Impacts of potential seismic landslides on lifeline corridors.
DOT National Transportation Integrated Search
2015-02-01
This report presents a fully probabilistic method for regional seismically induced landslide hazard analysis and : mapping. The method considers the most current predictions for strong ground motions and seismic sources : through use of the U.S.G.S. ...
Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Sullivan, T. J.
2012-04-01
The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework consists of the following four main analysis stages: (i) probabilistic seismic hazard analysis to give the mean occurrence rate of earthquake events having an intensity greater than a threshold value, (ii) structural analysis to estimate the global structural response, given a certain value of seismic intensity, (iii) damage analysis, in which fragility functions are used to express the probability that a building component exceeds a damage state, as a function of the global structural response, (iv) loss analysis, in which the overall performance is assessed based on the damage state of all components. This final step gives estimates of the mean annual frequency with which various repair cost levels (or other decision variables) are exceeded. The realisation of this framework does suggest that risk-based seismic design is now possible. However, comparing current code approaches with the proposed PBEE framework, it becomes apparent that mainstream consulting engineers would have to go through a massive learning curve in order to apply the new procedures in practice. With this in mind, it is proposed that simplified loss-based seismic design procedures are a logical means of helping the engineering profession transition from what are largely deterministic seismic design procedures in current codes, to more rational risk-based seismic design methodologies. Examples are provided to illustrate the likely benefits of adopting loss-based seismic design approaches in practice.
Seismic analysis and design of bridge abutments considering sliding and rotation
DOT National Transportation Integrated Search
1997-09-15
Current displacement based seismic design of gravity retaining walls utilizes a sliding block idealization, and considers only a translation mode of deformation. Authors update and extend the coupled equations of motion that appear in the literature....
Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means
NASA Astrophysics Data System (ADS)
Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin
2017-12-01
Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.
Seismic Hazard Analysis — Quo vadis?
NASA Astrophysics Data System (ADS)
Klügel, Jens-Uwe
2008-05-01
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies. Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.
Analysis of the Earthquake Impact towards water-based fire extinguishing system
NASA Astrophysics Data System (ADS)
Lee, J.; Hur, M.; Lee, K.
2015-09-01
Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.
Using Seismic Signals to Forecast Volcanic Processes
NASA Astrophysics Data System (ADS)
Salvage, R.; Neuberg, J. W.
2012-04-01
Understanding seismic signals generated during volcanic unrest have the ability to allow scientists to more accurately predict and understand active volcanoes since they are intrinsically linked to rock failure at depth (Voight, 1988). In particular, low frequency long period signals (LP events) have been related to the movement of fluid and the brittle failure of magma at depth due to high strain rates (Hammer and Neuberg, 2009). This fundamentally relates to surface processes. However, there is currently no physical quantitative model for determining the likelihood of an eruption following precursory seismic signals, or the timing or type of eruption that will ensue (Benson et al., 2010). Since the beginning of its current eruptive phase, accelerating LP swarms (< 10 events per hour) have been a common feature at Soufriere Hills volcano, Montserrat prior to surface expressions such as dome collapse or eruptions (Miller et al., 1998). The dynamical behaviour of such swarms can be related to accelerated magma ascent rates since the seismicity is thought to be a consequence of magma deformation as it rises to the surface. In particular, acceleration rates can be successfully used in collaboration with the inverse material failure law; a linear relationship against time (Voight, 1988); in the accurate prediction of volcanic eruption timings. Currently, this has only been investigated for retrospective events (Hammer and Neuberg, 2009). The identification of LP swarms on Montserrat and analysis of their dynamical characteristics allows a better understanding of the nature of the seismic signals themselves, as well as their relationship to surface processes such as magma extrusion rates. Acceleration and deceleration rates of seismic swarms provide insights into the plumbing system of the volcano at depth. The application of the material failure law to multiple LP swarms of data allows a critical evaluation of the accuracy of the method which further refines current understanding of the relationship between seismic signals and volcanic eruptions. It is hoped that such analysis will assist the development of real time forecasting models.
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.
2012-12-01
Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building the computational framework for double-difference processing the combined parametric and waveform archives of the ISC, NEIC, and IRIS with over three million recorded earthquakes worldwide. Since our methods are scalable and run on inexpensive Beowulf clusters, periodic re-analysis of such archives may thus become a routine procedure to continuously improve resolution in existing global earthquake catalogs. Results from subduction zones and aftershock sequences of recent great earthquakes demonstrate the considerable social and economic impact that high-resolution images of active faults, when available in real-time, will have in the prompt evaluation and mitigation of seismic hazards. These results also highlight the need for consistent long-term seismic monitoring and archiving of records.
NASA Astrophysics Data System (ADS)
Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.
2017-12-01
The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude greater than 3.5 beneath the Aburra Valley, and the neotectonic evidence are limited, so it is expected that this network helps to characterize the seismic hazards.
Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang 'Apollo', Chen
2006-07-01
For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less
RSEIS and RFOC: Seismic Analysis in R
NASA Astrophysics Data System (ADS)
Lees, J. M.
2015-12-01
Open software is essential for reproducible scientific exchange. R-packages provide a platform for development of seismological investigation software that can be properly documented and traced for data processing. A suite of R packages designed for a wide range of seismic analysis is currently available in the free software platform called R. R is a software platform based on the S-language developed at Bell Labs decades ago. Routines in R can be run as standalone function calls, or developed in object-oriented mode. R comes with a base set of routines, and thousands of user developed packages. The packages developed at UNC include subroutines and interactive codes for processing seismic data, analyzing geographic information (GIS) and inverting data involved in a variety of geophysical applications. On CRAN (Comprehensive R Archive Network, http://www.r-project.org/) currently available packages related to seismic analysis are RSEIS, Rquake, GEOmap, RFOC, zoeppritz, RTOMO, and geophys, Rwave, PEIP, hht, rFDSN. These include signal processing, data management, mapping, earthquake location, deconvolution, focal mechanisms, wavelet transforms, Hilbert-Huang Transforms, tomographic inversion, and Mogi deformation among other useful functionality. All software in R packages is required to have detailed documentation, making the exchange and modification of existing software easy. In this presentation, I will focus on packages RSEIS and RFOC, showing examples from a variety of seismic analyses. The R approach has similarities to the popular (and expensive) MATLAB platform, although R is open source and free to down load.
NASA Astrophysics Data System (ADS)
Lyubushin, Alexey
2016-04-01
The problem of estimate of current seismic danger based on monitoring of seismic noise properties from broadband seismic network F-net in Japan (84 stations) is considered. Variations of the following seismic noise parameters are analyzed: multifractal singularity spectrum support width, generalized Hurst exponent, minimum Hölder-Lipschitz exponent and minimum normalized entropy of squared orthogonal wavelet coefficients. These parameters are estimated within adjacent time windows of the length 1 day for seismic noise waveforms from each station. Calculating daily median values of these parameters by all stations provides 4-dimensional time series which describes integral properties of the seismic noise in the region covered by the network. Cluster analysis is applied to the sequence of clouds of 4-dimensional vectors within moving time window of the length 365 days with mutual shift 3 days starting from the beginning of 1997 up to the current time. The purpose of the cluster analysis is to find the best number of clusters (BNC) from probe numbers which are varying from 1 up to the maximum value 40. The BNC is found from the maximum of pseudo-F-statistics (PFS). A 2D map could be created which presents dependence of PFS on the tested probe number of clusters and the right-hand end of moving time window which is rather similar to usual spectral time-frequency diagrams. In the paper [1] it was shown that the BNC before Tohoku mega-earthquake on March 11, 2011, has strongly chaotic regime with jumps from minimum up to maximum values in the time interval 1 year before the event and this time intervals was characterized by high PFS values. The PFS-map is proposed as the method for extracting time intervals with high current seismic danger. The next danger time interval after Tohoku mega-EQ began at the end of 2012 and was finished at the middle of 2013. Starting from middle of 2015 the high PFS values and chaotic regime of BNC variations were returned. This could be interpreted as the increasing of the danger of the next mega-EQ in Japan in the region of Nankai Trough [1] at the first half of 2016. References 1. Lyubushin, A., 2013. How soon would the next mega-earthquake occur in Japan? // Natural Science, 5 (8A1), 1-7. http://dx.doi.org/10.4236/ns.2013.58A1001
NASA Astrophysics Data System (ADS)
Burtan, Zbigniew
2017-11-01
The current level of rockburst hazard in copper mines of the (LGOM) Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.
Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis
NASA Astrophysics Data System (ADS)
Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.
2014-03-01
The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.
The persistent signature of tropical cyclones in ambient seismic noise
NASA Astrophysics Data System (ADS)
Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M. E.; Ekström, Göran
2018-02-01
The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.
High lateral resolution exploration using surface waves from noise records
NASA Astrophysics Data System (ADS)
Chávez-García, Francisco José Yokoi, Toshiaki
2016-04-01
Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.
Newtonian noise and ambient ground motion for gravitational wave detectors
NASA Astrophysics Data System (ADS)
Beker, M. G.; van den Brand, J. F. J.; Hennes, E.; Rabeling, D. S.
2012-06-01
Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.
NASA Astrophysics Data System (ADS)
Rodgers, Mel; Smith, Patrick; Pyle, David; Mather, Tamsin
2016-04-01
Understanding the transition between quiescence and eruption at dome-forming volcanoes, such as Soufrière Hills Volcano (SHV), Montserrat, is important for monitoring volcanic activity during long-lived eruptions. Statistical analysis of seismic events (e.g. spectral analysis and identification of multiplets via cross-correlation) can be useful for characterising seismicity patterns and can be a powerful tool for analysing temporal changes in behaviour. Waveform classification is crucial for volcano monitoring, but consistent classification, both during real-time analysis and for retrospective analysis of previous volcanic activity, remains a challenge. Automated classification allows consistent re-classification of events. We present a machine learning (random forest) approach to rapidly classify waveforms that requires minimal training data. We analyse the seismic precursors to the July 2008 Vulcanian explosion at SHV and show systematic changes in frequency content and multiplet behaviour that had not previously been recognised. These precursory patterns of seismicity may be interpreted as changes in pressure conditions within the conduit during magma ascent and could be linked to magma flow rates. Frequency analysis of the different waveform classes supports the growing consensus that LP and Hybrid events should be considered end members of a continuum of low-frequency source processes. By using both supervised and unsupervised machine-learning methods we investigate the nature of waveform classification and assess current classification schemes.
Seismic refraction analysis: the path forward
Haines, Seth S.; Zelt, Colin; Doll, William
2012-01-01
Seismic Refraction Methods: Unleashing the Potential and Understanding the Limitations; Tucson, Arizona, 29 March 2012 A workshop focused on seismic refraction methods took place on 29 May 2012, associated with the 2012 Symposium on the Application of Geophysics to Engineering and Environmental Problems. This workshop was convened to assess the current state of the science and discuss paths forward, with a primary focus on near-surface problems but with an eye on all applications. The agenda included talks on these topics from a number of experts interspersed with discussion and a dedicated discussion period to finish the day. Discussion proved lively at times, and workshop participants delved into many topics central to seismic refraction work.
NASA Astrophysics Data System (ADS)
Koval, Viacheslav
The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic Protection (DLSP) concept is proposed and developed in this thesis which permits to achieve optimum seismic performance with combined isolation and supplemental damping devices in bridges. This concept is shown to represent an attractive design approach for both the upgrade of existing seismically deficient bridges and the design of new isolated bridges.
Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali
Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less
NASA Astrophysics Data System (ADS)
Ramírez-Rojas, A.; Flores-Marquez, L. E.
2009-12-01
The short-time prediction of seismic phenomena is currently an important problem in the scientific community. In particular, the electromagnetic processes associated with seismic events take in great interest since the VAN method was implemented. The most important features of this methodology are the seismic electrical signals (SES) observed prior to strong earthquakes. SES has been observed in the electromagnetic series linked to EQs in Greece, Japan and Mexico. By mean of the so-called natural time domain, introduced by Varotsos et al. (2001), they could characterize signals of dichotomic nature observed in different systems, like SES and ionic current fluctuations in membrane channels. In this work we analyze SES observed in geoelectric time series monitored in Guerrero, México. Our analysis concern with two strong earthquakes occurred, on October 24, 1993 (M=6.6) and September 14, 1995 (M=7.3). The time series of the first one displayed a seismic electric signal six days before the main shock and for the second case the time series displayed dichotomous-like fluctuations some months before the EQ. In this work we present the first results of the analysis in natural time domain for the two cases which seems to be agreeing with the results reported by Varotsos. P. Varotsos, N. Sarlis, and E. Skordas, Practica of the Athens Academy 76, 388 (2001).
Seismic risk management solution for nuclear power plants
Coleman, Justin; Sabharwall, Piyush
2014-12-01
Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P E; Harris, D; Myers, S
Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization and in full 3Dmore » finite difference modeling as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project benefits the U.S. military and intelligence community in support of LLNL's national-security mission. FY03 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A 3-seismic-array vehicle tracking testbed was installed on-site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications.« less
NASA Astrophysics Data System (ADS)
Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov
2018-01-01
Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.
Puerto Rico Strong Motion Seismic Network
NASA Astrophysics Data System (ADS)
Huerta-Lopez, C. I.; Martínez-Cruzado, J. A.; Martínez-Pagan, J.; Santana-Torres, E. X.; Torres-O, D. M.
2014-12-01
The Puerto Rico Strong Motion Seismic Network is currently in charge of the operation of: (i) free-field (ff) strong motion stations, (ii) instrumented structures (STR) (Dams, Bridges, Buildings), and (iii) the data acquisition/monitoring and analysis of earthquakes considered strong from the point of view of their intensity and magnitude. All these instruments are deployed in the Puerto Rico Island (PRI), US-, and British-Virgin Islands (BVI), and Dominican Republic (DR). The Puerto Rico Island and the Caribbean region have high potential to be affected by earthquakes that could be catastrophic for the area. The Puerto Rico Strong Motion Seismic Network (actually Puerto Rico Strong Motion Program, PRSMP) has grown since 1970's from 7 ff strong motion stations and one instrumented building with analog accelerographs to 111 ff strong motion stations and 16 instrumented buildings with digital accelerographs: PRI: 88 ff, 16 STR., DR: 13 ff, BVI: 5 ff, 2 STR collecting data via IP (internet), DU (telephone), and stand alone stations The current stage of the PRSMP seismic network, the analysis of moderate earthquakes that were recorded and/or occurred on the island, results of the intensity distribution of selected earthquakes, as well as results of dynamic parameter identification of some of the instrumented structures are here presented.
NASA Astrophysics Data System (ADS)
Zolfaghari, M. R.; Ajamy, A.; Asgarian, B.
2015-12-01
The primary goal of seismic reassessment procedures in oil platform codes is to determine the reliability of a platform under extreme earthquake loading. Therefore, in this paper, a simplified method is proposed to assess seismic performance of existing jacket-type offshore platforms (JTOP) in regions ranging from near-elastic to global collapse. The simplified method curve exploits well agreement between static pushover (SPO) curve and the entire summarized interaction incremental dynamic analysis (CI-IDA) curve of the platform. Although the CI-IDA method offers better understanding and better modelling of the phenomenon, it is a time-consuming and challenging task. To overcome the challenges, the simplified procedure, a fast and accurate approach, is introduced based on SPO analysis. Then, an existing JTOP in the Persian Gulf is presented to illustrate the procedure, and finally a comparison is made between the simplified method and CI-IDA results. The simplified method is very informative and practical for current engineering purposes. It is able to predict seismic performance elasticity to global dynamic instability with reasonable accuracy and little computational effort.
Seismic behavior of a low-rise horizontal cylindrical tank
NASA Astrophysics Data System (ADS)
Fiore, Alessandra; Rago, Carlo; Vanzi, Ivo; Greco, Rita; Briseghella, Bruno
2018-05-01
Cylindrical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. The study herein presented deals with the dynamic analysis of a ground-based horizontal cylindrical tank containing butane and with its safety verification. The analyses are based on a detailed finite element (FE) model; a simplified one-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to sloshing and asynchronous seismic input effects. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. The effects of asynchronous ground motion are studied by suitable pseudo-static analyses. Comparison between seismic action effects, obtained with and without consideration of sloshing and asynchronous seismic input, shows a rather important influence of these conditions on the final results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-09
This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less
IMPLEMENTATION OF THE SEISMIC DESIGN CRITERIA OF DOE-STD-1189-2008 APPENDIX A [FULL PAPER
DOE Office of Scientific and Technical Information (OSTI.GOV)
OMBERG SK
2008-05-14
This paper describes the approach taken by two Fluor Hanford projects for implementing of the seismic design criteria from DOE-STD-1189-2008, Appendix A. The existing seismic design criteria and the new seismic design criteria is described, and an assessment of the primary differences provided. The gaps within the new system of seismic design criteria, which necessitate conduct of portions of work to the existing technical standards pending availability of applicable industry standards, is discussed. Two Hanford Site projects currently in the Control Decision (CD)-1 phase of design have developed an approach to implementation of the new criteria. Calculations have been performedmore » to determine the seismic design category for one project, based on information available in early CD-1. The potential effects of DOE-STD-1189-2008, Appendix A seismic design criteria on the process of project alternatives analysis is discussed. Present of this work is expected to benefit others in the DOE Complex that may be implementing DOE-STD-1189-2008.« less
Forecasting volcanic unrest using seismicity: The good, the bad and the time consuming
NASA Astrophysics Data System (ADS)
Salvage, Rebecca; Neuberg, Jurgen W.
2013-04-01
Volcanic eruptions are inherently unpredictable in nature, with scientists struggling to forecast the type and timing of events, in particular in real time scenarios. Current understanding suggests that the use of statistical patterns within precursory datasets of seismicity prior to eruptive events could hold the potential to be used as real time forecasting tools. They allow us to determine times of clear deviation in data, which might be indicative of volcanic unrest. The identification of low frequency seismic swarms and the acceleration of this seismicity prior to observed volcanic unrest may be key in developing forecasting tools. The development of these real time forecasting models which can be implemented at volcano observatories is of particular importance since the identification of early warning signals allows danger to the proximal population to be minimized. We concentrate on understanding the significance and development of these seismic swarms as unrest develops at the volcano. In particular, analysis of accelerations in event rate, amplitude and energy rates released by seismicity prior to eruption suggests that these are important indicators of developing unrest. Real time analysis of these parameters simultaneously allows possible improvements to forecasting models. Although more time and computationally intense, cross correlation techniques applied to continuous seismicity prior to volcanic unrest scenarios allows all significant seismic events to be analysed, rather than only those which can be detected by an automated identification system. This may allow a more accurate forecast since all precursory seismicity can be taken into account. In addition, the classification of seismic events based on spectral characteristics may allow us to isolate individual types of signals which are responsible for certain types of unrest. In this way, we may be able to better forecast the type of eruption that may ensue, or at least some of its prevailing characteristics.
NASA Astrophysics Data System (ADS)
Mumladze, Tea; Wang, Haijun; Graham, Gerhard
2017-04-01
The seismic network that forms the International Monitoring System (IMS) of the Comprehensive Nuclear-test-ban Treaty Organization (CTBTO) will ultimately consist of 170 seismic stations (50 primary and 120 auxiliary) in 76 countries around the world. The Network is still under the development, but currently more than 80% of the network is in operation. The objective of seismic monitoring is to detect and locate underground nuclear explosions. However, the data from the IMS also can be widely used for scientific and civil purposes. In this study we present the results of data analysis of the seismic sequence in 2016 in Central Italy. Several hundred earthquakes were recorded for this sequence by the seismic stations of the IMS. All events were accurately located the analysts of the International Data Centre (IDC) of the CTBTO. In this study we will present the epicentral and magnitude distribution, station recordings and teleseismic phases as obtained from the Reviewed Event Bulletin (REB). We will also present a comparison of the database of the IDC with the databases of the European-Mediterranean Seismological Centre (EMSC) and U.S. Geological Survey (USGS). Present work shows that IMS data can be used for earthquake sequence analyses and can play an important role in seismological research.
Open Source Tools for Seismicity Analysis
NASA Astrophysics Data System (ADS)
Powers, P.
2010-12-01
The spatio-temporal analysis of seismicity plays an important role in earthquake forecasting and is integral to research on earthquake interactions and triggering. For instance, the third version of the Uniform California Earthquake Rupture Forecast (UCERF), currently under development, will use Epidemic Type Aftershock Sequences (ETAS) as a model for earthquake triggering. UCERF will be a "living" model and therefore requires robust, tested, and well-documented ETAS algorithms to ensure transparency and reproducibility. Likewise, as earthquake aftershock sequences unfold, real-time access to high quality hypocenter data makes it possible to monitor the temporal variability of statistical properties such as the parameters of the Omori Law and the Gutenberg Richter b-value. Such statistical properties are valuable as they provide a measure of how much a particular sequence deviates from expected behavior and can be used when assigning probabilities of aftershock occurrence. To address these demands and provide public access to standard methods employed in statistical seismology, we present well-documented, open-source JavaScript and Java software libraries for the on- and off-line analysis of seismicity. The Javascript classes facilitate web-based asynchronous access to earthquake catalog data and provide a framework for in-browser display, analysis, and manipulation of catalog statistics; implementations of this framework will be made available on the USGS Earthquake Hazards website. The Java classes, in addition to providing tools for seismicity analysis, provide tools for modeling seismicity and generating synthetic catalogs. These tools are extensible and will be released as part of the open-source OpenSHA Commons library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
2015-08-01
Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less
NASA Astrophysics Data System (ADS)
Zobin, Vyacheslav M.
2018-02-01
The 10-11 July 2015 partial collapses of the lava dome in the crater of Volcán de Colima, México, were accompanied by a sequence of two-stage multiple PDCs, separated by a 15-h interval, with a total bulk volume of 14.2 × 106 m3 of fragmentary material and runout distances reaching 9.1 and 10.3 km, respectively (Reyes-Dávila et al., 2016). Broad-band seismic signals, associated with the PDCs and recorded at seismic station EZ5 installed at a distance of 4 km from the crater, were used for analysis of the 20-h eruption process. This process included two stages of the multiple PDCs emplacements, two one-hour periods of preliminary events to each of the stages, and the inter-stage period. Analysis of seismic signals allowed us to identify the types of volcanic events composing this eruption episode and estimate their quantitative characteristics and spectral parameters of generated seismic signals. It was shown that the seismic signals produced by PDCs emplacements, recorded during the two stages, were characterized by different characteristics. The second stage PDCs had radiated greater seismic energy than the PDCs emplaced during the first stage. Spectral analysis of the seismic signals, produced by PDCs, indicates a clearly separation in frequency content at 1.95 Hz between the higher-frequency events of the first stage and the lower-frequency events of the second stage of the PDCs emplacements. The obtained difference in the spectral contents of the seismic signals, produced by the movement of two multiple PDCs, may be supposed as a consequence of the proposed relative difference in the volumes of the PDCs of two multiple sequences due to a difference in the level of radiated seismic energy and a change in bottom conditions of the ravines during their passing along the ravines. Results of seismic study were used in discussion of the nature of the two-stage eruptive process.
QuakeML: XML for Seismological Data Exchange and Resource Metadata Description
NASA Astrophysics Data System (ADS)
Euchner, F.; Schorlemmer, D.; Becker, J.; Heinloo, A.; Kästli, P.; Saul, J.; Weber, B.; QuakeML Working Group
2007-12-01
QuakeML is an XML-based data exchange format for seismology that is under development. Current collaborators are from ETH, GFZ, USC, USGS, IRIS DMC, EMSC, ORFEUS, and ISTI. QuakeML development was motivated by the lack of a widely accepted and well-documented data format that is applicable to a broad range of fields in seismology. The development team brings together expertise from communities dealing with analysis and creation of earthquake catalogs, distribution of seismic bulletins, and real-time processing of seismic data. Efforts to merge QuakeML with existing XML dialects are under way. The first release of QuakeML will cover a basic description of seismic events including picks, arrivals, amplitudes, magnitudes, origins, focal mechanisms, and moment tensors. Further extensions are in progress or planned, e.g., for macroseismic information, location probability density functions, slip distributions, and ground motion information. The QuakeML language definition is supplemented by a concept to provide resource metadata and facilitate metadata exchange between distributed data providers. For that purpose, we introduce unique, location-independent identifiers of seismological resources. As an application of QuakeML, ETH Zurich currently develops a Python-based seismicity analysis toolkit as a contribution to CSEP (Collaboratory for the Study of Earthquake Predictability). We follow a collaborative and transparent development approach along the lines of the procedures of the World Wide Web Consortium (W3C). QuakeML currently is in working draft status. The standard description will be subjected to a public Request for Comments (RFC) process and eventually reach the status of a recommendation. QuakeML can be found at http://www.quakeml.org.
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-04-01
We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.
78 FR 59732 - Revisions to Design of Structures, Components, Equipment, and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
...,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... Analysis,'' (Accession No. ML13198A223); Section 3.7.3, ``Seismic Subsystem Analysis,'' (Accession No..., ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1, ``Concrete...
Short-Period Seismic Noise in Vorkuta (Russia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishkina, S B; Spivak, A A; Sweeney, J J
Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design,more » construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.« less
Global assessment of human losses due to earthquakes
Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen
2014-01-01
Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.
Teamwork tools and activities within the hazard component of the Global Earthquake Model
NASA Astrophysics Data System (ADS)
Pagani, M.; Weatherill, G.; Monelli, D.; Danciu, L.
2013-05-01
The Global Earthquake Model (GEM) is a public-private partnership aimed at supporting and fostering a global community of scientists and engineers working in the fields of seismic hazard and risk assessment. In the hazard sector, in particular, GEM recognizes the importance of local ownership and leadership in the creation of seismic hazard models. For this reason, over the last few years, GEM has been promoting different activities in the context of seismic hazard analysis ranging, for example, from regional projects targeted at the creation of updated seismic hazard studies to the development of a new open-source seismic hazard and risk calculation software called OpenQuake-engine (http://globalquakemodel.org). In this communication we'll provide a tour of the various activities completed, such as the new ISC-GEM Global Instrumental Catalogue, and of currently on-going initiatives like the creation of a suite of tools for the creation of PSHA input models. Discussion, comments and criticism by the colleagues in the audience will be highly appreciated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soilmore » and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE’s) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This methodology will be known as, NonLinear Soil-Structure Interaction (NLSSI). In general NLSSI analysis should provide a more accurate representation of the seismic demands on nuclear facilities their systems and components. INL, in collaboration with a Nuclear Power Plant Vender (NPP-V), will develop a generic Nuclear Power Plant (NPP) structural design to be used in development of the methodology and for comparison with SASSI. This generic NPP design has been evaluated for the INL soil site because of the ease of access and quality of the site specific data. It is now being evaluated for a second site at Vogtle which is located approximately 15 miles East-Northeast of Waynesboro, Georgia and adjacent to Savanna River. The Vogtle site consists of many soil layers spanning down to a depth of 1058 feet. The reason that two soil sites are chosen is to demonstrate the methodology across multiple soil sites. The project will drive the models (soil and structure) using successively increasing acceleration time histories with amplitudes. The models will be run in time domain codes such as ABAQUS, LS-DYNA, and/or ESSI and compared with the same models run in SASSI. The project is focused on developing and documenting a method for performing time domain, non-linear seismic soil structure interaction (SSI) analysis. Development of this method will provide the Department of Energy (DOE) and industry with another tool to perform seismic SSI analysis.« less
NASA Astrophysics Data System (ADS)
Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio
2015-04-01
Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic events (magnitude >3 up to 5.4) experienced in the Tuscany, Emilia-Romagna and Umbria regions during the period 2012-2014, and these geochemical anomalies. Changes in pH (decreasing) and PCO2 (increasing) are generally observed from a few months to a few weeks before the main shock. This trend has been recognized for the Parma quake of 27 January 2012 (M = 5.4), for the Pieve Fosciana quake of 13 January 2013 (M = 4.8), for the Garfagnana-Lunigiana seismic sequence started June 21, 2013 (Mmax = 5.2), for the Montefeltro seismic sequence started July 11, 2013 (Mmax = 3.9), for the Gubbio seismic sequences of July and December 2013 (Mmax = 3.9), for the Città di Castello seismic sequences of April 2013 and December 2013 (Mmax = 3.9), for the Casentino seismic sequence started October 17, 2014 (Mmax = 3.5), and for the Chianti seismic sequence started December 19, 2014 (Mmax = 4.1). These features suggest that the selected mineral springs can be considered as appropriate sites for the search of geochemical earthquake precursors. Further investigations focused on in-depth analysis of signals are currently in progress.
InSAR MSBAS Time-Series Analysis of Induced Seismicity in Colorado and Oklahoma
NASA Astrophysics Data System (ADS)
Barba, M.; Tiampo, K. F.; Samsonov, S. V.
2016-12-01
Since 2009, the number of earthquakes in the central and eastern United States has dramatically increased from an average of 24 M ≥ 3 earthquakes a year (1973-2008) to an average of 193 M ≥ 3 earthquakes a year (2009-2014) (Ellsworth, 2013). Wastewater injection, the deep disposal of fluids, is considered to be the primary reason for this increase in seismicity rate (Weingarten et al., 2015). We use Interferometric Synthetic Aperture Radar (InSAR) to study four potential regions with injection induced seismicity: Greely, CO, Platteville, CO, Edmond, OK, and Jones, OK. Currently, Platteville is not seismically active; however, it serves as a baseline since its high-volume injection wells have the potential to induce future earthquakes. InSAR data complements seismic data by providing insight into the surface deformation potentially correlated with earthquake activity. To study the ground deformation associated with the induced seismicity and injection well activity, we develop full-resolution interferograms using raw radar data from Radarsat-1/2, ERS-1/2, Envisat, ALOS, and Sentinel-1. We pair the SAR images using the small perpendicular baseline approach (Berardino et al., 2002) to minimize spatial decorrelation. The paired SAR images are processed into interferograms using the JPL ISCE software (Gurrola et al., 2010). Using the MSBAS algorithm (Samsonov et al., 2013, Samsonov and d'Oreye, 2012) and the JPL GIAnT software (Agram et al., 2013), we construct a time-series of the cumulative surface displacement, integrating all interferograms for the region. To correlate the relationship between surface deformation and wastewater injection, we compare the well locations, depths, and injection rates with the spatial and temporal signature of the surface deformation before and after induced earthquakes, filling in the spatiotemporal gap lacking from seismicity. By monitoring the surface deformation for wells associated with past and current induced seismicity, we can implement measures to mitigate induced seismicity and its social and economic impact.
NASA Astrophysics Data System (ADS)
Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing
2017-10-01
Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.
Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.
2016-08-18
This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.
NASA Astrophysics Data System (ADS)
Hetényi, G.; Diehl, T.; Singer, J.; Kissling, E. H.; Clinton, J. F.; Wiemer, S.
2015-12-01
The Eastern Himalayas are home to a seemingly complex seismo-tectonic evolution. The rate of instrumental seismicity is lower than the average along the orogen, there is no record of large historical events, but both paleoseismology and GPS studies point to potentially large (M>8) earthquakes. Due to the lack of a permanent seismic monitoring system in the area, our current level of understanding is inappropriate to create a reliable quantitative seismic hazard model for the region. Existing maps are based on questionable hypotheses and show major inconsistencies when compared to each other. Here we present results on national and regional scales from a 38-station broadband seismological network we operated for almost 2 years in the Kingdom of Bhutan. A thorough, state-of-the-art analysis of local and regional earthquakes builds a comprehensive catalogue that reveals significantly (2-to-3 orders of magnitude) more events than detected from global networks. The seismotectonic analysis reveals new patterns of seismic activity as well as striking differences over relatively short distances within the Himalayas, only partly explained by surface observations such as geology. We compare a priori and a posteriori (BMC) magnitude of completeness maps and show that our network was able to detect all felt events during its operation. Some of these events could be felt at surprisingly large distances. Based on our experiment and experience, we draft the pillars on which a permanent seismological observatory for Bhutan could be constructed. Such a continuous monitoring system of seismic activity could then lead to a reliable quantitative seismic hazard model for Bhutan and surrounding regions, and serve as a base to improve building codes and general preparedness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C.
2010-06-30
The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structuresmore » and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are determined to be risk significant to NPPs. Multiple models have been identified for concrete, carbon and low-alloy steel, and stainless steel. These models are documented in the Annual Report for the Year 2 Task, identified as BNL Report-82249-2009 and also designated as KAERI/TR-3757/2009. This report describes the research effort performed by BNL for the Year 3 scope of work. The objective is for BNL to develop the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5)a perfect combination of the three degradation scenarios. Insights from these fragility analyses are also presented.« less
NASA Astrophysics Data System (ADS)
Matuła, Rafał; Lewińska, Paulina
2018-01-01
This paper revolves around newly designed and constructed system that can make 2D seismic measurement in natural, subsoil conditions and role of land survey in obtaining accurate results and linking them to 3D surface maps. A new type of land streamer, designed for shallow subsurface exploration is described in this paper. In land seismic data acquisition methods a vehicle tows a line of seismic cable, lying on construction called streamer. The measurements of points and shots are taken while the line is stationary, arbitrary placed on seismic profile. Exposed land streamer consists of 24 innovatory gimballed 10 Hz geophones. It eliminates the need for hand `planting' of geophones, reducing time and costs. With the use of current survey techniques all data obtained with this instrument are being transferred in to 2D and 3D maps. This process is becoming more automatic.
Quantitative morphometric analysis for the tectonic characterisation of northern Tunisia.
NASA Astrophysics Data System (ADS)
Camafort, Miquel; Pérez-Peña, José Vicente; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Azañón, José Miguel; Melki, Fetheddine; Ouadday, Mohamed
2016-04-01
Northern Tunisia is characterized by low deformation rates and low to moderate seismicity. Although instrumental seismicity reaches maximum magnitudes of Mw 5.5, some historical earthquakes have occurred with catastrophic consequences in this region. Aiming to improve our knowledge of active tectonics in Tunisia, we carried out both a quantitative morphometric analysis and field study in the north-western region. We applied different morphometric tools, like river profiles, knickpoint analysis, hypsometric curves and integrals and drainage pattern anomalies in order to differentiate between zones with high or low recent tectonic activity. This analysis helps identifying uplift and subsidence zones, which we relate to fault activity. Several active faults in a sparse distribution were identified. A selected sector was studied with a field campaign to test the results obtained with the quantitative analysis. During the fieldwork we identified geological evidence of recent activity and a considerable seismogenic potential along El Alia-Teboursouk (ETF) and Dkhila (DF) faults. The ETF fault could be responsible of one of the most devastating historical earthquakes in northern Tunisia that destroyed Utique in 412 A.D. Geological evidence include fluvial terraces folded by faults, striated and cracked pebbles, clastic dikes, sand volcanoes, coseismic cracks, etc. Although not reflected in the instrumental seismicity, our results support an important seismic hazard, evidenced by the several active tectonic structures identified and the two seismogenic faults described. After obtaining the current active tectonic framework of Tunisia we discuss our results within the western Mediterranean trying to contribute to the understanding of the western Mediterranean tectonic context. With our results, we suggest that the main reason explaining the sparse and scarce seismicity of the area in contrast with the adjacent parts of the Nubia-Eurasia boundary is due to its extended continental platform and its lack of proto-oceanic crust northward.
NASA Astrophysics Data System (ADS)
Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.
2017-09-01
Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.
Seismic monitoring at Deception Island volcano (Antarctica): Recent advances
NASA Astrophysics Data System (ADS)
Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.
2012-04-01
Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating at Deception Island since 2008. In the current survey we collaborate with the Spanish Army to add another permanent station that will be able to send to the IAG-UGR seismic information about the activity of the volcano during the winter, using a communications satellite (SPAINSAT). These advances simplify the field work and the data acquisition procedures, and allow us to obtain high-quality seismic data in real-time. These improvements have a very important significance for a better and faster interpretation of the seismo-volcanic activity and assessment of the volcanic hazards at Deception Island volcano.
Market analysis of seismic security systems
NASA Technical Reports Server (NTRS)
Taglio, S.
1981-01-01
This report provides information on the commercialization potential of the NASA Activity Monitor. Data on current commercially available products, market size, and growth are combined with information on the NASA technology and the projected impact of this technology on the market.
Seismic vulnerability analysis of bridges in mountainous states.
DOT National Transportation Integrated Search
2013-09-01
Depending on the location, highway bridges can often support considerable amounts of traffic. Due to the limitations on current earthquake forecasting techniques, a normal amount of traffic will also typically remain on a bridge when an earthquake oc...
NASA Astrophysics Data System (ADS)
Avital, Matan; Kamai, Ronnie; Davis, Michael; Dor, Ory
2018-02-01
We present a full probabilistic seismic hazard analysis (PSHA) sensitivity analysis for two sites in southern Israel - one in the near field of a major fault system and one farther away. The PSHA analysis is conducted for alternative source representations, using alternative model parameters for the main seismic sources, such as slip rate and Mmax, among others. The analysis also considers the effect of the ground motion prediction equation (GMPE) on the hazard results. In this way, the two types of epistemic uncertainty - modelling uncertainty and parametric uncertainty - are treated and addressed. We quantify the uncertainty propagation by testing its influence on the final calculated hazard, such that the controlling knowledge gaps are identified and can be treated in future studies. We find that current practice in Israel, as represented by the current version of the building code, grossly underestimates the hazard, by approximately 40 % in short return periods (e.g. 10 % in 50 years) and by as much as 150 % in long return periods (e.g. 10E-5). The analysis shows that this underestimation is most probably due to a combination of factors, including source definitions as well as the GMPE used for analysis.
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
An alternative approach for computing seismic response with accidental eccentricity
NASA Astrophysics Data System (ADS)
Fan, Xuanhua; Yin, Jiacong; Sun, Shuli; Chen, Pu
2014-09-01
Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRP method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.
Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area
Xie, F.; Wang, Z.; Liu, J.
2011-01-01
Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 ?? 0.1??. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ??? 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i. e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate. ?? 2010 Birkh??user / Springer Basel AG.
NASA Astrophysics Data System (ADS)
Laske, G.; Weber, M.
2008-05-01
The interdisciplinary Dead Sea Rift Transect (DESERT) project that was conducted in Israel, the Palestine Territories and Jordan has provided a rich palette of data sets to examine the crust and uppermost mantle beneath one of Earth's most prominent fault systems, the Dead Sea Transform (DST). As part of the passive seismic component, thirty broad-band sensors were deployed in 2000 across the DST for roughly one year. During this deployment, we recorded 115 teleseismic earthquakes that are suitable for a fundamental mode Rayleigh wave analysis at intermediate periods (35-150s). Our initial analysis reveals overall shear velocities that are reduced by up to 4 per cent with respect to reference Earth model PREM. To the west of the DST, we find a seismically relatively fast but thin lid that is about 80 km thick. Towards the east, shallow seismic velocities are low while a deeper low velocity zone is not detected. This contradicts the currently favoured thermomechanical model for the DST that predicts lithospheric thinning through mechanical erosion by an intruding plume from the Red Sea. On the other hand, our current results are somewhat inconclusive regarding asthenosphere velocities east of the DST due to the band limitation of the recording equipment in Jordan.
The Utility of the Extended Images in Ambient Seismic Wavefield Migration
NASA Astrophysics Data System (ADS)
Girard, A. J.; Shragge, J. C.
2015-12-01
Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.
Seismic instrumentation plan for the Hawaiian Volcano Observatory
Thelen, Weston A.
2014-01-01
The installation of new seismic stations is only the first part of building a volcanic early warning capability for seismicity in the State of Hawaii. Additional personnel will likely be required to study the volcanic processes at work under each volcano, analyze the current seismic activity at a level sufficient for early warning, build new tools for monitoring, maintain seismic computing resources, and maintain the new seismic stations.
NASA Astrophysics Data System (ADS)
-Emilian Toader, Victorin; Moldovan, Iren-Adelina; Constantin, Ionescu
2014-05-01
The Romanian seismicity recorded in 2013 three important events: the largest seismic "silence", the shortest sequence of two earthquakes greater than 4.8R in less than 14 days after the "Romanian National Institute for Earth Physics" (NIEP) developed a digital network, and a very high crustal activity in Galati area. We analyze the variations of the telluric currents and local magnetic field, variations of the atmospheric electrostatic field, infrasound, temperature, humidity, wind speed and direction, atmospheric pressure, variations in the earth crust with inclinometers and animal behavior. The general effect is the first high seismic energy discontinuity that could be a precursor factor. Since 1977 Romania did not register any important earthquake that would generate a sense of fear among the population. In parallel with the seismic network NIEP developed a magneto-telluric, bioseismic, VLF and acoustic network. A large frequency spectrum is covered for mechanical vibration, magnetic and electric field with ground and air sensors. Special software was designed for acquisition, analysis and real time alert using internet direct connection, web page, email and SMS. Many examples show the sensitivity of telluric current, infrasound, acoustic records (from air-ground), and the effect of tectonic stress on the magnetic field or ground deformation. The next update of the multidisciplinary monitoring network will include measurement of ionization, radon emission, sky color, solar radiation and extension of infrasound and VL/LF equipment. NOAA Space Weather satellites transmit solar activity magnetic field data, X ray flux, electron, and proton flux information useful for complex analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Staff Guidance on Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic... Seismic Margin Analysis for New Reactors Based on Probabilistic Risk Assessment,'' (Agencywide Documents.../COL-ISG-020 ``Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic Risk...
NASA Astrophysics Data System (ADS)
Peterson, K.; Barnhart, W. D.
2017-12-01
On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest surface displacements are characterized by dominantly fault- parallel displacements, indicating that post-seismic deformation in the observed time period following the 2013 earthquake likely cannot account for the 4-6 m convergence deficit left by that earthquake.
75 FR 81037 - Waste Confidence Decision Update
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... well beyond the current analysis that supports at least 60 years of post-licensed life storage with... environmental factors including surrounding population density, water resources, seismicity, subsurface geology... expiration of the 60-year post licensed life period, the Commission will revisit the Waste Confidence...
NASA Astrophysics Data System (ADS)
Glezil, Dorothy
NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.
