NASA Technical Reports Server (NTRS)
Kessler, L. L.
1976-01-01
Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.
Submicrosecond risetimes in lightning return-stroke fields
NASA Technical Reports Server (NTRS)
Weidman, C. D.; Krider, E. P.
1980-01-01
Measurements of lightning electric field, E, and dE/dt signatures have been made near Tampa Bay, Florida, under conditions where the lightning locations were known and where the results were not significantly affected by the response time of the measuring system or groundwave propagation. The fast transitions found on the initial portion of return-stroke fields have 10-90% risetimes ranging from 40 to 200 nsec, with a mean of 90 nsec. The maximum field derivatives during return strokes range from 5 to 75 V/m per microsec with a mean of 29 V/m per microsec when normalized to a distance of 100 km. These field risetime and derivative values suggest that return-stroke currents contain large, submicrosecond components, and this in turn suggests that it may be necessary to reevaluate the possible effects of lightning and the performance of lightning-protection devices in many situations.
High-voltage subnanosecond dielectric breakdown
NASA Astrophysics Data System (ADS)
Mankowski, John Jerome
Current interests in ultrawideband radar sources are in the microwave regime, which correspond to voltage pulse risetimes less than a nanosecond. Some new sources, including the Phillips Laboratory Hindenberg series of hydrogen gas switched pulsers use hydrogen at hundreds of atmospheres of pressure in the switch. Unfortunately, the published data of electrical breakdown of gas and liquid media at these time lengths are relatively scarce. A study was conducted on the electrical breakdown properties of liquid and gas dielectrics at subnanosecond and nanoseconds. Two separate voltage sources with pulse risetimes less than 400 ps were developed. Diagnostic probes were designed and tested for their capability of detecting high voltage pulses at these fast risetimes. A thorough investigation into E-field strengths of liquid and gas dielectrics at breakdown times ranging from 0.4 to 5 ns was performed. The voltage polarity dependence on breakdown strength is observed. Streak camera images of streamer formation were taken. The effect of ultraviolet radiation, incident upon the gap, on statistical lag time was determined.
High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Fazi, Christian
1996-01-01
We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices.
The solid state detector technology for picosecond laser ranging
NASA Technical Reports Server (NTRS)
Prochazka, Ivan
1993-01-01
We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.
NASA Astrophysics Data System (ADS)
Steiner, Adam M.; Yager-Elorriaga, David A.; Patel, Sonal G.; Jordan, Nicholas M.; Gilgenbach, Ronald M.; Safronova, Alla S.; Kantsyrev, Victor L.; Shlyaptseva, Veronica V.; Shrestha, Ishor; Schmidt-Petersen, Maximillian T.
2016-10-01
Implosions of planar wire arrays were performed on the Michigan Accelerator for Inductive Z-pinch Experiments, a linear transformer driver (LTD) at the University of Michigan. These experiments were characterized by lower than expected peak currents and significantly longer risetimes compared to studies performed on higher impedance machines. A circuit analysis showed that the load inductance has a significant impact on the current output due to the comparatively low impedance of the driver; the long risetimes were also attributed to high variability in LTD switch closing times. A circuit model accounting for these effects was employed to measure changes in load inductance as a function of time to determine plasma pinch timing and calculate a minimum effective current-carrying radius. These calculations showed good agreement with available shadowgraphy and x-ray diode measurements.
NASA Astrophysics Data System (ADS)
Zeng, Zhengzhong; Ma, Lianying
2004-01-01
A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.
Simulation study of a new inverse-pinch high Coulomb transfer switch
NASA Technical Reports Server (NTRS)
Choi, S. H.
1984-01-01
A simulation study of a simplified model of a high coulomb transfer switch is performed. The switch operates in an inverse pinch geometry formed by an all metal chamber, which greatly reduces hot spot formations on the electrode surfaces. Advantages of the switch over the conventional switches are longer useful life, higher current capability and lower inductance, which improves the characteristics required for a high repetition rate switch. The simulation determines the design parameters by analytical computations and comparison with the experimentally measured risetime, current handling capability, electrode damage, and hold-off voltages. The parameters of initial switch design can be determined for the anticipated switch performance. Results are in agreement with the experiment results. Although the model is simplified, the switch characteristics such as risetime, current handling capability, electrode damages, and hold-off voltages are accurately determined.
Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang
2016-08-01
An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.
A Comparison of Two Sensors Used to Measure High-Voltage, Fast-Risetime Signals in Coaxial Cable
NASA Astrophysics Data System (ADS)
Farr, Everett G.; Atchley, Lanney M.; Ellibee, Donald E.; Carey, William J.; Altgilbers, Larry L.
We consider here two sensors that are commonly used to measure high-voltage fast-risetime signals in coaxial cable. One sensor measures the current in the cable, and is called a Current-Viewing Resistor, or CVR. In this design, the cable jacket is cut, a portion of the cable jacket is removed, and a number of resistors are inserted in parallel across the gap, thereby creating a low resistance in series with the outer cable jacket. The voltage across these resistors is proportional to the current in the coax. The second sensor measures the derivative of the voltage in the coax. It is fabricated from a "sawed-off" SMA connector that is inserted through a small hole in the cable jacket. In this paper we characterize the accuracy of both sensors when used with RG-220 cable, and we discuss the situations when one might prefer one measurement type over the other.
Time resolved EUV spectra from Zpinching capillary discharge plasma
NASA Astrophysics Data System (ADS)
Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad
2015-09-01
We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.
Shipborne LF-VLF oceanic lightning observations and modeling
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.
2015-10-01
Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. D.
1993-01-01
Velocities, optical risetimes, and transmission line model peak currents for seven natural positive return strokes are reported. The average 2D positive return stroke velocity for channel segments of less than 500 m in length starting near the base of the channel is 0.8 +/- 0.3 x 10 exp 8 m/s, which is slower than the present corresponding average velocity for natural negative first return strokes of 1.7 +/- 0.7 x 10 exp 8/s. It is inferred that positive stroke peak currents in the literature, which assume the same velocity as negative strokes, are low by a factor of 2. The average 2D positive return stroke velocity for channel segments of greater than 500 m starting near the base of the channel is 0.9 +/- 0.4 x 10 exp 8 m/s. The corresponding average velocity for the present natural negative first strokes is 1.2 +/- 0.6 x 10 exp 8 m/s. No significant velocity change with height is found for positive return strokes.
Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator.
Barnett, D H; Parson, J M; Lynn, C F; Kelly, P M; Taylor, M; Calico, S; Scott, M C; Dickens, J C; Neuber, A A; Mankowski, J J
2015-03-01
This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.
NASA Technical Reports Server (NTRS)
Uman, M. A.; Mclain, D. K.
1972-01-01
The measured electric field intensities of 161 lightning strokes in 39 flashes which occurred between 1 and 35 km from an observation point at Kennedy Space Center, Florida during June and July of 1971 have been analyzed to determine the lightning channel currents which produced the fields. In addition, typical channel currents are derived and from these typical electric fields at distances between 0.5 and 100 km are computed and presented. On the basis of the results recommendations are made for changes in the specification of lightning properties relative to space vehicle design as given in NASA TMX-64589 (Daniels, 1971). The small sample of lightning analyzed yielded several peak currents in the 100 kA range. Several current rise-times from zero to peak of 0.5 microsec or faster were found; and the fastest observed current rate-of-rise was near 200 kA/microsec. The various sources of error are discussed.
The 1.06 optical receiver. [avalanche photodiodes for laser range finders
NASA Technical Reports Server (NTRS)
Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.
1978-01-01
High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.
Monk, Timothy H; Buysse, Daniel J; Billy, Bart D; Fletcher, Mary E; Kennedy, Kathy S; Schlarb, Janet E; Beach, Scott R
2011-02-01
Using telephone interview data from retired seniors to explore how inter-individual differences in circadian type (morningness) and bed-timing regularity might be related to subjective sleep quality and quantity. MANCOVA with binary measures of morningness, stability of bedtimes, and stability of rise-times as independent variables; sleep measures as dependent variables; age, former shift work, and gender as covariates. Telephone interviews using a pseudo-random age-targeted sampling process. 654 retired seniors (65 y+, 363M, 291F). none. (1) circadian type (from Composite Scale of Morningness [CSM]), and stability of (2) bedtime and (3) rise-time from the Sleep Timing Questionnaire (STQ). Pittsburgh Sleep Quality Index (PSQI) score, time in bed, time spent asleep, and sleep efficiency, from Sleep Timing Questionnaire (STQ). Morning-type orientation, stability in bedtimes, and stability in rise-times were all associated with better sleep quality (P < 0.001, for all; effect sizes: 0.43, 0.33, and 0.27). Morningness was associated with shorter time in bed (P < 0.0001, effect size 0.45) and time spent asleep (P < 0.005, effect size 0.26). For bedtime and rise-time stability the direction of effect was similar but mostly weaker. In retired seniors, a morning-type orientation and regularity in bedtimes and rise-times appear to be correlated with improved subjective sleep quality and with less time spent in bed.
Multiple fracturing experiments: propellant and borehole considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuderman, J F
1982-01-01
The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The presentmore » experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.« less
Lower hybrid current drive experiments in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Jiang, Tongwen; Liu, Yuexiu; Guo, Wenkang; Zhang, Xuelei; Luo, Jiarong
1987-07-01
Lower hybrid current drive (LHCD) experiments with a multijunction grill have been performed in the HT-6M tokamak. When the RF power pulse with 15ms risetime is injected into the plasma, the toroidal current amplitude is raised, but the temporal variation of the loop voltage does not have measurable change. The efficiency of current drive is Irf/Prf=0.57kA/kW at bar ne=3 × 1012cm-3 and Bt=8KG. It seems that the multijunction grill has the same efficiency as the ordinary grill on the LHCD experiments.
Chronotype, bed timing and total sleep time in seniors
Monk, Timothy H.; Buysse, Daniel J.
2014-01-01
Many older adults (seniors) experience problems with getting enough sleep. Because of the link between sleep and circadian rhythms, changes in bedtime lead to changes in the amount of sleep obtained. Although primarily determined genetically, chronotype changes with advancing age towards a more morning-type (M-type) orientation. In a 2006 study, we have found a linear relationship, by which the earlier a senior’s bedtime, the more sleep she/he will obtain. The aim of this study was to see whether this relationship differs for M-type seniors, as compared to seniors outside the M-type category. Retired seniors (n = 954, 535 M, 410F, 65 years+, mean age 74.4 years) taking part in a telephone interview were divided into M-types and Other types (O-types) using the Composite Scale of Morningness (CSM). The relationship between bedtime and Total Sleep Time (TST), and between rise-time and TST, was tested using linear regression separately for M-types and O-types. For each participant, habitual bedtime, rise-time and total Sleep Time (TST) [after removing time spent in unwanted wakefulness] were obtained using a telephone version of the Sleep Timing Questionnaire (STQ). Both chronotype groups showed a significant linear relationship between bedtime and TST (p<0.001); with earlier bedtimes leading to more TST (M-type 5.6 min; O-type 4.4 min per 10 min change [slope difference p = 0.05]); and an opposite relationship between rise-time and TST with earlier rise-times leading to less TST (M-type 6.7 min; O-type 4.2 min per 10 min change [slope difference p 0.001]). M-types retired to bed 56 min earlier (p<0.001), awoke 93 min earlier (p<0.001) and obtained 23 min less TST (p<0.001) than O-types. In conclusion, both chronotypes showed TST to be related in a linear way to bedtime and rise-time; the overall shorter TST in M-types was due to them rising 93 min earlier, but only retiring to bed 56 min earlier than O-types; as well as having a steeper rise-time versus TST relationship. PMID:24517139
Optical progression characteristics of an interesting natural downward bipolar lightning flash
NASA Astrophysics Data System (ADS)
Chen, Luwen; Lu, Weitao; Zhang, Yijun; Wang, Daohong
2015-01-01
high-speed cameras, Lightning Attachment Process Observation Systems, and fast and slow electrical antennas, we documented a downward bipolar lightning flash that contained one first positive stroke with a peak current of 142 kA and five subsequent negative strokes hitting on a 90 m tall structure on 29 July 2010 in Guangzhou City, China. All the six strokes propagated along the same viewed channel established by the first positive return stroke. The leader which preceded the positive return stroke propagated downward without any branches at a two-dimensional (2-D) speed of 2.5 × 106 m/s. An upward connecting leader with a length of about 80 m was observed in response to the downward positive leader. The 10-90% risetimes of the return strokes' optical pulses ranged from 2.2 µs to 3.2 µs, while the widths from the 10% wavefront to the 50% wave tail ranged from 56.5 µs to 83.1 µs, and the half peak widths ranged from 53.4 µs to 81.6 µs. All the return strokes exhibited similar speeds, ranging from 1.0 × 108 m/s to 1.3 × 108 m/s. Each of the return strokes was followed by a continuing current stage (CC). The first positive stroke CC lasted more than 150 ms, much larger than all the subsequent negative stroke CC, ranging from 13 ms to 70 ms.
Supershort avalanche electron beam in SF6 and krypton
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao
2016-03-01
Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.
Novel measurement method of heat and light detection for neutrinoless double beta decay
NASA Astrophysics Data System (ADS)
Kim, G. B.; Choi, J. H.; Jo, H. S.; Kang, C. S.; Kim, H. L.; Kim, I.; Kim, S. R.; Kim, Y. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Li, J.; Oh, S. Y.; So, J. H.
2017-05-01
We developed a cryogenic phonon-scintillation detector to search for 0νββ decay of 100Mo. The detector module, a proto-type setup of the AMoRE experiment, has a scintillating 40Ca100MoO4 absorber composed of 100Mo-enriched and 48Ca-depleted elements. This new detection method employs metallic magnetic calorimeters (MMCs) as the sensor technology for simultaneous detection of heat and light signals. It is designed to have high energy and timing resolutions to increase sensitivity to probe the rare event. The detector, which is composed of a 200 g 40Ca100MoO4 crystal and phonon/photon sensors, showed an energy resolution of 8.7 keV FWHM at 2.6 MeV, with a weak temperature dependence in the range of 10-40 mK. Using rise-time and mean-time parameters and light/heat ratios, the proposed method showed a strong capability of rejecting alpha-induced events from electron events with as good as 20σ separation. Moreover, we discussed how the signal rise-time improves the rejection efficiency for random coincidence signals.
1981-11-01
Showing Wire . 99 Impregnanted Silicone Rubber Contacts, Chip Carrier, ard Lid 35. Technit Connector For 68-Pad JEDEC Type A Leadless . . 100 Chip Carrier...Points of Various . . . . 124 Solders 4. Composition of Alloys Employed in Dual-In-Line . . . . 128 Package Pins and Plating by Mass Spectrographic...swings, and subnanosecond gate delays and risetimes. Presently, emitter coupled logic (ECL) and current mode logic (CML), both fabricated with silicon tech
The rise-time of Type II supernovae
NASA Astrophysics Data System (ADS)
González-Gaitán, S.; Tominaga, N.; Molina, J.; Galbany, L.; Bufano, F.; Anderson, J. P.; Gutierrez, C.; Förster, F.; Pignata, G.; Bersten, M.; Howell, D. A.; Sullivan, M.; Carlberg, R.; de Jaeger, T.; Hamuy, M.; Baklanov, P. V.; Blinnikov, S. I.
2015-08-01
We investigate the early-time light curves of a large sample of 223 Type II supernovae (SNe II) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At rest-frame g' band (λeff = 4722 Å), we find a distribution of fast rise-times with median of (7.5 ± 0.3) d. Comparing these durations with analytical shock models of Rabinak & Waxman and Nakar & Sari, and hydrodynamical models of Tominaga et al., which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either (a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or (b) the delayed and prolonged shock breakout of the collapse of an RSG with an extended atmosphere or embedded within pre-SN circumstellar material.
Evidence of negative leaders which precede fast rise ICC pulses of upward
NASA Astrophysics Data System (ADS)
Yoshida, S.; Akita, M.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Wang, D.; Takagi, N.
2008-12-01
During winter thunderstorm season in Japan, a lightning observation campaign was conducted with using a VHF broadband digital interferometer (DITF), a capacitive antenna, and Rogowski coils to study the charge transfer mechanism associated with ICC pulses of upward lightning. All the detection systems recorded one upward negative lightning stroke hitting a lightning protection tower. The upward lightning consists of only the Initial Stage (IS) with one upward positive leader and six ICC pulses. The six ICC pulses are sub-classified clearly into two types according to current pulse shapes. The type 1 ICC pulses have a higher geometric mean (GM) current peak of 17 kA and a shorter GM 10-90% risetime of 8.9 μs, while the type 2 ICC pulses have a lower GM current peak of 0.34 kA and longer GM 10-90% risetime of 55 μs. The type 1 ICC pulses have the preceding negative leaders connecting to the channel of the continuing current, while the type 2 ICC pulses have no clear preceding negative leader. These negative leaders prior to the type 1 ICC pulses probably caused the current increases of the ICC pulses, which means that the negative leaders created the channels for the ICC pulses. The height of the space charge transferred by one of the type 1 ICC pulses was estimated about 700 m above sea level at most. This observation result is the first evidence to show explicitly the existence of the negative leaders prior to the fast rise ICC pulse. Furthermore, the result shows that space charge could exist at a low attitude such as 700 m above sea level. This fact is one of the reasons why upward lightning occurs even from rather low structures during winter thunderstorm season in Japan.
200 kj copper foil fuses. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClenahan, C.R.; Goforth, J.H.; Degnan, J.H.
1980-04-01
A 200-kJ, 50-kV capacitor bank has been discharged into 1-mil-thick copper foils immersed in fine glass beads. These foils ranged in length from 27 to 71 cm and in width from 15 to 40 cm. Voltage spikes of over 250 kV were produced by the resulting fuse behavior of the foil. Moreover, the current turned off at a rate that was over 6 times the initial bank dI/dt. Full widths at half maxima for the voltage and dI/dt spikes were about 0.5 microsec, with some as short as 300 nanosec. Electrical breakdown was prevented in all but one size fuzemore » with maximum applied fields of 7 kV/cm. Fuses that were split into two parallel sections have been tested, and the effects relative to one-piece fuses are much larger than would be expected on the basis of inductance differences alone. A resistivity model for copper foil fuses, which differs from previous work in that it includes a current density dependence, has been devised. Fuse behavior is predicted with reasonable accuracy over a wide range of foil sizes by a quasi-two-dimensional fuse code that incorporates this resistivity model. A variation of Maisonnier's method for predicting optimum fuze size has been derived. This method is valid if the risetime of the bank exceeds 3 microsec, in which case it can be expected to be applicable over a wide range of peak current densities.« less
High current, high bandwidth laser diode current driver
NASA Technical Reports Server (NTRS)
Copeland, David J.; Zimmerman, Robert K., Jr.
1991-01-01
A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.
Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory
Aab, Alexander
2016-04-07
The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ) max, sensitive to the mass composition of cosmic rays above 3 x 10 18 eV. By comparing measurements with predictions from shower simulations, we findmore » for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Furthermore, the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (secθ) max.« less
Compact high voltage solid state switch
Glidden, Steven C.
2003-09-23
A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.
Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.
Hartzell, Stephen; Langer, Charley
1993-01-01
The spatial and temporal slip distributions for the October 3, 1974 (Mw = 8.0), Peru subduction zone earthquake and its largest aftershock on November 9 (Ms = 7.1) are calculated and analyzed in terms of the inversion parameterization and tectonic significance. Teleseismic, long-period World-Wide Standard Seismograph Network, P and SH waveforms are inverted to obtain the rupture histories. We demonstrate that erroneous results are obtained if a parameterization is used that does not allow for a sufficiently complex source, involving spatial variation in slip amplitude, risetime, and rupture time. The inversion method utilizes a parameterization of the fault that allows for a discretized source risetime and rupture time. Well-located aftershocks recorded on a local network have the same general pattern as teleseismically determined hypocenters and help to constrain the geometry of the subduction zone. For the main shock a hinged fault is preferred having a shallow plane with a dip of 11° and a deeper, landward plane with a dip of 30°. The preferred nucleation depth lies between 11 and 15 km. A bilateral rupture is obtained with two major concentrations of slip, one 60 to 70 km to the northwest of the epicenter and a second 80 to 100 km to the south and southeast of the epicenter. For these source regions, risetimes vary from 6 to 18 s. Our estimates of risetimes are consistent with the time for the rupture to traverse the dominant local asperity. The slip distribution for the November 9 aftershock falls within a conspicuous hole in the main shock rupture pattern, near the hypocenter of the main shock. The November 9 event has a simple risetime function with a duration of 2 s. Aftershocks recorded by the local network are shown to cluster near the hypocenter of the impending November 9 event and downdip from the largest main shock source region. Slip during the main shock is concentrated at shallow depths above 15 km and extends updip from the hypocenter to near the plate boundary at the trench axis. The large amount of slip at shallow depths is attributed to the absence of any significant accretionary wedge of sediments, and the relatively young age and high convergence rate of the subducted plate, which results in good seismic coupling near the trench axis.
Wide Bandgap Extrinsic Photoconductive Switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, James S.
2012-01-20
Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the widemore » bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Zicker, J.D.
The amplitudes of currents due to lightning are considerably larger than NEMP induced currents both in the time and frequency domains. The more important quantity for aperture illumination is the rate of rise of the current. The analysis performed for this in this memorandum is unsatisfactory since the artificial double exponential model was used. Still, the lightning rate of rise is only twice as high as that due to NEMP even when the absolute worst (or presently known) lightning pulse is used. A much better way to do this comparison is to use an actual LEMP data and NEMP frommore » an actual weapon. Furthermore, because of lack of data, no electric field analysis was undertaken.« less
Cluster kinetics model of particle separation in vibrated granular media.
McCoy, Benjamin J; Madras, Giridhar
2006-01-01
We model the Brazil-nut effect (BNE) by hypothesizing that granules form clusters that fragment and aggregate. This provides a heterogeneous medium in which the immersed intruder particle rises (BNE) or sinks (reverse BNE) according to relative convection currents and buoyant and drag forces. A simple relationship proposed for viscous drag in terms of the vibrational intensity and the particle to grain density ratio allows simulation of published experimental data for rise and sink times as functions of particle radius, initial depth of the particle, and particle-grain density ratio. The proposed model correctly describes the experimentally observed maximum in risetime.
The search for a 100MA RancheroS magnetic flux compression generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watt, Robert Gregory
2016-09-01
The Eulerian AMR rad-hydro-MHD code Roxane was used to investigate modifications to existing designs of the new RancheroS class of Magnetic Flux Compression Generators (FCGs) which might allow some members of this FCG family to exceed 100 MA driving a 10 nH static load. This report details the results of that study and proposes a specific generator modification which seems to satisfy both the peak current and desired risetime for the current pulse into the load. The details of the study and necessary modifications are presented. For details of the LA43S RancheroS FCG design and predictions for the first usemore » of the generator refer to the relevant publications.« less
NASA Astrophysics Data System (ADS)
Ma, T.-Z.; Schunk, R. W.
1994-07-01
Experiments involving the interaction of spherical conducting objects biases with hight voltages in the Low-Earth-Orbit (LEO) environment have been conducted and designed. In these experiments, both positive and negative voltages have been applied to the spheres. Previously, there have been theoretical and numerical studies of positive voltage spheres in plasmas with and without magnetic fields. There also have been studies of negative voltage objects in unmagnetized plasmas. Here, we used a fluid model to study the plasma response to a negative voltage sphere immersed in a magnetized plasma. Our main purpose was to investigate the role of the magnetic field during the early-time interaction between the negative voltage sphere and the ambient plasma in the LEO environment. In this study, different applied voltages, magnetic field strengths, and rise-times of the applied voltages were considered. It was found that with the strength of the geomagnetic field the ions are basically not affected by the magnetic field on the time scale of hundreds of plasma periods considered in this study. The ion density distribution around the sphere and the collected ion flux by the sphere are basically the same as in the case without the magnetic field. The electron motion is strongly affected by the magnetic field. One effect is to change the nature of the electron over-shoot oscillation from regular to somewhat turbulent. Although the electrons move along the magnetic field much more easily than across the magnetic field, some redirection effect causes the electron density to distribute as if the magnetic field effect is minimal. The sheath struture and the electric field around the sphere tend to be spherical. A finite rise-time of the applied voltage reduces the oscillatory activities and delays the ion acceleration. However, the effect of the rise-time depends on both the duration of the rise-time and the ion plasma period.
A 1 MA, variable risetime pulse generator for high energy density plasma research
NASA Astrophysics Data System (ADS)
Greenly, J. B.; Douglas, J. D.; Hammer, D. A.; Kusse, B. R.; Glidden, S. C.; Sanders, H. D.
2008-07-01
COBRA is a 0.5Ω pulse generator driving loads of order 10nH inductance to >1MA current. The design is based on independently timed, laser-triggered switching of four water pulse-forming lines whose outputs are added in parallel to drive the load current pulse. The detailed design and operation of the switching to give a wide variety of current pulse shapes and rise times from 95to230ns is described. The design and operation of a simple inductive load voltage monitor are described which allows good accounting of load impedance and energy dissipation. A method of eliminating gas bubbles on the underside of nearly horizontal insulator surfaces in water was required for reliable operation of COBRA; a novel and effective solution to this problem is described.
Measurement of ozone production scaling in a helium plasma jet with oxygen admixture
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa
2012-10-01
Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.
Observations of a bi-directional lightning leader producing an M-component
NASA Astrophysics Data System (ADS)
Kotovsky, D. A.; Uman, M. A.; Wilkes, R.; Carvalho, F. L.; Jordan, D. M.
2017-12-01
Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.
NASA Astrophysics Data System (ADS)
Kolmasova, I.; Santolik, O.; Defer, E.; Stéphane, P.; Lan, R.; Uhlir, L.; Coquillat, S.; Lambert, D.; Pinty, J. P.; Prieur, S.
2016-12-01
Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.
NASA Astrophysics Data System (ADS)
Voss, P.; Henderson, R.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Chester, A.; Cross, D. S.; Drake, T. E.; Garnsworthy, A. B.; Hackman, G.; Ketelhut, S.; Krücken, R.; Miller, D.; Rajabali, M. M.; Starosta, K.; Svensson, C. E.; Tardiff, E.; Unsworth, C.; Wang, Z.-M.
Electromagnetic transition rate measurements play an important role in characterizing the evolution of nuclear structure with increasing proton-neutron asymmetry. At TRIUMF, the TIGRESS Integrated Plunger device and its suite of ancillary detector systems have been implemented for charged-particle tagging and light-ion identification in coincidence with gamma-ray spectroscopy for Doppler-shift lifetime studies and low-energy Coulomb excitation measurements. Digital pulse-shape analysis of signals from these ancillary detectors for particle identification improves the signal-to-noise ratio of gamma-ray energy spectra. Here, we illustrate the reaction-channel selectivity achieved by utilizing digital rise-time discrimination of waveforms from alpha particles and carbon ions detected with silicon PIN diodes, thereby enhancing gamma-ray line-shape signatures for precision lifetime studies.
Measured close lightning leader-step electric-field-derivative waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.
2010-12-01
We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less
NASA Astrophysics Data System (ADS)
Watanabe, N.; Nag, A.; Diendorfer, G.; Pichler, H.; Schulz, W.
2017-12-01
There is increasing interest in understanding processes associated with the initiation of upward lightning from tall structures. Characterization of such processes is essential for the development of appropriate models. We examine current and electric field waveforms for 15 negative upward flashes occurring in 2007-2009 initiated from the Gaisberg Tower located in Salzburg, Austria. Current was measured at the top of the tower using a 0.25 mΩ shunt. Electric field was measured simultaneously at close (170 m from the tower) and far (79 km from the tower in 2007 and 109 km in 2008-2009) distances. The initial stage (IS) of these flashes comprised of relatively slowly varying "background" current (having durations ranging from 132 to 692 ms), with faster, more impulsive current variations (pulses having durations ranging from 4.7 µs to 22.9 ms) overlaid on this background current. In five of the 15 (33%) flashes, this IS background current was negative while in the other ten (67%) flashes, the current was bipolar (changing between negative and positive values). 150 current pulses occurred during the IS of these 15 flashes, of which 28 (19%) were positive bipolar (positive initial polarity with a negative opposite polarity overshoot), 5 (3.3%) were positive unipolar (positive initial polarity with no opposite polarity overshoot), and 117 (78%) were negative unipolar. No negative bipolar pulses were found. The median peak current and risetime for the 28 bipolar pulses were 0.74 kA and 2.8 µs, respectively, and those for the 122 unipolar pulses were 0.87 kA and 70 µs, respectively. Generally speaking, majority of the pulses occurring at the beginning of the initial stage were lower-amplitude positive bipolar, while higher-amplitude unipolar pulses were more likely to occur at later times. These 150 IS current pulses produced 133 detectable electric field change signatures at the near station and 59 at the far station (all recorded at 79 km in 12 flashes occurring in 2007). We will examine in detail the characteristics of these electric field pulses in order to gain insights into the mechanisms of the underlying processes.
NASA Technical Reports Server (NTRS)
Baker, D. E.
1975-01-01
The first generation of remote power controllers (RPC) developed included: a 5-ampere design (Type 1), capable of limiting maximum overload current to 15 amperes for .1 sec; and 5-ampere noncurrent (Type 2) and 30-ampere noncurrent (Type 3) limiting designs, both with selectable instant trip levels for high-current overload. Each design provides overcurrent protection through an inverse I squared T trip-out function with an automatic reset option and demonstrates step-applied fault capability with a 4000-ampere surge, fast-risetime (low-inductance) power source. They also meet MIL - STD - 461A specification for electromagnetic interference. The second generation RPCs traded off specification compliance for reduction in cost and complexity for the Type 1 and 2 designs and give comparable or improved performance in most areas. The noncurrent limiting RPC proved to be a more economical and feasible method of overload protection for certain load types.
An Inexpensive Fast-Light Detector for Student Laboratories
ERIC Educational Resources Information Center
Sanders, Steven G.; and others
1969-01-01
An optical dectector consisting of a high-speed PIN diode and a transistor was evaluated for use in student experiments with a pulsed-ruby laser. Pulses with 36-nsec risetimes were clearly resolved. (LC)
NASA Astrophysics Data System (ADS)
Brylevskiy, Viktor; Smirnova, Irina; Gutkin, Andrej; Brunkov, Pavel; Rodin, Pavel; Grekhov, Igor
2017-11-01
We present a comparative study of silicon high-voltage diodes exhibiting the effect of delayed superfast impact-ionization breakdown. The effect manifests itself in a sustainable picosecond-range transient from the blocking to the conducting state and occurs when a steep voltage ramp is applied to the p+-n-n+ diode in the reverse direction. Nine groups of diodes with graded and abrupt pn-junctions have been specially fabricated for this study by different techniques from different Si substrates. Additionally, in two groups of these structures, the lifetime of nonequilibrium carriers was intentionally reduced by electron irradiation. All diodes have identical geometrical parameters and similar stationary breakdown voltages. Our experimental setup allows measuring both device voltage and current during the kilovolt switching with time resolution better than 50 ps. Although all devices are capable of forming a front with kilovolt amplitude and 100 ps risetime in the in-series load, the structures with graded pn-junctions have anomalously large residual voltage. The Deep Level Transient Spectroscopy study of all diode structures has been performed in order to evaluate the effect of deep centers on device performance. It was found that the presence of deep-level electron traps negatively correlates with parameters of superfast switching, whereas a large concentration of recombination centers created by electron irradiation has virtually no influence on switching characteristics.
Primary experimental results of wire-array Z-pinches on PTS
NASA Astrophysics Data System (ADS)
Huang, X. B.; Zhou, S. T.; Ren, X. D.; Dan, J. K.; Wang, K. L.; Zhang, S. Q.; Li, J.; Xu, Q.; Cai, H. C.; Duan, S. C.; Ouyang, K.; Chen, G. H.; Ji, C.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.
2014-12-01
The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132˜276 tungsten wires with 5˜10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ˜3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3˜5×107 cm/s and the radial convergence ratio is between 10 and 20.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawano, T.; Tanaka, M.; Isozumi, S.
Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection.more » For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)« less
Temporal properties of compensation for positive and negative spectacle lenses in chicks.
Zhu, Xiaoying; Wallman, Josh
2009-01-01
Chicks' eyes rapidly compensate for defocus imposed by spectacle lenses by changing their rate of elongation and their choroidal thickness. Compensation may involve internal emmetropization signals that rise and become saturated during episodes of lens wear and decline between episodes. The time constants of these signals were measured indirectly by measuring the magnitude of lens compensation in refractive error and ocular dimensions as a function of the duration of episodes and the intervals between the episodes. First, in a study of how quickly the signals rose, chicks were subjected to episodes of lens-wear of various durations (darkness otherwise), and the duration required to cause a half-maximum effect (rise-time) was estimated. Second, in a study of how quickly the signals declined, various dark intervals were imposed between episodes of lens-wear, and the interval required to reduce the maximum effect by half (fall-time) was estimated. The rise-times for the rate of ocular elongation and choroidal thickness were approximately 3 minutes for positive and negative lenses. The fall-times had a broad range of time courses: Positive lenses caused an enduring inhibition of ocular elongation with a fall-time of 24 hours. In contrast, negative lenses caused a transient stimulation of ocular elongation with a fall-time of 0.4 hour. The effects of episodes of defocus rise rapidly with episode duration to an asymptote and decline between episodes, with the time course depending strongly on the sign of defocus and the ocular component. The complex etiology of human myopia may reflect these temporal properties.
Numerical simulation of a battlefield Nd:YAG laser
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Sjoqvist, Lars; Uhrwing, Thomas
2005-11-01
A numeric model has been developed to identify the critical components and parameters in improving the output beam quality of a flashlamp pumped Q-switched Nd:YAG laser with a folded Porro-prism resonator and polarization output coupling. The heating of the laser material and accompanying thermo-optical effects are calculated using the finite element partial differential equations package FEMLAB allowing arbitrary geometries and time distributions. The laser gain and the cavity are modeled with the physical optics simulation code GLAD including effects such as gain profile, thermal lensing and stress-induced birefringence, the Pockels cell rise-time and component aberrations. The model is intended to optimize the pumping process of an OPO providing radiation to be used for ranging, imaging or optical countermeasures.
Laser pumping of thyristors for fast high current rise-times
Glidden, Steven C.; Sanders, Howard D.
2013-06-11
An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.
Method and Apparatus for Reading Two Dimensional Identification Symbols Using Radar Techniques
NASA Technical Reports Server (NTRS)
Schramm, Harry F., Jr. (Inventor); Roxby, Donald L. (Inventor)
2003-01-01
A method and apparatus are provided for sensing two-dimensional identification marks provided on a substrate or embedded within a substrate below a surface of the substrate. Micropower impulse radar is used to transmit a high risetime, short duration pulse to a focussed radar target area of the substrate having the two dimensional identification marks. The method further includes the steps of listening for radar echoes returned from the identification marks during a short listening period window occurring a predetermined time after transmission of the radar pulse. If radar echoes are detected, an image processing step is carried out. If no radar echoes are detected, the method further includes sequentially transmitting further high risetime, short duration pulses, and listening for radar echoes from each of said further pulses after different elapsed times for each of the further pulses until radar echoes are detected. When radar echoes are detected, data based on the detected echoes is processed to produce an image of the identification marks.
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Smith, B.; Snow, G. R.; Sommers, P.; Sonntag, S.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Wileman, C.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration
2017-12-01
We present a new method for probing the hadronic interaction models at ultrahigh energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air showers. Using the risetimes of the recorded signals, we define a new parameter, which we use to compare our observations with predictions from simulations. We find, first, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies. Second, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum Xmax for a sample of over 81,000 events extending from 0.3 to over 100 EeV. Above 30 EeV, the sample is nearly 14 times larger than what is currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of ⟨Xmax⟩ is compared to simulations and interpreted in terms of the mean of the logarithmic mass. We find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition.
Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand
NASA Astrophysics Data System (ADS)
Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi
2015-07-01
The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (˜50 TW) and total radiated energy (˜500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.
Health diagnosis of arch bridge suspender by acoustic emission technique
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Ou, Jinping
2007-01-01
Conventional non-destructive methods can't be dynamically monitored the suspenders' damage levels and types, so acoustic emission (AE) technique is proposed to monitor its activity. The validity signals are determined by the relationship with risetime and duration. The ambient noise is eliminated using float threshold value and placing a guard sensor. The cement mortar and steel strand damage level is analyzed by AE parameter method and damage types are judged by waveform analyzing technique. Based on these methods, all the suspenders of Sichuan Ebian Dadu river arch bridge have been monitored using AE techniques. The monitoring results show that AE signal amplitude, energy, counts can visually display the suspenders' damage levels, the difference of waveform and frequency range express different damage type. The testing results are well coincide with the practical situation.
MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan
NASA Astrophysics Data System (ADS)
Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.
2009-01-01
Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 "bricks," to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility. Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.
Timing discriminator using leading-edge extrapolation
Gottschalk, Bernard
1983-01-01
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
Prosodic Perception Problems in Spanish Dyslexia
ERIC Educational Resources Information Center
Cuetos, Fernando; Martínez-García, Cristina; Suárez-Coalla, Paz
2018-01-01
The aim of this study was to investigate the prosody abilities on top of phonological and visual abilities in children with dyslexia in Spanish that can be considered a syllable-timed language. The performances on prosodic tasks (prosodic perception, rise-time perception), phonological tasks (phonological awareness, rapid naming, verbal working…
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1987-01-01
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson
2009-12-01
Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.
Method and apparatus for fast laser pulse detection using gaseous plasmas
McLellan, Edward J.; Webb, John A.
1984-01-01
The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface (1). Measurements are made with a 10.6 .mu.m CO.sub.2 laser capable of producing peak intensities of 10.sup.13 W/cm.sup.2 when directed through a converging lens (2). Evacuated detector response to such laser intensity is 1 kV signal peak amplitude and subnanosecond risetimes into a 50.OMEGA. load (3). Detector performance is found to be greatly altered with the introduction of a background gas (4). For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates "trigger pulses" of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.
Method and apparatus for fast laser-pulse detection using gaseous plasmas
McLellan, E.J.; Webb, J.A.
1981-06-18
The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface. Measurements are made with a 10.6 ..mu..m CO/sub 2/ laser capable of producing peak intensities of 10/sup 13/ W/cm/sup 2/ when directed through a converging lens. Evacuated detector response to such laser intensity if 1 kV signal peak amplitude and subnanosecond risetimes into a 50 ..cap omega.. load. Detector performance is found to be greatly altered with the introduction of a background gas. For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates trigger pulses of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.
Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field
NASA Astrophysics Data System (ADS)
Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.
2004-03-01
The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.
Hartzell, S.; Liu, P.; Mendoza, C.
1996-01-01
A hybrid global search algorithm is used to solve the nonlinear problem of calculating slip amplitude, rake, risetime, and rupture time on a finite fault. Thirty-five strong motion velocity records are inverted by this method over the frequency band from 0.1 to 1.0 Hz for the Northridge earthquake. Four regions of larger-amplitude slip are identified: one near the hypocenter at a depth of 17 km, a second west of the hypocenter at about the same depth, a third updip from the hypocenter at a depth of 10 km, and a fourth updip from the hypocenter and to the northwest. The results further show an initial fast rupture with a velocity of 2.8 to 3.0 km/s followed by a slow termination of the rupture with velocities of 2.0 to 2.5 km/s. The initial energetic rupture phase lasts for 3 s, extending out 10 km from the hypocenter. Slip near the hypocenter has a short risetime of 0.5 s, which increases to 1.5 s for the major slip areas removed from the hypocentral region. The energetic rupture phase is also shown to be the primary source of high-frequency radiation (1-15 Hz) by an inversion of acceleration envelopes. The same global search algorithm is used in the envelope inversion to calculate high-frequency radiation intensity on the fault and rupture time. The rupture timing from the low- and high-frequency inversions is similar, indicating that the high frequencies are produced primarily at the mainshock rupture front. Two major sources of high-frequency radiation are identified within the energetic rupture phase, one at the hypocenter and another deep source to the west of the hypocenter. The source at the hypocenter is associated with the initiation of rupture and the breaking of a high-stress-drop asperity and the second is associated with stopping of the rupture in a westerly direction.
Investigation of the quantum efficiency of optical heterodyne detectors
NASA Technical Reports Server (NTRS)
Batchman, T. E.
1984-01-01
The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.
Capillary Discharge Soft X-ray Laser Experiments at Air Force Research Laboratory
NASA Astrophysics Data System (ADS)
Ruden, E. L.; Gale, D. G.
1997-11-01
The Air Force Research Laboratory (previously Phillips Laboratory) is presently attempting to reproduce the high gain laser results of J.J. Rocca's capillary discharge z-pinch pumped 46.9 nm Ne-like Ar laser. This poster presents progress to date at measuring our laser's intensity and gain. The capillary circuit consists of a low inductance 3 nH water capacitor discharged by a coaxial spark gap into a 12 cm long, 4 mm ID plastic capillary. The capillary is supplied with 39 kA of current with a 20 ns risetime. The principle radiation diagnostic consists of a VUV monochrometer coupled to a custom high speed vacuum X-ray diode with an aluminum cathode. The signal is recorded on a fast transient digitizer (Tektronix SCD 5000). The total detector system's analog bandwidth is about 3 GHz.
Timing discriminator using leading-edge extrapolation
Gottschalk, B.
1981-07-30
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Aglietta, M.
We present a new method for probing the hadronic interaction models at ultra-high energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air-showers. Using the risetimes of the recorded signals we define a new parameter, which we use to compare our observations with predictions from simulations. We find, firstly, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies.more » Secondly, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum for a sample of over 81,000 events extending from 0.3 EeV to over 100 EeV. Above 30 EeV, the sample is nearly fourteen times larger than currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of the average depth of shower maximum is compared to simulations and interpreted in terms of the mean of the logarithmic mass. Here, we find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition.« less
Aab, A.; Abreu, P.; Aglietta, M.; ...
2017-12-08
We present a new method for probing the hadronic interaction models at ultra-high energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air-showers. Using the risetimes of the recorded signals we define a new parameter, which we use to compare our observations with predictions from simulations. We find, firstly, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies.more » Secondly, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum for a sample of over 81,000 events extending from 0.3 EeV to over 100 EeV. Above 30 EeV, the sample is nearly fourteen times larger than currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of the average depth of shower maximum is compared to simulations and interpreted in terms of the mean of the logarithmic mass. Here, we find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition.« less
Analysis and Modeling of Intense Oceanic Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.
2014-12-01
Recent studies using lightning data from geo-location networks such as GLD360 suggest that lightning strokes are more intense over the ocean than over land, even though they are less common [Said et al. 2013]. We present an investigation of the physical differences between oceanic and land lightning. We have deployed a sensitive Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel and have collected thousands of lightning waveforms close to deep oceanic lightning. We analyze the captured waveforms, describe our modeling efforts, and summarize our findings. We model the ground wave (gw) portion of the lightning sferics using a numerical method built on top of the Stanford Full Wave Method (FWM) [Lehtinen and Inan 2008]. The gwFWM technique accounts for propagation over a curved Earth with finite conductivity, and is used to simulate an arbitrary current profile along the lightning channel. We conduct a sensitivity analysis and study the current profiles for land and for oceanic lightning. We find that the effect of ground conductivity is minimal, and that stronger oceanic radio intensity does not result from shorter current rise-time or from faster return stroke propagation speed.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1987-02-10
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.
NASA Astrophysics Data System (ADS)
Lin, S. T.; Wong, H. T.
New limits on spin-independent WIMP-nucleon coupling using 39.5 kg-days of data taken with a p-type point-contact germanium detector with fiducial mass of 840 g at the Kuo-Sheng Reactor Neutrino Laboratory (KSNL) is presented. Charactering and understanding the anomalous surface behaviour is of particular significance to this study. The slow rise-time of surface events is identified via software pulse shape analysis techniques. In addition, the signal-retaining and background-rejecting efficiencies are implied to clarify the actual bulk and surface events in the mixed regime at sub-keV range. Both efficiencies are evaluated with calibration sources and a novel n-type point-contact germanium detector. Efficiencies-corrected background spectra from the low-background facility at KSNL are derived. Part of the parameter space in cross-section versus WIMP-mass is probed and excluded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, David J.; Ferrie, John; Plachy, Aljoscha
2015-11-02
We demonstrate that a single-walled carbon nanotube network noncovalently coupled with a pyrene-modified azo-benzene chromophore functions as a host matrix for a broad range of photo-orientation and photomechanical effects. The chromophore could be efficiently reoriented through repeated trans-cis-trans isomerization under linearly polarized 480 nm light, with Δn of 0.012 at 650 nm and fast characteristic rise-times of 0.12 s. Erasable phase diffraction gratings could also be written, with permanent surface relief gratings forming at sufficiently long irradiation times. In addition to demonstrating a mechanism for photo-manipulation of single-walled carbon nanotubes, these results show photo-orientation of chromophores in azo-functionalized single-walled carbon nanotube networks asmore » a path towards the photosensitive tuning of the electrostatic environment of the nanotube.« less
Fast Risetime Reverse Bias Pulse Failures in SiC PN Junction Diodes
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Fazi, Christian; Parsons, James D.
1996-01-01
SiC-based high temperature power devices are being developed for aerospace systems which will require high reliability. One behavior crucial to power device reliability. To date, it has necessarily been assumed to date is that the breakdown behavior of SiC pn junctions will be similar to highly reliable silicon-based pn junctions. Challenging this assumption, we report the observation of anomalous unreliable reverse breakdown behavior in moderately doped (2-3 x 10(exp 17) cm(exp -3)) small-area 4H- and 6H-SiC pn junction diodes at temperatures ranging from 298 K (25 C) to 873 K (600 C). We propose a mechanism in which carrier emission from un-ionized dopants and deep level defects leads to this unstable behavior. The fundamental instability mechanism is applicable to all wide bandgap semiconductors whose dopants are significantly un-ionized at typical device operating temperatures.
Electrothermal instability growth in magnetically driven pulsed power liners
NASA Astrophysics Data System (ADS)
Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles
2012-09-01
This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.
Low-frequency creep in CoNiFe films.
NASA Technical Reports Server (NTRS)
Bartran, D. S.; Bourne, H. C., Jr.; Chow, L. G.
1972-01-01
Domain wall motion excited by slow rise-time, bipolar, hard-axis pulses in vacuum deposited CoNiFe films from 1500 to 2000 A thick is studied. The results are consistent with those of comparable NiFe films. Furthermore, the wall coercivity is found to be the most significant sample property correlated to the low-frequency creep properties of all the samples.
NASA Technical Reports Server (NTRS)
Bowyer, S.
1971-01-01
The modifications to the Houston/MSC design of the gas proportional counter flight electronics system are discussed. The following modifications are described: charge amplifier bandwidth improvements, power converter redesign, serial data output buffer, second differentiator, and risetime discriminator. In addition, the redesign of the stellar aspect camera is discussed along with developments in thin film fabrication.
Chang, Hsi-Tien
1989-01-01
A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.
NASA Astrophysics Data System (ADS)
Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin
2017-04-01
We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.
On the Minimization of Fluctuations in the Response Times of Autoregulatory Gene Networks
Murugan, Rajamanickam; Kreiman, Gabriel
2011-01-01
The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and computational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10. This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system parameters of the gene expression machinery. PMID:21943410
NASA Astrophysics Data System (ADS)
Pu, Yang; Alfano, Robert R.
2015-03-01
Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.
Chang, Hsi-Tien
1987-09-28
A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.
NASA Astrophysics Data System (ADS)
Sears, Jason; Schmidt, Andrea; Link, Anthony; Welch, Dale
2016-10-01
Experiments have suggested that dense plasma focus (DPF) neutron yield increases with faster drivers [Decker NIMP 1986]. Using the particle-in-cell code LSP [Schmidt PRL 2012], we reproduce this trend in a kJ DPF [Ellsworth 2014], and demonstrate how driver rise time is coupled to neutron output. We implement a 2-D model of the plasma focus including self-consistent circuit-driven boundary conditions. Driver capacitance and voltage are varied to modify the current rise time, and anode length is adjusted so that run-in coincides with the peak current. We observe during run down that magnetohydrodynamic (MHD) instabilities of the sheath shed blobs of plasma that remain in the inter-electrode gap during run in. This trailing plasma later acts as a low-inductance restrike path that shunts current from the pinch during maximum compression. While the MHD growth rate increases slightly with driver speed, the shorter anode of the fast driver allows fewer e-foldings and hence reduces the trailing mass between electrodes. As a result, the fast driver postpones parasitic restrikes and maintains peak current through the pinch during maximum compression. The fast driver pinch therefore achieves best simultaneity between its ion beam and peak target density, which maximizes neutron production. Prepared by LLNL under Contract DE-AC52-07NA27344.
Characterisation of the current switch mechanism in two-stage wire array Z-pinches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.
2015-11-15
In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100–150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. Themore » ∼5 kA pre-pulse delivers ∼0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed.« less
Pulsed x-ray generator for commercial gas lasers
NASA Astrophysics Data System (ADS)
Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.
2001-10-01
We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.
Initial Results from the Variable Intensity Sonic Boom Database
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Cliatt, Larry J., II; Gabrielson, Thomas; Sparrow, Victor W.; Locey, Lance L.; Bunce, Thomas J.
2008-01-01
43 sonic booms generated (a few were evanescent waves) a) Overpressures of 0.08 to 2.20 lbf/sq ft; b) Rise-times of about 0.7 to 50 ms. Objectives: a) Structural response of a house of modern construction; b) Sonic boom propagation code validation. Approach: a) Measure shockwave directionality; b) Determine effect of height above ground on acoustic level; c) Generate atmospheric turbulence filter functions.
Skin-friction gauge for use in hypervelocity impulse facilities
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Simmons, J. M.; Paull, A.
1992-01-01
A transducer is presented which can measure as rise-time of about 20 microsec, and is thereby applicable to measurements in the high-enthalpy flows associated with hypervelocity impulse facilities. Results are presented which demonstrate the effectiveness of the concept in the case of skin-friction measurements conducted on a flat plate at Mach 3.2. The calibration used was against theoretical skin-friction values in a simple flow.
Rejection of randomly coinciding events in ZnMoO scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-06-01
Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and methods were applied to discriminate randomly coinciding events in ZnMoO cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99 % by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92 % by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95 % of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of Mo for enriched ZnMoO detectors, of the order of counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
NASA Astrophysics Data System (ADS)
Avaria, G.; Grisham, M.; Li, J.; Tomasel, F. G.; Shlyapstsev, V. N.; Busquet, M.; Woolston, M.; Rocca, J. J.
Homogeneous plasma columns with ionization levels typical of MA discharges were created by rapidly heating gas-filled 520 µm diameter channels with ns rise-time current pulses of unusually low amplitude, 40 kA. These conditions allow the generation of high aspect ratio (eg. > 300:1) plasma columns with very high degrees of ionization (e.g. Ni-like Xenon) of interest for soft x-ray lasers below λ = 10 nm. Spectra and simulations of plasmas generated in 520 µm diameter alumina capillaries driven by 35-40 kA current pulses with 4 ns rise time were obtained for discharges in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls are ionized to the H-like and He-like stages. He-like Al spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d (3/2, 3/2)J = 0 to the 3d94p(5/2, 3/2)J = 1 and to 3d94p(3/2, 1/2)J = 1 are observed.
Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge.
Chetty, Nevendra K; Chonco, Louis; Ijumba, Nelson M; Chetty, Leon; Govender, Thavendran; Parboosing, Raveen; Davidson, Innocent E
2016-09-01
Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.
On the Validity of Certain Approximations Used in the Modeling of Nuclear EMP
Farmer, William A.; Cohen, Bruce I.; Eng, Chester D.
2016-04-01
The legacy codes developed for the modeling of EMP, multiple scattering of Compton electrons has typically been modeled by the obliquity factor. A recent publication has examined this approximation in the context of the generated Compton current [W. A. Farmer and A. Friedman, IEEE Trans. Nucl. Sc. 62, 1695 (2015)]. Here, this previous analysis is extended to include the generation of the electromagnetic fields. Obliquity factor predictions are compared with Monte-Carlo models. In using a Monte-Carlo description of scattering, two distributions of scattering angles are considered: Gaussian and a Gaussian with a single-scattering tail. Additionally, legacy codes also neglect themore » radial derivative of the backward-traveling wave for computational efficiency. The neglect of this derivative improperly treats the backward-traveling wave. Moreover, these approximations are examined in the context of a high-altitude burst, and it is shown that in comparison to more complete models, the discrepancy between field amplitudes is roughly two to three percent and between rise-times, 10%. Finally, it is concluded that the biggest factor in determining the rise time of the signal is not the dynamics of the Compton current, but is instead the conductivity.« less
Hall-MHD and PIC Modeling of the Conduction-to-Opening Transition in a Plasma Opening Switch
NASA Astrophysics Data System (ADS)
Schumer, J. W.; SwanekampDdagger, S. B.; Ottinger, P. F.; Commisso, R. J.; Weber, B. V.
1998-11-01
Utilizing the fast opening characteristics of a plasma opening switch (POS), inductive energy storage devices can generate short-duration high-power pulses (<0.1 μ s, >1 TW) with current rise-times on the order of 10 ns. Plasma redistribution and thinning during the POS conduction phase can be modeled adequately with MHD methods. By including the Hall term in Ohm's Law, MHD methods can simulate plasmas with density gradient scale lengths between c/ω_pe < Ln < c/ω_pi. However, the neglect of electron inertia (c/ω_pe) and space-charge separation (λ_De) by single-fluid theory eventually becomes invalid in small gap regions that form during POS opening. PIC methods are well-suited for low-density plasmas, but are numerically taxed by high-density POS regions. An interface converts MHD (Mach2) output into PIC (Magic) input suitable for validating various transition criteria through comparison of current and density distributions from both methods. We will discuss recent progress in interfacing Hall-MHD and PIC simulations. Work supported by Defense Special Weapons Agency. ^ NRL-NRC Research Associate. hspace0.25in ^ JAYCOR, Vienna, VA 22102.
Rail-type gas switch with preionization by an additional corona discharge
NASA Astrophysics Data System (ADS)
Belozerov, O. S.; Krastelev, E. G.
2017-05-01
Results of an experimental research of a rail-type gas switch with preionization by an additional negative corona discharge are presented. The most of measurements were performed for an air insulated two-electrode switch assembled of cylindrical electrodes of 22 mm diameter and 100 mm length, arranged parallel to each other, with a spark gap between them varying from 6 to 15 mm. A set of 1 to 5 needles connected to a negative cylindrical electrode and located aside of them were used for corona discharges. The needle positions, allowing an effecient stabilization of the pulsed breakdown voltage and preventing the a transition of the corona discharge in a spark form, were found. It was shown that the gas preionization by the UV-radiation of the parallel corona discharge provides a stable operation of the switch with low variations of the pulsed breakdown voltage, not exceeding 1% for a given voltage rise-time tested within the range from 40 ns to 5 µs.
NASA Astrophysics Data System (ADS)
1985-12-01
The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.
Staged Z-pinch Experiments on Cobra and Zebra
NASA Astrophysics Data System (ADS)
Wessel, Frank J.; Anderson, A.; Banasek, J. T.; Byvank, T.; Conti, F.; Darling, T. W.; Dutra, E.; Glebov, V.; Greenly, J.; Hammer, D. A.; Potter, W. M.; Rocco, S. V.; Ross, M. P.; Ruskov, E.; Valenzuela, J.; Beg, F.; Covington, A.; Narkis, J.; Rahman, H. U.
2017-10-01
A Staged Z-pinch (SZP), configured as a pre-magnetized, high-Z (Ar, or Kr) annular liner imploding onto a low-Z (H, or D) target, was tested on the Cornell University, Cobra Facility and the University of Nevada, Reno, Zebra Facility; each characterized similarly by a nominal 1-MA current and 100-ns risetime while possessing different diagnostic packages. XUV-fast imaging reveals that the SZP implosion dynamics is similar on both machines and that it is more stable with an axial (Bz) magnetic field, a target, or both, than without. On Zebra, where neutron production is possible, reproducible thermonuclear (DD) yields were recorded at levels in excess of 109/shot. Flux compression in the SZP is also expected to produce magnetic field intensities of the order of kilo-Tesla. Thus, the DD reaction produced tritions should also yield secondary DT neutrons. Indeed, secondaries are measured above the noise threshold at levels approaching 106/shot. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.
Designs and Plans for MAIZE: a 1 MA LTD-Driven Z-Pinch
NASA Astrophysics Data System (ADS)
Gilgenbach, R. M.; Gomez, M. R.; Zier, J.; Tang, W.; French, D. M.; Hoff, B. W.; Jordan, N.; Cruz, E.; Lau, Y. Y.; Fowler-Guzzardo, T.; Meisel, J.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.
2007-11-01
We present designs and experimental plans of the first 1 MA z-pinch in the USA to be driven by a Linear Transformer Driver (LTD). The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute for High Current Electronics, utilizing 80 capacitors and 40 spark gap switches to deliver a 1 MA, 100 kV pulse with <100 ns risetime. Designs will be presented of a low-inductance MITL terminated in a wire-array z-pinch. Initial, planned experiments will evaluate the LTD driving time-changing inductance of imploding 4-16 wire-array z-pinches. Wire ablation dynamics, axial-correlations and instability development will be explored. *This work was supported by U. S. DoE through Sandia National Laboratories award number 240985 to the University of Michigan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Recognising Paleoseismic Events and Slip Styles in Vein Microstructures - is Incrementality Enough?
NASA Astrophysics Data System (ADS)
Fagereng, A.; Sibson, R. H.
2008-12-01
'Subduction channels', containing highly sheared, fluid-saturated, trench-fill sediments, are commonly present along subduction thrust interfaces. These shear zones accommodate fast plate boundary slip rates (1~-~10~cm/yr) and exhibit high levels of seismicity, accomplishing slip in a broad range of styles including standard earthquakes, slow slip, non-volcanic tremor and aseismic creep. Exhumed subduction channel fault rocks provide a time-integrated record of these varied slip modes though the degree of overprinting may be considerable. The Chrystalls Beach accretionary mélange, within the Otago Schist accretion-collision assemblage, New Zealand, is analogous to an active subduction channel assemblage. It contains asymmetric lenses of sandstone, chert and minor basalt enclosed within a relatively incompetent, cleaved pelitic matrix. This assemblage has been intensely sheared in a mixed continuous/discontinuous style within a flat-lying, <~4~km thick, shear zone. Ductile structures such as folds, S/C-like structures, and asymmetric boudins and clasts formed by soft sediment deformation and pressure solution creep. An extensive anastomosing vein system can be divided into mutually cross-cutting extension fractures (V1) and slickenfibre shear veins (V2). V1 commonly cut competent lenses within the mélange, while V2 mostly follow lithological contacts. Both vein sets are predominantly elongate-blocky with 'crack-seal' extension and shear increments of 10~- ~100~μm. Little sign of wall rock alteration or heating is present adjacent to V1 veins, which likely formed by incremental hydrofracture with episodic fluid influx. Post-fracture drop in Pf promoted solute precipitation from advecting fluids. This process may reflect fracture and fluid flow in a distributed fault-fracture mesh, an often inferred mechanism of non-volcanic tremor. In contrast, wall rock alteration and pressure solution seams are common adjacent to V2 veins. Slickenfibres on these shear surfaces likely formed by relatively slow dissolution and precipitation of wall rock material, which may translate to a slip mode of rise-time intermediate between earthquakes (seconds - minutes) and aseismic creep (years - infinite). Fibres are typically ≤ 10 cm long, similar to slip observed in slow slip events (rise-time weeks - months). We propose that these veins are possible records of slow slip along weak, fluid-saturated and highly overpressured planes. No definite record of large, fast earthquakes is observed in the complex, either because the rocks never experienced such events, or because significant shear heating was inhibited by thermal pressurisation. The only record of fast events would be discrete planes of cataclasite, easily overprinted by slow interseismic material diffusion. The mélange is a record of episodic, distributed deformation over a range of time- and length-scales, which may reflect distributed seismic activity accommodated by a range of slip modes including episodic tremor and slow slip.
Attachment process in rocket-triggered lightning strokes
NASA Astrophysics Data System (ADS)
Wang, D.; Rakov, V. A.; Uman, M. A.; Takagi, N.; Watanabe, T.; Crawford, D. E.; Rambo, K. J.; Schnetzer, G. H.; Fisher, R. J.; Kawasaki, Z.-I.
1999-01-01
In order to study the lightning attachment process, we have obtained highly resolved (about 100 ns time resolution and about 3.6 m spatial resolution) optical images, electric field measurements, and channel-base current recordings for two dart leader/return-stroke sequences in two lightning flashes triggered using the rocket-and-wire technique at Camp Blanding, Florida. One of these two sequences exhibited an optically discernible upward-propagating discharge that occurred in response to the approaching downward-moving dart leader and connected to this descending leader. This observation provides the first direct evidence of the occurrence of upward connecting discharges in triggered lightning strokes, these strokes being similar to subsequent strokes in natural lightning. The observed upward connecting discharge had a light intensity one order of magnitude lower than its associated downward dart leader, a length of 7-11 m, and a duration of several hundred nanoseconds. The speed of the upward connecting discharge was estimated to be about 2 × 107 m/s, which is comparable to that of the downward dart leader. In both dart leader/return-stroke sequences studied, the return stroke was inferred to start at the point of junction between the downward dart leader and the upward connecting discharge and to propagate in both upward and downward directions. This latter inference provides indirect evidence of the occurrence of upward connecting discharges in both dart leader/return-stroke sequences even though one of these sequences did not have a discernible optical image of such a discharge. The length of the upward connecting discharges (observed in one case and inferred from the height of the return-stroke starting point in the other case) is greater for the event that is characterized by the larger leader electric field change and the higher return-stroke peak current. For the two dart leader/return-stroke sequences studied, the upward connecting discharge lengths are estimated to be 7-11 m and 4-7 m, with the corresponding return-stroke peak currents being 21 kA and 12 kA, and the corresponding leader electric field changes 30 m from the rocket launcher being 56 kV/m and 43 kV/m. Additionally, we note that the downward dart leader light pulse generally exhibits little variation in its 10-90% risetime and peak value over some tens of meters above the return-stroke starting point, while the following return-stroke light pulse shows an appreciable increase in risetime and a decrease in peak value while traversing the same section of the lightning channel. Our findings regarding (1) the initially bidirectional development of return-stroke process and (2) the relatively strong attenuation of the upward moving return-stroke light (and by inference current) pulse over the first some tens of meters of the channel may have important implications for return-stroke modeling.
All solid-state high power microwave source with high repetition frequency.
Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C
2013-05-01
An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1998-05-01
In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less
An Experimental Investigation of Acoustic Cavitation in Gaseous Liquids
1990-11-08
a time-to-amplitude converter and an analog-to- digital data acquisition system based on a microcomputer. IL B. Acoustic Levitation Apparatus L...reading the RMS -ioltage from a Fluke 8600A digital multimeter to which the pill transducer was connected. This voltage was read via a GPIB interface by...micrometer microscope model M110A was used. The rise-time was measured with a digital timer which was activated by the same push-button switch used to turn
Microwave-triggered laser switch
Piltch, M.S.
1982-05-19
A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.
2001-01-01
A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.
Microwave-triggered laser switch
Piltch, Martin S.
1984-01-01
A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
Rise Time of the Simulated VERITAS 12 m Davies-Cotton Reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard J.
The Very Energetic Radiation Imaging Telescope Array System (VERITAS) will utilise Imaging Atmospheric Cherenkov Telescopes (IACTs) based on a Davies-Cotton design with f-number f/1.0 to detect cosmic gamma-rays. Unlike a parabolic reflector, light from the Davies-Cotton does not arrive isochronously at the camera. Here the effect of the telescope geometry on signal rise-time is examined. An almost square-pulse arrival time profile with a rise time of 1.7 ns is found analytically and confirmed through simulation.
Analog synthesized fast-variable linear load
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1991-01-01
A several kilowatt power level, fast-variable linear resistor was synthesized by using analog components to control the conductance of power MOSFETs. Risetimes observed have been as short as 500 ns with respect to the control signal and 1 to 2 microseconds with respect to the power source voltage. A variant configuration of this load that dissipates a constant power set by a control signal is indicated. Replacement of the MOSFETs by static induction transistors (SITs) to increase power handling, speed and radiation hardness is discussed.
Gas Breakdown in the Sub-Nanosecond Regime with Voltages Below 15 KV
2013-06-01
needle -plane gap with outer coaxial conductor, and a 50-Ω load line. The needle consists of tungsten and has a radius of curvature below 0.5 µm. The...here gas breakdown during nanosecond pulses occurs mainly as corona discharges on wire antennas, and represents an unwanted effect - General...risetime between 400 ps to1 ns), 50-W transmission line, axial needle -plane gap with outer coaxial conductor, and a 50-W load line. The needle consists of
Time-resolved rhodopsin activation currents in a unicellular expression system.
Sullivan, J M; Shukla, P
1999-01-01
The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions. PMID:10465746
NASA Technical Reports Server (NTRS)
1979-01-01
Optical interface losses between transmitter-to-fiber interface, connector-to-connector interface, and fiber-to-receiver interface were studied. System effects such as pulse dispersion, risetimes of the sources and detectors, type of fibers used, output power of the sources, and detector sensitivity were considered. Data bus systems such as TEE, Star, and Hybrid were analyzed. The matter of single fiber versus bundle technologies for future avionics systems was considered. The existing data bus system on Space Shuttle was examined and an optical analog was derived for a fiber bundle system, along with the associated power margin. System tests were performed on a feasibility model of a 9-port Star data bus system including BER, star losses, connector losses, etc. The same system was subjected to EMI between the range of 200 Hz to 10 GHz at 20V/m levels. A lightning test was also performed which simulated the conditions similar to those on Space Shuttle. The data bus system was found to be EMI and lightning hard. It is concluded that an optical data bus system is feasible for shuttle orbiter type vehicles.
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Scearce, Stephen A.
2000-01-01
For electromagnetic immunity testing of an electronic system, it is desirable to demonstrate its functional integrity when exposed to the full range and intensity of environmental electromagnetic threats that may be encountered over its operational life. As part of this, it is necessary to show proper system operation when exposed to representative threat signal modulations. Modulated signal transition time is easily overlooked, but can be highly significant to system susceptibility. Radiated electromagnetic field immunity testing is increasingly being performed in Mode Stirred Chambers. Because the peak field vs. time relationship is affected by the operation of a reverberating room, it is important to understand how the room may influence any input signal modulation characteristics. This paper will provide insight into the field intensity vs. time relationship within the test environment of a mode stirred chamber. An understanding of this relationship is important to EMC engineers in determining what input signal modulation characteristics will be transferred to the equipment under test. References will be given for the development of this topic, and experimental data will be presented
Compression wave studies in Blair dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, D.E.; Hollenbach, R.E.; Schuler, K.W.
Dynamic compression wave studies have been conducted on Blair dolomite in the stress range of 0-7.0 GPa. Impact techniques were used to generate stress impulse input functions, and diffuse surface laser interferometry provided the dynamic instrumentation. Experimental particle velocity profiles obtained by this method were coupled with the conservation laws of mass and momentum to determine the stress-strain and stress-modulus constitutive properties of the material. Comparison between dynamic and quasistatic uniaxial stress-strain curves uncovered significant differences. Energy dissipated in a complete load and unload cycle differed by almost an order of magnitude and the longitudinal moduli differed by as muchmore » as a factor of two. Blair dolomite was observed to yield under dynamic loading at 2.5 GPa. Below 2.5 GPa the loading waves had a finite risetime and exhibited steady propagation. A finite linear viscoelastic constitutive model satisfactorily predicted the observed wave propagation. We speculate that dynamic properties of preexisting cracks provides a physical mechanism for both the rate dependent steady wave behavior and the difference between dynamic and quasistatic response.« less
Generation of extreme state of water by spherical wire array underwater electrical explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, O.; Gilburd, L.; Efimov, S.
2012-10-15
The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parametersmore » of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.« less
1990-02-14
of the present results to be in the tens of uJ/cm’. f) Comparatively high laser damage thresholds , due to the innate properties of the polymers used. g...number of interface systems switched in this mode as well. Intrinsic laser - induced polymer switching and nonlinear optical effects in these polymers...Effective Laser Shields Essential functional attributes of functional laser filters are ns or sub-ns risetimes, broad-band action (across the visible, near-IR
NASA Astrophysics Data System (ADS)
Rose, D. V.; Miller, C. L.; Welch, D. R.; Clark, R. E.; Madrid, E. A.; Mostrom, C. B.; Stygar, W. A.; Lechien, K. R.; Mazarakis, M. A.; Langston, W. L.; Porter, J. L.; Woodworth, J. R.
2010-09-01
A 3D fully electromagnetic (EM) model of the principal pulsed-power components of a high-current linear transformer driver (LTD) has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim , Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.
Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon-Golcher, Edwin
This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm 2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield (
High power radiators of ultra-short electromagnetic quasi-unipolar pulses
NASA Astrophysics Data System (ADS)
Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.
2017-05-01
Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.
Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake
Ji, C.; Helmberger, D.V.; Wald, D.J.; Ma, K.-F.
2003-01-01
We investigate the rupture process of the 1999 Chi-Chi, Taiwan, earthquake using extensive near-source observations, including three-component velocity waveforms at 36 strong motion stations and 119 GPS measurements. A three-plane fault geometry derived from our previous inversion using only static data [Ji et al., 2001] is applied. The slip amplitude, rake angle, rupture initiation time, and risetime function are inverted simultaneously with a recently developed finite fault inverse method that combines a wavelet transform approach with a simulated annealing algorithm [Ji et al., 2002b]. The inversion results are validated by the forward prediction of an independent data set, the teleseismic P and SH ground velocities, with notable agreement. The results show that the total seismic moment release of this earthquake is 2.7 ?? 1020 N m and that most of the slip occured in a triangular-shaped asperity involving two fault segments, which is consistent with our previous static inversion. The rupture front propagates with an average rupture velocity of ???2.0 km s-1, and the average slip duration (risetime) is 7.2 s. Several interesting observations related to the temporal evolution of the Chi-Chi earthquake are also investigated, including (1) the strong effect of the sinuous fault plane of the Chelungpu fault on spatial and temporal variations in slip history, (2) the intersection of fault 1 and fault 2 not being a strong impediment to the rupture propagation, and (3 the observation that the peak slip velocity near the surface is, in general, higher than on the deeper portion of the fault plane, as predicted by dynamic modeling.
High precision moving magnet chopper for variable operation conditions
NASA Technical Reports Server (NTRS)
Aicher, Winfried; Schmid, Manfred
1994-01-01
In the context of an ESTEC technology contract, a Chopping Mechanism was developed and built with the Far Infrared and Submillimeter Telescope (FIRST) astronomy mission as a reference. The task of the mechanism is to tilt the subreflector of the telescope with an assumed mass of 2.5 kg about one chopping axis at nominal frequencies of up to 5 Hz and chopping angles of up to +/- 11.25 mrad with high efficiency (minimum time for position change). The chopping axis is required to run through the subreflector vertex. After performing a concept trade-off also considering the low operational temperatures in the 130 K range, a design using moving magnet actuators was found to be the favorite one. In addition, a bearing concept using flexible pivots was chosen to meet the high chopping accuracy required. With this approach, a very reliable design could be realized, since the actuators work without any mechanical contact between its moving and fixed parts, and the only bearings used are two flexible pivots supporting the subreflector mounting interface. The mechanism was completely built in titanium in a lightweight and stiff design. The moving magnet actuators were designed to meet the stringent requirements for minimum risetime (time necessary to move from one angular position to a new one) in the 20 msec range. The angular position and the corresponding chopping frequency as well can be arbitrarily selected by the user.
