environment is carefully managed at CANDU facilities in order to minimize radiation exposure to the public. However, under some circumstances, small accidental releases to the environment can occur. The radiation doses to humans and non-human biota from these releases are low and orders of magnitude less than doses received from naturally occurring radioisotopes or from manmade activities, such as medical imaging and air travel. There is however a renewed interest in the biological consequences of low dose tritium exposures and a new limit for tritium levels in Ontario drinking water has been proposed. The Ontario Drinking Water Advisory Council (ODWAC) issued a formal report in May 2009 in response to a request by the Minister of the Environment, concluding that the Ontario Drinking Water Quality Standard for tritium should be revised from the current 7,000 Bq/L level to a new, lower 20 Bq/L level. In response to this recommendation, an international scientific symposium was held at McMaster University to address the issues surrounding this change in direction and the validity of a new policy. Scientists, regulators, government officials, and industrial stakeholders were present to discuss the potential health risks associated with low level radiation exposure from tritium. The regulatory, economic, and social implications of the new proposed limit were also considered. The new recommendation assumed a linear-no-threshold model to calculate carcinogenic risk associated with tritium exposure, and considered tritium as a non-threshold chemical carcinogen. Both of these assumptions are highly controversial given that recent research suggests that low dose exposures have thresholds below which there are no observable detrimental effects. Furthermore, mutagenic and carcinogenic risk calculated from tritium exposure at 20 Bq/L would be orders of magnitude less than that from exposure to natural background sources of radiation. The new proposed standard would set the radiation dose limit for drinking water to 0.0003 mSv/year, which is equivalent to approximately three times the dose from naturally occurring tritium in drinking water. This new standard is incongruent with national and international standards for safe levels of radiation exposure, currently set at 1 mSv/year for the general public. Scientific research from leading authorities on the carcinogenic health effects of tritium exposure supports the notion that the current standard of 7,000 Bq/L (annual dose of 0.1 mSv) is a safe standard for human health. Policy-making for the purpose of regulating tritium levels in drinking water is a dynamic multi-stage process that is influenced by more than science alone. Ethics, economics, and public perception also play important roles in policy development; however, these factors sometimes undermine the scientific evidence that should form the basis of informed decision making. Consequently, implementing a new standard without a scientific basis may lead the public to perceive that risks from tritium have been historically underestimated. It was concluded that the new recommendation is not supported by any new scientific insight regarding negative consequences of low dose effects, and may be contrary to new data on the potential benefits of low dose effects. Given the lack of cost versus benefit analysis, this type of dramatic policy change could have detrimental effects to society from an ethical, economical, and public perception perspective. PMID:21431084
Dingwall, S; Mills, C E; Phan, N; Taylor, K; Boreham, D R
2011-02-22
Tritium is a radioactive form of hydrogen and is a by-product of energy production in Canadian Deuterium Uranium (CANDU) reactors. The release of this radioisotope into the environment is carefully managed at CANDU facilities in order to minimize radiation exposure to the public. However, under some circumstances, small accidental releases to the environment can occur. The radiation doses to humans and non-human biota from these releases are low and orders of magnitude less than doses received from naturally occurring radioisotopes or from manmade activities, such as medical imaging and air travel. There is however a renewed interest in the biological consequences of low dose tritium exposures and a new limit for tritium levels in Ontario drinking water has been proposed. The Ontario Drinking Water Advisory Council (ODWAC) issued a formal report in May 2009 in response to a request by the Minister of the Environment, concluding that the Ontario Drinking Water Quality Standard for tritium should be revised from the current 7,000 Bq/L level to a new, lower 20 Bq/L level. In response to this recommendation, an international scientific symposium was held at McMaster University to address the issues surrounding this change in direction and the validity of a new policy. Scientists, regulators, government officials, and industrial stakeholders were present to discuss the potential health risks associated with low level radiation exposure from tritium. The regulatory, economic, and social implications of the new proposed limit were also considered.The new recommendation assumed a linear-no-threshold model to calculate carcinogenic risk associated with tritium exposure, and considered tritium as a non-threshold chemical carcinogen. Both of these assumptions are highly controversial given that recent research suggests that low dose exposures have thresholds below which there are no observable detrimental effects. Furthermore, mutagenic and carcinogenic risk calculated from tritium exposure at 20 Bq/L would be orders of magnitude less than that from exposure to natural background sources of radiation. The new proposed standard would set the radiation dose limit for drinking water to 0.0003 mSv/year, which is equivalent to approximately three times the dose from naturally occurring tritium in drinking water. This new standard is incongruent with national and international standards for safe levels of radiation exposure, currently set at 1 mSv/year for the general public. Scientific research from leading authorities on the carcinogenic health effects of tritium exposure supports the notion that the current standard of 7,000 Bq/L (annual dose of 0.1 mSv) is a safe standard for human health.Policy-making for the purpose of regulating tritium levels in drinking water is a dynamic multi-stage process that is influenced by more than science alone. Ethics, economics, and public perception also play important roles in policy development; however, these factors sometimes undermine the scientific evidence that should form the basis of informed decision making. Consequently, implementing a new standard without a scientific basis may lead the public to perceive that risks from tritium have been historically underestimated. It was concluded that the new recommendation is not supported by any new scientific insight regarding negative consequences of low dose effects, and may be contrary to new data on the potential benefits of low dose effects. Given the lack of cost versus benefit analysis, this type of dramatic policy change could have detrimental effects to society from an ethical, economical, and public perception perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahar, N; Roberts, K; Stabile, F
Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence ofmore » radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered dose. With further development, a robust means of predicting delivered radiation dose from EPR measurements is expected. This project was funded by the Biomedical Advanced Research and Development Authority (BARDA) within the U.S. Department of Health and Human Services subcontracted through the Geisel School of Medicine at Dartmouth and by the Dartmouth Physically-Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR) Pilot Program.« less
NASA Technical Reports Server (NTRS)
Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis
2015-01-01
Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray (SI unit for ionizing radiation dosage, i.e. one joule of radiation energy per one kilogram of matter)) to facilitate risk prediction. This risk has considerable uncertainty associated with it, and no acceptable model for projecting degenerative tissue risk is currently available. In particular, risk factors such as obesity, alcohol, and tobacco use can act as confounding factors that contribute to the large uncertainties. The PELs could be violated under certain scenarios, including following a large SPE (solar proton event) or long-term GCR (galactic cosmic ray) exposure. Specifically, for a Mars mission, the accumulated dose is sufficiently high that epidemiology data and preliminary risk estimates suggest a significant risk for cardiovascular disease. Ongoing research in this area is intended to provide the evidence base for accurate risk quantification to determine criticality for extended duration missions. Data specific to the space radiation environment must be compiled to quantify the magnitude of this risk to decrease the uncertainty in current PELs and to determine if additional protection strategies are required. New research results could lead to estimates of cumulative radiation risk from CNS and degenerative tissue diseases that, when combined with the cancer risk, may have major negative impacts on mission design, costs, schedule, and crew selection. The current report amends an earlier report (Human Research Program Requirements Document, HRP-47052, Rev. C, dated Jan 2009) in order to provide an update of evidence since 2009.