41 CFR 128-1.8006 - Seismic Safety Program requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reviewer shall verify that the current level of seismic resistance of the existing building at least equals the seismic resistance level of the building before the addition. (c) The Department Seismic Safety... conduct the reviews required under this section, as appropriate. (a) New building projects. Construction...
Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado
NASA Astrophysics Data System (ADS)
Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.
2015-02-01
Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpreted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.
2016-12-01
We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes parallel to exhumed and highly localized structures such as the Idaho Springs-Ralston and Black Canyon shear zones. In either case, denser seismic studies should elucidate the width of the deep seismic expression of the shear zones.
NASA Astrophysics Data System (ADS)
Wessel, Paul; Kroenke, Loren W.
2001-03-01
Seismicity in the Eltanin transform system region reflects the current relative motion between the Pacific and Antarctica plates. As such, the seismicity provides little or no constraints on models for late Neogene Pacific absolute plate motion changes that in turn forced a synchronous change in relative plate motions resulting in the current relative plate motion.
A proposal for seismic evaluation index of mid-rise existing RC buildings in Afghanistan
NASA Astrophysics Data System (ADS)
Naqi, Ahmad; Saito, Taiki
2017-10-01
Mid-rise RC buildings gradually rise in Kabul and entire Afghanistan since 2001 due to rapid increase of population. To protect the safety of resident, Afghan Structure Code was issued in 2012. But the building constructed before 2012 failed to conform the code requirements. In Japan, new sets of rules and law for seismic design of buildings had been issued in 1981 and severe earthquake damage was disclosed for the buildings designed before 1981. Hence, the Standard for Seismic Evaluation of RC Building published in 1977 has been widely used in Japan to evaluate the seismic capacity of existing buildings designed before 1981. Currently similar problem existed in Afghanistan, therefore, this research examined the seismic capacity of six RC buildings which were built before 2012 in Kabul by applying the seismic screening procedure presented by Japanese standard. Among three screening procedures with different capability, the less detailed screening procedure, the first level of screening, is applied. The study founds an average seismic index (IS-average=0.21) of target buildings. Then, the results were compared with those of more accurate seismic evaluation procedures of Capacity Spectrum Method (CSM) and Time History Analysis (THA). The results for CSM and THA show poor seismic performance of target buildings not able to satisfy the safety design limit (1/100) of the maximum story drift. The target buildings are then improved by installing RC shear walls. The seismic indices of these retrofitted buildings were recalculated and the maximum story drifts were analyzed by CSM and THA. The seismic indices and CSM and THA results are compared and found that building with seismic index larger than (IS-average =0.4) are able to satisfy the safety design limit. Finally, to screen and minimize the earthquake damage over the existing buildings, the judgement seismic index (IS-Judgment=0.5) for the first level of screening is proposed.
Waldner, J.S.; Hall, D.W.; Uptegrove, J.; Sheridan, R.E.; Ashley, G.M.; Esker, D.
1999-01-01
Beach replenishment serves the dual purpose of maintaining a source of tourism and recreation while protecting life and property. For New Jersey, sources for beach sand supply are increasingly found offshore. To meet present and future needs, geologic and geophysical techniques can be used to improve the identification, volume estimation, and determination of suitability, thereby making the mining and managing of this resource more effective. Current research has improved both data collection and interpretation of seismic surveys and vibracore analysis for projects investigating sand ridges offshore of New Jersey. The New Jersey Geological Survey in cooperation with Rutgers University is evaluating the capabilities of digital seismic data (in addition to analog data) to analyze sand ridges. The printing density of analog systems limits the dynamic range to about 24 dB. Digital acquisition systems with dynamic ranges above 100 dB can permit enhanced seismic profiles by trace static correction, deconvolution, automatic gain scaling, horizontal stacking and digital filtering. Problems common to analog data, such as wave-motion effects of surface sources, water-bottom reverberation, and bubble-pulse-width can be addressed by processing. More than 160 line miles of digital high-resolution continuous profiling seismic data have been collected at sand ridges off Avalon, Beach Haven, and Barnegat Inlet. Digital multichannel data collection has recently been employed to map sand resources within the Port of New York/New Jersey expanded dredge-spoil site located 3 mi offshore of Sandy Hook, New Jersey. Multichannel data processing can reduce multiples, improve signal-to-noise calculations, enable source deconvolution, and generate sediment acoustic velocities and acoustic impedance analysis. Synthetic seismograms based on empirical relationships among grain size distribution, density, and velocity from vibracores are used to calculate proxy values for density and velocity. The seismograms are then correlated to the digital seismic profile to confirm reflected events. They are particularly useful where individual reflection events cannot be detected but a waveform generated by several thin lithologic units can be recognized. Progress in application of geologic and geophysical methods provides advantages in detailed sediment analysis and volumetric estimation of offshore sand ridges. New techniques for current and ongoing beach replenishment projects not only expand our knowledge of the geologic processes involved in sand ridge origin and development, but also improve our assessment of these valuable resources. These reconnaissance studies provide extensive data to the engineer regarding the suitability and quantity of sand and can optimize placement and analysis of vibracore samples.Beach replenishment serves the dual purpose of maintaining a source of tourism and recreation while protecting life and property. Research has improved both data collection and interpretation of seismic surveys and vibracore analysis for projects investigating sand ridges offshore of New Jersey. The New Jersey Geological Survey in cooperation with Rutgers University is evaluating the capabilities of digital seismic data to analyze sand ridges. The printing density of analog systems limits the dynamic range to about 24 dB. Digital acquisition systems with dynamic ranges about 100 dB can permit enhanced seismic profiles by trace static correction, deconvolution, automatic gain scaling, horizontal stacking and digital filtering.
NASA Astrophysics Data System (ADS)
Ryu, Kwangsun; Oyama, Koh-Ichiro; Bankov, Ludmil; Chen, Chia-Hung; Devi, Minakshi; Liu, Huixin; Liu, Jann-Yenq
2016-01-01
To investigate whether the link between seismic activity and EIA (equatorial ionization anomaly) enhancement is valid for mid-latitude seismic activity, DEMETER observations around seven large earthquakes in the north-east Asian region were fully analyzed (M ⩾ 6.8). In addition, statistical analysis was performed for 35 large earthquakes (M ⩾ 6.0) that occurred during the DEMETER observation period. The results suggest that mid-latitude earthquakes do contribute to EIA enhancement, represented as normalized equatorial Ne , and that ionospheric change precedes seismic events, as has been reported in previous studies. According to statistical studies, the normalized equatorial density enhancement is sensitive and proportional to both the magnitude and the hypocenter depth of an earthquake. The mechanisms that can explain the contribution of mid-latitude seismic activity to EIA variation are briefly discussed based on current explanations of the geochemical and ionospheric processes involved in lithosphere-ionosphere interaction.
Baster, I.; Girardclos, S.; Pugin, A.; Wildi, W.
2003-01-01
A high-resolution seismic survey was conducted in western Lake Geneva on a small delta formed by the Promenthouse, the Asse and the Boiron rivers. This dataset provides information on changes in the geometry and sedimentation patterns of this delta from Late-glacial to Present. The geometry of the deposits of the lacustrine delta has been mapped using 300-m spaced grid lines acquired with a 12 kHz Echosounder subbottom profiler. A complete three dimensional image of the sediment architecture was reconstructed through seismic stratigraphic analysis. Six different delta lobes have been recognized in the prodelta area. Depositional centers and lateral extension of the delta have changed through time, indicating migration and fluctuation of river input as well as changes in lake currents and wind regime from the time of glacier retreat to the Present. The delta slope is characterized by a high instability causing stumps developing and by the accumulation of biogenic gas that prevents seismic penetration.
A model of seismic coda arrivals to suppress spurious events.
NASA Astrophysics Data System (ADS)
Arora, N.; Russell, S.
2012-04-01
We describe a model of coda arrivals which has been added to NET-VISA (Network processing Vertically Integrated Seismic Analysis) our probabilistic generative model of seismic events, their transmission, and detection on a global seismic network. The scattered energy that follows a seismic phase arrival tends to deceive typical STA/LTA based arrival picking software into believing that a real seismic phase has been detected. These coda arrivals which tend to follow all seismic phases cause most network processing software including NET-VISA to believe that multiple events have taken place. It is not a simple matter of ignoring closely spaced arrivals since arrivals from multiple events can indeed overlap. The current practice in NET-VISA of pruning events within a small space-time neighborhood of a larger event works reasonably well, but it may mask real events produced in an after-shock sequence. Our new model allows any seismic arrival, even coda arrivals, to trigger a subsequent coda arrival. The probability of such a triggered arrival depends on the amplitude of the triggering arrival. Although real seismic phases are more likely to generate such coda arrivals. Real seismic phases also tend to generate coda arrivals with more strongly correlated parameters, for example azimuth and slowness. However, the SNR (Signal to Noise Ratio) of a coda arrival immediately following a phase arrival tends to be lower because of the nature of the SNR calculation. We have calibrated our model on historical statistics of such triggered arrivals and our inference accounts for them while searching for the best explanation of seismic events their association to the arrivals and the coda arrivals. We have tested our new model on one week of global seismic data spanning March 22, 2009 to March 29, 2009. Our model was trained on two and half months of data from April 5, 2009 to June 20, 2009. We use the LEB bulletin produced by the IDC (International Data Center) as the ground truth and computed the precision (percentage of reported events which are true) and recall (percentage of true events which are reported). The existing model has a precision of 32.2 and recall of 88.6 which changes to a precision of 50.7 and recall of 88.5 after pruning. The new model has a precision of 56.8 and recall of 86.9 without any pruning and the corresponding precision recall curve is dramatically improved. In contrast, the performance of the current automated bulletin at the IDC, SEL3, has a precision of 46.2 and recall of 69.7.
Re-evaluation and updating of the seismic hazard of Lebanon
NASA Astrophysics Data System (ADS)
Huijer, Carla; Harajli, Mohamed; Sadek, Salah
2016-01-01
This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.
The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap
NASA Astrophysics Data System (ADS)
Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten
2015-04-01
The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures mapped for the area. Consistent with mapped faults, the seismicity interested both eastwards and westwards dipping normal faults that define the geometry of seismically active graben-like structures. At least one cluster shows an additional spatio-temporal migration with spreading hypocentres similar to other swarm areas with fluid-triggering mechanisms. The static Coulomb stress change transferred by the largest shock onto the swarm area and on the CF cannot explain the observed high seismicity rate. We study the evolution of the frequency-size distribution of the events and the seismicity rate changes. We find that the majority of the earthquakes cannot be justified as aftershocks (directly related to the tectonics or to earthquake-earthquake interaction) and are best explained by an additional forcing active over the entire sequence. Our findings are consistent with the action of fluids (e.g. pore-pressure diffusion) triggering seismicity on pre-loaded faults. Additional aseismic release of tectonic strain by transient, slow slip is also consistent with our analysis. Analysis of deformation time series may clarify this point in future studies.
NASA Astrophysics Data System (ADS)
Grasso, S.; Maugeri, M.
After the Summit held in Washington on August 20-22 2001 to plan the first World Conference on the mitigation of Natural Hazards, a Group for the analysis of Natural Hazards within the Mediterranean area has been formed. The Group has so far determined the following hazards: (1) Seismic hazard (hazard for historical buildings included); (2) Hazard linked to the quantity and quality of water; (3) Landslide hazard; (4) Volcanic hazard. The analysis of such hazards implies the creation and the management of data banks, which can only be used if the data are properly geo-settled to allow a crossed use of them. The obtained results must be therefore represented on geo-settled maps. The present study is part of a research programme, namely "Detailed Scenarios and Actions for Seismic Prevention of Damage in the Urban Area of Catania", financed by the National Department for the Civil Protection and the National Research Council-National Group for the Defence Against Earthquakes (CNR-GNDT). Nowadays the south-eastern area of Sicily, called the "Iblea" seismic area of Sicily, is considered as one of the most intense seismic zones in Italy, based on the past and current seismic history and on the typology of civil buildings. Safety against earthquake hazards has two as pects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena such as amplification, land sliding and soil liquefaction. So the correct evaluation of seismic hazard is highly affected by risk factors due to geological nature and geotechnical properties of soils. The effect of local geotechnical conditions on damages suffered by buildings under seismic conditions has been widely recognized, as it is demonstrated by the Manual for Zonation on Seismic Geotechnical Hazards edited by the International Society for Soil Mechanics and Geotechnical Engineering (TC4, 1999). The evaluation of local amplification effects may be carried out by means of either rigorous complex methods of analysis or qualitative procedures. A semi quantitative procedure based on the definition of the geotechnical hazard index has been applied for the zonation of the seismic geotechnical hazard of the city of Catania. In particular this procedure has been applied to define the influence of geotechnical properties of soil in a central area of the city of Catania, where some historical buildings of great importance are sited. It was also performed an investigation based on the inspection of more than one hundred historical ecclesiastical buildings of great importance, located in the city. Then, in order to identify the amplification effects due to the site conditions, a geotechnical survey form was prepared, to allow a semi quantitative evaluation of the seismic geotechnical hazard for all these historical buildings. In addition, to evaluate the foundation soil time -history response, a 1-D dynamic soil model was employed for all these buildings, considering the non linearity of soil behaviour. Using a GIS, a map of the seismic geotechnical hazard, of the liquefaction hazard and a preliminary map of the seismic hazard for the city of Catania have been obtained. From the analysis of obtained results it may be noticed that high hazard zones are mainly clayey sites
Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS
NASA Astrophysics Data System (ADS)
Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.
2013-12-01
We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust using a NIF-type approach. This currently operates on the terrestrial GPS data streams, but could readily be expanded to use real-time offshore geodetic measurements as well. The continuous slip distributions are used in turn to compute tsunami excitation and, when convolved with pre-computed, hydrodynamic Green functions calculated using the COMCOT tsunami modeling software, run-up estimates for the entire Cascadia coastal margin. Finally, a suite of data visualization tools has been written to allow interaction with the real-time position streams and seismic estimates based on them, including time series plotting, instantaneous offset vectors, peak ground deformation contouring, finite-fault inversions, and tsunami run-up. This suite is currently bundled within a single client written in JAVA, called ';GPS Cockpit,' which is available for download.
Tempo-spatial analysis of Fennoscandian intraplate seismicity
NASA Astrophysics Data System (ADS)
Roberts, Roland; Lund, Björn
2017-04-01
Coupled spatial-temporal patterns of the occurrence of earthquakes in Fennoscandia are analysed using non-parametric methods. The occurrence of larger events is unambiguously and very strongly temporally clustered, with major implications for the assessment of seismic hazard in areas such as Fennoscandia. In addition, there is a clear pattern of geographical migration of activity. Data from the Swedish National Seismic Network and a collated international catalogue are analysed. Results show consistent patterns on different spatial and temporal scales. We are currently investigating these patterns in order to assess the statistical significance of the tempo-spatial patterns, and to what extent these may be consistent with stress transfer mechanism such as coulomb stress and pore fluid migration. Indications are that some further mechanism is necessary in order to explain the data, perhaps related to post-glacial uplift, which is up to 1cm/year.
Autonomous microexplosives subsurface tracing system final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew
The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping ofmore » subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.« less
Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations
Moran, Seth C.
2004-01-01
The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be detected in a timely manner and, in the case of magnitude = 1 earthquakes, reliably located.
Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs
NASA Astrophysics Data System (ADS)
Mignan, A.; Werner, M.; Wiemer, S.; Chen, C.; Wu, Y.
2010-12-01
Assessing the completeness magnitude Mc of earthquake catalogs is an essential prerequisite for any seismicity analysis. We employ a simple model to compute Mc in space, based on the proximity to seismic stations in a network. We show that a relationship of the form Mcpred(d) = ad^b+c, with d the distance to the 5th nearest seismic station, fits the observations well. We then propose a new Mc mapping approach, the Bayesian Magnitude of Completeness (BMC) method, based on a 2-step procedure: (1) a spatial resolution optimization to minimize spatial heterogeneities and uncertainties in Mc estimates and (2) a Bayesian approach that merges prior information about Mc based on the proximity to seismic stations with locally observed values weighted by their respective uncertainties. This new methodology eliminates most weaknesses associated with current Mc mapping procedures: the radius that defines which earthquakes to include in the local magnitude distribution is chosen according to an objective criterion and there are no gaps in the spatial estimation of Mc. The method solely requires the coordinates of seismic stations. Here, we investigate the Taiwan Central Weather Bureau (CWB) earthquake catalog by computing a Mc map for the period 1994-2010.
Enhancement of long period components of recorded and synthetic ground motions using InSAR
Abell, J.A.; Carlos de la Llera, J.; Wicks, C.W.
2011-01-01
Tall buildings and flexible structures require a better characterization of long period ground motion spectra than the one provided by current seismic building codes. Motivated by that, a methodology is proposed and tested to improve recorded and synthetic ground motions which are consistent with the observed co-seismic displacement field obtained from interferometric synthetic aperture radar (InSAR) analysis of image data for the Tocopilla 2007 earthquake (Mw=7.7) in Northern Chile. A methodology is proposed to correct the observed motions such that, after double integration, they are coherent with the local value of the residual displacement. Synthetic records are generated by using a stochastic finite-fault model coupled with a long period pulse to capture the long period fling effect. It is observed that the proposed co-seismic correction yields records with more accurate long-period spectral components as compared with regular correction schemes such as acausal filtering. These signals provide an estimate for the velocity and displacement spectra, which are essential for tall-building design. Furthermore, hints are provided as to the shape of long-period spectra for seismic zones prone to large co-seismic displacements such as the Nazca-South American zone. ?? 2011 Elsevier Ltd.
Wave equation datuming applied to S-wave reflection seismic data
NASA Astrophysics Data System (ADS)
Tinivella, U.; Giustiniani, M.; Nicolich, R.
2018-05-01
S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.
NASA Astrophysics Data System (ADS)
Kenedi, C. L.; Alvarez, M. G.; Abdelwahed, M. F.; Aboud, E.; Lindsay, J. M.; Mokhtar, T. A.; Moufti, M. R.
2012-12-01
An 8-station borehole seismic research array is recording microearthquake data in northern Harrat Rahat. This recently active monogenetic volcanic field lies southeast of the Islamic holy city of Madinah, Kingdom of Saudi Arabia. The VORiSA seismographs are operated in collaboration between King Abdulaziz University in Jeddah and the Institute of Earth Science and Engineering, University of Auckland, in New Zealand. The goal of the VORiSA project is to evaluate the seismic and volcanic hazard around Madinah. To this end, we will evaluate the local earthquake activity including the extent to which local earthquakes are tectonic or volcanic. We also will use seismicity to understand the subsurface structure. The analytical goals of the seismic research array are the following: (1) Calculate a new seismic velocity model, (2) Map subsurface structures using seismic tomography, and (3) Explore for fracture zones using shear wave splitting analysis. As compared to seismographs installed on the surface, borehole seismometers detect smaller and more numerous microearthquake signals. The sensitivity and location of the borehole sensors in the VORiSA array are designed to detect these weak signals. The array has a total aperture of 17 km with station spacing at 5 - 10 km. The seismometers are housed in IESE model S21g-2.0, two Hz, 3-component borehole sondes. Sensor depths range from 107 - 121 m. The data acquisition system at each stand-alone station consists of a Reftek 130-01, 6-channel, 24 bit data logger which records at 250 samples per second. The power source is a deep cycle battery with solar recharge. Local temperatures reach extremes of 0° to 50°C, so the battery and recorder are contained in a specially designed underground vault. The vault also provides security in the remote and sparsely populated volcanic field. Recording began on 31 March 2012. An average of one earthquake every three days suggests that currently this is not a highly seismic area. However, seismic swarms, likely related to magmatic intrusion, have occurred in 1999 in Harrat Rahat (~145 earthquakes, M1.4 to 2.3) (Moufti et al., 2010) and in 2009 in Harrat Lunayyir (~30,000 earthquakes up to M5.4) (Pallister et al., 2010). We can locate microearthquakes of Mm = -1 within the array, a significant advantage over the previous surface network. We have characterized instrument noise using power spectrum probability density functions (McNamara and Buland, 2004). All stations show a very high signal to noise ratio; for a near-source M-1 event S/N is ~5. The available data are still too sparse for advanced analysis and currently appear as a cloud of seismicity.
NASA Astrophysics Data System (ADS)
Filiatrault, Andre; Sullivan, Timothy
2014-08-01
With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, F.W.
1994-03-28
This bibliography is divided into the following four sections: Seismicity of Hawaii and Kilauea Volcano; Occurrence, locations and accelerations from large historical Hawaiian earthquakes; Seismic hazards of Hawaii; and Methods of seismic hazard analysis. It contains 62 references, most of which are accompanied by short abstracts.
NASA Astrophysics Data System (ADS)
Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.
2014-12-01
In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.
Verification/development of seismic design specifications for downstate zone.
DOT National Transportation Integrated Search
2014-07-01
The New York City Department of Transportation (NYCDOT) Seismic Design Guidelines Report was : updated in September 2008 by Weidlinger Associates to reflect current state-of-the-art knowledge. The : NYCDOT seismic design guidelines are for use in the...
NASA Astrophysics Data System (ADS)
Kunz-Plapp, T.; Khazai, B.; Daniell, J. E.
2012-04-01
This paper presents a new method for modeling health impacts caused by earthquake damage which allows for integrating key social impacts on individual health and health-care systems and for implementing these impacts in quantitative systemic seismic vulnerability analysis. In current earthquake casualty estimation models, demand on health-care systems is estimated by quantifying the number of fatalities and severity of injuries based on empirical data correlating building damage with casualties. The expected number of injured people (sorted by priorities of emergency treatment) is combined together with post-earthquake reduction of functionality of health-care facilities such as hospitals to estimate the impact on healthcare systems. The aim here is to extend these models by developing a combined engineering and social science approach. Although social vulnerability is recognized as a key component for the consequences of disasters, social vulnerability as such, is seldom linked to common formal and quantitative seismic loss estimates of injured people which provide direct impact on emergency health care services. Yet, there is a consensus that factors which affect vulnerability and post-earthquake health of at-risk populations include demographic characteristics such as age, education, occupation and employment and that these factors can aggravate health impacts further. Similarly, there are different social influences on the performance of health care systems after an earthquake both on an individual as well as on an institutional level. To link social impacts of health and health-care services to a systemic seismic vulnerability analysis, a conceptual model of social impacts of earthquakes on health and the health care systems has been developed. We identified and tested appropriate social indicators for individual health impacts and for health care impacts based on literature research, using available European statistical data. The results will be used to develop a socio-physical model of systemic seismic vulnerability that enhances the further understanding of societal seismic risk by taking into account social vulnerability impacts for health and health-care system, shelter, and transportation.
NASA Astrophysics Data System (ADS)
Kalafat, D.; Gunes, Y.; Kekovali, K.; Kara, M.; Gorgun, E.
2017-12-01
n this study we investigated seismicity and source characteristics of the Sultandağı Fault Zone (SFZ). As known Western Anatolia is one of the most important seismically active region in Turkey. The relative movement of the African-Arabian plates, it causes the Anatolian Plate to movement to the west-Southwest direction 2.5 cm per year and this result provides N-S direction with extensional regime in the recent tectonic. In this study, especially with the assessment of seismic activity occurring in Afyon and around between 200-2002 years, we have been evaluated to date with seismic activity as well as fault mechanism solution. We analyzed recent seismicity and distribution of earthquakes in this region. In the last century, 3 important earthquakes occurred in the Sultandağı Fault zone (Afyon-Akşehir Graben), this result shown it was seismic active and broken fault segments caused stress balance in the region and it caused to occur with short intervals of earthquakes in 2000 and 2002, triggering each other. The scope of this tudy, we installed new BB stations in the region and we have been done of the fault plane solutions for important earthquakes. The focal mechanisms clearly exhibit the activation of a NE-SW trending normal faulting system along the SFZ region. The results of stress analysis showed that the effective current tectonic evolution of normal faulting in this region. This study is supported by Bogazici University Research Projects Commission under SRP/BAP project No. 12280. Key Words: Sultandağı fault zone, normal faulting, seismicity, fault mechanism
Using Earthquake Analysis to Expand the Oklahoma Fault Database
NASA Astrophysics Data System (ADS)
Chang, J. C.; Evans, S. C.; Walter, J. I.
2017-12-01
The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.
NASA Astrophysics Data System (ADS)
Othman, Adel A. A.; Bakr, Ali; Maher, Ali
2017-12-01
The Nile Delta basin is a hydrocarbon rich province that has hydrocarbon accumulations generated from biogenic and thermogenic source rocks and trapped in a clastic channel reservoirs ranging in age from Pliocene to Early Cretaceous. Currently, the offshore Nile Delta is the most active exploration and development province in Egypt. The main challenge of the studied area is that we have only one well in a channel system exceeds fifteen km length, where seismic reservoir characterization is used to de-risk development scenarios for the field by discriminating between gas sand, water sand and shale. Extracting the gas-charged geobody from the seismic data is magnificent input for 3D reservoir static modelling. Seismic data, being non-stationary in nature, have varying frequency content in time. Spectral decomposition analysis unravels the seismic signal into its initial constituent frequencies. Frequency decomposition of a seismic signal aims to characterize the time-dependent frequency response of subsurface rocks and reservoirs for imaging and mapping of bed thickness, geologic discontinuities and channel connectivity. Inversion feasibility study using crossplot between P-wave impedance (Ip) and S-wave impedance (Is) which derived from well logs (P-wave velocity, S-wave velocity and density) is applied to investigate which inversion type would be sufficient enough to discriminate between gas sand, water sand and shale. Integration between spectral analysis, inversion results and Ip vs. Is crossplot cutoffs help to generate 3D lithofacies cubes, which used to extract gas sand and water sand geobodies, which is extremely wonderful for constructing facies depositional static model in area with unknown facies distribution and sand connectivity. Therefore de-risking hydrocarbon accumulation and GIIP estimation for the field became more confident for drilling new development wells.
An Updated Earthquake Relocation Catalog for the Island of Hawaíi from 2009 to 2016
NASA Astrophysics Data System (ADS)
Lin, G.; Okubo, P.; Shearer, P. M.; Matoza, R. S.
2017-12-01
We present an updated catalog of Hawaiian seismicity, systematically relocated from a starting catalog compiled by the Hawaiian Volcano Observatory (HVO). This is a continuation of our collaboration that began with relocating Hawaiian seismicity from 1992 through April 2009 and subsequently added 1986 through 1991, all initially processed with HVO's Caltech-USGS Seismic Processing systems. Our current efforts are initially focused on extending waveform cross-correlation analyses to significantly greater numbers of candidate event pairs of earthquakes recorded since 2009, after HVO migrated to its ANSS Quake Management Software (AQMS) systems. In its roughly 8 years of AQMS processing, HVO has cataloged over 170,000 events. Particular challenges with this more recent dataset relate to field network upgrades that introduced numerous broadband sensors to replace short-period instruments and significantly increased numbers of event triggers. A relatively low percentage of interactively-reviewed events compared to the pre-2009 catalogs also presents a significant challenge to our analysis. We start by ray tracing through a previously developed three-dimensional (3-D) seismic velocity model to relocate all the earthquakes with phase arrivals. We then use these 3-D relocated events, with improved absolute locations, as reference events to perform similar-event cluster analysis and differential-time relative relocation to all the available events in the data set. The resulting catalog of relocated, well-constrained hypocenters is an extension of our previous studies. Combined with earlier products of our systematic catalog relocations, the increased numbers of relocated earthquakes from more than 30 years of seismic monitoring offer enhanced opportunities for study and interpretation of seismic and volcanic processes spanning the entire 1986-2016 interval.
Seismic facies analysis based on self-organizing map and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian
2015-01-01
Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.
Seismic hazard assessment: Issues and alternatives
Wang, Z.
2011-01-01
Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.
Predicting the seismic performance of typical R/C healthcare facilities: emphasis on hospitals
NASA Astrophysics Data System (ADS)
Bilgin, Huseyin; Frangu, Idlir
2017-09-01
Reinforced concrete (RC) type of buildings constitutes an important part of the current building stock in earthquake prone countries such as Albania. Seismic response of structures during a severe earthquake plays a vital role in the extent of structural damage and resulting injuries and losses. In this context, this study evaluates the expected performance of a five-story RC healthcare facility, representative of common practice in Albania, designed according to older codes. The design was based on the code requirements used in this region during the mid-1980s. Non-linear static and dynamic time history analyses were conducted on the structural model using the Zeus NL computer program. The dynamic time history analysis was conducted with a set of ground motions from real earthquakes. The building responses were estimated in global levels. FEMA 356 criteria were used to predict the seismic performance of the building. The structural response measures such as capacity curve and inter-story drift under the set of ground motions and pushover analyses results were compared and detailed seismic performance assessment was done. The main aim of this study is considering the application and methodology for the earthquake performance assessment of existing buildings. The seismic performance of the structural model varied significantly under different ground motions. Results indicate that case study building exhibit inadequate seismic performance under different seismic excitations. In addition, reasons for the poor performance of the building is discussed.
Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis
NASA Astrophysics Data System (ADS)
Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo
2016-12-01
Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures.
Dominant seismic sources for the cities in South Sumatra
NASA Astrophysics Data System (ADS)
Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya
2017-07-01
Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.
Influence of the new LRFD seismic guidelines on the design of bridges in Virginia.
DOT National Transportation Integrated Search
2004-01-01
The Virginia Department of Transportation is currently using the AASHTO Standard Specifications for Highway Bridges, with some modifications, for its seismic highway bridge design. In April 2001, the Recommended LRFD Guidelines for the Seismic Design...
NASA Astrophysics Data System (ADS)
Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus
2018-03-01
The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.
Large-N in Volcano Settings: Volcanosri
NASA Astrophysics Data System (ADS)
Lees, J. M.; Song, W.; Xing, G.; Vick, S.; Phillips, D.
2014-12-01
We seek a paradigm shift in the approach we take on volcano monitoring where the compromise from high fidelity to large numbers of sensors is used to increase coverage and resolution. Accessibility, danger and the risk of equipment loss requires that we develop systems that are independent and inexpensive. Furthermore, rather than simply record data on hard disk for later analysis we desire a system that will work autonomously, capitalizing on wireless technology and in field network analysis. To this end we are currently producing a low cost seismic array which will incorporate, at the very basic level, seismological tools for first cut analysis of a volcano in crises mode. At the advanced end we expect to perform tomographic inversions in the network in near real time. Geophone (4 Hz) sensors connected to a low cost recording system will be installed on an active volcano where triggering earthquake location and velocity analysis will take place independent of human interaction. Stations are designed to be inexpensive and possibly disposable. In one of the first implementations the seismic nodes consist of an Arduino Due processor board with an attached Seismic Shield. The Arduino Due processor board contains an Atmel SAM3X8E ARM Cortex-M3 CPU. This 32 bit 84 MHz processor can filter and perform coarse seismic event detection on a 1600 sample signal in fewer than 200 milliseconds. The Seismic Shield contains a GPS module, 900 MHz high power mesh network radio, SD card, seismic amplifier, and 24 bit ADC. External sensors can be attached to either this 24-bit ADC or to the internal multichannel 12 bit ADC contained on the Arduino Due processor board. This allows the node to support attachment of multiple sensors. By utilizing a high-speed 32 bit processor complex signal processing tasks can be performed simultaneously on multiple sensors. Using a 10 W solar panel, second system being developed can run autonomously and collect data on 3 channels at 100Hz for 6 months with the installed 16Gb SD card. Initial designs and test results will be presented and discussed.
Earthquake Archaeology: a logical approach?
NASA Astrophysics Data System (ADS)
Stewart, I. S.; Buck, V. A.
2001-12-01
Ancient earthquakes can leave their mark in the mythical and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. Within this broad cross-disciplinary tramping ground, earthquake geologists have tended to focus on those aspects of the cultural record that are most familiar to them; the physical effects of seismic deformation on ancient constructions. One of the core difficulties with this 'earthquake archaeology' approach is that recent attempts to isolate structural criteria that are diagnostic or strongly suggestive of a seismic origin are undermined by the recognition that signs of ancient seismicity are generally indistinguishable from non-seismic mechanisms (poor construction, adverse geotechnical conditions). We illustrate the difficulties and inconsistencies in current proposed 'earthquake diagnostic' schemes by reference to two case studies of archaeoseismic damage in central Greece. The first concerns fallen columns at various Classical temple localities in mainland Greece (Nemea, Sounio, Olympia, Bassai) which, on the basis of observed structural criteria, are earthquake-induced but which are alternatively explained by archaeologists as the action of human disturbance. The second re-examines the almost type example of the Kyparissi site in the Atalanti region as a Classical stoa offset across a seismic surface fault, arguing instead for its deformation by ground instability. Finally, in highlighting the inherent ambiguity of archaeoseismic data, we consider the value of a logic-tree approach for quantifying and quantifying our uncertainities for seismic-hazard analysis.
The Seismicity activity toward east of Bogotá D. C., Colombia
NASA Astrophysics Data System (ADS)
Chicangana, G.; Vargas, C. A.; Gomez-Capera, A.; Pedraza, P.; Mora-Paez, H.; Salcedo, E.; Caneva, A.
2013-12-01
In the eastern flank of Eastern Cordillera very close to Bogotá D.C metropolitan area at least in last 450 years five magnitude 5.0 or higher earthquakes has occur. These were confirmed by both historical and instrumental seismicity information. Among these earthquakes, the first one in Colombian historical times was occur at March 16th, 1644 and was sense toward south of Santa Fé de Bogotá. Then on October 18th, 1743 occurred with a current probabilistic magnitude greater than 6.5 an earthquake that transcended in this region due to the economic slump and loss of lives that it caused. Recently the Quetame Earthquake with M = 5.9 occur on May 24th, 2008, that destroyed the Quetame town. This last earthquake was registered locally by Colombian Seismological Network (RSNC). In this study we realized an analysis over this seismicity activity both by historical chronicles with macroseismic estimation data, the seismicity record obtained mainly by the Colombian National Seismological Network (RSNC) data for the 1993-2012 lapse, for searching the seismogenics sources that produced this seismicity activity. So, with these results we show the tectonic panorama of this region indicating of this manner the faults that possibility can be potentially seismic actives. For this we have considered mainly geomorphologic features associated to the faults activity additionally corroborated with GPS velocities data of GEORED project of Colombian Geological Survey.
NASA Astrophysics Data System (ADS)
Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang
2017-09-01
Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
NASA Astrophysics Data System (ADS)
Curcio, D. D.; Pavlis, G. L.; Yang, X.; Hamburger, M. W.; Zhang, H.; Ravat, D.
2017-12-01
We present results from a combined analysis of seismic and gravity in the Illinois Basin region that demonstrate the presence of an unusually deep and highly variable Moho discontinuity. We construct a new, high-resolution image of the Earth's crust beneath the Illinois Basin using teleseismic P-wave receiver functions from the EarthScope OIINK (Ozarks, Illinois, INdiana, Kentucky) Flexible Array and the USArray Transportable Array. Our seismic analyses involved data from 143 OIINK stations and 80 USArray stations, using 3D plane-wave migration and common conversion point (CCP) stacking of P-to-S conversion data. Seismic interpretation has been done using the seismic exploration software package Petrel. One of the most surprising results is the anomalous depth of the Moho in this area, ranging from 41 to 63 km, with an average depth of 50 km. This thickened crust is unexpected in the Illinois Basin area, which has not been subject to convergence and mountain building processes in the last 900 Ma. This anomalously thick crust in combination with the minimal topography requires abnormally dense lower crust or unusually light upper mantle in order to retain gravitational equilibrium. Combining gravity modeling with the seismically identified Moho and a ubiquitous lower crustal boundary, we solve for the density variation of the middle and lower crust. We test the hypothesis that the anomalously thick crust and its high lower crustal layer observed in most of the central and southeastern Illinois Basin predates the formation and development of the current Illinois Basin. Post-formation tectonic activity, such as late Precambrian rifting or underplating are inferred to have modified the crustal thickness as well. The combination of high-resolution seismic data analysis and gravity modeling promises to provide additional insight into the geometry and composition of the lower crust in the Illinois Basin area.
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Masson, Frédéric; Mazzotti, Stéphane; Meghraoui, Mustapha
2014-05-01
Seismic hazard in the "stable" continental regions and low-level deformation zones is one of the most difficult issues to address in Earth sciences. In these zones, instrumental and historical seismicity are not well known (sparse seismic networks, seismic cycle too long to be covered by the human history, episodic seismic activity) and many active structures remain poorly characterized or unknown. This is the case of the Upper Rhine Graben, the central segment of the European Cenozoic rift system (ECRIS) of Oligocene age, which extends from the North Sea through Germany and France to the Mediterranean coast over a distance of some 1100 km. Even if this region has already experienced some destructive earthquakes, its present-day seismicity is moderate and the deformation observed by geodesy is very small (below the current measurement accuracy). The strain rate does not exceed 10-10 and paleoseismic studies indicate an average return period of 2.5 to 3 103 ka for large earthquakes. The largest earthquake known for this zone is the 1356 Basel earthquake, with a magnitude generally estimated about 6.5 (Meghraoui et al., 2001) but recently re-evaluated between 6.7 and 7.1 (Fäh et al et al., 2009). A comparison of the Upper Rhine Graben with equivalent regions around the world could help improve our evaluation of seismic hazard of this region. This is the case of the New Madrid seismic zone, one of the best studied intraplate system in central USA, which experienced an M 7.0 - 7.5 earthquake in 1811-1812 and shares several characteristics with the Upper Rhine Graben, i.e. the general framework of inherited geological structures (reactivation of a failed rift / graben), seismicity patterns (spatial variability of small and large earthquakes), the null or low rate of deformation, and the location in a "stable" continental interior. Looking at the Upper Rhine Graben as an analogue of the New Madrid seismic zone, we can re-evaluate its seismic hazard and consider the possibility of an earthquake of magnitude 7 or greater.
Real-time earthquake monitoring: Early warning and rapid response
NASA Technical Reports Server (NTRS)
1991-01-01
A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.
NASA Technical Reports Server (NTRS)
Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.
1978-01-01
The data set obtained from the four-station Apollo seismic network including signals from approximately 11,800 events, is surveyed. Some refinement of the lunar model will result, but its gross features remain the same. Attention is given to the question of a small, molten lunar core, the answer to which remains dependent on analysis of signals from a far side impact. Seventy three sources of repeating, deep moonquakes have been identified, thirty nine of which have been accurately located. Concentrated at depths from 800 to 1000 km, the periodicities of these events have led to the hypothesis that they are generated by tidal stresses. Lunar seismic data has also indicated that the meteoroid population is ten times lower than originally determined from earth based observations. Lunar seismic activity is much lower and mountainous masses show no sign of sinking, in contrast to earth, as a result of the lunar crust being four times thicker. While much work remains to be done, significant correlation between terrestrial and lunar observations can be seen.
Schwartz, D.P.; Joyner, W.B.; Stein, R.S.; Brown, R.D.; McGarr, A.F.; Hickman, S.H.; Bakun, W.H.
1996-01-01
Summary -- The U.S. Geological Survey was requested by the U.S. Department of the Interior to review the design values and the issue of reservoir-induced seismicity for a concrete gravity dam near the site of the previously-proposed Auburn Dam in the western foothills of the Sierra Nevada, central California. The dam is being planned as a flood-control-only dam with the possibility of conversion to a permanent water-storage facility. As a basis for planning studies the U.S. Army Corps of Engineers is using the same design values approved by the Secretary of the Interior in 1979 for the original Auburn Dam. These values were a maximum displacement of 9 inches on a fault intersecting the dam foundation, a maximum earthquake at the site of magnitude 6.5, a peak horizontal acceleration of 0.64 g, and a peak vertical acceleration of 0.39 g. In light of geological and seismological investigations conducted in the western Sierran foothills since 1979 and advances in the understanding of how earthquakes are caused and how faults behave, we have developed the following conclusions and recommendations: Maximum Displacement. Neither the pre-1979 nor the recent observations of faults in the Sierran foothills precisely define the maximum displacement per event on a fault intersecting the dam foundation. Available field data and our current understanding of surface faulting indicate a range of values for the maximum displacement. This may require the consideration of a design value larger than 9 inches. We recommend reevaluation of the design displacement using current seismic hazard methods that incorporate uncertainty into the estimate of this design value. Maximum Earthquake Magnitude. There are no data to indicate that a significant change is necessary in the use of an M 6.5 maximum earthquake to estimate design ground motions at the dam site. However, there is a basis for estimating a range of maximum magnitudes using recent field information and new statistical fault relations. We recommend reevaluating the maximum earthquake magnitude using current seismic hazard methodology. Design Ground Motions. A large number of strong-motion records have been acquired and significant advances in understanding of ground motion have been achieved since the original evaluations. The design value for peak horizontal acceleration (0.64 g) is larger than the median of one recent study and smaller than the median value of another. The value for peak vertical acceleration (0.39 g) is somewhat smaller than median values of two recent studies. We recommend a reevaluation of the design ground motions that takes into account new ground motion data with particular attention to rock sites at small source distances. Reservoir-Induced Seismicity. The potential for reservoir-induced seismicity must be considered for the Auburn Darn project. A reservoir-induced earthquake is not expected to be larger than the maximum naturally occurring earthquake. However, the probability of an earthquake may be enhanced by reservoir impoundment. A flood-control-only project may involve a lower probability of significant induced seismicity than a multipurpose water-storage dam. There is a need to better understand and quantify the likelihood of this hazard. A methodology should be developed to quantify the potential for reservoir induced seismicity using seismicity data from the Sierran foothills, new worldwide observations of induced and triggered seismicity, and current understanding of the earthquake process. Reevaluation of Design Parameters. The reevaluation of the maximum displacement, maximum magnitude earthquake, and design ground motions can be made using available field observations from the Sierran foothills, updated statistical relations for faulting and ground motions, and current computational seismic hazard methodologies that incorporate uncertainty into the analysis. The reevaluation does not require significant new geological field studies.
Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment
2012-09-01
ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow
Studies of infrasound propagation using the USArray seismic network (Invited)
NASA Astrophysics Data System (ADS)
Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.