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa; Scofield, James
2013-09-01
Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at <20 kHz pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and <3 W input power at a 12 kHz turnover frequency. A further increase in the repetition frequency results in increased discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Willett, J. C.; Bailey, J. C.
1989-01-01
Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida, during the summer of 1987. Comparisons have been made of the average shape, the risetime, and the spectrum of the electric field changes. To a first approximation, the waveforms are very similar; however, the electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.
A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yi; Wang, Wei; Liu, Yi
2015-05-15
Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.
Design and Performance of the Astro-E/XRS Signal Processing System
NASA Technical Reports Server (NTRS)
Boyce, Kevin R.; Audley, M. D.; Baker, R. G.; Dumonthier, J. J.; Fujimoto, R.; Gendreau, K. C.; Ishisaki, Y.; Kelley, R. L.; Stahle, C. K.; Szymkowiak, A. E.
1999-01-01
We describe the signal processing system of the Astro-E XRS instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, Pulse height analysis. and risetime determination. We also discuss performance, including the three event grades (hi-res mid-res, and low-res). anticoincidence detection, counting rate dependence, and noise rejection.
Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun
NASA Astrophysics Data System (ADS)
Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.
2012-06-01
An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.
Solid-State Thyratron Replacement. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Ian
2017-12-12
Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was builtmore » in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.« less
Construction and Initial Tests of MAIZE: 1 MA LTD-Driven Z-Pinch *
NASA Astrophysics Data System (ADS)
Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.
2008-11-01
We report construction and initial testing of a 1-MA Linear Transformer Driver (LTD), The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE). This machine, the first of its type to reach the USA, is based on the joint HCEI, Sandia Laboratories, and UM development effort. The compact LTD uses 80 capacitors and 40 spark gap switches, in 40 ``bricks'', to deliver 1 MA, 100 kV pulses with 70 ns risetime into a matched resistive load. Test results will be presented for a single brick and the full LTD. Design and construction will be presented of a low-inductance MITL. Experimental research programs under design and construction at UM include: a) Studies of Magneto-Raleigh-Taylor Instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma. Theory and simulation results will be presented for these planned experiments. Initial experimental designs and moderate-current feasibility experiments will be discussed. *Research supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the UM. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship / Sandia National Labs.
Shochat, Tamar; Barker, David H; Sharkey, Katherine M; Van Reen, Eliza; Roane, Brandy M; Carskadon, Mary A
2017-12-01
Depressive mood in youth has been associated with distinct sleep dimensions, such as timing, duration and quality. To identify discrete sleep phenotypes, we applied person-centred analysis (latent class mixture models) based on self-reported sleep patterns and quality, and examined associations between phenotypes and mood in high-school seniors. Students (n = 1451; mean age = 18.4 ± 0.3 years; 648 M) completed a survey near the end of high-school. Indicators used for classification included school night bed- and rise-times, differences between non-school night and school night bed- and rise-times, sleep-onset latency, number of awakenings, naps, and sleep quality and disturbance. Mood was measured using the total score on the Center for Epidemiologic Studies-Depression Scale. One-way anova tested differences between phenotype for mood. Fit indexes were split between 3-, 4- and 5-phenotype solutions. For all solutions, between phenotype differences were shown for all indicators: bedtime showed the largest difference; thus, classes were labelled from earliest to latest bedtime as 'A' (n = 751), 'B' (n = 428) and 'C' (n = 272) in the 3-class solution. Class B showed the lowest sleep disturbances and remained stable, whereas classes C and A each split in the 4- and 5-class solutions, respectively. Associations with mood were consistent, albeit small, with class B showing the lowest scores. Person-centred analysis identified sleep phenotypes that differed in mood, such that those with the fewest depressive symptoms had moderate sleep timing, shorter sleep-onset latencies and fewer arousals. Sleep characteristics in these groups may add to our understanding of how sleep and depressed mood associate in teens. © 2017 European Sleep Research Society.
Wire array Z-pinch insights for enhanced x-ray production
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Haines, M. G.; Chittenden, J. P.; Whitney, K. G.; Apruzese, J. P.; Peterson, D. L.; Greenly, J. B.; Sinars, D. B.; Reisman, D. B.; Mosher, D.
1999-05-01
Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1995-02-20
The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stygar, W.A.; Spielman, R.B.; Allshouse, G.O.
The 36-module Z accelerator was designed to drive z-pinch loads for weapon-physics and inertial-confinement-fusion experiments, and to serve as a testing facility for pulsed-power research required to develop higher-current drivers. The authors have designed and tested a 10-nH 1.5-m-radius vacuum section for the Z accelerator. The vacuum section consists of four vacuum flares, four conical 1.3-m-radius magnetically-insulated transmission lines, a 7.6-cm-radius 12-post double-post-hole convolute which connects the four outer MITLs in parallel, and a 5-cm-long inner MITL which connects the output of the convolute to a z-pinch load. IVORY and ELECTRO calculations were performed to minimize the inductance of themore » vacuum flares with the constraint that there be no significant electron emission from the insulator-stack grading rings. Iterative TLCODE calculations were performed to minimize the inductance of the outer MITLs with the constraint that the MITL electron-flow-current fraction be {le} 7% at peak current. The TLCODE simulations assume a 2.5 cm/{micro}s MITL-cathode-plasma expansion velocity. The design limits the electron dose to the outer-MITL anodes to 50 J/g to prevent the formation of an anode plasma. The TLCODE results were confirmed by SCREAMER, TRIFL, TWOQUICK, IVORY, and LASNEX simulations. For the TLCODE, SCREAMER, and TRIFL calculations, the authors assume that after magnetic insulation is established, the electron-flow current launched in the outer MITLs is lost at the convolute. This assumption has been validated by 3-D QUICKSILVER simulations for load impedances {le} 0.36 ohms. LASNEX calculations suggest that ohmic resistance of the pinch and conduction-current-induced energy loss to the MITL electrodes can be neglected in Z power-flow modeling that is accurate to first order. To date, the Z vacuum section has been tested on 100 shots. They have demonstrated they can deliver a 100-ns rise-time 20-MA current pulse to the baseline z-pinch load.« less
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Risetime distortion of Shuttle Ku-band payload 50 MBPS data due to coaxial cable skin effects
NASA Technical Reports Server (NTRS)
Schadelbauer, S.; Vang, H. A.
1980-01-01
This paper discusses distortion of digital signals generated in the Space Shuttle Ku-band communications systems. Specifically, the degradation considered is due to coaxial cables which interface data and clock from a source located in the payload bay to the KuSPA (Ku-Band Signal Processor Assembly) located in the avionics bay of the Shuttle. Due to the length (nearly 100 feet) and relatively narrow bandwidth of the cable, the clock and data waveforms are significantly affected by this transmission medium. This paper presents a closed form model that closely approximates the distortion of the waveforms measured in laboratory tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Size reduction techniques for vital compliant VHDL simulation models
Rich, Marvin J.; Misra, Ashutosh
2006-08-01
A method and system select delay values from a VHDL standard delay file that correspond to an instance of a logic gate in a logic model. Then the system collects all the delay values of the selected instance and builds super generics for the rise-time and the fall-time of the selected instance. Then, the system repeats this process for every delay value in the standard delay file (310) that correspond to every instance of every logic gate in the logic model. The system then outputs a reduced size standard delay file (314) containing the super generics for every instance of every logic gate in the logic model.
Unraveling shock-induced chemistry using ultrafast lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, David Steven
The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation offast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state ofmore » materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to microengineered interfaces in tunable energetic mixtures. Recent results will be presented, and future trends outlined.« less
Using a Z-pinch precursor plasma to produce a cylindrical, hotspot ignition, ICF
NASA Astrophysics Data System (ADS)
Chittenden, Jeremy
2005-10-01
We show that if the same precursor plasma that exists in metal wire arrays can be generated with a Deuterium-Tritium plasma then this precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The precursor is generated from a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the ρR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.
A parametric study on the PD pulses activity within micro-cavities
NASA Astrophysics Data System (ADS)
Ganjovi, Alireza A.
2016-03-01
A two-dimensional kinetic model has been used to parametric investigation of the spark-type partial discharge pulses inside the micro-cavities. The model is based on particle-in-cell methods with Monte Carlo Collision techniques for modeling of collisions. Secondary processes like photo-emission and cathode-emission are considered. The micro-cavity may be sandwiched between two metallic conductors or two dielectrics. The discharge within the micro-cavity is studied in conjunction with the external circuit. The model is used to successfully simulate the evolution of the discharge and yield useful information about the build-up of space charge within the micro-cavity and the consequent modification of the applied electric field. The phase-space scatter plots for electrons, positive, and negative ions are obtained in order to understand the manner in which discharge progresses over time. The rise-time and the magnitude of the discharge current pulse are obtained and are seen to be affected by micro-cavity dimensions, gas pressure within the micro-cavity, and the permittivity of surrounding dielectrics. The results have been compared with existing experimental, theoretical, and computational results, wherever possible. An attempt has been made to understand the nature of the variations in terms of the physical processes involved.
Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.
2002-01-01
A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.
Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D
2008-02-01
Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.
Bei, Bei; Manber, Rachel; Allen, Nicholas B; Trinder, John; Wiley, Joshua F
2017-02-01
Research has extensively examined the relationship between adolescents' mental health and average sleep duration/quality. Using rigorous methodology, this study characterized adolescents' objective sleep intraindividual variability (IIV) and examined its role on mood beyond the effects of their respective individual mean (IIM) values. One hundred forty-six community-dwelling adolescents (47.3% male) aged 16.2 ± 1.0 (M ± SD) years wore an actigraph that assessed bedtime, risetime, time-in-bed (TIB), and sleep onset latency (SOL) throughout a 15-day vacation with relatively unconstrained sleep opportunity. Self-report sleep quality (SSQ), negative mood (MOOD), and other covariates were assessed using questionnaires. For each sleep variable, individuals' mean values (IIM) and IIV were used to simultaneously predict MOOD with SSQ as a mediator. Models were estimated in a Bayesian IIV framework; both linear and quadratic effects of the IIM and IIV were examined. Longer and more variable TIB, as well as more variable SOL (but not mean SOL), were associated with poorer SSQ (ps < .01), which in turn, was associated with more negative MOOD (ps < .05). The indirect effect of SOL IIV was curvilinear, such that as SOL became more variable, the deteriorating effect of high SOL IIV accelerated. Neither bedtime nor risetime IIV was significantly associated with SSQ or MOOD. During relatively unconstrained sleep opportunity, more variable TIB and SOL were associated with more negative mood, mediated by poorer perceived sleep quality. Significant effects of IIV were over and above that of mean values, suggesting that unique aspects of sleep IIV are relevant to how adolescents perceive sleep quality and their mood. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Winands, G. J. J.; Liu, Z.; Pemen, A. J. M.; van Heesch, E. J. M.; Yan, K.; van Veldhuizen, E. M.
2006-07-01
In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh)-1. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh)-1, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.
VLBI clock synchronization tests performed via the ATS-1 and ATS-3 satellites
NASA Technical Reports Server (NTRS)
Ramasastry, J.; Rosenbaum, B.; Michelini, R. D.; Kuegler, G.
1971-01-01
Clock synchronization experiments were carried out May 10 to June 10, 1971, by the NASA/Goddard Space Flight Center and the Smithsonian Astrophysical Observatory via the ATS-1 and 3 geostationary satellites at the NASA tracking stations Rosman and Mojave, during a VLBI (Very Long Baseline Interferometer) experiment in order to determine the clock-offset between the two stations. Ten microsecond pulses at C-band with very sharp risetime were exchanged by the two stations through the dual transponders of the satellites. At each station, a time-interval counter was started by the transmitted pulse and stopped by the received pulse. The probable error of the difference in the mean values of the clock-offset is 10 nanoseconds.
NASA Astrophysics Data System (ADS)
Young, B. A.; Gao, Xiaosheng; Srivatsan, T. S.
2009-10-01
In this paper we compare and contrast the crack growth rate of a nickel-base superalloy (Alloy 690) in the Pressurized Water Reactor (PWR) environment. Over the last few years, a preponderance of test data has been gathered on both Alloy 690 thick plate and Alloy 690 tubing. The original model, essentially based on a small data set for thick plate, compensated for temperature, load ratio and stress-intensity range but did not compensate for the fatigue threshold of the material. As additional test data on both plate and tube product became available the model was gradually revised to account for threshold properties. Both the original and revised models generated acceptable results for data that were above 1 × 10 -11 m/s. However, the test data at the lower growth rates were over-predicted by the non-threshold model. Since the original model did not take the fatigue threshold into account, this model predicted no operating stress below which the material would effectively undergo fatigue crack growth. Because of an over-prediction of the growth rate below 1 × 10 -11 m/s, due to a combination of low stress, small crack size and long rise-time, the model in general leads to an under-prediction of the total available life of the components.
Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme
NASA Astrophysics Data System (ADS)
Chittenden, J. P.; Vincent, P.; Jennings, C. A.; Ciardi, A.
2006-01-01
Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.
Intelligent Life-Extending Controls for Aircraft Engines Studied
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2005-01-01
Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.
Multiloop Rapid-Rise/Rapid Fall High-Voltage Power Supply
NASA Technical Reports Server (NTRS)
Bearden, Douglas
2007-01-01
A proposed multiloop power supply would generate a potential as high as 1.25 kV with rise and fall times <100 s. This power supply would, moreover, be programmable to generate output potentials from 20 to 1,250 V and would be capable of supplying a current of at least 300 A at 1,250 V. This power supply is intended to be a means of electronic shuttering of a microchannel plate that would be used to intensify the output of a charge-coupled-device imager to obtain exposure times as short as 1 ms. The basic design of this power supply could also be adapted to other applications in which high voltages and high slew rates are needed. At the time of reporting the information for this article, there was no commercially available power supply capable of satisfying the stated combination of voltage, rise-time, and fall-time requirements. The power supply would include a preregulator that would be used to program a voltage 1/30 of the desired output voltage. By means of a circuit that would include a pulse-width modulator (PWM), two voltage doublers, and a transformer having two primary and two secondary windings, the preregulator output voltage would be amplified by a factor of 30. A resistor would limit the current by controlling a drive voltage applied to field-effect transistors (FETs) during turn-on of the PWM. Two feedback loops would be used to regulate the high output voltage. A pulse transformer would be used to turn on four FETs to short-circuit output capacitors when the outputs of the PWM were disabled. Application of a 0-to-5-V square to a PWM shut-down pin would cause a 20-to-1,250-V square wave to appear at the output.
Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration
NASA Technical Reports Server (NTRS)
Hecox, K.; Squires, N.; Galambos, R.
1975-01-01
Short latency (under 10 msec) evoked responses elicited by bursts of white noise were recorded from the scalp of human subjects. Response alterations produced by changes in the noise burst duration (on-time) inter-burst interval (off-time), and onset and offset shapes are reported and evaluated. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise-time but was unaffected by changes in fall-time. The amplitude of wave V was insensitive to changes in signal rise-and-fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It is concluded that wave V of the human auditory brainstem evoked response is solely an onset response.
NASA Technical Reports Server (NTRS)
Taylor, R. S.; Clark, G. W.
1971-01-01
The all-sky, X-ray measurements are made in five broad energy bands from 0.5 to 60 keV with X-ray collimators of one and three degree FWHM response. Working with the onboard star sensor source locations may be determined to a precision of plus or minus 0.1 deg. The experiment is located in wheel compartment number three of the spacecraft. A time division logic system divides each wheel rotation into 256 data bins in each of which X-ray counts are accumulated over a 190 second interval. Measurement chain circuits include provision for both geometric and risetime anticoincidence. A detailed description of the instrument is included as is pertinent operating information.
The response of an RC line MWPC to primary cosmic rays. [Multi-Wire Proportional Counter
NASA Technical Reports Server (NTRS)
Gregory, J. C.; Selig, W. J.; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.
1978-01-01
A simple 50 x 50 sq cm MWPC plane was arranged as an RC-line and flown on a balloon flight with the MSFC-UAH Cosmic Ray experiment. Positions of primary cosmic ray tracks in the RC-line were determined by the risetime method and compared with the expected position as indicated by a best line fitted through four planes of the conventional MWPC hodoscope. Mean errors were estimated for sea-level muons, and CNO group and iron group particles. It is believed that the delta-rays accompanying the primaries degraded the position resolution. Measured standard deviations allowing for uncertainty in the true track position are of the order of 1 cm or less in the primary charge region between 7 and 26.
Wallops waveform analysis of SEASAT-1 radar altimeter data
NASA Technical Reports Server (NTRS)
Hayne, G. S.
1980-01-01
Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites.
Vacuum-surface flashover switch with cantilever conductors
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
2001-01-01
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
Low frequency creep in CoNiFe films
NASA Technical Reports Server (NTRS)
Bartran, D. S.; Bourne, H. C., Jr.; Chow, L. G.
1972-01-01
The results of an investigation of domain wall motion excited by slow rise-time, bipolar, hard-axis pulses in vacuum deposited CoNiFe films 1500A to 2000A thick are presented. The results are consistent with those of comparable NiFe films in spite of large differences in film properties. The present low frequency creep data together with previously published results in this and other laboratories can be accounted for by a model which requires that the wall structure change usually associated with low frequency creep be predominately a gyromagnetic process. The correctness of this model is reinforced by the observation that the wall coercive force, the planar wall mobility, and the occurrence of an abrupt wall structure change are the only properties closely correlated to the creep displacement characteristics of a planar wall in low dispersion films.
NASA Technical Reports Server (NTRS)
Lee, Harry
1994-01-01
A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.
Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors
NASA Astrophysics Data System (ADS)
Alharbi, T.
2015-01-01
The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.
Laser altimetry simulator. Version 3.0: User's guide
NASA Technical Reports Server (NTRS)
Abshire, James B.; Mcgarry, Jan F.; Pacini, Linda K.; Blair, J. Bryan; Elman, Gregory C.
1994-01-01
A numerical simulator of a pulsed, direct detection laser altimeter has been developed to investigate the performance of space-based laser altimeters operating over surfaces with various height profiles. The simulator calculates the laser's optical intensity waveform as it propagates to and is reflected from the terrain surface and is collected by the receiver telescope. It also calculates the signal and noise waveforms output from the receiver's optical detector and waveform digitizer. Both avalanche photodiode and photomultiplier detectors may be selected. Parameters of the detected signal, including energy, the 50 percent rise-time point, the mean timing point, and the centroid, can be collected into histograms and statistics calculated after a number of laser firings. The laser altimeter can be selected to be fixed over the terrain at any altitude. Alternatively, it can move between laser shots to simulate the terrain profile measured with the laser altimeter.
NASA Technical Reports Server (NTRS)
Antonetti, Andre (Editor)
1990-01-01
Topics discussed are on the generation of high-intensity femtosecond lasers, the high-repetition and infrared femtosecond pulses, and physics of semiconductors and applications. Papers are presented on the femtosecond pulse generation at 193 nm; the generation of intense subpicosecond and femtosecond pulses; intense tunable subpicosecond and femtosecond pulses in the visible and infrared, generated by optical parametric oscillators; a high-efficiency high-energy optical amplifier for femtosecond pulses; and the generation of solitons, periodic pulsing, and nonlinearities in GaAs. Other papers are on ultrafast relaxation dynamics of photoexcited carriers in GaAs, high-order optical nonlinear susceptibilities of transparent glasses, subnanosecond risetime high-power pulse generation using photoconductive bulk GaAs devices, femtosecond studies of plasma formation in crystalline and amorphous silicon, and subpicosecond dynamics of hot carrier relaxation in InP and GaAs.
Clock synchronization experiments performed via the ATS-1 and ATS-3 satellites.
NASA Technical Reports Server (NTRS)
Ramasastry, J.; Rosenbaum, B.; Michelini, R. D.; Kuegler, G. K.
1973-01-01
Clock synchronization experiments were carried out May 10 to June 10, 1971, via the ATS-1 and ATS-3 geostationary satellites between the NASA tracking stations at Rosman, N.C., and Mojave, Calif., in order to determine the offset and the relative drift rate between the two station clocks. Pulses at C band with very sharp risetime and of 10 microsec duration were exchanged by the two stations through the dual transponders of the satellites. At each station, a time-interval counter was started by the transmitted pulse and stopped by the pulse received via satellite from the other station. The probable error of the clock offset as measured by the counter is 10 msec. A very long baseline interferometer experiment was also performed between the two stations at the same time and provided independent clock-offset data to check the accuracy of the time-synchronization experiment.
Langenbrunner, James R.
1996-01-01
An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.
Langenbrunner, J.R.
1996-05-07
An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.
Juno-UVS approach observations of Jupiter's auroras
NASA Astrophysics Data System (ADS)
Gladstone, G. R.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Davis, M. W.; Gérard, J.-C.; Grodent, D. C.; Bonfond, B.; Nichols, J. D.; Wilson, R. J.; Hospodarsky, G. B.; Bolton, S. J.; Levin, S. M.; Connerney, J. E. P.; Adriani, A.; Kurth, W. S.; Mauk, B. H.; Valek, P.; McComas, D. J.; Orton, G. S.; Bagenal, F.
2017-08-01
Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of 2 h and a decay time of 5 h.
Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding
Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem
2014-01-01
Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076
Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond
NASA Astrophysics Data System (ADS)
Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.
Juno-UVS approach observations of Jupiter's auroras.
Gladstone, G R; Versteeg, M H; Greathouse, T K; Hue, V; Davis, M W; Gérard, J-C; Grodent, D C; Bonfond, B; Nichols, J D; Wilson, R J; Hospodarsky, G B; Bolton, S J; Levin, S M; Connerney, J E P; Adriani, A; Kurth, W S; Mauk, B H; Valek, P; McComas, D J; Orton, G S; Bagenal, F
2017-08-16
Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.
Managing piezoelectric sensor jitter: kinematic position tracking applications
NASA Astrophysics Data System (ADS)
Khomo, Malome T.
2016-02-01
Piezo-acoustic distance tracking sensors have challenges of reporting true distance readings. Challenges include directional anisotropy signal loss in transmission power and in receiver sensitivity, distance-related attenuation of signal and the phase shifts that result in jittery values, some preceding, and others succeeding the expected distance readings. There also exist signal time losses arising from dead time associated with processor latency, with carrier signal pulse length and with voltage rise-time delays in pulse detection. Together these factors cause distance under-reporting, and more critically, makes each reported value uncertain, which is unacceptable in distance-critical applications. Piezo-inertial accelerometers have equivalent if not more severe challenges in tri-axial configurations, for instance where a rotational tilt may happen under linear accelerative force. In the absence of tensor component adaptation to change of orientation, signal is lost until the next axial sensor detects it. Study paper focusses on piezo-acoustic transducers UCD1007 and 400SR160 (40kHz), used in a face-to-face configuration over a 600mm range. Within that range 10 successive phase shift wave fronts were identified, but it took 15 reconstructed wave fronts to uniquely identify a continuous end-to-end jitter-free and slippage-free kinematic data stream from the jittery sensor data. The additional 5 degrees of freedom were consumed by the 5-stage filter applied. The technique has remarkable combinatorial and projective geometry implications for digital sensor design. It is possible for the procedure to be applicable in 3-axis accelerometers and adapted into firmware for truly kinematic device driver interfaces so long as the reporting rates are matched with the user interface refresh rates. It is shown that acoustic transducer sensors require phase loop locking for kinematic continuity whereas gravimetric accelerometers demand better measurement time consistence in sensor values for induced kinematic phase locking.
NASA Astrophysics Data System (ADS)
Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.
2017-03-01
Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate (IMS), giving a comprehensive picture of the transient behavior of the forward voltage of this type of high power LED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.
Atlas is a high current ({approximately} 30 MA peak, with a current risetime {approximately} 4.5 {micro}sec), high energy (E{sub stored} = 24 MJ, E{sub load} = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression ({rho}/{rho}{sub 0} > 5, P > 10 Mbar), high magnetic fields ({approximately} 2,000 T), high strain and strain rates ({var_epsilon} > 200%, d{var_epsilon}/dt {approximately} 10{sup 4} to 10{sup 6} s{sup {minus}1}), hydrodynamicmore » instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold ({approximately} 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of {approximately} 1.1 times solid, achieve ion and electron temperatures of {approximately} 10 eV, and pressures of {approximately} 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and will be completed before the start of operation of Atlas.« less
Average features of the muon component of EAS or = 10(17) eV
NASA Technical Reports Server (NTRS)
Blake, P. R.; Luksys, M.; Nash, W. F.; Sephton, A. J.
1985-01-01
Three 10 sq m liquid scintillators were situated at approximately 0 m, 150 m and 250 m from the center of the Haverah Park array. The detectors were shielded by lead/barytes giving muon detection thresholds of 317 MeV, 431 MeV and 488 MeV respectively. During part of the operational period the 431 MeV threshold was lowered to 313 MeV for comparison purposes. For risetime measurement fast phototubes were used and the 10% to 70% amplitude time interval was parameterized by T sub 70. A muon lateral density distribution of the form rho mu (R theta) = krho(500)0.94 1/R(1 + R/490)-eta has been fitted to the data for 120 m R 600 m and 0.27 (500) 2.55. The shower size parameter (500) is the water Cerenkov response at 500 m from the core of the extensive air showers (EAS) and is relatable to the primary energy. The results show general consistency.
Extremum seeking-based optimization of high voltage converter modulator rise-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinker, Alexander; Bland, Michael; Krstic, Miroslav
2013-02-01
We digitally implement an extremum seeking (ES) algorithm, which optimizes the rise time of the output voltage of a high voltage converter modulator (HVCM) at the Los Alamos Neutron Science Center (LANSCE) HVCM test stand by iteratively, simultaneously tuning the first 8 switching edges of each of the three phase drive waveforms (24 variables total). We achieve a 50 μs rise time, which is reduction in half compared to the 100 μs achieved at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Considering that HVCMs typically operate with an output voltage of 100 kV, with a 60Hz repetitionmore » rate, the 50 μs rise time reduction will result in very significant energy savings. The ES algorithm will prove successful, despite the noisy measurements and cost calculations, confirming the theoretical results that the algorithm is not affected by noise whose frequency components are independent of the perturbing frequencies.« less
Juno‐UVS approach observations of Jupiter's auroras
Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Davis, M. W.; Gérard, J.‐C.; Grodent, D. C.; Bonfond, B.; Nichols, J. D.; Wilson, R. J.; Hospodarsky, G. B.; Bolton, S. J.; Levin, S. M.; Connerney, J. E. P.; Adriani, A.; Kurth, W. S.; Mauk, B. H.; Valek, P.; McComas, D. J.; Orton, G. S.; Bagenal, F.
2017-01-01
Abstract Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno‐UVS observations of Jupiter's auroral emissions, acquired during 3–29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3–4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h. PMID:28989207
Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.
1998-10-13
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
1998-01-01
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
NASA Astrophysics Data System (ADS)
Collins, Gilbert; Valenzuela, Julio; Beg, Farhat
2016-10-01
We have studied the collision of counter-propagating plasma flows using opposing conical wire arrays driven by the 200kA, 150ns rise-time `GenASIS' driver. These plasma flows produced weakly collisional, well-defined bow-shock structures. Varying initial parameters such as the opening angle of the array and the atomic mass of the wires allowed us to modify quantities such as the density contrast between jets, intra-jet mean free path (λmfp, scales with v, atomic mass A, and ionization state Zi-4) , Reynolds number (Re, scales with AZ), and the Peclet number (Pe, scales with Z). We calculate these dimensionless quantities using schlieren imagery, interferometry, and emission data, and determine whether they meet the scaling criteria necessary for the comparison to and subsequent study of astrophysical plasmas. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.
Computational Modeling of Meteor-Generated Ground Pressure Signatures
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.
2017-01-01
We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate the steady, inviscid flow of air in thermochemical equilibrium to compute the meteoroid's near-body pressure signature. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology adapted from aircraft sonic-boom analysis. An assessment of the numerical accuracy of the near field and the far field solver is presented. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform, and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C. L.; Funk, L. L.; Riedel, R. A.
3He gas based neutron linear-position-sensitive detectors (LPSDs) have been applied for many neutron scattering instruments. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio on the orders of 10 5-10 6. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher linear discriminant analysis (FLDA)more » and three multivariate analyses (MVAs) of the features were performed. The NGD ratios are improved by about 10 2-10 3 times compared with the traditional PHA method. Finally, our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.« less
NASA Astrophysics Data System (ADS)
Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James
2014-10-01
Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2012-10-01
New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.
Baculis, Brian Charles; Valenzuela, Carlos Fernando
2015-12-02
Ethanol exposure during the rodent equivalent to the 3(rd) trimester of human pregnancy (i.e., first 1-2 weeks of neonatal life) has been shown to produce structural and functional alterations in the CA3 hippocampal sub-region, which is involved in associative memory. Synaptic plasticity mechanisms dependent on retrograde release of brain-derived neurotrophic factor (BDNF) driven by activation of L-type voltage-gated Ca(2+) channels (L-VGCCs) are thought to play a role in stabilization of both GABAergic and glutamatergic synapses in CA3 pyramidal neurons. We previously showed that ethanol exposure during the first week of life blocks BDNF/L-VGCC-dependent long-term potentiation of GABAA receptor-mediated synaptic transmission in these neurons. Here, we tested whether this effect is associated with lasting alterations in GABAergic and glutamatergic transmission. Rats were exposed to air or ethanol for 3 h/day between postnatal days three and five in vapor inhalation chambers, a paradigm that produces peak serum ethanol levels near 0.3 g/dl. Whole-cell patch-clamp electrophysiological recordings of spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs, respectively) were obtained from CA3 pyramidal neurons in coronal brain slices prepared at postnatal days 13-17. Ethanol exposure did not significantly affect the frequency, amplitude, rise-time and half-width of either sIPSCs or sEPSCs. We show that an ethanol exposure paradigm known to inhibit synaptic plasticity mechanisms that may participate in the stabilization of GABAergic and glutamatergic synapses in CA3 pyramidal neurons does not produce lasting functional alterations in these synapses, suggesting that compensatory mechanisms restored the balance of excitatory and inhibitory synaptic transmission.
Modeling, measuring, and mitigating instability growth in liner implosions on Z
NASA Astrophysics Data System (ADS)
Peterson, Kyle
2015-11-01
Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
In-Situ Wire Damage Detection System
NASA Technical Reports Server (NTRS)
Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott
2012-01-01
An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.
NASA Astrophysics Data System (ADS)
Shen, Jyi-Lai; Wei, Shui-Ken; Lin, Chin-Yuan; Iong Li, Ssu; Huang, Chih-Chuan
2010-04-01
The configuration of a simple improved high efficiency automatic-power-controlled and gain-clamped EDFA (APC-GC-EDFA) for broadband passive optical networking systems (BPON) is presented here. In order to compensate the phase and amplitude variation due to the different distance between the optical line terminal (OLT) and optical network units (ONU), the APC-GC-EDFA need to be employed. A single 980 nm laser module is employed as the primary pump. To extend the bandwidth, all C-band ASE is recycled as the secondary pump to enhance the gain efficiency. An electrical feedback circuit is used as a multi-wavelength channel transmitter monitor for the automatic power control to improve the gain-flattened flatness for stable amplification. The experimental results prove that the EDFA system can provide flatter clamped gain in both C-band and L-band configurations. The gain flatness wavelength ranging from 1530 to 1610 nm is within 32.83 ± 0.64 dB, i.e. below 1.95 %. The gains are clamped at 33.85 ± 0.65 dB for the input signal power of -40 dBm to -10 dBm. The range of noise figure is between 6.37 and 6.56, which is slightly lower compared to that of unclamped amplifiers. This will be very useful for measuring the gain flatness of APC-GC-EDFA. Finally, we have also demonstrated the records of the overall simultaneous dynamics measurements for the new system stabilization. The carrier to noise ratio (CNR) is 49.5 to 50.8 dBc which is above the National Television System Committee (NTSC) standard of 43 dBc, and both composite second order (CSO) 69.2 to 71.5 dBc and composite triple beat (CTB) of 69.8 to 72.2 dBc are above 53 dBc. The recorded corresponding rise-time of 1.087 ms indicates that the system does not exhibit any overshoot of gain or ASE variation due to the signal at the beginning of the pulse.
NASA Astrophysics Data System (ADS)
Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic
2017-04-01
On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.
NASA Astrophysics Data System (ADS)
Sands, Brian L.; Ganguly, Biswa N.
2013-12-01
The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.
Improved neutron-gamma discrimination for a 3He neutron detector using subspace learning methods
Wang, C. L.; Funk, L. L.; Riedel, R. A.; ...
2017-02-10
3He gas based neutron linear-position-sensitive detectors (LPSDs) have been applied for many neutron scattering instruments. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio on the orders of 10 5-10 6. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher linear discriminant analysis (FLDA)more » and three multivariate analyses (MVAs) of the features were performed. The NGD ratios are improved by about 10 2-10 3 times compared with the traditional PHA method. Finally, our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.« less
Numerical prediction of meteoric infrasound signatures
NASA Astrophysics Data System (ADS)
Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.
2017-06-01
We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. This is the first direct comparison of computational results with well-calibrated observations that include trajectories, optical masses and ground pressure signatures. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate a steady, inviscid flow of air in thermochemical equilibrium to compute a near-body pressure signature of the meteoroid. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology from aircraft sonic-boom analysis. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in primarily the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.
Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches
NASA Astrophysics Data System (ADS)
Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David
2016-10-01
The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.
Shock characterization of TOAD pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirick, L.J.; Navarro, N.J.
1995-08-01
The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degrees}, 60{degrees}, and 80{degrees}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degrees}C (125{degrees}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degrees}C for nine weeks and then heated to 50.2{degrees}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves.« less
Development of modular scalable pulsed power systems for high power magnetized plasma experiments
NASA Astrophysics Data System (ADS)
Bean, I. A.; Weber, T. E.; Adams, C. S.; Henderson, B. R.; Klim, A. J.
2017-10-01
New pulsed power switches and trigger drivers are being developed in order to explore higher energy regimes in the Magnetic Shock Experiment (MSX) at Los Alamos National Laboratory. To achieve the required plasma velocities, high-power (approx. 100 kV, 100s of kA), high charge transfer (approx. 1 C), low-jitter (few ns) gas switches are needed. A study has been conducted on the effects of various electrode geometries and materials, dielectric media, and triggering strategies; resulting in the design of a low-inductance annular field-distortion switch, optimized for use with dry air at 90 psig, and triggered by a low-jitter, rapid rise-time solid-state Linear Transformer Driver. The switch geometry and electrical characteristics are designed to be compatible with Syllac style capacitors, and are intended to be deployed in modular configurations. The scalable nature of this approach will enable the rapid design and implementation of a wide variety of high-power magnetized plasma experiments. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. Approved for unlimited release, LA-UR-17-2578.
Calibration and Characterization of the UNCB and Nab Detectors
NASA Astrophysics Data System (ADS)
Zeck, Bryan; UCNB Collaboration; Nab Collaboration
2017-09-01
The UCNB and Nab experiments are designed to produce precision measurements of the free neutron decay angular correlations B, a, and b. Measurements of B and a require a coincident detection of the proton and electron produced in neutron decay, while for b, which manifests as a subtle shift in the electron energy spectrum, energy resolution better than 3 keV is desired and excellent fidelity for energy reconstruction is required, including characterization of non-linearity to the 10-4 level. To this end, a thick segmented silicon detector with a 100 nm dead layer and a 100 cm active area has been extensively characterized at LANL. The thin dead layer allows protons accelerated to 30 keV to deposit energy above threshold in the active volume of the detector, and the paired amplifer chain, developed at LANL, has a risetime of approximately 40 ns. Comparison of simulation to experiment reveals a detector resolution better than σ = 2.5 keV. A complete characterization of the detector will be presented. This work has been supported by Grants from the US National Science Foundation and the Department of Energy.