Paolicchi, Fabio; Faggioni, Lorenzo; Bastiani, Luca; Molinaro, Sabrina; Puglioli, Michele; Caramella, Davide; Bartolozzi, Carlo
2014-06-01
The purpose of this study was to assess the radiation dose and image quality of pediatric head CT examinations before and after radiologic staff training. Outpatients 1 month to 14 years old underwent 215 unenhanced head CT examinations before and after intensive training of staff radiologists and technologists in optimization of CT technique. Patients were divided into three age groups (0-4, 5-9, and 10-14 years), and CT dose index, dose-length product, tube voltage, and tube current-rotation time product values before and after training were retrieved from the hospital PACS. Gray matter conspicuity and contrast-to-noise ratio before and after training were calculated, and subjective image quality in terms of artifacts, gray-white matter differentiation, noise, visualization of posterior fossa structures, and need for repeat CT examination was visually evaluated by three neuroradiologists. The median CT dose index and dose-length product values were significantly lower after than before training in all age groups (27 mGy and 338 mGy ∙ cm vs 107 mGy and 1444 mGy ∙ cm in the 0- to 4-year-old group, 41 mGy and 483 mGy ∙ cm vs 68 mGy and 976 mGy ∙ cm in the 5- to 9-year-old group, and 51 mGy and 679 mGy ∙ cm vs 107 mGy and 1480 mGy ∙ cm in the 10- to 14-year-old group; p < 0.001). The tube voltage and tube current-time values after training were significantly lower than the levels before training (p < 0.001). Subjective posttraining image quality was not inferior to pretraining levels for any item except noise (p < 0.05), which, however, was never diagnostically unacceptable. Radiologic staff training can be effective in reducing radiation dose while preserving diagnostic image quality in pediatric head CT examinations.
Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.
2011-01-01
In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326
Final Technical Report- Radiation Hard Tight Pitch GaInP SPAD Arrays for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, Eric S.
The specialized photodetectors used in high energy physics experiments often need to remain extremely sensitive for years despite radiation induced damage caused by the constant bombardment of high energy particles. To solve this problem, LightSpin Technologies, Inc. in collaboration with Prof. Bradley Cox and the University of Virginia is developing radiation-hard GaInP photodetectors which are projected to be extraordinarily radiation hard, theoretically capable of withstanding a 100,000-fold higher radiation dose than silicon. In this Phase I SBIR project, LightSpin investigated the performance and radiation hardness of fifth generation GaInP SPAD arrays. These fifth generation devices used a new planar processingmore » approach that enables very tight pitch arrays to be produced. High performance devices with SPAD pitches of 11, 15, and 25 μm were successfully demonstrated, which greatly increased the dynamic range and maximum count rate of the devices. High maximum count rates are critical when considering radiation hardness, since radiation damage causes a proportional increase in the dark count rate, causing SPAD arrays with low maximum count rates (large SPAD pitches) to fail. These GaInP SPAD array Photomultiplier Chips™ were irradiated with protons, electrons, and neutrons. Initial irradiation results were disappointing, with the post-irradiation devices exhibiting excessively high dark currents. The degradation was traced to surface leakage currents that were largely eliminated through the use of trenches etched around the exterior of the Photomultiplier Chip™ (not between SPAD elements). A second round of irradiations on Photomultiplier Chips™ with trenches proved substantially more successful, with post-irradiation dark currents remaining relatively low, though dark count rates were observed to increase at the highest doses. Preliminary analysis of the post-irradiation devices is promising … many of the irradiated Photomultiplier Chips™ still exhibit good gain characteristics after 1E12/cm 2 – 1E13/cm 2 doses and have apparent dark count rates that are lower than the apparent dark count rates published for irradiation of silicon SPAD arrays (silicon photomultipliers or SiPMs). Some post-irradiation results are still pending because the samples will still too radioactive to be shipped back from the irradiation facility for post-irradiation testing.« less
Current Radiation Issues for Programmable Elements and Devices
NASA Technical Reports Server (NTRS)
Katz, Richard; LaBel, K.; Reed, R.; Wang, J. J.; Cronquist, B.; McCollum, J.; Paolini, W.; Sin, B.; Koga, R.a; Crain, S.;
1998-01-01
The purpose of this presentation is to discuss the COTS performance, clock upset / single event transient, device configuration upset, antifuse hardening, heavy ion SEU, total dose, proton sensitivities, latchup, and additional information and data.
Compensated count-rate circuit for radiation survey meter
Todd, Richard A.
1981-01-01
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
Compensated count-rate circuit for radiation survey meter
Todd, R.A.
1980-05-12
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy
NASA Astrophysics Data System (ADS)
Götz, Th I.; Ermer, M.; Salas-González, D.; Kellermeier, M.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.
2017-10-01
High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni—or bi—modal heavy—tailed distributions. The latter are well represented by α—stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.
Radiation damage to nucleoprotein complexes in macromolecular crystallography
Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...
2015-01-30
Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less
Aissa, Joel; Rubbert, Christian; Boos, Johannes; Schleich, Christoph; Thomas, Christoph; Kröpil, Patric; Antoch, Gerald; Miese, Falk
2015-10-01
The aim of this study was to evaluate the impact of a reduced tube potential (100 kVp) for non-enhanced abdominal low-dose CT on radiation dose and image quality (IQ) in the detection of body packing. This retrospective study was approved by the local research ethics committee of our clinic. From March 2012 to July 2014, 99 subjects were referred to our institute with suspected body packing. 50 CT scans were performed using a 120 kVp protocol (group A), and 49 CTs were performed using a low-dose protocol with a tube voltage of 100 kVp (group B). Subjective and objective IQ were assessed. DLP and CTDIvol were analyzed. All examinations were of diagnostic IQ. Objective IQ was not significantly different between the 120 kVp and 100 kVp protocol. Mean density of solid and liquid body packets was 210 ± 60.2 HU at 120 kVp and 250.6 ± 29.7 HU at 100 kVp. Radiation dose was significantly lower in group B as compared to group A (p < 0.05). In group A, body packs were detected in 16 (32%) of the 50 patients. In group B, packets were observed in 15 (31%) of 49 patients. Laboratory analysis detected cocaine in all smuggled body packs. Low-tube voltage 100 kVp MDCT with automated tube current modulation in screening of illegal drugs leads to a diagnostic IQ and significant dose reduction compared to 120 kVp low-tube voltage protocols. Despite lower radiation dose, liquid and solid cocaine containers retain high attenuation and are easily detected.