2010-12-01
Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.
NASA Astrophysics Data System (ADS)
Jolivet, R.; Duputel, Z.; Simons, M.; Jiang, J.; Riel, B. V.; Moore, A. W.; Owen, S. E.
2017-12-01
Mapping subsurface fault slip during the different phases of the seismic cycle provides a probe of the mechanical properties and the state of stress along these faults. We focus on the northern Chile megathrust where first order estimates of interseismic fault locking suggests little to no overlap between regions slipping seismically versus those that are dominantly aseismic. However, published distributions of slip, be they during seismic or aseismic phases, rely on unphysical regularization of the inverse problem, thereby cluttering attempts to quantify the degree of overlap between seismic and aseismic slip. Considering all the implications of aseismic slip on our understanding of the nucleation, propagation and arrest of seismic ruptures, it is of utmost importance to quantify our confidence in the current description of fault coupling. Here, we take advantage of 20 years of InSAR observations and more than a decade of GPS measurements to derive probabilistic maps of inter-seismic coupling, as well as co-seismic and post-seismic slip along the northern Chile subduction megathrust. A wide InSAR velocity map is derived using a novel multi-pixel time series analysis method accounting for orbital errors, atmospheric noise and ground deformation. We use AlTar, a massively parallel Monte Carlo Markov Chain algorithm exploiting the acceleration capabilities of Graphic Processing Units, to derive the probability density functions (PDF) of slip. In northern Chile, we find high probabilities for a complete release of the elastic strain accumulated since the 1877 earthquake by the 2014, Iquique earthquake and for the presence of a large, independent, locked asperity left untapped by recent events, north of the Mejillones peninsula. We evaluate the probability of overlap between the co-, inter- and post-seismic slip and consider the potential occurrence of slow, aseismic slip events along this portion of the subduction zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin
2015-02-01
Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less
NASA Astrophysics Data System (ADS)
Li, X.; Gao, M.
2017-12-01
The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18.21+1.05ML; logMo=17.04+1.32MS. This formula can be used by seismologists to convert the ML/MS of Chinese mainland events into their seismic moments.
TkPl_SU: An Open-source Perl Script Builder for Seismic Unix
NASA Astrophysics Data System (ADS)
Lorenzo, J. M.
2017-12-01
TkPl_SU (beta) is a graphical user interface (GUI) to select parameters for Seismic Unix (SU) modules. Seismic Unix (Stockwell, 1999) is a widely distributed free software package for processing seismic reflection and signal processing. Perl/Tk is a mature, well-documented and free object-oriented graphical user interface for Perl. In a classroom environment, shell scripting of SU modules engages students and helps focus on the theoretical limitations and strengths of signal processing. However, complex interactive processing stages, e.g., selection of optimal stacking velocities, killing bad data traces, or spectral analysis requires advanced flows beyond the scope of introductory classes. In a research setting, special functionality from other free seismic processing software such as SioSeis (UCSD-NSF) can be incorporated readily via an object-oriented style to programming. An object oriented approach is a first step toward efficient extensible programming of multi-step processes, and a simple GUI simplifies parameter selection and decision making. Currently, in TkPl_SU, Perl 5 packages wrap 19 of the most common SU modules that are used in teaching undergraduate and first-year graduate student classes (e.g., filtering, display, velocity analysis and stacking). Perl packages (classes) can advantageously add new functionality around each module and clarify parameter names for easier usage. For example, through the use of methods, packages can isolate the user from repetitive control structures, as well as replace the names of abbreviated parameters with self-describing names. Moose, an extension of the Perl 5 object system, greatly facilitates an object-oriented style. Perl wrappers are self-documenting via Perl programming document markup language.
NASA Astrophysics Data System (ADS)
Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.
2015-12-01
Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.
NASA Astrophysics Data System (ADS)
Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.
2016-06-01
The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.
78 FR 13911 - Proposed Revision to Design of Structures, Components, Equipment and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... Analysis Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.1, ``Seismic Design Parameters,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... and analysis issues, (2) updates to review interfaces to improve the efficiency and consistency of...
78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...
Local Seismicity of the Rainbow Massif on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Horning, G.; Sohn, R. A.; Canales, J. P.; Dunn, R. A.
2018-02-01
The Rainbow massif, an oceanic core complex located in a nontransform discontinuity on the Mid-Atlantic Ridge (36°N), is notable for hosting high-temperature hydrothermal discharge through ultramafic rocks. Here we report results from a 9 month microearthquake survey conducted with a network of 13 ocean bottom seismometers deployed on and around the Rainbow massif as part of the MARINER experiment in 2013-2014. High rates ( 300 per day) of low-magnitude (average ML 0.5) microearthquakes were detected beneath the massif. The hypocenters do not cluster along deeply penetrating fault surfaces and do not exhibit mainshock/aftershock sequences, supporting the hypothesis that the faulting associated with the exhumation of the massif is currently inactive. Instead, the hypocenters demarcate a diffuse zone of continuous, low-magnitude deformation at relatively shallow (< 3 km) depths beneath the massif, sandwiched in between the seafloor and seismic reflectors interpreted to be magmatic sills driving hydrothermal convection. Most of the seismicity is located in regions where seismic refraction data indicate serpentinized ultramafic host rock, and although the seismic network we deployed was not capable of constraining the focal mechanism of most events, our analysis suggests that serpentinization may play an important role in microearthquake generation at the Rainbow massif.
New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Peter Morse
Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can bemore » used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.« less
NASA Astrophysics Data System (ADS)
Li, Youping; Lu, Jinsong; Cheng, Jian; Yin, Yongzhen; Wang, Jianlan
2017-04-01
Based on the summaries of the rules about the vibration measurement for hydro-generator sets with respect to relevant standards, the key issues of the vibration measurement, such as measurement modes, the transducer selection are illustrated. In addition, the problems existing in vibration measurement are pointed out. The actual acquisition data of head cover vertical vibration respectively obtained by seismic transducer and eddy current transducer in site hydraulic turbine performance tests during the rising of the reservoir upstream level in a certain hydraulic power plant are compared. The difference of the data obtained by the two types of transducers and the potential reasons are presented. The application conditions of seismic transducer and eddy current transducer for hydro-generator set vibration measurement are given based on the analysis. Research subjects that should be focused on about the topic discussed in this paper are suggested.
Recent and active tectonics of the external zone of the Northern Apennines (Italy)
NASA Astrophysics Data System (ADS)
Boccaletti, Mario; Corti, Giacomo; Martelli, Luca
2011-08-01
We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological-structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines-Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N-S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW-SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines-Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.
Imaging The Shallow Velocity Structure Of The Hikurangi Megathrust Using Full-Waveform Inversion
NASA Astrophysics Data System (ADS)
Gray, M.; Bell, R. E.; Morgan, J. V.
2017-12-01
The Hikurangi margin, offshore North Island, New Zealand, exhibits a number of different slip behaviours, including shallow slow slip events (SSEs) (<2km to 15 km). There is also a strong contrast in geodetic coupling along the margin. While reflection data provides an image of the structure, no information about physical properties is provided. Full-waveform inversion (FWI) is an imaging technique which incorporates the full seismic wavelet rather than just the first arrivals, as in traditional tomography. By propagating synthetic seismic waves through a velocity model and comparing the synthetic wavelets to the field data, we update the velocity model until the real and synthetic wavelets match. In this way, we can resolve high-resolution physical property variations which influence the seismic wavefield. In our study, FWI was used to resolve the P-wave velocity structure at the Hikurangi megathrust up to 2km. This method enables investigation of how upper-plate structure may influence plate boundary slip behaviour. In 2005, a seismic survey was carried out over the Hikurangi megathrust. The data was acquired from a 12km streamer, allowing FWI analysis up to 2km below the seabed. The results show low velocity zones correlating to faults interpreted from reflection seismic imaging. We believe these low velocity zones, particularly near the frontal thrust resolve faulting in the area, and present these faults as possible fluid conduits. As the dataset was not collected specifically for FWI, the results show promise in resolving more information at depth. As such, both a 3D seismic survey and two drilling expeditions have been approved for the period November 2017 - May 2018. The seismic survey will be carried out with parameters optimal for FWI, allow imaging of the fault boundary, which is not possible with the current 2D data. The cores will provide direct geological evidence which can be used in conjunction with velocity models to discern lithology and structure. The current result identifies the existence of overpressure and aids in drilling safety when collecting these cores. In conjunction with the new IODP cores, the FWI model will improve understanding of properties of the shallow structure of the megathrust.
NASA Astrophysics Data System (ADS)
Hong, Z.; Hasan, E.; Hong, Y.; Xia, B.; Zhong, H.
2016-12-01
This study is a contribution to how NASA's Gravity Recovery and Climate Experiment (GRACE) data may be used to track anthropogenic related change in the groundwater in the Southern Great Plains (SGP) as well recently increased seismicity in the southern states. The SGP contains one of the most important groundwater aquifers in the United States, the Ogallala groundwater aquifer, which has been exploited since 1900. Meanwhile, the recent activities of oil and gas extraction from the unconventional shall reservoir systems has led to significantly increased groundwater withdrawal and injection of wastewater. Consequently, numerous induced fracture related earthquakes have been recorded in Oklahoma and Texas between 2002 and 2016 The current paper investigates the utility of GRACE data along with the Land Water Content (LWC) information from the Global Land Data Assimilation System (GLDAS) to monitor and track the groundwater changes in three southern states of SGP (Oklahoma, Texas and New Mexico). Additionally, the paper investigates links between active seismicity and the injection of the wastewater due to the oil and gas production. Using GRACE data yields unprecedented information about the inter-annual changes in the Total Water Storage (TWS) from 2002 to 2016 over SGP. The LWC data set sums the soil moisture records with the the total canopy water storage to reveal the total land surface water content. The arithmetic difference between the TWS and LWC is the Groundwater Anomaly (GWA) for any particular region. In the current study, the GWA analysis reveals the following: (1) statistically significant drop of the GWA of about - 27 mm from 2002 to 2007 due to natural and anthropogenic causes; (2) the increased precipitation records from 2008 to 2011 over SGP leads to significant recovery in TWS and an increase in the groundwater content of about 40 mm; (3) the period from 2012 to 2015 experienced increased GWA of about - 6 mm for the period. Using the available seismicity records showed high agreement between the seismicity and the oil production locations. Additionally, the correlation between the groundwater changes and the seismic activity in the study region showed that the changes in groundwater levels are associated with regions of induced seismic activities.
Seismically induced landslides: current research by the US Geological Survey.
Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.
1986-01-01
We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors
New insights on the seismic hazard in the Balkans inferred from GPS
NASA Astrophysics Data System (ADS)
D'Agostino, Nicola; Métois, Marianne; Avallone, Antonio; Chamot-Rooke, Nicolas
2014-05-01
The Balkans region sits at the transition between stable Eurasia and highly straining continental Eastern Mediterranean, resulting in a widespread seismicity and high seismic hazard. Because of intensive human and economic development over the last decades, the vulnerability has increased in the region faster than the progress in seismic hazard assessments. Opposite to the relatively good understanding of the seismicity in plate boundaries contexts, the seismic hazard is poorly known in the regions of distributed continental deformation like the Balkan region and is often underestimated (England and Jackson, 2011). Current seismic hazard assessments are based on the historical and instrumental catalogues. However, the completeness interval of the historical data bases may be below the average recurrence of individual seismogenic structures. In addition, relatively sparse seismological networks in the region and limited cross-border seismic data exchanges cast doubts in seismotectonic interpretation and challenge our understanding of seismic and geodynamic processes. This results in a inhomogeneous knowledge of the seismic hazard of the region to date. Geodetic measurements have the capability to contribute to seismic hazard by mapping the field of current active deformation and translating it into estimates of the seismogenic potential. With simple assumptions, measurements of crustal deformation can be translated in estimates of the average frequency and magnitude of the largest events and assessments of the aseismic deformation. GPS networks in the Balkans have been growing during the last few years mainly for civilian application (e.g. Cadastral plan, telecommunications), but opening new opportunities to quantify the present-day rates of crustal deformation. Here we present the initial results of GEOSAB (Geodetic Estimate of Strain Accumulation over Balkans), an AXA-Research-Fund supported project devoted to the estimation of crustal deformation and the associated seismic hazard of the Balkan region. We processed all the currently available data acquired on these new networks using the precise point positioning strategy of the Gipsy-Oasis software (Bertiger et al. 2010) and the daily ITF2008 transformation parameters (x-files) from JPL. Daily coordinates are obtained in a Eurasia-fix reference frame obtained using the strategy developed by Blewitt et al. (2012). Here we present this new velocity field combined with previously published data sets covering the Balkan Peninsula. This unusually dense picture of the current deformation, in particular in Slovenia and Serbia, enables us to derive a continuous map of the strain rate over the region using the approach of Haines and Holt (1993). We then derive the seismogenic potential of the region combining the geodetic strain rate and the available regional CMT moment tensor solutions. These maps bring new insights on areas of significant strain accumulation over the Balkan Peninsula and are a first step to better assess seismic hazard there.
Identifying seismic electirc signals upon significant periodic data loss. The case of Japan
NASA Astrophysics Data System (ADS)
Varotsos, P.; Skordas, E. S.; Sarlis, N. V.; Lazaridou, M. S.
2011-12-01
In many cases of geophysical interest, it happens that for substantial parts of the time of data collection, high noise prevents any attempt for extracting a useful signal. Data for such time segments are removed from further analysis. This is the case, for example, in the geoelectrical field measurements at some sites in Japan, where high noise - due mainly to leakage currents from DC driven trains - prevails almost during 70% of the 24 hour operational time. In particular, the low noise time occurs from 00:00 to 06:00 and from 22:00 to 24:00 local time (LT) when nearby DC driven trains cease service, i.e., almost only 30% of the 24 h. Thus, the question arises whether it is still possible to identify seismic electric signals [P. Varotsos and K. Alexopoulos, Tectonophysics 110 (1984) 73-98; 99-125] upon removing the noisy data segments lasting for the period 06:00 to 22:00 every day. We show that even in such a case, the identification of seismic electric signals, which are long-range correlated signals [PA Varotsos, NV Sarlis and ES Skordas, Phys. Rev. E 66 (2002), 011902], may be possible[PA Varotsos, NV Sarlis and ES Skordas, Tectonophysics 503 (2011) 189-194]. The key point is the use of the following two modern methods: The natural time analysis [PA Varotsos, NV Sarlis and ES Skordas, Natural Time Analysis: The new view of time (2011) Springer-Verlag Berlin-Heidelberg] of the remaining data and the Detrended Fluctuation Analysis (DFA). Our main conclusion states that the distinction between seismic electric signal activities (critical dynamics) and artificial noise becomes possible even after removing periodically a significant portion of the data.
Seismic performance of geosynthetic-soil retaining wall structures
NASA Astrophysics Data System (ADS)
Zarnani, Saman
Vertical inclusions of expanded polystyrene (EPS) placed behind rigid retaining walls were investigated as geofoam seismic buffers to reduce earthquake-induced loads. A numerical model was developed using the program FLAC and the model validated against 1-g shaking table test results of EPS geofoam seismic buffer models. Two constitutive models for the component materials were examined: elastic-perfectly plastic with Mohr-Coulomb (M-C) failure criterion and non-linear hysteresis damping model with equivalent linear method (ELM) approach. It was judged that the M-C model was sufficiently accurate for practical purposes. The mechanical property of interest to attenuate dynamic loads using a seismic buffer was the buffer stiffness defined as K = E/t (E = buffer elastic modulus, t = buffer thickness). For the range of parameters investigated in this study, K ≤50 MN/m3 was observed to be the practical range for the optimal design of these systems. Parametric numerical analyses were performed to generate design charts that can be used for the preliminary design of these systems. A new high capacity shaking table facility was constructed at RMC that can be used to study the seismic performance of earth structures. Reduced-scale models of geosynthetic reinforced soil (GRS) walls were built on this shaking table and then subjected to simulated earthquake loading conditions. In some shaking table tests, combined use of EPS geofoam and horizontal geosynthetic reinforcement layers was investigated. Numerical models were developed using program FLAC together with ELM and M-C constitutive models. Physical and numerical results were compared against predicted values using analysis methods found in the journal literature and in current North American design guidelines. The comparison shows that current Mononobe-Okabe (M-O) based analysis methods could not consistently satisfactorily predict measured reinforcement connection load distributions at all elevations under both static and dynamic loading conditions. The results from GRS model wall tests with combined EPS geofoam and geosynthetic reinforcement layers show that the inclusion of a EPS geofoam layer behind the GRS wall face can reduce earth loads acting on the wall facing to values well below those recorded for conventional GRS wall model configurations.
Quantitative risk analysis of oil storage facilities in seismic areas.
Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto
2005-08-31
Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.
Seismic Fragility Analysis of a Degraded Condensate Storage Tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C.
2011-05-16
The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences ofmore » structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed for five cases: (1) a baseline analysis where the design condition (undegraded) is assumed, (2) a scenario with degraded stainless steel tank shell, (3) a scenario with degraded anchor bolts, (4) a scenario with anchorage concrete cracking, and (5) a perfect correlation of the above three degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study. To achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs), the Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic fragility analysis methods that consider age-related degradation of SPCs. The rate of age-related degradation of SPCs was not found to be significantly large, but increasing as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). In this paper, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study.« less
NASA Astrophysics Data System (ADS)
Che, Il-Young; Jeon, Jeong-Soo
2010-05-01
Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be continuously used for estimating natural seismicity and understanding infrasonic sources.
The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines
NASA Astrophysics Data System (ADS)
Wesseloo, Johan
2018-06-01
Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.
NASA Astrophysics Data System (ADS)
Getz, Joseph Edward
The Middleton Place Summerville Seismic Zone (MPSSZ) near Summerville, South Carolina was the site of renewed extensive investigation, beginning in the 1970's, for the source of the 1886 Charleston earthquake. Reactivation of faults associated with a putative fault-bounded Triassic rift basin through analysis of seismic reflection, seismic refraction, and well data has since become the favored interpretation for the source of MPSSZ seismicity. Critical to this interpretation is the association of continental redbed sedimentary rocks with Triassic basins identified throughout the North American Atlantic margin. Reanalysis of 18 seismic reflection profiles and 25 seismic refraction profiles within the MPSSZ suggests that the red beds found here are a thin, sub-horizontal, regionally extensive, generally unbroken subsurface stratigraphic sequence distinct from the sedimentary architecture observed in analog Triassic rift systems. In addition, this sequence appears to unconformably overly a structural depression (the Jedberg basin) previously interpreted as a Triassic rift basin in the vicinity of the MPSSZ. In addition to the geometries observed on seismic reflection profiles, seismic refraction velocities ranging from 4.2 to 6.1 km/s can be correlated with (1) Jurassic basalt flows, (2) the newly proposed Summerville Formation, and (3) the Basement (B) sequences respectively. The current study maps the Summerville red bed section and its bounding reflectors. In addition to mapping the regional extent of the newly proposed Summerville Formation, refraction velocities and changes in reflection character, the lateral extent of the basalt flows can be changed to a more localized flow rather than a regionally extensive flow of which was previously thought. Reanalysis of data in the MPSSZ suggests that the area may not be part of the Triassic South Georgia Rift system due to the sub-horizontal geometry of the red bed reflections, the apparent lack of faulting, and their regional extent.
NASA Astrophysics Data System (ADS)
Martinelli, Bruno
1990-07-01
The seismic activity of the Nevado del Ruiz volcano was monitored during August-September 1985 using a three-component portable seismograph station placed on the upper part of the volcano. The objective was to investigate the frequency content of the seismic signals and the possible sources of the volcanic tremor. The seismicity showed a wide spectrum of signals, especially at the beginning of September. Some relevant patterns from the collected records, which have been analyzed by spectrum analysis, are presented. For the purpose of analysis, the records have been divided into several categories such as long-period events, tremor, cyclic tremor episodes, and strong seismic activity on September 8, 1985. The origin of the seismic signals must be considered in relation to the dynamical and acoustical properties of fluids and the shape and dimensions of the volcano's conduits. The main results of the present experiment and analysis show that the sources of the seismic signals are within the volcanic edifice. The signal characteristics indicate that the sources lie in fluid-phase interactions rather than in brittle fracturing of solid components.
A seismic hazard uncertainty analysis for the New Madrid seismic zone
Cramer, C.H.
2001-01-01
A review of the scientific issues relevant to characterizing earthquake sources in the New Madrid seismic zone has led to the development of a logic tree of possible alternative parameters. A variability analysis, using Monte Carlo sampling of this consensus logic tree, is presented and discussed. The analysis shows that for 2%-exceedence-in-50-year hazard, the best-estimate seismic hazard map is similar to previously published seismic hazard maps for the area. For peak ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 s (0.2 and 1.0 s Sa), the coefficient of variation (COV) representing the knowledge-based uncertainty in seismic hazard can exceed 0.6 over the New Madrid seismic zone and diminishes to about 0.1 away from areas of seismic activity. Sensitivity analyses show that the largest contributor to PGA, 0.2 and 1.0 s Sa seismic hazard variability is the uncertainty in the location of future 1811-1812 New Madrid sized earthquakes. This is followed by the variability due to the choice of ground motion attenuation relation, the magnitude for the 1811-1812 New Madrid earthquakes, and the recurrence interval for M>6.5 events. Seismic hazard is not very sensitive to the variability in seismogenic width and length. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Anderson, M. L.; Blakely, R. J.; Wells, R. E.; Dragovich, J.
2011-12-01
The forearc of the Cascadia subduction zone in coastal Oregon and Washington is largely composed of a 15-30 km-thick stack of basalt flows comprising the Crescent Formation (WA) and Siletz River Volcanics (OR), and collectively termed the Siletz terrane. We are developing 3-D structural maps of the Puget Lowland to distinguish older and currently active structures for seismic hazard analysis. The boundaries of the Siletz terrane in particular may strongly influence crustal rheology and neotectonic structures of the region. Careful analysis of the areal extent of this terrane will also facilitate more accurate interpretation of seismic data and gravity anomalies, which will help define the extent and shape of overlying basins. Absence of extensive outcrop in the Lowland and a widespread veneer of Quaternary deposits require extensive subsurface geophysical studies to establish Lowland-wide crustal structure. Previous studies have used active seismic surveys and interpretation of existing industry seismic data, with several studies using gravity and magnetic data or passive-source tomography support. However, steeply dipping boundaries in the mid-crust are difficult targets for seismic study. We need to independently discriminate between potential models established by seismic data using gravity and magnetic datasets. In the Puget Lowland the Siletz is a region of high seismic wave speed, density, and magnetic susceptibility, and therefore its mid-crustal boundaries are good targets for definition by gravity and magnetic data. We present interpretations of gravity and magnetic anomalies for the Puget Lowland region that together establish the most likely position and structure of the Crescent Formation boundary in the mid-upper crust. Well-constrained physical properties of Crescent basalts inform our aeromagnetic map interpretation and give us baseline values for constructing three two-dimensional models by simultaneous forward modeling of aeromagnetic and isostatic gravity anomalies for the Lowland. Based on this work, the likely position of the eastern boundary of the Siletz terrane is east of the Puget Sound and west of the foothills of the Cascade arc, extending in a north-trending line through Lake Washington and merging to the north with the Southern Whidbey Island fault zone. Our preferred location agrees with suggested locations from past study of seismic data targeted at the Seattle basin, but we extend that location through the entire Puget Lowland by analysis of magnetic potential calculated from aeromagnetic data. We also find that the boundary is sharp and most likely dips west, suggesting a reverse-fault juxtaposition of Crescent rocks against Western Melange belt lithologies. The Crescent itself contains steeply dipping packages of basalt of contrasting magnetic character, indicating significant deformation within the Crescent formation under the Seattle uplift. Finally, the boundary location implies that the eastern third of the Seattle basin is shallower than previously estimated from gravity data.
Seismic Analysis Capability in NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.; Strang, R. F.
1984-01-01
Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data.
Bulgarian Seismological and GPS/GNSS networks-current status and practical implementation
NASA Astrophysics Data System (ADS)
Solakov, Dimcho; Simeonova, Stela; Georgiev, Ivan; Dimitrova, Lilia; Slavcheva, Krasimira; Raykova, Plamena
2016-04-01
The scientific information is the latest and one of the best bedrock on which effective policy to combat and cope with natural disasters have to be built. Understanding, monitoring and information for future natural disasters are the way to assist the government and society. Different types of networks provide reliable information on various natural disasters. For example, one of the main priorities of the networks are directed to study seismicity of the Earth, its physical phenomena and fields - with an emphasis on tectonic movements and related risk processes, global changes, rotation and position of the Earth in space. Therefore seismological network using advanced electronic systems and digital seismographs transmission of signals from seismic stations to the centres and the registration, processing and archiving of information is carried out by a specialized computer system. Thus improve the monitoring and analysis of seismicity in the whole plan. Another type networks as permanent GPS/GNSS networks are associated with processing and data analysis, as well as monitoring of recent movements of the earth crust. In this study we focus on Seismological and GPS/GNSS networks on the territory in Bulgaria. At present NIGGG-BAS runs both Bulgarian seismological and GPS/GNSS networks. The Bulgarian seismological network - NOTSSI (National Operative Telemetric System for Seismological Information) was founded at the end of 1980. The network comprises today 15 permanent seismic stations spanning the entire territory of the country and two local net works that are deployed around the town of Provadia and Kozloduy Nuclear Power Plant in Bulgaria. Since 2005-2006, real-time data exchange between Bulgaria and Greece, Romania, Serbia, Macedonia, Slovakia, Slovenia, Austria and other regional and national seismological data centers was implemented. NIGGG, respectively NOTSSI, is responsible for rapid earthquake determination, public information trough media, and information of responsible governmental authorities if necessary urgent activities to be undertaken. The available infrastructure - permanent GNSS stations, spread all over the country allow performing permanent monitoring of the Earth's crust movements on the basis of the obtained velocities of the permanent stations and the time series with their coordinates. Additional information for the current movements is obtained by the processing and analysis of the regular GNSS measurements of geodynamic network. In the GNSS Analysis Center are acquired, processed and analyzed data from more than 70 permanent stations on Bulgarian territory. In the analysis are included also data from permanent stations on the Balkan Peninsula and from the European Permanent Network. Along with the seismological and geological information, the quantitative assessment of the movements of the Earth's crust is of the substantial importance for monitoring of the active tectonic structures and is the base for the seismic hazard assessment.
Determination of Destress Blasting Effectiveness Using Seismic Source Parameters
NASA Astrophysics Data System (ADS)
Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.
2017-12-01
Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.
Poor boy 3D seismic effort yields South Central Kentucky discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanratty, M.
1996-11-04
Clinton County, Ky., is on the eastern flank of the Cincinnati arch and the western edge of the Appalachian basin and the Pine Mountain overthrust. Clinton County has long been known for high volume fractured carbonate wells. The discovery of these fractured reservoir, unfortunately, has historically been serendipitous. The author currently uses 2D seismic and satellite imagery to design 3D high resolution seismic shoots. This method has proven to be the most efficient and is the core of his program. The paper describes exploration methods, seismic acquisition, well data base, and seismic interpretation.
Estimating Strain Accumulation in the New Madrid and Wabash Valley Seismic Zones
NASA Astrophysics Data System (ADS)
Craig, T. J.; Calais, E.
2014-12-01
The mechanical behaviour -- and hence earthquake potential -- of faults in continental interiors is a question of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular the New Madrid Seismic Zone, struck by three magnitude 7 or greater earthquakes in 1811--1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those faults in the plate interior, a quantity that remains debated. Understanding if the present-day strain rates indicate sufficient motion to account for the historical and paleoseismological earthquakes by steady-state fault behaviour, or if strain accumulation is time-dependent in this area, is critical for investigating the causative process driving this seismicity in the plate interior, and how regional strain reflects the interplay between stresses arising from different geological processes. Here we address this issue with an analysis of up to 14 years of continuous GPS data from a network of 200 sites in the central United States centred on the New Madrid and Wabash Valley seismic zones. We find that high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation relative to a rigid background. These results place an upper bound on regional strain accrual of 0.2 mm/yr and 0.5 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the NMSZ and possibly plate-wide.
Measuring the seismic velocity in the top 15 km of Earth's inner core
NASA Astrophysics Data System (ADS)
Godwin, Harriet; Waszek, Lauren; Deuss, Arwen
2018-01-01
We present seismic observations of the uppermost layer of the inner core. This was formed most recently, thus its seismic features are related to current solidification processes. Previous studies have only constrained the east-west hemispherical seismic velocity structure in the Earth's inner core at depths greater than 15 km below the inner core boundary. The properties of shallower structure have not yet been determined, because the seismic waves PKIKP and PKiKP used for differential travel time analysis arrive close together and start to interfere. Here, we present a method to make differential travel time measurements for waves that turn in the top 15 km of the inner core, and measure the corresponding seismic velocity anomalies. We achieve this by generating synthetic seismograms to model the overlapping signals of the inner core phase PKIKP and the inner core boundary phase PKiKP. We then use a waveform comparison to attribute different parts of the signal to each phase. By measuring the same parts of the signal in both observed and synthetic data, we are able to calculate differential travel time residuals. We apply our method to data with ray paths which traverse the Pacific hemisphere boundary. We generate a velocity model for this region, finding lower velocity for deeper, more easterly ray paths. Forward modelling suggests that this region contains either a high velocity upper layer, or variation in the location of the hemisphere boundary with depth and/or latitude. Our study presents the first direct seismic observation of the uppermost 15 km of the inner core, opening new possibilities for further investigating the inner core boundary region.
NASA Astrophysics Data System (ADS)
Panzera, Francesco; Lombardo, Giuseppe; Rigano, Rosaria
2010-05-01
The seismic hazard assessment (SHA) can be performed using either Deterministic or Probabilistic approaches. In present study a probabilistic analysis was carried out for the Catania and Siracusa towns using two different procedures: the 'site' (Albarello and Mucciarelli, 2002) and the 'seismotectonic' (Cornell 1968; Esteva, 1967) methodologies. The SASHA code (D'Amico and Albarello, 2007) was used to calculate seismic hazard through the 'site' approach, whereas the CRISIS2007 code (Ordaz et al., 2007) was adopted in the Esteva-Cornell procedure. According to current international conventions for PSHA (SSHAC, 1997), a logic tree approach was followed to consider and reduce the epistemic uncertainties, for both seismotectonic and site methods. The code SASHA handles the intensity data taking into account the macroseismic information of past earthquakes. CRISIS2007 code needs, as input elements, a seismic catalogue tested for completeness, a seismogenetic zonation and ground motion predicting equations. Data concerning the characterization of regional seismic sources and ground motion attenuation properties were taken from the literature. Special care was devoted to define source zone models, taking into account the most recent studies on regional seismotectonic features and, in particular, the possibility of considering the Malta escarpment as a potential source. The combined use of the above mentioned approaches allowed us to obtain useful elements to define the site seismic hazard in Catania and Siracusa. The results point out that the choice of the probabilistic model plays a fundamental role. It is indeed observed that when the site intensity data are used, the town of Catania shows hazard values higher than the ones found for Siracusa, for each considered return period. On the contrary, when the Esteva-Cornell method is used, Siracusa urban area shows higher hazard than Catania, for return periods greater than one hundred years. The higher hazard observed, through the site approach, for Catania area can be interpreted in terms of greater damage historically observed at this town and its smaller distance from the seismogenic structures. On the other hand, the higher level of hazard found for Siracusa, throughout the Esteva-Cornell approach, could be a consequence of the features of such method which spreads out the intensities over a wide area. However, in SHA the use of a combined approach is recommended for a mutual validation of obtained results and any choice between the two approaches is strictly linked to the knowledge of the local seismotectonic features. References Albarello D. and Mucciarelli M.; 2002: Seismic hazard estimates using ill?defined macroseismic data at site. Pure Appl. Geophys., 159, 1289?1304. Cornell C.A.; 1968: Engineering seismic risk analysis. Bull. Seism. Soc. Am., 58(5), 1583-1606. D'Amico V. and Albarello D.; 2007: Codice per il calcolo della pericolosità sismica da dati di sito (freeware). Progetto DPC-INGV S1, http://esse1.mi.ingv.it/d12.html Esteva L.; 1967: Criterios para la construcción de espectros para diseño sísmico. Proceedings of XII Jornadas Sudamericanas de Ingeniería Estructural y III Simposio Panamericano de Estructuras, Caracas, 1967. Published later in Boletín del Instituto de Materiales y Modelos Estructurales, Universidad Central de Venezuela, No. 19. Ordaz M., Aguilar A. and Arboleda J.; 2007: CRISIS2007, Program for computing seismic hazard. Version 5.4, Mexico City: UNAM. SSHAC (Senior Seismic Hazard Analysis Committee); 1997: Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. NUREG/CR-6372.
Seismic hazard study for selected sites in New Mexico and Nevada
NASA Astrophysics Data System (ADS)
Johnston, J. C.
1983-12-01
Seismic hazard evaluations were conducted for specific sites in New Mexico and Nevada. For New Mexico, a model of seismicity was developed from historical accounts of medium to large shocks and the current microactivity record from local networks. Ninety percent confidence levels at Albuquerque and Roswell were computed to be 56 gals for a 10-year period and 77 gals for a 20-year period. Values of ground motion for Clovis were below these values. Peak velocity and displacement were also computed for each site. Deterministic spectra based on the estimated maximum credible earthquake for the zones which the sites occupy were also computed. For the sites in Nevada, the regionalizations used in Battis (1982) for the uniform seismicity model were slightly modified. For 10- and 20-year time periods, peak acceleration values for Indian Springs were computed to be 94 gals and 123 gals and for Hawthorne 206 gals and 268 gals. Deterministic spectra were also computed. The input parameters were well determined for the analysis for the Nevada sites because of the abundance of data. The values computed for New Mexico, however, are likely upper limits. As more data are collected from the area of the Rio Grande rift zone, the pattern of seismicity will become better understood. At this time a more detailed, and thus more accurate, model may emerge.
Hildenbrand, T.G.; Griscom, A.; Van Schmus, W. R.; Stuart, W.D.
1996-01-01
Analysis of gravity and magnetic anomaly data helps characterize the geometry and physical properties of the source of the Missouri gravity low, an important cratonic feature of substantial width (about 125 km) and length (> 600 km). Filtered anomaly maps show that this prominent feature extends NW from the Reelfoot rift to the Midcontinent Rift System. Geologic reasoning and the simultaneous inversion of the gravity and magnetic data lead to an interpretation that the gravity anomaly reflects an upper crustal, 11-km-thick batholith with either near vertical or outward dipping boundaries. Considering the modeled characteristics of the batholith, structural fabric of Missouri, and relations of the batholith with plutons and regions of alteration, a tectonic model for the formation of the batholith is proposed. The model includes a mantle plume that heated the crust during Late Precambrian and melted portions of lower and middle crust, from which the low-density granitic rocks forming the batholith were partly derived. The batholith, called the Missouri batholith, may be currently related to the release of seismic energy in the New Madrid seismic zone (earthquake concentrations occur at the intersection of the Missouri batholith and the New Madrid seismic zone). Three qualitative mechanical models are suggested to explain this relationship with seismicity. Copyright 1996 by the American Geophysical Union.
An Approach for Rapid Assessment of Seismic Hazards in Turkey by Continuous GPS Data
Ozener, Haluk; Dogru, Asli; Unlutepe, Ahmet
2009-01-01
The Earth is being monitored every day by all kinds of sensors. This leads an overflow of data in all branches of science nowadays, especially in Earth Sciences. Data storage and data processing are the problems to be solved by current technologies, as well as by those accessing and analyzing these large data sources. Once solutions have been created for collecting, storing and accessing data, then the challenge becomes how to effectively share data, applications and processing resources across many locations. The Global Positioning System (GPS) sensors are being used as geodetic instruments to precisely detect crustal motion in the Earth's surface. Rapid access to data provided by GPS sensors is becoming increasingly important for deformation monitoring and rapid hazard assessments. Today, reliable and fast collection and distribution of data is a challenge and advances in Internet technologies have made it easier to provide the needed data. This study describes a system which will be able to generate strain maps using data from continuous GPS stations for seismic hazard analysis. Strain rates are a key factor in seismic hazard analyses. Turkey is a country prone to earthquakes with a long history of seismic hazards and disasters. This situation has resulted in the studies by Earth scientists that focus on Turkey in order to improve their understanding of the Earth's crust structure and seismic hazards. Nevertheless, the construction of models, data access and analysis are often not fast as expected, but the combination of Internet technologies with continuous GPS sensors can be a solution to overcome this problem. This system would have the potential to answer many important questions to assess seismic hazards such as how much stretching, squashing and shearing is taking place in different parts of Turkey, and how do velocities change from place to place? Seismic hazard estimation is the most effective way to reduce earthquake losses. It is clear that reliability of data and on-line services will support the preparation of strategies for disaster management and planning to cope with hazards. PMID:22389619
Comparing Low-Frequency Earthquakes During Triggered and Ambient Tremor in Taiwan
NASA Astrophysics Data System (ADS)
Alvarado Lara, F., Sr.; Ledezma, C., Sr.
2014-12-01
In South America, larger magnitude seismic events originate in the subduction zone between the Nazca and Continental plates, as opposed to crustal events. Crustal seismic events are important in areas very close to active fault lines; however, seismic hazard analyses incorporate crust events related to a maximum distance from the site under study. In order to use crustal events as part of a seismic hazard analysis, it is necessary to use the attenuation relationships which represent the seismic behavior of the site under study. Unfortunately, in South America the amount of compiled crustal event historical data is not yet sufficient to generate a firm regional attenuation relationship. In the absence of attenuation relationships for crustal earthquakes in the region, the conventional approach is to use attenuation relationships from other regions which have a large amount of compiled data and which have similar seismic conditions to the site under study. This practice permits the development of seismic hazard analysis work with a certain margin of accuracy. In South America, in the engineering practice, new generation attenuation relationships (NGA-W) are used among other alternatives in order to incorporate the effect of crustal events in a seismic hazard analysis. In 2014, the NGA-W Version 2 (NGA-W2) was presented with a database containing information from Taiwan, Turkey, Iran, USA, Mexico, Japan, and Alaska. This paper examines whether it is acceptable to utilize the NGA-W2 in seismic hazard analysis in South America. A comparison between response spectrums of the seismic risk prepared in accordance with NGA-W2 and actual response spectrums of crustal events from Argentina is developed in order to support the examination. The seismic data were gathered from equipment installed in the cities of Santiago, Chile and Mendoza, Argentina.
Revision of the Applicability of the NGA's in South America, Chile - Argentina.
NASA Astrophysics Data System (ADS)
Alvarado Lara, F., Sr.; Ledezma, C., Sr.
2015-12-01
In South America, larger magnitude seismic events originate in the subduction zone between the Nazca and Continental plates, as opposed to crustal events. Crustal seismic events are important in areas very close to active fault lines; however, seismic hazard analyses incorporate crust events related to a maximum distance from the site under study. In order to use crustal events as part of a seismic hazard analysis, it is necessary to use the attenuation relationships which represent the seismic behavior of the site under study. Unfortunately, in South America the amount of compiled crustal event historical data is not yet sufficient to generate a firm regional attenuation relationship. In the absence of attenuation relationships for crustal earthquakes in the region, the conventional approach is to use attenuation relationships from other regions which have a large amount of compiled data and which have similar seismic conditions to the site under study. This practice permits the development of seismic hazard analysis work with a certain margin of accuracy. In South America, in the engineering practice, new generation attenuation relationships (NGA-W) are used among other alternatives in order to incorporate the effect of crustal events in a seismic hazard analysis. In 2014, the NGA-W Version 2 (NGA-W2) was presented with a database containing information from Taiwan, Turkey, Iran, USA, Mexico, Japan, and Alaska. This paper examines whether it is acceptable to utilize the NGA-W2 in seismic hazard analysis in South America. A comparison between response spectrums of the seismic risk prepared in accordance with NGA-W2 and actual response spectrums of crustal events from Argentina is developed in order to support the examination. The seismic data were gathered from equipment installed in the cities of Santiago, Chile and Mendoza, Argentina.
Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo Presti, D.; Fontana, T.; Marchetti, D.
2008-07-08
Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less
Spatial pattern recognition of seismic events in South West Colombia
NASA Astrophysics Data System (ADS)
Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber
2013-09-01
Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.
Deployment of the Oklahoma borehole seismic experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P.E.; Rock, D.W.
1989-01-20
This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted inmore » a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.« less
A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology
Huang, Y.-N.; Whittaker, A.S.; Luco, N.
2011-01-01
A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.
Romanian Data Center: A modern way for seismic monitoring
NASA Astrophysics Data System (ADS)
Neagoe, Cristian; Marius Manea, Liviu; Ionescu, Constantin
2014-05-01
The main seismic survey of Romania is performed by the National Institute for Earth Physics (NIEP) which operates a real-time digital seismic network. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Mark l4c, Ranger, gs21, Mark l22) and acceleration sensors (Episensor Kinemetrics). The data are transmitted at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for the Black Sea tsunami events. NIEP is a data acquisition node for the seismic network of Moldova (FDSN code MD) composed of five seismic stations. NIEP has installed in the northern part of Bulgaria eight seismic stations equipped with broadband sensors and Episensors and nine accelerometers (Episensors) installed in nine districts along the Danube River. All the data are acquired at NIEP for Early Warning System and for primary estimation of the earthquake parameters. The real-time acquisition (RT) and data exchange is done by Antelope software and Seedlink (from Seiscomp3). The real-time data communication is ensured by different types of transmission: GPRS, satellite, radio, Internet and a dedicated line provided by a governmental network. For data processing and analysis at the two data centers Antelope 5.2 TM is being used running on 3 workstations: one from a CentOS platform and two on MacOS. Also a Seiscomp3 server stands as back-up for Antelope 5.2 Both acquisition and analysis of seismic data systems produce information about local and global parameters of earthquakes. In addition, Antelope is used for manual processing (event association, calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV, etc.), generating ShakeMap products and interaction with global data centers. National Data Center developed tools to enable centralizing of data from software like Antelope and Seiscomp3. These tools allow rapid distribution of information about damages observed after an earthquake to the public. Another feature of the developed application is the alerting of designated persons, via email and SMS, based on the earthquake parameters. In parallel, Seiscomp3 sends automatic notifications (emails) with the earthquake parameters. The real-time seismic network and software acquisition and data processing used in the National Data Center development have increased the number of events detected locally and globally, the increase of the quality parameters obtained by data processing and potentially increasing visibility on the national and internationally.