NASA Astrophysics Data System (ADS)
Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr
2018-03-01
Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.
Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys
NASA Technical Reports Server (NTRS)
Mason, Mark E.; Gangloff, Richard P.
1994-01-01
Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.
The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.
2010-01-01
We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that amore » single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.« less
Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Richard P.; Gold, Steven H.
2016-07-01
The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less
Delivery and application of precise timing for a traveling wave powerline fault locator system
NASA Technical Reports Server (NTRS)
Street, Michael A.
1990-01-01
The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.
Shock characterization of toad pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirick, L.J.; Navarro, M.J.
1996-05-01
The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degree}, 60{degree} and 80{degree}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degree}C (125{degree}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degree}C for nine weeks and then heated to 50.2{degree}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves. {copyright} {ital 1996 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Hogiu, S.; Werncke, W.; Pfeiffer, M.; Dreyer, J.; Elsaesser, T.
2000-07-01
Vibrational relaxation in the electronic ground state initiated by intramolecular back-electron transfer (b-ET) of betaine-30 (B-30) is studied by picosecond time-resolved anti-Stokes Raman spectroscopy. Measurements were carried out with B-30 dissolved in slowly as well as in rapidly relaxing solvents. We observed a risetime of the Raman band with the highest frequency near 1600 cm-1 which is close to the b-ET time τb-ET of B-30. For B-30 dissolved in propylene carbonate (τb-ET˜1 ps), the population of this mode exhibits a rise time of 1 ps whereas vibrational populations between 400 and 1400 cm-1 increase substantially slower. In contrast, in glycerol triacetin (τb-ET˜3.5 ps) and in ethanol (τb-ET˜6 ps) rise times of all modes are close to the respective b-ET times. Within the first few picoseconds, direct vibrational excitation through b-ET is favored for modes with the highest frequencies and high Franck-Condon factors. Later on, indirect channels of population due to vibrational energy redistribution (IVR) become effective. Thermal equilibrium populations of the Raman active modes are established within 10 to 15 ps after optical excitation.
Automatic EEG spike detection.
Harner, Richard
2009-10-01
Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.
NASA Technical Reports Server (NTRS)
Cobb, Stephen H.
1991-01-01
An evaluation of prospective laser materials for a space-based solar pumped laser system over the past decade has resulted in the identification of the iodine photodissociation laser as that system best suited to solar-pumped high energy operation. The active medium for the solar-pumped iodine photodissociation laser is from the family of perfluoroalkyl iodides. These lasants have the general form C(n)F(2n + 1)I, often abbreviated as RI. These iodides are known to exhibit photodissociaiton of the C-I bond when irradiated by near UV photons. The focus was on the experimental determination of the lifetime of the excited iodine atom following photodissociation of C4F9I, and also to monitor fluorescence from the iodine molecule at 500 nm to determine if I2 is being produced in the process. Photodissociation is achieved using an XeCl excimer laser with an output wavelength of 308 nm. The XeCl beam is focused into the middle of a cylindrical quartz cell containing the lasant. The laser pulse is detected with a fast risetime photomultiplier tube as it exits the cell. Other aspects of the investigation are discussed.
NASA Astrophysics Data System (ADS)
Burkins, Paul; Basaldua, Isaac; Kuis, Robinson; Johnson, Anthony; Swaminathan, Sivaram; Zhang, Daije; Trivedi, Sudhir; University of Maryland, Baltimore Maryland Team; Brimrose Corporation of America Collaboration
Acoustic and thermal diffusion effects are often ignored in Z-scan measurements resulting in misinterpretation of the nonlinear index of refraction and nonlinear absorption. Thermally managed Z-scan using a modified chopper was compared to utilizing a pulsepicker with the common calibration material CS2 and then extended to Graphene Oxide (GO) in different solvents. The chopper reveals properties of the material in time and is an inexpensive alternative to changing the repetition rate with a pulsepicker. The pulsepicker allows for much faster rise-times and therefore measurements can be taken before thermal effects have overwhelmed the nonlinear electronic response. GO in DI water using pulsepicked fs laser excitation yielded a value of (-1.79 +/-.6)x10-15 cm2/W for nanometer particles and (-1.09 +/-.6)x10-15 cm2/W for micrometer sized particles. Open aperture Z-scan of GO in THF using the modified chopper shows a flip from reverse saturable absorption to saturable absorption in time, previously shown to be intensity dependent, potentially resulting from thermal effects. Both measurements indicate smaller particles have larger negative nonlinearities originating from thermal effects or from defects in lattice structure at the edges.
NASA Astrophysics Data System (ADS)
Houlahan, Thomas J., Jr.; Su, Rui; Eden, Gary
2014-06-01
Using a pulsed plasma microjet to generate short-lived, electronically-excited diatomic molecules, and subsequently ejecting them into vacuum to cool via supersonic expansion, we are able to monitor the cooling of molecules having radiative lifetimes as low as 16 ns. Specifically, we report on the rotational cooling of He_2 molecules in the d^3Σ_u^+, e^3Π_g, and f^3Σ_u^+ states, which have lifetimes of 25 ns, 67 ns, and 16 ns, respectively. The plasma microjet is driven with a 2.6 kV, 140 ns high-voltage pulse (risetime of 20 ns) which, when combined with a high-speed optical imaging system, allows the nonequilibrium rotational distribution for these molecular states to be monitored as they cool from 1200 K to below 250 K with spatial and temporal resolutions of below 10 μm and 10 ns, respectively. The spatial and temporal resolution afforded by this system also allows the observation of excitation transfer between the f^3Σ_u^+ state and the lower lying d^3Σ_u^+ and e^3Π_g states. The extension of this method to other electronically excited diatomics with excitation energies >5 eV will also be discussed.
NASA Technical Reports Server (NTRS)
Vorpahl, J. A.
1972-01-01
A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.
Report on the Brookhaven Solar Neutrino Experiment
DOE R&D Accomplishments Database
Davis, R. Jr.; Evans, J. C. Jr.
1976-09-22
This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.
NASA Technical Reports Server (NTRS)
Ranitzsch, P. C.-O.; Porst, J.-P.; Kempf, S.; Pies, C.; Schafer, S.; Hengstler, D.; Fleischmann, A.; Enss, C.; Gastaldo, L.
2012-01-01
The measurement of calorimetric spectra following atomic weak decays, beta (b) and electron capture (EC), of nuclides having a very low Q-value, can provide an impressively high sensitivity to a non-vanishing neutrino mass. The achievable sensitivity in this kind of experiments is directly connected to the performance of the used detectors. In particular an energy resolution of a few eV and a pulse formation time well below 1 microsecond are required. Low temperature Metallic Magnetic Calorimeters (MMCs) for soft X-rays have already shown an energy resolution of 2.0 eV FWHM and a pulse rise-time of about 90 ns for fully micro-fabricated detectors. We present the use of MMCs for high precision measurements of calorimetric spectra following the beta-decay of Re-187 and the EC of Ho-163. We show results obtained with detectors optimized for Re-187 and for Ho-163 experiments respectively. While the detectors equipped with superconducting Re absorbers have not yet reached the aimed performance, a first detector prototype with a Au absorber having implanted Ho-163 ions already shows excellent results. An energy resolution of 12 eV FWHM and a rise time of 90 ns were measured.
NASA Astrophysics Data System (ADS)
Yang, Ching-Mei
1995-01-01
P-i-n diodes containing multiple quantum wells (MQWs) in the i-region are the building blocks for photonic devices. When we apply electric field across these devices and illuminate it with light, photo-carriers are created in the i-region. These carriers escape from the wells and drift toward the electrodes; thus photo-voltage is created. The rise- and decay-times of photo-voltages are related to the transport of carriers. In this dissertation, we present theoretical and experimental studies on carrier transport mechanisms of three shallow MQW GaAs/Al _{x}Ga_{1-x}As p-i-n diodes (x = 0.02, 0.04, 0.08) at various bias voltages. We start with the description of the sample structures and their package. We then present the characteristics of these samples including their transmission spectra and responsivity. We will demonstrate that the over-all high quality of these samples, including a strong exciton resonant absorption, ~100% internal quantum efficiencies and completely depleted i-region at bias between +0.75 V to -5 V bias. In our theoretical studies, we first discuss the possible carrier sweep-out mechanisms and estimate the response times associated with these mechanisms. Based on our theoretical model, we conclude that only the drift times of carriers and enhanced diffusion times are important for shallow MQW p-i-n diodes: at high bias, the fast drift times of electrons and holes control the rise-times; at low bias, the slow drift times of holes and the enhanced diffusion times control the decay-times. We have performed picosecond time-resolved pump/probe electro-absorption measurements on these samples. We then obtained the drift times, effective drift velocities and effective mobilities of electrons and holes for these devices. We find that the carrier effective drift velocities (especially for holes) seemed insensitive to the Al concentration in the barriers (in the range of x = 2% to 8%), even though the x = 2% sample does show an overall faster response time. We think the slight difference of the rise- and decay-times of these devices may also be affected by random differences between the samples.
NASA Astrophysics Data System (ADS)
Yamamoto, N.; Aoi, S.; Hirata, K.; Suzuki, W.; Kunugi, T.; Nakamura, H.
2015-12-01
We started to develop a new methodology for real-time tsunami inundation forecast system (Aoi et al., 2015, this meeting) using densely offshore tsunami observations of the Seafloor Observation Network for Earthquakes and Tsunamis (S-net), which is under construction along the Japan Trench (Kanazawa et al., 2012, JpGU; Uehira et al., 2015, IUGG). In our method, the most important concept is involving any type and/or form uncertainties in the tsunami forecast, which cannot be dealt with any of standard linear/nonlinear least square approaches. We first prepare a Tsunami Scenario Bank (TSB), which contains offshore tsunami waveforms at the S-net stations and tsunami inundation information calculated from any possible tsunami source. We then quickly select several acceptable tsunami scenarios that can explain offshore observations by using multiple indices and appropriate thresholds, after a tsunami occurrence. At that time, possible tsunami inundations coupled with selected scenarios are forecasted (Yamamoto et al., 2014, AGU). Currently, we define three indices: correlation coefficient and two variance reductions, whose L2-norm part is normalized either by observations or calculations (Suzuki et al., 2015, JpGU; Yamamoto et al., 2015, IUGG). In this study, we construct the TSB, which contains various tsunami source models prepared for the probabilistic tsunami hazard assessment in the Japan Trench region (Hirata et al., 2014, AGU). To evaluate the propriety of our method, we adopt the fault model based on the 2011 Tohoku earthquake as a pseudo "observation". We also calculate three indices using coastal maximum tsunami height distributions between observation and calculation. We then obtain the correlation between coastal and offshore indices. We notice that the index value of coastal maximum tsunami heights is closer to 1 than the index value of offshore waveforms, i.e., the coastal maximum tsunami height may be predictable within appropriate thresholds defined for offshore indices. We also investigate the effect of rise-time. This work was partially supported by the Council for Science, Technology and Innovation (CSTI) through the Cross-ministerial Strategic Innovation Promotion Program (SIP), titled "Enhancement of societal resiliency against natural disasters" (Funding agency: JST).
Phase Transitions in Aluminum Under Shockless Compression at the Z Machine
NASA Astrophysics Data System (ADS)
Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus
2017-06-01
Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.
Multimodal imaging of temporal processing in typical and atypical language development.
Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan
2015-03-01
New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development. © 2014 New York Academy of Sciences.
Dual current readout for precision plating
NASA Technical Reports Server (NTRS)
Iceland, W. F.
1970-01-01
Bistable amplifier prevents damage in the low range circuitry of a dual scale ammeter. It senses the current and switches automatically to the high range circuitry as the current rises above a preset level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. As a result, the use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO 3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.
1984-01-01
We have developed and used an optical-fiber sensor for detecting the arrival of strong pressure pulses. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pinmore » by analogy to standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per/sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. We have also measured the sensitivity of the optical pins to slowly-moving projectiles and found that a 200 m/sec projectile impacting the microballoon sensor produces a flash having a risetime less than 100 ns and a pulse duration (FWHM) of less than 300 ns. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less
A 7.2 keV spherical crystal backlighter system for Sandia's Z Pulsed Power Facility
NASA Astrophysics Data System (ADS)
Schollmeier, M.; Knapp, P. F.; Ampleford, D. J.; Loisel, G. P.; Robertson, G.; Shores, J. E.; Smith, I. C.; Speas, C. S.; Porter, J. L.; McBride, R. D.
2016-10-01
Many experiments on Sandia's Z facility, a 30 MA, 100 ns rise-time, pulsed-power driver, use a monochromatic Quartz crystal imaging backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array. The x-ray source is generated by the Z-Beamlet Laser (ZBL), which provides up to 4.5 kJ at 527 nm during a 6 ns window. Radiographs of an imploding thick-walled Beryllium liner at a convergence ratio of about 20 [CR =Rin . (0) /Rin . (t) ] were too opaque to identify the inner surface of the liner with high confidence, demonstrating the need for a higher-energy x-ray backlighter between 6 and 10 keV. We present the design, test and first application of a Ge (335) spherical crystal x-ray backlighter system using the 7.242 keV Co Heα resonance line. The system operates at an almost identical Bragg angle as the existing 1.865 and 6.151 keV backlighters, enhancing our capabilities such as two-color, two-frame radiography, without changing detector shielding hardware. SAND No: SAND2016-6724 A. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DoE NNSA under contract DE-AC04-94AL85000.
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; ...
2016-10-17
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
NASA Astrophysics Data System (ADS)
Schollmeier, M. S.; Knapp, P. F.; Ampleford, D. J.; Harding, E. C.; Jennings, C. A.; Lamppa, D. C.; Loisel, G. P.; Martin, M. R.; Robertson, G. K.; Shores, J. E.; Smith, I. C.; Speas, C. S.; Weis, M. R.; Porter, J. L.; McBride, R. D.
2017-10-01
Many experiments on Sandia National Laboratories' Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α ) or 6.151 keV (Mn He α ) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [ C R = r i ( 0 ) / r i ( t ) ] using the 6.151-keV backlighter system were too opaque to identify the inner radius r i of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.
Schollmeier, M. S.; Knapp, P. F.; Ampleford, D. J.; ...
2017-10-10
Many experiments on Sandia National Laboratories’ Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α) or 6.151 keV (Mn He α) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios C R above 15 [C R=r i(0)/r i(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the linermore » with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (C R about 4-5), high-areal-density liner implosions.« less
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa
2011-10-01
For plasma processing applications of streamer-like atmospheric pressure plasma jets generated in a dielectric capillary, we have demonstrated that an admixture of Ar to the He gas flow greatly increases the lifetime of energetic species in the core flow through enhanced afterglow production of Ar 1s5 metastable species. To study this effect in more detail, we have used a closed-cell plasma jet that allows control over the background gas pressure and composition. We used a 20 ns risetime positive unipolar voltage pulse for excitation. A He flow with a 0-30% Ar admixture was studied using time-resolved emission and tunable diode laser absorption spectroscopy of the Ar 1s5 and He 23S metastable states. Nitrogen was used as the background gas. In pure He and pure Ar gases the He and Ar metastables respectively are produced in the first ~100 ns only in the active discharge. With Ar added to the He gas flow, He metastables produced in the active discharge are quickly quenched via Penning ionization of Ar while Ar 1s5 is enhanced over 1-2 μs in the afterglow, increasing the number density as high as 1013/cc and extending the effective lifetime up to 10 μs. This implies that He heavy particle kinetics are a key driver of enhanced afterglow plasma chemistry in plasma jets with rare gas mixtures.
Picosecond Vibrational Spectroscopy of Shocked Energetic Materials
NASA Astrophysics Data System (ADS)
Franken, Jens; Hare, David; Hambir, Selezion; Tas, Guray; Dlott, Dana
1997-07-01
We present a new technique which allows the study of the properties of shock compressed energetic materials via vibrational spectroscopy with a time resolution on the order of 25 ps. Shock waves are generated using a near-IR laser at a repetition rate of 80 shocks per second. Shock pressures up to 5 GPa are obtained; shock risetimes are as short as 25 ps. This technique enables us to estimate shock pressures and temperatures as well as to monitor shock induced chemistry. The shock effects are probed by ps coherent anti-Stokes Raman spectroscopy (CARS). The sample consists of four layers, a glass plate, a thin polycrystalline layer of an energetic material, a buffer layer and the shock generating layer. The latter is composed of a polymer, a near-IR absorbing dye and a high explosive (RDX) as a pressure booster. The main purpose of the buffer layer, which consists of an inert polymer, is to delay the arrival of the shock wave at the sample by more than 1 ns until after the shock generating layer has ablated away. High quality, high resolution (1 cm-1) low-background vibrational spectra could be obtained. So far this technique has been applied to rather insensitive high explosives such as TATB and NTO. In the upcoming months we are hoping to actually observe chemistry in real time by shocking more sensitive materials. This work was supported by the NSF, the ARO and the AFOSR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schollmeier, M. S.; Knapp, P. F.; Ampleford, D. J.
Many experiments on Sandia National Laboratories’ Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α) or 6.151 keV (Mn He α) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios C R above 15 [C R=r i(0)/r i(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the linermore » with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (C R about 4-5), high-areal-density liner implosions.« less
A new moonquake catalog from Apollo 17 geophone data
NASA Astrophysics Data System (ADS)
Dimech, Jesse-Lee; Knapmeyer-Endrun, Brigitte; Weber, Renee
2017-04-01
New lunar seismic events have been detected on geophone data from the Apollo 17 Lunar Seismic Profile Experiment (LSPE). This dataset is already known to contain an abundance of thermal seismic events, and potentially some meteorite impacts, but prior to this study only 26 days of LSPE "listening mode" data has been analysed. In this new analysis, additional listening mode data collected between August 1976 and April 1977 is incorporated. To the authors knowledge these 8-months of data have not yet been used to detect seismic moonquake events. The geophones in question are situated adjacent to the Apollo 17 site in the Taurus-Littrow valley, about 5.5 km east of Lee-Lincoln scarp, and between the North and South Massifs. Any of these features are potential seismic sources. We have used an event-detection and classification technique based on 'Hidden Markov Models' to automatically detect and categorize seismic signals, in order to objectively generate a seismic event catalog. Currently, 2.5 months of the 8-month listening mode dataset has been processed, totaling 14,338 detections. Of these, 672 detections (classification "n1") have a sharp onset with a steep risetime suggesting they occur close to the recording geophone. These events almost all occur in association with lunar sunrise over the span of 1-2 days. One possibility is that these events originate from the nearby Apollo 17 lunar lander due to rapid heating at sunrise. A further 10,004 detections (classification "d1") show strong diurnal periodicity, with detections increasing during the lunar day and reaching a peak at sunset, and therefore probably represent thermal events from the lunar regolith immediately surrounding the Apollo 17 landing site. The final 3662 detections (classification "d2") have emergent onsets and relatively long durations. These detections have peaks associated with lunar sunrise and sunset, but also sometimes have peaks at seemingly random times. Their source mechanism has not yet been investigated. It's possible that many of these are misclassified d1/n1 events, and further QC work needs to be undertaken. But it is also possible that many of these represent more distant thermal moonquakes e.g. from the North and South massif, or even the ridge adjacent to the Lee-Lincoln scarp. The unknown event spikes will be the subject of closer inspection once the HMM technique has been refined.
The effects of vertical motion on the performance of current meters
Thibodeaux, K.G.; Futrell, J. C.
1987-01-01
A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)
Current transport mechanisms in mercury cadmium telluride diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale
This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less
Voltage controlled current source
Casne, Gregory M.
1992-01-01
A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.
Constraints to species' elevational range shifts as climate changes.
Forero-Medina, German; Joppa, Lucas; Pimm, Stuart L
2011-02-01
Predicting whether the ranges of tropical species will shift to higher elevations in response to climate change requires models that incorporate data on topography and land use. We incorporated temperature gradients and land-cover data from the current ranges of species in a model of range shifts in response to climate change. We tested four possible scenarios of amphibian movement on a tropical mountain: movement upslope through and to land cover suitable for the species; movement upslope to land-cover types that will not sustain survival and reproduction; movement upslope to areas that previously were outside the species' range; and movement upslope to cooler areas within the current range. Areas in the final scenario will become isolated as climate continues to change. In our scenarios more than 30% of the range of 21 of 46 amphibian species in the tropical Sierra Nevada de Santa Marta is likely to become isolated as climate changes. More than 30% of the range of 13 amphibian species would shift to areas that currently are unlikely to sustain survival and reproduction. Combined, over 70% of the current range of seven species would become thermally isolated or shift to areas that currently are unlikely to support survival and reproduction. The constraints on species' movements to higher elevations in response to climate change can increase considerably the number of species threatened by climate change in tropical mountains. ©2010 Society for Conservation Biology.
A new instrument designedfor frequency-domain sounding in the depth range 0-10 m uses short coil spacings of 5 m or less and a frequency range of 300 kHz to 30 MHz. In this frequency range, both conduction currents (controlled by electrical conductibity) and displacement currents...
Unattended Dual Current Monitor (UDCM) FY17 Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, Matthew R.
The UDCM is a low current measurement device designed to record pico-amp to micro-amp currents from radiation detectors. The UDCM is the planned replacement for the IAEA’s obsolete MiniGRAND data acquisition module. Preliminary testing of the UDCM at the IAEA facilities lead to the following recommendations from the IAEA: Increase the measurement range. Lower range by a factor of 5 and upper range by 2 orders of magnitude; Modifications to the web interface; Increase programmable acquisition time to 3600s; Develop a method to handle current offsets and negative current; Error checking when writing data to the uSD card; and Writingmore » BID files along with the currently stored BI0 files.« less
Duan, Ren-Yan; Kong, Xiao-Quan; Huang, Min-Yi; Varela, Sara; Ji, Xiang
2016-01-01
Many studies predict that climate change will cause species movement and turnover, but few have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change may cause a major shift in spatial patterns of amphibian diversity. Amphibians in China would lose 20% of their original ranges on average; the distribution outside current ranges would increase by 15%. Suitable habitats for over 90% of species will be located in the north of their current range, for over 95% of species in higher altitudes (from currently 137-4,124 m to 286-4,396 m in the 2050s or 314-4,448 m in the 2070s), and for over 75% of species in the west of their current range. Also, our results predict two different general responses to the climate change: some species contract their ranges while moving westwards, southwards and to higher altitudes, while others expand their ranges. Finally, our analyses indicate that range dynamics and fragmentation are related, which means that the effects of climate change on Chinese amphibians might be two-folded.
Huang, Min-Yi; Varela, Sara
2016-01-01
Many studies predict that climate change will cause species movement and turnover, but few have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change may cause a major shift in spatial patterns of amphibian diversity. Amphibians in China would lose 20% of their original ranges on average; the distribution outside current ranges would increase by 15%. Suitable habitats for over 90% of species will be located in the north of their current range, for over 95% of species in higher altitudes (from currently 137–4,124 m to 286–4,396 m in the 2050s or 314–4,448 m in the 2070s), and for over 75% of species in the west of their current range. Also, our results predict two different general responses to the climate change: some species contract their ranges while moving westwards, southwards and to higher altitudes, while others expand their ranges. Finally, our analyses indicate that range dynamics and fragmentation are related, which means that the effects of climate change on Chinese amphibians might be two-folded. PMID:27547522
NASA Astrophysics Data System (ADS)
Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu
2017-10-01
An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing.
Dai, Shanshan; Perera, Rukshan T; Yang, Zi; Rosenstein, Jacob K
2016-10-01
An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.
Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J
2018-01-01
Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.
Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2007-01-01
While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.
Transistor circuit increases range of logarithmic current amplifier
NASA Technical Reports Server (NTRS)
Gilmour, G.
1966-01-01
Circuit increases the range of a logarithmic current amplifier by combining a commercially available amplifier with a silicon epitaxial transistor. A temperature compensating network is provided for the transistor.
Eddy current technique for predicting burst pressure
Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.
2003-01-01
A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, R. A.; Aghamir, F. M.
The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less
Method to produce American Thoracic Society flow-time waveforms using a mechanical pump.
Hankinson, J L; Reynolds, J S; Das, M K; Viola, J O
1997-03-01
The American Thoracic Society (ATS) recently adopted a new set of 26 standard flow-time waveforms for use in testing both diagnostic and monitoring devices. Some of these waveforms have a higher frequency content than present in the ATS-24 standard volume-time waveforms, which, when produced by a mechanical pump, may result in a pump flow output that is less than the desired flow due to gas compression losses within the pump. To investigate the effects of gas compression, a mechanical pump was used to generate the necessary flows to test mini-Wright and Assess peak expiratory flow (PEF) meters. Flow output from the pump was measured by two different independent methods, a pneumotachometer and a method based on piston displacement and pressure measured within the pump. Measuring output flow based on piston displacement and pressure has been validated using a pneumotachometer and mini-Wright PEF meter, and found to accurately measure pump output. This method introduces less resistance (lower back-pressure) and dead space volume than using a pneumotachometer in series with the meter under test. Pump output flow was found to be lower than the desired flow both with the mini-Wright and Assess meters (for waveform No. 26, PEFs 7.1 and 10.9% lower, respectively). To compensate for losses due to gas compression, we have developed a method of deriving new input waveforms, which, when used to drive a commercially available mechanical pump, accurately and reliably produces the 26 ATS flow-time waveforms, even those with the fastest rise-times.
Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode
NASA Astrophysics Data System (ADS)
Angelico, E.; Seiss, T.; Adams, B.; Elagin, A.; Frisch, H.; Spieglan, E.
2017-02-01
We have designed and tested a robust 20×20 cm2 thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al2O3 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm2 array of 2-dimensional square 'pads' with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.
Exploring the daily activities associated with delayed bedtime of Japanese university students.
Asaoka, Shoichi; Komada, Yoko; Fukuda, Kazuhiko; Sugiura, Tatsuki; Inoue, Yuichi; Yamazaki, Katuo
2010-07-01
University students show delayed sleep-wake patterns, i.e., later bed- and rise-times, and this pattern is known to be associated with various malfunctions. There may be a variety of daily activities associated with their delayed sleep patterns, such as watching TV. However, it is unclear to what extent each activity possesses an impact on their sleep patterns. The purpose of this study was to determine the daily activities associated with delayed bedtime in Japanese university students who live with or without their families. Three hundred and thirty-one participants were required to record the timing and duration of their sleep and daily activities, and the data from the 275 students (160 men and 115 women; 19.01 +/- 1.66 years) who completely filled forms were used for analysis. The results of multiple regression analyses suggested that interpersonal communication late at night is one of the major factors leading to the delayed bedtime of students living away from home. Among those living with their families, indoor activities such as watching TV and using the Internet were related to their delayed bedtimes. Attending classes and having a morning meal were related to the earlier bedtimes of the students living away from home, but there were no activities associated with those of the students living with their families. These results suggest that ensuring attendance at morning classes and having appropriate mealtimes, as well as restricting the use of visual media and socializing activities at night, are necessary for preventing late bedtimes in university students.
Williamson, K M; Kantsyrev, V L; Safronova, A S; Wilcox, P G; Cline, W; Batie, S; LeGalloudec, B; Nalajala, V; Astanovitsky, A
2011-09-01
This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 μm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer. © 2011 American Institute of Physics
Real-time detector for hypervelocity microparticles using piezoelectric material (II)
NASA Astrophysics Data System (ADS)
Miyachi, T.; Mdm Team
This report is concerned with results on response of a piezoelectric lead-zirconate-titanate (PZT) element, by which a possible relation of output waveform to velocity at impact is studied. At first, we point out a meaning of output waveform, in particular, a behavior of the output signal within a few hundred nanoseconds immediately after impact (named as ``first one cycle''), which is free from interference with reflected waves and could contain impact hysteresis. Accordingly, we deal with the first one cycle, and analyze it with respect to its amplitude and frequency components. We obtain the following results: 1. Output amplitude is proportional to the momentum of particles below 6 km/s. 2. Its rise-time is related to the particle velocity above 10km/s. 3. There exists a transition region in between. 4. The sensitivity is confirmed to be independent of the element thickness, contrary to the results in [1,2], in which the amplitude was defined as the maximum peak-to-peak amplitude, which was outside the first one cycle. We propose that a single PZT element can be used as a velocity sensitive detector if the output signal is measured at a sampling rate of ˜ 50MHz. We discuss a PZT detector that is to be employed as a real-time dust monitor to onboard the BepiColombo mission, MDM. This could discriminate real and junk events by analyzing the waveform. [1] T.Miyachi et al., to be published in Adv. Space Rev. ( JASR 6550). [2] T.Miyachi et al., Jpn.J.Appl.Phys.42(2003)1496.
Extended focal-plane array development for the International X-ray Observatory
NASA Astrophysics Data System (ADS)
Smith, Stephen J.; Bandler, Simon R.; Beyer, Joern; Chervenak, James A.; Drung, Dietmar; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Scott Porter, F.; Sadleir, John E.
2009-12-01
We are developing arrays of transition-edge sensors (TES's) for the International X-ray observatory (IXO). The IXO microcalorimeter array will consist of a central 40×40 core of 300 μm pitch pixels with a resolution of 2.5 eV from 0.3-10 keV. To maximize the science return from the mission, an outer extended array is also required. This 52×52 array (2304 elements surrounding the core) of 600 μm pitch pixels increases the field-of-view from 2' to 5.4' with a resolution of 10 eV. However, significantly increasing the number of readout channels is unfavorable due to the increase in mass and power of the readout chain as well as adding complexity at the focal plane. Consequently, we are developing position-sensitive devices which maintain the same plate scale but at a reduced number of readout channels. One option is to use multiple absorber elements with different thermal conductances to a single TES. Position discrimination is achieved from differences in the pulse rise-time. Another new option is to inductively couple several TES's to a single SQUID. Position discrimination can be achieved by using different combinations of coupling polarity, inductive couplings and heat sink conductances. We present first results demonstrating <9 eV across four 500 μm pixels coupled to a single SQUID. A further possibility is to increase the number of channels to be time-division multiplexed in a single column at some expense in resolution. In this paper we discuss experimental results and trade-offs for these extended array options.
Chen, Yong Bin; Li, Jing; Liu, Jun Ye; Zeng, Li Hua; Wan, Yi; Li, Yu Rong; Ren, Dongqing; Guo, G Z
2011-12-01
To investigate the effects of electromagnetic pulses (EMP) on associative learning in mice and test a preliminary mechanism for these effects. A tapered parallel plate gigahertz transverse electromagnetic (GTEM) cell with a flared rectangular coaxial transmission line was used to expose male BALB/c mice to EMP (peak-intensity 400 kV/m, rise-time 10 ns, pulse-width 350 ns, 0.5 Hz and total 200 pulses). Concurrent sham-exposed mice were used as a control. Associative learning, oxidative stress in the brain, serum chemistry and the protective action of tocopherol monoglucoside (TMG) in mice were measured, respectively. (1) Twelve hour and 1 day post EMP exposure associative learning was reduced significantly compared with sham control (p<0.05) but recovered at 2 d post EMP exposure. (2) Compared with the sham control, lipid peroxidation of brain tissue and chemiluminescence (CL) intensity increased significantly (p<0.05), while the activity of the antioxidant enzymes Superoxide Dismutase [SOD], Glutathione [GSH], Glutathione Peroxidase [GSH-Px], Catalase [CAT]) decreased significantly (p<0.05) at 3 h, 6 h, 12 h and 1 d post EMP exposure. All these parameters recovered at 2 d post EMP exposure. (3) No significant differences between the sham control group and EMP exposed group were observed in serum cholesterol and triglycerides. (4) Pretreatment of mice with TMG showed protective effects to EMP exposure. EMP exposure significantly decreased associative learning in mice and TMG acted as an effective protective agent from EMP exposure. This mechanism could involve an increase of oxidative stress in brain by EMP exposure.
Larsen, T; Doll, J C; Loizeau, F; Hosseini, N; Peng, A W; Fantner, G; Ricci, A J; Pruitt, B L
2017-01-01
Electrothermal actuators have many advantages compared to other actuators used in Micro-Electro-Mechanical Systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.
Langer, Martin R.; Weinmann, Anna E.; Lötters, Stefan; Bernhard, Joan M.; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change. PMID:23405081
Langer, Martin R; Weinmann, Anna E; Lötters, Stefan; Bernhard, Joan M; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.
DSS range delay calibrations: Current performance level
NASA Technical Reports Server (NTRS)
Spradlin, G. L.
1976-01-01
A means for evaluating Deep Space Station (DSS) range delay calibration performance was developed. Inconsistencies frequently noted in these data are resolved. Development of the DSS range delay data base is described. The data base is presented with comments regarding apparent discontinuities. Data regarding the exciter frequency dependence of the delay values are presented. The improvement observed in the consistency of current DSS range delay calibration data over the performance previously observed is noted.
Tree-species range shifts in a changing climate: detecting, modeling, assisting
Louis R. Iverson; Donald McKenzie
2013-01-01
In these times of rapidly changing climate, the science of detecting and modeling shifts in the ranges of tree species is advancing of necessity. We briefly review the current state of the science on several fronts. First, we review current and historical evidence for shifting ranges and migration. Next, we review two broad categories of methods, focused on the spatial...
NASA Astrophysics Data System (ADS)
Shrestha, Ishor Kumar
The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3Á) and cold L-shell spectral lines (1-1.54Á) in the HXR region were observed only during the interaction of electron beam with load material and anode surface. These observations suggest that the mechanism of HXR emission should be associated with non-thermal mechanisms such as the interaction of the electron beam with the load material. In order to estimate the characteristics of the high-energetic electron beam in Z-pinch plasmas, a hard x-ray polarimeter (HXP) has been developed and used in experiments on the Zebra generator. The electron beams (energy more than 30keV) have been investigated with measurements of the polarization state of the emitted bremsstrahlung radiation from plasma. We also analyzed characteristics of energetic electron beams produced by implosions of multi-planar wire arrays, compact cylindrical and nested wire arrays as well as X-pinches. Direct indications of electron beams (electron cutoff energy EB from 42-250 keV) were obtained by using the measured current of a Faraday cup placed above the anode or mechanical damage observed in the anode surface. A comparison of total electron beam energy and the spatial and spectral analysis of the parameters of plasmas were investigated for different wire materials. The dependences of the total electron beam energy (E b) on the wire material and the geometry of the wire array load were studied.
Short-range transit planning : current practice and a proposed framework
DOT National Transportation Integrated Search
1984-06-01
The research described in this report explored the service and operations : planning process in the transit industry in a two-phase approach. In the first : phase a detailed assessment of current short range transit planning practice was : undertaken...
Low Cost Sensors-Current Capabilities and Gaps
1. Present the findings from the a recent technology review of gas and particulate phase sensors 2. Focus on the lower-cost sensors 3. Discuss current capabilities, estimated range of measurement, selectivity, deployment platforms, response time, and expected range of acceptabl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Babichev, A. V.; Karachinsky, L. Ya.
2015-11-15
The lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping are demonstrated. The quantum-cascade laser heterostructure is grown by molecular-beam epitaxy technique. Despite the relatively short laser cavity length and high level of external loss the laser shows the lasing in the temperature range of 80–220 K. The threshold current density below 4 kA/cm{sup 2} at 220 K with the characteristic temperature T{sub 0} = 123 K was demonstrated.
Long-range eye tracking: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaweera, S.K.; Lu, Shin-yee
1994-08-24
The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.
Fluctuation dynamics in reconnecting current sheets
NASA Astrophysics Data System (ADS)
von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas
2015-11-01
During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.
NASA Astrophysics Data System (ADS)
Tanoi, Satoru; Endoh, Tetsuo
2012-04-01
A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.
The effects of normal current density and the plasma spatial structuring in argon DBDs
NASA Astrophysics Data System (ADS)
Shkurenkov, I. A.; Mankelevich, Y. A.; Rakhimova, T. V.