Balaguru, Duraisamy; Rodriguez, Matthew; Leon, Stephanie; Wagner, Louis K; Beasley, Charles W; Sultzer, Andrew; Numan, Mohammed T
2018-01-01
Objectives: Direct measurement of skin dose of radiation for children using optically stimulated luminescence (OSL) technology using nanoDot® (Landauer, Glenwood, IL, USA). Background: Radiation dose is estimated as cumulative air kerma (AK) and dosearea product based on standards established for adult size patients. Body size of pediatric patients who undergo cardiac catheterization for congenital heart disease vary widely from newborn to adolescence. Direct, skindose measurement applying OSL technology may eliminate errors in the estimate. Materials and Methods: The nanoDot® (1 cm × 1 cm × flat plastic cassette) is applied to patient's skin using adhesive tape during cardiac catheterization and radiation skin doses were read within 24 hrs. nanoDot® values were compared to the currently available cumulative AK values estimated and displayed on fluoroscopy monitor. Results: A total of 12 children were studied, aged 4 months to 18 years (median 1.1 years) and weight range 5.3–86 kg (median 8.4 kg). nanoDot® readings ranged from 2.58 mGy to 424.8 mGy (median 84.1 mGy). Cumulative AK ranged from 16.2 mGy to 571.2 mGy (median 171.1 mGy). Linear correlation was noted between nanoDot® values and AK values (R2 = 0.88, R = 0.94). nanoDot® readings were approximately 65% of the estimated cumulative AK estimated using the International Electrotechnical Commission standards. Conclusions: Application of OSL technology using nanoDot® provides an alternative to directly measure fluoroscopic skin dose in children during cardiac catheterization. Our data show that the actual skin dose for children is approximately one-third lower than the AK estimated using international standards for adult size patients. PMID:29440825
Balaguru, Duraisamy; Rodriguez, Matthew; Leon, Stephanie; Wagner, Louis K; Beasley, Charles W; Sultzer, Andrew; Numan, Mohammed T
2018-01-01
Direct measurement of skin dose of radiation for children using optically stimulated luminescence (OSL) technology using nanoDot ® (Landauer, Glenwood, IL, USA). Radiation dose is estimated as cumulative air kerma (AK) and dosearea product based on standards established for adult size patients. Body size of pediatric patients who undergo cardiac catheterization for congenital heart disease vary widely from newborn to adolescence. Direct, skindose measurement applying OSL technology may eliminate errors in the estimate. The nanoDot ® (1 cm × 1 cm × flat plastic cassette) is applied to patient's skin using adhesive tape during cardiac catheterization and radiation skin doses were read within 24 hrs. nanoDot ® values were compared to the currently available cumulative AK values estimated and displayed on fluoroscopy monitor. A total of 12 children were studied, aged 4 months to 18 years (median 1.1 years) and weight range 5.3-86 kg (median 8.4 kg). nanoDot® readings ranged from 2.58 mGy to 424.8 mGy (median 84.1 mGy). Cumulative AK ranged from 16.2 mGy to 571.2 mGy (median 171.1 mGy). Linear correlation was noted between nanoDot® values and AK values ( R 2 = 0.88, R = 0.94). nanoDot® readings were approximately 65% of the estimated cumulative AK estimated using the International Electrotechnical Commission standards. Application of OSL technology using nanoDot® provides an alternative to directly measure fluoroscopic skin dose in children during cardiac catheterization. Our data show that the actual skin dose for children is approximately one-third lower than the AK estimated using international standards for adult size patients.
Self-Recovery Experiments in Extreme Environments Using a Field Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier; Arslan, Tughrul; Duong, Vu; Zebulum, Ricardo; Ferguson, Ian; Guo, Xin
2004-01-01
Temperature and radiation tolerant electronics, as well as long life survivability are key capabilities required for future NASA missions. Current approaches to electronics for extreme environments focus on component level robustness and hardening. However, current technology can only ensure very limited lifetime in extreme environments. This paper describes novel experiments that allow adaptive in-situ circuit redesign/reconfiguration during operation in extreme temperature and radiation environments. This technology would complement material/device advancements and increase the mission capability to survive harsh environments. The approach is demonstrated on a mixed-signal programmable chip (FPTA-2), which recovers functionality for temperatures until 28 C and with total radiation dose up to 250kRad.
Fuller, Neil; Ford, Alex T; Nagorskaya, Liubov L; Gudkov, Dmitri I; Smith, Jim T
2018-07-01
Nuclear accidents such as Chernobyl and Fukushima have led to contamination of the environment that will persist for many years. The consequences of chronic low-dose radiation exposure for non-human organisms inhabiting contaminated environments remain unclear. In radioecology, crustaceans are important model organisms for the development of environmental radioprotection. Previous laboratory studies have demonstrated deleterious effects of radiation exposure on crustacean reproduction. However, no studies have documented the effects of chronic radiation exposure on the reproduction of natural crustacean populations. Based on data from laboratory exposures, we hypothesised that populations of the freshwater isopod Asellus aquaticus exposed to radiation for thirty years at Chernobyl would display reduced reproductive output and altered timing of reproduction. To test this hypothesis, A. aquaticus was collected from six lakes at Chernobyl over two years with total dose rates ranging from 0.06-27.1μGy/h. No significant differences in the fecundity, mass of broods or proportion of reproducing female A. aquaticus were recorded. Significant differences in the body mass of gravid females were recorded suggesting different timings of reproduction, however this was not related to radiation contamination. No significant effect of a range of environmental parameters on A. aquaticus reproduction was recorded. Our data suggests current dose rates at Chernobyl are not causing discernible effects on the reproductive output of A. aquaticus. This study is the first to assess the effects of chronic low-dose radiation exposure on the reproductive output of an aquatic invertebrate at Chernobyl. These findings are consistent with proposed radiological protection benchmarks for the maintenance of wildlife populations and will assist in management of environments impacted by radiation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Space Radiation Hazards on Human Missions to the Moon and Mars
NASA Astrophysics Data System (ADS)
Townsend, L.
2004-12-01
One of the most significant health risks for humans exploring Earth's moon and Mars is exposure to the harsh space radiation environment. Crews on these exploration missions will be exposed to a complex mixture of very energetic particles. Chronic exposures to the ever-present background galactic cosmic ray (GCR) spectrum consisting of various fluxes of all naturally - occurring chemical elements are combined with infrequent, possibly acute exposures to large fluxes of solar energetic particles, consisting of protons and heavier particles. The GCR environment is primarily a concern for stochastic effects, such as the induction of cancer, with subsequent mortality in many cases, and late deterministic effects, such as cataracts and possible damage to the central nervous system. An acute radiation syndrome response ("radiation sickness") is not possible from the GCR environment since the organ doses are well below levels of concern. Unfortunately, the actual risks of cancer induction and mortality for the very important high-energy heavy ion component of the GCR spectrum are essentially unknown. The sporadic occurrence of extremely large solar energetic particle events, usually associated with intense solar activity, is also a major concern for Lunar and Mars missions because of the possible manifestation of acute effects from the accompanying high doses of such radiations, especially acute radiation syndrome effects such as nausea, emesis, hemorrhaging or possibly even death. Large solar energetic particle events can also contribute significantly to crew risks from cancer mortality. In this presentation an overview of current estimates of critical organ doses and equivalent doses for crews of Lunar and Mars bases and on those on transits between Earth and Mars is presented. Possible methods of mitigating these radiation exposures by shielding, thereby reducing the associated health risks to crews, are also described.