Signal-to-noise ratio application to seismic marker analysis and fracture detection
NASA Astrophysics Data System (ADS)
Xu, Hui-Qun; Gui, Zhi-Xian
2014-03-01
Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.
Assessing the nation's earthquakes
NASA Technical Reports Server (NTRS)
1990-01-01
The basic purposes of this report are: (1) to make a convincing case for the intrinsic value of regional seismic networks; (2) to describe the seriousness of persistent problems in the current configuration and operation of these networks; (3) to outline recommendations for their modernization and future evolution, in particular, their short-term integration and long-term affiliation with the U.S. National Seismic Network. Important supplementary information is included in two appendices: a survey of regional seismic networks and implementation strategies for revitalization of regional seismic networks.
Structural vibration passive control and economic analysis of a high-rise building in Beijing
NASA Astrophysics Data System (ADS)
Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying
2009-12-01
Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.
The Budget Guide to Seismic Network Management
NASA Astrophysics Data System (ADS)
Hagerty, M. T.; Ebel, J. E.
2007-05-01
Regardless of their size, there are certain tasks that all seismic networks must perform, including data collection and processing, earthquake location, information dissemination, and quality control. Small seismic networks are unlikely to possess the resources -- manpower and money -- required to do much in-house development. Fortunately, there are a lot of free or inexpensive software solutions available that are able to perform many of the required tasks. Often the available solutions are all-in-one turnkey packages designed and developed for much larger seismic networks, and the cost of adapting them to a smaller network must be weighed against the ease with which other, non-seismic software can be adapted to the same task. We describe here the software and hardware choices we have made for the New England Seismic Network (NESN), a sparse regional seismic network responsible for monitoring and reporting all seismicity within the New England region in the northeastern U.S. We have chosen to use a cost-effective approach to monitoring using free, off-the-shelf solutions where available (e.g., Earthworm, HYP2000) and modifying freeware solutions when it is easier than trying to adapt a large, complicated package. We have selected for use software that is: free, likely to receive continued support from the seismic or, preferably, larger internet community, and modular. Modularity is key to our design because it ensures that if one component of our processing system becomes obsolete, we can insert a suitable replacement with few modifications to the other modules. Our automated event detection, identification and location system is based on a wavelet transform analysis of station data that arrive continuously via TCP/IP transmission over the internet. Our system for interactive analyst review of seismic events and remote system monitoring utilizes a combination of Earthworm modules, Perl cgi-bin scripts, Java, and native Unix commands and can now be carried out via internet browser from anywhere in the world. With our current communication and processing system we are able to achieve a monitoring threshold of about M2.0 for most New England, in spite of high cultural noise and sparse station distribution, and maintain an extremely high rate of data recovery, for minimal cost.
NASA Astrophysics Data System (ADS)
Okay, S.; Cifci, G.; Ozel, S.; Atgin, O.; Ozel, O.; Barin, B.; Er, M.; Dondurur, D.; Kucuk, M.; Gurcay, S.; Choul Kim, D.; Sung-Ho, B.
2012-04-01
Recently, the continental margins of Black Sea became important for its gas content. There are no scientific researches offshore Trabzon-Giresun area except the explorations of oil companies. This is the first survey that performed in that area. 1700 km high resolution multichannel seismic and chirp data simultaneously were collected onboard R/V K.Piri Reis . The seismic data reveal BSRs, bright spots and acoustic maskings especially on the eastern part of the survey area. The survey area in the Eastern Black Sea includes continental slope, apron and deep basin. Two mud volcanoes are discovered and named as Busan and Izmir. The observed fold belt is believed to be the main driving force for the growth of mud volcanoes.Faults are developed at the flanks of diapiric uplift. Seismic attributes and AVO analysis are applied to 9 seismic sections which have probable gassy sediments and BSR zones. In the seismic attribute analysis high amplitude horzions with reverse polarity are observed in instantaneous frequency, envelope and apparent polarity sections also with low frequency at instantaneous frequency sections. These analysis verify existence of gas accumulations in the sediments. AVO analysis and cross section drawing and Gradient analysis show Class 1 AVO anomaly and indicate gas in sediments. Keywords: BSR, Bright spot, Mud volcano, Seismic Attributes, AVO
Seismic design verification of LMFBR structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-07-01
The report provides an assessment of the seismic design verification procedures currently used for nuclear power plant structures, a comparison of dynamic test methods available, and conclusions and recommendations for future LMFB structures.
Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?
NASA Astrophysics Data System (ADS)
J, Gibbons, Steven; Kværna, Tormod; Mykkeltveit, Svein
2015-04-01
The infrasound stations of the International Monitoring System are arrays consisting of up to 15 sites and with apertures of up to 3 km. The arrays are distributed remarkably uniformly over the globe and provide excellent coverage of South America, Africa, and Antarctica. This is to say that there are many infrasound arrays in regions many thousands of kilometers from the closest seismic array. Several infrasound arrays are in the immediate vicinity of existing 3-component seismic stations and these provide us with examples of how typical seismic signals look at these locations. We can make idealized estimates of the predicted performance of seismic arrays, consisting of seismometers at each site of the infrasound arrays, by duplicating the signals from the 3-C stations at all sites of the array. However, the true performance of seismic arrays at these sites will depend both upon Signal-to-Noise Ratios of seismic signals and the coherence of both signal and noise between sensors. These properties can only be determined experimentally. Recording seismic data of sufficient quality at many of these arrays may require borehole deployments since the microbarometers in the infrasound arrays are often situated in vaults placed in soft sediments. The geometries of all the current IMS infrasound arrays are examined and compared and we demonstrate that, from a purely geometrical perspective, essentially all the array configurations would provide seismic arrays with acceptable slowness resolution for both regional and teleseismic phase arrivals. Seismic arrays co-located with the infrasound arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would facilitate the development of seismic arrays that share the infrastructure of the infrasound arrays, reducing the development and operational costs. Hosting countries might find such added capabilities valuable from a national perspective. In addition, the seismic recordings may also help to identify the sources of infrasound signals with consequences for improved event screening and evaluating models of infrasound propagation and atmospheric properties.
Risk-targeted versus current seismic design maps for the conterminous United States
Luco, Nicolas; Ellingwood, Bruce R.; Hamburger, Ronald O.; Hooper, John D.; Kimball, Jeffrey K.; Kircher, Charles A.
2007-01-01
The probabilistic portions of the seismic design maps in the NEHRP Provisions (FEMA, 2003/2000/1997), and in the International Building Code (ICC, 2006/2003/2000) and ASCE Standard 7-05 (ASCE, 2005a), provide ground motion values from the USGS that have a 2% probability of being exceeded in 50 years. Under the assumption that the capacity against collapse of structures designed for these "uniformhazard" ground motions is equal to, without uncertainty, the corresponding mapped value at the location of the structure, the probability of its collapse in 50 years is also uniform. This is not the case however, when it is recognized that there is, in fact, uncertainty in the structural capacity. In that case, siteto-site variability in the shape of ground motion hazard curves results in a lack of uniformity. This paper explains the basis for proposed adjustments to the uniform-hazard portions of the seismic design maps currently in the NEHRP Provisions that result in uniform estimated collapse probability. For seismic design of nuclear facilities, analogous but specialized adjustments have recently been defined in ASCE Standard 43-05 (ASCE, 2005b). In support of the 2009 update of the NEHRP Provisions currently being conducted by the Building Seismic Safety Council (BSSC), herein we provide examples of the adjusted ground motions for a selected target collapse probability (or target risk). Relative to the probabilistic MCE ground motions currently in the NEHRP Provisions, the risk-targeted ground motions for design are smaller (by as much as about 30%) in the New Madrid Seismic Zone, near Charleston, South Carolina, and in the coastal region of Oregon, with relatively little (<15%) change almost everywhere else in the conterminous U.S.
Research on the spatial analysis method of seismic hazard for island
NASA Astrophysics Data System (ADS)
Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying
2017-05-01
Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.
NASA Astrophysics Data System (ADS)
Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.
2012-12-01
The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling. Science, 301(5634): 821.
Spatial Temporal Analysis Of Mine-induced Seismicity
NASA Astrophysics Data System (ADS)
Fedotova, I. V.; Yunga, S. L.
The results of analysis of influence mine-induced seismicity on state of stress of a rock mass are represented. The spatial-temporal analysis of influence of mass explosions on rock massif deformation is carried out in the territory of a mine field Yukspor of a wing of the Joined Kirovsk mine JSC "Apatite". Estimation of influence of mass explosions on a massif were determined based firstly on the parameters of natural seismicic regime, and secondly taking into consideration change of seismic energy release. After long series of explosions variations in average number of seismic events was fixed. Is proved, that with increase of a volume of rocks, involved in a deforma- tion the released energy of seismic events, and characteristic intervals of time of their preparation are also varied. At the same time, the mechanism of destruction changes also: from destruction's, of a type shift - separation before destruction's, in a quasi- solid heterogeneous massif (in oxidized zones and zones of actuated faults). Analysis of a database seismicity of a massif from 1993 to 1999 years has confirmed, that the response of a massif on explosions is connected to stress-deformations state a mas- sif and parameters of a mining working. The analysis of spatial-temporal distribution of hypocenters of seismic events has allowed to allocate migration of fissile regions of destruction after mass explosions. The researches are executed at support of the Russian foundation for basic research, - projects 00-05-64758, 01-05-65340.
Regional Observation of Seismic Activity in Baekdu Mountain
NASA Astrophysics Data System (ADS)
Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol
2015-04-01
Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.
NASA Astrophysics Data System (ADS)
Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong
2018-02-01
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.
NASA Astrophysics Data System (ADS)
Weatherill, Graeme; Burton, Paul W.
2010-09-01
The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard mapping calculations. These hazard maps are in general agreement with previous maps for the Aegean, recognising the highest hazard in the Ionian Islands, Gulf of Corinth and Hellenic Arc. Peak Ground Accelerations for some sites in these regions reach as high as 500-600 cm s -2 using European/NGA attenuation models, and 400-500 cm s -2 using Greek attenuation models.
NASA Astrophysics Data System (ADS)
Wong-Ortega, V.; Castro, R. R.; Gonzalez-Huizar, H.; Velasco, A. A.
2013-05-01
We analyze possible variations of seismicity in the northern Baja California due to the passage of seismic waves from the 2011, M9.0, Tohoku-Oki, Japan earthquake. The northwestern area of Baja California is characterized by a mountain range composed of crystalline rocks. These Peninsular Ranges of Baja California exhibits high microseismic activity and moderate size earthquakes. In the eastern region of Baja California shearing between the Pacific and the North American plates takes place and the Imperial and Cerro-Prieto faults generate most of the seismicity. The seismicity in these regions is monitored by the seismic network RESNOM operated by the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). This network consists of 13 three-component seismic stations. We use the seismic catalog of RESNOM to search for changes in local seismic rates occurred after the passing of surface waves generated by the Tohoku-Oki, Japan earthquake. When we compare one month of seismicity before and after the M9.0 earthquake, the preliminary analysis shows absence of triggered seismicity in the northern Peninsular Ranges and an increase of seismicity south of the Mexicali valley where the Imperial fault jumps southwest and the Cerro Prieto fault continues.
Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sanchez-Sesma, F. J.; Yong, Alan
2018-01-01
Nakamura (Q Rep Railway Tech Res Inst 30:25–33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site’s MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.
NASA Astrophysics Data System (ADS)
Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sánchez-Sesma, F. J.; Yong, A.
2018-03-01
Nakamura (Q Rep Railway Tech Res Inst 30:25-33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site's MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.
NASA Astrophysics Data System (ADS)
Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sánchez-Sesma, F. J.; Yong, A.
2018-07-01
Nakamura (Q Rep Railway Tech Res Inst 30:25-33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site's MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.
Earthquakes in Fiordland, Southern Chile: Initiation and Development of a Magmatic Process
NASA Astrophysics Data System (ADS)
Barrientos, S.; Service, N. S.
2007-05-01
Several efforts in Chile are being conducted in relation to geophysical monitoring with the objective of disaster mitigation. A long and permanent monitoring effort along the country has been the continuous effort resulting in the recognition and delineation of new seismogenic sources. Here we report on the seismo-volcanic crisis that is currently taking place in the in the region close to the triple junction (Nazca, Antarctica and South America) in southern Chile at around latitude 45°S. On January 22, 2007, an intensity V-VI (MMI) earthquake shook the cities of Puerto Aysén, Puerto Chacabuco and Coyhaique. This magnitude 5 event, was the first of a series of earthquakes that have taken place in the region for nearly a month and a half (until end of February, time when this abstract was written). The closest station to the source area -part of the GEOSCOPE network located in Coyhaique, about 80 km away from the epicenters- reveals seismic activity about 3 hours before the first event. Immediately after the first event, more than 20 events per hour were detected and recorded by this station, rate which decreased with time with the exception of those time intervals following larger events. More than six events with magnitude 5 or more have been recorded. Five seismic stations were installed surrounding the epicentral area between 27 - 29 January and are currently operational. After processing some of the recorded events, a sixth station was installed at the closest possible site of the source of the seismic activity. Preliminary analysis of the recorded seismic activity reveals a concentration of hypocenters - 5 to 10 km depth- along an eight-km NNE-SSW vertical plane crossing the Aysén fiord. Harmonic tremor has also been detected. This seismic activity is interpreted as the result of a magmatic process in progress which will most likely culminate in the generation of a new underwater volcanic edifice. Because the seismic activity fully extends across the Aysén fiord -the only maritime outlet of the cities of Coyhaique, Puerto Aysén and Puerto Chacabuco- and large fisheries plants exist in the area, we will continue monitoring the area with experts of the National Emergency Office, National Geology and Mines Service, and Millennium Nucleus on Seismic Hazards to mitigate any possible disaster.
NASA Astrophysics Data System (ADS)
Roman, D. C.; Rodgers, M.; Mather, T. A.; Power, J. A.; Pyle, D. M.
2014-12-01
Observations of volcanically induced seismicity are essential for eruption forecasting and for real-time and near-real-time warnings of hazardous volcanic activity. Studies of volcanic seismicity and of seismic wave propagation also provide critical understanding of subsurface magmatic systems and the physical processes associated with magma genesis, transport, and eruption. However, desipite significant advances in recent years, our ability to successfully forecast volcanic eruptions and fully understand subsurface volcanic processes is limited by our current understanding of the source processes of volcano-seismic events, the effects on seismic wave propagation within volcanic structures, limited data, and even the non-standardized terminology used to describe seismic waveforms. Progress in volcano seismology is further hampered by inconsistent data formats and standards, lack of state-of-the-art hardware and professional technical staff, as well as a lack of widely adopted analysis techniques and software. Addressing these challenges will not only advance scientific understanding of volcanoes, but also will lead to more accurate forecasts and warnings of hazardous volcanic eruptions that would ultimately save lives and property world-wide. Two recent workshops held in Anchorage, Alaska, and Oxford, UK, represent important steps towards developing a relationship among members of the academic community and government agencies, focused around a shared, long-term vision for volcano seismology. Recommendations arising from the two workshops fall into six categories: 1) Ongoing and enhanced community-wide discussions, 2) data and code curation and dissemination, 3) code development, 4) development of resources for more comprehensive data mining, 5) enhanced strategic seismic data collection, and 6) enhanced integration of multiple datasets (including seismicity) to understand all states of volcano activity through space and time. As presented sequentially above, these steps can be regarded as a road map for galvanizing and strengthening the volcano seismological community to drive new scientific and technical progress over the next 5-10 years.
Long-term decay and possible reactivation of induced seismicity at the Basel EGS site
NASA Astrophysics Data System (ADS)
Kraft, Toni; Herrmann, Marcus; Karvounis, Dimitrios; Tormann, Thessa; Deichmann, Nicolas; Wiemer, Stefan
2016-04-01
In December 2006, an extensive fluid injection was carried out below the city of Basel, Switzerland, to stimulate a reservoir for an Enhanced Geothermal System (EGS). After six days of gradual increase of flow rate (and thus seismicity), a strongly felt ML3.4 earthquakes led to the immediate termination of the project. The well was opened subsequently and seismicity declined rapidly. The Basel EGS project might be an unsuccessful attempt in terms of energy supply, but a chance to advance the physical understanding of EGSs. The well-monitored and well-studied induced sequence allowed many new insights in terms of reservoir creation. A special observation in the nine years of monitoring is the revive of seismic activity six years after prolonged seismic decay. This renewed activity increase might relate to a gradual pressure increase due to the ultimate shut-in (closure) of the borehole about one year before. Until now, a detailed analysis of the long-term behaviour remained unexplored since a consistent catalogue did not exist. In the current study, we took advantage of the high waveform similarity within a seismic sequence and applied a multi-trace template-matching (i.e. cross-correlation) procedure to detect seismic events about one order of magnitude below the detection threshold. We detected about 100,000 events within the six-day long stimulation alone - previously, only 13,000 microearthquakes were detected. We only scanned the recordings of the deepest borehole station (2.7km). This station is very close to the 5km-deep reservoir and has the highest signal-to-noise ratio among all (borehole-)stations. Our newly obtained catalogue spans over more than nine years and features a uniform (and low) detection threshold and a uniform magnitude determination. The improved resolution of the long-term behaviour and the later seismicity increase will help to understand involved mechanisms better. More induced or natural sequences can be investigated with our procedure.
Utah's Regional/Urban ANSS Seismic Network---Strategies and Tools for Quality Performance
NASA Astrophysics Data System (ADS)
Burlacu, R.; Arabasz, W. J.; Pankow, K. L.; Pechmann, J. C.; Drobeck, D. L.; Moeinvaziri, A.; Roberson, P. M.; Rusho, J. A.
2007-05-01
The University of Utah's regional/urban seismic network (224 stations recorded: 39 broadband, 87 strong-motion, 98 short-period) has become a model for locally implementing the Advanced National Seismic System (ANSS) because of successes in integrating weak- and strong-motion recording and in developing an effective real-time earthquake information system. Early achievements included implementing ShakeMap, ShakeCast, point-to- multipoint digital telemetry, and an Earthworm Oracle database, as well as in-situ calibration of all broadband and strong-motion stations and submission of all data and metadata into the IRIS DMC. Regarding quality performance, our experience as a medium-size regional network affirms the fundamental importance of basics such as the following: for data acquisition, deliberate attention to high-quality field installations, signal quality, and computer operations; for operational efficiency, a consistent focus on professional project management and human resources; and for customer service, healthy partnerships---including constant interactions with emergency managers, engineers, public policy-makers, and other stakeholders as part of an effective state earthquake program. (Operational cost efficiencies almost invariably involve trade-offs between personnel costs and the quality of hardware and software.) Software tools that we currently rely on for quality performance include those developed by UUSS (e.g., SAC and shell scripts for estimating local magnitudes) and software developed by other organizations such as: USGS (Earthworm), University of Washington (interactive analysis software), ISTI (SeisNetWatch), and IRIS (PDCC, BUD tools). Although there are many pieces, there is little integration. One of the main challenges we face is the availability of a complete and coherent set of tools for automatic and post-processing to assist in achieving the goals/requirements set forth by ANSS. Taking our own network---and ANSS---to the next level will require standardized, well-designed, and supported software. Other advances in seismic network performance will come from diversified instrumentation. We have recently shown the utility of incorporating strong-motion data (even from soil sites) into the routine analysis of local seismicity, and have also collocated an acoustic array with a broadband seismic station (in collaboration with Southern Methodist University). For the latter experiment, the purpose of collocated seismic and infrasound sensors is to (1) further an understanding of the physics associated with the generation and the propagation of seismic and low-frequency acoustic energy from shallow sources and (2) explore the potential for blast discrimination and improved source location using seismic and infrasonic data in a synergetic way.
NASA Astrophysics Data System (ADS)
Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio
2016-04-01
Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous passive seismic monitoring at the site, from October 2013 to present, systematically highlighted clear energy peaks in the spectral content of seismic noise on the unstable sector, interpreted as resonant frequencies of the investigated volume. Both spectral analysis and cross-correlation of seismic noise showed seasonal reversible variation trends related to air temperature fluctuations. No irreversible changes, resulting from serious damage processes within the rock mass, were detected so far. Modal analysis and geomechanical modeling of the unstable cliff are currently under investigation to better understand the vibration modes that could explain the measured amplitude and orientation of ground motion at the first resonant frequencies. Classification and location of microseismic events still remains the most challenging task, due to the complex structural and morphological setting of the site.
NASA Astrophysics Data System (ADS)
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Performance-based design factors for pile foundations.
DOT National Transportation Integrated Search
2014-10-01
The seismic design of pile foundations is currently performed in a relatively simple, deterministic manner. This : report describes the development of a performance-based framework to create seismic designs of pile group : foundations that consider a...
Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring
NASA Astrophysics Data System (ADS)
Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.
2015-12-01
Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser scanning and a temporary seismic/underwater-acoustic network.
Induced seismicity and implications for CO2 storage risk
NASA Astrophysics Data System (ADS)
Gerstenberger, M. C.; Nicol, A.; Bromley, C.; Carne, R.; Chardot, L.; Ellis, S. M.; Jenkins, C.; Siggins, T.; Viskovic, P.
2012-12-01
We provide an overview of a recently completed report for the IEA GHG that represents a comprehensive review of current research and observations in induced seismicity, its risk to successful completion of Carbon Capture and Storage (CCS) projects and potential mitigation measures. We focus on two topics: a meta-analysis of related data from multiple injection projects around the globe and the implications of these data for CCS induced seismicity risk management. Published data have been compiled from injection and extraction projects around the globe to examine statistical relationships between possible controlling factors and induced seismicity. Quality control of such observational earthquake data sets is crucial to ensure robust results and issues with bias and completeness of the data set will be discussed. Analyses of the available data support previous suggestions that the locations, numbers and magnitudes of induced earthquakes are dependent on a range of factors, including the injection rate, total injected fluid volume, the reservoir permeability and the proximity of pre-existing faults. Increases in the injection rates and total volume of fluid injected, for example, typically raise reservoir pressures and increase the likelihood of elevated seismicity rates and maximum magnitudes of induced earthquakes. The risks associated with induced seismicity at CCS sites can be reduced and mitigated using a systematic and structured risk management programme. While precise forecasts of the expected induced seismicity may never be possible, a thorough risk management procedure should include some level of knowledge of the possible behaviour of induced seismicity. Risk management requires estimates of the expected magnitude, number, location and timing of potential induced earthquakes. Such forecasts should utilise site specific observations together with physical and statistical models that are optimised for the site. Statistical models presently show the most promise for forecasting induced seismicity after injection has commenced, however, with further development physical models could become key predictive tools. Combining forecasts with real-time monitoring of induced seismicity will be necessary to maintain an accurate picture of the seismicity and to allow for mitigation of the associated risks as they evolve. To optimise the utility of monitoring and mitigation programmes, site performance and management guidelines for the acceptable levels and impacts of induced seismicity together with key control measures should be established prior to injection. Such guidelines have been developed for Enhanced Geothermal Systems and should provide the starting point for a management strategy of induced seismicity at CCS sites.
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan; ...
2017-08-23
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
Seismic Observation of Infrasonic Signals
1984-11-01
The implication of these results is that an infra - sonic monitoring capability already exists in the current seismic network and... infra - sonic signal recorded by the microbarographs. This arrival is linearly polarized, with a near-vertical orientation of the state vector. The...TECHNICAL REPORT NO. 84-7 cn "^ SEISMIC OBSERVATION p INFRASONIC SIGNALS D < FINAL REPORT by JACK C. SWANSON and J. CRAIG WOERPEL The views and
NASA Astrophysics Data System (ADS)
Zhao, J. K.; Xu, X. S.
2017-11-01
The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.
Seismic Fragility Analysis of a Condensate Storage Tank with Age-Related Degradations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C
2011-04-01
The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structuresmore » and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. This report describes the research effort performed by BNL for the Year 4 scope of work. This report was developed as an update to the Year 3 report by incorporating a major supplement to the Year 3 fragility analysis. In the Year 4 research scope, an additional study was carried out to consider an additional degradation scenario, in which the three basic degradation scenarios, i.e., degraded tank shell, degraded anchor bolts, and cracked anchorage concrete, are combined in a non-perfect correlation manner. A representative operational water level is used for this effort. Building on the same CDFM procedure implemented for the Year 3 Tasks, a simulation method was applied using optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. The results are summarized in Section 5 and Appendices G through I.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Bob; Laughlin, Darren
Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' withinmore » drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.« less
Racking Response of Reinforced Concrete Cut and Cover Tunnel
DOT National Transportation Integrated Search
2016-01-01
Currently, the knowledge base and quantitative data sets concerning cut and cover tunnel seismic response are scarce. In this report, a large-scale experimental program is conducted to assess: i) stiffness, capacity, and potential seismically-induced...
Combining Real-time Seismic and Geodetic Data to Improve Rapid Earthquake Information
NASA Astrophysics Data System (ADS)
Murray, M. H.; Neuhauser, D. S.; Gee, L. S.; Dreger, D. S.; Basset, A.; Romanowicz, B.
2002-12-01
The Berkeley Seismological Laboratory operates seismic and geodetic stations in the San Francisco Bay area and northern California for earthquake and deformation monitoring. The seismic systems, part of the Berkeley Digital Seismic Network (BDSN), include strong motion and broadband sensors, and 24-bit dataloggers. The data from 20 GPS stations, part of the Bay Area Regional Deformation (BARD) network of more than 70 stations in northern California, are acquired in real-time. We have developed methods to acquire GPS data at 12 stations that are collocated with the seismic systems using the seismic dataloggers, which have large on-site data buffer and storage capabilities, merge it with the seismic data stream in MiniSeed format, and continuously stream both data types using reliable frame relay and/or radio modem telemetry. Currently, the seismic data are incorporated into the Rapid Earthquake Data Integration (REDI) project to provide notification of earthquake magnitude, location, moment tensor, and strong motion information for hazard mitigation and emergency response activities. The geodetic measurements can provide complementary constraints on earthquake faulting, including the location and extent of the rupture plane, unambiguous resolution of the nodal plane, and distribution of slip on the fault plane, which can be used, for example, to refine strong motion shake maps. We are developing methods to rapidly process the geodetic data to monitor transient deformation, such as coseismic station displacements, and for combining this information with the seismic observations to improve finite-fault characterization of large earthquakes. The GPS data are currently processed at hourly intervals with 2-cm precision in horizontal position, and we are beginning a pilot project in the Bay Area in collaboration with the California Spatial Reference Center to do epoch-by-epoch processing with greater precision.
NASA Astrophysics Data System (ADS)
Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf
2014-05-01
The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.
NASA Technical Reports Server (NTRS)
Larsen, Shawn; Reilinger, Robert
1990-01-01
Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.
MyShake: Initial Observations from a Global Smartphone Seismic Network
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.; Schreier, L.
2016-12-01
MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has two component: an android application running on the personal smartphones to detect earthquake-like motion, and a network detection algorithm to aggregate results from multiple smartphones to detect earthquakes. The MyShake application was released to the public on Feb 12th 2016. Within the first 5 months, there are more than 200 earthquakes recorded by the smartphones all over the world, including events in Chile, Argentina, Mexico, Morocco, Greece, Nepal, New Zealand, Taiwan, Japan, and across North America. In this presentation, we will show the waveforms we recorded from the smartphones for different earthquakes, and the evidences for using this data as a supplementary to the current earthquake early warning system. We will also show the performance of MyShake system during the some earthquakes in US. In short, MyShake smartphone seismic network can be a nice complementary system to the current traditional seismic network, at the same time, it can be a standalone system in places where few seismic stations were installed to reduce the earthquake hazards.
The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation
Wang, Wenming
2014-01-01
The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157
Induced Seismicity Monitoring System
NASA Astrophysics Data System (ADS)
Taylor, S. R.; Jarpe, S.; Harben, P.
2014-12-01
There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range of environments including summer in Arizona to winter above 9000' in the mountains of southern Colorado. Statistically based on-board processing is used for detection, arrival time picking, back azimuth estimation and magnitude estimates from coda waves and acoustic signals.
NASA Astrophysics Data System (ADS)
Cunningham, K. J.; Kluesner, J.; Westcott, R. L.; Ebuna, D. R.; Walker, C.
2016-12-01
Numerous large, semicircular, deep submarine depressions on the seafloor of the Miami Terrace (a bathymetric bench that interrupts the Atlantic continental slope on the southeastern carbonate Florida Platform) have been described as submarine sinkholes resulting from freshwater discharge at the seafloor and dissolution of carbonate rock. Multibeam-bathymetry and marine, high-resolution, multichannel 2D and 3D seismic-reflection data acquired over two of these depressions at water depths of about 250 m ("Miami sinkhole") and 336 m ("Key Biscayne sinkhole") indicate the depressions are pockmarks. Seafloor pockmarks are concave, crater-like depressions that form through the outburst or venting of fluid (gas, liquid) at the sea floor and are important seabed features that provide information about fluid flow on continental margins. Both the "Miami sinkhole" and "Key Biscayne sinkhole" (about 25 and 48m deep, respectively) have a seismic-chimney structure beneath them that indicates an origin related to seafloor fluid expulsion, as supported by multi-attribute analysis of the "Key Biscayne sinkhole". Further, there is no widening of the depressions with depth, as in the Fort Worth Basin, where downward widening of seismic, sub-circular, karst-collapse structures is common. However, hypogenic karst dissolution is not ruled out as part of the evolution of the two depressions. Indeed, a hypogenic karst pipe plausibly extends downward from the bottom of "Key Biscayne sinkhole", providing a passageway for focused upward flow of fluids to the seafloor. In "Key Biscayne sinkhole", the proposed karst pipe occurs above the underlying seismic chimney that contains flat bright spots (a hydrocarbon indicator) in the seismic data plausibly showing fluids are currently trapped beneath the pockmark within a tightly folded popup structure. The Miami Terrace depressions have seismic-reflection features similar to modern pockmarks imaged on the Maldives carbonate platform. The seismic-reflection data also show that ancient satellite expulsions formed buried pockmarks, slumps, and paleo-collapse structures in the carbonate sediments near the "Key Biscayne sinkhole". Additional processing of the 3D seismic data will aid in elucidation of the origin of these seafloor depressions.
Active Tectonics Around Pisagua, Northern Chile Gap: Seismological and Neotectonic Approaches
NASA Astrophysics Data System (ADS)
Comte, D.; Carrizo, D.; Peyrat, S.
2013-12-01
Northern Chile is a recognized mature seismic gap that is reaching the end of its megathrust cycle. Deformation associated with the convergence between the Nazca and the South American Plates is mainly absorbed along the interplate contact, but also partially accommodated along the upper plate. Even though distribution of the active deformation along this plate has been documented mainly in the backarc region, Late Cenozoic structures have been recognized along the forearc suggesting that some part of this deformation is also accommodated along the coastal region. Recent paleoseismological studies suggest that some of these structures are tectonically active and some could be potentially active, capable to generate shallow intraplate earthquakes (Mw˜7). However, seismological and geodetical evidences of the fault activation mechanisms are poorly documented, and the activation process remain not elucidate. Currently, Northern Chile seismic gap is monitored by regional seismic networks and partially studied by temporary local seismological experiments. Results of these studies suggest the presence of shallow seismicity along the forearc, but the relationships between upper plate faults and the seismicity has not been yet explored. We perform a detailed seismotectonic analysis of the subduction-forearc system in the central part of the Northern Chile seismic gap to establish relationships between the plate contact deformation and the upper plate faults. We present preliminary results of data recorded by a dense seismic network (three components continuous recording) deployed around Pisagua, between the coastline and the Central Depression, during several months. Pisagua region was chosen because the forearc faults exhibit an extraordinary well-preserved morphotectonic expression, and the upper part of the seismogenic interplate contact shows abundant continental intraplate seismicity that could be associated with the faults systems. The data recorded in this area allow us to better constrain the 3D geometry of faults related to plate contact using morphotectonis fault signature, well-located shallow seismicity and passive tomography. By this way, the architecture of the major forearc faults in the study area is determined for the first time using geological and geophysical approaches. Through this work, we contribute to better understand the physical relations between dynamics of the plate contact and the coastal fault activation.
50 years of Global Seismic Observations
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Butler, R.; Berger, J.; Davis, P.; Derr, J.; Gee, L.; Hutt, C. R.; Leith, W. S.; Park, J. J.
2007-12-01
Seismological recordings have been made on Earth for hundreds of years in some form or another, however, global monitoring of earthquakes only began in the 1890's when John Milne created 40 seismic observatories to measure the waves from these events. Shortly after the International Geophysical Year (IGY), a concerted effort was made to establish and maintain a more modern standardized seismic network on the global scale. In the early 1960's, the World-Wide Standardized Seismograph Network (WWSSN) was established through funding from the Advanced Research Projects Agency (ARPA) and was installed and maintained by the USGS's Albuquerque Seismological Laboratory (then a part of the US Coast and Geodetic Survey). This network of identical seismic instruments consisted of 120 stations in 60 countries. Although the network was motivated by nuclear test monitoring, the WWSSN facilitated numerous advances in observational seismology. From the IGY to the present, the network has been upgraded (High-Gain Long-Period Seismograph Network, Seismic Research Observatories, Digital WWSSN, Global Telemetered Seismograph Network, etc.) and expanded (International Deployment of Accelerometers, US National Seismic Network, China Digital Seismograph Network, Joint Seismic Project, etc.), bringing the modern day Global Seismographic Network (GSN) to a current state of approximately 150 stations. The GSN consists of state-of-the-art very broadband seismic transducers, continuous power and communications, and ancillary sensors including geodetic, geomagnetic, microbarographic, meteorological and other related instrumentation. Beyond the GSN, the system of global network observatories includes contributions from other international partners (e.g., GEOSCOPE, GEOFON, MEDNET, F-Net, CTBTO), forming an even larger backbone of permanent seismological observatories as a part of the International Federation of Digital Seismograph Networks. 50 years of seismic network operations have provided valuable data for earth science research. Developments in communications and other technological advances have expanded the role of the GSN in rapid earthquake analysis, tsunami warning, and nuclear test monitoring. With such long-term observations, scientists are now getting a glimpse of Earth structure changes on human time scales, such as the rotation of the inner core, as well as views into climate processes. Continued observations for the next 50 years will enhance our image of the Earth and its processes.
Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model
Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua
2015-01-01
We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.
A seismic network to investigate the sedimentary hosted hydrothermal Lusi system
NASA Astrophysics Data System (ADS)
Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono
2016-04-01
The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.
The 16 August 1997 Novaya Zemlya seismic event as viewed from GSN stations KEV and KBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartse, H.E.
1997-11-01
Using current and historic seismic records from Global Seismic Network stations KEV and KBS, the authors find that S minus P arrival time comparisons between nuclear explosions and the 16 August 1997 seismic event (m{sub b} {approx} 3.6) from near Novaya Zemlya clearly indicate that (relative to KEV) the 16 August event occurred at least 80 km east of the Russian test site. Including S minus P arrival times from KBS constrains the location to beneath the Kara Sea and in good agreement with previously reported locations, over 100 km southeast of the test site. From an analysis of P{submore » n}/S{sub n} waveform ratios at frequencies above 4 Hz, they find that the 16 August event falls within the population of regional earthquakes and is distinctly separated from Novaya Zemlya and other northern Eurasian nuclear explosion populations. Thus, given its location and waveform characteristics, they conclude the 16 August event was an earthquake. The 16 August event was not detected at teleseismic distances, and thus, this event provides a good example of the regional detection, location, and identification efforts that will be required to monitor the Comprehensive Test Ban Treaty below m{sub b} {approx} 4.« less
A Revised Earthquake Catalogue for South Iceland
NASA Astrophysics Data System (ADS)
Panzera, Francesco; Zechar, J. Douglas; Vogfjörd, Kristín S.; Eberhard, David A. J.
2016-01-01
In 1991, a new seismic monitoring network named SIL was started in Iceland with a digital seismic system and automatic operation. The system is equipped with software that reports the automatic location and magnitude of earthquakes, usually within 1-2 min of their occurrence. Normally, automatic locations are manually checked and re-estimated with corrected phase picks, but locations are subject to random errors and systematic biases. In this article, we consider the quality of the catalogue and produce a revised catalogue for South Iceland, the area with the highest seismic risk in Iceland. We explore the effects of filtering events using some common recommendations based on network geometry and station spacing and, as an alternative, filtering based on a multivariate analysis that identifies outliers in the hypocentre error distribution. We identify and remove quarry blasts, and we re-estimate the magnitude of many events. This revised catalogue which we consider to be filtered, cleaned, and corrected should be valuable for building future seismicity models and for assessing seismic hazard and risk. We present a comparative seismicity analysis using the original and revised catalogues: we report characteristics of South Iceland seismicity in terms of b value and magnitude of completeness. Our work demonstrates the importance of carefully checking an earthquake catalogue before proceeding with seismicity analysis.
NASA Astrophysics Data System (ADS)
Chen, Hongjun; Liang, Jin; Gong, Yuehua
2018-02-01
Multi-beam bathymetry and seismic sequence surveys in the northern slope of the South China Sea reveal detailed geomorphology and seismic stratigraphy characteristics of canyons, gullies, and mass movements. Modern canyons and gullies are roughly elongated NNW-SSW with U-shaped cross sections at water depths of 400-1000 m. Mass movements include slide complexes, slide scars, and debris/turbidity flows. Slide complexes and slide scars are oriented in the NE-SW direction and cover an area of about 1790 and 926 km2, respectively. The debris/turbidity flows developed along the lower slope. A detailed facies analysis suggests that four seismic facies exist, and the late Cenozoic stratigraphy above the acoustic basement can be roughly subdivided into three sequences separated by regional unconformities in the study area. The occurrence of gas hydrates is marked by seismic velocity anomalies, bottom-simulating reflectors, gas chimneys, and pockmarks in the study area. Seismic observations suggest that modern canyons and mass movements formed around the transition between the last glacial period and the current interglacial period. The possible existence and dissociation of gas hydrates and the regional tectonic setting may trigger instability and mass movements on the seafloor. Canyons may be the final result of gas hydrate dissociation. Our study aims to contribute new information that is applicable to engineering construction required for deep-water petroleum exploration and gas hydrate surveys along any marginal sea.
An Adaptable Seismic Data Format for Modern Scientific Workflows
NASA Astrophysics Data System (ADS)
Smith, J. A.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Podhorszki, N.; Tromp, J.
2013-12-01
Data storage, exchange, and access play a critical role in modern seismology. Current seismic data formats, such as SEED, SAC, and SEG-Y, were designed with specific applications in mind and are frequently a major bottleneck in implementing efficient workflows. We propose a new modern parallel format that can be adapted for a variety of seismic workflows. The Adaptable Seismic Data Format (ASDF) features high-performance parallel read and write support and the ability to store an arbitrary number of traces of varying sizes. Provenance information is stored inside the file so that users know the origin of the data as well as the precise operations that have been applied to the waveforms. The design of the new format is based on several real-world use cases, including earthquake seismology and seismic interferometry. The metadata is based on the proven XML schemas StationXML and QuakeML. Existing time-series analysis tool-kits are easily interfaced with this new format so that seismologists can use robust, previously developed software packages, such as ObsPy and the SAC library. ADIOS, netCDF4, and HDF5 can be used as the underlying container format. At Princeton University, we have chosen to use ADIOS as the container format because it has shown superior scalability for certain applications, such as dealing with big data on HPC systems. In the context of high-performance computing, we have implemented ASDF into the global adjoint tomography workflow on Oak Ridge National Laboratory's supercomputer Titan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY TC; ABBOTT FG; CARPENTER BG
2007-02-16
The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.
Midplate seismicity exterior to former rift-basins
Dewey, J.W.
1988-01-01
Midplate seismicity associated with some former rift-zones is distributed diffusely near, but exterior to, the rift basins. This "basin-exterior' seismicity cannot be attributed to reactivation of major basin-border faults on which uppercrustal extension was concentrated at the time of rifting, because the border faults dip beneath the basins. The seismicity may nonetheless represent reactivation of minor faults that were active at the time of rifting but that were located outside of the principal zones of upper-crustal extension; the occurrence of basin-exterior seismicity in some present-day rift-zones supports the existence of such minor basin-exterior faults. Other hypotheses for seismicity exterior to former rift-basins are that the seismicity reflects lobes of high stress due to lithospheric-bending that is centered on the axis of the rift, that the seismicity is localized on the exteriors of rift-basins by basin-interiors that are less deformable in the current epoch than the basin exteriors, and that seismicity is localized on the basin-exteriors by the concentration of tectonic stress in the highly elastic basin-exterior upper-crust. -from Author
Human-induced seismicity and large-scale hydrocarbon production in the USA and Canada
NASA Astrophysics Data System (ADS)
van der Baan, Mirko; Calixto, Frank J.
2017-07-01
We compare current and historic seismicity rates in six States in the USA and three Provinces in Canada to past and present hydrocarbon production. All States/Provinces are major hydrocarbon producers. Our analyses span three to five decades depending on data availability. Total hydrocarbon production has significantly increased in the past few years in these regions. Increased production in most areas is due to large-scale hydraulic fracturing and thus underground fluid injection. Furthermore, increased hydrocarbon production generally leads to increased water production, which must be treated, recycled, or disposed of underground. Increased fluid injection enhances the likelihood of fault reactivation, which may affect current seismicity rates. We find that increased seismicity in Oklahoma, likely due to salt-water disposal, has an 85% correlation with oil production. Yet, the other areas do not display State/Province-wide correlations between increased seismicity and production, despite 8-16-fold increases in production in some States. However, in various cases, seismicity has locally increased. Multiple factors play an important role in determining the likelihood of anthropogenic activities influencing earthquake rates, including (i) the near-surface tectonic background rate, (ii) the existence of critically stressed and favorably oriented faults, which must be hydraulically connected to injection wells, (iii) the orientation and magnitudes of the in situ stress field, combined with (iv) the injection volumes and implemented depletion strategies. A comparison with the seismic hazard maps for the USA and Canada shows that induced seismicity is less likely in areas with a lower hazard. The opposite, however, is not necessarily true.