2011-01-01
This paper presents the results of theoretical studies of high-pressure dielectric barrier discharges (DBD) in argon. Two different DBDs at the megahertz and the kilohertz power frequency range were simulated. The effect of normal current density was obtained in the numerical model for both types of the discharge. The discharge of megahertz range was uniform over the radius. The increase in the discharge current is accompanied by increase in the discharge area. The discharge of kilohertz range is not uniform over the radius. The concentric ring formation was observed during calculations. The increase in the discharge current occurs due to increase in the number of rings and as a result in the discharge area. The developed 2D model is able to describe only the first stage of the filament formation - the formation of concentric plasma rings. The filament formation starts at the edge of the current channel and spreads to its centre. Both the effect of normal current density and the filaments formation are caused by the nonstationarity at the current channel boundary.
Non-invasive Hall current distribution measurement in a Hall effect thruster
NASA Astrophysics Data System (ADS)
Mullins, Carl R.; Farnell, Casey C.; Farnell, Cody C.; Martinez, Rafael A.; Liu, David; Branam, Richard D.; Williams, John D.
2017-01-01
A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.
Non-invasive Hall current distribution measurement in a Hall effect thruster.
Mullins, Carl R; Farnell, Casey C; Farnell, Cody C; Martinez, Rafael A; Liu, David; Branam, Richard D; Williams, John D
2017-01-01
A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.
Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.
1989-05-01
Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1
A low-power wide range transimpedance amplifier for biochemical sensing.
Rodriguez-Villegas, Esther
2007-01-01
This paper presents a novel low voltage and low power transimpedance amplifier for amperometric potentiostats. The power is optimized by having three different gain settings for different current ranges, which can be programmed with a biasing current. The voltage ranges have been optimized by using FGMOS transistors in a second voltage amplification stage that simultaneously allow for offset calibration as well as independent biasing of the gates. The circuit operates with input currents from 1 pA to 1 microA, with a maximum power supply voltage of 1.5 V and consumes 82.5 nW, 9.825 microW, 47.325 microW for currents varying from (1 pA, 0.25 nA), (0.25 nA, 62.5 nA) and (62.5 nA, 1 microA) respectively.
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.
NASA Astrophysics Data System (ADS)
Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.
2017-05-01
High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.
LINE IDENTIFICATIONS OF TYPE I SUPERNOVAE: ON THE DETECTION OF Si II FOR THESE HYDROGEN-POOR EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrent, J. T.; Milisavljevic, D.; Soderberg, A. M.
2016-03-20
Here we revisit line identifications of type I supernovae (SNe I) and highlight trace amounts of unburned hydrogen as an important free parameter for the composition of the progenitor. Most one-dimensional stripped-envelope models of supernovae indicate that observed features near 6000–6400 Å in type I spectra are due to more than Si ii λ6355. However, while an interpretation of conspicuous Si ii λ6355 can approximate 6150 Å absorption features for all SNe Ia during the first month of free expansion, similar identifications applied to 6250 Å features of SNe Ib and Ic have not been as successful. When the corresponding synthetic spectra aremore » compared with high-quality timeseries observations, the computed spectra are frequently too blue in wavelength. Some improvement can be achieved with Fe ii lines that contribute redward of 6150 Å; however, the computed spectra either remain too blue or the spectrum only reaches a fair agreement when the rise-time to peak brightness of the model conflicts with observations by a factor of two. This degree of disagreement brings into question the proposed explosion scenario. Similarly, a detection of strong Si ii λ6355 in the spectra of broadlined Ic and super-luminous events of type I/R is less convincing despite numerous model spectra used to show otherwise. Alternatively, we suggest 6000–6400 Å features are possibly influenced by either trace amounts of hydrogen or blueshifted absorption and emission in Hα, the latter being an effect which is frequently observed in the spectra of hydrogen-rich, SNe II.« less
NASA Astrophysics Data System (ADS)
Polland, Hans J.; Kuhl, Jurgen; Gobel, Ernst O.
1988-08-01
Picosecond photoluminescence experiments at low temperature (6K) have been employed to study the trapping dynamics of photoexcited carriers in GaAs/AlGaAs single quantum wells for different shapes of the AlxGai_xAs confinement layers. We have obtained the following results by analyzing the spectral and temporal distribution of the photoluminescence after picosecond pulse excitation: Trapping efficiency is ==, 40% for a standard ungraded cladding layer (A10.3G1.7As with constant band gap and 5nm thick wells) but increases to ,-, 60% and 100% for samp es with a spatially parabolic or linear band gap profile of the confinement layers, respectively. Trapping times are appreciably shorter than the luminescence risetime which is between 60ps to 100ps. Thus carrier trapping does not impose severe limitations on the modulation speed of single quantum well devices up to frequencies in the order of 10GHz. Similar results are obtained for a well with a width of 1.2nm. Inhomogeneities in the carrier trapping mechanism due to well width fluctuations are not observed in our samples. In the second part we describe the photoluminescence properties of GaAs/A1,Gai_x As quantum wells (x=0.3) under the influence of electric fields perpendicular to the layers. We observe a drastic red shift and a concomitant strong increase of the electron-hole recombination lifetime for well widths > lOnm due to the quantum-confined Stark effect. At high fields (50-100kV/cm) field ionization due to tunneling leads to a decrease of both the photoluminescence yield and decay time, in accordance with a simple WKB theory
Eide, Per Kristian
2016-12-01
OBJECTIVE The objective of this study was to examine how pulsatile and static intracranial pressure (ICP) scores correlate with indices of intracranial pressure-volume reserve capacity, i.e., intracranial elastance (ICE) and intracranial compliance (ICC), as determined during ventricular infusion testing. METHODS All patients undergoing ventricular infusion testing and overnight ICP monitoring during the 6-year period from 2007 to 2012 were included in the study. Clinical data were retrieved from a quality registry, and the ventricular infusion pressure data and ICP scores were retrieved from a pressure database. The ICE and ICC (= 1/ICE) were computed during the infusion phase of the infusion test. RESULTS During the period from 2007 to 2012, 82 patients with possible treatment-dependent hydrocephalus underwent ventricular infusion testing within the department of neurosurgery. The infusion tests revealed a highly significant positive correlation between ICE and the pulsatile ICP scores mean wave amplitude (MWA) and rise-time coefficient (RTC), and the static ICP score mean ICP. The ICE was negatively associated with linear measures of ventricular size. The overnight ICP recordings revealed significantly increased MWA (> 4 mm Hg) and RTC (> 20 mm Hg/sec) values in patients with impaired ICC (< 0.5 ml/mm Hg). CONCLUSIONS In this study cohort, there was a significant positive correlation between pulsatile ICP and ICE measured during ventricular infusion testing. In patients with impaired ICC during infusion testing (ICC < 0.5 ml/mm Hg), overnight ICP recordings showed increased pulsatile ICP (MWA > 4 mm Hg, RTC > 20 mm Hg/sec), but not increased mean ICP (< 10-15 mm Hg). The present data support the assumption that pulsatile ICP (MWA and RTC) may serve as substitute markers of pressure-volume reserve capacity, i.e., ICE and ICC.
Harvey, Allison G; Dong, Lu; Bélanger, Lynda; Morin, Charles M
2017-10-01
To examine the mediators and the potential of treatment matching to improve outcome for cognitive behavior therapy (CBT) for insomnia. Participants were 188 adults (117 women; Mage = 47.4 years, SD = 12.6) meeting the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; text rev.; DSM-IV-TR; American Psychiatric Association [APA], 2000) diagnostic criteria for chronic insomnia (Mduration: 14.5 years, SD: 12.8). Participants were randomized to behavior therapy (BT; n = 63), cognitive therapy (CT; n = 65), or CBT (n = 60). The outcome measure was the Insomnia Severity Index (ISI). Hypothesized BT mediators were sleep-incompatible behaviors, bedtime variability (BTv), risetime variability (RTv) and time in bed (TIB). Hypothesized CT mediators were worry, unhelpful beliefs, and monitoring for sleep-related threat. The behavioral processes mediated outcome for BT but not CT. The cognitive processes mediated outcome in both BT and CT. The subgroup scoring high on both behavioral and cognitive processes had a marginally significant better outcome if they received CBT relative to BT or CT. The subgroup scoring relatively high on behavioral but low on cognitive processes and received BT or CBT did not differ from those who received CT. The subgroup scoring relatively high on cognitive but low on behavioral processes and received CT or CBT did not differ from those who received BT. The behavioral mediators were specific to BT relative to CT. The cognitive mediators were significant for both BT and CT outcomes. Patients exhibiting high levels of both behavioral and cognitive processes achieve better outcome if they receive CBT relative to BT or CT alone. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Piatanesi, A.; Cirella, A.; Spudich, P.; Cocco, M.
2007-01-01
We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green's functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth. Copyright 2007 by the American Geophysical Union.
Sleep and Physiological Dysregulation: A Closer Look at Sleep Intraindividual Variability.
Bei, Bei; Seeman, Teresa E; Carroll, Judith E; Wiley, Joshua F
2017-09-01
Variable daily sleep (ie, higher intraindividual variability; IIV) is associated with negative health consequences, but potential physiological mechanisms are poorly understood. This study examined how the IIV of sleep timing, duration, and quality is associated with physiological dysregulation, with diurnal cortisol trajectories as a proximal outcome and allostatic load (AL) as a multisystem distal outcome. Participants are 436 adults (Mage ± standard deviation = 54.1 ± 11.7, 60.3% women) from the Midlife in the United States study. Sleep was objectively assessed using 7-day actigraphy. Diurnal cortisol was measured via saliva samples (four/day for 4 consecutive days). AL was measured using 23 biomarkers from seven systems (inflammatory, hypothalamic-pituitary-adrenal axis, metabolic glucose and lipid, cardiovascular, parasympathetic, sympathetic) using a validated bifactor model. Linear and quadratic effects of sleep IIV were estimated using a validated Bayesian model. Controlling for covariates, more variable sleep timing (p = .04 for risetime, p = .097 for bedtime) and total sleep time (TST; p = .02), but not mean sleep variables, were associated with flatter cortisol diurnal slope. More variable sleep onset latency and wake after sleep onset, later average bedtime, and shorter TST were associated with higher AL adjusting for age and sex (p-values < .05); after controlling for all covariates, however, only later mean bedtime remained significantly associated with higher AL (p = .04). In a community sample of adults, more variable sleep patterns were associated with blunted diurnal cortisol trajectories but not with higher multisystem physiological dysregulation. The associations between sleep IIV and overall health are likely complex, including multiple biopsychosocial determinants and require further investigation. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Sleep patterns and predictors of disturbed sleep in a large population of college students.
Lund, Hannah G; Reider, Brian D; Whiting, Annie B; Prichard, J Roxanne
2010-02-01
To characterize sleep patterns and predictors of poor sleep quality in a large population of college students. This study extends the 2006 National Sleep Foundation examination of sleep in early adolescence by examining sleep in older adolescents. One thousand one hundred twenty-five students aged 17 to 24 years from an urban Midwestern university completed a cross-sectional online survey about sleep habits that included the Pittsburgh Sleep Quality Index (PSQI), the Epworth Sleepiness Scale, the Horne-Ostberg Morningness-Eveningness Scale, the Profile of Mood States, the Subjective Units of Distress Scale, and questions about academic performance, physical health, and psychoactive drug use. Students reported disturbed sleep; over 60% were categorized as poor-quality sleepers by the PSQI, bedtimes and risetimes were delayed during weekends, and students reported frequently taking prescription, over the counter, and recreational psychoactive drugs to alter sleep/wakefulness. Students classified as poor-quality sleepers reported significantly more problems with physical and psychological health than did good-quality sleepers. Students overwhelmingly stated that emotional and academic stress negatively impacted sleep. Multiple regression analyses revealed that tension and stress accounted for 24% of the variance in the PSQI score, whereas exercise, alcohol and caffeine consumption, and consistency of sleep schedule were not significant predictors of sleep quality. These results demonstrate that insufficient sleep and irregular sleep-wake patterns, which have been extensively documented in younger adolescents, are also present at alarming levels in the college student population. Given the close relationships between sleep quality and physical and mental health, intervention programs for sleep disturbance in this population should be considered. Copyright 2010 Society for Adolescent Medicine. Published by Elsevier Inc. All rights reserved.
Trigo, Federico F; Papageorgiou, George; Corrie, John E T; Ogden, David
2009-07-30
Laser photolysis to release GABA at precisely defined times and locations permits investigation of the distribution of functional GABA(A) receptors in neuronal compartments, the activation kinetics and pharmacology of GABA(A) receptors in situ, and the role of individual neurons in neural circuits by selective silencing with low GABA concentrations. We describe the experimental evaluation and applications of a new nitroindoline-caged GABA, DPNI-GABA, modified to minimize the pharmacological interference commonly found with caged GABA reagents, but retaining the advantages of nitroindoline cages. Unlike the 5-methoxycarbonylmethyl-7-nitroindolinyl-GABA tested previously, DPNI-GABA inhibited GABA(A) receptors with much lower affinity, reducing peak GABA-evoked responses with an IC(50) of approximately 0.5 mM. Most importantly, the kinetics of receptor activation, determined as 10-90% rise-times, were comparable to synaptic events and were little affected by DPNI-GABA present at 1mM concentration, permitting photolysis of DPNI-GABA to mimic synaptic activation of GABA(A) receptors. With a laser spot of 1 microm applied to cerebellar molecular layer interneurons, the spatial resolution of uncaging DPNI-GABA in dendrites was estimated as 2 microm laterally and 7.5 microm focally. Finally, at low DPNI-GABA concentration, photorelease restricted to the area of the soma suppressed spiking in single Purkinje neurons or molecular layer interneurons for periods controlled by the flash intensity and duration. DPNI-GABA has properties better adapted for fast kinetic studies with laser photolysis at GABA(A) receptors than previously reported caged GABA reagents, and can be used in experiments where spatial resolution is determined by the dimensions of the laser light spot.
Parker, Christine; Brunswick, Carly; Kotey, Jane
2013-06-01
This paper investigates what "free-range" eggs are available for sale in supermarkets in Australia, what "free-range" means on product labelling, and what alternative "free-range" offers to cage production. The paper concludes that most of the "free-range" eggs currently available in supermarkets do not address animal welfare, environmental sustainability, and public health concerns but, rather, seek to drive down consumer expectations of what these issues mean by balancing them against commercial interests. This suits both supermarkets and egg producers because it does not challenge dominant industrial-scale egg production and the profits associated with it. A serious approach to free-range would confront these arrangements, and this means it may be impossible to truthfully label many of the "free-range" eggs currently available in the dominant supermarkets as free-range.
Gas metal arc welding fume generation using pulsed current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castner, H.R.
1994-12-31
This paper describes a study of the effects of pulsed welding current on the amount of welding fume and ozone produced during gas metal arc welding (GMAW) using a range of welding procedures and pulse parameters. The results reported in this paper show that pulsed current can reduce GMAW fumes compared to steady current. This research also shows that welding parameters need to be properly controlled if pulsed current is to be used to reduce welding fumes. Fume and ozone generation rates were measured during this study for GMAW of mild steel using copper-coated ER70S-3 electrode wire and 95%Ar-5%CO{sub 2}more » and 85%Ar-15%CO{sub 2} shielding gases. Welds were made with both steady current and pulsed current over a wide range of welding parameters. Fume generation rates for steady current were found to be typically between 0.2 g/min and 0.8 g/min which agrees with other researchers. No significant difference was found in the chemical composition of welding fumes from pulsed current compared to the composition of fumes generated by steady current. New technology that can reduce arc welding fumes is of significant interest to a wide range of companies that use arc welding processes and this research should assist these users in evaluating the potential for the application of this technology to their own operations.« less
2012-12-01
depth of the deepest bin passing the ‘ lgb ’ criteria was compared with the nearest bathymetric data. Although, in most cases , the ‘ lgb ’ cutoffs are... CASE ...........................................................................30 1. LOW RANGE FLOOD...30 2. HIGH RANGE FLOOD ....................................................................32 B. EBB CURRENT CASE
Ogden, Nick H.; Mechai, Samir; Margos, Gabriele
2013-01-01
The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity. PMID:24010124
Ogden, Nick H; Mechai, Samir; Margos, Gabriele
2013-01-01
The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R 0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity.
A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes
Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-01-01
This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899
A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.
Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-03-01
This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.
A simplified controller and detailed dynamics of constant off-time peak current control
NASA Astrophysics Data System (ADS)
Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan
2017-09-01
A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.
ERIC Educational Resources Information Center
RULIFFSON, WILLARD ADAMS
THIS STUDY REVIEWS SOME OF THE CURRENT PLANNING PRACTICES IN SCHOOL SYSTEMS WHICH ARE CONSIDERED TO BE ALREADY INVOLVED IN LONG-RANGE PLANNING, AND DESCRIBES FURTHER LONG-RANGE TECHNIQUES WHICH COULD BE ADAPTED FOR SCHOOL SYSTEMS FROM CURRENT CORPORATE AND GOVERNMENTAL PLANNING PROCEDURES. INDIVIDUAL INTERVIEWS WERE CONDUCTED WITH SELECTED…
NASA Technical Reports Server (NTRS)
Cash, B.
1985-01-01
Simple technique developed for monitoring direct currents up to several hundred amperes and digitally displaying values directly in current units. Used to monitor current magnitudes beyond range of standard laboratory ammeters, which typically measure 10 to 20 amperes maximum. Technique applicable to any current-monitoring situation.
Hong, Hongwei; Rahal, Mohamad; Demosthenous, Andreas; Bayford, Richard H
2009-10-01
Multi-frequency electrical impedance tomography (MF-EIT) systems require current sources that are accurate over a wide frequency range (1 MHz) and with large load impedance variations. The most commonly employed current source design in EIT systems is the modified Howland circuit (MHC). The MHC requires tight matching of resistors to achieve high output impedance and may suffer from instability over a wide frequency range in an integrated solution. In this paper, we introduce a new integrated current source design in CMOS technology and compare its performance with the MHC. The new integrated design has advantages over the MHC in terms of power consumption and area. The output current and the output impedance of both circuits were determined through simulations and measurements over the frequency range of 10 kHz to 1 MHz. For frequencies up to 1 MHz, the measured maximum variation of the output current for the integrated current source is 0.8% whereas for the MHC the corresponding value is 1.5%. Although the integrated current source has an output impedance greater than 1 MOmega up to 1 MHz in simulations, in practice, the impedance is greater than 160 kOmega up to 1 MHz due to the presence of stray capacitance.
A computerized Langmuir probe system
NASA Astrophysics Data System (ADS)
Pilling, L. S.; Bydder, E. L.; Carnegie, D. A.
2003-07-01
For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA-100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier.
On the wide-range bias dependence of transistor d.c. and small-signal current gain factors.
NASA Technical Reports Server (NTRS)
Schmidt, P.; Das, M. B.
1972-01-01
Critical reappraisal of the bias dependence of the dc and small-signal ac current gain factors of planar bipolar transistors over a wide range of currents. This is based on a straightforward consideration of the three basic components of the dc base current arising due to emitter-to-base injected minority carrier transport, base-to-emitter carrier injection, and emitter-base surface depletion layer recombination effects. Experimental results on representative n-p-n and p-n-p silicon devices are given which support most of the analytical findings.
Anthropogenic range contractions bias species climate change forecasts
NASA Astrophysics Data System (ADS)
Faurby, Søren; Araújo, Miguel B.
2018-03-01
Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.
2010 NASA Range Safety Annual Report
NASA Technical Reports Server (NTRS)
Dumont, Alan G.
2010-01-01
this report provides a NASA Range Safety overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed in the 2010 NASA Range Safety Annual Report include a program overview and 2010 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again, the web-based format was used to present the annual report.
Emergency Skills Resources for Range-Related Driver Education.
ERIC Educational Resources Information Center
Council, Forrest M.; And Others
The document presents a rationale for expanding the current emergency skills curriculum in North Carolina's 18 multi-vehicle range laboratories for driver education, and includes a review of past and current programs in other locations, a review of past North Carolina accident studies directly related to this area, and a recommended set of…
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray
1994-01-01
Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
Adaptive amplifier for probe diagnostics of charged-particle temperature in the upper atmosphere
NASA Astrophysics Data System (ADS)
Chkalov, V. G.
An amplifier for probe experiments in the upper atmosphere is described which is based on a linear current-voltage converter design. Specifically, the amplifier is used as the input unit in a rocket-borne ionospheric probe for the measurement of electron temperature. The range of measured currents is from 10 to the -10th to 10 to the -6th A; the amplifier current range can be shifted up or down depending on the requirements of the experiment.
Forecasted range shifts of arid-land fishes in response to climate change
Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.; Olden, Julian D.; Strecker, Angela L.
2017-01-01
Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change.
NASA Astrophysics Data System (ADS)
Mandal, Snehal; Mazumdar, Dipak; Das, I.
2018-04-01
Ultrathin film of Co0.4Fe0.4B0.2 was prepared on p-type Si (100) substrate by RF magnetron sputtering. X-Ray Reflectivity and Atomic Force Microscopy measurements were performed to estimate the thickness and surface roughness of the film. Electrical transport measurements were performed by four-probe method in a current-in-plane (CIP) geometry. Presence of non-linearity in the current-voltage (I-V) characteristics was observed at higher current range. The electrical resistivity was found to change by several orders of magnitude (105) by changing the bias current from nano-ampere (nA) to milli-ampere (mA) range. This bias current dependence of the resistivity has been explained by different transport mechanisms.
High-Power Ion Thruster Technology
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Matossian, J. N.
1996-01-01
Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.
2011-01-01
We present total conduction (Wilson) currents for more than 1000 high-altitude aircraft overflights of electrified clouds acquired over nearly two decades. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV/m to 16. kV/m, with mean (median) of 0.9 kV/m (0.29 kV/m). Total conductivity at flight altitude ranged from 0.6 pS/m to 3.6 pS/m, with mean and median of 2.2 pS/m. Peak current densities ranged from -2.0 nA m(exp -2) to 33.0 nA m(exp -2) with mean (median) of 1.9 nA m(exp -2) (0.6 nA m(exp -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.7 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.41 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min-1, respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.
2011-01-01
We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.
Improving Current Balance In Parallel MOSFET's
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1992-01-01
Simple circuit makes currents more nearly equal. Addition of diodes and adjustable-tap resistor increases operating range over which drain currents in two unmatched power MOSFET's brought more nearly into balance.
NASA Astrophysics Data System (ADS)
Wang, Hung-Ta; Kang, B. S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.
2005-10-01
Pt-gated AlGaN /GaN high electron mobility transistors can be used as room-temperature hydrogen gas sensors at hydrogen concentrations as low as 100ppm. A comparison of the changes in drain and gate current-voltage (I-V) characteristics with the introduction of 500ppm H2 into the measurement ambient shows that monitoring the change in drain-source current provides a wider gate voltage operation range for maximum detection sensitivity and higher total current change than measuring the change in gate current. However, over a narrow gate voltage range, the relative sensitivity of detection by monitoring the gate current changes is up to an order of magnitude larger than that of drain-source current changes. In both cases, the changes are fully reversible in <2-3min at 25°C upon removal of the hydrogen from the ambient.
Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1989-01-01
A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.
DeMonte, Tim P; Wang, Dinghui; Ma, Weijing; Gao, Jia-Hong; Joy, Michael L G
2009-01-01
Current density imaging (CDI) is a magnetic resonance imaging (MRI) technique used to quantitatively measure current density vectors throughout the volume of an object/subject placed in the MRI system. Electrical current pulses are applied externally to the object/subject and are synchronized with the MRI sequence. In this work, CDI is used to measure average current density magnitude in the torso region of an in-vivo piglet for applied current pulse amplitudes ranging from 10 mA to 110 mA. The relationship between applied current amplitude and current density magnitude is linear in simple electronic elements such as wires and resistors; however, this relationship may not be linear in living tissue. An understanding of this relationship is useful for research in defibrillation, human electro-muscular incapacitation (e.g. TASER(R)) and other bioelectric stimulation devices. This work will show that the current amplitude to current density magnitude relationship is slightly nonlinear in living tissue in the range of 10 mA to 110 mA.
Design and evaluation of precise current integrator for scanning probe microscopy
NASA Astrophysics Data System (ADS)
Raczkowski, Kamil; Piasecki, Tomasz; Rudek, Maciej; Gotszalk, Teodor
2017-03-01
Several of the scanning probe microscopy (SPM) techniques, such as the scanning tunnelling microscopy (STM) or conductive atomic force microscopy (C-AFM), rely on precise measurements of current flowing between the investigated sample and the conductive nanoprobe. The parameters of current-to-voltage converter (CVC), which should detect current in the picompere range, are of utmost importance to those systems as they determine the microscopes’ measuring capabilities. That was the motivation for research on the precise current integrator (PCI), described in this paper, which could be used as the CVC in the C-AFM systems. The main design goal of the PCI was to provide a small and versatile device with the sub-picoampere level resolution with high dynamic range in the order of nanoamperes. The PCI was based on the integrating amplifier (Texas Instruments DDC112) paired with a STM32F4 microcontroller unit (MCU).The gain and bandwidth of the PCI might be easily changed by varying the integration time and the feedback capacitance. Depending on these parameters it was possible to obtain for example the 2.15 pA resolution at 688 nA range with 1 kHz bandwidth or 7.4 fA resolution at 0.98 nA range with 10 Hz bandwidth. The measurement of sinusoidal current with 28 fA amplitude was also presented. The PCI was integrated with the C-AFM system and used in the highly ordered pyrolytic graphite (HOPG) and graphene samples imaging.
Retrospective and current risks of mercury to panthers in the Florida Everglades.
Barron, Mace G; Duvall, Stephanie E; Barron, Kyle J
2004-04-01
Florida panthers are an endangered species inhabiting south Florida. Hg has been suggested as a causative factor for low populations and some reported panther deaths, but a quantitative assessment of risks has never been performed. This study quantitatively evaluated retrospective (pre-1992) and current (2002) risks of chronic dietary Hg exposures to panthers in the Florida Everglades. A probabilistic assessment of Hg risks was performed using a dietary exposure model and Latin Hypercube sampling that incorporated the variability and uncertainty in ingestion rate, diet, body weight, and mercury exposure of panthers. Hazard quotients (HQs) for retrospective risks ranged from less than 0.1-20, with a 46% probability of exceeding chronic dietary thresholds for methylmercury. Retrospective risks of developing clinical symptoms, including ataxia and convulsions, had an HQ range of <0.1-5.4 with a 17% probability of exceeding an HQ of 1. Current risks were substantially lower (4% probability of exceedences; HQ range <0.1-3.5) because of an estimated 70-90% decline in Hg exposure to panthers over the last decade. Under worst case conditions of panthers consuming only raccoons from the most contaminated area of the Everglades, current risks of developing clinical symptoms that may lead to death was 4.6%. Current risks of mercury poisoning of panthers with a diversified diet was 0.1% (HQ range of <0.1-1.4). The results of this assessment indicate that past Hg exposures likely adversely affected panthers in the Everglades, but current risks of Hg are low.
New hope for the survival of the Amur leopard in China
Jiang, Guangshun; Qi, Jinzhe; Wang, Guiming; Shi, Quanhua; Darman, Yury; Hebblewhite, Mark; Miquelle, Dale G.; Li, Zhilin; Zhang, Xue; Gu, Jiayin; Chang, Youde; Zhang, Minghai; Ma, Jianzhang
2015-01-01
Natural range loss limits the population growth of Asian big cats and may determine their survival. Over the past decade, we collected occurrence data of the critically endangered Amur leopard worldwide and developed a distribution model of the leopard’s historical range in northeastern China over the past decade. We were interested to explore how much current range area exists, learn what factors limit their spatial distribution, determine the population size and estimate the extent of potential habitat. Our results identify 48,252 km2 of current range and 21,173.7 km2 of suitable habitat patches and these patches may support 195.1 individuals. We found that prey presence drives leopard distribution, that leopard density exhibits a negative response to tiger occurrence and that the largest habitat patch connects with 5,200 km2of Russian current range. These insights provide a deeper understanding of the means by which endangered predators might be saved and survival prospects for the Amur leopard not only in China, but also through imperative conservation cooperation internationally. PMID:26638877
New hope for the survival of the Amur leopard in China.
Jiang, Guangshun; Qi, Jinzhe; Wang, Guiming; Shi, Quanhua; Darman, Yury; Hebblewhite, Mark; Miquelle, Dale G; Li, Zhilin; Zhang, Xue; Gu, Jiayin; Chang, Youde; Zhang, Minghai; Ma, Jianzhang
2015-12-07
Natural range loss limits the population growth of Asian big cats and may determine their survival. Over the past decade, we collected occurrence data of the critically endangered Amur leopard worldwide and developed a distribution model of the leopard's historical range in northeastern China over the past decade. We were interested to explore how much current range area exists, learn what factors limit their spatial distribution, determine the population size and estimate the extent of potential habitat. Our results identify 48,252 km(2) of current range and 21,173.7 km(2) of suitable habitat patches and these patches may support 195.1 individuals. We found that prey presence drives leopard distribution, that leopard density exhibits a negative response to tiger occurrence and that the largest habitat patch connects with 5,200 km(2)of Russian current range. These insights provide a deeper understanding of the means by which endangered predators might be saved and survival prospects for the Amur leopard not only in China, but also through imperative conservation cooperation internationally.
Fire, grazing history, lichen abundance, and winter distribution of caribou in Alaska's taiga
Collins, William B.; Dale, Bruce W.; Adams, Layne G.; McElwain, Darien E.; Joly, Kyle
2011-01-01
In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P < 0.001), greater than 1,250 kg/ha (P < 0.001) forage lichen biomass and stands older than 80 yr postfire (P < 0.001). After fires, forage lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ≥60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis‐idaea) were necessary for predicting caribou use of winter range.
A non-invasive Hall current distribution measurement system for Hall Effect thrusters
NASA Astrophysics Data System (ADS)
Mullins, Carl Raymond
A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.
46 CFR 111.05-29 - Dual voltage direct current systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Dual voltage direct current systems. Each dual voltage direct current system must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at least... 46 Shipping 4 2010-10-01 2010-10-01 false Dual voltage direct current systems. 111.05-29 Section...
46 CFR 111.05-29 - Dual voltage direct current systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Dual voltage direct current systems. Each dual voltage direct current system must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at least... 46 Shipping 4 2011-10-01 2011-10-01 false Dual voltage direct current systems. 111.05-29 Section...
Monitoring of a 1 kWp Solar Photovoltaic System
NASA Astrophysics Data System (ADS)
Malek, M. F.; Zainuddin, H.; Rejab, S. N. M.; Shaari, S. N.; Shaari, S.; Omar, A. M.; Rusop, M.
2009-06-01
A 1 kWp `stand alone' PV system consists of 4 module (2 BP SX75U module and 2 BP 275F module), inverter, 2 thermocouple, 3 voltage sensor, 3 current sensor, 4 battery and data logger (Data Taker DT80) has been set up. This research involve nine parameters which are irradiance (Ia), ambient temperature (Tamb), module temperature (Tmod), module voltage (Vmod), battery voltage (Vbat), load voltage (Vload), module current (Imod), battery current (Ibat) and load current (Iload). All parameters were measured using the equipments and sensors that connected directly to data logger (Data Taker DT80) to interpret and show the data on computer using the Delogger sofware. The data then was transferred into the computer and analyzed using the Deview and Microsoft Excel software to determine the performance indices for the stand alone PV system. From the analysis a few performance indices were determined. The range of daily solar irradiation is between 2.20 kWhm-2 to 4.00 kWhm-2, while the range of total global irradiation is between 5.76 kWh to 10.48 kWh. For daily total energy yield, the range is between 0.23 kWh d-1 to 0.28 kWh d-1. The range for clearness index is between 0.49% to 0.89%. The range for final yield is between 0.77 kWh d-1 kWp-1 to 0.93 kWhd-1 kWp-1 while the range of array efficiency is between 2.53% to 4.65%. Lastly, the range of the performance ratio is between 22.08% to 40.58%.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
Design of a Miniaturized RAD Hard Point-of-Load Converter
NASA Astrophysics Data System (ADS)
Lofgren, Henrik; Landstrom, Sven; Gunnarsson, Marcus; Hagstrom, Maria
2014-08-01
As an ARTES 5.2 activity, a miniaturized radiation hardened Point-Of-Load converter (uPOL) has been developed. Several different design options have been evaluated before the final system level design was selected. The selected topology is a buck regulator with synchronous rectification utilizing peak current mode control. The PWM logic is designed using discrete electronics. Inside the POL converter package, an independent latching current limiter and clamping over- voltage protection are included as protection devices. The converter has an input voltage range of 4.8-6.2V, output voltage range of 1.2-3.5V and an output current of 0-3.5A. The final converter will be a metal packaged hybrid built on LTCC technology with an operating case temperature range of -40 to +85 °C.
Current-limiting and ultrafast system for the characterization of resistive random access memories.
Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X
2016-06-01
A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.
Detectors Requirements for the ODIN Beamline at ESS
NASA Astrophysics Data System (ADS)
Morgano, Manuel; Lehmann, Eberhard; Strobl, Markus
The upcoming high intensity pulsed spallationneutron source ESS, now in construction in Sweden, will provide unprecedented opportunities for neutron science worldwide. In particular, neutron imaging will benefit from the time structure of the source and its high brilliance. These features will unlock new opportunities at the imaging beamline ODIN, but only if suitable detectors are employed and, in some cases, upgraded. In this paper, we highlight the current state-of-the-art for neutron imaging detectors, pointing out that, while no single presently existing detector can fulfill all the requirements currently needed to exploit the source to its limits, the wide range of applications of ODIN can be successfully covered by a suite of current state-of-the-art detectors. Furthermore we speculate on improvements to the current detector technologies that would expand the range of the existing detectors and application range and we outline a strategy to have the best possible combined system for the foreseen day 1 operations of ODIN in 2019.
Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements
NASA Astrophysics Data System (ADS)
Zhu, Meng; Dennis, Cindi; McMichael, Robert
2010-03-01
The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);
Magnetoelectric Current Sensors
Bichurin, Mirza; Petrov, Roman; Leontiev, Viktor; Semenov, Gennadiy; Sokolov, Oleg
2017-01-01
In this work a magnetoelectric (ME) current sensor design based on a magnetoelectric effect is presented and discussed. The resonant and non-resonant type of ME current sensors are considered. Theoretical calculations of the ME current sensors by the equivalent circuit method were conducted. The application of different sensors using the new effects, for example, the ME effect, is made possible with the development of new ME composites. A large number of studies conducted in the field of new composites, allowed us to obtain a high magnetostrictive-piezoelectric laminate sensitivity. An optimal ME structure composition was matched. The characterization of a non-resonant current sensor showed that in the operation range to 5 A, the sensor had a sensitivity of 0.34 V/A, non-linearity less than 1% and for a resonant current sensor in the same operation range, the sensitivity was of 0.53 V/A, non-linearity less than 0.5%. PMID:28574486
Advanced development of TFA-MOD coated conductors
NASA Astrophysics Data System (ADS)
Rupich, M. W.; Li, X.; Sathyamurthy, S.; Thieme, C.; Fleshler, S.
2011-11-01
American Superconductor is manufacturing 2G wire for initial commercial applications. The 2G wire properties satisfy the requirements for these initial projects; however, improvements in the critical current, field performance and cost are required to address the broad range of potential commercial and military applications. In order to meet the anticipated the performance and cost requirements, AMSC's R&D effort is focused on two major areas: (1) higher critical current and (2) enhanced flux pinning. AMSC's current 2G production wire, designed around a 0.8 μm thick YBCO layer deposited by a Metal Organic Deposition (MOD) process, carries a critical current in the range of 200-300 A/cm-w (77 K, sf). Achieving higher critical current requires increasing the thickness of the YBCO layer. This paper describes recent progress at AMSC on increasing the critical current of MOD-YBCO films using processes compatible with low-cost, high-rate manufacturing.