Grimwood, Darren; Harvey-Lloyd, Jane
2016-12-01
Intramedullary nailing is the standard surgical treatment for mid-diaphyseal fractures of long bones; however, it is also a high radiation dose procedure. Distal locking is regularly cited as a demanding element of the procedure, and there remains a reliance on X-ray fluoroscopy to locate the distal holes. A recently developed electromagnetic navigation (EMN) system allows radiation-free distal locking, with a virtual on-screen image. To compare operative duration, fluoroscopy time and radiation dose when using EMN over fluoroscopy, for the distal locking of intramedullary nails. Consecutive patients with mid-diaphyseal fractures of the tibia and femur, treatable with intramedullary nails, were prospectively enrolled during a 9-month period. The sample consisted of 29 individuals, 19 under fluoroscopic guidance and 10 utilising EMN. Participants were allocated depending on the type of intramedullary nail used and surgeon's preference. These were further divided into tibial and femoral subcategories, relative to the fracture site. EMN reduced fluoroscopy time by 49 (p = 0.038) and 28 s during tibial and femoral nailings, respectively. Radiation dose was reduced by 18 cGy/cm 2 (p = 0.046) during tibial and 181 cGy/cm 2 during femoral nailings when utilising EMN. Operative duration was 11 min slower during tibial nailings using EMN, but 38 min faster in respect of femoral nailings. This study has evidenced statistically significant reductions in both fluoroscopy time and radiation dose when using EMN for the distal locking of intramedullary nails. It is expected that overall operative duration would also decrease in line with similar studies, with increased usage and a larger sample.
Saberi, Hassan; Keshavarzi, Behnaz; Shirpoor, Alireza; Gharalari, Farzaneh Hosseini; Rasmi, Yousef
2017-10-01
Radiation is an essential modality in the management of cancer therapy, but its acute and chronic side effects on the normal organs limit the helpfulness of radiotherapy. The deleterious effects of radiation begin with oxidative stress and inflammatory reaction to radiolytic hydrolysis and formation of free radicals. The aim of the current study was to investigate the effect of dose dependent whole body radiation exposure on histological and biochemical alterations in rat kidney. It was also planned to find out whether ginger extract mitigated the deleterious effects of different doses of radiation in rat kidney. Male Wistar rats were exposed to three doses (2, 4, and 8Gy) of γ- ray with or without a 10day pretreatment with ginger extract. After 10days of whole body γ- ray exposure, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant increase in 8-OHdG, CRP, cystatin C (in 8Gy), plasma urea and creatinine levels, as well as a significant decrease in total antioxidant capacity of radiation groups compared to those of the control group. Ginger extract administration once daily for 10 consecutive days before exposure to 2-4-8Gy radiotherapy, which ameliorated histological and biochemical alterations in kidneys of the rats entirely or partially compared to those in the ethanol group rats. These findings indicate that whole body exposure to radiation induces kidney damage through oxidative DNA damage and inflammatory reactions, and that these effects can be alleviated using ginger pretreatment as an antioxidant and anti-inflammatory agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, K; Liu, B
Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less
Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F
2006-05-01
Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived on a case-by-case basis for workers with committed equivalent doses indicated by screening criteria to be greater than 10 mSv to the organ with the highest internal dose. Overall, 5,801 workers were monitored for radiation at Rocketdyne/AI: 5,743 for external exposure and 2,232 for internal intakes of radionuclides; 41,169 workers were not monitored for radiation. The mean cumulative external dose based on Rocketdyne/AI records alone was 10.0 mSv, and the dose distribution was highly skewed with most workers experiencing low cumulative doses and only a few with high doses (maximum 500 mSv). Only 45 workers received greater than 200 mSv while employed at Rocketdyne/AI. However, nearly 32% (or 1,833) of the Rocketdyne/AI workers had been monitored for radiation at other nuclear facilities and incorporation of these doses increased the mean dose to 13.5 mSv (maximum 1,005 mSv) and the number of workers with >200 mSv to 69. For a small number of workers (n=292), lung doses from internal radionuclide intakes were relatively high (mean 106 mSv; maximum 3,560 mSv) and increased the overall population mean dose to 19.0 mSv and the number of workers with lung dose>200 mSv to 109. Nearly 10% of the radiation workers (584) were monitored for neutron exposures (mean 1.2 mSv) at Rocketdyne/AI, and another 2% were monitored for neutron exposures elsewhere. Interestingly, 1,477 workers not monitored for radiation at Rocketdyne/AI (3.6%) were found to have worn dosimeters at other nuclear facilities (mean external dose of 2.6 mSv, maximum 188 mSv). Without considering all sources of occupational exposure, an incorrect characterization of worker exposure would have occurred with the potential to bias epidemiologic results. For these pioneering workers in the nuclear industry, 26.5% of their total occupational dose (collective dose) was received at other facilities both prior to and after employment at Rocketdyne/AI. In addition, a small number of workers monitored for internal radionuclides contributed disproportionately to the number of workers with high lung doses. Although nearly 12% of radiation workers had been monitored for neutron exposures during their career, the cumulative dose levels were small in comparison with other external and internal exposure. Risk estimates based on nuclear worker data must be interpreted cautiously if internally deposited radionuclides and occupational doses received elsewhere are not considered.
NASA Astrophysics Data System (ADS)
Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.
2017-12-01
The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.
Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence
NASA Astrophysics Data System (ADS)
Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra
2018-04-01
Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.
A translatable predictor of human radiation exposure.
Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P
2014-01-01
Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.
Will X-ray Safety Glasses Become Mandatory for Radiological Vascular Interventions?
Thomas, Rohit Philip; Grau, Mathias; Eldergash, Osama; Kowald, Tobias; Schnabel, Johannes; Szczechowicz, Marcin; Chavan, Ajay
2018-07-01
The annual permissible radiation ocular lens dose has been reduced to 20 millisieverts (mSv) in the current European directive 2013/59/Euratom. The aim of this study was to evaluate the personal radiation dose for vascular interventions with special focus on ocular lens dose. From May 2016 to October 2016, the personal radiation doses of two interventionists and four technicians were prospectively recorded during 206 vascular interventions. The position of personnel, intervention type and fluoroscopy time were recorded. Parameters evaluated were total body dose measured by film dosimeter, hand dose measured by ring thermoluminescent dosimeter (TLD) and ocular lens dose measured by TLD placed in front of the safety glasses. Linear regression analysis was used to estimate the dose at 2 and 5 years. The ocular lens dose, hand and total body dose of the two interventionists were 11/5, 56/47 and 0.6 mSv each, respectively. The estimated 5-year ocular dose was 113.08 mSv (95% CI 38.2-187.97)/40.95 (95% CI 16.9-64.7). Similarly, hand dose was 608.4 mSv (95% CI 442.78-774.38)/514.47 (95% CI 329.83-699.10) and body dose 6.07 mSv (95% CI 4.70-8.22)/5.12 (95% CI 3.65-6.59), respectively. Amongst four technicians, only the first assistant showed recordings of 0.3 mSv body dose, 2 mSv ocular lens dose and 5 mSv hand dose. The yearly ocular lens dose, particularly for interventionists dealing with complex interventions, could cross the permitted yearly limit set by the new Euratom directive. Therefore, X-ray safety glasses would become mandatory for complex radiological vascular interventions. Level III, non-randomized controlled cohort/follow-up study.