Polarization Analysis of Ambient Seismic Noise Green's Functions for Monitoring Glacial State
NASA Astrophysics Data System (ADS)
Fry, B.; Horgan, H. J.; Levy, R. H.; Bertler, N. A. N.
2017-12-01
Analysis of continuously recorded background seismic noise has emerged as a powerful technique to monitor changes within the Earth. In a process analogous to Einstein's 'Brownian motion', seismic energy enters the Earth through a variety of mechanisms and then is dissipated through scattering processes or through a semi-random distribution of sources. Eventually, in stratified media, some of this energy assembles itself in coherent packets and propagates as seismic surface waves. Through careful analysis of these waves as recorded by two seismic stations over a short period of time, we can reconstruct Empirical Green's Functions (EGF). EGF are sensitive to the material through which the waves are travelling between the two stations. They can thus provide 4D estimates of material properties such as seismic velocity and anisotropy. We specifically analyze both the bulk velocity and the complex phase of these EGF to look for subtle changes in velocity with direction of propagation as well as the nature of particle polarization and ellipticity. These characteristics can then be used as a proxy for contemporaneous stress and strain or 'inherited' strain. Similar approaches have proven successful in mapping stresses and strain in the crust, on plate interface faults, volcanoes, and on glaciers and the Greenland ice sheet. We will present results from applying this approach to continuous broadband data recorded on the West Antarctic Ice Sheet through the Polenet project. Our results suggest that we can reconstruct EGF at least between frequencies of 300mHz and 50mHz for time periods, providing information about the contemporary state of ice and underlying lithosphere on a seasonal or annual basis. Our primary goals are determining glacial state by linking wave propagation to material fabric on micro (crystal orientation) and macro (strain marker) scales and well as rebound processes in the lithosphere during glacial loading and unloading. We will present our current results, effectively 1) providing an affordable and non-invasive method for monitoring changes in ice conditions through time and space (including depth) and 2) defining a baseline for the nature of wave propagation through the upper crust and ice sheet that will be useful for future studies examining the relation between forcing and ice sheet dynamic response.
Nowcasting Earthquakes and Tsunamis
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Turcotte, D. L.
2017-12-01
The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk. As another application, we can define large rectangular regions of subduction zones and shallow depths to compute the progress of the fault zone towards the next major tsunami-genic earthquake. We can then rank the relative progress of the major subduction zones of the world through their cycles of large earthquakes using this method to determine which zones are most at risk.
(Multi)fractality of Earthquakes by use of Wavelet Analysis
NASA Astrophysics Data System (ADS)
Enescu, B.; Ito, K.; Struzik, Z. R.
2002-12-01
The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability distribution function. One of the most attractive features of wavelet analysis is its ability to determine a local Hurst exponent. We show that this feature together with the possibility of extending the analysis to spatial patterns may constitute a valuable approach to search for anomalous (precursory?) patterns of seismic activity.
NASA Astrophysics Data System (ADS)
Herrman, M.; Polet, J.
2016-12-01
A total of 73 broadband seismometers were deployed for a passive source seismic experiment called the Los Angeles Syncline Seismic Interferometry Experiment (LASSIE) from September to November of 2014. The purpose of this experiment was to collect high density seismic data for the Los Angeles Basin (LAB) to better understand basin structure and response. This research will use the data collected from LASSIE to assess and refine current velocity models of the LAB using a full waveform modeling approach. To this end we will compare seismograms recorded by LASSIE for a subset of the 53 earthquakes and quarry blasts located by the Southern California Seismic Network (SCSN) that occurred within or near the LAB during the deployment period to synthetic seismograms generated by the Frequency-Wavenumber (FK) code developed by Zhu and Rivera (2002). A first analysis of the data indicates that roughly 25 of the 53 events have waveforms with sufficiently high signal to noise ratio, providing approximately 500 seismograms that are of suitable quality for comparison. We observe significant changes in waveform characteristics between stations with a very small separation distance of approximately 1 km. Focal mechanisms for most of these events have been obtained from Dr. Egill Hauksson (personal communication). We will show comparisons between the broadband velocity waveforms recorded by stations across the LASSIE array and FK synthetics determined for a variety of 1D velocity models that have been developed for the LAB area (such as Hadley and Kanamori, 1977; Hauksson, 1989, 1995 and Magistrale, 1992). The results of these comparisons will be analyzed to provide additional constraints on the subsurface seismic velocity structure within the Los Angeles basin.
Neo-deterministic definition of earthquake hazard scenarios: a multiscale application to India
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Parvez, Imtiyaz A.; Rastogi, Bal K.; Vaccari, Franco; Cozzini, Stefano; Bisignano, Davide; Romanelli, Fabio; Panza, Giuliano F.; Ashish, Mr; Mir, Ramees R.
2014-05-01
The development of effective mitigation strategies requires scientifically consistent estimates of seismic ground motion; recent analysis, however, showed that the performances of the classical probabilistic approach to seismic hazard assessment (PSHA) are very unsatisfactory in anticipating ground shaking from future large earthquakes. Moreover, due to their basic heuristic limitations, the standard PSHA estimates are by far unsuitable when dealing with the protection of critical structures (e.g. nuclear power plants) and cultural heritage, where it is necessary to consider extremely long time intervals. Nonetheless, the persistence in resorting to PSHA is often explained by the need to deal with uncertainties related with ground shaking and earthquakes recurrence. We show that current computational resources and physical knowledge of the seismic waves generation and propagation processes, along with the improving quantity and quality of geophysical data, allow nowadays for viable numerical and analytical alternatives to the use of PSHA. The advanced approach considered in this study, namely the NDSHA (neo-deterministic seismic hazard assessment), is based on the physically sound definition of a wide set of credible scenario events and accounts for uncertainties and earthquakes recurrence in a substantially different way. The expected ground shaking due to a wide set of potential earthquakes is defined by means of full waveforms modelling, based on the possibility to efficiently compute synthetic seismograms in complex laterally heterogeneous anelastic media. In this way a set of scenarios of ground motion can be defined, either at national and local scale, the latter considering the 2D and 3D heterogeneities of the medium travelled by the seismic waves. The efficiency of the NDSHA computational codes allows for the fast generation of hazard maps at the regional scale even on a modern laptop computer. At the scenario scale, quick parametric studies can be easily performed to understand the influence of the model characteristics on the computed ground shaking scenarios. For massive parametric tests, or for the repeated generation of large scale hazard maps, the methodology can take advantage of more advanced computational platforms, ranging from GRID computing infrastructures to HPC dedicated clusters up to Cloud computing. In such a way, scientists can deal efficiently with the variety and complexity of the potential earthquake sources, and perform parametric studies to characterize the related uncertainties. NDSHA provides realistic time series of expected ground motion readily applicable for seismic engineering analysis and other mitigation actions. The methodology has been successfully applied to strategic buildings, lifelines and cultural heritage sites, and for the purpose of seismic microzoning in several urban areas worldwide. A web application is currently being developed that facilitates the access to the NDSHA methodology and the related outputs by end-users, who are interested in reliable territorial planning and in the design and construction of buildings and infrastructures in seismic areas. At the same, the web application is also shaping up as an advanced educational tool to explore interactively how seismic waves are generated at the source, propagate inside structural models, and build up ground shaking scenarios. We illustrate the preliminary results obtained from a multiscale application of NDSHA approach to the territory of India, zooming from large scale hazard maps of ground shaking at bedrock, to the definition of local scale earthquake scenarios for selected sites in the Gujarat state (NW India). The study aims to provide the community (e.g. authorities and engineers) with advanced information for earthquake risk mitigation, which is particularly relevant to Gujarat in view of the rapid development and urbanization of the region.
Blind tests of methods for InSight Mars mission: Open scientific challenge
NASA Astrophysics Data System (ADS)
Clinton, John; Ceylan, Savas; Giardini, Domenico; Khan, Amir; van Driel, Martin; Böse, Maren; Euchner, Fabian; Garcia, Raphael F.; Drilleau, Mélanie; Lognonné, Philippe; Panning, Mark; Banerdt, Bruce
2017-04-01
The Marsquake Service (MQS) will be the ground segment service within the InSight mission to Mars, which will deploy a single seismic station on Elysium Planitia in November 2018. The main tasks of the MQS are the identification and characterisation of seismicity, and managing the Martian seismic event catalogue. In advance of the mission, we have developed a series of single station event location methods that rely on a priori 1D and 3D structural models. In coordination with the Mars Structural Service, we expect to use iterative inversion techniques to revise these structural models and event locations. In order to seek methodological advancements and test our current approaches, we have designed a blind test case using Martian synthetics combined with realistic noise models for the Martian surface. We invite all scientific parties that are interested in single station approaches and in exploring the Martian time-series to participate and contribute to our blind test. We anticipate the test will can improve currently developed location and structural inversion techniques, and also allow us explore new single station techniques for moment tensor and magnitude determination. The waveforms for our test case are computed employing AxiSEM and Instaseis for a randomly selected 1D background model and event catalogue that is statistically consistent with our current expectation of Martian seismicity. Realistic seismic surface noise is superimposed to generate a continuous time-series spanning 6 months. The event catalog includes impacts as well as Martian quakes. The temporal distribution of the seismicity in the timeseries, as well as the true structural model, are not be known to any participating parties including MQS till the end of competition. We provide our internal tools such as event location codes, suite of background models, seismic phase travel times, in order to support researchers who are willing to use/improve our current methods. Following the deadline of our blind test in late 2017, we plan to combine all outcomes in an article with all participants as co-authors.
Estimation of the behavior factor of existing RC-MRF buildings
NASA Astrophysics Data System (ADS)
Vona, Marco; Mastroberti, Monica
2018-01-01
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.
NASA Astrophysics Data System (ADS)
Chapman, Martin Colby
1998-12-01
The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression modeling does not resolve significant effects due to site class at frequencies greater than approximately 5 Hz. Disaggregation of general seismic hazard models using Vsbea indicates that the modal magnitudes for the higher frequency oscillators tend to be larger, and vary less with oscillator frequency, than those derived using PSV. Insofar as the elastic input energy may be a better parameter for quantifying the damage potential of ground motion, its use in probabilistic seismic hazard analysis could provide an improved means for selecting earthquake scenarios and establishing design earthquakes for many types of engineering analyses.
Kernel Smoothing Methods for Non-Poissonian Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Woo, Gordon
2017-04-01
For almost fifty years, the mainstay of probabilistic seismic hazard analysis has been the methodology developed by Cornell, which assumes that earthquake occurrence is a Poisson process, and that the spatial distribution of epicentres can be represented by a set of polygonal source zones, within which seismicity is uniform. Based on Vere-Jones' use of kernel smoothing methods for earthquake forecasting, these methods were adapted in 1994 by the author for application to probabilistic seismic hazard analysis. There is no need for ambiguous boundaries of polygonal source zones, nor for the hypothesis of time independence of earthquake sequences. In Europe, there are many regions where seismotectonic zones are not well delineated, and where there is a dynamic stress interaction between events, so that they cannot be described as independent. From the Amatrice earthquake of 24 August, 2016, the subsequent damaging earthquakes in Central Italy over months were not independent events. Removing foreshocks and aftershocks is not only an ill-defined task, it has a material effect on seismic hazard computation. Because of the spatial dispersion of epicentres, and the clustering of magnitudes for the largest events in a sequence, which might all be around magnitude 6, the specific event causing the highest ground motion can vary from one site location to another. Where significant active faults have been clearly identified geologically, they should be modelled as individual seismic sources. The remaining background seismicity should be modelled as non-Poissonian using statistical kernel smoothing methods. This approach was first applied for seismic hazard analysis at a UK nuclear power plant two decades ago, and should be included within logic-trees for future probabilistic seismic hazard at critical installations within Europe. In this paper, various salient European applications are given.
Complete description of all self-similar models driven by Lévy stable noise
NASA Astrophysics Data System (ADS)
Weron, Aleksander; Burnecki, Krzysztof; Mercik, Szymon; Weron, Karina
2005-01-01
A canonical decomposition of H -self-similar Lévy symmetric α -stable processes is presented. The resulting components completely described by both deterministic kernels and the corresponding stochastic integral with respect to the Lévy symmetric α -stable motion are shown to be related to the dissipative and conservative parts of the dynamics. This result provides stochastic analysis tools for study the anomalous diffusion phenomena in the Langevin equation framework. For example, a simple computer test for testing the origins of self-similarity is implemented for four real empirical time series recorded from different physical systems: an ionic current flow through a single channel in a biological membrane, an energy of solar flares, a seismic electric signal recorded during seismic Earth activity, and foreign exchange rate daily returns.
A High-Resolution View of Global Seismicity
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.
2014-12-01
We present high-precision earthquake relocation results from our global-scale re-analysis of the combined seismic archives of parametric data for the years 1964 to present from the International Seismological Centre (ISC), the USGS's Earthquake Data Report (EDR), and selected waveform data from IRIS. We employed iterative, multistep relocation procedures that initially correct for large location errors present in standard global earthquake catalogs, followed by a simultaneous inversion of delay times formed from regional and teleseismic arrival times of first and later arriving phases. An efficient multi-scale double-difference (DD) algorithm is used to solve for relative event locations to the precision of a few km or less, while incorporating information on absolute hypocenter locations from catalogs such as EHB and GEM. We run the computations on both a 40-core cluster geared towards HTC problems (data processing) and a 500-core HPC cluster for data inversion. Currently, we are incorporating waveform correlation delay time measurements available for events in selected regions, but are continuously building up a comprehensive, global correlation database for densely distributed events recorded at stations with a long history of high-quality waveforms. The current global DD catalog includes nearly one million earthquakes, equivalent to approximately 70% of the number of events in the ISC/EDR catalogs initially selected for relocation. The relocations sharpen the view of seismicity in most active regions around the world, in particular along subduction zones where event density is high, but also along mid-ocean ridges where existing hypocenters are especially poorly located. The new data offers the opportunity to investigate earthquake processes and fault structures along entire plate boundaries at the ~km scale, and provides a common framework that facilitates analysis and comparisons of findings across different plate boundary systems.
Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera
NASA Astrophysics Data System (ADS)
Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Golan, Arik; Sivan, Dorit
2016-05-01
Sea-level fluctuations are a dominant mechanism that control coastal environmental changes through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on creating an integrated marine and terrestrial geophysical and litho-stratigraphic framework of the coastal zone of Hadera, north-central Israel. This research presents a case study, investigating the changing sedimentological units in the study area. Analysis suggest these represent various coastal environments and were deposited during times of lower than present sea level and during the later stages of the Holocene transgression. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, one hundred lithological borehole data-sets, and a 110 km-long sub-bottom geophysical survey. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. These seismic units have been correlated with the available borehole data to produce a chronologically constrained lithostratigraphy for the area. This approach allowed us to propose a relationship between the lithological units and sea-level change and thus enable the reconstruction of Hadera coastal evolution over the last 100 ka. This reconstruction suggests that the stratigraphy is dominated by lowstand aeolian and fluvial terrestrial environments, subsequently transgressed during the Holocene. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.
NASA Astrophysics Data System (ADS)
Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus
2016-04-01
Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D is seismic moment density (Mo/m3) and V stim is stimulated rock volume (m3). Mopossible = D ∗ V stim(1) We applied this conceptual model to real microseismic data set from Basel EGS project where several induced seismicity with large magnitude occurred and brought constructive damage. Using the hypocenter location determined by the researcher of Tohoku Univ., Japan and moment magnitude estimated from Geothermal Explorers Ltd., operating company, we were able to estimate reasonable seismic moment density meaning that one representative parameter exists and can characterize seismic activity at Basel at each time step. With stimulated rock volume which was also inferred from microseismic information, we estimated possible seismic moment and assess the difference with observed value. Possible seismic moment significantly increased after shut-in when the seismic cloud (stimulated zone) mostly progressed, resulting that the difference with the observed cumulative seismic moment automatically became larger. This suggests that there is moderate seismic moment which will be released in near future. In next few hours, the largest event actually occurred. Therefore, our proposed model was successfully able to forecast occurrence of the large events. Furthermore, best forecast of maximum magnitude was Mw 3 level and the largest event was Mw 3.41, showing reasonable performance in terms of quantitative forecast in magnitude. Our attempt to assess the seismic activity from microseismic information was successful and it also suggested magnitude release can be correlate with the expansion of seismic cloud as the definition of possible seismic moment model indicates. This relationship has been observed in microseismic observational study and several previous study also suggested their correlation with stress released rock volume. Our model showed harmonic results with these studies and provide practical method having clear physical meaning to assess the seismic activity in real time, based on microseismic data.
NASA Astrophysics Data System (ADS)
Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy
2018-04-01
Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.
NASA Astrophysics Data System (ADS)
Garcia, Alicia; Fernandez-Ros, Alberto; Berrocoso, Manuel; Marrero, Jose Manuel; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramon
2014-05-01
In July 2011 at El Hierro (Canary Islands, Spain), a volcanic unrest was detected, with significant deformations followed by increased seismicity. A submarine eruption started on 10 October 2011 and ceased on 5 March 2012, after the volcanic tremor signals persistently weakened through February 2012. However, the seismic activity did not end when the eruption, as several other seismic crises followed since. The seismic episodes presented a characteristic pattern: over a few days the number and magnitude of seismic event increased persistently, culminating in seismic events severe enough to be felt all over the island. In all cases the seismic activity was preceded by significant deformations measured on the island's surface that continued during the whole episode. Analysis of the available GNSS-GPS and seismic data suggests that several magma injection processes occurred at depth from the beginning of the unrest. A model combining the geometry of the magma injection process and the variations in seismic energy released has allowed successful forecasting of the new-vent opening. The model presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself.
NASA Astrophysics Data System (ADS)
Heckels, R. EG; Savage, M. K.; Townend, J.
2018-05-01
Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.
NASA Technical Reports Server (NTRS)
Kovach, R. L.; Watkins, J. S.; Talwani, P.
1972-01-01
The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.
NASA Astrophysics Data System (ADS)
Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki
The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.
NASA Astrophysics Data System (ADS)
Caudron, Corentin; Taisne, Benoit; Kugaenko, Yulia; Saltykov, Vadim
2015-12-01
In contrast of the 1975-76 Tolbachik eruption, the 2012-13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.
NASA Astrophysics Data System (ADS)
Kossobokov, Vladimir G.; Nekrasova, Anastasia K.
2018-05-01
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10 N(M, L) = A + B·(5 - M) + C·log10 L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.
Case Studies on Application of Data Integration Techniques to Nondestructive Testing of Pavements
DOT National Transportation Integrated Search
2005-11-01
The nondestructive testing devices currently in use by TxDOT are the falling weight deflectometer, the seismic pavement analyzer, the portable seismic pavement analyzer, and ground penetrating radar, which provide thickness or modulus information. In...
Updating the USGS seismic hazard maps for Alaska
Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.
2015-01-01
The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.
Evaluation of ground motion scaling methods for analysis of structural systems
O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.
2011-01-01
Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.
Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio
1997-11-01
A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).
NASA Astrophysics Data System (ADS)
Firtana Elcomert, Karolin; Kocaoglu, Argun
2014-05-01
Sedimentary basins affect the propagation characteristics of the seismic waves and cause significant ground motion amplification during an earthquake. While the impedance contrast between the sedimentary layer and bedrock predominantly controls the resonance frequencies and their amplitudes (seismic amplification), surface waves generated within the basin, make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be a pull-apart basin controlled by the northern branch of the North Anatolian Fault Zone (Şengör et al. 2005). A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. Using a spectral element code, SPECFEM2D (Komatitsch et al. 1998), this work presents some of the preliminary results of the 2-D seismic wave propagation simulations for the Izmit basin. The spectral-element method allows accurate and efficient simulation of seismic wave propagation due to its advantages over the other numerical modeling techniques by means of representation of the wavefield and the computational mesh. The preliminary results of this study suggest that seismic wave propagation simulations give some insight into the site amplification phenomena in the Izmit basin. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling reveals that observed seismograms include surface waves whose excitation is clearly related to the basin geometry.
Evaluating changes of the Bárdarbunga caldera using repeating earthquakes
NASA Astrophysics Data System (ADS)
Jónsdóttir, K.; Hjorleifsdottir, V.; Hooper, A.; Rivalta, E.; Rodriguez Cardozo, F. R.; Gudmundsson, M. T.; Geirsson, H.; Barsotti, S.
2017-12-01
The natural hazard monitoring in Iceland relies heavily on seismic monitoring. With an automated system for detecting earthquakes, locating and evaluating their focal mechanisms, 500 earthquakes are recorded weekly with magnitudes down to -0.5. During the Bárdarbunga volcanic unrest in 2014-2015 the seismicity intensified and up to thousands of earthquakes were recorded daily. The unrest was accompanied by caldera collapse, a rare event that has not been monitored in such detail before, providing a unique opportunity for better understanding the volcanic structure and processes. The 8x11 km caldera gradually subsided, triggering thousands of events with 80 earthquakes between M5-M5.8. A subsidence bowl up to 65 m deep was formed, while about 1.8 km3 of magma drained laterally along a subterranean path, forming flood basalt 47 km northeast of the volcano. The caldera collapse and magma outflow gradually declined until the eruption ended some 6 months later (27 February 2015). The seismicity continued to decline, both in the far end of the dyke as well as within the caldera for a few months. However, half a year later (in September 2015) seismicity within the caldera started to increase again and has been rather constant since, with tens of earthquakes recorded on the caldera rim every week and biggest events reaching magnitude 4.4. Here we present a seismic waveform correlation analysis where we look for similar repeating waveforms of the large caldera dataset. The analysis reveals a dramatic change occurring between February and May 2015. By allowing for anticorrelation we find that the earthquake's polarity reverses sign completely. The timing coincides with the ending of the caldera collapse and the eruption. Our results suggest that caldera fault movements were reversed soon after the eruption ended in spring 2015 when we also observe outwards movement of GPS stations around the caldera, indicating re-inflation of the magma chamber half a year before any seismicity increase was detected. These data and their interpretation are helpful to improve our understanding of the current status of the volcano and, eventually, to perform a more accurate and reliable hazard assessment.
The Canarian Seismic Monitoring Network: design, development and first result
NASA Astrophysics Data System (ADS)
D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.
2017-04-01
Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.
What defines an Expert? - Uncertainty in the interpretation of seismic data
NASA Astrophysics Data System (ADS)
Bond, C. E.
2008-12-01
Studies focusing on the elicitation of information from experts are concentrated primarily in economics and world markets, medical practice and expert witness testimonies. Expert elicitation theory has been applied in the natural sciences, most notably in the prediction of fluid flow in hydrological studies. In the geological sciences expert elicitation has been limited to theoretical analysis with studies focusing on the elicitation element, gaining expert opinion rather than necessarily understanding the basis behind the expert view. In these cases experts are defined in a traditional sense, based for example on: standing in the field, no. of years of experience, no. of peer reviewed publications, the experts position in a company hierarchy or academia. Here traditional indicators of expertise have been compared for significance on affective seismic interpretation. Polytomous regression analysis has been used to assess the relative significance of length and type of experience on the outcome of a seismic interpretation exercise. Following the initial analysis the techniques used by participants to interpret the seismic image were added as additional variables to the analysis. Specific technical skills and techniques were found to be more important for the affective geological interpretation of seismic data than the traditional indicators of expertise. The results of a seismic interpretation exercise, the techniques used to interpret the seismic and the participant's prior experience have been combined and analysed to answer the question - who is and what defines an expert?
NASA Astrophysics Data System (ADS)
Gibson, J. C.; Miller, N. C.; Hutchinson, D. R.; Ten Brink, U. S.; Mountain, G. S.; Chaytor, J. D.; Shillington, D. J.
2017-12-01
There is a long history of seismic stratigraphic interpretation/analysis of the sedimentary sequence along the U.S. mid-Atlantic Margin (MAM). Here we expand the allostratigraphic (unconformity-bound) framework from the outer continental shelf to the Hatteras Abyssal Plain by correlating recently acquired 2D multi-channel seismic reflection data with existing drill sites and legacy 2D seismic data collected over the past 42 yrs. The new 2D post-stack Kirchhoff time migrated seismic data were acquired using R/V Marcus G. Langseth in 2014-2015 during USGS ECS surveys MGL1407 & MGL1506 and NSF-funded ENAM-CSE survey MGL1408. We map six seismic horizons along 1.5x104 km of 2D data and tie each to stratigraphic unconformities sampled at DSDP site 603 (lower rise). From shallow to deep they are: (1) M2, latest Miocene; (2) X, middle Miocene; (3) Au, late Oligocene; (4) A*, Late Cretaceous; (5) Km, early Late Cretaceous; and (6) Beta, middle Early Cretaceous. The horizons were converted to depth (mbsl) using high-resolution interval velocity models generated for each 2D survey line and isopachs were produced using the depth-converted stratigraphic framework for each allostratigraphic unit. The time-to-depth function was confirmed to be within 5% of drilling results at DSDP Sites 603 and nearby 105. Additionally, we tie horizon Au to upper-slope ODP Sites 902 & 1073, and trace it to the outer shelf. Interpretation of the framework and resulting isopachs show total sediment thickness uniformly decreasing seaward from the shelf edge, and overall thickening to the south. Regional depositional trends display a combination of both down slope and along slope processes (e.g. mass wasting, submarine fan formation, contourite and sediment drift deposits). The unit bound by horizons Au & Beta confirms pervasive excavation from the mid-slope to the continental rise and across the central and southern MAM (from New Jersey to North Carolina). How the excavated sediments were redistributed is unknown, but the magnitude and spatial extent of the bottom-current erosion are well constrained by our study. The southern MAM has experienced a number of significant mass wasting events spanning the Miocene-Pleistocene, suggesting that bottom-current erosion may have played a role in undercutting, and therefore over-steepening the slope.
NASA Astrophysics Data System (ADS)
Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.
2017-12-01
Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model to forecast CO2 flow within Layer 9 is tested. Permeability recovered by modeling a suite of early seismic surveys is used to predict the CO2 distribution for a suite of later seismic surveys with a considerable degree of success. Forecasts have also been carried out that can be tested using future seismic surveys.
Seismic risk assessment and application in the central United States
Wang, Z.
2011-01-01
Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.
A Software Toolbox for Systematic Evaluation of Seismometer-Digitizer System Responses
2010-09-01
characteristics (e.g., borehole vs. surface installation) than the actual seismic noise characteristics. These results suggest that our best results of NOISETRAN...Award No. DE-FG02-09ER85548/Phase_I ABSTRACT Measurement of the absolute amplitudes of a seismic signal requires accurate knowledge of...power spectral density (PSD) estimator for background noise spectra at a seismic station. SACPSD differs from the current PSD used by NEIC and IRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zucca, J J; Walter, W R; Rodgers, A J
2008-11-19
The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring andmore » seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags contemporary research. Current monitoring practice is to use relatively simple Earth models that generally afford analytical prediction of seismic observables (see Examples of Current Monitoring Practice below). Empirical relationships or corrections to predictions are often used to account for unmodeled phenomena, such as the generation of S-waves from explosions or the effect of 3-dimensional Earth structure on wave propagation. This approach produces fast and accurate predictions in areas where empirical observations are available. However, accuracy may diminish away from empirical data. Further, much of the physics is wrapped into an empirical relationship or correction, which limits the ability to fully understand the physical processes underlying the seismic observation. Every generation of seismology researchers works toward quantitative results, with leaders who are active at or near the forefront of what has been computationally possible. While recognizing that only a 3-dimensional model can capture the full physics of seismic wave generation and propagation in the Earth, computational seismology has, until recently, been limited to simplifying model parameterizations (e.g. 1D Earth models) that lead to efficient algorithms. What is different today is the fact that the largest and fastest machines are at last capable of evaluating the effects of generalized 3D Earth structure, at levels of detail that improve significantly over past efforts, with potentially wide application. Advances in numerical methods to compute travel times and complete seismograms for 3D models are enabling new ways to interpret available data. This includes algorithms such as the Fast Marching Method (Rawlison and Sambridge, 2004) for travel time calculations and full waveform methods such as the spectral element method (SEM; Komatitsch et al., 2002, Tromp et al., 2005), higher order Galerkin methods (Kaser and Dumbser, 2006; Dumbser and Kaser, 2006) and advances in more traditional Cartesian finite difference methods (e.g. Pitarka, 1999; Nilsson et al., 2007). The ability to compute seismic observables using a 3D model is only half of the challenge; models must be developed that accurately represent true Earth structure. Indeed, advances in seismic imaging have followed improvements in 3D computing capability (e.g. Tromp et al., 2005; Rawlinson and Urvoy, 2006). Advances in seismic imaging methods have been fueled in part by theoretical developments and the introduction of novel approaches for combining different seismological observables, both of which can increase the sensitivity of observations to Earth structure. Examples of such developments are finite-frequency sensitivity kernels for body-wave tomography (e.g. Marquering et al., 1998; Montelli et al., 2004) and joint inversion of receiver functions and surface wave group velocities (e.g. Julia et al., 2000).« less
NASA Astrophysics Data System (ADS)
Cammarata, Laura; Catalano, Stefano; Gambino, Salvatore; Palano, Mimmo; Pavano, Francesco; Romagnoli, Gino; Scaltrito, Antonio; Tortorici, Giuseppe
2018-01-01
Between June 2011 and September 2013, the Nebrodi Mountains region was affected by a seismic swarm consisting of > 2700 events with local magnitude 1.3 ≤ ML ≤ 4.6 and located in the 5-9 km depth interval. The seismic swarm defines a seismogenetic volume elongated along the E-W direction and encompasses the NW-SE-oriented tectonic boundary between the Calabrian arc (north-eastward) and the Sicilide units (south-westward). By exploring the recent tectonic deformation and the seismic behavior of the region, this study aims at providing additional constraints on the seismogenetic faults at the southern termination of the Calabrian arc. Waveform similarities analysis allowed observing that 45% of the whole dataset can be grouped into six different families of seismic events. Earthquake multiplet families are mainly located in the eastern part of the seismogenetic volume. We suggest that such a feature is responsive to the lateral lithological variations as highlighted by geology (at the surface) and P-wave seismic tomography (at depth of 10 km). Stress tensor inversions performed on FPSs indicate that the investigated region is currently subject to a nearly biaxial stress state in an extensional regime, such that crustal stretching occurs along both NW-SE and NE-SW directions. Accordingly, mesoscale fault geometries and kinematics analyses evidence that a younger normal faulting stress regime led to a tectonic negative inversion by replacing the pre-existing strike-slip one. Based on our results and findings reported in recent literature, we refer such a crustal stretching to mantle upwelling process (as evidenced by diffuse mantle-derived gas emissions) coupled with a tectonic uplift involving north-eastern Sicily since Middle Pleistocene. Moreover, seismic swarms striking the region would be related to the migration of mantle and sub-crustal fluids toward the surface along the complex network of tectonic structures cutting the crust and acting as pathways.
NASA Astrophysics Data System (ADS)
Ucciani, G.; Beauducel, F.; Bouin, M. P.; Nercessian, A.
2015-12-01
La Soufrière is one of the many hazardous volcanoes in the inner arc of Lesser Antilles. Located South of Basse-Terre island, it is the only active volcano of the Guadeloupe archipelago. Since the last significant magmatic eruption in 1535 AD, the activity has been exculsively phreatic. Since 1992 and the abrupt renewal of seismic and fumarollic activities, the Guadeloupe Volcanological and Seismological Observatory (OVSG-IPGP) has recorded a progressive increasing of seismicity and degassing that led scientists and authorities to set the alert level ``Vigilance'' and hold it until today. According to the recent geophysical, geochemical and geological studies, the current volcanic activity of la Soufrière volcano seems to be exclusively associated to the hydrothermal system, while the link with seismic activity is still poorly studied. In this context of possible pre-eruptive unrest, we investigated the spatial and temporal variations of the seismicity recorded between 1981 and 2013. From a consistent seismological framework coupling spectral, statistical, signal processing, clustering, and inverse problems methods, we demonstrate that this seismicity is largely generated by shallow hydrothermal fluid sources located in a complex plumbing system. Spatial variations of Vp/Vs ratio and B-value in seismogenic structures allow us to document three main seismic zones associated to : (1) migration of magmatic gas, (2) the storage and mixing of underground water and gas and (3) the shallow migration of hydrothermal fluids in high fractured and heterogeneous system. Waveform analysis revealed a low number of significant families consistent with fracturing process, and the temporal evolution of multiplet activities highlighted several variations associated with surface manifestations and brutal dynamic changes after major local tectonic earthquakes of Les Saintes (21 November 2004, Mw=6.3), its main aftershock (14 February 2005, Mw=5.7) and the last major earthquake of la Martinique (29 November 2007, Mw=7.4).
Seismo-acoustic analysis of thunderstorms at Plostina (Romania) site
NASA Astrophysics Data System (ADS)
Grecu, Bogdan; Ghica, Daniela; Moldovan, Iren; Ionescu, Constantin
2013-04-01
The National Institute for Earth Physics (Romania) operates one of the largest seismic networks in the Eastern Europe. The network includes 97 stations with velocity sensors of which 52 are broadband and 45 are short period, 102 strong motion stations and 8 seismic observatories. Located in the most active seismic region of Romania, i.e. Vrancea area, the Plostina Observatory included initially two seismic stations, one at surface with both broadband and accelerometer sensors and one at 30 m depth with only short period velocity sensor. Starting with 2007, the facilities at Plostina have been upgraded so that at present, the observatory also includes one seismic array (PLOR) of seven elements (PLOR1, PLOR2, PLOR3, PLOR4, PLOR5, PLOR6, PLOR7) with an aperture of 2.5 km, seven infrasound elements (IPL2, IPL3, IPL4, IPH4, IPH5, IPH6, IPH7), two three-component fluxgate sensors, one Boltek EFM-100 electrometer and one La Crosse weather station. The element PLOR4 is co-located with the accelerometer and borehole sensor, two infrasonic elements (IPL4 and IPH4), one fluxgate sensor, the Boltek electrometer and the weather station. All the date are continuously recorded and real-time transmitted to the Romanian National Data Centre (RONDC) in Magurele. The recent developments at Plostina site made possible the improvement of the local miscroseismic activity monitoring as well as conducting of other geophysical studies such as acoustic measurements, observations of the variation of the magnetic field in correlation with solar activity, observations of the variation of radioactive alpha gases concentration, observations of the telluric currents. In this work, we investigate the signals emitted due to the process of lightning and thunder during thunderstorms activity at Plostina site. These signals are well recorded by both seismic and infrasound networks and they are used to perform spectral and specific array analyses. We also perform multiple correlations between the atmospheric parameters recorded by the weather station and seismic and infrasound signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, S; Larsen, S; Wagoner, J
Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D)more » finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications. In FY03 specifically, a large and complex simulation experiment was conducted that tested the full modeling-based approach to geological characterization using E2D, the K-L statistical methodology, and matched field processing applied to tunnel detection with surface seismic sensors. The simulation validated the full methodology and the need for geological heterogeneity to be accounted for in the overall approach. The Lake Lynn site area was geologically modeled using the code Earthvision to produce a 32 million node 3D model grid for E3D. Model linking issues were resolved and a number of full 3D model runs were accomplished using shot locations that matched the data. E3D-generated wavefield movies showed the reflection signal would be too small to be observed in the data due to trapped and attenuated energy in the weathered layer. An analysis of the few sensors coupled to bedrock did not improve the reflection signal strength sufficiently because the shots, though buried, were within the surface layer and hence attenuated. Ability to model a complex 3D geological structure and calculate synthetic seismograms that are in good agreement with actual data (especially for surface waves and below the complex weathered layer) was demonstrated. We conclude that E3D is a powerful tool for assessing the conditions under which a tunnel could be detected in a specific geological setting. Finally, the Lake Lynn tunnel explosion data were analyzed using standard array processing techniques. The results showed that single detonations could be detected and located but simultaneous detonations would require a strategic placement of arrays.« less
Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory
NASA Astrophysics Data System (ADS)
Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi
2018-03-01
With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.
NASA Astrophysics Data System (ADS)
Setiawan, Jody; Nakazawa, Shoji
2017-10-01
This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.
Regional Moment Tensor Analysis of Earthquakes in Iran for 2010 to 2017 Using In-Country Data
NASA Astrophysics Data System (ADS)
Graybeal, D.; Braunmiller, J.
2017-12-01
Located in the middle of the Arabia-Eurasia continental collision, Iran is one of the most tectonically diverse and seismically active countries in the world. Until recently, however, seismic source parameter studies had to rely on teleseismic data or on data from temporary local arrays, which limited the scope of investigations. Relatively new broadband seismic networks operated by the Iranian Institute of Engineering Seismology (IIEES) and the Iranian Seismological Center (IRSC) currently consist of more than 100 stations and allow, for the first time, routine three-component full-waveform regional moment tensor analysis of the numerous M≥4.0 earthquakes that occur throughout the country. We use openly available, in-country data and include data from nearby permanent broadband stations available through IRIS and EIDA to improve azimuthal coverage for events in border regions. For the period from 2010 to 2017, we have obtained about 500 moment tensors for earthquakes ranging from Mw=3.6 to 7.8. The resulting database provides a unique, detailed view of deformation styles and earthquake depths in Iran. Overall, we find mainly thrust and strike-slip mechanisms as expected considering the convergent tectonic setting. Our magnitudes (Mw) are slightly smaller than ML and mb but comparable to Mw as reported in global catalogs (USGS ANSS). Event depths average about 3 km shallower than in global catalogs and are well constrained considering the capability of regional waveforms to resolve earthquake depth. Our dataset also contains several large magnitude main shock-aftershock sequences from different tectonic provinces, including the 2012 Ahar-Varzeghan (Mw=6.4), 2013 Kaki (Mw=6.5), and 2014 Murmuri (Mw=6.2) earthquakes. The most significant result in terms of seismogenesis and seismic hazard is that the vast majority of earthquakes occur at shallow depth, not in deeper basement. Our findings indicate that more than 80% of crustal seismicity in Iran likely occurs at depths of 12 km or less.
Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The production of geothermal energy from dry and low permeability reservoirs is achieved by water circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or pre-existing fracture planes and possibly their propagations.more » The microseismic signals contain information about the sources of energy that can be used for understanding the hydraulic fracturing process and the created reservoir properties. Detection and interpretation of microseismic events is useful for estimating the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir characterization (SBRC). Although, progress has been made by scientific & geothermal communities for quantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate, delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties and in-situ stress in the data inversion process. The objective of this research and technology developments was to develop a 3D SBRC model that addresses these shortcomings by taking into account hydro-thermo-poro-mechanical mechanisms associated with injection and utilizing a state-of-the-art stochastic inversion procedure. The approach proposed herein is innovative and significantly improves the existing SBCR technology (e.g., Shapiro et al. 2003) for geothermal reservoirs in several ways. First, the current scope of the SBRC is limited with respect to the physical processes considered and the rock properties used. Usually, the geomechanics analyses within SBRC is limited to the pore pressure diffusion in the rock mass, which is modeled using a time-dependent parabolic equation and solved using a finite element algorithm with either a line or a point source. However, water injection induces both poroelastic and thermoelastic stresses in the rock mass which affect the stress state. In fact, it has been suggested that thermoelastic stresses can play a dominant role in reservoir seismicity (Ghassemi et al., 2007). We include these important effects by using a fully-coupled poro-thermoelastic constitutive equations for the rock mass which will be solved using a 3D finite element model with more realistic injection geometries such as multiple injection/extraction sources (and in fractures), uncertainty in the material parameters and the in-situ stress distribution to better reflect the pore pressure and stress distributions. In addition, we developed a 3D stochastic fracture network model to study MEQ generation in fracture rocks. The model was verified using laboratory experiments, and calibrated and applied to Newberry EGS stimulation. In previous SBRC approaches, the triggering of micro-seismicity is modeled base on the assumption that the prior stochastic criticality model of the rock mass is a valid and adequate description. However, this assumption often does not hold in the field. Thus, we improved upon the current SBRC approach by using the micro-seismic responses to estimate the hydraulic diffusivity as well as the criticality distribution itself within the field. In this way, instead of relying on our a priori knowledge of criticality distribution, we combine an initial probabilistic description of criticality with the information contained in microseismic measurements to arrive at criticality solutions that are conditioned on both field data and our prior knowledge. Previous SBRC have relied upon a deterministic inversion approach to estimate the permeability, and the extent of the stimulated zone, whereas a stochastic inversion algorithm that recognizes and quantifies the uncertainties in the prior model, the time evolution of pore pressure distributions (modeling errors), and the observed seismic events is developed and used herein to realistically assess the quality of the solution. Finally, we developed a technique for processing discrete MEQ data to estimate fracture network properties such as dip and dip directions. The approach was successfully applied to the Fenton Hill HRD experiment and the Newberry EGS with results in good agreement with field observations.« less
Alaska Volcano Observatory Seismic Network Data Availability
NASA Astrophysics Data System (ADS)
Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.
2009-12-01
The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in Anchorage. AVO waveform data were added to the Incorporated Research Institutions for Seismology Data Management Center (IRIS-DMC) beginning in 2008 and now includes continuous waveform data from all available AVO seismograph stations in real time. Data coverage is available through the DMC’s Metadata Aggregator.
Probabilistic seismic vulnerability and risk assessment of stone masonry structures
NASA Astrophysics Data System (ADS)
Abo El Ezz, Ahmad
Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.