NASA Astrophysics Data System (ADS)
Cai, Shuyao; Chen, Mingli; Du, Yaping; Qin, Zilong
2017-08-01
A downward lightning flash usually starts with a downward leader and an upward connecting leader followed by an upward return stroke. It is the preceding leader that governs the following return stroke property. Besides, the return stroke property evolves with height and time. These two aspects, however, are not well addressed in most existing return stroke models. In this paper, we present a leader-return stroke consistent model based on the time domain electric field integral equation, which is a growth and modification of Kumar's macroscopic model. The model is further extended to simulate the optical and electromagnetic emissions of a return stroke by introducing a set of equations relating the return stroke current and conductance to the optical and electromagnetic emissions. With a presumed leader initiation potential, the model can then simulate the temporal and spatial evolution of the current, charge transfer, channel size, and conductance of the return stroke, furthermore the optical and electromagnetic emissions. The model is tested with different leader initiation potentials ranging from -10 to -140 MV, resulting in different return stroke current peaks ranging from 2.6 to 209 kA with different return stroke speed peaks ranging from 0.2 to 0.8 speed of light and different optical power peaks ranging from 4.76 to 248 MW/m. The larger of the leader initiation potential, the larger of the return stroke current and speed. Both the return stroke current and speed attenuate exponentially as it propagates upward. All these results are qualitatively consistent with those reported in the literature.
NASA Astrophysics Data System (ADS)
Fisher, B.; Patlagan, L.
2018-06-01
The mixed metal-insulator state in VO2 sets on within the current-controlled negative differential resistivity regime of I-V loops traced at ambient temperature. In this state, the stability of I(V) and/or spontaneous switching between initial and final steady states are governed by the load resistance RL in series with the sample. With increasing current (decreasing voltage), the power P = IV reaches a maximum (Pmax) and drops to a minimum (Pmin) along a path that depends on RL. For low enough RL, the ratio Pmax/Pmin may exceed by far the contrast in thermal emissivity from films of VO2 over the metal-insulator transition as reported in Kats et al. [Phys. Rev. X 3, 041004 (2013)]. The minimum is followed by a range of currents where the power increases with current. The return path overlaps the original path and continues towards backward switching. For a few samples, there is evidence from optical microscopy that the portion of the P(I) loop between Pmin and backward switching coincides with the range of currents where semiconducting domains slide within a metallic background. Damage induced in crystals by repeated I-V cycling suppresses domain sliding and flattens P(I) in the respective range of currents. This is consistent with the current dependent excess power dissipation being induced by the sliding domains.
Frequency analysis of DC tolerant current transformers
NASA Astrophysics Data System (ADS)
Mlejnek, P.; Kaspar, P.
2013-09-01
This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types.
Measurement of impulse current using polarimetric fiber optic sensor
NASA Astrophysics Data System (ADS)
Ginter, Mariusz
2017-08-01
In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.
Line-of-sight magnetic flux imbalances caused by electric currents
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Rabin, Douglas
1995-01-01
Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.
Multiscale Study of Currents Affected by Topography
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ...the effects of topography on the ocean general and regional circulation with a focus on the wide range of scales of interactions. The small-scale...details of the topography and the waves, eddies, drag, and turbulence it generates (at spatial scales ranging from meters to mesoscale) interact in the
Joseph L. Ganey; William M. Block
2005-01-01
We summarized existing knowledge on winter movements and range and habitat use of radio-marked Mexican spotted owls. In light of that information, we evaluated the adequacy of current management guidelines. Seasonal movement or "migration" appears to be a regular feature of the winter ecology of Mexican spotted owls. Most radio-marked owls studied were...
Reim, Elisabeth; Blesinger, Simone; Förster, Lisa; Fischer, Klaus
2018-05-29
Anthropogenic interference forces species to respond to changing environmental conditions. One possible response is dispersal and concomitant range shifts, allowing individuals to escape unfavourable conditions or to track the shifting climate niche. Range expansions depend on both dispersal capacity and the ability to establish populations beyond the former range. We here compare well-established core populations with recently established edge populations in the currently northward expanding butterfly Lycaena tityrus. Edge populations were characterized by shorter development times and smaller size, a higher sensitivity to high temperature and an enhanced exploratory behaviour. The differences between core and edge populations found suggest adaptation to local climates and an enhanced dispersal ability in edge populations. In particular, enhanced exploratory behaviour may be advantageous in all steps of the dispersal process and may have facilitated the current range expansion. This study describes differences associated with a current range expansion, knowledge which might be useful for a better understanding of species responses to environmental change. We further report on variation between males and females in morphology and flight behaviour, with males showing a longer flight endurance and more pronounced exploratory behaviour than females. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Spoke rotation reversal in magnetron discharges of aluminium, chromium and titanium
NASA Astrophysics Data System (ADS)
Hecimovic, A.; Maszl, C.; Schulz-von der Gathen, V.; Böke, M.; von Keudell, A.
2016-06-01
The rotation of localised ionisation zones, i.e. spokes, in magnetron discharge are frequently observed. The spokes are investigated by measuring floating potential oscillations with 12 flat probes placed azimuthally around a planar circular magnetron. The 12-probe setup provides sufficient temporal and spatial resolution to observe the properties of various spokes, such as rotation direction, mode number and angular velocity. The spokes are investigated as a function of discharge current, ranging from 10 mA (current density 0.5 mA cm-2) to 140 A (7 A cm-2). In the range from 10 mA to 600 mA the plasma was sustained in DC mode, and in the range from 1 A to 140 A the plasma was pulsed in high-power impulse magnetron sputtering mode. The presence of spokes throughout the complete discharge current range indicates that the spokes are an intrinsic property of a magnetron sputtering plasma discharge. The spokes may disappear at discharge currents above 80 A for Cr, as the plasma becomes homogeneously distributed over the racetrack. Up to discharge currents of several amperes (the exact value depends on the target material), the spokes rotate in a retrograde \\mathbf{E}× \\mathbf{B} direction with angular velocity in the range of 0.2-4 km s-1. Beyond a discharge current of several amperes, the spokes rotate in a \\mathbf{E}× \\mathbf{B} direction with angular velocity in the range of 5-15 km s-1. The spoke rotation reversal is explained by a transition from Ar-dominated to metal-dominated sputtering that shifts the plasma emission zone closer to the target. The spoke itself corresponds to a region of high electron density and therefore to a hump in the electrical potential. The electric field around the spoke dominates the spoke rotation direction. At low power, the plasma is further away from the target and it is dominated by the electric field to the anode, thus retrograde \\mathbf{E}× \\mathbf{B} rotation. At high power, the plasma is closer to the target and it is dominated by the electric field pointing to the target, thus \\mathbf{E}× \\mathbf{B} rotation.
NASA Technical Reports Server (NTRS)
Idone, V. P.; Orville, R. E.
1985-01-01
The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-05-19
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-01-01
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382
A robust low quiescent current power receiver for inductive power transmission in bio implants
NASA Astrophysics Data System (ADS)
Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin
2017-05-01
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.
NASA Technical Reports Server (NTRS)
Logan, J. R.; Pulvermacher, M. K.
1991-01-01
Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.
Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.
2018-05-01
Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.
Sovada, Marsha A.; Woodward, Robert O.; Igl, Lawrence D.
2009-01-01
The Swift Fox (Vulpes velox) was once common in the shortgrass and mixed-grass prairies of the Great Plains of North America. The species' abundance declined and its distribution retracted following European settlement of the plains. By the late 1800s, the species had been largely extirpated from the northern portion of its historical range, and its populations were acutely depleted elsewhere. Swift Fox populations have naturally recovered somewhat since the 1950s, but overall abundance and distribution remain below historical levels. In a 1995 assessment of the species' status under the US Endangered Species Act, the US Fish and Wildlife Service concluded that a designation of threatened or endangered was warranted, but the species was "precluded from listing by higher listing priorities." A major revelation of the 1995 assessment was the recognition that information useful for determining population status was limited. Fundamental information was missing, including an accurate estimate of the species' distribution before European settlement and an estimate of the species' current distribution and trends. The objectives of this paper are to fill those gaps in knowledge. Historical records were compiled and, in combination with knowledge of the habitat requirements of the species, the historical range of the Swift Fox is estimated to be approximately 1.5 million km2. Using data collected between 2001 and 2006, the species' current distribution is estimated to be about 44% of its historical range in the United States and 3% in Canada. Under current land use, approximately 39% of the species' historical range contains grassland habitats with very good potential for Swift Fox occupation and another 10% supports grasslands with characteristics that are less preferred (e.g., a sparse shrub component or taller stature) but still suitable. Additionally, land use on at least 25% of the historical range supports dryland farming, which can be suitable for Swift Fox occupation. In the United States, approximately 52% of highest quality habitats currently available are occupied by Swift Foxes.
Safety analysis of proposed data-driven physiologic alarm parameters for hospitalized children.
Goel, Veena V; Poole, Sarah F; Longhurst, Christopher A; Platchek, Terry S; Pageler, Natalie M; Sharek, Paul J; Palma, Jonathan P
2016-12-01
Modification of alarm limits is one approach to mitigating alarm fatigue. We aimed to create and validate heart rate (HR) and respiratory rate (RR) percentiles for hospitalized children, and analyze the safety of replacing current vital sign reference ranges with proposed data-driven, age-stratified 5th and 95th percentile values. In this retrospective cross-sectional study, nurse-charted HR and RR data from a training set of 7202 hospitalized children were used to develop percentile tables. We compared 5th and 95th percentile values with currently accepted reference ranges in a validation set of 2287 patients. We analyzed 148 rapid response team (RRT) and cardiorespiratory arrest (CRA) events over a 12-month period, using HR and RR values in the 12 hours prior to the event, to determine the proportion of patients with out-of-range vitals based upon reference versus data-driven limits. There were 24,045 (55.6%) fewer out-of-range measurements using data-driven vital sign limits. Overall, 144/148 RRT and CRA patients had out-of-range HR or RR values preceding the event using current limits, and 138/148 were abnormal using data-driven limits. Chart review of RRT and CRA patients with abnormal HR and RR per current limits considered normal by data-driven limits revealed that clinical status change was identified by other vital sign abnormalities or clinical context. A large proportion of vital signs in hospitalized children are outside presently used norms. Safety evaluation of data-driven limits suggests they are as safe as those currently used. Implementation of these parameters in physiologic monitors may mitigate alarm fatigue. Journal of Hospital Medicine 2015;11:817-823. © 2015 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.
Egg banking in the United States: current status of commercially available cryopreserved oocytes.
Quaas, Alexander M; Melamed, Alexander; Chung, Karine; Bendikson, Kristin A; Paulson, Richard J
2013-03-01
To estimate the current availability of donor cryopreserved oocytes and to describe the emerging phenomenon of commercial egg banks (CEBs) in the United States. Cross-sectional survey of CEBs. E-mail, telephone, and fax survey of all CEB scientific directors, conducted April 2012. None. None. Number and location of CEBs in the United States, years in existence, number of donors, number of available oocytes, level of donor anonymity, donor screening, cost of oocytes to recipients, freezing/thawing technique, pregnancy statistics. Seven CEBs were identified and surveyed (response rate: 100%). The CEBs used three distinct operational models, had been in existence for a median of 2 years (range: 1 to 8 years), with a median 21.5 (range: 6 to 100) donors and 120 (range: 20 to 1,000) currently available oocytes. The median recommended minimum number of eggs to obtain was six (range: four to seven), at an estimated mean cost per oocyte of $2,225 (range: $1,500 to $2,500). An estimated 3,130 oocytes from 294 donors are currently stored for future use. Of these CEBs, 6 (86%) of 7 use vitrification as cryopreservation method. To date, 8,780 frozen donor oocytes from CEBs have been used for in vitro fertilization, resulting in 602 pregnancies. Pregnancy rates per oocyte, available for 5 (71%) of 7 CEBs, were 532 (7.5%) of 7,080 for CEBs using vitrification and 70 (10%) of 700 for the single CEB using slow freezing as cryopreservation method. Frozen donor eggs are currently widely available in the United States. Three different operational models are currently used, resulting in more than 600 pregnancies from oocytes obtained at CEBs. The majority of CEBs use vitrification as cryopreservation technique. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Extended-Range Forecasts at Climate Prediction Center: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Kumar, A.
2016-12-01
Motivated by a user need to provide forecast information on extended-range time-scales (i.e., weeks 2-4), in recent years Climate Prediction Center (CPC) has made considerable efforts towards developing and testing the feasibility for developing the required forecasts. The forecasts targeting this particular time-scale face a unique challenge in that while the forecast skill due to atmospheric initial conditions is small (because of rapid decay in the memory associated with the atmospheric initial conditions), short time averages for which forecasts are made do not benefit from skill associated with anomalous boundary conditions either. Despite these challenges, CPC has embarked on providing an experimental outlook for weeks 3-4 average. The talk will summarize the current status of CPC's current suite of extended-range forecast products, and further, will discuss some future plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoop, L. de; Gatel, C.; Houdellier, F.
2015-06-29
A dedicated transmission electron microscope sample holder has been used to study in situ the cold-field emission process of carbon cone nanotips (CCnTs). We show that when using a CCnT instead of a Au plate-anode, the standard deviation of the emission current noise can be decreased from the 10 nA range to the 1 nA range under vacuum conditions of 10{sup −5 }Pa. This shows the strong influence of the anode on the cold-field emission current noise.
Eddy current gauge for monitoring displacement using printed circuit coil
Visioli, Jr., Armando J.
1977-01-01
A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.
Relativistic theory of radiofrequency current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.; Metens, T.
1991-05-01
A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
Superconductive microstrip exhibiting negative differential resistivity
Huebener, R.P.; Gallus, D.E.
1975-10-28
A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.
Gallium Electromagnetic (GEM) Thruster Performance Measurements
NASA Technical Reports Server (NTRS)
Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.
2009-01-01
Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.
Historical forest patterns of Oregon's central Coast Range
Ripple, W.J.; Hershey, K.T.; Anthony, R.G.
2000-01-01
To describe the composition and pattern of unmanaged forestland in Oregon's central Coast Range, we analyzed forest conditions from a random sample of 18 prelogging (1949 and earlier) landscapes. We also compared the amount and variability of old forest (conifer-dominated stands > 53 cm dbh) in the prelogging landscapes with that in the current landscapes. Sixty-three percent of the prelogging landscape comprised old forest, approximately 21% of which also had a significant (> 20% cover) hardwood component. The proportions of forest types across the 18 prelogging landscapes varied greatly for both early seral stages (cv = 81194) and hardwoods (cv = 127) and moderately for old forest (cv = 39). With increasing distance from streams, the amount of hardwoods and nonforest decreased, whereas the amount of seedling/sapling/pole and young conifers increased. The amount of old forest was significantly greater (p < 0.002) in prelogging forests than in current landscapes. Old-forest patterns also differed significantly (p < 0.015) between prelogging and current landscapes; patch density, coefficient of variation of patch size, edge density, and fragmentation were greater in current landscapes and mean patch size, largest patch size, and core habitat were greater in prelogging forests. Generally, old-forest landscape pattern variables showed a greater range in prelogging landscapes than in current landscapes. Management strategies designed to increase the amount of old forest and the range in landscape patterns would result in a landscape more closely resembling that found prior to intensive logging. (C) 2000 Elsevier Science Ltd.
A double-stage start-up structure to limit the inrush current used in current mode charge pump
NASA Astrophysics Data System (ADS)
Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi
2016-06-01
A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).
Site-specific range uncertainties caused by dose calculation algorithms for proton therapy
NASA Astrophysics Data System (ADS)
Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.
2014-08-01
The purpose of this study was to assess the possibility of introducing site-specific range margins to replace current generic margins in proton therapy. Further, the goal was to study the potential of reducing margins with current analytical dose calculations methods. For this purpose we investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo (MC) simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for seven disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head and neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and MC algorithms to obtain the average range differences and root mean square deviation for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing MC dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head and neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be needed for breast, lung and head and neck treatments. We conclude that the currently used generic range uncertainty margins in proton therapy should be redefined site specific and that complex geometries may require a field specific adjustment. Routine verifications of treatment plans using MC simulations are recommended for patients with heterogeneous geometries.
Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.
2013-01-01
1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario, whereas two of four species would be severely restricted in range under moderatehigh emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species-distribution models. 6.These model predictions illustrate possible impacts of climate change on narrow-range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.
Pulsed Artificial Electrojet Generation
NASA Astrophysics Data System (ADS)
Papadopoulos, K.
2008-12-01
Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.
Effects of air current speed on gas exchange in plant leaves and plant canopies.
Kitaya, Y; Tsuruyama, J; Shibuya, T; Yoshida, M; Kiyota, M
2003-01-01
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Yan Lu; Wing-Hung Ki
2014-06-01
A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.
Kaufman thruster development at Lewis Research Center
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Reader, P. D.
1971-01-01
The current status of research programs on mercury electron-bombardment thrusters is reviewed. Future thruster requirements predicted from mission analysis are briefly discussed to establish the relationship with present programs. Thrusters ranging in size from 5 to 150 cm diameter are described. These thrusters have possible near to far term applications extending from station keeping to primary propulsion. Beam currents range from 10 mA to 25 A at accelerating potentials of 500 to 5000 V.
NASA Technical Reports Server (NTRS)
Faith, T. J.; Obenschain, A. F.
1974-01-01
Empirical equations have been derived from measurements of solar cell photovoltaic characteristics relating light-generated current and open circuit voltage to cell temperature, intensity of illumination and 1-MeV electron fluence. Both 2-ohm-cm and 10-ohm-cm cells were tested over the temperature range from 120 to 470 K, the illumination intensity range from 5 to 1830 mW/sq cm, and the electron fluence range from 1 x 10 to the 13th to 1 x 10 to the 16th electrons/sq cm. The normalized temperature coefficient of the light generated current varies as the 0.18 power of the fluence for temperatures above approximately 273 K and is independent of fluence at lower temperatures. At 140 mW/sq cm, a power law expression was derived which shows that the light-generated current decreases at a rate proportional to the 0.153 power of the fluence for both resistivities. The coefficient of the expression is larger for 2-ohm-cm cells; consequently, the advantage for 10-ohm-cm cells increased with increasing fluence.
Inductance parameter design based seamless transfer strategy for three-phase converter in microgrid
NASA Astrophysics Data System (ADS)
Zhao, Guopeng; Zhou, Xinwei; Jiang, Chao; Lu, Yi; Wang, Yanjie
2018-06-01
During the operation of microgrid, especially when the unplanned islanding occurs, the voltage of the point of common coupling (PCC) needs to be maintained within a certain range, otherwise it would affect the operation of loads in microgrid. This paper proposes a seamless transfer strategy based on the inductance parameter design for three-phase converter in microgrid, which considers both the fundamental component of voltage on the inductance and the ripple current in the inductance. In grid-connected mode, the PCC voltage is supported by the grid. When the unplanned islanding occurs, the PCC voltage is affected by the output voltage of converter and the voltage on the inductance. According to the single phase equivalent circuit, analyzing the phasor diagram of voltage and current vector, considering the prescribed range of PCC voltage and satisfying the requirement of the magnitude of ripple current, the inductance parameter is designed. At last, the simulation result shows that the designed inductance can ensure the PCC voltage does not exceed the prescribed range and restrain the ripple current.
Stuart, Bryan L.
2018-01-01
Accurately delimiting species and their geographic ranges is imperative for conservation, especially in areas experiencing rapid habitat loss. Southeast Asia currently has one of the highest rates of deforestation in the world, is home to multiple biodiversity hotspots, and the majority of its countries have developing economies with limited resources for biodiversity conservation. Thus, accurately delimiting species and their ranges is particularly important in this region. We examined genetic and morphological variation in the widespread frog species Sylvirana nigrovittata (and its long-treated junior synonym S. mortenseni) with the goal of clarifying its taxonomic content and geographic range boundaries for conservation. We present evidence that the current concept of S. nigrovittata contains at least eight species, two of which are each known from only two localities, but that S. mortenseni is more geographically widespread than currently realized. Five of these species are described as new to science. PMID:29538432
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.; Gilbert, D. B.; Ettenberg, M.
1981-01-01
The temperature dependence of threshold currents in constricted double-heterojunction diode lasers with strong lateral mode confinement is found to be significantly milder than for other types of lasers. The threshold-current relative variations with ambient temperature are typically two to three times less than for other devices of CW-operation capability. Over the interval 10-70 C the threshold currents fit the empirical exponential law exp/(T2-T1)/T0/ with T0 values in the 240-375 C range in pulsed operation, and in the 200-310 C range in CW operation. The external differential quantum efficiency and the mode far-field pattern near threshold are virtually invariant with temperature. The possible causes of high-T0 behavior are analyzed, and a new phenomenon - temperature-dependent current focusing - is presented to explain the results.
Bernstein, Diana N.; Neelin, J. David
2016-04-28
A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Diana N.; Neelin, J. David
A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less
Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham
2016-01-01
Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.
Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O’Carroll, Jack; Savidge, Graham
2016-01-01
Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657
A 4MP high-dynamic-range, low-noise CMOS image sensor
NASA Astrophysics Data System (ADS)
Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang
2015-03-01
In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.
Fernandez Santos, S; Bertemes-Filho, P
2017-07-01
The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.
System simulation of direct-current speed regulation based on Simulink
NASA Astrophysics Data System (ADS)
Yang, Meiying
2018-06-01
Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.
NASA Astrophysics Data System (ADS)
Fernandez Santos, S.; Bertemes-Filho, P.
2017-07-01
The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.
Remote sensing of atmospheric pressure and sea state using laser altimeters
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1985-01-01
Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.
A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.
Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon
2017-06-01
This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.
NASA Astrophysics Data System (ADS)
Tarao, Hiroo; Hayashi, Noriyuki; Isaka, Katsuo
Induced currents in the high-resolution, anatomical human models are numerically calculated by the impedance method. The human models are supposed to be exposed to highly inhomogeneous 20.9 kHz magnetic fields from a household induction heater (IH). In the case of the adult models, the currents ranging from 5 to 19 mA/m2 are induced for between the shoulder and lower abdomen. Meanwhile, in the case of the child models, the currents ranging from 5 to 21 mA/m2 are induced for between the head and abdomen. In particular, the induced currents near the brain tissue are almost the same as those near the abdomen. When the induced currents in the central nervous system tissues are considered, the induced currents in the child model are 2.1 to 6.9 times as large as those in the adult model under the same B-field exposure environment. These results suggest the importance of further investigation intended for a pregnant female who uses the IH as well as for a child (or the IH users of small standing height).
36 CFR 222.53 - Grazing fees in the East-noncompetitive procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... current period's hay price index, less the value of any agency required range improvements. (ii) Grazing Fee Credits for Range Improvements. Any requirements for permittee construction or development of range improvements shall be identified through an agreement and incorporated into the grazing permit...
Postglacial migration supplements climate in determining plant species ranges in Europe
Normand, Signe; Ricklefs, Robert E.; Skov, Flemming; Bladt, Jesper; Tackenberg, Oliver; Svenning, Jens-Christian
2011-01-01
The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role. PMID:21543356
Choice of range-energy relationship for the analysis of electron-beam-induced-current line scans
NASA Astrophysics Data System (ADS)
Luke, Keung, L.
1994-07-01
The electron range in a material is an important parameter in the analysis of electron-beam-induced-current (EBIC) line scans. Both the Kanaya-Okayama (KO) and Everhart-Hoff (EH) range-energy relationships have been widely used by investigators for this purpose. Although the KO range is significantly larer than the EH range, no study has been done to examine the effect of choosing one range over the other on the values of the surface recombination velocity S(sub T) and minority-carrier diffusion length L evaluated from EBICF line scans. Such a study has been carried out, focusing on two major questions: (1) When the KO range is used in different reported methods to evaluate either or both S(sub T) and L from EBIC line scans, how different are their values thus determined in comparison to those using the EH range?; (2) from EBIC line scans of a given material, is there a way to discriminate between the KO and the EH ranges which should be used to analyze these scans? Answers to these questions are presented to assist investigators in extracting more reliable values of either or both S(sub T) and L and in finding the right range to use in the analysis of these line scans.
Population genetics and the evolution of geographic range limits in an annual plant.
Moeller, David A; Geber, Monica A; Tiffin, Peter
2011-10-01
Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.
Haffner, Dieter; Schaefer, Franz
2013-04-01
The treatment of the mineral and bone disorder associated with chronic kidney disease (CKD-MBD) remains a major challenge in pediatric patients. The principal aims of therapeutic measures are not only to prevent the debilitating skeletal complications and to achieve normal growth but also to preserve long-term cardiovascular health. Serum parathyroid hormone (PTH) levels are used as a surrogate parameter of bone turnover. Whereas it is generally accepted that serum calcium and phosphate levels should be kept within the range for age, current pediatric consensus guidelines differ markedly with respect to the optimal PTH target range and operate on a limited evidence base. Recently, the International Pediatric Dialysis Network (IPPN) established a global registry collecting detailed clinical and biochemical information, including data relevant to CKD-MBD in children on chronic peritoneal dialysis (PD). This review highlights the current evidence basis regarding the optimal PTH target range in pediatric CKD patients, and re-assesses the current guidelines in view of the outcome data collected by the IPPN registry. Based on a comprehensive evaluation of CKD-MBD outcome measures in this global patient cohort, a PTH target range of 1.7-3 times the upper limit of normal (i.e. 100-200 pg/ml) appears reasonable in children undergoing chronic PD.
Fang, Jiancheng; Wen, Tong
2012-01-01
The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.
Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 $${}^{\\circ}$$ C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Geisz, John F.
2016-09-01
In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased,more » we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.« less
In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.
Yamada, T; Nishimura, K; Akamatsu, T; Tsukiya, T; Park, C H; Kono, S; Matsuda, K; Ban, T
1997-10-01
The life of currently-available centrifugal pumps is limited to no more than three days. As a magnetically suspended centrifugal pump (MSCP) contains no shaft or seal, it could be expected to have a longer life expectancy. The MSCP was evaluated in a chronic animal model using eight adult sheep. Left ventricular assist with the MSCP was instituted between the left atrium and the descending aorta. The flow rates ranged from 2.5 to 6.0 L/min. The duration of the experiments ranged from 14 to 60 days. No mechanical failure occurred. The plasma free hemoglobin levels remained within an acceptable range (3-19 mg/dL). No reduction in the counts of red blood cells or platelets was observed. Thrombus formation within the MSCP was recognized in one pump. The main reason for termination was thromboembolism derived from the circuits. Three types of regulation methods (constant rotational speed, constant motor current, and controlled motor current) were also investigated. Regulation by a constant motor current mode altered the pressure-flow (P-Q) characteristics, and thereby, a steadier pump flow was obtained compared with regulation in the constant rotational speed mode. Moreover, the controlled motor current mode can change the P-Q relationship. These results demonstrate that the MSCP is a promising device for long-term use.
Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu
2017-10-11
Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.
NASA Astrophysics Data System (ADS)
Birel, Ozgul; Kavasoglu, Nese; Kavasoglu, A. Sertap; Dincalp, Haluk; Metin, Bengul
2013-03-01
Diazo-compounds are important class of chemical compounds in terms of optical and electronic properties which make them potentially attractive for device applications. Diazo compound containing polyoxy chain has been deposited on p-Si. Current-voltage characteristics of Al/diazo compound containing polyoxy chain/p-Si structure present rectifying behaviour. The Schottky barrier height (SBH), diode factor (n), reverse saturation current (Io), interface state density (Nss) of Al/diazo compound containing polyoxy chain/p-Si structure have been calculated from experimental forward bias current-voltage data measured in the temperature range 100-320 K and capacitance-voltage data measured at room temperature and 1 MHz. The calculated values of SBH have ranged from 0.041 and 0.151 eV for the high and low temperature regions. Diode factor values fluctuate between the values 14 and 18 with temperature. Such a high diode factors stem from disordered interface layer in a junction structure as stated by Brötzmann et al. [M. Brötzmann, U. Vetter, H. Hofsäss, J. Appl. Phys. 106 (2009) 063704]. The calculated values of saturation current have ranged from 3×10-11 A to 2.79×10-7 A and interface state density have ranged from 5×1011 eV-1 cm-2 and 4×1013 eV-1 cm-2 as temperature increases. Results show that Al/diazo compound containing polyoxy chain/p-Si structure is a valuable candidate for device applications in terms of low reverse saturation current and low interface state density.
ERIC Educational Resources Information Center
Hamlett, Peggy J.
A study was conducted to identify and compare livestock production and range management practices currently in use in the Texas/Mexico border corridor, and to determine the acceptance of selected innovative practices among cattle ranchers in the State of Sonora, Mexico. Information was collected from private livestock producers who were members of…
Kaufman thruster development at Lewis Research Center (LeRC)
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Reader, P. D.
1971-01-01
The current status of research programs on mercury electron bombardment thrusters is reviewed. Future thruster requirements predicted from mission analysis are briefly discussed to establish the relationship with present programs. Thrusters ranging in size from 5 to 150 cm diameter are described. These thrusters have possible near to far term applications extending from stationkeeping to primary propulsion. Beam currents range from 10 mA at to 25 A at accelerating potentials of 500 to 5000 V.
Failure to migrate: lack of tree range expansion in response to climate change
Kai Zhu; Christopher W. Woodall; James S. Clark
2012-01-01
Tree species are expected to track warming climate by shifting their ranges to higher latitudes or elevations, but current evidence of latitudinal range shifts for suites of species is largely indirect. In response to global warming, offspring of trees are predicted to have ranges extend beyond adults at leading edges and the opposite relationship at trailing edges....
US Forest Service experimental forests and ranges: an untapped resource for social science
Susan Charnley; Lee K. Cerveny
2011-01-01
For a century, US Forest Service experimental forests and ranges (EFRs) have been a resource for scientists conducting long-term research relating to forestry and range management social science research has been limited, despite the history of occupation and current use of these sites for activities ranging from resource extraction and recreation to public education....
NASA Astrophysics Data System (ADS)
Zakharchenko, V. D.; Kovalenko, I. G.; Pak, O. V.; Ryzhkov, V. Yu.
2018-05-01
The problem of coherence violation in stroboscopic ranging with a high resolution in the range due to mutual phase instability of probing and reference radio signals has been considered. It has been shown that the violation of coherence in stroboscopic ranging systems is equivalent to the action of modulating interface and leads to a decrease in the system sensitivity. Requirements have been formulated for the coherence of reference generators in the stroboscopic processing system. The results of statistical modeling have been presented. It was shown that, in the current state of technology with stability of the frequencies of the reference generators, the achieved coherence is sufficient to probe asteroids with super-resolving signals in the range of up to 70 million kilometers. In this case, the dispersion of the signal in cosmic plasma limits the value of the linear resolution of the asteroid details at this range by the value of 2.7 m. Comparison with the current radar resolution of asteroids has been considered, which, at the end of 2015, were 7.5 m in the range of 7 million kilometers.
Conservation Status of North American Birds in the Face of Future Climate Change.
Langham, Gary M; Schuetz, Justin G; Distler, Trisha; Soykan, Candan U; Wilsey, Chad
2015-01-01
Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will greatly aid conservation planning. Using the North American Breeding Bird Survey and Audubon Christmas Bird Count, two of the most comprehensive continental datasets of vertebrates in the world, and correlative distribution modeling, we assessed geographic range shifts for 588 North American bird species during both the breeding and non-breeding seasons under a range of future emission scenarios (SRES A2, A1B, B2) through the end of the century. Here we show that 314 species (53%) are projected to lose more than half of their current geographic range across three scenarios of climate change through the end of the century. For 126 species, loss occurs without concomitant range expansion; whereas for 188 species, loss is coupled with potential to colonize new replacement range. We found no strong associations between projected climate sensitivities and existing conservation prioritizations. Moreover, species responses were not clearly associated with habitat affinities, migration strategies, or climate change scenarios. Our results demonstrate the need to include climate sensitivity into current conservation planning and to develop adaptive management strategies that accommodate shrinking and shifting geographic ranges. The persistence of many North American birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate adaptation.
Conservation Status of North American Birds in the Face of Future Climate Change
Langham, Gary M.; Schuetz, Justin G.; Distler, Trisha; Soykan, Candan U.; Wilsey, Chad
2015-01-01
Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will greatly aid conservation planning. Using the North American Breeding Bird Survey and Audubon Christmas Bird Count, two of the most comprehensive continental datasets of vertebrates in the world, and correlative distribution modeling, we assessed geographic range shifts for 588 North American bird species during both the breeding and non-breeding seasons under a range of future emission scenarios (SRES A2, A1B, B2) through the end of the century. Here we show that 314 species (53%) are projected to lose more than half of their current geographic range across three scenarios of climate change through the end of the century. For 126 species, loss occurs without concomitant range expansion; whereas for 188 species, loss is coupled with potential to colonize new replacement range. We found no strong associations between projected climate sensitivities and existing conservation prioritizations. Moreover, species responses were not clearly associated with habitat affinities, migration strategies, or climate change scenarios. Our results demonstrate the need to include climate sensitivity into current conservation planning and to develop adaptive management strategies that accommodate shrinking and shifting geographic ranges. The persistence of many North American birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate adaptation. PMID:26333202
NASA Astrophysics Data System (ADS)
Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol
2017-07-01
The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.
The Future of the U.S. Intercontinental Ballistic Missile Force
2014-01-01
42 3.7. Nevada Test Range and Surrounding Areas . . . . . . . . . . . . . . . . . . . . . 44 4.1. Solid Rocket ... Rocket Mass Ratio . . . 62 4.6. Range of an ICBM from Current Missile Bases . . . . . . . . . . . . . . . . 64 4.7. Range of an ICBM from Expanded...38 4.1. Specific Impulse of Various Rocket Propellants
Upper ocean moored current and density profiler applied to winter conditions near Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.
1982-09-20
A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... basic State Factor (SF). The data sources used for each criteria is believed to be the most current and... given the criteria. The transition formula first checks whether the current year's basic formula... year's BFA). EC14NO91.000 If the current year's State BFA is not within this transition range, the...
Ogden, Nicholas H; Milka, Radojević; Caminade, Cyril; Gachon, Philippe
2014-12-02
Since the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N. Ae. albopictus is a vector of a wide range of human pathogens including dengue and chikungunya viruses, which are currently emerging in the Caribbean and Central America and posing a threat to North America. The risk of Ae. albopictus expanding its geographic range in North America under current and future climate was assessed using three climatic indicators of Ae. albopictus survival: overwintering conditions (OW), OW combined with annual air temperature (OWAT), and a linear index of precipitation and air temperature suitability expressed through a sigmoidal function (SIG). The capacity of these indicators to predict Ae. albopictus occurrence was evaluated using surveillance data from the United States. Projected future climatic suitability for Ae. albopictus was obtained using output of nine Regional Climate Model experiments (RCMs). OW and OWAT showed >90% specificity and sensitivity in predicting observed Ae. albopictus occurrence and also predicted moderate to high risk of Ae. albopictus invasion in Pacific coastal areas of the Unites States and Canada under current climate. SIG also well predicted observed Ae. albopictus occurrence (ROC area under the curve was 0.92) but predicted wider current climatic suitability in the north-central and north-eastern United States and south-eastern Canada. RCM output projected modest (circa 500 km) future northward range expansion of Ae. albopictus by the 2050s when using OW and OWAT indicators, but greater (600-1000 km) range expansion, particularly in eastern and central Canada, when using the SIG indicator. Variation in future possible distributions of Ae. albopictus was greater amongst the climatic indicators used than amongst the RCM experiments. Current Ae. albopictus distributions were well predicted by simple climatic indicators and northward range expansion was predicted for the future with climate change. However, current and future predicted geographic distributions of Ae. albopictus varied amongst the climatic indicators used. Further field studies are needed to assess which climatic indicator is the most accurate in predicting regions suitable for Ae. albopictus survival in North America.