Current status and performance of the BESIII electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Fang, Jian; Wang, Zhigang
2012-12-01
The design and construction of the BESIII electromagnetic calorimeter is introduced briefly. Radiation dose of CsI(Tl) crystals is monitored and history graph of integral dose of crystals is showed. LED-fiber system is used for monitoring the EMC light output, and large decrease of light output of several crystals is discussed. BESIII electromagnetic calorimeter works very well and its performance reach the design value.
Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?
Hannoun-Lévi, J-M; Peiffert, D
2014-10-01
Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, Janet K., E-mail: janet.horton@duke.edu; Blitzblau, Rachel C.; Yoo, Sua
Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative,more » estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should be tested in future clinical trials because it has the potential to challenge the current treatment paradigm and provide a path forward to identify radiation response biomarkers.« less
Kumar, Sameera S; Higgins, Kristin A; McGarry, Ronald C
2017-01-01
The current standard of care for locally advanced non-small cell lung cancer (NSCLC) includes radiation, chemotherapy, and surgery in certain individualized cases. In unresectable NSCLC, chemoradiation has been the standard of care for the past three decades. Local and distant failure remains high in this group of patients, so dose escalation has been studied in both single institution and national clinical trials. Though initial studies showed a benefit to dose escalation, phase III studies examining dose escalation using standard fractionation or hyperfractionation have failed to show a benefit. Over the last 17 years, stereotactic body radiation therapy (SBRT) has shown a high degree of safety and local control for stage I lung cancers and other localized malignancies. More recently, phase I/II studies using SBRT for dose escalation after conventional chemoradiation in locally advanced NSCLC have been promising with good apparent safety. Immunotherapy also offers opportunities to address distant disease and preclinical data suggest immunotherapy in tandem with SBRT may be a rational way to induce an "abscopal effect" although there are little clinical data as yet. By building on the proven concept of conventional chemoradiation for patients with locally advanced NSCLC with a subsequent radiation dose intensification to residual disease with SBRT concurrent with immunotherapy, we hope address the issues of metastatic and local failures. This "quadmodality" approach is still in its infancy but appears to be a safe and rational approach to the improving the outcome of NSCLC therapy.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek
2016-06-01
The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation field at the position of the payload and resulting spatial- and time-correlated radiation maps of cumulative dose rate along the satellite orbit.
Chiang, Hsien-Wen; Liu, Ya-Ling; Chen, Tou-Rong; Chen, Chun-Lon; Chiang, Hsien-Jen; Chao, Shin-Yu
2015-01-01
This work aimed to investigate the spatial distribution of scattered radiation doses induced by exposure to the portable X-ray, the C-arm machine, and to simulate the radiologist without a shield of lead clothing, radiation doses absorbed by medical staff at 2 m from the central exposure point. With the adoption of the Rando Phantom, several frequently X-rayed body parts were exposed to X-ray radiation, and the scattered radiation doses were measured by ionization chamber dosimeters at various angles from the patient. Assuming that the central point of the X-ray was located at the belly button, five detection points were distributed in the operation room at 1 m above the ground and 1-2 m from the central point horizontally. The radiation dose measured at point B was the lowest, and the scattered radiation dose absorbed by the prosthesis from the X-ray's vertical projection was 0.07 ±0.03 μGy, which was less than the background radiation levels. The Fluke biomedical model 660-5DE (400 cc) and 660-3DE (4 cc) ion chambers were used to detect air dose at a distance of approximately two meters from the central point. The AP projection radiation doses at point B was the lowest (0.07±0.03 μGy) and the radiation doses at point D was the highest (0.26±0.08 μGy) .Only taking the vertical projection into account, the radiation doses at point B was the lowest (0.52 μGy), and the radiation doses at point E was the highest (4 μGy).The PA projection radiation at point B was the lowest (0.36 μGy) and the radiation doses at point E was the highest(2.77 μGy), occupying 10-32% of the maximum doses. The maximum dose in five directions was nine times to the minimum dose. When the PX and the C-arm machine were used, the radiation doses at a distance of 2 m were attenuated to the background radiation level. The radiologist without a lead shield should stand at point B of patient's feet. Accordingly, teaching materials on radiation safety for radiological interns and clinical technicians were formulated.
Radiation safety standards: space hazards vs. terrestrial hazards.
Sinclair, W K
1983-01-01
The standards currently recommended for use in space travel were perhaps the first risk derived recommendations for dose limitations developed for quasi-occupational circumstances. They were based on data, considerations, and philosophy existing prior to 1970 and considered carcinogenesis primarily. In the intervening twelve years, not only has radiation risk information improved markedly but considerations relating to risk in general have become better known. The earlier recommendations have been examined with respect to changes in risk estimation and it is noted that the same philosophy used today, would probably lead to different dose limitations. However, other philosophies might be used; in particular a comparison of risks between terrestrial occupational radiation circumstances and also with fatal accident rates in a range of industries can be made and might be used in a modified philosophy with respect to risks from carcinogenesis. Developments have also taken place with respect to the knowledge of the biological effects of HZE particles but whether these effects are limiting as compared with radiation induced carcinogenesis is not yet clear. More studies on the effects of HZE particles, now becoming available, are needed. It is recommended that an in depth reexamination be undertaken of the biological effectiveness of space radiations and the philosophy of dose limitations in comparison with other risks.
[Analysis of radiation-hygienic and medical consequences of the Chernobyl accident].
Onishchenko, G G
2013-01-01
Since the day of "the Chernobyl accident" in 1986 more than 25 years have been past. Radioactively contaminated areas 14 subjects of the Russian Federation with a total area of more than 50 thousand km2, where 1.5 million people now reside were exposed to radioactive contamination. Currently, a system of comprehensive evaluation of radiation doses of the population affected by the "Chernobyl accidents", including 11 guidance documents has been created. There are methodically provided works on the assessment of average annual, accumulated and predicted radiation doses of population and its critical groups, as well as doses to the thyroid gland The relevance of the analysis of the consequences of the "Chernobyl accident" is demonstrated by the events in Japan, at nuclear power Fukusima-1. In 2011 - 20/2 there were carried out comprehensive maritime expeditions under the auspices of the Russian Geographical Society with the participation of relevant ministries and agencies, leading academic institutions in Russia. In 2012, work was carried out on radiation protection of the population from the potential transboundary impact of the accident at the Japanese nuclear power plant Fukushima-l. The results provide a basis for the favorable outlook for the radiation environment in our Far East and the Pacific coast of Russia.
Is ionizing radiation regulated more stringently than chemical carcinogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.
1989-04-01
It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals andmore » ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens.« less
10 CFR 20.1004 - Units of radiation dose.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1004 - Units of radiation dose.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...