NASA Astrophysics Data System (ADS)
Shirley, Matthew Richard
I analyzed seismic data from the Ozarks-Illinois-Indiana-Kentucky (OIINK) seismic experiment that operated in eastern Missouri, southern Illinois, southern Indiana, and Kentucky from July 2012 through March 2015. A product of this analysis is a new catalog of earthquake locations and magnitudes for small-magnitude local events during this study period. The analysis included a pilot study involving detailed manual analysis of all events in a ten-day test period and determination of the best parameters for a suite of automated detection and location programs. I eliminated events that were not earthquakes (mostly quarry and surface mine blasts) from the output of the automated programs, and reprocessed the locations for the earthquakes with manually picked P- and S-wave arrivals. This catalog consists of earthquake locations, depths, and local magnitudes. The new catalog consists of 147 earthquake locations, including 19 located within the bounds of the OIINK array. Of these events, 16 were newly reported events, too small to be reported in the Center for Earthquake Research and Information (CERI) regional seismic network catalog. I compared the magnitudes reported by CERI for corresponding earthquakes to establish a magnitude calibration factor for all earthquakes recorded by the OIINK array. With the calibrated earthquake magnitudes, I incorporate the previous OIINK results from Yang et al. (2014) to create magnitude-frequency distributions for the seismic zones in the region alongside the magnitude-frequency distributions made from CERI data. This shows that Saint Genevieve and Wabash Valley seismic zones experience seismic activity at an order magnitude lower rate than the New Madrid seismic zone, and the Rough Creek Graben experiences seismic activity two orders of magnitude less frequently than New Madrid.
An integrated approach to characterization of fractured reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta-Gupta, A.; Majer, E.; Vasco, D.
1995-12-31
This paper summarizes an integrated hydrologic and seismic characterization of a fractured limestone formation at the Conoco Borehole Test Facility (CBTF) in Kay County, Oklahoma. Transient response from pressure interference tests were first inverted in order to identify location and orientation of dominant fractures at the CBTF. Subsequently, high resolution (1000 to 10000 Hz) cross-well and single-well seismic surveys were conducted to verify the preferential slow paths indicated by hydrologic analysis. Seismic surveys were conducted before and after an air injection in order to increase the visibility of the fracture zone to seismic imaging. Both Seismic and hydrologic analysis weremore » found to yield consistent results in detecting the location of a major fracture zone.« less
Developments at Polish Seismological Network
NASA Astrophysics Data System (ADS)
Wiejacz, P.; Debski, W.; Lizurek, G.; Rudzinski, L.; Suchcicki, J.; Wiszniowski, J.
2009-04-01
Polish Seismological Network of the Institute of Geophysics, Polish Academy of Sciences, currently consists of 9 stations. Six of these stations are broadband. In 2008 one of the broadband stations has been moved from Warsaw city center out to a quieter site at the Central Geophysical Observatory at Belsk, thus the data has become useful for automatic data processing. Currently broadband seismic stations are spaced out to provide information from all of the territory of Poland. Automatic Seiscomp-2.5 detecting, locating and alerting system has been set up. Earthquakes that have taken place in 2004, namely the Kaliningrad and Podhale events, have caused concern about effectiveness of the network and quality of the recording. As result, the digitizer of the seismic station NIE - near the Podhale region - has been replaced in 2005, bringing the station up to the 24-bit standard and latest plans call to have the station upgraded to broadband. In the north, a new seismic station has been organized at Hel, however the site has proven to be extremely noisy. A broadband station is planned to be deployed in the north but an alternate location must be found. Further development plans call for establishment of a new 6-station short period subnetwork in and around the Upper Silesian Coal Basin to observe and readily locate local mining-induced seismic events. The ultimate goal is to provide ready and reliable information on all recorded seismic events and particularly those events from the territory of Poland. Reaching the goal requires however that a local seismic subnetwork be organized in and around the Lubin Copper Basin while the seismic station NIE be complemented by at least two stations in the immediate area where local seismicity takes place.
Catalogs of micro-seismicity recorded at the Pechgraben landslide (Upper Austria)
NASA Astrophysics Data System (ADS)
Provost, Floriane; Hibert, Clément; Vouillamoz, Naomi; Malet, Jean-Philippe; Ottowitz, David; Jochum, Birgit
2017-04-01
The microseismicity activity of soft-rock landslides (i.e. developed in clays and clay-shales) present various types of seismic event associated with the slope deformation. They are assumed to be linked to the slip at the interface with the bedrock or at the boundaries of the landslide, to material failures, to fissure openings or to fluid transfers within the medium. It is currently necessary to document the microseismicity generated by soft-rock landslides on a larger amount of instrumented slopes in order to validate the current seismic typology and understand the source mechanisms in relation with the deformation. Previous studies have shown the interest of the Pechgraben (Upper Austria) clay-shale landslide for such documentation. This landslide was reactivated in summer 2013 after heavy rainfalls and is characterized by a shallow bedrock (<10m) and varying displacement rates in space and time (from mm.day-1 to cm.day-1). A short pilot seismic campaign (<9 days) was carried out in 2015 and micro-earthquakes as well as episodic tremor-like signals were recorded. A new passive seismic campaign was conducted during one month in November-December 2016. Two broadband three-component seismometers were installed facing each other on the two stable borders of the slope with one tripartite seismic array deployed in the center, on top of the most active area of the landslide. The deformation pattern of the slope was monitored remotely with a ground-based InSAR at a high frequency (10 min). This study aims to present the variety of seismic sources generated by the landslide, using supervised machine learning algorithms for event detection and classification, and to correlate the resulting micro-seismic catalog with the changes in time of the slope deformation.
NASA Astrophysics Data System (ADS)
El Fellah, Y.; Khairy Abd Ed-Aal, A.; El Moudnib, L.; Mimoun, H.; Villasenor, A.; Gallart, J.; Thomas, C.; Elouai, D.; Mimoun, C.; Himmi, M.
2013-12-01
Abstract The results, of a conducted study carried out to analyze variations in ambient seismic noise levels at sites of the installed broadband stations in Morocco, North Africa, are obtained. The permanent and the temporary seismic stations installed in Morocco of the Scientific Institute ( IS, Rabat, Morocco), institute de Ciencias de la Tierra Jaume almera (ICTJA, Barcelona, Spain) and Institut für Geophysik (Munster, Germany) were used in this study. In this work, we used 23 broadband seismic stations installed in different structural domains covering all Morocco from south to north. The main purposes of the current study are: 1) to present a catalog of seismic background noise spectra for Morocco obtained from recently installed broadband stations, 2) to assess the effects of experimental temporary seismic vault construction, 3) to determine the time needed for noise at sites to stabilize, 4) to establish characteristics and origin of seismic noise at those sites. We calculated power spectral densities of background noise for each component of each broadband seismometer deployed in the different investigated sites and then compared them with the high-noise model and low-noise Model of Peterson (1993). All segments from day and night local time windows were included in the calculation without parsing out earthquakes. The obtained results of the current study could be used forthcoming to evaluate permanent station quality. Moreover, this study could be considered as a first step to develop new seismic noise models in North Africa not included in Peterson (1993). Keywords Background noise; Power spectral density; Model of Peterson; Scientific Institute; Institute de Ciencias de la Tierra Jaume almera; Institut für Geophysik
Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.
McKenna, J; Sherlock, D; Evans, B
2001-12-01
This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
Using geologic maps and seismic refraction in pavement-deflection analysis
DOT National Transportation Integrated Search
1999-10-01
The researchers examined the relationship between three data types -- geologic maps, pavement deflection, and seismic refraction data -- from diverse geologic settings to determine whether geologic maps and seismic data might be used to interpret def...
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-10-01
Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.
Seismic imaging of post-glacial sediments - test study before Spitsbergen expedition
NASA Astrophysics Data System (ADS)
Szalas, Joanna; Grzyb, Jaroslaw; Majdanski, Mariusz
2017-04-01
This work presents results of the analysis of reflection seismic data acquired from testing area in central Poland. For this experiment we used total number of 147 vertical component seismic stations (DATA-CUBE and Reftek "Texan") with accelerated weight drop (PEG-40). The profile was 350 metres long. It is a part of pilot study for future research project on Spitsbergen. The purpose of the study is to recognise the characteristics of seismic response of post-glacial sediments in order to design the most adequate survey acquisition parameters and processing sequence for data from Spitsbergen. Multiple tests and comparisons have been performed to obtain the best possible quality of seismic image. In this research we examine the influence of receiver interval size, front mute application and surface wave attenuation attempts. Although seismic imaging is the main technique we are planning to support this analysis with additional data from traveltime tomography, MASW and other a priori information.
Back analysis of fault-slip in burst prone environment
NASA Astrophysics Data System (ADS)
Sainoki, Atsushi; Mitri, Hani S.
2016-11-01
In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.
Earthquake early warning for Romania - most recent improvements
NASA Astrophysics Data System (ADS)
Marmureanu, Alexandru; Elia, Luca; Martino, Claudio; Colombelli, Simona; Zollo, Aldo; Cioflan, Carmen; Toader, Victorin; Marmureanu, Gheorghe; Marius Craiu, George; Ionescu, Constantin
2014-05-01
EWS for Vrancea earthquakes uses the time interval (28-32 sec.) between the moment when the earthquake is detected by the local seismic network installed in the epicenter area (Vrancea) and the arrival time of the seismic waves in the protected area (Bucharest) to send earthquake warning to users. In the last years, National Institute for Earth Physics (NIEP) upgraded its seismic network in order to cover better the seismic zones of Romania. Currently the National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Ranger, gs21, Mark l22) and acceleration sensors (Episensor). Recent improvement of the seismic network and real-time communication technologies allows implementation of a nation-wide EEWS for Vrancea and other seismic sources from Romania. We present a regional approach to Earthquake Early Warning for Romania earthquakes. The regional approach is based on PRESTo (Probabilistic and Evolutionary early warning SysTem) software platform: PRESTo processes in real-time three channel acceleration data streams: once the P-waves arrival have been detected, it provides earthquake location and magnitude estimations, and peak ground motion predictions at target sites. PRESTo is currently implemented in real- time at National Institute for Earth Physics, Bucharest for several months in parallel with a secondary EEWS. The alert notification is issued only when both systems validate each other. Here we present the results obtained using offline earthquakes originating from Vrancea area together with several real-time detection of significant earthquakes from Vrancea and Transylvania areas that occurred in the last months. Currently the warning notification is sent to several users including emergency response units from 12 counties, a big bridge located in Bucharest, a nuclear sterilization facility in Măgurele city and to the nuclear power plant from Cernavoda.
ULF radio monitoring network in a seismic area
NASA Astrophysics Data System (ADS)
Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru
2017-04-01
ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low frequency. In both cases we use spectrum analysis in three bands of frequency with different filters. More results showed that tectonic stress generated by seismicity is more important than effects of solar flares. This work was partially supported by the Partnership in Priority Areas Program - PNII, under MEN-UEFISCDI, DARING Project no. 69/2014 and the Nucleu Program - PN 16-35, Project no. 03 01.
The Geological Susceptibility of Induced Earthquakes in the Duvernay Play
NASA Astrophysics Data System (ADS)
Pawley, Steven; Schultz, Ryan; Playter, Tiffany; Corlett, Hilary; Shipman, Todd; Lyster, Steven; Hauck, Tyler
2018-02-01
Presently, consensus on the incorporation of induced earthquakes into seismic hazard has yet to be established. For example, the nonstationary, spatiotemporal nature of induced earthquakes is not well understood. Specific to the Western Canada Sedimentary Basin, geological bias in seismogenic activation potential has been suggested to control the spatial distribution of induced earthquakes regionally. In this paper, we train a machine learning algorithm to systemically evaluate tectonic, geomechanical, and hydrological proxies suspected to control induced seismicity. Feature importance suggests that proximity to basement, in situ stress, proximity to fossil reef margins, lithium concentration, and rate of natural seismicity are among the strongest model predictors. Our derived seismogenic potential map faithfully reproduces the current distribution of induced seismicity and is suggestive of other regions which may be prone to induced earthquakes. The refinement of induced seismicity geological susceptibility may become an important technique to identify significant underlying geological features and address induced seismic hazard forecasting issues.
NASA Astrophysics Data System (ADS)
Grigoli, Francesco; Cesca, Simone; Priolo, Enrico; Rinaldi, Antonio Pio; Clinton, John F.; Stabile, Tony A.; Dost, Bernard; Fernandez, Mariano Garcia; Wiemer, Stefan; Dahm, Torsten
2017-06-01
Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.
NASA Astrophysics Data System (ADS)
Montoya-Noguera, Silvana; Wang, Yu
2017-04-01
The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.
MOZART - A seismological investigation of Central Mozambique
NASA Astrophysics Data System (ADS)
Domingues, Ana; Chamussa, Jose; Helffrich, George; Fishwick, Stewart; Ferreira, Ana; Custodio, Susana; Silveira, Graca; Manhica, Vladimiro; Fonseca, Joao
2013-04-01
Project MOZART (MOZAmbique Rift Tomography) aims to investigate the geological structure and current tectonic activity of the Mozambique sector of the East African Rift System (EARS). Space geodesy has indicated in recent years that the border between Nubia and the Somalian plate at these latitudes (16°S to 24°S) encompasses the Rovuma microplate, but little is known about its geometry or seismotectonics. The M7 Machaze earthquake of 2006 highlighted the relevance of the associated deformation, and motivated the MOZART deployment. Besides the regional seismotectonics, other targets of the project are the illumination of the Mesoproterozoic structures of the Mozambique Belt, and the study of its role in the current incipient rifting. The seismic network is composed of 30 VBB seismographic stations on loan from NERC's SEIS-UK Pool (Guralp CMG-3T 120s sensors) covering Central Mozambique (Manica, Sofala, Gaza and Inhambane provinces) with average inter-station spaces of the order of 100 km. Four stations are across the border in South Africa (Kruger Park). Data acquisition started in March 2011, and decommissioning is foreseen for August 2013. Data processing is underway, and includes local seismicity analysis, receiver function estimation and the study of surface wave dispersion (both ambient noise and teleseismic). Once a preliminary velocity model is developed with these techniques, further refinements will be attempted through waveform tomography. For this purpose, SPECFEM waveform modelling with a 3D velocity model is currently being implemented. Preliminary results of the ongoing data processing and analysis will be presented.
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2007-02-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of dowel bonding materials for use in hardened...
DOT National Transportation Integrated Search
2008-05-01
This study was undertaken with the objective of assessing the current provisions in SDC-2006 for incorporating : vertical effects of ground motions in seismic evaluation and design of ordinary highway bridges. A : comprehensive series of simulations ...
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2007-01-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2006-02-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...
Systematic detection and classification of earthquake clusters in Italy
NASA Astrophysics Data System (ADS)
Poli, P.; Ben-Zion, Y.; Zaliapin, I. V.
2017-12-01
We perform a systematic analysis of spatio-temporal clustering of 2007-2017 earthquakes in Italy with magnitudes m>3. The study employs the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b] with basic data-driven parameters. The results indicate that seismicity in Italy (an extensional tectonic regime) is dominated by clustered events, with smaller proportion of background events than in California. Evaluation of internal cluster properties allows separation of swarm-like from burst-like seismicity. This classification highlights a strong geographical coherence of cluster properties. Swarm-like seismicity are dominant in regions characterized by relatively slow deformation with possible elevated temperature and/or fluids (e.g. Alto Tiberina, Pollino), while burst-like seismicity are observed in crystalline tectonic regions (Alps and Calabrian Arc) and in Central Italy where moderate to large earthquakes are frequent (e.g. L'Aquila, Amatrice). To better assess the variation of seismicity style across Italy, we also perform a clustering analysis with region-specific parameters. This analysis highlights clear spatial changes of the threshold separating background and clustered seismicity, and permits better resolution of different clusters in specific geological regions. For example, a large proportion of repeaters is found in the Etna region as expected for volcanic-induced seismicity. A similar behavior is observed in the northern Apennines with high pore pressure associated with mantle degassing. The observed variations of earthquakes properties highlight shortcomings of practices using large-scale average seismic properties, and points to connections between seismicity and local properties of the lithosphere. The observations help to improve the understanding of the physics governing the occurrence of earthquakes in different regions.
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Nekrasova, A.
2017-12-01
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 - M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum credible magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g. peak ground acceleration, PGA, or macro-seismic intensity etc.). After a rigorous testing against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory, etc.). This, USLE based, methodology of seismic hazard and risks assessment is applied to the territory of Altai-Sayan Region, of Russia. The study supported by the Russian Science Foundation Grant No. 15-17-30020.
Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland
NASA Astrophysics Data System (ADS)
Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.
2017-06-01
Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore indicates that detectability of Illgraben debris flows of this size is unaffected by changing environmental and anthropogenic seismic noise and that false detections can be greatly reduced with simple processing steps.
Collapse and Earthquake Swarm after North Korea's 3 September 2017 Nuclear Test
NASA Astrophysics Data System (ADS)
Tian, D.; Yao, J.; Wen, L.
2017-12-01
North Korea's 3 September 2017 nuclear test was followed by a series of small seismic events, with the first one occurring about eight-and-a-half minutes after the nuclear test, two on 23 September 2017, and one on 12 October 2017. While the characteristics of these seismic events would carry crucial information about current geological state and environmental condition of the nuclear test site and help evaluate the geological and environmental safety of the test site should any future tests be performed there, the precise locations and nature of these seismic events are unknown. In this study, we collect all available seismic waveforms of these five seismic events from China Earthquake Networks Center, F-net, Hi-net, Global Seismographic Network, Japan Meteorological Agency Seismic Network, and Korea National Seismograph Network. We are able to find high-quality seismic data that constitute good azimuth coverage for high-precision determination of their relative locations and detailed analysis of their source characteristics. Our study reveals that the seismic event eight-and-a-half minutes after the nuclear test is an onsite collapse toward the nuclear test center, while the later events are an earthquake swarm occurring in similar locations. The onsite collapse calls for continued close monitoring of any leaks of radioactive materials from the nuclear test site. The occurrence of the collapse should deem the underground infrastructure beneath mountain Mantap not be used for any future nuclear tests. Given the history of the nuclear tests North Korea performed beneath this mountain, a nuclear test of a similar yield would produce collapses in an even larger scale creating an environmental catastrophe. The triggered earthquake swarm indicates that North Korea's past tests have altered the tectonic stress in the region to the extent that previously inactive tectonic faults in the region have reached their state of critical failure. Any further disturbance from a future test could generate earthquakes that may be damaging by their own force or crack the nuclear test sites of the past or the present.
Lattice Boltzmann Simulation of Seismic Mobilization of Residual Oil in Sandstone
NASA Astrophysics Data System (ADS)
Guo, R.; Jiang, F.; Deng, W.
2017-12-01
Seismic stimulation is a promising technology for enhanced oil recovery. However, current mechanism studies are mainly in the single constricted tubes or idealized porous media, and no study has been conducted in real reservoir porous media. We have developed a numerical simulation which uses the lattice Boltzmann method to directly calculate the characteristics of residual oil clusters to quantify seismic mobilization of residual oil in real Berea sandstone in a scale of 400μm x 400μm x 400μm. The residual oil clusters will be firstly obtained by applying the water flooding scheme to the oil-saturated sandstone. Then, we will apply the seismic stimulation to the sandstone by converting the seismic effect to oscillatory inertial force and add to the pore fluids. This oscillatory inertial force causes the mobilization of residual oil by overcoming the capillary force. The response of water and oil to the seismic stimulation will be observed in our simulations. Two seismic oil mobilization mechanisms will be investigated: (1) the passive response of residual oil clusters to the seismic stimulation, and (2) the resonance of oil clusters subject to low frequency seismic stimulation. We will then discuss which mechanism should be the dominant mechanism for the seismic stimulation oil recovery for practical applications.
Analysis of Magnitude Correlations in a Self-Similar model of Seismicity
NASA Astrophysics Data System (ADS)
Zambrano, A.; Joern, D.
2017-12-01
A recent model of seismicity that incorporates a self-similar Omori-Utsu relation, which is used to describe the temporal evolution of earthquake triggering, has been shown to provide a more accurate description of seismicity in Southern California when compared to epidemic type aftershock sequence models. Forecasting of earthquakes is an active research area where one of the debated points is whether magnitude correlations of earthquakes exist within real world seismic data. Prior to this work, the analysis of magnitude correlations of the aforementioned self-similar model had not been addressed. Here we present statistical properties of the magnitude correlations for the self-similar model along with an analytical analysis of the branching ratio and criticality parameters.
Assessing the seismic risk potential of South America
Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.
2016-01-01
We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.
Pattern Informatics Approach to Earthquake Forecasting in 3D
NASA Astrophysics Data System (ADS)
Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.
2009-05-01
Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.
NASA Astrophysics Data System (ADS)
Friberg, P. A.; Luis, R. S.; Quintiliani, M.; Lisowski, S.; Hunter, S.
2014-12-01
Recently, a novel set of modules has been included in the Open Source Earthworm seismic data processing system, supporting the use of web applications. These include the Mole sub-system, for storing relevant event data in a MySQL database (see M. Quintiliani and S. Pintore, SRL, 2013), and an embedded webserver, Moleserv, for serving such data to web clients in QuakeML format. These modules have enabled, for the first time using Earthworm, the use of web applications for seismic data processing. These can greatly simplify the operation and maintenance of seismic data processing centers by having one or more servers providing the relevant data as well as the data processing applications themselves to client machines running arbitrary operating systems.Web applications with secure online web access allow operators to work anywhere, without the often cumbersome and bandwidth hungry use of secure shell or virtual private networks. Furthermore, web applications can seamlessly access third party data repositories to acquire additional information, such as maps. Finally, the usage of HTML email brought the possibility of specialized web applications, to be used in email clients. This is the case of EWHTMLEmail, which produces event notification emails that are in fact simple web applications for plotting relevant seismic data.Providing web services as part of Earthworm has enabled a number of other tools as well. One is ISTI's EZ Earthworm, a web based command and control system for an otherwise command line driven system; another is a waveform web service. The waveform web service serves Earthworm data to additional web clients for plotting, picking, and other web-based processing tools. The current Earthworm waveform web service hosts an advanced plotting capability for providing views of event-based waveforms from a Mole database served by Moleserve.The current trend towards the usage of cloud services supported by web applications is driving improvements in JavaScript, css and HTML, as well as faster and more efficient web browsers, including mobile. It is foreseeable that in the near future, web applications are as powerful and efficient as native applications. Hence the work described here has been the first step towards bringing the Open Source Earthworm seismic data processing system to this new paradigm.
LANL seismic screening method for existing buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.
1997-01-01
The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method andmore » will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method.« less
NASA Astrophysics Data System (ADS)
Gao, Y.; Wang, Q.; SHI, Y.
2017-12-01
There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].
New Madrid Seismotectonic Program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buschbach, T.C.
1986-06-01
The New Madrid Seismotectonic Program was a large-scale multidisciplinary effort that was designed to define the structural setting and tectonic history of the New Madrid area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. The tectonic model proposed to explain the New Madrid seismicity is the ''zone of weakness'' model, which suggests that an ancient rift complex formed a zone of weakness in the earth's crust along which regional stresses are relieved. The Reelfoot Rift portion of the proposed rift complex is currently seismically active, and it must be considered capable and likely to bemore » exposed to large-magnitude earthquakes in the future. Earthquakes that occur in the Wabash Valley area are less abundant and generally have deeper hypocenters than earthquakes in the New Madrid area. The area of the Southern Indiana Arm must be considered to have seismic risk, although a lesser extent than the Reelfoot Rift. The east-west trending Rough Creek Graben is practically aseismic, probably in large part due to its orientation in the current stress field. The northwest-trending St. Louis Arm of the proposed rift complex includes a pattern of seismicity that extends from southern Illinois along the Mississippi River. This arm must be considered to have seismic risk, but because of the lack of development of a graben associated with the arm and the orientation of the arm in the current stress field, the risk appears to be less than in the Reelfoot Rift portion of the rift complex.« less
MASW on the standard seismic prospective scale using full spread recording
NASA Astrophysics Data System (ADS)
Białas, Sebastian; Majdański, Mariusz; Trzeciak, Maciej; Gałczyński, Edward; Maksym, Andrzej
2015-04-01
The Multichannel Analysis of Surface Waves (MASW) is one of seismic survey methods that use the dispersion curve of surface waves in order to describe the stiffness of the surface. Is is used mainly for geotechnical engineering scale with total length of spread between 5 - 450 m and spread offset between 1 - 100 m, the hummer is the seismic source on this surveys. The standard procedure of MASW survey is: data acquisition, dispersion analysis and inversion of extracting dispersion curve to obtain the closest theoretical curve. The final result includes share-wave velocity (Vs) values at different depth along the surveyed lines. The main goal of this work is to expand this engineering method to the bigger scale with the length of standard prospecting spread of 20 km using 4.5 Hz version of vertical component geophones. The standard vibroseis and explosive method are used as the seismic source. The acquisition were conducted on the full spread all the time during each single shoot. The seismic data acquisition used for this analysis were carried out on the Braniewo 2014 project in north of Poland. The results achieved during standard MASW procedure says that this method can be used on much bigger scale as well. The different methodology of this analysis requires only much stronger seismic source.
Polish Geophysical Solid Earth Infrastructure Contributing to EPOS
NASA Astrophysics Data System (ADS)
Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.
2012-04-01
In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10 portable, high-accuracy magnetoteluric stations.
Seismic signatures of carbonate caves affected by near-surface absorptions
NASA Astrophysics Data System (ADS)
Rao, Ying; Wang, Yanghua
2015-12-01
The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.
Radtke, Robert P; Stokes, Robert H; Glowka, David A
2014-12-02
A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.
NASA Astrophysics Data System (ADS)
Pino, Nicola Alessandro
2012-06-01
Post-seismic relaxation is known to occur after large or moderate earthquakes, on time scales ranging from days to years or even decades. In general, long-term deformation following seismic events has been detected by means of standard geodetic measurements, although seismic instruments are only used to estimate short timescale transient processes. Albeit inertial seismic sensors are also sensitive to rotation around their sensitive axes, the recording of very slow inclination of the ground surface at their standard output channels is practically impossible, because of their design characteristics. However, modern force-balance, broad-band seismometers provide the possibility to detect and measure slow surface inclination, through the analysis of the mass position signal. This output channel represents the integral of the broad-band velocity and is generally considered only for state-of-health diagnostics. In fact, the analysis of mass position data recorded at the time of the 2009 April 6, L'Aquila (MW= 6.3) earthquake, by a closely located STS-2 seismometer, evidenced the occurrence of a very low frequency signal, starting right at the time of the seismic event. This waveform is only visible on the horizontal components and is not related to the usual drift coupled with the temperature changes. This analysis suggests that the observed signal is to be ascribed to slowly developing ground inclination at the station site, caused by post-seismic relaxation following the main shock. The observed tilt reached 1.7 × 10-5 rad in about 2 months. This estimate is in very good agreement with the geodetic observations, giving comparable tilt magnitude and direction at the same site. This study represents the first seismic analysis ever for the mass position signal, suggesting useful applications for usually neglected data.
NASA Astrophysics Data System (ADS)
Abidi, Oussama; Inoubli, Mohamed Hédi; Sebei, Kawthar; Amiri, Adnen; Boussiga, Haifa; Nasr, Imen Hamdi; Salem, Abdelhamid Ben; Elabed, Mahmoud
2017-05-01
The Maastrichtian-Paleocene El Haria formation was studied and defined in Tunisia on the basis of outcrops and borehole data; few studies were interested in its three-dimensional extent. In this paper, the El Haria formation is reviewed in the context of a tectono-stratigraphic interval using an integrated seismic stratigraphic analysis based on borehole lithology logs, electrical well logging, well shots, vertical seismic profiles and post-stack surface data. Seismic analysis benefits from appropriate calibration with borehole data, conventional interpretation, velocity mapping, seismic attributes and post-stack model-based inversion. The applied methodology proved to be powerful for charactering the marly Maastrichtian-Paleocene interval of the El Haria formation. Migrated seismic sections together with borehole measurements are used to detail the three-dimensional changes in thickness, facies and depositional environment in the Cap Bon and Gulf of Hammamet regions during the Maastrichtian-Paleocene time. Furthermore, dating based on their microfossil content divulges local and multiple internal hiatuses within the El Haria formation which are related to the geodynamic evolution of the depositional floor since the Campanian stage. Interpreted seismic sections display concordance, unconformities, pinchouts, sedimentary gaps, incised valleys and syn-sedimentary normal faulting. Based on the seismic reflection geometry and terminations, seven sequences are delineated. These sequences are related to base-level changes as the combination of depositional floor paleo-topography, tectonic forces, subsidence and the developed accommodation space. These factors controlled the occurrence of the various parts of the Maastrichtian-Paleocene interval. Detailed examinations of these deposits together with the analysis of the structural deformation at different time periods allowed us to obtain a better understanding of the sediment architecture in depth and the delineation of the geodynamic evolution of the region.
NASA Astrophysics Data System (ADS)
Morton, E.; Bilek, S. L.; Rowe, C. A.
2017-12-01
Understanding the spatial extent and behavior of the interplate contact in the Cascadia Subduction Zone (CSZ) may prove pivotal to preparation for future great earthquakes, such as the M9 event of 1700. Current and historic seismic catalogs are limited in their integrity by their short duration, given the recurrence rate of great earthquakes, and by their rather high magnitude of completeness for the interplate seismic zone, due to its offshore distance from these land-based networks. This issue is addressed via the 2011-2015 Cascadia Initiative (CI) amphibious seismic array deployment, which combined coastal land seismometers with more than 60 ocean-bottom seismometers (OBS) situated directly above the presumed plate interface. We search the CI dataset for small, previously undetected interplate earthquakes to identify seismic patches on the megathrust. Using the automated subspace detection method, we search for previously undetected events. Our subspace comprises eigenvectors derived from CI OBS and on-land waveforms extracted for existing catalog events that appear to have occurred on the plate interface. Previous work focused on analysis of two repeating event clusters off the coast of Oregon spanning all 4 years of deployment. Here we expand earlier results to include detection and location analysis to the entire CSZ margin during the first year of CI deployment, with more than 200 new events detected for the central portion of the margin. Template events used for subspace scanning primarily occurred beneath the land surface along the coast, at the downdip edge of modeled high slip patches for the 1700 event, with most concentrated at the northwestern edge of the Olympic Peninsula.
NASA Astrophysics Data System (ADS)
Kimura, M.; Kame, N.; Watada, S.; Ohtani, M.; Araya, A.; Imanishi, Y.; Ando, M.; Kunugi, T.
2017-12-01
Seismic waves radiated from an earthquake rupture induces density perturbations of the medium, which in turn generates prompt gravity changes at all distances before the arrival of seismic waves. Detection of the gravity signal before the seismic one is a challenge in seismology. In this study, we searched for the prompt gravity changes from the 2011 Tohoku-Oki earthquake in data recorded by gravimeters, seismometers, and tiltmeters. Predicted changes from the currently used simplified model were not identified using band-pass filtering and multi-station stacking even though sufficient signal-to-noise ratios were achieved. Our data analysis raised discrepancy between the data and the theoretical model. To interpret the absence of signals in the data, we investigated the effect of self-gravity deformation on the measurement of gravitational acceleration, which has been ignored in the existing theory. We analytically calculated the displacement of the observation station induced by the prompt gravity changes in an infinite homogeneous medium, and showed that before the arrival of P waves each point in the medium moves at an acceleration identical to the applied gravity change, i.e., free-falls. As a result of the opposite inertial force, gravity sensors attached to the medium lose their sensitivity to the prompt gravity changes. This new observation model incorporated with the self-gravity effect explains the absence of such prompt signals in the acceleration data. We have shown the negative observability in acceleration, but there remains a possibility of detection of its spatial gradients or spatial strain. For a future detection experiment, we derived an analytical expression of the theoretical gravity gradients from a general seismic source described as a moment tensor.
Real-time classification of signals from three-component seismic sensors using neural nets
NASA Astrophysics Data System (ADS)
Bowman, B. C.; Dowla, F.
1992-05-01
Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.
Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field
NASA Astrophysics Data System (ADS)
Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali
2017-04-01
One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .
A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico
NASA Astrophysics Data System (ADS)
Wagner, P. F.; Reece, R.; Ewing, R. C.
2014-12-01
The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.
Squirt flow due to interfacial water films in hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Sell, Kathleen; Quintal, Beatriz; Kersten, Michael; Saenger, Erik H.
2018-05-01
Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess
and water in excess
formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.
Multisensor of Remotely Sensed Data for Characterizing Seismotectonic Activities in Malaysia
NASA Astrophysics Data System (ADS)
Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul; Anuar Jamaludin, Tajul; Tongkul, Felix; Mohamad, Zakaria; Ramli, Zamri; Abd Manap, Mohamad; Rahman, Muhammad Zulkarnain Abdul
2015-04-01
Seismically induced events pose serious hazards yet are difficult to predict. Despite remarkable efforts of mapping, monitoring and modelling of such great events at regional or local scales, the understanding of the processes in the Earth's dynamic system remains elusive. Although Malaysia is in a relatively low seismic hazard zone, the current trend and pattern of seismotectonic activities triggered a series of fundamental study to better understand the relationship between the earthquakes, recent tectonics and seismically active fault zones. Several conventional mapping techniques have been intensively used but shown some limitations. Remote sensing is the preferable mean to quantify the seismic activity accurately in a larger area within a short period. Still, only few of such studies have been carried out in this subduction region. Characterization of seismotectonic activities from space in a tropical environment is very challenging given the complexity of its physiographic, climatic, geologic conditions and anthropogenic activities. There are many factors controlling the success rate of the implementation mainly due to the lack of historical earthquakes, geomorphological evidence, and proper identification of regional tectonic patterns. In this study, we aim at providing better insight to extract and characterize seismotectonic activities by integrating passive and active remotely-sensed data, geodetic data, historical records, GIS-based data analysis and in-situ measurements as well quantify them based on field investigation and expert knowledge. It is crucial to perform spatiotemporal analysis of its activities in the most seismically induced region in North-Western Sabah. A comprehensive geodatabase of seismotectonic events are developed and allowed us to analyse the spatiotemporal activities. A novelty of object-based image method for extracting tropical seismically active faults and related seismotectonic features are introduced and evaluated. We aim to develop the exchangeable and transferable rule-set with optimal parameterization for such aforementioned tasks. A geomorphometric-based remotely sensed approach is used to understand the tectonic geomorphology in processes affecting the environment at different spatial scales. As a result of this study, questions related to cascading natural disasters, e.g. landslides can be quantitatively answered. Development and applications of seismically induced landslide hazard and risk zonation at different scales are conceptually presented and critically discussed. So far, quantification evaluation of uncertainties associated to spatial seismic hazard and risks prediction remains very challenging to understand and it is an interest of on-going research. In the near-future, it is crucial to address the changes of climate and land-use-land-cover in relation to temporal and spatial pattern of seismically induced landslides. It is also important to assess, model and incorporate the changes due to natural disasters into a sustainable risk management. As a conclusion, the characteristics, development and function of tectonic movement, as one of the components for geomorphological process-response system is crucial for a regional seismic study. With newly emerging multi-sensor of remotely sensed data coupled with the satellite positioning system promises a better mapping and monitoring tool for seismotectonic activities in such a way that it can be used to map, monitor, and model related seismically induced processes for a comprehensive hazard and associated risk assessment.
NASA Astrophysics Data System (ADS)
Formisano, Antonio; Chieffo, Nicola; Milo, Bartolomeo; Fabbrocino, Francesco
2016-12-01
The current paper deals with the seismic vulnerability evaluation of masonry constructions grouped in aggregates through an "ad hoc" quick vulnerability form based on new assessment parameters considering local collapse mechanisms. First, a parametric kinematic analysis on masonry walls with different height (h) / thickness (t) ratios has been developed with the purpose of identifying the collapse load multiplier for activation of the main four first-order failure mechanisms. Subsequently, a form initially conceived for building aggregates suffering second-mode collapse mechanisms, has been expanded on the basis of the achieved results. Tre proposed quick vulnerability technique has been applied to one case study within the territory of Arsita (Teramo, Italy) and, finally, it has been also validated by the comparison of results with those deriving from application of the well-known FaMIVE procedure.
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang
2017-11-01
Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.
Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil
NASA Astrophysics Data System (ADS)
de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.
2018-05-01
A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.
Electromagnetic earthquake triggering phenomena: State-of-the-art research and future developments
NASA Astrophysics Data System (ADS)
Zeigarnik, Vladimir; Novikov, Victor
2014-05-01
Developed in the 70s of the last century in Russia unique pulsed power systems based on solid propellant magneto-hydrodynamic (MHD) generators with an output of 10-500 MW and operation duration of 10 to 15 s were applied for an active electromagnetic monitoring of the Earth's crust to explore its deep structure, oil and gas electrical prospecting, and geophysical studies for earthquake prediction due to their high specific power parameters, portability, and a capability of operation under harsh climatic conditions. The most interesting and promising results were obtained during geophysical experiments at the test sites located at Pamir and Northern Tien Shan mountains, when after 1.5-2.5 kA electric current injection into the Earth crust through an 4 km-length emitting dipole the regional seismicity variations were observed (increase of number of weak earthquakes within a week). Laboratory experiments performed by different teams of the Institute of Physics of the Earth, Joint Institute for High Temperatures, and Research Station of Russian Academy of Sciences on observation of acoustic emission behavior of stressed rock samples during their processing by electric pulses demonstrated similar patterns - a burst of acoustic emission (formation of cracks) after application of current pulse to the sample. Based on the field and laboratory studies it was supposed that a new kind of earthquake triggering - electromagnetic initiation of weak seismic events has been observed, which may be used for the man-made electromagnetic safe release of accumulated tectonic stresses and, consequently, for earthquake hazard mitigation. For verification of this hypothesis some additional field experiments were carried out at the Bishkek geodynamic proving ground with application of pulsed ERGU-600 facility, which provides 600 A electric current in the emitting dipole. An analysis of spatio-temporal redistribution of weak regional seismicity after ERGU-600 pulses, as well as a response of geoacoustic emission recorded in the wells at a distance of 7-12 km from the emitting dipole to the ERGU-600 pulses confirmed the effects of an influence of electromagnetic field on the deformation processes in the Earth crust and the real existence of electromagnetic triggering phenomena. For verification of results of field observations laboratory studies of behavior of rock samples under critical stress-strain state and external electric actions were carried out at the spring and lever presses, as well as at the stick-slip models simulated the seismic cycle (stress accumulation and discharge) in the seismogenic geological fault. Various possible mechanisms of weak electrical stimulation (electric current density 10-7-10-8 mA/cm2 at a depth of earthquake epicenters of 5 to10 km) of deformation processes in the Earth crust, including increased fluid pore pressure, electrokinetic phenomena, magnetostriction, electrical stimulation of fluid migration into the fault area are considered. However, the mechanism of electromagnetic earthquake triggering phenomena is still open. Based on the field observations of electromagnetic triggering of weak seismicity resulting in a partial safe release of stresses in the Earth crust a possibility of control of seismic process is considered for risk reduction of catastrophic earthquakes. The results obtained from field and laboratory experiments on electromagnetic initiation of seismic events allow to consider a problem of lithosphere-ionosphere relations from another point of view. Keeping in mind that the current density generated in the Earth crust by artificial electric source is comparable with the density of telluric currents induced during severe ionospheric disturbances (e.g., magnetic storms) it may be possible under certain favorable conditions in lithosphere to initiate earthquakes by electromagnetic disturbances in ionosphere. A possibility of application of these triggering phenomena for short-term earthquake prediction is discussed.
Improvement of Epicentral Direction Estimation by P-wave Polarization Analysis
NASA Astrophysics Data System (ADS)
Oshima, Mitsutaka
2016-04-01
Polarization analysis has been used to analyze the polarization characteristics of waves and developed in various spheres, for example, electromagnetics, optics, and seismology. As for seismology, polarization analysis is used to discriminate seismic phases or to enhance specific phase (e.g., Flinn, 1965)[1], by taking advantage of the difference in polarization characteristics of seismic phases. In earthquake early warning, polarization analysis is used to estimate the epicentral direction using single station, based on the polarization direction of P-wave portion in seismic records (e.g., Smart and Sproules(1981) [2], Noda et al.,(2012) [3]). Therefore, improvement of the Estimation of Epicentral Direction by Polarization Analysis (EEDPA) directly leads to enhance the accuracy and promptness of earthquake early warning. In this study, the author tried to improve EEDPA by using seismic records of events occurred around Japan from 2003 to 2013. The author selected the events that satisfy following conditions. MJMA larger than 6.5 (JMA: Japan Meteorological Agency). Seismic records are available at least 3 stations within 300km in epicentral distance. Seismic records obtained at stations with no information on seismometer orientation were excluded, so that precise and quantitative evaluation of accuracy of EEDPA becomes possible. In the analysis, polarization has calculated by Vidale(1986) [4] that extended the method proposed by Montalbetti and Kanasewich(1970)[5] to use analytical signal. As a result of the analysis, the author found that accuracy of EEDPA improves by about 15% if velocity records, not displacement records, are used contrary to the author's expectation. Use of velocity records enables reduction of CPU time in integration of seismic records and improvement in promptness of EEDPA, although this analysis is still rough and further scrutiny is essential. At this moment, the author used seismic records that obtained by simply integrating acceleration records and applied no filtering. Further study on optimal type of filter and its application frequency band is necessary. In poster presentation, the results of aforementioned study shall be shown. [1] Flinn, E. A. (1965) , Signal analysis using rectilinearity and direction of particle motion. Proceedings of the IEEE, 53(12), 1874-1876. [2] Smart, E., & Sproules, H. (1981), Regional phase processors (No. SDAC-TR-81-1). TELEDYNE GEOTECH ALEXANDRIA VA SEISMIC DATA ANALYSIS CENTER. [3] Noda, S., Yamamoto, S., Sato, S., Iwata, N., Korenaga, M., & Ashiya, K. (2012). Improvement of back-azimuth estimation in real-time by using a single station record. Earth, planets and space, 64(3), 305-308. [4] Vidale, J. E. (1986). Complex polarization analysis of particle motion. Bulletin of the Seismological society of America, 76(5), 1393-1405. [5] Montalbetti, J. F., & Kanasewich, E. R. (1970). Enhancement of teleseismic body phases with a polarization filter. Geophysical Journal International, 21(2), 119-129.