Self-amplified CMOS image sensor using a current-mode readout circuit
NASA Astrophysics Data System (ADS)
Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick
2014-05-01
The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.
Funama, Yoshinori; Awai, Kazuo; Hatemura, Masahiro; Shimamura, Masamitchi; Yanaga, Yumi; Oda, Seitaro; Yamashita, Yasuyuki
2008-01-01
To investigate whether it is possible to obtain adequate images at uniform image noise levels and reduced radiation exposure with our automatic tube current modulation (ATCM) technique for 64-detector CT. The study population consisted of 64 patients with known or suspected lung or abdominal disease. We used a 64-detector CT scanner (LightSpeed VCT, GE Healthcare, Waukesha, WI, USA) and a combined angular and longitudinal tube current modulation technique (Smart mA, GE Healthcare, Waukesha, WI, USA) to examine 34 patients. The scanning parameters were identical; the minimum and maximum tube current thresholds were 50 and 800 mA, respectively. For study of the constant tube current technique, 30 additional patients were examined at 350 mA. The CT number and image noise (SD of the CT number) were measured in the 64 patients at six levels, i.e., the center of the left ventricle, the liver dome, the porta hepatis, the center of the spleen and the right and left renal pelvis. When we used the ATCM technique, the mean image noise ranged from 8.40 at the center of the left ventricle to 11.31 at the porta hepatis; the mean tube current ranged from 105.9 mAs at the center of the left ventricle to 169.6 mAs at the center of the spleen. The mean dose reduction rate per constant tube current at 175 mAs ranged from 3.1 to 39.5%. By use of the ATCM technique, it is possible to maintain a constant image noise level with a 64-detector CT.
Dynamic response of polyurea subjected to nanosecond rise-time stress waves
NASA Astrophysics Data System (ADS)
Youssef, George; Gupta, Vijay
2012-08-01
Shaped charges and explosively formed projectiles used in modern warfare can attain speeds as high as 30,000 ft/s. Impacts from these threats are expected to load the armor materials in the 10 to 100 ns timeframe. During this time, the material strains are quite limited but the strain rates are extremely high. To develop armors against such threats it is imperative to understand the dynamic constitutive behavior of materials in the tens of nanoseconds timeframe. Material behavior in this parameter space cannot be obtained by even the most sophisticated plate-impact and split-Hopkinson bar setups that exist within the high energy materials field today. This paper introduces an apparatus and a test method that are based on laser-generated stress waves to obtain such material behaviors. Although applicable to any material system, the test procedures are demonstrated on polyurea which shows unusual dynamic properties. Thin polyurea layers were deformed using laser-generated stress waves with 1-2 ns rise times and 16 ns total duration. The total strain in the samples was less than 3%. Because of the transient nature of the stress wave, the strain rate varied throughout the deformation history of the sample. A peak value of 1.1×105 s-1 was calculated. It was found that the stress-strain characteristics, determined from experimentally recorded incident and transmitted wave profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition (TTS) principle even at extremely high strain rates of our test. This then extends the previous observations of Zhao et al. (Mech. Time-Depend. Mater. 11:289-308, 2007) who showed the applicability of the TTS principle for polyurea in the linearly viscoelastic regime up to peak strain rates of 1200 s-1.
Effects of Low-Field Magnetic Stimulation on Brain Glucose Metabolism
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Fowler, Joanna S.; Telang, Frank; Wang, Ruiliang; Alexoff, Dave; Logan, Jean; Wong, Christopher; Pradhan, Kith; Caparelli, Elisabeth C.; Ma, Yeming; Jayne, Millard
2010-01-01
Echo Planar imaging (EPI), the gold standard technique for functional MRI (fMRI), is based on fast magnetic field gradient switching. These time-varying magnetic fields induce electric (E) fields in the brain that could influence neuronal activity; but this has not been tested. Here we assessed the effects of EPI on brain glucose metabolism (marker of brain function) using PET and 18F 2-fluoro-2-deoxy-D-glucose (18FDG). Fifteen healthy subjects were in a 4 T magnet during the 18FDG uptake period twice: with (ON) and without (OFF) EPI gradients pulses along the z-axis (Gz: 23 mT/m; 250 microsecond rise-time; 920 Hz). The E-field from these EPI pulses is non-homogeneous, increasing linearly from the gradient’s isocenter (radial and z directions), which allowed us to assess the correlation between local strength of the E-field and the regional metabolic differences between ON and OFF sessions. Metabolic images were normalized to metabolic activity in the plane positioned at the gradient’s isocenter where E=0 for both ON and OFF conditions. Statistical parametric analyses used to identify regions that differed between ON versus OFF (p<0.05, corrected) showed that the relative metabolism was lower in areas at the poles of the brain (inferior occipital and frontal and superior parietal cortices) for ON than for OFF, which was also documented with individual region of interest analysis. Moreover the magnitude of the metabolic decrements was significantly correlated with the estimated strength of E (r=0.68, p<0.0001); the stronger the E-field the larger the decreases. However, we did not detect differences between ON versus OFF conditions on mood ratings nor on absolute whole brain metabolism. This data provides preliminary evidence that EPI sequences may affect neuronal activity and merits further investigation. PMID:20156571
NASA Astrophysics Data System (ADS)
Jansen, E. Duco; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Motamedi, Massoud; Welch, Ashley J.
1995-05-01
Mechanical injury during pulsed laser ablation of tissue is caused by rapid bubble expansions and collapse or by laser-induced pressure waves. In this study the effect of material elasticity on the ablation process has been investigated. Polyacrylamide tissue phantoms with various water concentrations (75-95%) were made. The Young's moduli of the gels were determined by measuring the stress-strain relationship. An optical fiber (200 or 400 micrometers ) was translated into the clear gel and one pulse of holmium:YAG laser radiation was given. The laser was operated in either the Q-switched mode (tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation inside the gels was recorded using a fast flash photography setup while simultaneously recording pressures with a PVDP needle hydrophone (40 ns risetime) positioned in the gel, approximately 2 mm away from the fibertip. A thermo-elastic expansion wave was measured only during Q-switched pulse delivery. The amplitude of this wave (approximately equals 40 bar at 1 mm from the fiber) did not vary significantly in any of the phantoms investigated. Rapid bubble formation and collapse was observed inside the clear gels. Upon bubble collapse, a pressure transient was emitted; the amplitude of this transient depended strongly on bubble size and geometry. It was found that (1) the bubble was almost spherical for the Q-switched pulse and became more elongated for the free-running pulse, and (2) the maximum bubble size and thus the collapse amplitude decreased with an increase in Young's modulus (from 68 +/- 11 bar at 1 mm in 95% water gel to 25 +/- 10 bar at 1 mm in 75% water gel).
Ultrafast Radiation Detection by Modulation of an Optical Probe Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, S P; Lowry, M E
2006-02-22
We describe a new class of radiation sensor that utilizes optical interferometry to measure radiation-induced changes in the optical refractive index of a semiconductor sensor medium. Radiation absorption in the sensor material produces a transient, non-equilibrium, electron-hole pair distribution that locally modifies the complex, optical refractive index of the sensor medium. Changes in the real (imaginary) part of the local refractive index produce a differential phase shift (absorption) of an optical probe used to interrogate the sensor material. In contrast to conventional radiation detectors where signal levels are proportional to the incident energy, signal levels in these optical sensors aremore » proportional to the incident radiation energy flux. This allows for reduction of the sensor form factor with no degradation in detection sensitivity. Furthermore, since the radiation induced, non-equilibrium electron-hole pair distribution is effectively measured ''in place'' there is no requirement to spatially separate and collect the generated charges; consequently, the sensor risetime is of the order of the hot-electron thermalization time {le} 10 fs and the duration of the index perturbation is determined by the carrier recombination time which is of order {approx} 600 fs in, direct-bandgap semiconductors, with a high density of recombination defects; consequently, the optical sensors can be engineered with sub-ps temporal response. A series of detectors were designed, and incorporated into Mach Zehnder and Fabry-Perot interferometer-based detection systems: proof of concept, lower detection sensitivity, Mach-Zehnder detectors were characterized at beamline 6.3 at SSRL; three generations of high sensitivity single element and imaging Fabry-Perot detectors were measured at the LLNL Europa facility. Our results indicate that this technology can be used to provide x-ray detectors and x-ray imaging systems with single x-ray sensitivity and S/N {approx} 30 at x-ray energies {approx} 10 keV.« less
Successful range-expanding plants experience less above-ground and below-ground enemy impact.
Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H
2008-12-18
Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.
Determination of the V- I characteristic of NbTi wires in a wide resistivity range
NASA Astrophysics Data System (ADS)
Musenich, R.; Fabbricatore, P.; Farinon, S.; Greco, M.
2004-01-01
The voltage-current curve of superconducting wires and cables is generally directly measured within the resistivity range 10 -15-10 -12 Ω m being limited by the sensitivity and the Joule dissipation. Indirect measurements, based on the current decay in a superconducting loop, allow the determination of the curve in lower resistivity regions. Using a loop made with a Cu-NbTi wire we performed indirect V- I measurements in the range 10 -19-10 -16 Ω m. The comparison of the curves obtained by the direct and indirect method allows the experimental verification of the power law describing the transition of the superconducting wire to the normal state in a wide resistivity range. The law is discussed and justified on the basis of the superconductor behaviour in the flux creep dynamic regime.
Autonomous navigation system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2009-09-08
A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.
Examining fluvial fish range loss with SDMs
Taylor, Andrew T.; Papeş, Monica; Long, James M.
2018-01-01
Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial‐specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non‐native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non‐native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non‐native congeners, wherein non‐natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free‐flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.
Carbon nanotubes based vacuum gauge
NASA Astrophysics Data System (ADS)
Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.
2017-11-01
We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.
NASA Astrophysics Data System (ADS)
Khan, Motiur Rahman; Rao, K. S. R. Koteswara; Menon, R.
2017-05-01
Temperature dependent current-voltage measurements have been performed on poly(3-methylthiophene) based devices in metal/polymer/metal geometry in temperature range 90-300 K. Space charge limited current (SCLC) controlled by exponentially distributed traps is observed at all the measured temperatures at intermediate voltage range. At higher voltages, trap-free SCLC is observed at 90 K only while slope less than 2 is observed at higher temperatures which is quiet unusual in polymer devices. Impedance measurements were performed at different bias voltages. The unusual behavior observed in current-voltage characteristics is explained by Cole-Cole plot which gives the signature of interface dipole on electrode/polymer interface. Two relaxation mechanisms are obtained from the real part of impedance vs frequency spectra which confirms the interface related phenomena in the device
Current-controlled curvature of coated micromirrors
NASA Astrophysics Data System (ADS)
Liu, Wei; Talghader, Joseph J.
2003-06-01
Precise control of micromirror curvature is critical in many optical microsystems. Micromirrors with current-controlled curvature are demonstrated. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2 mm over a current-induced temperature range from 22° to 72 °C. For fine focal-length tuning, the radius of curvature of a dielectric-coated (SiO2/Y2O3 λ/4 pairs) mirror was tuned from -0.68 to -0.64 mm over a current-induced temperature range from 22 to 84 °C. These results should be readily extendable to mirror flattening or real-time adaptive shape control.
The source of O+ in the storm time ring current
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Menz, A. M.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.; Wygant, J. R.; Lanzerotti, L. J.
2016-06-01
A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.
1995-08-08
A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.
1995-01-01
A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.
Current interruption in inductive storage systems with inertial current source
NASA Astrophysics Data System (ADS)
Vitkovitsky, I. M.; Conte, D.; Ford, R. D.; Lupton, W. H.
1980-03-01
Utilization of inertial current source inductive storage with high power output requires a switch with short opening time. This switch must operate as a circuit breaker, i.e., be capable to carry the current for a time period characteristic of inertial systems, such as homopolar generators. For reasonable efficiency, its opening time must be fast to minimize the energy dissipated in downstream fuse stages required for any additional pulse compression. A switch that satisfies these criteria, as well as other requirements such as that for high voltage operation associated with high power output, is an explosively driven switch consisting of large number of gaps arranged in series. The performance of this switch in limiting and/or interrupting currents produced by large generators has been studied. Single switch modules were designed and tested for limiting the commutating current output of 1 MW, 60 Hz, generator and 500 KJ capacitor banks. Current limiting and commutation were evaluated, using these sources, for currents ranging up to 0.4 MA. The explosive opening of the switch was found to provide an effective first stage for further pulse compression. It opens in tens of microseconds, commutates current at high efficiency ( = 905) recovers very rapidly over a wide range of operating conditions.
Operating manual: Fast response solar array simulator
NASA Technical Reports Server (NTRS)
Vonhatten, R.; Weimer, A.; Zerbel, D. W.
1971-01-01
The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.
NASA Astrophysics Data System (ADS)
Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun
2018-05-01
The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.
STS-65 Earth observation of island wake at Oahu, Hawaii, taken from OV-102
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Oahu, Hawaii. The island wake emerging to the lower left side of Oahu is caused by wind currents blowing from the northeast being obstructed by the northwest-southeast trending, cloud covered, Koolau mountain range. The lighter colored water indicates a more smooth surface with a slower water current that the darker, rougher, faster moving water current. Pearl Harbor is visible to the south of the Koolau Range. To the right, or east, of Pearl Harbor is the city of Honolulu. The circular, brown feature to the east of Honolulu is the dormant volcano Diamond Head.
Radio Science from an Optical Communications Signal
NASA Technical Reports Server (NTRS)
Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal
2013-01-01
NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.
Field Demonstrations of Active Laser Ranging with Sub-mm Precision
NASA Technical Reports Server (NTRS)
Chen, Yijiang; Birnbaum, Kevin M.; Hemmati, Hamid
2011-01-01
Precision ranging between planets will provide valuable information for scientific studies of the solar system and fundamental physics. Current passive ranging techniques using retro-reflectors are limited to the Earth-Moon distance due to the 1/R? losses. We report on a laboratory realization and field implementation of active laser ranging in real-time with two terminals, emulating interplanetary distance. Sub-millimeter accuracy is demonstrated.
NASA Technical Reports Server (NTRS)
Birchenough, A. G. (Inventor)
1977-01-01
Advantage is taken of the current-exponential voltage characteristic of a diode over a certain range whereby the incremental impedance across the diode is inversely proportional to the current through the diode. Accordingly, a divider circuit employs a bias current through the diode proportional to the desired denominator and applies an incremental current to the diode proportional to the numerator. The incremental voltage across the diode is proportional to the quotient.
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Satellite laser ranging work at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Mcgunigal, T. E.; Carrion, W. J.; Caudill, L. O.; Grant, C. R.; Johnson, T. S.; Premo, D. A.; Spadin, P. L.; Winston, G. C.
1975-01-01
Laser ranging systems, their range and accuracy capabilities, and planned improvements for future systems are discussed, the systems include one fixed and two mobile lasers ranging systems. They have demonstrated better than 10 cm accuracy both on a carefully surveyed ground range and in regular satellite ranging operations. They are capable of ranging to all currently launched retroreflector equipped satellites with the exception of Timation III. A third mobile system is discussed which will be accurate to better than 5 cm and will be capable of ranging to distant satellites such as Timation III and LAGEOS.
Mission Information and Test Systems Summary of Accomplishments, 2012-2013
NASA Technical Reports Server (NTRS)
McMorrow, Sean; Sherrard, Roberta; Gibbs, Yvonne
2015-01-01
This annual report covers the activities of the NASA Dryden Flight Research Center's Mission Information and Test Systems directorate, which include the Western Aeronautical Test Range (Range Engineering and Range Operations), the Simulation Engineering Branch, and Information Services. This report contains highlights, current projects, and various awards achieved throughout 2012 and 2013.
NASA Technical Reports Server (NTRS)
Pearlman, Michael R.; Carter, David (Technical Monitor)
2004-01-01
This progress report discusses the status and progress made in joint international programs including: 1) WEGENER; 2) Arabian Peninsula program; 3) Asia-Pacific Space Geodynamics (APSG) program; 4) the Fourteenth International Workshop on Laser Ranging; 5) the International Laser Ranging Service; and 6) current support for the NASA network.
New criteria for measuring range management activities.
T.M. Quigley; D.S. Dillard; J.B. [and others] Reese
1989-01-01
The USDA Forest Service national range program is currently evaluating its information needs at the national level A Range Measurement Task Group of Agency personnel was assembled in January 1988 to evaluate the information needs and recommend appropriate measures and reports. This document is the final recommendation of the task group. The recommendation includes...
Process for testing a xenon gas feed system of a hollow cathode assembly
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2004-01-01
The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.
Process for Ignition of Gaseous Electrical Discharge Between Electrodes of a Hollow Cathode Assembly
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2000-01-01
The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.
2018-01-01
Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p < 0.0001). Image noise (4.6 ± 0.5 Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p < 0.01) with the CTDIvol before and after the CT scan. The CTDIvol after CT scan showed modest positive correlation (r = 0.49; p ≤ 0.001) with image noise in group 1 but no significant correlation (p > 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.
Lightweight, High-Current Welding Gun
NASA Technical Reports Server (NTRS)
Starck, Thomas F.; Brennan, Andrew D.
1989-01-01
Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.
Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.
Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R
2013-03-28
An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.
Lower Current Large Deviations for Zero-Range Processes on a Ring
NASA Astrophysics Data System (ADS)
Chleboun, Paul; Grosskinsky, Stefan; Pizzoferrato, Andrea
2017-04-01
We study lower large deviations for the current of totally asymmetric zero-range processes on a ring with concave current-density relation. We use an approach by Jensen and Varadhan which has previously been applied to exclusion processes, to realize current fluctuations by travelling wave density profiles corresponding to non-entropic weak solutions of the hyperbolic scaling limit of the process. We further establish a dynamic transition, where large deviations of the current below a certain value are no longer typically attained by non-entropic weak solutions, but by condensed profiles, where a non-zero fraction of all the particles accumulates on a single fixed lattice site. This leads to a general characterization of the rate function, which is illustrated by providing detailed results for four generic examples of jump rates, including constant rates, decreasing rates, unbounded sublinear rates and asymptotically linear rates. Our results on the dynamic transition are supported by numerical simulations using a cloning algorithm.
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1993-01-01
A sample of Z-93 thermal control paint was exposed to a simulated space environment in a plasma chamber. The sample was biased through a series of voltages ranging from -100 volts to +300 volts and electron and ion currents were measured. Currents were found to be in the micro-ampere range indicating that the material remains a reasonably good insulator under plasma conditions. As a second step, the sample was left in the chamber for six days and retested. Collected currents were reduced by from two to five times from the previous values indicating a substantial loss of conductivity. As a final test, the sample was removed, exposed to room conditions for two days, and returned to the chamber. Current measurements showed that the sample had partially recovered the lost conductivity. In addition to presenting these results, this report documents all of the experimental data as well as the statistical analyses performed.
NASA Astrophysics Data System (ADS)
Lee, Byung-Gwan; Lee, Seung-Hwan
2017-03-01
We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Winkelmann, C. B.; Biswas, Sourav; Courtois, H.; Gupta, Anjan K.
We have fabricated and studied the current-voltage characteristics of a number of niobium film based weak-link devices and μ-SQUIDs showing a critical current and two re-trapping currents. We have proposed a new understanding for the re-trapping currents in terms of thermal instabilities in different portions of the device. We also find that the superconducting proximity effect and the phase-slip processes play an important role in dictating the temperature dependence of the critical current in the non-hysteretic regime. The proximity effect helps in widening the temperature range of hysteresis-free characteristics. Finally we demonstrate control on temperature-range with hysteresis-free characteristics in two ways: 1) By using a parallel shunt resistor in close vicinity of the device, and 2) by reducing the weak-link width. Thus we get non-hysteretic behavior down to 1.3 K temperature in some of the studied devices. We acknowledge the financial support from CSIR, India as well as CNRS-Institute Neel, Grenoble, France.
A 10-kW series resonant converter design, transistor characterization, and base-drive optimization
NASA Technical Reports Server (NTRS)
Robson, R. R.; Hancock, D. J.
1982-01-01
The development, components, and performance of a transistor-based 10 kW series resonant converter for use in resonant circuits in space applications is described. The transistors serve to switch on the converter current, which has a half-sinusoid waveform when the transistor is in saturation. The goal of the program was to handle an input-output voltage range of 230-270 Vdc, an output voltage range of 200-500 Vdc, and a current limit range of 0-20 A. Testing procedures for the D60T and D7ST transistors are outlined and base drive waveforms are presented. The total device dissipation was minimized and found to be independent of the regenerative feedback ratio at lower current levels. Dissipation was set at within 10% and rise times were found to be acceptable. The finished unit displayed a 91% efficiency at full power levels of 500 V and 20 A and 93.7% at 500 V and 10 A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathi, M. N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in
The total dose effects of 80 MeV C{sup 6+} ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔI{sub B} = I{sub Bpost} - I{sub Bpre}), dc forward current gain (h{sub FE}), transconductance (g{sub m}), displacement damage factor (K) and output characteristics (V{sub CE}-I{sub C}) were studied systematically before and after irradiation. The significantmore » degradation in base current (I{sub B}) and h{sub FE} was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with {sup 60}C0 gamma irradiation results in the same dose range.« less
Oxygen measurements at high pressures with vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Wang, J.; Sanders, S. T.; Jeffries, J. B.; Hanson, R. K.
Measurements of oxygen concentration at high pressures (to 10.9 bar) were made using diode-laser absorption of oxygen A-band transitions near 760 nm. The wide current-tuning frequency range (>30 cm-1) of vertical cavity surface-emitting lasers (VCSELs) was exploited to enable the first scanned-wavelength demonstration of diode-laser absorption at high pressures; this strategy is more robust than fixed-wavelength strategies, particularly in hostile environments. The wide tuning range and rapid frequency response of the current tuning were further exploited to demonstrate wavelength-modulation absorption spectroscopy in a high-pressure environment. The minimum detectable absorbance demonstrated, 1×10-4, corresponds to 800 ppm-m oxygen detectivity at room temperature and is limited by etalon noise. The rapid- and wide-frequency tunability of VCSELs should significantly expand the application domain of absorption-based sensors limited in the past by the small current-tuning frequency range (typically <2 cm-1) of conventional edge-emitting diode lasers.
Swap intensified WDR CMOS module for I2/LWIR fusion
NASA Astrophysics Data System (ADS)
Ni, Yang; Noguier, Vincent
2015-05-01
The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.
Ring current proton decay by charge exchange
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Fritz, T.
1975-01-01
Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.
Cecil, Michael; Warner, Lee; Siegler, Aaron J
2013-11-01
Across studies, 35-50% of men describe condoms as fitting poorly. Rates of condom use may be inhibited in part due to the inaccessibility of appropriately sized condoms. As regulated medical devices, condom sizes conform to national standards such as those developed by the American Society for Testing and Materials (ASTM) or international standards such as those developed by the International Organisation for Standardisation (ISO). We describe the initial online sales experience of an expanded range of condom sizes and assess uptake in relation to the current required standard dimensions of condoms. Data regarding the initial 1000 sales of an expanded range of condom sizes in the United Kingdom were collected from late 2011 through to early 2012. Ninety-five condom sizes, comprising 14 lengths (83-238mm) and 12 widths (41-69mm), were available. For the first 1000 condom six-pack units that were sold, a total of 83 of the 95 unique sizes were purchased, including all 14 lengths and 12 widths, and both the smallest and largest condoms. Initial condom purchases were made by 572 individuals from 26 countries. Only 13.4% of consumer sales were in the ASTM's allowable range of sizes. These initial sales data suggest consumer interest in an expanded choice of condom sizes that fall outside the range currently allowable by national and international standards organisations.
Hauswirth, O.; Noble, D.; Tsien, R. W.
1972-01-01
1. Experiments on sheep Purkinje fibres were designed to determine whether the current mechanisms responsible for delayed rectification at the pace-maker (negative to -50 mV) and plateau (positive to -50 mV) ranges of potential are kinetically separable and independent. 2. Hyperpolarizations from the plateau range were shown to produce decay of a single component of outward current within the plateau range, but two components were evident when the hyperpolarizations entered the pace-maker range. 3. The time courses of recovery of the two components were too similar at -25 mV to allow temporal resolution at this potential. Clear temporal resolution was, however, possible at potentials between -55 and -95 mV. An indirect method of resolving the two components at -25 mV was used. 4. The kinetic properties of the two components correspond to those previously described for the pace-maker potassium current, iK2, and the outward plateau current, ix1 (Noble & Tsien, 1968, 1969a). 5. The instantaneous (fully activated) current—voltage relation for iK2 was reconstructed from the analysed current records. It was found that this relation shows a negative slope conductance at all potentials positive to -75 mV and that the current tends towards zero at zero membrane potential. 6. The results are compared with those predicted by two reaction models of the iK2 and ix1 mechanisms. It is concluded that iK2 and ix1 are kinetically separable but that it is not possible with present techniques to decide whether they are controlled by the same or completely independent membrane structures. It is also shown that the instantaneous current—voltage relation calculated for iK2 does not depend on whether the controlling mechanisms are assumed to be independent or linked. PMID:4679715
A new low voltage level-shifted FVF current mirror with enhanced bandwidth and output resistance
NASA Astrophysics Data System (ADS)
Aggarwal, Bhawna; Gupta, Maneesha; Gupta, Anil Kumar; Sangal, Ankur
2016-10-01
This paper proposes a new high-performance level-shifted flipped voltage follower (LSFVF) based low-voltage current mirror (CM). The proposed CM utilises the low-supply voltage and low-input resistance characteristics of a flipped voltage follower (FVF) CM. In the proposed CM, level-shifting configuration is used to obtain a wide operating current range and resistive compensation technique is employed to increase the operating bandwidth. The peaking in frequency response is reduced by using an additional large MOSFET. Moreover, a very high output resistance (in GΩ range) along with low-current transfer error is achieved through super-cascode configuration for a wide current range (0-440 µA). Small signal analysis is carried out to show the improvements achieved at each step. The proposed CM is simulated by Mentor Graphics Eldospice in TSMC 0.18 µm CMOS, BSIM3 and Level 53 technology. In the proposed CM, a bandwidth of 6.1799 GHz, 1% settling time of 0.719 ns, input and output resistances of 21.43 Ω and 1.14 GΩ, respectively, are obtained with a single supply voltage of 1 V. The layout of the proposed CM has been designed and post-layout simulation results have been shown. The post-layout simulation results for Monte Carlo and temperature analysis have also been included to show the reliability of the CM against the variations in process parameters and temperature changes.
Vetter, Monica Hagan; Hays, John L
2018-03-01
Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death in the United States. Most patients will ultimately fail platinum-based chemotherapy and have the disease recur. Interest is increasing in the use of targeted therapies in the treatment of EOC. This review focuses on the current use of targeted therapeutics in EOC as well as future directions. A literature search of Medline and PubMed was conducted (January 2000-October 2017) to identify recent reports of targeted drugs in EOC. A wide range of targeted therapeutics is currently being used as both monotherapy and in combination in the treatment of EOC. Clinically, the most commonly used classes of drugs currently are antiangiogenics and poly (ADP-ribose) polymerase inhibitors. However, a number of drugs in varying stages in development target a wide range of biochemical pathways. Activity and response rates of these drugs vary greatly. Questions continue about combination drug therapy and appropriate patient selection. The use of targeted therapeutics in the treatment of EOC, both as monotherapy and in combination, will continue to expand as more mechanisms of tumorigenesis are identified. Multiple clinical trials of a wide range of targeted therapeutics are currently ongoing. Evidence-based selection of drug targets and appropriate patient populations will allow strategic application of targeted therapeutics. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.
Advanced Tactical Booster Technologies: Applications for Long-Range Rocket Systems
2016-09-07
Applications for Long-Range Rocket Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew McKinna, Jason Mossman 5d...technology advantages currently under development for tactical rocket motors which have direct application to land-based long-range rocket systems...increased rocket payload capacity, improved rocket range or increased rocket loadout from the volumetrically constrained environment of a land-based
Preliminary Evaluation of a 10 kW Hall Thruster
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; McLean, Chris; McVey, John
1999-01-01
A 10 kW Hall thruster was characterized over a range of discharge voltages from 300-500 V and a range of discharge currents from 15-23 A. This corresponds to power levels from a low of 4.6 kW to a high of 10.7 kW. Over this range of discharge powers, thrust varied from 278 mN to 524 mN, specific impulse ranged from 1644 to 2392 seconds, and efficiency peaked at approximately 59%. A continuous 40 hour test was also undertaken in an attempt to gain insight with regard to long term operation of the engine. For this portion of the testing the thruster was operated at a discharge voltage of 500 V and a discharge current of 20 A. Steady-state temperatures were achieved after 3-5 hrs and very little variation in performance was detected.
Electromigration failures under bidirectional current stress
NASA Astrophysics Data System (ADS)
Tao, Jiang; Cheung, Nathan W.; Hu, Chenming
1998-01-01
Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.
Lanzarini-Lopes, Mariana; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul
2017-12-01
Electrochemical oxidation (EO) is an advanced oxidation process for water treatment to mineralize organic contaminants. While proven to degrade a range of emerging pollutants in water, less attention has been given to quantify the effect of operational variables such applied current density and pollutant concentration on efficiency and energy requirements. Particular figures of merit were mineralization current efficiency (MCE) and electrical energy per order (E EO ). Linear increases of applied current exponentially decreased the MCE due to the enhancement of undesired parasitic reactions that consumed generated hydroxyl radical. E EO values ranged from 39.3 to 331.8 kW h m -3 order -1 . Increasing the applied current also enhanced the E EO due to the transition from kinetics limited by current to kinetics limited by mass transfer. Further increases in current did not influence the removal rate, but it raised the E EO requirement. The E EO requirement diminished when decreasing initial pollutant loading with the increase of the apparent kinetic rate because of the relative availability of oxidant per pollutant molecule in solution at a defined current. Oxidation by-products released were identified, and a plausible degradative pathway has been suggested. Copyright © 2017. Published by Elsevier Ltd.
Sookpeng, S; Martin, C J; Gentle, D J; Lopez-Gonzalez, M R
2014-03-01
Automatic tube current modulation (ATCM) systems are now used for the majority of CT scans. The principles of ATCM operation are different in CT scanners from different manufacturers. Toshiba and GE scanners base the current modulation on a target noise setting, while Philips and Siemens scanners use reference image and reference mAs concepts respectively. Knowledge of the relationships between patient size, dose and image noise are important for CT patient dose optimisation. In this study, the CT patient doses were surveyed for 14 CT scanners from four different CT scanner manufacturers. The patient cross sectional area, the tube current modulation and the image noise from the CT images were analysed using in-house software. The Toshiba and GE scanner results showed that noise levels are relatively constant but tube currents are dependent on patient size. As a result of this there is a wide range in tube current values across different patient sizes, and doses for large patients are significantly higher in these scanners. In contrast, in the Philips and Siemens scanners, tube currents are less dependent on patient size, the range in tube current is narrower, and the doses for larger patients are not as high. Image noise is more dependent on the patient size.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... on: (1)The species' biology, range, and population trends, including: (a) Habitat requirements for... distribution patterns; (d) Historical and current population levels, and current and projected trends; and (e...
Studies of Current Circulation at Ocean Waste Disposal Sites
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G.; Henry, R.
1976-01-01
The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.
Psychological symptom profiles in patients with chest pain.
Tennant, C; Mihailidou, A; Scott, A; Smith, R; Kellow, J; Jones, M; Hunyor, S; Lorang, M; Hoschl, R
1994-05-01
Five-hundred and thirty-two patients with ischaemic-like chest pain referred for symptom-limited exercise thallium myocardial perfusion studies, were assessed on a range of psychosocial measures. Three groups of patients were identified on the basis of their perfusion studies: (1) normal thallium perfusion; (2) current myocardial ischaemia; and (3) past myocardial infarction (but no current ischaemia). There were no significant psychological differences between these groups on a wide range of measures which included depression, state and trait anxiety, Type A behaviour, personality, suppression of affect, locus of control, alexythymia, and hypochondriasis. Significant differences were identified, however, on measures of anger and coping style. Subjects with no current ischaemia (normal thallium perfusion and those with past myocardial infarction) had higher scores on 'immature coping' and 'anger in', than subjects with current myocardial ischaemia. These findings are discussed in the light of other published research.
Behzadi, Kobra; Baghelani, Masoud
2014-05-01
This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.
Behzadi, Kobra; Baghelani, Masoud
2013-01-01
This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator. PMID:25685504
Deducing noninductive current profile from surface voltage evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, C.; Wukitch, S.; Hershkowitz, N.
Solving the resistive diffusion equation in the presence of a noninductive current source determines the time-evolution of the surface voltage. By inverting the problem the current drive profile can be determined from the surface voltage evolution. We show that under wide range of conditions the deduced profile is unique. If the conductivity profile is known, this method can be employed to infer the noninductive current profile, and, ipso facto, the profile of the total current. We discuss the application of this method to analyze the Alfven wave current drive experiments in Phaedrus-T.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.
Zhang, Mingji; Or, Siu Wing
2018-02-14
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression
2018-01-01
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920
Comparison of Stopping Power and Range Databases for Radiation Transport Study
NASA Technical Reports Server (NTRS)
Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.
1997-01-01
The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.
A GIS approach to identifying the distribution and structure of coast redwood across its range
Peter Cowan; Emily E. Burns; Richard Campbell
2017-01-01
To better understand the distribution and current structure of coast redwood (Sequoia sempervirens (D.Don) Endl.) forests throughout the range and how it varies by land ownerships, the Save the Redwoods League has conducted a redwood specific analysis of a high resolution forest structure database encompassing the entire natural coast redwood range...
Historical range of variability in landscape structure: a simulation study in Oregon, USA.
Etsuko Nonaka; Thomas A. Spies
2005-01-01
We estimated the historical range of variability (HRV) of forest landscape structure under natural disturbance regimes at the scale of a physiographic province (Oregon Coast Range, 2 million ha) and evaluated the similarity to HRV of current and future landscapes under alternative management scenarios. We used a stochastic fire simulation model to simulate...
Effect of the Range of Response Options on Answers to Biographical Inventory Items
ERIC Educational Resources Information Center
Kirnan, Jean Powell; Edler, Erin; Carpenter, Allison
2007-01-01
The range of response options has been shown to influence the answers given in self-report instruments that measure behaviors ranging from television viewing to sexual partners. The current research extends this line of inquiry to 36 quantitative items extracted from a biographical inventory used in personnel selection. A total of 92…
Williamsport Area Community College Long Range Planning: The Long Range Plan, Update 1987.
ERIC Educational Resources Information Center
Williamsport Area Community Coll., PA.
This update to Williamsport Area Community College's (WACC's) 1984-89 long-range plan offers a status report on each of the plan's 78 objectives, reassigns responsibility for specific objectives to make the plan responsive to the current organizational structure of the college, and offers 11 new objectives for the 1986-87 academic year. After…
Properties of the welded joints of manganese steel made by low-frequency pulsed arc welding
NASA Astrophysics Data System (ADS)
Saraev, Yu. N.; Bezborodov, V. P.; Gladovskii, S. V.; Golikov, N. I.
2017-04-01
The structure, the mechanical properties, the impact toughness, and the fracture mechanisms of the welded joints made of steel 09G2S plates by direct current welding and pulsed arc welding with a modulated arc current in the frequency range 0.25-5.0 Hz are studied. The application of low-frequency pulsed arc welding allowed us to form welded joints with a fine-grained structure in the weld metal and the heat-affected zone and to achieve a higher impact toughness and a longer cyclic fatigue life as compared to the welded joints fabricated by direct current welding. The achieved effect manifests itself over the entire testing range from 20 to-60°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo, E-mail: dshin@hanyang.ac.kr
While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.
Ocampo-Peñuela, Natalia; Jenkins, Clinton N.; Vijay, Varsha; Li, Binbin V.; Pimm, Stuart L.