10 CFR 20.1004 - Units of radiation dose.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...
10 CFR 20.1004 - Units of radiation dose.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...
10 CFR 20.1004 - Units of radiation dose.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...
Wilson, Sharon M; Prasan, Ananth M; Virdi, Amy; Lassere, Marissa; Ison, Glenn; Ramsay, David R; Weaver, James C
2016-10-10
The aim of this study was to evaluate whether a real-time (RT) colour pictorial radiation dose monitoring system reduces patient skin and total radiation dose during coronary angiography and intervention. Patient demographics, procedural variables and radiation parameters were recorded before and after institution of the RT skin dose recording system. Peak skin dose as well as traditionally available measures of procedural radiation dose were compared. A total of 1,077 consecutive patients underwent coronary angiography, of whom 460 also had PCI. Institution of the RT skin dose recording system resulted in a 22% reduction in peak skin dose after accounting for confounding variables. Radiation dose reduction was most pronounced in those having PCI but was also seen over a range of subgroups including those with prior coronary artery bypass surgery, high BMI, and with radial arterial access. This was associated with a significant reduction in the number of patients placed at risk of skin damage. Similar reductions in parameters reflective of total radiation dose were also demonstrated after institution of RT radiation monitoring. Institution of an RT skin dose recording reduced patient peak skin and total radiation dose during coronary angiography and intervention. Consideration should be given to widespread adoption of this technology.
Walsh, L; Zhang, W; Shore, R E; Auvinen, A; Laurier, D; Wakeford, R; Jacob, P; Gent, N; Anspaugh, L R; Schüz, J; Kesminiene, A; van Deventer, E; Tritscher, A; del Rosarion Pérez, M
2014-11-01
We present here a methodology for health risk assessment adopted by the World Health Organization that provides a framework for estimating risks from the Fukushima nuclear accident after the March 11, 2011 Japanese major earthquake and tsunami. Substantial attention has been given to the possible health risks associated with human exposure to radiation from damaged reactors at the Fukushima Daiichi nuclear power station. Cumulative doses were estimated and applied for each post-accident year of life, based on a reference level of exposure during the first year after the earthquake. A lifetime cumulative dose of twice the first year dose was estimated for the primary radionuclide contaminants ((134)Cs and (137)Cs) and are based on Chernobyl data, relative abundances of cesium isotopes, and cleanup efforts. Risks for particularly radiosensitive cancer sites (leukemia, thyroid and breast cancer), as well as the combined risk for all solid cancers were considered. The male and female cumulative risks of cancer incidence attributed to radiation doses from the accident, for those exposed at various ages, were estimated in terms of the lifetime attributable risk (LAR). Calculations of LAR were based on recent Japanese population statistics for cancer incidence and current radiation risk models from the Life Span Study of Japanese A-bomb survivors. Cancer risks over an initial period of 15 years after first exposure were also considered. LAR results were also given as a percentage of the lifetime baseline risk (i.e., the cancer risk in the absence of radiation exposure from the accident). The LAR results were based on either a reference first year dose (10 mGy) or a reference lifetime dose (20 mGy) so that risk assessment may be applied for relocated and non-relocated members of the public, as well as for adult male emergency workers. The results show that the major contribution to LAR from the reference lifetime dose comes from the first year dose. For a dose of 10 mGy in the first year and continuing exposure, the lifetime radiation-related cancer risks based on lifetime dose (which are highest for children under 5 years of age at initial exposure), are small, and much smaller than the lifetime baseline cancer risks. For example, after initial exposure at age 1 year, the lifetime excess radiation risk and baseline risk of all solid cancers in females were estimated to be 0.7 · 10(-2) and 29.0 · 10(-2), respectively. The 15 year risks based on the lifetime reference dose are very small. However, for initial exposure in childhood, the 15 year risks based on the lifetime reference dose are up to 33 and 88% as large as the 15 year baseline risks for leukemia and thyroid cancer, respectively. The results may be scaled to particular dose estimates after consideration of caveats. One caveat is related to the lack of epidemiological evidence defining risks at low doses, because the predicted risks come from cancer risk models fitted to a wide dose range (0-4 Gy), which assume that the solid cancer and leukemia lifetime risks for doses less than about 0.5 Gy and 0.2 Gy, respectively, are proportional to organ/tissue doses: this is unlikely to seriously underestimate risks, but may overestimate risks. This WHO-HRA framework may be used to update the risk estimates, when new population health statistics data, dosimetry information and radiation risk models become available.
Pregnancy and Radiation Protection
NASA Astrophysics Data System (ADS)
Gerogiannis, J.; Stefanoyiannis, A. P.
2010-01-01
Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.
Pregnancy and Radiation Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerogiannis, J.; Stefanoyiannis, A. P.
Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation ofmore » the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.« less
Ionizing radiation calculations and comparisons with LDEF data
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.
1992-01-01
In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.
Patient‐specific CT dosimetry calculation: a feasibility study
Xie, Huchen; Cheng, Jason Y.; Ning, Holly; Zhuge, Ying; Miller, Robert W.
2011-01-01
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of “standard man”. Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient‐specific CT dosimetry. A radiation treatment planning system was modified to calculate patient‐specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose‐volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi‐empirical, measured correction‐based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point‐by‐point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%–20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient‐specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation. PACS numbers: 87.55.D‐, 87.57.Q‐, 87.53.Bn, 87.55.K‐ PMID:22089016
SU-E-T-37: A GPU-Based Pencil Beam Algorithm for Dose Calculations in Proton Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantzis, G; Leventouri, T; Tachibana, H
Purpose: Recent developments in radiation therapy have been focused on applications of charged particles, especially protons. Over the years several dose calculation methods have been proposed in proton therapy. A common characteristic of all these methods is their extensive computational burden. In the current study we present for the first time, to our best knowledge, a GPU-based PBA for proton dose calculations in Matlab. Methods: In the current study we employed an analytical expression for the protons depth dose distribution. The central-axis term is taken from the broad-beam central-axis depth dose in water modified by an inverse square correction whilemore » the distribution of the off-axis term was considered Gaussian. The serial code was implemented in MATLAB and was launched on a desktop with a quad core Intel Xeon X5550 at 2.67GHz with 8 GB of RAM. For the parallelization on the GPU, the parallel computing toolbox was employed and the code was launched on a GTX 770 with Kepler architecture. The performance comparison was established on the speedup factors. Results: The performance of the GPU code was evaluated for three different energies: low (50 MeV), medium (100 MeV) and high (150 MeV). Four square fields were selected for each energy, and the dose calculations were performed with both the serial and parallel codes for a homogeneous water phantom with size 300×300×300 mm3. The resolution of the PBs was set to 1.0 mm. The maximum speedup of ∼127 was achieved for the highest energy and the largest field size. Conclusion: A GPU-based PB algorithm for proton dose calculations in Matlab was presented. A maximum speedup of ∼127 was achieved. Future directions of the current work include extension of our method for dose calculation in heterogeneous phantoms.« less
A space radiation shielding model of the Martian radiation environment experiment (MARIE)
NASA Technical Reports Server (NTRS)
Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.