NASA Astrophysics Data System (ADS)
Yu, Yong; Chen, Yongshun John
2016-12-01
SKS wave splitting analysis is performed to estimate the seismic anisotropy in the upper mantle using teleseismic data recorded by a temporary seismic array of 180 stations called SOSArray deployed in the southern Ordos block and the Qinling-Dabie orogen. The most important finding is that large delay times with NW-SE fast polarization directions in the northeastern Tibet are continuous across the boundary into the southwestern part of the Ordos block, where the SKS wave splitting results are significantly different from those in the rest of the Ordos block. Based on our SKS wave splitting results in addition to the results from previous studies, we propose an asthenospheric flow model for the eastward extrusion of the Tibetan upper mantle. The model consists of two corner flows around the southwestern corner and the southeastern corner of the Ordos block and the eastward flow along the Weihe graben and the Qinling-Dabie orogen for the escaping Tibetan upper mantle. Finally, the clockwise turning flow of the asthenosphere around the southwestern corner of Ordos block has currently extended laterally into the interior of the Ordos block, suggesting that the thick cold lithospheric root of the southwestern Ordos block there is currently being replaced with hot Tibetan asthenosphere at depths, that is, we observed an on-going process of thermal erosion of a cratonic lithosphere by lateral hot asthenospheric flow.
NASA Astrophysics Data System (ADS)
Elashvili, M.; Javakhishvili, Z.; Godoladze, T.; Karakhanyan, A.; Sukhishvili, L.; Nikolaeva, E.; Sokhadze, G.; Avanesyan, M.
2012-12-01
Current study concerns Javakheti area in the Lesser Caucasus. This area comprises a volcanic plateau with more than 20 volcanoes, several of them dated as having erupted during the Holocene. In the region the upper part of Lava complex is represented by Middle-Upper Quaternary formations. The region is an area of young deformations in the Alpine belt. Formation of relief began at the neotectonic stage (Sarmatian) and continues at present. Javakheti is one of the most seismically active regions in the Caucasus, earthquakes of 1899 and 1986 with magnitudes up to 6.0, causing severe damage and hundreds of casualties, occurred there. Historical data on earthquakes in 1088 and 1899 locate them in the same region, highlighting the importance on learning about the location and characteristics of their seismic sources. Javakheti highland seems to be actively populated at least from the Bronze Age period, forming a local culture to be strongly affected by Natural catastrophes and significant changes in Landscapes and climate. Study of potential seismic and associated natural hazards, such as landslide and rockfalls, possible volcanic activity in the region, including paleo and historical evidences, were addressed by number of International Projects (ISTC A-1418, NATO SFP # 983284 ) and multidisciplinary studies carried out by the Institute of Earth Sciences. Data gathered after the Installation of local GPS and Seismic networks have provided new look on seismicity pattern of the region and major seismic sources, while field studies (Geophysical survey, Paleo trenching, Archaeological studies, etc.) have provided new information on the dramatic Natural disasters which occurred in the region and probably played a vital role in its history. Remote sensing techniques became widely used in geological investigations during the decades. Interferometric synthetic aperture radar (InSAR), aerial and optical data analysis have contributed to the development of this work.. Case studies of historical earthquakes of 1899 and 1089, as well as Archaeo-Seismological site along the Javakheti seismic fault will be presented. History on Natural Disasters in the region can be complemented by Bertakana Paleo-Landslide, to be discussed separately as one of the mega events in the Area. The mentioned events are considered as an important input for Seismic Hazard Assessment of Javakheti Region.
NASA Astrophysics Data System (ADS)
Ardeleanu, Luminita Angela; Neagoe, Cristian
2014-05-01
The seismic survey of the territory of Romania is mainly performed by the national seismic network operated by the National Institute for Earth Physics of Bucharest. After successive developments and upgrades, the network consists at present of 123 permanent stations equipped with high quality digital instruments (Kinemetrics K2, Quantera Q330, Quantera Q330HR, PS6-24 and Basalt digitizers) - 102 real time and 20 off-line stations - which cover the whole territory of the country. All permanent stations are supplied with 3 component accelerometers (episenzor type), while the real time stations are in addition provided with broadband (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2) or short period (SH-1, S13, Mark l4c, Ranger, GS21, L22_VEL) velocity sensors. Several communication systems are currently used for the real time data transmission: an analog line in UHF band, a line through GPRS (General Packet Radio Service), a dedicated line through satellite, and a dedicated line provided by the Romanian Special Telecommunication Service. During the period January 1, 2006 - June 30, 2013, 5936 shallow depth seismic events - earthquakes and quarry blasts - with local magnitude ML ≥ 1.2 were localized on the Romanian territory, or in its immediate vicinity, using the records of the national seismic network; 1467 subcrustal earthquakes (depth ≥ 60 km) with magnitude ML ≥ 1.9 were also localized in the Vrancea region, at the bend of the Eastern Carpathians. The goal of the present study is to evaluate the individual contribution of the real time seismic stations to the monitoring of the local seismicity. The performance of each station is estimated by taking into consideration the fraction of events that are localised using the station records, compared to the total number of events of the catalogue, occurred during the time of station operation. Taking into account the nonuniform space distribution of earthquakes, the location of the site and the recovery rate of reliable data are defining elements for the usefulness of a particular station. Our analysis provides a measure of station reliability, essential indicator for decisions regarding the increasing of effectiveness and future development of the Romanian seismic network.
NASA Astrophysics Data System (ADS)
Custodio, S.; Matos, C.; Grigoli, F.; Cesca, S.; Heimann, S.; Rio, I.
2015-12-01
Seismic data processing is currently undergoing a step change, benefitting from high-volume datasets and advanced computer power. In the last decade, a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered mainland Portugal. This outstanding regional coverage currently enables the computation of a high-resolution image of the seismicity of Portugal, which contributes to fitting together the pieces of the regional seismo-tectonic puzzle. Although traditional manual inspections are valuable to refine automatic results they are impracticable with the big data volumes now available. When conducted alone they are also less objective since the criteria is defined by the analyst. In this work we present CatchPy, a scanning algorithm to detect earthquakes in continuous datasets. Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e. lowering the detection threshold). CatchPY is designed to produce an event database that could be easily located using existing location codes (e.g.: Grigoli et al. 2013, 2014). We use CatchPy to perform automatic detection and location of earthquakes that occurred in Alentejo region (South Portugal), taking advantage of a dense seismic network deployed in the region for two years during the DOCTAR experiment. Results show that our automatic procedure is particularly suitable for small aperture networks. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event location is performed by waveform coherence analysis, scanning different hypocentral coordinates (Grigoli et al. 2013, 2014). The reliability of automatic detections, phase pickings and locations are tested trough the quantitative comparison with manual results. This work is supported by project QuakeLoc, reference: PTDC/GEO-FIQ/3522/2012
1981-10-01
Chesaneake Division, Naval Facilities Engineering Command, Washington, DC) 34. "Strait of Belle Isle Crossing HVDC Transmission - Submarine Cable...phenomena; such as wind storm generated wave action, bottom currents, bottom mudslides, or seismic activity; as well as human activity, such as...engaging a cable. Ship anchors are used to develop holding power on the seafloor for mooring a floating body permanently or temporary on site. The major
Seismic slope-performance analysis: from hazard map to decision support system
Miles, Scott B.; Keefer, David K.; Ho, Carlton L.
1999-01-01
In response to the growing recognition of engineers and decision-makers of the regional effects of earthquake-induced landslides, this paper presents a general approach to conducting seismic landslide zonation, based on the popular Newmark's sliding block analogy for modeling coherent landslides. Four existing models based on the sliding block analogy are compared. The comparison shows that the models forecast notably different levels of slope performance. Considering this discrepancy along with the limitations of static maps as a decision tool, a spatial decision support system (SDSS) for seismic landslide analysis is proposed, which will support investigations over multiple scales for any number of earthquake scenarios and input conditions. Most importantly, the SDSS will allow use of any seismic landslide analysis model and zonation approach. Developments associated with the SDSS will produce an object-oriented model for encapsulating spatial data, an object-oriented specification to allow construction of models using modular objects, and a direct-manipulation, dynamic user-interface that adapts to the particular seismic landslide model configuration.
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.
2017-12-01
Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase velocities of multiple, interfering arrivals in one time window. We demonstrate how this property can be exploited to separate the wavefield into its elastic wave-modes and to isolate or suppress waves arriving from specific directions (directional filtering), both in a fully automated fashion.
DOT National Transportation Integrated Search
2011-01-01
The need to maintain the functionality of critical transportation lifelines after a large seismic event motivates the : strategy to design certain bridges for performance standards beyond the minimum required by bridge design codes. : To design a bri...
A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva
2018-03-01
The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.
Gas hydrate characterization from a 3D seismic dataset in the deepwater eastern Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Daniel; Haneberg, William C.
Seismic stratigraphic features are delineated using principal component analysis of the band limited data at potential gas hydrate sands, and compared and calibrated with spectral decomposition thickness to constrain thickness in the absence of well control. Layers in the abyssal fan sediments are thinner than can be resolved with 50 Hz seismic and thus comprise composite thin-bed reflections. Amplitude vs frequency analysis are used to indicate gas and gas hydrate reflections. Synthetic seismic wedge models show that with 50Hz seismic data, a 40% saturation of a Plio Pleistocene GoM sand in the hydrate stability zone with no subjacent gas canmore » produce a phase change (negative to positive) with a strong correlation between amplitude and hydrate saturation. The synthetic seismic response is more complicated if the gas hydrate filled sediments overlie gassy sediments. Hydrate (or gas) saturation in thin beds enhances the amplitude response and can be used to estimate saturation. Gas hydrate saturation from rock physics, amplitude, and frequency analysis is compared to saturation derived from inversion at several interpreted gas hydrate accumulations in the eastern Gulf of Mexico.« less
NASA Astrophysics Data System (ADS)
Rekapalli, Rajesh; Tiwari, R. K.; Sen, Mrinal K.; Vedanti, Nimisha
2017-05-01
Noises and data gaps complicate the seismic data processing and subsequently cause difficulties in the geological interpretation. We discuss a recent development and application of the Multi-channel Time Slice Singular Spectrum Analysis (MTSSSA) for 3D seismic data de-noising in time domain. In addition, L1 norm based simultaneous data gap filling of 3D seismic data using MTSSSA also discussed. We discriminated the noises from single individual time slices of 3D volumes by analyzing Eigen triplets of the trajectory matrix. We first tested the efficacy of the method on 3D synthetic seismic data contaminated with noise and then applied to the post stack seismic reflection data acquired from the Sleipner CO2 storage site (pre and post CO2 injection) from Norway. Our analysis suggests that the MTSSSA algorithm is efficient to enhance the S/N for better identification of amplitude anomalies along with simultaneous data gap filling. The bright spots identified in the de-noised data indicate upward migration of CO2 towards the top of the Utsira formation. The reflections identified applying MTSSSA to pre and post injection data correlate well with the geology of the Southern Viking Graben (SVG).
Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems
NASA Astrophysics Data System (ADS)
Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.
2011-12-01
The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed technique to a training dataset of induced earthquakes recorded by Berkeley-Geysers network, which is installed in The Geysers geothermal area in Northern California. The reliability of the techniques is then tested by using a different dataset performing seismic hazard analysis in a time-evolving approach, which provides with ground-motion values having fixed probabilities of exceedence. Those values can be finally compared with the observations by using appropriate statistical tests.
NASA Astrophysics Data System (ADS)
Jonsdottir, K.; Vogfjord, K. S.; Bean, C. J.; Martini, F.
2013-12-01
The glacier overlain Katla volcano in South Iceland, is one of the most active and hazardous volcano in Europe. Katla eruptions result in hazardous glacial floods and intense tephra fall. On average there are eruptions every 50 years but the volcano is long overdue and we are now witnessing the longest quiescence period in 1000 years or since the settlement. Because of the hazard the volcano poses, it is under constant surveillance and gets a good share of the seismic stations from the national seismic network. Every year the seismic network records thousands of seismic events at Katla with magnitudes seldom exceeding M3. The bulk of the seismicity is however not due to volcano tectonics but seems to be caused mainly by shallow processes involving glacial deformation. Katla's ice filled caldera forms a glacier plateau of several hundred meters thick ice. The 9x14 km oval caldera is surrounded by higher rims where the glacier in some places gently and in others abruptly falls off tens and up to hundred meters to the surrounding lowland. The glacier surface is marked with dozen depressions or cauldrons which manifest geothermal activity below, probably coinciding with circular faults around the caldera. Our current understanding is that there are several glacial processes which cause seismicity; these include dry calving, where steep valley glaciers fall off cliffs and movements of glacier ice as the cauldrons deform due to hydraulic changes and geothermal activity at the glacier/bedrock boundary. These glacial events share a common feature of containing low frequency (2-4 hz) and long coda. Because of their shallow origin, surface waves are prominent. In our analysis we use waveforms from all of Katla's seismic events between years 2003-2013, with the criteria M>1 and minimum 4 p-wave picks. We correlate the waveforms of these events with each other and group them into families of highly similar events. Looking at the occurrence of these families we find that individual families are usually clustered in time over several months, and sometimes families may reappear even up to several years later. Using families including many events and covering long periods (10-20 months) we compare the coda (the tail) of individual events within a family. This is repeated for all the surrounding stations. The analysis, coda wave interferometry (cwi) is a correlation method that builds on the fact that changes in stress in the edifice lead to changes in seismic velocities. The coda waves are highly sensitive to small stress changes. By using a repeating source, implying we have the same source mechanism and the same path, we can track temporal stress changes in the medium between the source and the receiver. Preliminary results from Katla suggest that by using the repeating glacial events and the coda wave interferometry technique we observe annual seismic velocity changes around the volcano of ca. 0.7%. We find that seismic velocities increase from January through July and decrease in August to December. These changes can be explained by pore-water pressure changes and/or loading and de-loading of the overlain glacier. We do not find immediate precursors for an impending eruption at Katla; however we now have a better understanding of its background seismicity.
NASA Astrophysics Data System (ADS)
Huerta, F. V.; Granados, I.; Aguirre, J.; Carrera, R. Á.
2017-12-01
Nowadays, in hydrocarbon industry, there is a need to optimize and reduce exploration costs in the different types of reservoirs, motivating the community specialized in the search and development of alternative exploration geophysical methods. This study show the reflection response obtained from a shale gas / oil deposit through the method of seismic interferometry of ambient vibrations in combination with Wavelet analysis and conventional seismic reflection techniques (CMP & NMO). The method is to generate seismic responses from virtual sources through the process of cross-correlation of records of Ambient Seismic Vibrations (ASV), collected in different receivers. The seismic response obtained is interpreted as the response that would be measured in one of the receivers considering a virtual source in the other. The acquisition of ASV records was performed in northern of Mexico through semi-rectangular arrays of multi-component geophones with instrumental response of 10 Hz. The in-line distance between geophones was 40 m while in cross-line was 280 m, the sampling used during the data collection was 2 ms and the total duration of the records was 6 hours. The results show the reflection response of two lines in the in-line direction and two in the cross-line direction for which the continuity of coherent events have been identified and interpreted as reflectors. There is certainty that the events identified correspond to reflections because the time-frequency analysis performed with the Wavelet Transform has allowed to identify the frequency band in which there are body waves. On the other hand, the CMP and NMO techniques have allowed to emphasize and correct the reflection response obtained during the correlation processes in the frequency band of interest. The results of the processing and analysis of ASV records through the seismic interferometry method have allowed us to see interesting results in light of the cross-correlation process in combination with the Wavelet analysis and conventional seismic reflection techniques. Therefore it was possible to recover the seismic response on each analyzed source-receiver pair, allowing us to obtain the reflection response of each analyzed seismic line.
Seismic sample areas defined from incomplete catalogues: an application to the Italian territory
NASA Astrophysics Data System (ADS)
Mulargia, F.; Tinti, S.
1985-11-01
The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define "seismic sample area" the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000-1980. The eastern Alps region stands out as the best "sample area", with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research.
NASA Astrophysics Data System (ADS)
Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.
2017-12-01
We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.
NASA Astrophysics Data System (ADS)
El Fellah, Younes; El-Aal, Abd El-Aziz Khairy Abd; Harnafi, Mimoun; Villaseñor, Antonio
2017-05-01
In the current work, we constructed new comprehensive standard seismic noise models and 3D temporal-spatial seismic noise level cubes for Morocco in north-west Africa to be used for seismological and engineering purposes. Indeed, the original global standard seismic noise models published by Peterson (1993) and their following updates by Astiz and Creager (1995), Ekström (2001) and Berger et al. (2003) had no contributing seismic stations deployed in North Africa. Consequently, this preliminary study was conducted to shed light on seismic noise levels specific to north-west Africa. For this purpose, 23 broadband seismic stations recently installed in different structural domains throughout Morocco are used to study the nature and characteristics of seismic noise and to create seismic noise models for Morocco. Continuous data recorded during 2009, 2010 and 2011 were processed and analysed to construct these new noise models and 3D noise levels from all stations. We compared the Peterson new high-noise model (NHNM) and low-noise model (NLNM) with the Moroccan high-noise model (MHNM) and low-noise model (MLNM). These new noise models are comparable to the United States Geological Survey (USGS) models in the short period band; however, in the period range 1.2 s to 1000 s for MLNM and 10 s to 1000 s for MHNM display significant variations. This variation is attributed to differences in the nature of seismic noise sources that dominate Morocco in these period bands. The results of this study have a new perception about permanent seismic noise models for this spectacular region and can be considered a significant contribution because it supplements the Peterson models and can also be used to site future permanent seismic stations in Morocco.
The Anatahan volcano-monitoring system
NASA Astrophysics Data System (ADS)
Marso, J. N.; Lockhart, A. B.; White, R. A.; Koyanagi, S. K.; Trusdell, F. A.; Camacho, J. T.; Chong, R.
2003-12-01
A real-time 24/7 Anatahan volcano-monitoring and eruption detection system is now operational. There had been no real-time seismic monitoring on Anatahan during the May 10, 2003 eruption because the single telemetered seismic station on Anatahan Island had failed. On May 25, staff from the Emergency Management Office (EMO) of the Commonwealth of the Northern Mariana Islands and the U. S. Geological Survey (USGS) established a replacement telemetered seismic station on Anatahan whose data were recorded on a drum recorder at the EMO on Saipan, 130 km to the south by June 5. In late June EMO and USGS staff installed a Glowworm seismic data acquisition system (Marso et al, 2003) at EMO and hardened the Anatahan telemetry links. The Glowworm system collects the telemetered seismic data from Anatahan and Saipan, places graphical display products on a webpage, and exports the seismic waveform data in real time to Glowworm systems at Hawaii Volcano Observatory and Cascades Volcano Observatory (CVO). In early July, a back-up telemetered seismic station was placed on Sarigan Island 40 km north of Anatahan, transmitting directly to the EMO on Saipan. Because there is currently no population on the island, at this time the principal hazard presented by Anatahan volcano would be air traffic disruption caused by possible erupted ash. The aircraft/ash hazard requires a monitoring program that focuses on eruption detection. The USGS currently provides 24/7 monitoring of Anatahan with a rotational seismic duty officer who carries a Pocket PC-cell phone combination that receives SMS text messages from the CVO Glowworm system when it detects large seismic signals. Upon receiving an SMS text message notification from the CVO Glowworm, the seismic duty officer can use the Pocket PC - cell phone to view a graphic of the seismic traces on the EMO Glowworm's webpage to determine if the seismic signal is eruption related. There have been no further eruptions since the monitoring system was installed, but regional tectonic earthquakes have provided frequent tests of the system. Reliance on a Pocket PC - cell phone requires that the seismic duty officer remain in an area with cell phone coverage. With this monitoring method, the USGS is able to provide rapid notice of an Anatahan eruption to the EMO and the Washington Volcano Ash Advisory Center. Reference Marso, J.N., Murray, T.L., Lockhart, A.B., Bryan, C.J., Glowworm: An extended PC-based Earthworm system for volcano monitoring. Abstracts, Cities On Volcanoes III, Hilo Hawaii, July 2003.
Ischia Island: Historical Seismicity and Dynamics
NASA Astrophysics Data System (ADS)
Carlino, S.; Cubellis, E.; Iannuzzi, R.; Luongo, G.; Obrizzo, F.
2003-04-01
The seismic energy release in volcanic areas is a complex process and the island of Ischia provides a significant scenario of historical seismicity. This is characterized by the occurence of earthquakes with low energy and high intensity. Information on the seismicity of the island spans about eight centuries, starting from 1228. With regard to effects, the most recent earthquake of 1883 is extensively documented both in the literature and unpublished sources. The earthquake caused 2333 deaths and the destruction of the historical and environmental heritage of some areas of the island. The most severe damage occurred in Casamicciola. This event, which was the first great catastrophe after the unification of Italy in the 1860s (Imax = XI degree MCS), represents an important date in the prevention of natural disasters, in that it was after this earthquake that the first Seismic Safety Act in Italy was passed by which lower risk zones were identified for new settlements. Thanks to such detailed analysis, reliable modelling of the seismic source was also obtained. The historical data onwards makes it possible to identify the area of the epicenter of all known earthquakes as the northern slope of Monte Epomeo, while analysis of the effects of earthquakes and the geological structures allows us to evaluate the stress fields that generate the earthquakes. In a volcanic area, interpretation of the mechanisms of release and propagation of seismic energy is made even more complex as the stress field that acts at a regional level is compounded by that generated from migration of magmatic masses towards the surface, as well as the rheologic properties of the rocks dependent on the high geothermic gradient. Such structural and dynamic conditions make the island of Ischia a seismic area of considerable interest. It would appear necessary to evaluate the expected damage caused by a new event linked to the renewal of dynamics of the island, where high population density and the high economic value concerned, the island is a tourist destination and holiday resort, increase the seismic risk. A seismic hazard map of the island is proposed according to a comparative analysis of various types of data: the geology, tectonics, historical seismicity and damage caused by the 28 July 1883 Casamicciola earthquake. The analysis was essentially based on a GIS-aided cross-correlation of these data. The GIS is thus able to provide support both for in-depth analysis of the dynamic processes on the island and extend the assessment to other natural risks (volcanic, landslides, flooding, etc.).
Analysis of the 2003-2004 microseismic sequence in the western part of the Corinth Rift
NASA Astrophysics Data System (ADS)
Godano, Maxime; Bernard, Pascal; Dublanchet, Pierre; Canitano, Alexandre; Marsan, David
2013-04-01
The Corinth rift is one of the most seismically active zones in Europe. The seismic activity follows a swarm organization with alternation of intensive crisis and more quiescent periods. The seismicity mainly occurs under the Gulf of Corinth in a 3-4 km north-dipping layer between 5 and 12 km. Several hypotheses have been proposed to explain this seismic layer. Nevertheless, the relationships between seismicity, deep structures and faults mapped at the surface remain unclear. Moreover, fluids seem to play a key role in the occurrence of the seismic activity (Bourouis and Cornet 2009, Pacchiani and Lyon-Caen 2009). Recently, a detailed analysis of the microseismicity (multiplets identification, precise relocation, focal mechanisms determination) between 2000 and 2007 in the western part of the Corinth rift have highlighted north-dipping (and some south-dipping) planar active microstructures in the seismic layer with normal fault mechanisms (Lambotte et al., in preparation; Godano et al., in preparation). A multiplet (group of earthquakes with similar waveform) can be interpreted as repeated ruptures on the same asperity due to transient forcing as silent creep on fault segment or fluid circulation. The detailed analysis of the multiplets in the Corinth rift is an opportunity to better understand coupling between seismic and aseismic processes. In the present study we focus on the seismic crisis that occurred from October 2003 to July 2004 in the western part of the Corinth Gulf. This crisis consists in 2431 relocated events with magnitude ranging from 0.5 to 3.1 (b-value = 1.4). The joint analysis of (1) the position of the multiplets with respect to the faults mapped at the surface, (2) the geometry of the main multiplets and (3) the fault plane solutions shows that the seismic crisis is probably related to the activation in depth of the Fassouleika and Aigion faults. The spatio-temporal analysis of the microseismicity highlights an overall migration from south-east to north-west characterized by the successive activation of the multiplets. We next perform a spectral analysis to determine source parameters for each multiplet in order to estimate size of the asperities and cumulative coseismic slip. From the preceding observations and results we finally try to reproduce the 2003-2004 microseismic sequence using rate-and-state 3D asperity model (Dublanchet et al., submitted). The deformation measured during the crisis by the strainmeter installed in the Trizonia island is used in the modeling to constrain the maximum slip amplitude.
NASA Astrophysics Data System (ADS)
Montazeri, Mahboubeh; Moreau, Julien; Uldall, Anette; Nielsen, Lars
2015-04-01
This study aims at understanding seismic wave propagation in the fine-layered Chalk Group, which constitutes the main reservoir for oil and gas production in the Danish North Sea. The starting point of our analysis is the Nana-1XP exploration well, which shows strong seismic contrasts inside the Chalk Group. For the purposes of seismic waveform modelling, we here assume a one-dimensional model with homogeneous and isotropic layers designed to capture the main fluctuations in petrophysical properties observed in the well logs. The model is representative of the stratigraphic sequences of the area and it illustrates highly contrasting properties of the Chalk Group. Finite-difference (FD) full wave technique, both acoustic and elastic equations are applied to the model. Velocity analysis of seismic data is a crucial step for stacking, multiple suppression, migration, and depth conversion of the seismic record. Semblance analysis of the synthetic seismic records shows strong amplitude peaks outside the expected range for the time interval representing the Chalk Group, especially at the base. The various synthetic results illustrate the occurrence and the impact of different types of waves including multiples, converted waves and refracted waves. The interference of these different wave types with the primary reflections can explain the strong anomalous amplitudes in the semblance plot. In particular, the effect of strongly contrasting thin beds plays an important role in the generation of the high anomalous amplitude values. If these anomalous amplitudes are used to pick the velocities, it would impede proper stacking of the data and may result in sub-optimal migration and depth conversion. Consequently this may lead to erroneous or sub-optimal seismic images of the Chalk Group and the underlying layers. Our results highlight the importance of detailed velocity analysis and proper picking of velocity functions in the Chalk Group intervals. We show that application of standard front mutes in the mid- and far-offset ranges does not significantly improve the results of the standard semblance analysis. These synthetic modelling results could be used as starting points for defining optimized processing flows for the seismic data sets acquired in the study area with the aim of improving the imaging of the Chalk Group.
Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry
NASA Astrophysics Data System (ADS)
Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan
2016-04-01
The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).
Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand
NASA Astrophysics Data System (ADS)
van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila
2017-03-01
Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available.
Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics
NASA Astrophysics Data System (ADS)
Cao, J.; Wu, S.; He, X.
2016-12-01
Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data. We use an improved DBNs to identify carbonate rocks from log data, the accuracy rate can reach up to 83%. DBNs is used to deal with seismic waveform data, more information is obtained. The work was supported by NSFC under grant No. 41430323 and No. 41274128, and State Key Lab. of Oil and Gas Reservoir Geology and Exploration.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group
2017-04-01
Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.
Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array
NASA Astrophysics Data System (ADS)
Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin
2013-04-01
Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.
Girardclos, S.; Baster, I.; Wildi, W.; Pugin, A.; Rachoud-Schneider, A. -M.
2003-01-01
The Late-Glacial and Holocene sedimentary history of the Hauts-Monts area (western Lake Geneva, Switzerland) is reconstructed combining high resolution seismic stratigraphy and well-dated sedimentary cores. Six reflections and seismic units are defined and represented by individual isopach maps, which are further combined to obtain a three-dimensional age-depth model. Slumps, blank areas and various geometries are identified using these seismic data. The sediment depositional areas have substantially changed throughout the lake during the end of the Late-Glacial and the Holocene. These changes are interpreted as the result of variations in the intensity of deep lake currents and the frequency of strong winds determining the distribution of sediment input from the Versoix River and from reworking of previously deposited sediments within the lacustrine basin. The identified changes in sediment distribution allowed us to reconstruct the lake's deep-current history and the evolution of dominant strong wind regimes from the Preboreal to present times.
Post-blasting seismicity in Rudna copper mine, Poland - source parameters analysis.
NASA Astrophysics Data System (ADS)
Caputa, Alicja; Rudziński, Łukasz; Talaga, Adam
2017-04-01
The really important hazard in Polish copper mines is high seismicity and corresponding rockbursts. Many methods are used to reduce the seismic hazard. Among others the most effective is preventing blasting in potentially hazardous mining panels. The method is expected to provoke small moderate tremors (up to M2.0) and reduce in this way a stress accumulation in the rockmass. This work presents an analysis, which deals with post-blasting events in Rudna copper mine, Poland. Using the Full Moment Tensor (MT) inversion and seismic spectra analysis, we try to find some characteristic features of post blasting seismic sources. Source parameters estimated for post-blasting events are compared with the parameters of not-provoked mining events that occurred in the vicinity of the provoked sources. Our studies show that focal mechanisms of events which occurred after blasts have similar MT decompositions, namely are characterized by a quite strong isotropic component as compared with the isotropic component of not-provoked events. Also source parameters obtained from spectral analysis show that provoked seismicity has a specific source physics. Among others, it is visible from S to P wave energy ratio, which is higher for not-provoked events. The comparison of all our results reveals a three possible groups of sources: a) occurred just after blasts, b) occurred from 5min to 24h after blasts and c) not-provoked seismicity (more than 24h after blasting). Acknowledgements: This work was supported within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.
Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Rubinstein, Justin L.; Llenos, Andrea L.; Michael, Andrew J.; Ellsworth, William L.; McGarr, Arthur F.; Holland, Austin A.; Anderson, John G.
2015-01-01
The U.S. Geological Survey National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The U.S. Geological Survey National Seismic Hazard Model project uses probabilistic seismic hazard analysis to quantify the rate of exceedance for earthquake ground shaking (ground motion). For the 2014 National Seismic Hazard Model assessment, the seismic hazard from potentially induced earthquakes was intentionally not considered because we had not determined how to properly treat these earthquakes for the seismic hazard analysis. The phrases “potentially induced” and “induced” are used interchangeably in this report, however it is acknowledged that this classification is based on circumstantial evidence and scientific judgment. For the 2014 National Seismic Hazard Model update, the potentially induced earthquakes were removed from the NSHM’s earthquake catalog, and the documentation states that we would consider alternative models for including induced seismicity in a future version of the National Seismic Hazard Model. As part of the process of incorporating induced seismicity into the seismic hazard model, we evaluate the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. We describe alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics. In this report, however, we do not weight these input models to come up with a preferred final model. Instead, we present a sensitivity study showing uniform seismic hazard maps obtained by applying the alternative input models for induced seismicity. The final model will be released after further consideration of the reliability and scientific acceptability of each alternative input model. Forecasting the seismic hazard from induced earthquakes is fundamentally different from forecasting the seismic hazard for natural, tectonic earthquakes. This is because the spatio-temporal patterns of induced earthquakes are reliant on economic forces and public policy decisions regarding extraction and injection of fluids. As such, the rates of induced earthquakes are inherently variable and nonstationary. Therefore, we only make maps based on an annual rate of exceedance rather than the 50-year rates calculated for previous U.S. Geological Survey hazard maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shownmore » evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.« less
5 years of continuous seismic monitoring of a mountain river in the Pyrenees
NASA Astrophysics Data System (ADS)
Diaz, Jordi; Sanchez-Pastor, Pilar S.; Gallart, Josep
2017-04-01
The analysis of background seismic noise variations in the proximity of river channels has revealed as a useful tool to monitor river flow, even for modest discharges. Nevertheless, this monitoring is usually carried on using temporal deployments of seismic stations. The CANF seismic broad-band station, acquiring data continuously since 2010 and located inside an old railway tunnel in the Central Pyrenees, at about 400 m of the Aragón River channel, provides an excellent opportunity to enlarge this view and present a long term monitoring of a mountain river. Seismic signals in the 2-10 Hz band clearly related to river discharges have been identified in the seismic records. Discharge increases due to rainfall, large storms resulting in floods and snowmelt periods can be discriminated from the analysis of the seismic data. Up to now, two large rainfall events resulting in large discharge and damaging floods have been recorded, both sharing similar properties which can be used to implement automatic procedures to identify seismically potentially damaging floods. Another natural process that can be characterized using continuouly acquired seismic data is mountain snowmelt, as this process results in characteristic discharge patterns which can be identified in the seismic data. The time occurrence and intensity of the snowmelt stages for each season can be identified and the 5 seasons available so far compared to detect possible trends The so-called fluvial seismology can also provide important clues to evaluate the beadload transport in rivers, an important parameter to evaluate erosion rates in mountain environments. Analyzing both the amplitude and frequency variations of the seismic data and its hysteresis cycles, it seems possible to estimate the relative contribution of water flow and bedload transport to the seismic signal. The available results suggest that most of the river-generated seismic signal seems related to bed load transportation, while water turbulence is only significant above a discharge thres.hold Since 2015 we are operating 2 additional stations located beside the Cinca and Segre Rivers, also in the Pyrenean range. First results confirm that the river-generated signal can also be identified at these sites, although wind-related signals are recorded in a close frequency band and hence some further analysis is required to discern between both processes. (Founding: MISTERIOS project, CGL2013-48601-C2-1-R)
Sources of information for tsunami forecasting in New Zealand
NASA Astrophysics Data System (ADS)
Barberopoulou, A.; Ristau, J. P.; D'Anastasio, E.; Wang, X.
2013-12-01
Tsunami science has evolved considerably in the last two decades due to technological advancements which also helped push for better numerical modelling of the tsunami phases (generation to inundation). The deployment of DART buoys has also been a considerable milestone in tsunami forecasting. Tsunami forecasting is one of the parts that tsunami modelling feeds into and is related to response, preparedness and planning. Usually tsunami forecasting refers to short-term forecasting that takes place in real-time after a tsunami has or appears to have been generated. In this report we refer to all types of forecasting (short-term or long-term) related to work in advance of a tsunami impacting a coastline that would help in response, planning or preparedness. We look at the standard types of data (seismic, GPS, water level) that are available in New Zealand for tsunami forecasting, how they are currently being used, other ways to use these data and provide recommendations for better utilisation. The main findings are: -Current investigations of the use of seismic parameters quickly obtained after an earthquake, have potential to provide critical information about the tsunamigenic potential of earthquakes. Further analysis of the most promising methods should be undertaken to determine a path to full implementation. -Network communication of the largest part of the GPS network is not currently at a stage that can provide sufficient data early enough for tsunami warning. It is believed that it has potential, but changes including data transmission improvements may have to happen before real-time processing oriented to tsunami early warning is implemented on the data that is currently provided. -Tide gauge data is currently under-utilised for tsunami forecasting. Spectral analysis, modal analysis based on identified modes and arrival times extracted from the records can be useful in forecasting. -The current study is by no means exhaustive of the ways the different types of data can be used. We are only presenting an overview of what can be done. More extensive studies with each one of the types of data collected by GeoNet and other relevant networks will help improve tsunami forecasting in New Zealand.
Current status of Japanese detectors
NASA Astrophysics Data System (ADS)
Tatsumi, Daisuke; Takahashi, Ryutaro; Arai, Koji; Nakagawa, Noriyasu; Agatsuma, Kazuhiro; Yamazaki, Toshitaka; Fukushima, Mitsuhiro; Fujimoto, Masa-Katsu; Takamori, Akiteru; Bertolini, Alessandro; Sannibale, Virginio; DeSalvo, Riccardo; Márka, Szabolcs; Ando, Masaki; Tsubono, Kimio; Akutsu, Tomomi; Yamamoto, Kazuhiro; Ishitsuka, Hideki; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Awaya, Norichika; Kanda, Nobuyuki; Araya, Akito; Telada, Souichi; Tomaru, Takayuki; Haruyama, Tomiyoshi; Yamamoto, Akira; Sato, Nobuaki; Suzuki, Toshitaka; Shintomi, Takakazu
2007-10-01
The current status of the TAMA and CLIO detectors in Japan is reported in this paper. These two interferometric gravitational wave detectors are being developed for the large cryogenic gravitational wave telescope (LCGT) which is a future plan for detecting gravitational wave signals at least once per year. TAMA300 is being upgraded to improve the sensitivity in a low-frequency region after the last observational experiment in 2004. To reduce the seismic noises, we are installing a new seismic isolation system, called the TAMA seismic attenuation system, for the four test masses. We confirmed stable mass locks of a cavity and improvements of length and angular fluctuations by using two SASs. We are currently optimizing the performance of the third and fourth SASs. We continue TAMA300 operation and R&D studies for the LCGT. The next data taking is planned for the summer of 2007. CLIO is a 100 m baseline length prototype detector for LCGT to investigate interferometer performance in cryogenic condition. The key features of CLIO are that it locates the Kamioka underground site for a low-seismic noise level, and adopts cryogenic Sapphire mirrors for low-thermal noise level. The first operation of the cryogenic interferometer was successfully demonstrated in February 2006. Current sensitivity at room temperature is close to the target sensitivity within a factor of 4. Several observational experiments at room temperature have been done. Once the displacement noise reaches the thermal noise level of room temperature, its improvement by cooling test mass mirrors should be demonstrated.
NASA Astrophysics Data System (ADS)
Ghica, D.; Ionescu, C.
2012-04-01
Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency-wave number analysis). Spectrograms of the recorded infrasonic and seismic data were examined, showing that an earthquake produces acoustic signals with a high energy in the 1 to 5 Hz frequency range, while, for the explosion, this range lays below 0.6 Hz. Using the combined analysis of the seismic and acoustic data, Plostina array can greatly enhance the event detection and localization in the region. The analysis can be, as well, particularly important in identifying sources of industrial explosion, and therefore, in monitoring of the hazard created both by earthquakes and anthropogenic sources of pollution (chemical factories, nuclear and power plants, refineries, mines).
Seismic data compression speeds exploration projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galibert, P.Y.
As part of an ongoing commitment to ensure industry-wide distribution of its revolutionary seismic data compression technology, Chevron Petroleum Technology Co. (CPTC) has entered into licensing agreements with Compagnie Generale de Geophysique (CGG) and other seismic contractors for use of its software in oil and gas exploration programs. CPTC expects use of the technology to be far-reaching to all of its industry partners involved in seismic data collection, processing, analysis and storage. Here, CGG--one of the world`s leading seismic acquisition and processing companies--talks about its success in applying the new methodology to replace full on-board seismic processing. Chevron`s technology ismore » already being applied on large off-shore 3-D seismic surveys. Worldwide, CGG has acquired more than 80,000 km of seismic data using the data compression technology.« less
Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.
2010-12-01
In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.
Imaging with cross-hole seismoelectric tomography
Araji, A.H.; Revil, A.; Jardani, A.; Minsley, Burke J.; Karaoulis, M.
2012-01-01
We propose a cross-hole imaging approach based on seismoelectric conversions (SC) associated with the transmission of seismic waves from seismic sources located in a borehole to receivers (electrodes) located in a second borehole. The seismoelectric (seismic-to-electric) problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic streaming current contribution. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with Perfect Match Layer (PML) boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We develop an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the SC. Because of the ill-posed nature of the inverse problem (inherent to all potential-field problems), regularization is used to constrain the solution at each time in the SC-time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are aggregated together to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion (partially saturated by oil) embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is recovered using only the electrical disturbances associated with the SC. That said, a joint inversion of the seismic and seismoelectric data could improve these results.
Seismic assessment of Technical Area V (TA-V).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medrano, Carlos S.
The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and themore » evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.« less
Probabilistic Seismic Hazard Assessment for Iraq
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onur, Tuna; Gok, Rengin; Abdulnaby, Wathiq
Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al.,more » 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.« less
The generalized truncated exponential distribution as a model for earthquake magnitudes
NASA Astrophysics Data System (ADS)
Raschke, Mathias
2015-04-01
The random distribution of small, medium and large earthquake magnitudes follows an exponential distribution (ED) according to the Gutenberg-Richter relation. But a magnitude distribution is truncated in the range of very large magnitudes because the earthquake energy is finite and the upper tail of the exponential distribution does not fit well observations. Hence the truncated exponential distribution (TED) is frequently applied for the modelling of the magnitude distributions in the seismic hazard and risk analysis. The TED has a weak point: when two TEDs with equal parameters, except the upper bound magnitude, are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters, except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. It also applies to alternative distribution models. The presented generalized truncated exponential distribution (GTED) overcomes this weakness. The ED and the TED are special cases of the GTED. Different issues of the statistical inference are also discussed and an example of empirical data is presented in the current contribution.
Effect of Response Reduction Factor on Peak Floor Acceleration Demand in Mid-Rise RC Buildings
NASA Astrophysics Data System (ADS)
Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.
2017-06-01
Estimation of Peak Floor Acceleration (PFA) demand along the height of a building is crucial for the seismic safety of nonstructural components. The effect of the level of inelasticity, controlled by the response reduction factor (strength ratio), is studied using incremental dynamic analysis. A total of 1120 nonlinear dynamic analyses, using a suite of 30 recorded ground motion time histories, are performed on mid-rise reinforced-concrete (RC) moment-resisting frame buildings covering a wide range in terms of their periods of vibration. The obtained PFA demands are compared with some of the major national seismic design and retrofit codes (IS 1893 draft version, ASCE 41, EN 1998, and NZS 1170.4). It is observed that the PFA demand at the building's roof level decreases with increasing period of vibration as well as with strength ratio. However, current seismic building codes do not account for these effects thereby producing very conservative estimates of PFA demands. Based on the identified parameters affecting the PFA demand, a model to obtain the PFA distribution along the height of a building is proposed. The proposed model is validated with spectrum-compatible time history analyses of the considered buildings with different strength ratios.
A stochastic approach to uncertainty quantification in residual moveout analysis
NASA Astrophysics Data System (ADS)
Johng-Ay, T.; Landa, E.; Dossou-Gbété, S.; Bordes, L.