2016-01-01
The IUCN (International Union for Conservation of Nature) Red List classifies species according to their risk of extinction, informing global to local conservation decisions. Unfortunately, important geospatial data do not explicitly or efficiently enter this process. Rapid growth in the availability of remotely sensed observations provides fine-scale data on elevation and increasingly sophisticated characterizations of land cover and its changes. These data readily show that species are likely not present within many areas within the overall envelopes of their distributions. Additionally, global databases on protected areas inform how extensively ranges are protected. We selected 586 endemic and threatened forest bird species from six of the world’s most biodiverse and threatened places (Atlantic Forest of Brazil, Central America, Western Andes of Colombia, Madagascar, Sumatra, and Southeast Asia). The Red List deems 18% of these species to be threatened (15 critically endangered, 29 endangered, and 64 vulnerable). Inevitably, after refining ranges by elevation and forest cover, ranges shrink. Do they do so consistently? For example, refined ranges of critically endangered species might reduce by (say) 50% but so might the ranges of endangered, vulnerable, and nonthreatened species. Critically, this is not the case. We find that 43% of species fall below the range threshold where comparable species are deemed threatened. Some 210 bird species belong in a higher-threat category than the current Red List placement, including 189 species that are currently deemed nonthreatened. Incorporating readily available spatial data substantially increases the numbers of species that should be considered at risk and alters priority areas for conservation. PMID:28861465
Ocampo-Peñuela, Natalia; Jenkins, Clinton N; Vijay, Varsha; Li, Binbin V; Pimm, Stuart L
2016-11-01
The IUCN (International Union for Conservation of Nature) Red List classifies species according to their risk of extinction, informing global to local conservation decisions. Unfortunately, important geospatial data do not explicitly or efficiently enter this process. Rapid growth in the availability of remotely sensed observations provides fine-scale data on elevation and increasingly sophisticated characterizations of land cover and its changes. These data readily show that species are likely not present within many areas within the overall envelopes of their distributions. Additionally, global databases on protected areas inform how extensively ranges are protected. We selected 586 endemic and threatened forest bird species from six of the world's most biodiverse and threatened places (Atlantic Forest of Brazil, Central America, Western Andes of Colombia, Madagascar, Sumatra, and Southeast Asia). The Red List deems 18% of these species to be threatened (15 critically endangered, 29 endangered, and 64 vulnerable). Inevitably, after refining ranges by elevation and forest cover, ranges shrink. Do they do so consistently? For example, refined ranges of critically endangered species might reduce by (say) 50% but so might the ranges of endangered, vulnerable, and nonthreatened species. Critically, this is not the case. We find that 43% of species fall below the range threshold where comparable species are deemed threatened. Some 210 bird species belong in a higher-threat category than the current Red List placement, including 189 species that are currently deemed nonthreatened. Incorporating readily available spatial data substantially increases the numbers of species that should be considered at risk and alters priority areas for conservation.
Lindenblatt, G.; Silny, J.
2006-01-01
Leakage currents, tiny currents flowing from an everyday-life appliance through the body to the ground, can cause a non-adequate perception (called electrocutaneous sensation, ECS) or even pain and should be avoided. Safety standards for low-frequency range are based on experimental results of current thresholds of electrocutaneous sensations, which however show a wide range between about 50 μA (rms) and 1000 μA (rms). In order to be able to explain these differences, the perception threshold was measured repeatedly in experiments with test persons under identical experimental setup, but by means of different methods (measuring strategies), namely: direct adjustment, classical threshold as amperage of 50% perception probability, and confidence rating procedure of signal detection theory. The current is injected using a 1 cm2 electrode at the highly touch sensitive part of the index fingertip. These investigations show for the first time that the threshold of electrocutaneous sensations is influenced both by adaptation to the non-adequate stimulus and individual, emotional factors. Therefore, classical methods, on which the majority of the safety investigations are based, cannot be used to determine a leakage current threshold. The confidence rating procedure of the modern signal detection theory yields a value of 179.5 μA (rms) at 50 Hz power supply net frequency as the lower end of the 95% confidence range considering the variance in the investigated group. This value is expected to be free of adaptation influences, and is distinctly lower than the European limits and supports the stricter regulations of Canada and USA. PMID:17111461
Electromigration analysis of solder joints under ac load: A mean time to failure model
NASA Astrophysics Data System (ADS)
Yao, Wei; Basaran, Cemal
2012-03-01
In this study, alternating current (ac) electromigration (EM) degradation simulations were carried out for Sn95.5%Ag4.0%Cu0.5 (SAC405- by weight) solder joints. Mass transport analysis was conducted with viscoplastic material properties for quantifying damage mechanism in solder joints. Square, sine, and triangle current wave forms ac were used as input signals. dc and pulsed dc (PDC) electromigration analysis were conducted for comparison purposes. The maximum current density ranged from 2.2×106A/cm2 to 5.0×106A/cm2, frequency ranged from 0.05 Hz to 5 Hz with ambient temperature varying from 350 K to 450 K. Because the room temperature is nearly two-thirds of SAC solder joint's melting point on absolute temperature scale (494.15 K), viscoplastic material model is essential. Entropy based damage evolution model was used to investigate mean time to failure (MTF) behavior of solder joints subjected to ac stressing. It was observed that MTF was inversely proportional to ambient temperature T1.1 in Celsius and also inversely proportional to current density j0.27 in A/cm2. Higher frequency will lead to a shorter lifetime with in the frequency range we studied, and a relationship is proposed as MTF∝f-0.41. Lifetime of a solder joint subjected to ac is longer compared with dc and PDC loading conditions. By introducing frequency, ambient temperature and current density dependency terms, a modified MTTF equation was proposed for solder joints subjected to ac current stressing.
NASA Astrophysics Data System (ADS)
Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua
2018-04-01
The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.
Clinical Significance of Symptoms in Smokers with Preserved Pulmonary Function.
Woodruff, Prescott G; Barr, R Graham; Bleecker, Eugene; Christenson, Stephanie A; Couper, David; Curtis, Jeffrey L; Gouskova, Natalia A; Hansel, Nadia N; Hoffman, Eric A; Kanner, Richard E; Kleerup, Eric; Lazarus, Stephen C; Martinez, Fernando J; Paine, Robert; Rennard, Stephen; Tashkin, Donald P; Han, MeiLan K
2016-05-12
Currently, the diagnosis of chronic obstructive pulmonary disease (COPD) requires a ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) of less than 0.70 as assessed by spirometry after bronchodilator use. However, many smokers who do not meet this definition have respiratory symptoms. We conducted an observational study involving 2736 current or former smokers and controls who had never smoked and measured their respiratory symptoms using the COPD Assessment Test (CAT; scores range from 0 to 40, with higher scores indicating greater severity of symptoms). We examined whether current or former smokers who had preserved pulmonary function as assessed by spirometry (FEV1:FVC ≥0.70 and an FVC above the lower limit of the normal range after bronchodilator use) and had symptoms (CAT score, ≥10) had a higher risk of respiratory exacerbations than current or former smokers with preserved pulmonary function who were asymptomatic (CAT score, <10) and whether those with symptoms had different findings from the asymptomatic group with respect to the 6-minute walk distance, lung function, or high-resolution computed tomographic (HRCT) scan of the chest. Respiratory symptoms were present in 50% of current or former smokers with preserved pulmonary function. The mean (±SD) rate of respiratory exacerbations among symptomatic current or former smokers was significantly higher than the rates among asymptomatic current or former smokers and among controls who never smoked (0.27±0.67 vs. 0.08±0.31 and 0.03±0.21 events, respectively, per year; P<0.001 for both comparisons). Symptomatic current or former smokers, regardless of history of asthma, also had greater limitation of activity, slightly lower FEV1, FVC, and inspiratory capacity, and greater airway-wall thickening without emphysema according to HRCT than did asymptomatic current or former smokers. Among symptomatic current or former smokers, 42% used bronchodilators and 23% used inhaled glucocorticoids. Although they do not meet the current criteria for COPD, symptomatic current or former smokers with preserved pulmonary function have exacerbations, activity limitation, and evidence of airway disease. They currently use a range of respiratory medications without any evidence base. (Funded by the National Heart, Lung, and Blood Institute and the Foundation for the National Institutes of Health; SPIROMICS ClinicalTrials.gov number, NCT01969344.).
Diškus, Arūnas; Stonis, Jonas R
2015-11-05
This paper describes Astrotischeria neotropicana Diškus & Stonis, sp. nov. (Lepidoptera: Tischeriidae), a new leaf-miner on Sida (Malvaceae) with a broad distribution range in tropical Central & South America. The new species is currently recorded from the Amazon Basin in Peru and Ecuador to tropical lowlands in Guatemala and Belize (including the Caribbean Archipelago). The new species is illustrated with photographs of the adults, male and female genitalia, and the leaf-mines; distribution map is also provided.
1996-04-01
and IRST sensor simulations. More specifically, the CPF radars currently supported by the CASE_ATTI sensor module are the SG-150 Sea Giraffe and the...specifications. The current A WW sensor suite of the CPF comprises the SPS-49 long range 2-D radar, the Sea Giraffe medium range 2-D radar, the CANEWS ESM...Sea Giraffe . This represents an original novelty of our simulation environment. P435278.PDF [Page: 66 of 128] UNCLASSIFIED 50 The baseline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaswamy, B.; Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu
We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.
Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments
NASA Astrophysics Data System (ADS)
Chang, J. C.; Lockner, D. A.; Reches, Z.
2012-12-01
We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense acceleration (up to 25 m/s2 during ~0.1 s). Thus, the weakening distance, dc, is reached within the initial acceleration spike. These observations are not unique, and similar weakening-acceleration associations were reported in stick-slip, rotary shear, and impact shear experiments. These studies greatly differ from each other in slip distance, normal stress, acceleration, and slip-velocities with the outstanding commonality of abrupt loading and intense acceleration. We propose that impact loading induces extremely high strain-rates that significantly increase rock brittleness, fracture tendency, and fragmentation. We envision that these processes intensify fault wear as manifested in ELSE experiments by extremely high initial wear-rates. This intense, early wear generates a layer of fine-grain gouge that reduces the fault strength by powder-lubrication. Our analysis indicates that rapid acceleration associated with earthquake rupture accelerates fault weakening and shortens the weakening-distance.
2-D inner-shelf current observations from a single VHF WEllen RAdar (WERA) station
Voulgaris, G.; Kumar, N.; Gurgel, K.-W.; Warner, J.C.; List, J.H.
2011-01-01
The majority of High Frequency (HF) radars used worldwide operate at medium to high frequencies (8 to 30 MHz) providing spatial resolutions ranging from 3 to 1.5 km and ranges from 150 to 50 km. This paper presents results from the deployment of a single Very High Frequency (VHF, 48 MHz) WEllen RAdar (WERA) radar with spatial resolution of 150 m and range 10-15 km, used in the nearshore off Cape Hatteras, NC, USA. It consisted of a linear array of 12 antennas operating in beam forming mode. Radial velocities were estimated from radar backscatter for a variety of wind and nearshore wave conditions. A methodology similar to that used for converting acoustically derived beam velocities to an orthogonal system is presented for obtaining 2-D current fields from a single station. The accuracy of the VHF radar-derived radial velocities is examined using a new statistical technique that evaluates the system over the range of measured velocities. The VHF radar velocities showed a bias of 3 to 7 cm/s over the experimental period explainable by the differences in radar penetration and in-situ measurement height. The 2-D current field shows good agreement with the in-situ measurements. Deviations and inaccuracies are well explained by the geometric dilution analysis. ?? 2011 IEEE.
About White Sands Missile Range
NASA Technical Reports Server (NTRS)
1991-01-01
Information on the White Sands Missile Range is given in viewgraph form. Navy programs, test sites, rocket programs, research rockets' booster capacity, current boost capabilities, ordnance and payload assembly areas, commercial space launch history and agreements, and lead times are among the topics covered.
Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazizov, I. M., E-mail: gazizov@isotop.dubna.ru; Zaletin, V. M.; Kukushkin, V. M.
2011-05-15
The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence ofmore » the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.« less
Climate Change and West Nile Virus in a Highly Endemic Region of North America
Chen, Chen C.; Jenkins, Emily; Epp, Tasha; Waldner, Cheryl; Curry, Philip S.; Soos, Catherine
2013-01-01
The Canadian prairie provinces of Manitoba, Saskatchewan, and Alberta have reported the highest human incidence of clinical cases of West Nile virus (WNV) infection in Canada. The primary vector for WVN in this region is the mosquito Culex tarsalis. This study used constructed models and biological thresholds to predict the spatial and temporal distribution of Cx. tarsalis and WNV infection rate in the prairie provinces under a range of potential future climate and habitat conditions. We selected one median and two extreme outcome scenarios to represent future climate conditions in the 2020 (2010–2039), 2050 (2040–2069) and 2080 (2070–2099) time slices. In currently endemic regions, the projected WNV infection rate under the median outcome scenario in 2050 raised 17.91 times (ranged from 1.29-27.45 times for all scenarios and time slices) comparing to current climate conditions. Seasonal availability of Cx. tarsalis infected with WNV extended from June to August to include May and September. Moreover, our models predicted northward range expansion for Cx. tarsalis (1.06–2.56 times the current geographic area) and WNV (1.08–2.34 times the current geographic area). These findings predict future public and animal health risk of WNV in the Canadian prairie provinces. PMID:23880729
75 FR 39273 - Notice of Realty Action: Proposed Direct Sale of Public Land, Chaves County, NM
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... proposed for direct sale to the Roswell Gun Club at no less than the appraised fair market value (FMV) to... property is currently owned by the New Mexico Military Institute and the Roswell Gun Club. The unauthorized... Roswell Gun Club, firing ranges, sightings-in range, small arms firing range, and various earthen berms...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office
2005-05-01
This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 489: WWII UXO Sites, Tonopah Test Range. CAU 489 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996.
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Kenneth L. Cole; Kirsten Ironside; Jon Eischeid; Gregg Garfin; Phillip B. Duffy; Chris Toney
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ~11 700 years ago, the range of Joshua tree contracted, leaving only the...
Derek W. Rosenberger; Robert C. Venette; Mitchell P. Maddox; Brian H. Aukema; Gadi V.P. Reddy
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine...
Wolf (Canis lupus) Generation Time and Proportion of Current Breeding Females by Age.
Mech, L David; Barber-Meyer, Shannon M; Erb, John
2016-01-01
Information is sparse about aspects of female wolf (Canis lupus) breeding in the wild, including age of first reproduction, mean age of primiparity, generation time, and proportion of each age that breeds in any given year. We studied these subjects in 86 wolves (113 captures) in the Superior National Forest (SNF), Minnesota (MN), during 1972-2013 where wolves were legally protected for most of the period, and in 159 harvested wolves from throughout MN wolf range during 2012-2014. Breeding status of SNF wolves were assessed via nipple measurements, and wolves from throughout MN wolf range, by placental scars. In the SNF, proportions of currently breeding females (those breeding in the year sampled) ranged from 19% at age 2 to 80% at age 5, and from throughout wolf range, from 33% at age 2 to 100% at age 7. Excluding pups and yearlings, only 33% to 36% of SNF females and 58% of females from throughout MN wolf range bred in any given year. Generation time for SNF wolves was 4.3 years and for MN wolf range, 4.7 years. These findings will be useful in modeling wolf population dynamics and in wolf genetic and dog-domestication studies.
Protected areas facilitate species’ range expansions
Thomas, Chris D.; Gillingham, Phillipa K.; Bradbury, Richard B.; Roy, David B.; Anderson, Barbara J.; Baxter, John M.; Bourn, Nigel A. D.; Crick, Humphrey Q. P.; Findon, Richard A.; Fox, Richard; Hodgson, Jenny A.; Holt, Alison R.; Morecroft, Mike D.; O’Hanlon, Nina J.; Oliver, Tom H.; Pearce-Higgins, James W.; Procter, Deborah A.; Thomas, Jeremy A.; Walker, Kevin J.; Walmsley, Clive A.; Wilson, Robert J.; Hill, Jane K.
2012-01-01
The benefits of protected areas (PAs) for biodiversity have been questioned in the context of climate change because PAs are static, whereas the distributions of species are dynamic. Current PAs may, however, continue to be important if they provide suitable locations for species to colonize at their leading-edge range boundaries, thereby enabling spread into new regions. Here, we present an empirical assessment of the role of PAs as targets for colonization during recent range expansions. Records from intensive surveys revealed that seven bird and butterfly species have colonized PAs 4.2 (median) times more frequently than expected from the availability of PAs in the landscapes colonized. Records of an additional 256 invertebrate species with less-intensive surveys supported these findings and showed that 98% of species are disproportionately associated with PAs in newly colonized parts of their ranges. Although colonizing species favor PAs in general, species vary greatly in their reliance on PAs, reflecting differences in the dependence of individual species on particular habitats and other conditions that are available only in PAs. These findings highlight the importance of current PAs for facilitating range expansions and show that a small subset of the landscape receives a high proportion of colonizations by range-expanding species. PMID:22893689
Wolf (Canis lupus) generation time and proportion of current breeding females by age
Mech, L. David; Barber-Meyer, Shannon M.; Erb, John
2016-01-01
Information is sparse about aspects of female wolf (Canis lupus) breeding in the wild, including age of first reproduction, mean age of primiparity, generation time, and proportion of each age that breeds in any given year. We studied these subjects in 86 wolves (113 captures) in the Superior National Forest (SNF), Minnesota (MN), during 1972–2013 where wolves were legally protected for most of the period, and in 159 harvested wolves from throughout MN wolf range during 2012–2014. Breeding status of SNF wolves were assessed via nipple measurements, and wolves from throughout MN wolf range, by placental scars. In the SNF, proportions of currently breeding females (those breeding in the year sampled) ranged from 19% at age 2 to 80% at age 5, and from throughout wolf range, from 33% at age 2 to 100% at age 7. Excluding pups and yearlings, only 33% to 36% of SNF females and 58% of females from throughout MN wolf range bred in any given year. Generation time for SNF wolves was 4.3 years and for MN wolf range, 4.7 years. These findings will be useful in modeling wolf population dynamics and in wolf genetic and dog-domestication studies.
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Pervouchine, Dmitri D
2018-06-15
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
Fu, Xiao-Ning; Wang, Jie; Yang, Lin
2013-01-01
It is a typical passive ranging technology that estimation of distance of an object is based on transmission characteristic of infrared radiation, it is also a hotspot in electro-optic countermeasures. Because of avoiding transmitting energy in the detection, this ranging technology will significantly enhance the penetration capability and infrared conceal capability of the missiles or unmanned aerial vehicles. With the current situation in existing passive ranging system, for overcoming the shortage in ranging an oncoming target object with small temperature difference from background, an improved distance estimation scheme was proposed. This article begins with introducing the concept of signal transfer function, makes clear the working curve of current algorithm, and points out that the estimated distance is not unique due to inherent nonlinearity of the working curve. A new distance calculation algorithm was obtained through nonlinear correction technique. It is a ranging formula by using sensing information at 3-5 and 8-12 microm combined with background temperature and field meteorological conditions. The authors' study has shown that the ranging error could be mainly kept around the level of 10% under the condition of the target and background apparent temperature difference equal to +/- 5 K, and the error in estimating background temperature is no more than +/- 15 K.
Direct Current Contamination of Kilohertz Frequency Alternating Current Waveforms
Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin
2014-01-01
Kilohertz Frequency Alternating Current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. PMID:24820914
Arrazola, René A; Ahluwalia, Indu B; Pun, Eugene; Garcia de Quevedo, Isabel; Babb, Stephen; Armour, Brian S
2017-05-26
Tobacco use is the world's leading cause of preventable morbidity and mortality, resulting in nearly 6 million deaths each year (1). Smoked tobacco products, such as cigarettes and cigars, are the most common form of tobacco consumed worldwide (2), and most tobacco smokers begin smoking during adolescence (3). The health benefits of quitting are greater for persons who stop smoking at earlier ages; however, quitting smoking at any age has health benefits (4). CDC used the Global Youth Tobacco Survey (GYTS) data from 61 countries across the six World Health Organization (WHO) regions from 2012 to 2015 to examine the prevalence of current tobacco smoking and desire to quit smoking among students aged 13-15 years. Across all 61 countries, the median current tobacco smoking prevalence among students aged 13-15 years was 10.7% (range = 1.7%, Sri Lanka to 35.0%, Timor-Leste). By sex, the median current tobacco smoking prevalence was 14.6% among males (range = 2.9%, Tajikistan to 61.4%, Timor-Leste) and 7.5% among females (range = 1.6%, Tajikistan to 29.0%, Bulgaria). In the majority of countries assessed, the proportion of current tobacco smokers who desired to quit smoking exceeded 50%. These findings could be used by country level tobacco control programs to inform strategies to prevent and reduce youth tobacco use (1,4).
Measurement of Neutrino and Antineutrino Total Charged-Current Cross Sections on Carbon with MINERvA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Lu
This thesis presents a measurement of charged-current inclusive cross sections of muon neutrino and antineutrino interaction on carbon, and antineutrino to neutrino cross section ratio, r, in the energy range 2 - 22 GeV, with data collected in the MINERA experiment. The dataset corresponds to an exposure of 3.2 x 10 20 protons on target (POT) for neutrinos and 1.01020 POT for antineutrinos. Measurement of neutrino and antineutrino charged-current inclusive cross sections provides essential constraints for future long baseline neutrino oscillation experiment at a few GeV energy range. Our measured antineutrino cross section has an uncertainty in the range 6.1%more » - 10.5% and is the most precise measurement below 6 GeV to date. The measured r has an uncertainty of 5.0% - 7.5%. This is the rst measurement below 6 GeV since Gargamelle in 1970s. The cross sections are measured as a function of neutrino energy by dividing the eciency corrected charged-current sample with extracted uxes. Fluxes are obtained using the low- method, which uses low hadronic energy subsamples of charged-current inclusive sample to extract ux. Measured cross sections show good agreement with the prediction of neutrino interaction models above 7 GeV, and are about 10% below the model below 7 GeV. The measured r agrees with the GENIE model [1] over the whole energy region. The measured cross sections and r are compared with world data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniraj, M.; Barman, Sudipta Roy
By imaging the spatial intensity distribution of the electrons from a Stoffel-Johnson (SJ) type low energy electron source for inverse photoemission spectroscopy (IPES), we find that the focus is distorted when the beam current exceeds the limiting value due to space charge effect. The space charge effect and the contact potential difference suppress the beam current at low energies (<10 eV). In this work, we show that these limitations of the SJ source can be overcome by compensation of the contact potential difference between the cathode and the lens electrodes and an uniform well focused electron beam with the set kineticmore » energy can be obtained. The size of the electron beam is around 1 mm full width at half maximum over the whole energy range of 5 to 30 eV generally used for IPES. The compensation of the contact potential difference also enhances the beam current substantially at low energies (<10 eV) and uniform beam current is achieved for the whole energy range. We find that the drift in the electron beam position is sensitive to the lens electrode separation and it is about 1 mm over the whole energy range. By measuring the n = 1 image potential state on Cu(100), we show that the resolution is better when the cathode filament current is set to lower values.« less
State-Specific Prevalence of Tobacco Product Use Among Adults - United States, 2014-2015.
Odani, Satomi; Armour, Brian S; Graffunder, Corinne M; Willis, Gordon; Hartman, Anne M; Agaku, Israel T
2018-01-26
Despite recent declines in cigarette smoking prevalence, the tobacco product landscape has shifted to include emerging tobacco products* (1,2). Previous research has documented adult use of smokeless tobacco and cigarettes by state (3); however, state-specific data on other tobacco products are limited. To assess tobacco product use in the 50 U.S. states and the District of Columbia (DC), CDC and the National Cancer Institute analyzed self-reported use of six tobacco product types: cigarettes, cigars, regular pipes, water pipes, electronic cigarettes (e-cigarettes), and smokeless tobacco products among adults aged ≥18 years using data from the 2014-2015 Tobacco Use Supplement to the Current Population Survey (TUS-CPS). Prevalence of ever-use of any tobacco product ranged from 27.0% (Utah) to 55.4% (Wyoming). Current (every day or some days) use of any tobacco product ranged from 10.2% (California) to 27.7% (Wyoming). Cigarettes were the most common currently used tobacco product in all states and DC. Among current cigarette smokers, the proportion who currently used one or more other tobacco products ranged from 11.5% (Delaware) to 32.3% (Oregon). Differences in tobacco product use across states underscore the importance of implementing proven population-level strategies to reduce tobacco use and expanding these strategies to cover all forms of tobacco marketed in the United States. Such strategies could include comprehensive smoke-free policies, tobacco product price increases, anti-tobacco mass media campaigns, and barrier-free access to clinical smoking cessation resources (1,4).
Influence of thermal aging on AC leakage current in XLPE insulation
NASA Astrophysics Data System (ADS)
Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun
2018-02-01
Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.
Ultra-low current biosensor output detection using portable electronic reader
NASA Astrophysics Data System (ADS)
Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.
2017-09-01
Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.
[Geochemical distribution of dissolved bismuth in the Yellow Sea and East China Sea].
Wu, Xiao-Dan; Song, Jin-Ming; Wu, Bin; Li, Xue-Gang
2014-01-01
Occurrence level, geochemical distribution of dissolved bismuth and its coupling relationship to eco-environment were investigated in the Yellow Sea and East China Sea to explore the source and influencing factors. The results showed that the concentration of dissolved bismuth was within the range of 0-0. 029 microg x L(-1) at the surface and 0.001-0.189 microg x L(-1) at the bottom, with the averages of 0.008 and 0.016 microg x L(-1), respectively. Horizontally, low value of dissolved bismuth exhibited the bidirectional extension feature, indicating that it could trace the path of Changjiang Diluted Water. High value of dissolved bismuth was observed where the Subei Costal Current and Yellow Sea Warm Current flowed and the Changjiang Diluted Water and Zhejiang-Fujian Coastal Current met, suggesting that it was controlled by the cycle of current system. Vertically, the coastal water was fully mixed by water convection and eddy mixing, and was divided from the stratified water by strong tidal front, which blocked the transport of dissolved bismuth to the open sea. Thus, the concentration in front area was significantly higher than that in the open sea. Diurnal variation of dissolved bismuth was related to the hydrodynamic conditions (tide, suspension and thermocline) instead of the environmental factors (temperature and salinity). Positive relationship to SPM (suspended particulate matter) clarified that bismuth was prone to release from solid phase to liquid phase. Furthermore, conditions with temperature ranging 22-27 degrees C, salinity ranging 28-31 and pH ranging 7.9-8.1 were shown to be optimal for the release process.
NASA Technical Reports Server (NTRS)
2005-01-01
The Baseline Report captures range and spaceport capabilities at five sites: KSC, CCAFS, VAFB, Wallops, and Kodiak. The Baseline depicts a future state that relies on existing technology, planned upgrades, and straight-line recapitalization at these sites projected through 2030. The report presents an inventory of current spaceport and range capabilities at these five sites. The baseline is the first part of analyzing a business case for a set of capabilities designed to transform U.S. ground and space launch operations toward a single, integrated national "system" of space transportation systems. The second part of the business case compares current capabilities with technologies needed to support the integrated national "system". The final part, a return on investment analysis, identifies the technologies that best lead to the integrated national system and reduce recurring costs..Numerous data sources were used to define and describe the baseline spaceport and range by identifying major systems and elements and describing capabilities, limitations, and capabilities
CASE_ATTI: An Algorithm-Level Testbed for Multi-Sensor Data Fusion
1995-05-01
Illumination Radar (STIR) control console, the SPS- 49 long-range radar, the Sea Giraffe medium-range radar and their associated CCS software modules. The...The current A WW sensor suite of the CPF comprises the SPS-49 long range 2-D radar, the Sea Giraffe medium range 2-D radar, the CANEWS ESM and the...and Sea Giraffe . . This represents an original novelty of our simulation environment. Conventional radar simulations such as CARPET are not fully
Local adaptation and the evolution of species' ranges under climate change.
Atkins, K E; Travis, J M J
2010-10-07
The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention. 2010 Elsevier Ltd. All rights reserved.
Phase-locked loop design with fast-digital-calibration charge pump
NASA Astrophysics Data System (ADS)
Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji
2016-02-01
A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.
Quantifying short-lived events in multistate ionic current measurements.
Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute
2014-02-25
We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.
Solar Energetic Particle Transport Near a Heliospheric Current Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battarbee, Markus; Dalla, Silvia; Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk
2017-02-10
Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibitmore » multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.« less
An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement
NASA Astrophysics Data System (ADS)
Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian
2014-10-01
An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.
Controlling electrostatic charging of nanocrystalline diamond at nanoscale.
Verveniotis, Elisseos; Kromka, Alexander; Rezek, Bohuslav
2013-06-11
Constant electrical current in the range of -1 to -200 pA is applied by an atomic force microscope (AFM) in contact mode regime to induce and study local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films. The NCD films are deposited on silicon in 70 nm thickness and with 60% relative sp(2) phase content. Charging current is monitored by conductive AFM. Electric potential contrast induced by the current is evaluated by Kelvin force microscopy (KFM). KFM shows well-defined, homogeneous, and reproducible microscopic patterns that are not influenced by inherent tip-surface junction fluctuations during the charging process. The charged patterns are persistent for at least 72 h due to charge trapping inside the NCD film. The current-induced charging also clearly reveals field-induced detrapping at current amplitudes >-50 pA and tip instability at >-150 pA, both of which limit the achievable potential contrast. In addition, we show that the field also determines the range of electronic states that can trap the charge. We present a model and discuss implications for control of the nanoscale charging process.
Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.
2012-01-01
The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.
Low current performance of the Bern medical cyclotron down to the pA range
NASA Astrophysics Data System (ADS)
Auger, M.; Braccini, S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.
2015-09-01
A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.
Hardware-in-the-loop projector system for light detection and ranging sensor testing
NASA Astrophysics Data System (ADS)
Kim, Hajin J.; Naumann, Charles B.; Cornell, Michael C.
2012-08-01
Efforts in developing a synthetic environment for testing light detection and ranging (LADAR) sensors in a hardware-in-the-loop simulation are continuing at the Aviation and Missile Research, Engineering, and Development Center of the U.S. Army Research, Engineering and Development Command (RDECOM). Current activities have concentrated on evaluating the optical projection techniques for the LADAR synthetic environment. Schemes for generating the optical signals representing the individual pixels of the projection are of particular interest. Several approaches have been investigated and tested with emphasis on operating wavelength, intensity dynamic range and uniformity, and flexibility in pixel waveform generation. This paper will discuss some of the results from these current efforts at RDECOM's System Simulation and Development Directorate's Electro Optical Technology Development Laboratory.
Electron and thermal transport via variable range hopping in MoSe2 single crystals
NASA Astrophysics Data System (ADS)
Suri, Dhavala; Patel, R. S.
2017-06-01
Bulk single crystal molybdenum diselenide has been studied for its electronic and thermal transport properties. We perform resistivity measurements with current in-plane (CIP) and current perpendicular to plane (CPP) as a function of temperature. The CIP measurements exhibit metal to semiconductor transition at ≃31 K. In the semiconducting phase (T > 31 K), the transport is best explained by the variable range hopping (VRH) model. Large magnitude of resistivity in the CPP mode indicates strong structural anisotropy. The Seebeck coefficient as a function of temperature measured in the range of 90-300 K also agrees well with the VRH model. The room temperature Seebeck coefficient is found to be 139 μV/K. VRH fittings of the resistivity and the Seebeck coefficient data indicate high degree of localization.
Length and Dimensional Measurements at NIST
Swyt, Dennis A.
2001-01-01
This paper discusses the past, present, and future of length and dimensional measurements at NIST. It covers the evolution of the SI unit of length through its three definitions and the evolution of NBS-NIST dimensional measurement from early linescales and gage blocks to a future of atom-based dimensional standards. Current capabilities include dimensional measurements over a range of fourteen orders of magnitude. Uncertainties of measurements on different types of material artifacts range down to 7×10−8 m at 1 m and 8 picometers (pm) at 300 pm. Current work deals with a broad range of areas of dimensional metrology. These include: large-scale coordinate systems; complex form; microform; surface finish; two-dimensional grids; optical, scanning-electron, atomic-force, and scanning-tunneling microscopies; atomic-scale displacement; and atom-based artifacts. PMID:27500015
High current nonlinear transmission line based electron beam driver
NASA Astrophysics Data System (ADS)
Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.
2017-10-01
A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).
Inference of the ring current ion composition by means of charge exchange decay
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.
1981-01-01
The analysis of data from the Explorer 45 (S3-A) electrostatic analyzer in the energy range 5-30 keV has provided some new results on the ring current ion composition. It has been well established that the storm time ring current has a decay time of several days, during which the particle fluxes decrease nearly monotonically. By analyzing the measured ion fluxes during the several day storm recovery period and assuming that beside hydrogen other ions were present and that the decays were exponential in nature, three separate lifetimes for the ions were established. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+) and He(+) in the energy and L value range of the data.
Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong
2011-08-01
We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.
Current efforts on developing an HWIL synthetic environment for LADAR sensor testing at AMRDEC
NASA Astrophysics Data System (ADS)
Kim, Hajin J.; Cornell, Michael C.; Naumann, Charles B.
2005-05-01
Efforts in developing a synthetic environment for testing LADAR sensors in a hardware-in-the-loop simulation are continuing at the Aviation and Missile Research, Engineering, and Development Center (AMRDEC) of the U.S. Army Research, Engineering and Development Command (RDECOM). Current activities have concentrated on developing the optical projection hardware portion of the synthetic environment. These activities range from system level design down to component level testing. Of particular interest have been schemes for generating the optical signals representing the individual pixels of the projection. Several approaches have been investigated and tested with emphasis on operating wavelength, intensity dynamic range and uniformity, and flexibility in pixel waveform generation. This paper will discuss some of the results from these current efforts at RDECOM's Advanced Simulation Center (ASC).
A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.
Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole
2016-08-01
This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process.
Modeled and Observed Transitions Between Rip Currents and Alongshore Flows
NASA Astrophysics Data System (ADS)
Moulton, M.; Elgar, S.; Warner, J. C.; Raubenheimer, B.
2014-12-01
Predictions of rip currents, alongshore currents, and the temporal transitions between these circulation patterns are important for swimmer safety and for estimating the transport of sediments, biota, and pollutants in the nearshore. Here, field observations are combined with hydrodynamic modeling to determine the dominant processes that lead rip currents to turn on and off with changing waves, bathymetry, and tidal elevation. Waves, currents, mean sea levels, and bathymetry were measured near and within five shore-perpendicular channels (on average 2-m deep, 30-m wide) that were dredged with the propellers of a landing craft at different times on a long straight Atlantic Ocean beach near Duck, NC in summer 2012. The circulation was measured for a range of incident wave conditions and channel sizes, and included rapid transitions between strong (0.5 to 1 m/s) rip current jets flowing offshore through the channels and alongshore currents flowing across the channels with no rip currents. Meandering alongshore currents (alongshore currents combined with an offshore jet at the downstream edge of the channel) also were observed. Circulation patterns near and within idealized rip channels simulated with COAWST (a three-dimensional phase-averaged model that couples ROMS and SWAN) are compared with the observations. In addition, the model is used to investigate the hydrodynamic response to a range of wave conditions (angle, height, period) and bathymetries (channel width, depth, and length; tidal elevations; shape of sandbar or terrace). Rip current speeds are largest for the deepest perturbations, and decrease as incident wave angles become more oblique. For obliquely incident waves, the rip currents are shifted in the direction of the alongshore flow, with an increasing shift for increasing alongshore current speed or increasing bathymetric perturbation depth.
Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V
2013-12-01
Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.
Electronic constant current and current pulse signal generator for nuclear instrumentation testing
Brown, R.A.
1994-04-19
Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures.
Thermoelectric converters for alternating current standards
NASA Astrophysics Data System (ADS)
Anatychuk, L. I.; Taschuk, D. D.
2012-06-01
Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.