2004-01-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Hwang, Y; Tsai, H
2015-06-15
Purpose: Scoliotic patients underwent a lot of radiologic examinations during the control and treatment periods. This study used the PCXMC program to calculate the effective dose of the patients and assess the radiation cancer risks. Methods: Seventy five scoliotic patients were examined using CR or DR systems during the control and treatment periods in Chang Gung Memorial Hospital. The technical factors were recorded for each patient during his/her control and treatment period. The entrance surface dose was measured using thermoluminence dosimeters and derived from technical factors and irradiated geometry. The effective dose of patients and relative radiation cancer risks weremore » calculated by the PCXMC program. All required information regarding patient age and sex, the x-ray spectra, and the tube voltage and current were registered. The radiation risk were estimated using the model developed by the BEIR VII committee (2006). Results: The effective doses of full spine radiography with anteroposterior and lateral projections were 0.626 mSv for patients using DR systems, and 0.483mSv for patients using CR systems, respectively. The dose using DR system was 29.6% higher than those using CR system. The maximum organ dose was observed in the breast for both projections in all the systems. The risk of exposure—induced cancer death (REID) of patients for DR and CR systems were 0.009% and 0.007%, respectively. Conclusion: The risk estimates were regarded with healthy skepticism, placed more emphasis on the magnitude of the risk. The effective doses estimated in this study could be served as a reference for radiologists and technologists and demonstrate the necessity to optimize patient protection for full spine radiography though the effective doses are not at the level to induce deterministic effects and not significant in the stochastic effect. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1D0421)« less
NASA Astrophysics Data System (ADS)
Baker, Jameson Todd
The complex dose patterns that result in Intensity Modulated Radiation Therapy make the typical QA of a second calculation insufficient for ensuring safe treatment of patients. Many facilities choose to deliver the treatment to film inserted in a phantom and calculate the dose delivered as an additional check of the treatment plan. Radiochromic films allow for measurements without the use of a processor in the current digital age. International Specialty Products developed Gafchromic EBT film, which is a radiochromic film having a useful range of 1 -- 800 cGy. EBT film properties are fully analyzed including studies of uniformity, spectral absorption, exposure sensitivity, energy dependence and post exposure density growth. Dosimetric performance on commercially available digitizers is studied with specific attention on the shortcomings. Finally, a custom designed scanner is built specifically for EBT film and its unique properties. Performance of the EBT digitizer is analyzed and compared against currently available scanners.
Final Radiological Assessment of External Exposure for CLEAR-Line Americium Recovery Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Adam C.; Belooussova, Olga N.; Hetrick, Lucas Duane
2014-11-12
Los Alamos National Laboratory is currently planning to implement an americium recovery program. The americium, ordinarily isotopically pure 241Am, would be extracted from existing Pu materials, converted to an oxide and shipped to support fabrication of americium oxide-beryllium neutron sources. These operations would occur in the currently proposed Chloride Extraction and Actinide Recovery (CLEAR) line of glove boxes. This glove box line would be collocated with the currently-operational Experimental Chloride Extraction Line (EXCEL). The focus of this document is to provide an in-depth assessment of the currently planned radiation protection measures and to determine whether or not further design workmore » is required to satisfy design-goal and ALARA requirements. Further, this document presents a history of americium recovery operations in the Department of Energy and high-level descriptions of the CLEAR line operations to provide a basis of comparison. Under the working assumptions adopted by this study, it was found that the evaluated design appears to mitigate doses to a level that satisfies the ALARA-in-design requirements of 10 CFR 835 as implemented by the Los Alamos National Laboratory procedure P121. The analyses indicate that extremity doses would also meet design requirements. Dose-rate calculations were performed using the radiation transport code MCNP5 and doses were estimated using a time-motion study developed in consort with the subject matter expert. A copy of this report and all supporting documentation are located on the Radiological Engineering server at Y:\\Rad Engineering\\2013 PROJECTS\\TA-55 Clear Line.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A, Popescu I; Lobo, J; Sawkey, D
2014-06-15
Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less
Current advancement in radiation therapy for uterine cervical cancer.
Nakano, Takashi; Ohno, Tatsuya; Ishikawa, Hitoshi; Suzuki, Yoshiyuki; Takahashi, Takeo
2010-01-01
Radiation therapy is one of the effective curative treatments for uterine cervical cancer. However poor clinical results for the advanced stages require further improvement of the treatment. Intensive studies on basic and clinical research have been made to improve local control, primarily important for long term survival in radiation therapy. Regarding current advancement in radiation therapy for uterine cervical cancer, the following three major subjects are pointed out; technological development to improve dose distribution by image guided radiation therapy technology, the concomitant anticancer chemotherapy with combination of radiation therapy, and radiation biological assessment of the radiation resistance of tumors. The biological factors overviewed in this article include hypoxia relating factors of HIF-1alpha, SOD, cell cycle parameters of pMI, proliferation factors of Ki67, EGFR, cerbB2, COX-2, cycle regulation proteins p53, p21, apoptosis regulation proteins Bcl2 and Bax and so on. Especially, the variety of these radiation biological factors is important for the selection of an effective treatment method for each patient to maximize the treatment benefit.
Pannkuk, Evan L; Laiakis, Evagelia C; Authier, Simon; Wong, Karen; Fornace, Albert J
2015-08-01
Due to concerns surrounding potential large-scale radiological events, there is a need to determine robust radiation signatures for the rapid identification of exposed individuals, which can then be used to guide the development of compact field deployable instruments to assess individual dose. Metabolomics provides a technology to process easily accessible biofluids and determine rigorous quantitative radiation biomarkers with mass spectrometry (MS) platforms. While multiple studies have utilized murine models to determine radiation biomarkers, limited studies have profiled nonhuman primate (NHP) metabolic radiation signatures. In addition, these studies have concentrated on short-term biomarkers (i.e., <72 h). The current study addresses the need for biomarkers beyond 72 h using a NHP model. Urine samples were collected at 7 days postirradiation (2, 4, 6, 7 and 10 Gy) and processed with ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (QTOF) MS, acquiring global metabolomic radiation signatures. Multivariate data analysis revealed clear separation between control and irradiated groups. Thirteen biomarkers exhibiting a dose response were validated with tandem MS. There was significantly higher excretion of l-carnitine, l-acetylcarnitine, xanthine and xanthosine in males versus females. Metabolites validated in this study suggest perturbation of several pathways including fatty acid β oxidation, tryptophan metabolism, purine catabolism, taurine metabolism and steroid hormone biosynthesis. In this novel study we detected long-term biomarkers in a NHP model after exposure to radiation and demonstrate differences between sexes using UPLC-QTOF-MS-based metabolomics technology.
Management of radiation therapy patients with cardiac defibrillator or pacemaker.
Salerno, Francesca; Gomellini, Sara; Caruso, Cristina; Barbara, Raffaele; Musio, Daniela; Coppi, Tamara; Cardinale, Mario; Tombolini, Vincenzo; de Paula, Ugo
2016-06-01
The increasing growth of population with cardiac implantable electronic devices (CIEDs) such as Pacemaker (PM) and Implantable Cardiac Defibrillators (ICD), requires particular attention in management of patients needing radiation treatment. This paper updates and summarizes some recommendations from different international guidelines. Ionizing radiation and/or electromagnetic interferences could cause device failure. Current approaches to treatment in patients who have these devices vary among radiation oncology centres. We refer to the German Society of Radiation Oncology and Cardiology guidelines (ed. 2015); to the Society of Cardiology Australia and New Zealand Statement (ed. 2015); to the guidelines in force in the Netherlands (ed. 2012) and to the Italian Association of Radiation Oncology recommendations (ed. 2013) as reported in the guidelines for the treatment of breast cancer in patients with CIED. Although there is not a clear cut-off point, risk of device failure increases with increasing doses. Cumulative dose and pacing dependency have been combined to categorize patients into low-, medium- and high-risk groups. Measures to secure patient safety are described for each category. The use of energy ≤6MV is preferable and it's strongly recommended not to exceed a total dose of 2 Gy to the PM and 1 Gy for ICD. Given the dangers of device malfunction, radiation oncology departments should adopt all the measures designed to minimize the risk to patients. For this reason, a close collaboration between cardiologist, radiotherapist and physicist is necessary.
SRT and SBRT: Current practices for QA dosimetry and 3D
NASA Astrophysics Data System (ADS)
Benedict, S. H.; Cai, J.; Libby, B.; Lovelock, M.; Schlesinger, D.; Sheng, K.; Yang, W.
2010-11-01
The major feature that separates stereotactic radiation therapy (cranial SRT) and stereotactic body radiation therapy (SBRT) from conventional radiation treatment is the delivery of large doses in a few fractions which results in a high biological effective dose (BED). In order to minimize the normal tissue toxicity, quality assurance of the conformation of high doses to the target and rapid fall off doses away from the target is critical. The practice of SRT and SBRT therefore requires a high-level of confidence in the accuracy of the entire treatment delivery process. In SRT and SBRT confidence in this accuracy is accomplished by the integration of modern imaging, simulation, treatment planning and delivery technologies into all phases of the treatment process; from treatment simulation and planning and continuing throughout beam delivery. In this report some of the findings of Task group 101 of the AAPM will be presented which outlines the best-practice guidelines for SBRT. The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information in this task group is provided for establishing an SBRT program, including protocols, equipment, resources, and QA procedures.
Space Radiation Cancer Risk Projections and Uncertainties - 2010
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.
2011-01-01
Uncertainties in estimating health risks from galactic cosmic rays greatly limit space mission lengths and potential risk mitigation evaluations. NASA limits astronaut exposures to a 3% risk of exposure-induced death and protects against uncertainties using an assessment of 95% confidence intervals in the projection model. Revisions to this model for lifetime cancer risks from space radiation and new estimates of model uncertainties are described here. We review models of space environments and transport code predictions of organ exposures, and characterize uncertainties in these descriptions. We summarize recent analysis of low linear energy transfer radio-epidemiology data, including revision to Japanese A-bomb survivor dosimetry, longer follow-up of exposed cohorts, and reassessments of dose and dose-rate reduction effectiveness factors. We compare these projections and uncertainties with earlier estimates. Current understanding of radiation quality effects and recent data on factors of relative biological effectiveness and particle track structure are reviewed. Recent radiobiology experiment results provide new information on solid cancer and leukemia risks from heavy ions. We also consider deviations from the paradigm of linearity at low doses of heavy ions motivated by non-targeted effects models. New findings and knowledge are used to revise the NASA risk projection model for space radiation cancer risks.
Bhattacharjee, D; Rajan, R; Krishnamoorthy, L; Singh, B B
1997-06-01
Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to gamma-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05-0.25 Gy, whereas at doses of 0.5-6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2014-01-01
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2013-12-30
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET 137 Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
The HZE radiation problem. [highly-charged energetic galactic cosmic rays
NASA Technical Reports Server (NTRS)
Schimmerling, Walter
1990-01-01
Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.
Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J
2014-02-01
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.
Ryska, Pavel; Kvasnicka, Tomas; Jandura, Jiri; Klzo, Ludovit; Grepl, Jakub; Zizka, Jan
2014-06-01
To compare the effective and eye lens radiation dose in helical MDCT brain examinations using automatic tube current modulation in conjunction with either standard filtered back projection (FBP) technique or iterative reconstruction in image space (IRIS). Of 400 adult brain MDCT examinations, 200 were performed using FBP and 200 using IRIS with the following parameters: tube voltage 120 kV, rotation period 1 second, pitch factor 0.55, automatic tube current modulation in both transverse and longitudinal planes with reference mAs 300 (FBP) and 200 (IRIS). Doses were calculated from CT dose index and dose length product values utilising ImPACT software; the organ dose to the lens was derived from the actual tube current-time product value applied to the lens. Image quality was assessed by two independent readers blinded to the type of image reconstruction technique. The average effective scan dose was 1.47±0.26 mSv (FBP) and 0.98±0.15 mSv (IRIS), respectively (33.3% decrease). The average organ dose to the eye lens decreased from 40.0±3.3 mGy (FBP) to 26.6±2.0 mGy (IRIS, 33.5% decrease). No significant change in diagnostic image quality was noted between IRIS and FBP scans (P=0.17). Iterative reconstruction of cerebral MDCT examinations enables reduction of both effective and organ eye lens dose by one third without signficant loss of image quality.
Gislason-Lee, Amber J.; Keeble, Claire; Egleston, Daniel; Bexon, Josephine; Kengyelics, Stephen M.; Davies, Andrew G.
2017-01-01
Abstract. This study aimed to determine whether a reduction in radiation dose was found for percutaneous coronary interventional (PCI) patients using a cardiac interventional x-ray system with state-of-the-art image enhancement and x-ray optimization, compared to the current generation x-ray system, and to determine the corresponding impact on clinical image quality. Patient procedure dose area product (DAP) and fluoroscopy duration of 131 PCI patient cases from each x-ray system were compared using a Wilcoxon test on median values. Significant reductions in patient dose (p≪0.001) were found for the new system with no significant change in fluoroscopy duration (p=0.2); procedure DAP reduced by 64%, fluoroscopy DAP by 51%, and “cine” acquisition DAP by 76%. The image quality of 15 patient angiograms from each x-ray system (30 total) was scored by 75 clinical professionals on a continuous scale for the ability to determine the presence and severity of stenotic lesions; image quality scores were analyzed using a two-sample t-test. Image quality was reduced by 9% (p≪0.01) for the new x-ray system. This demonstrates a substantial reduction in patient dose, from acquisition more than fluoroscopy imaging, with slightly reduced image quality, for the new x-ray system compared to the current generation system. PMID:28491907
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies
NASA Technical Reports Server (NTRS)
Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.
2018-01-01
Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.