2015-06-01
Oil and gas exploration and production relies usually on the interpretation of a single seismic image, which is obtained from observed data. However, the statistical nature of seismic data and the various approximations and assumptions are sources of uncertainties which may corrupt the evaluation of parameters. The quantification of these uncertainties is a major issue which supposes to help in decisions that have important social and commercial implications. The residual moveout analysis, which is an important step in seismic data processing is usually performed by a deterministic approach. In this paper we discuss a Bayesian approach to the uncertainty analysis.
Structural Identification And Seismic Analysis Of An Existing Masonry Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara
2008-07-08
The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings.
Seismic databases of The Caucasus
NASA Astrophysics Data System (ADS)
Gunia, I.; Sokhadze, G.; Mikava, D.; Tvaradze, N.; Godoladze, T.
2012-12-01
The Caucasus is one of the active segments of the Alpine-Himalayan collision belt. The region needs continues seismic monitoring systems for better understanding of tectonic processes going in the region. Seismic Monitoring Center of Georgia (Ilia State University) is operating the digital seismic network of the country and is also collecting and exchanging data with neighboring countries. The main focus of our study was to create seismic database which is well organized, easily reachable and is convenient for scientists to use. The seismological database includes the information about more than 100 000 earthquakes from the whole Caucasus. We have to mention that it includes data from analog and digital seismic networks. The first analog seismic station in Georgia was installed in 1899 in the Caucasus in Tbilisi city. The number of analog seismic stations was increasing during next decades and in 1980s about 100 analog stations were operated all over the region. From 1992 due to political and economical situation the number of stations has been decreased and in 2002 just two analog equipments was operated. New digital seismic network was developed in Georgia since 2003. The number of digital seismic stations was increasing and in current days there are more than 25 digital stations operating in the country. The database includes the detailed information about all equipments installed on seismic stations. Database is available online. That will make convenient interface for seismic data exchange data between Caucasus neighboring countries. It also makes easier both the seismic data processing and transferring them to the database and decreases the operator's mistakes during the routine work. The database was created using the followings: php, MySql, Javascript, Ajax, GMT, Gmap, Hypoinverse.
Multicomponent ensemble models to forecast induced seismicity
NASA Astrophysics Data System (ADS)
Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.
2018-01-01
In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints
NASA Astrophysics Data System (ADS)
Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.
2013-09-01
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes
NASA Astrophysics Data System (ADS)
Morozov, Yu. V.; Spektor, A. A.
2017-11-01
A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.
NASA Astrophysics Data System (ADS)
Gnyp, Andriy
2009-06-01
Based on the results of application of correlation analysis to records of the 2005 Mukacheve group of recurrent events and their subsequent relocation relative to the reference event of 7 July 2005, a conclusion has been drawn that all the events had most likely occurred on the same rup-ture plane. Station terms have been estimated for seismic stations of the Transcarpathians, accounting for variation of seismic velocities beneath their locations as compared to the travel time tables used in the study. In methodical aspect, potentials and usefulness of correlation analysis of seismic records for a more detailed study of seismic processes, tectonics and geodynamics of the Carpathian region have been demonstrated.
Forecasting induced seismicity rate and Mmax using calibrated numerical models
NASA Astrophysics Data System (ADS)
Dempsey, D.; Suckale, J.
2016-12-01
At Groningen, The Netherlands, several decades of induced seismicity from gas extraction has culminated in a M 3.6 event (mid 2012). From a public safety and commercial perspective, it is desirable to anticipate future seismicity outcomes at Groningen. One way to quantify earthquake risk is Probabilistic Seismic Hazard Analysis (PSHA), which requires an estimate of the future seismicity rate and its magnitude frequency distribution (MFD). This approach is effective at quantifying risk from tectonic events because the seismicity rate, once measured, is almost constant over timescales of interest. In contrast, rates of induced seismicity vary significantly over building lifetimes, largely in response to changes in injection or extraction. Thus, the key to extending PSHA to induced earthquakes is to estimate future changes of the seismicity rate in response to some proposed operating schedule. Numerical models can describe the physical link between fluid pressure, effective stress change, and the earthquake process (triggering and propagation). However, models with predictive potential of individual earthquakes face the difficulty of characterizing specific heterogeneity - stress, strength, roughness, etc. - at locations of interest. Modeling catalogs of earthquakes provides a means of averaging over this uncertainty, focusing instead on the collective features of the seismicity, e.g., its rate and MFD. The model we use incorporates fluid pressure and stress changes to describe nucleation and crack-like propagation of earthquakes on stochastically characterized 1D faults. This enables simulation of synthetic catalogs of induced seismicity from which the seismicity rate, location and MFD are extracted. A probability distribution for Mmax - the largest event in some specified time window - is also computed. Because the model captures the physics linking seismicity to changes in the reservoir, earthquake observations and operating information can be used to calibrate a model at a specific site (or, ideally, many models). This restricts analysis of future seismicity to likely parameter sets and provides physical justification for linking operational changes to subsequent seismicity. To illustrate these concepts, a recent study of prior and forecast seismicity at Groningen will be presented.
NASA Astrophysics Data System (ADS)
Zullo, Claudia Cristina
Water supply demands of a growing population in the Coastal Plain of Delaware make detailed understanding of aquifers increasingly important. Previous studies indicate that the stratigraphy of the non-marine Potomac Formation, which includes the most important confined aquifers in the area, is complex and lithologically heterogeneous, making sands difficult to correlate. This study aimed to delineate the stratigraphic architecture of these sediments with a focus on the sand bodies that provide significant volumes of groundwater to northern Delaware. This project utilized an unconventional seismic system, a land streamer system, for collecting near-surface, high-resolution seismic reflection data on unpaved and paved public roadways. To calibrate the 20 km of seismic data to lithologies, a corehole and wireline geophysical logs were obtained. Six lithofacies (paleosols, lake, frequently flooded lake/abandoned channel, splay/levee, splay channel, fluvial channel) and their respective geophysical log patterns were identified and then correlated with the seismic data to relate seismic facies to these environments. Using seismic attribute analysis, seismic facies that correspond to four of the lithofacies were identified: fluvial channel seismic facies, paleosol seismic facies, splay/levee seismic facies, and a frequently flooded lake/abandoned channel and splay/levee combined seismic facies. Correlations for eleven horizons identified in the seismic sections and cross sections show local changes in thickness and erosional relief. The analysis of seismic facies sections provides a two-dimensional basis for detailed understanding of the stratigraphy of the Potomac Formation, and suggests an anastomosing fluvial style with poorly connected winding channel sands encased in fine-grained overbank sediments that produced a complex, labyrinth-style heterogeneity. The results indicate that the 2D lateral connectivity of the sand bodies of the Potomac Formation is limited to short distances, contrary to correlations in previous studies that have indicated connection of sands at distances of at least 3 km. The results highlight the importance of integrating multiple sources of geologic information for the interpretation of the stratigraphic architecture of non-marine sediments, and the value of roadway-based land-streamer seismic data for the interpretation of near-surface (less than 300-m-depth) aquifer sand characteristics in developed areas.
NASA Astrophysics Data System (ADS)
Kozlowska, M.; Brudzinski, M.; Friberg, P. A.; Skoumal, R.; Baxter, N. D.; Currie, B.
2017-12-01
While induced seismicity in the United States has mainly been attributed to wastewater disposal, Eastern Ohio has provided cases of seismicity induced by both hydraulic fracturing (HF) and wastewater disposal. In this study, we investigate five cases of seismicity associated with HF in Harrison County, OH. Because of their temporal and spatial isolation from other injection activities, this provide an ideal setting for studying the relationships between high pressure injection and earthquakes. Our analysis reveals two distinct groups of seismicity. Deeper earthquakes occur in the Precambrian crystalline basement, reach larger magnitudes (M>2), have lower b-values (<1), and continue for weeks following stimulation shut down. Shallower earthquakes, on the other hand, occur in Paleozoic sedimentary rocks 400 m below HF, are limited to smaller magnitudes (M<1), have higher b-values (>1.5), and lack post-stimulation activity. We seek the physical explanation of observed difference in earthquakes character and hypothesize that the maturity of faults is the main factor determining sequences b-values. Based on published results of laboratory experiments and fault modeling, we interpret the deep seismicity as slip on more mature faults in the older crystalline rocks and the shallow seismicity as slip on immature faults in the younger, lower viscosity sedimentary rocks. This suggests that HF inducing seismicity on deeper, more mature faults poses higher seismic hazards. The analysis of water and gas production data from these wells suggests that wells inducing deeper seismicity produced more water than wells with shallow seismicity. This indicates more extensive hydrologic connections outside the target reservoir, which may explain why gas production drops more quickly for wells with deeper seismicity. Despite these indications that hydraulic pressure fluctuations induce seismicity, we also find only 2-3 hours between onset of stimulation of HF wells and seismicity that is too short for typical fluid pressure diffusion rates across distances of 1 km. We conclude that a combination of pore fluid pressure changes and poroelastic stress changes are responsible for inducing shear slip during HF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, F.J.; Kimball, B.; Davis, R.A.
1984-01-01
The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed. (MHR)
NASA Astrophysics Data System (ADS)
Mauk, F. J.; Kimball, B.; Davis, R. A.
The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed.
75 FR 36715 - Advisory Committee on Reactor Safeguards; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... Seismic Input for Site Response and Soil Structure Interaction Analyses'' (Open)--The Committee will hold... Seismic Input for Site Response and Soil Structure Interaction Analyses.'' 9:30 a.m.-10:30 a.m.: Interim Staff Guidance (ISG) DC/COL-ISG-020, ``Implementation of Seismic Margin Analysis for New Reactors Based...
Design and development of digital seismic amplifier recorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com
2015-04-16
A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩmore » and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.« less
Seismic hazards in Thailand: a compilation and updated probabilistic analysis
NASA Astrophysics Data System (ADS)
Pailoplee, Santi; Charusiri, Punya
2016-06-01
A probabilistic seismic hazard analysis (PSHA) for Thailand was performed and compared to those of previous works. This PSHA was based upon (1) the most up-to-date paleoseismological data (slip rates), (2) the seismic source zones, (3) the seismicity parameters ( a and b values), and (4) the strong ground-motion attenuation models suggested as being suitable models for Thailand. For the PSHA mapping, both the ground shaking and probability of exceedance (POE) were analyzed and mapped using various methods of presentation. In addition, site-specific PSHAs were demonstrated for ten major provinces within Thailand. For instance, a 2 and 10 % POE in the next 50 years of a 0.1-0.4 g and 0.1-0.2 g ground shaking, respectively, was found for western Thailand, defining this area as the most earthquake-prone region evaluated in Thailand. In a comparison between the ten selected specific provinces within Thailand, the Kanchanaburi and Tak provinces had comparatively high seismic hazards, and therefore, effective mitigation plans for these areas should be made. Although Bangkok was defined as being within a low seismic hazard in this PSHA, a further study of seismic wave amplification due to the soft soil beneath Bangkok is required.
Numerical simulation of bubble plumes and an analysis of their seismic attributes
NASA Astrophysics Data System (ADS)
Li, Canping; Gou, Limin; You, Jiachun
2017-04-01
To study the bubble plume's seismic response characteristics, the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theory based on an analysis of both the acoustic characteristics of a bubble-contained water body and the actual features of a plume. The finite difference method is used for forward modelling, and the single-shot seismic record exhibits the characteristics of a scattered wave field generated by a plume. A meaningful conclusion is obtained by extracting seismic attributes from the pre-stack shot gather record of a plume. The values of the amplitude-related seismic attributes increase greatly as the bubble content goes up, and changes in bubble radius will not cause seismic attributes to change, which is primarily observed because the bubble content has a strong impact on the plume's acoustic velocity, while the bubble radius has a weak impact on the acoustic velocity. The above conclusion provides a theoretical reference for identifying hydrate plumes using seismic methods and contributes to further study on hydrate decomposition and migration, as well as on distribution of the methane bubble in seawater.
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.; Zhang, L.
2016-12-01
Faults and fracture networks within the oceanic crust influence the pattern of hydrothermal circulation. This circulation changes the primary composition and structure of the crust as it evolves, particularly the upper crust (layer 2), through the secondary alteration of minerals and the infilling and 'sealing' of cracks. Processes influencing the extent and the depth within the crust of these changes are currently not well known. Alteration can be quantified by observing changes in the seismic velocity structure of the crust, and analysis of seismic anisotropy within the upper crust reveals the nature of ridge-parallel aligned faults and fractures. Here we show a 3D P-wave velocity model and anisotropy maps for 5.9 Ma crust at ODP borehole 504B, situated 200 km south of the Costa Rica Rift, derived from an active-source wide-angle seismic survey in the Panama Basin conducted in 2015. The seismic structure reveals relatively homogeneous, 5 km thick oceanic crust with upper crustal velocity boundaries occurring coincident with alteration fronts observed in 504B. Correlations between basement topography, velocity anomaly and anisotropy indicate that a distinct relationship between hydrothermal alteration, basement ridges, fractures, and the velocity structure of layer 2 exists in this location. A significant difference is seen in the velocity and anisotropic structure between regions to the east and west of the borehole, that correlates with patterns in heat flow observations and indicates that: 1) these two regions of crust have inherited differences in crustal fabric during accretion; and/or 2) different regimes of hydrothermal circulation have been active in each part of the crust as they have aged. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.
2015-12-01
Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it ages.
Seismic Source Scaling and Discrimination in Diverse Tectonic Environments
2008-09-30
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently...least affected by travel through the earth. But finding well recorded earthquakes with -perfect- EGF events for direct wave analysis is difficult...North America. Each cluster contains a M- 2, and two contain M-3. as well as smaller aftershocks. We find that the corner frequencies and stress
Rockfall induced seismic signals: case study in Montserrat, Catalonia
NASA Astrophysics Data System (ADS)
Vilajosana, I.; Suriñach, E.; Abellán, A.; Khazaradze, G.; Garcia, D.; Llosa, J.
2008-08-01
After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10-4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 A rockfall event generates seismic signals with specific characteristics in the time domain; 2 the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 particle motion plot analysis shows that the procedure to locate the rock impact using two stations is feasible; 4 The feasibility and validity of seismic methods for the detection of rockfall events, their localization and size determination are comfirmed.
NASA Astrophysics Data System (ADS)
Satriano, C.; Mejia Uquiche, A. R.; Saurel, J. M.
2016-12-01
The Lesser Antilles are situated at a convergent plate boundary where the North- and South-American plates subduct below the Caribbean Plate at a rate of about 2 cm/y. The subduction forms the volcanic arc of Lesser Antilles and generates three types of seismicity: subduction earthquakes at the plate interface, intermediate depth earthquakes within the subducting oceanic plates and crustal earthquakes associated with the deformation of the Caribbean Plate. Even if the seismicity rate is moderate, this zone has generated in the past major earthquakes, like the subduction event on February 8, 1843, estimated M 8.5 (Beauducel et Feuillet, 2012), the Mw 6.3 "Les Saintes" crustal earthquake of November 24, 2004 (Drouet et al., 2011), and the Mw 7.4 Martinique intermediate earthquake of November 29, 2007 (Bouin et al., 2010). The seismic catalogue produced by the Volcanological and Seismological Observatories of Guadeloupe and Martinique comprises about 1000 events per year, most of them of moderate magnitude (M < 5.0). The observation and characterization of this background seismicity has a fundamental role in understanding the processes of energy accumulation and liberation preparing major earthquakes. For this reason, the catalogue needs to be completed by information like seismic moment, corner frequency and radiated energy which give access to important fault properties like the rupture size, the static and the apparent stress drop. So far, this analysis has only been performed for the "Les Saintes" sequence (Drouet et al., 2011). Here we present a systematic study of the Lesser Antilles merged seismic catalogue (http://www.seismes-antilles.fr), between 2002 and 2013, using broadband data from the West Indies seismic network and recordings from the French Accelerometric Network. The analysis is aimed at determining, from the inversion of S-wave displacement spectra, source parameters like seismic moment, corner frequency and radiated energy, as well as the inelastic attenuation factor. The results are discussed, for each type of seismicity in terms of scaling of corner frequency and energy release with seismic moment. We further discuss the steps realized to implement spectral analysis as an automated processing routine at the observatories of Guadeloupe and Martinique.
Expert systems in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostem, C.N.; Maher, M.L.
1986-01-01
This book presents the papers given at a symposium on expert systems in civil engineering. Topics considered at the symposium included problem solving using expert system techniques, construction schedule analysis, decision making and risk analysis, seismic risk analysis systems, an expert system for inactive hazardous waste site characterization, an expert system for site selection, knowledge engineering, and knowledge-based expert systems in seismic analysis.
CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne D. Pennington; Horacio Acevedo; Aaron Green
2002-10-01
The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation ormore » printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less
Calibration of Seismic Attributes for Reservoir Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne D. Pennington
2002-09-29
The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation ormore » printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less
,
2017-05-25
SummaryEarthquakes pose a threat to the safety of over 143 million people living in the United States. Earthquake impacts can be significantly reduced if communities understand their risk and take proactive steps to mitigate that risk. The Advanced National Seismic System (ANSS) is a cooperative effort to collect and analyze seismic and geodetic data on earthquakes, issue timely and reliable notifications of their occurrence and impacts, and provide data for earthquake research and the hazard and risk assessments that are the foundation for creating an earthquakeresilient nation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin; Slaughter, Andrew; Veeraraghavan, Swetha
Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON) is a finite element application that aims at analyzing the response of 3-D soil-structure systems to natural and man-made hazards such as earthquakes, floods and fire. MASTODON currently focuses on the simulation of seismic events and has the capability to perform extensive ‘source-to-site’ simulations including earthquake fault rupture, nonlinear wave propagation and nonlinear soil-structure interaction (NLSSI) analysis. MASTODON is being developed to be a dynamic probabilistic risk assessment framework that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment.
NASA Astrophysics Data System (ADS)
Frassetto, A.; Busby, R. W.; Hafner, K.; Woodward, R.; Sauter, A.
2013-12-01
In preparation for the upcoming deployment of EarthScope's USArray Transportable Array (TA) in Alaska, the National Science Foundation (NSF) has supported exploratory work on seismic station design, sensor emplacement, and communication concepts appropriate for this challenging high-latitude environment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and in the lower-48 of the U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the weight of the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the state. We will review the methods used for directly emplacing broadband seismometers in comparison to the current methods used for the lower-48 TA. These new methods primarily focus on using a portable drill to make a bored hole three to five meters, beneath the active layer of the permafrost, or by coring 1-2 meters deep into surface bedrock. Both methods are logistically effective in preliminary trials. Subsequent station performance has been assessed quantitatively using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations can sometimes exceed that of the quietest TA stations in the lower-48, particularly horizontal components at long periods. A comparison of the performance of the various installations is discussed.
NASA Astrophysics Data System (ADS)
Rahman, M.; Crone, T. J.; Knuth, F.; Garcia, C.; Soule, D. C.; Fatland, R.
2017-12-01
Flocculation (floc) events are characterized by the ejection of bacterial material, possibly associated with thermophiles originating from warmer sub-seafloor habitats, into the water column. These events are anecdotally linked to magmatic and tectonic processes common in mid-ocean ridge seafloor environments. However, little is known about the relationship between flocculation events and other potentially triggering processes. The Cabled Array at Axial Seamount provides a suite of interdisciplinary real-time datasets to examine system-level processes governing the volcanic marine environment. The eruption at Axial Seamount in 2015 creates an opportunity to study this volcanic system as it evolves post eruption and identify the relationships between the temperature, pressure, seismicity and the biological response. The Diffuse Vent Fluid 3-D Temperature Array (TMPSF), located within the ASHES hydrothermal vent field at Axial Seamount, uses 24 separate sensors to provide a 3-dimensional distribution of diffuse flow temperatures near the Mushroom hydrothermal vent. Preliminary analysis suggests that the temperature signal is strongly influenced by tides observed using the ocean bottom pressure sensors, which may be related to either gradual shifts in tidal currents above the seafloor, or related to subsurface flux. CamHD, also located within the ASHES field, produces high definition video data, which we analyze to identify changes in water column floc concentration. These data streams allow us to examine the controls on the temperature signal and the associated correlations with microbial seafloor processes. We are currently examining the flocculation event identified in Crone (2016) to determine its relationship to changes in seawater temperatures near the seafloor, seismic activity and seafloor pressure. We will use this proxy to examine other CamHD data and determine if subsequent flocculation events have occurred and if they have a similar relationship to local thermal and seismic activity.
Davatzes, Nicholas C.; Hickman, Stephen H.
2009-01-01
A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.
Precision Seismic Monitoring of Volcanic Eruptions at Axial Seamount
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Wilcock, W. S. D.; Tolstoy, M.; Baillard, C.; Tan, Y. J.; Schaff, D. P.
2017-12-01
Seven permanent ocean bottom seismometers of the Ocean Observatories Initiative's real time cabled observatory at Axial Seamount off the coast of the western United States record seismic activity since 2014. The array captured the April 2015 eruption, shedding light on the detailed structure and dynamics of the volcano and the Juan de Fuca midocean ridge system (Wilcock et al., 2016). After a period of continuously increasing seismic activity primarily associated with the reactivation of caldera ring faults, and the subsequent seismic crisis on April 24, 2015 with 7000 recorded events that day, seismicity rates steadily declined and the array currently records an average of 5 events per day. Here we present results from ongoing efforts to automatically detect and precisely locate seismic events at Axial in real-time, providing the computational framework and fundamental data that will allow rapid characterization and analysis of spatio-temporal changes in seismogenic properties. We combine a kurtosis-based P- and S-phase onset picker and time domain cross-correlation detection and phase delay timing algorithms together with single-event and double-difference location methods to rapidly and precisely (tens of meters) compute the location and magnitudes of new events with respect to a 2-year long, high-resolution background catalog that includes nearly 100,000 events within a 5×5 km region. We extend the real-time double-difference location software DD-RT to efficiently handle the anticipated high-rate and high-density earthquake activity during future eruptions. The modular monitoring framework will allow real-time tracking of other seismic events such as tremors and sea-floor lava explosions that enable the timing and location of lava flows and thus guide response research cruises to the most interesting sites. Finally, rapid detection of eruption precursors and initiation will allow for adaptive sampling by the OOI instruments for optimal recording of future eruptions. With a higher eruption recurrence rate than land-based volcanoes the Axial OOI observatory offers the opportunity to monitor and study volcanic eruptions throughout multiple cycles.
Seismic performance for vertical geometric irregularity frame structures
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahmud, N. A.; Ishak, I. S.
2018-04-01
This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.
Analytical Prediction of the Seismic Response of a Reinforced Concrete Containment Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, R.J.; Rashid, Y.R.; Cherry, J.L.
Under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan, the Nuclear Power Engineering Corporation (NUPEC) is investigating the seismic behavior of a Reinforced Concrete Containment Vessel (RCCV) through scale-model testing using the high-performance shaking table at the Tadotsu Engineering Laboratory. A series of tests representing design-level seismic ground motions was initially conducted to gather valuable experimental measurements for use in design verification. Additional tests will be conducted with increasing amplifications of the seismic input until a structural failure of the test model occurs. In a cooperative program with NUPEC, the US Nuclear Regulatory Commission (USNRC),more » through Sandia National Laboratories (SNL), is conducting analytical research on the seismic behavior of RCCV structures. As part of this program, pretest analytical predictions of the model tests are being performed. The dynamic time-history analysis utilizes a highly detailed concrete constitutive model applied to a three-dimensional finite element representation of the test structure. This paper describes the details of the analysis model and provides analysis results.« less
Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Molino, Erik; Lopez, Carmen
2013-04-01
A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.
NASA Astrophysics Data System (ADS)
Banda, S.; Chang, A.; Sanquini, A.; Hilley, G. E.
2013-12-01
Nepal has been a seismically active region since the mid-Eocene collision of the Indian and Eurasian plates. It can be divided into four major tectonostratigraphic units. The Lesser Himalayan Zone, where Kathmandu Valley is located, is bounded to the south by the Main Boundary Thrust (MBT) and to the north by the Main Central Thrust (MCT). These faults, and the Main Frontal Thrust (MFT) traverse the NW-SE length of Nepal and sole into the Main Himalayan Thrust (MHT). Slip along these structures during the Plio-Quaternary has ponded sediment in the interior of the orogen, producing the nearly circular Kathmandu Basin, which hosts a series of radially converging rivers that exit the basin to the south. The sediment that is ponded within the basin consists of alluvial, lacustrine and debris flow deposits that are ~500 m thick. The faults in the vicinity of the Kathmandu Valley currently serve as potential earthquake sources. Sources that might plausibly be generated by these faults are constrained by structural, paleoseismic, and geodetic observations. The continued collision between India and Tibet is reflected in a convergence rate of about 20 mm/yr, as measured by Global Positioning System (GPS) geodetic networks. Strain accumulates on the MHT, and is released during large earthquakes. The epicenter of the 1934 (M8.2) earthquake, about 175 km to the east of Kathmandu, resulted in MMI VIII- IX shaking intensity in the Kathmandu Valley. Seismic waves generated from faults in proximity to Kathmandu may be amplified or attenuated at particular locations due to specific site responses that reflect the geologic framework of the Kathmandu Valley. The ponded sediments within the Kathmandu Basin may contribute to basin effects, trapping seismic waves and prolonging ground motion, as well as increasing the amplitude of the waves as they travel from crystalline outer rocks into the soft lake-bed sediments. A hazard analysis suggests that a M8.0 earthquake originating in the currently seismically-locked area to the west of Kathmandu would produce MMI VIII intensity in Kathmandu Valley, and a M5.8 earthquake on an active fault in the valley itself would result in MMI IX intensity close to the fault, and MMI VII - VIII elsewhere in the valley. The government of Nepal initiated a seismic hazard analysis and scenario-based estimation of the impact of a major earthquake in Kathmandu Valley in support of the development of a National Building Code. Earthquake awareness, preparation and mitigation initiatives have been undertaken, including implementation of the School Earthquake Safety Program, a preparedness and risk mitigation program for raising awareness and strengthening vulnerable buildings. The effectiveness of this program has been well-demonstrated, and it is a candidate for acceleration of adoption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, S; Dreger, D; Hellweg, P
2007-08-08
We have performed a complete moment tensor analysis of the seismic event, which occurred on Monday August 6, 2007 at 08:48:40 UTC 21 km from Mt.Pleasant, Utah. In our analysis we utilized complete three-component seismic records recorded by the USArray, University of Utah, and EarthScope seismic arrays. The seismic waveform data was integrated to displacement and filtered between 0.02 to 0.10 Hz following instrument removal. We used the Song et al. (1996) velocity model to compute Green's functions used in the moment tensor inversion. A map of the stations we used and the location of the event is shown inmore » Figure 1. In our moment tensor analysis we assumed a shallow source depth of 1 km consistent with the shallow depth reported for this event. As shown in Figure 2 the results point to a source mechanism with negligible double-couple radiation and is composed of dominant CLVD and implosive isotropic components. The total scalar seismic moment is 2.12e22 dyne cm corresponding to a moment magnitude (Mw) of 4.2. The long-period records are very well matched by the model (Figure 2) with a variance reduction of 73.4%. An all dilational (down) first motion radiation pattern is predicted by the moment tensor solution, and observations of first motions are in agreement.« less
Induced Seismicity and Public Communication: Lessons Learned
NASA Astrophysics Data System (ADS)
Buchanan, R.
2017-12-01
Beginning in 2009, induced seismicity became a major public policy issue in the midcontinent. Based on my experience with induced seismicity in south-central Kansas, conversations about man-made earthquakes, and their connection to hydraulic fracturing, are challenging, yet they provide an opening for geoscientists to engage the public in conversations about energy regulation, environmental issues, and basic geology. In many respects, hydraulic fracturing and induced seismicity became the lenses through which the public saw the geoscience community. Interaction with the media, regulators, decision-makers, and the general public, through interviews, presentations, panels, and public meetings, provided opportunities to describe current knowledge of the subsurface and to advocate for improved seismic monitoring and subsurface data-collection. Equally important, it provided geoscientists the opportunity to learn about public understanding and concerns about these issues. Successful communication required multiple, in-depth conversations and willingness to listen carefully. Results included support for additional monitoring from both public and private sources.
Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy).
Chiodini, G; Selva, J; Del Pezzo, E; Marsan, D; De Siena, L; D'Auria, L; Bianco, F; Caliro, S; De Martino, P; Ricciolino, P; Petrillo, Z
2017-06-30
The inter-arrival times of the post 2000 seismicity at Campi Flegrei caldera are statistically distributed into different populations. The low inter-arrival times population represents swarm events, while the high inter-arrival times population marks background seismicity. Here, we show that the background seismicity is increasing at the same rate of (1) the ground uplift and (2) the concentration of the fumarolic gas specie more sensitive to temperature. The seismic temporal increase is strongly correlated with the results of recent simulations, modelling injection of magmatic fluids in the Campi Flegrei hydrothermal system. These concurrent variations point to a unique process of temperature-pressure increase of the hydrothermal system controlling geophysical and geochemical signals at the caldera. Our results thus show that the occurrence of background seismicity is an excellent parameter to monitor the current unrest of the caldera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul A.
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less
NASA Astrophysics Data System (ADS)
Convertito, Vincenzo; Zollo, Aldo
2011-08-01
In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982-1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.
NASA Astrophysics Data System (ADS)
Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.
2017-12-01
The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.
NASA Astrophysics Data System (ADS)
Triezenberg, P. J.; Hart, P. E.; Childs, J. R.
2014-12-01
The National Archive of Marine Seismic Surveys (NAMSS) was established by the USGS in 2004 in an effort to rescue marine seismic reflection profile data acquired largely by the oil exploration industry throughout the US outer continental shelf (OCS). It features a Web interface for easy on-line geographic search and download. The commercial value of these data had decreased significantly because of drilling moratoria and newer acquisition technology, and large quantities were at risk of disposal. But, the data still had tremendous value for scientific research and education purposes, and an effort was undertaken to ensure that the data were preserved and publicly available. More recently, the USGS and Bureau of Ocean Energy Management (BOEM) have developed a partnership to make similarly available a much larger quantity of 2D and 3D seismic data acquired by the U.S. government for assessment of resources in the OCS. Under Federal regulation, BOEM is required to publicly release all processed geophysical data, including seismic profiles, acquired under an exploration permit, purchased and retained by BOEM, no sooner than 25 years after issuance of the permit. Data acquired prior to 1989 are now eligible for release. Currently these data are distributed on CD or DVD, but data discovery can be tedious. Inclusion of these data within NAMSS vastly increases the amount of seismic data available for research purposes. A new NAMSS geographical interface provides easy and intuitive access to the data library. The interface utilizes OpenLayers, Mapnik, and the Django web framework. In addition, metadata capabilities have been greatly increased using a PostgresSQL/PostGIS database incorporating a community-developed ISO-compliant XML template. The NAMSS database currently contains 452 2D seismic surveys comprising 1,645,956 line km and nine 3D seismic surveys covering 9,385 square km. The 2D data holdings consist of stack, migrated and depth sections, most in SEG-Y format.
Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes
NASA Astrophysics Data System (ADS)
Cai, X.; Chen, X.; Chen, Y.; Cai, M.
2008-12-01
It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722
NASA Astrophysics Data System (ADS)
Norbeck, J. H.; Rubinstein, J. L.
2017-12-01
The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. In this work, we demonstrate that the basement fault stressing conditions that drive seismicity rate evolution are related directly to the operational history of 958 saltwater disposal wells completed in the Arbuckle aquifer. We developed a fluid pressurization model based on the assumption that pressure changes are dominated by reservoir compressibility effects. Using injection well data, we established a detailed description of the temporal and spatial variability in stressing conditions over the 21.5-year period from January 1995 through June 2017. With this stressing history, we applied a numerical model based on rate-and-state friction theory to generate seismicity rate forecasts across a broad range of spatial scales. The model replicated the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. The behavior of the induced earthquake sequence was consistent with the prediction from rate-and-state theory that the system evolves toward a steady seismicity rate depending on the ratio between the current and background stressing rates. Seismicity rate transients occurred over characteristic timescales inversely proportional to stressing rate. We found that our hydromechanical earthquake rate model outperformed observational and empirical forecast models for one-year forecast durations over the period 2008 through 2016.
NASA Astrophysics Data System (ADS)
Norbeck, J. H.; Rubinstein, J. L.
2018-04-01
The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. We develop a reservoir model to calculate the hydrologic conditions associated with the activity of 902 saltwater disposal wells injecting into the Arbuckle aquifer. Estimates of basement fault stressing conditions inform a rate-and-state friction earthquake nucleation model to forecast the seismic response to injection. Our model replicates many salient features of the induced earthquake sequence, including the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. We present evidence for variable time lags between changes in injection and seismicity rates, consistent with the prediction from rate-and-state theory that seismicity rate transients occur over timescales inversely proportional to stressing rate. Given the efficacy of the hydromechanical model, as confirmed through a likelihood statistical test, the results of this study support broader integration of earthquake physics within seismic hazard analysis.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.
2017-12-01
This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic displacements. Another earthquake comparable to the Pawnee earthquake should be well recorded by the system. Recordings of ambient vibration data collected to date describing noise characteristics and measurement error levels will be presented. Any recordings of seismic motions will be discussed, should a significant event occur.
Seismic performance of spherical liquid storage tanks: a case study
NASA Astrophysics Data System (ADS)
Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo
2018-02-01
Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.
Scalable Probabilistic Inference for Global Seismic Monitoring
NASA Astrophysics Data System (ADS)
Arora, N. S.; Dear, T.; Russell, S.
2011-12-01
We describe a probabilistic generative model for seismic events, their transmission through the earth, and their detection (or mis-detection) at seismic stations. We also describe an inference algorithm that constructs the most probable event bulletin explaining the observed set of detections. The model and inference are called NET-VISA (network processing vertically integrated seismic analysis) and is designed to replace the current automated network processing at the IDC, the SEL3 bulletin. Our results (attached table) demonstrate that NET-VISA significantly outperforms SEL3 by reducing the missed events from 30.3% down to 12.5%. The difference is even more dramatic for smaller magnitude events. NET-VISA has no difficulty in locating nuclear explosions as well. The attached figure demonstrates the location predicted by NET-VISA versus other bulletins for the second DPRK event. Further evaluation on dense regional networks demonstrates that NET-VISA finds many events missed in the LEB bulletin, which is produced by the human analysts. Large aftershock sequences, as produced by the 2004 December Sumatra earthquake and the 2011 March Tohoku earthquake, can pose a significant load for automated processing, often delaying the IDC bulletins by weeks or months. Indeed these sequences can overload the serial NET-VISA inference as well. We describe an enhancement to NET-VISA to make it multi-threaded, and hence take full advantage of the processing power of multi-core and -cpu machines. Our experiments show that the new inference algorithm is able to achieve 80% efficiency in parallel speedup.
Origins of a national seismic system in the United States
Filson, John R.; Arabasz, Walter J.
2016-01-01
This historical review traces the origins of the current national seismic system in the United States, a cooperative effort that unifies national, regional, and local‐scale seismic monitoring within the structure of the Advanced National Seismic System (ANSS). The review covers (1) the history and technological evolution of U.S. seismic networks leading up to the 1990s, (2) factors that made the 1960s and 1970s a watershed period for national attention to seismology, earthquake hazards, and seismic monitoring, (3) genesis of the vision of a national seismic system during 1980–1983, (4) obstacles and breakthroughs during 1984–1989, (5) consensus building and convergence during 1990–1992, and finally (6) the two‐step realization of a national system during 1993–2000. Particular importance is placed on developments during the period between 1980 and 1993 that culminated in the adoption of a charter for the Council of the National Seismic System (CNSS)—the foundation for the later ANSS. Central to this story is how many individuals worked together toward a common goal of a more rational and sustainable approach to national earthquake monitoring in the United States. The review ends with the emergence of ANSS during 1999 and 2000 and its statutory authorization by Congress in November 2000.
NASA Astrophysics Data System (ADS)
Saltiel, S.; Bonner, B. P.; Ajo Franklin, J. B.
2014-12-01
Time-lapse seismic monitoring (4D) is currently the primary technique available for tracking sequestered CO2 in a geologic storage reservoir away from monitoring wells. The main seismic responses to injection are those due to direct fluid substitution, changes in differential pressure, and chemical interactions with reservoir rocks; the importance of each depends on reservoir/injection properties and temporal/spatial scales of interest. As part of the Big Sky Carbon Sequestration Partnership, we are monitoring the upcoming large scale (1 million ton+) CO2 injection in Kevin Dome, north central Montana. As part of this research, we predict the relative significance of these three effects, as an aid in design of field surveys. Analysis is undertaken using existing open-hole well log data and cores from wells drilled at producer and injector pads as well as core experiments. For this demonstration site, CO2 will be produced from a natural reservoir and re-injected down dip, where the formation is saturated with brine. Effective medium models based on borehole seismic velocity measurements predict relatively small effects (less than 40 m/s change in V¬p) due to the injection of more compressible supercritical CO2. This is due to the stiff dolomite reservoir rock, with high seismic velocities (Vp~6000 m/s, Vs~3000 m/s) and fairly low porosity (<10%). Assuming pure dolomite mineralogy, these models predict a slight increase in Vp during CO2 injection. This velocity increase is due to the lower density of CO2 relative to brine; which outweighs the small change in modulus compared to the stiff reservoir rock. We present both room pressure and in-situ P/T ultrasonic experiments using core samples obtained from the reservoir; such measurements are undertaken to access the expected seismic velocities under pressurized injection. The reservoir appears to have fairly low permeability. Large-volume injection is expected to produce large local pore pressure increases, which may have the largest immediate effect on seismic velocities. Increasing pore pressure lowers the differential pressure due to confining stress, which decreases seismic velocities by opening cracks. The magnitude of this effect depends both on rock microstructure and fracture at the field scale; core scale measurements will help separate these effects.
NASA Astrophysics Data System (ADS)
Dinske, C.; Langenbruch, C.; Shapiro, S. A.
2017-12-01
We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence we utilize non-stationary ETAS modeling (Kumazawa and Ogata, 2013, 2014) which results in a good agreement with the observation. But the required non-stationarity of the process of seismicity triggering complicates an implementation of ETAS modeling in induced seismicity forecast models.
NASA Astrophysics Data System (ADS)
Yu, H.; Gu, H.
2017-12-01
A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.
Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis
NASA Astrophysics Data System (ADS)
Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.
2017-12-01
Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long-term memory of the seismic crisis. These results are a part of the Spanish project SISMOSIMA (CGL2013-47412-C2-2P).
NASA Astrophysics Data System (ADS)
Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M.
2016-04-01
This work is devoted to the analysis of seismic signals continuously recorded at Campi Flegrei Caldera (Italy) during the entire year 2006. The radiation pattern associated with the Long-Period energy release is investigated. We adopt an innovative Independent Component Analysis algorithm for convolutive seismic series adapted and improved to give automatic procedures for detecting seismic events often buried in the high-level ambient noise. The extracted waveforms characterized by an improved signal-to-noise ratio allows the recognition of Long-Period precursors, evidencing that the seismic activity accompanying the mini-uplift crisis (in 2006), which climaxed in the three days from 26-28 October, had already started at the beginning of the month of October and lasted until mid of November. Hence, a more complete seismic catalog is then provided which can be used to properly quantify the seismic energy release. To better ground our results, we first check the robustness of the method by comparing it with other blind source separation methods based on higher order statistics; secondly, we reconstruct the radiation patterns of the extracted Long-Period events in order to link the individuated signals directly to the sources. We take advantage from Convolutive Independent Component Analysis that provides basic signals along the three directions of motion so that a direct polarization analysis can be performed with no other filtering procedures. We show that the extracted signals are mainly composed of P waves with radial polarization pointing to the seismic source of the main LP swarm, i.e. a small area in the Solfatara, also in the case of the small-events, that both precede and follow the main activity. From a dynamical point of view, they can be described by two degrees of freedom, indicating a low-level of complexity associated with the vibrations from a superficial hydrothermal system. Our results allow us to move towards a full description of the complexity of the source, which can be used, by means of the small-intensity precursors, for hazard-model development and forecast-model testing, showing an illustrative example of the applicability of the CICA method to regions with low seismicity in high ambient noise.
Theory and case studies on solar induced seismicity
NASA Astrophysics Data System (ADS)
Duma, Gerald; Freund, Friedemann; Kosovichev, Pavel
2015-04-01
Huge electric current vortices are continuously generated in the Earth's lithosphere through electromagnetic induction from powerful ionospheric electric vortex currents that arise from ionization on the sun-lit side of the Earth (Chapman S. and Bartels J., 1940). The circular telluric currents in the Earth's lithosphere interact with the Earth's main magnetic field (H), building up a magnetic moment (M). According to T = [M x H] a mechanic torque (T) results from this interaction that can reach values as high as 5x10exp13 Nm (Duma G. and Ruzhin Y., 2003). We present evidence that this ionospherically induced telluric torque, which reaches deep into the lithosphere, influences the diurnal seismicity patterns in major earthquake zones as documented by earthquakes with magnitudes M ≥ 6.0. Our results confirm observations of distinct time-of-day patterns of seismic activity reported for over a century (Omori F., 1902; Conrad V., 1932 ; Shimshoni M., 1971; Duma G. and Vilardo G., 1998; Schekotov A.Yu., Molchanov O.A. and Hayakawa M., 2005) and even much earlier by Pliny the Elder, 79 A.D. A solar influence on earthquake frequency is apparent not only in diurnal patterns, but also in seasonal (e.g. Lipovics T., 2005) and decadal patterns. The effect can be validated by data recorded continuously at geomagnetic observatories, the INTERMAGNET stations (http://www.intermagnet.org), operating on all continents. The observatories continuously record magnetic variations which arise from the telluric currents in the Earth's lithosphere. Theory and model are presented, starting from the primary source for the effect, which is the varying solar wind speed as measured by satellites. The data are provided by the OMNI 2 directory (NASA, http://omniweb.gsfc.nasa.gov). We offer 7 case studies that deal with seismic activity patterns in the diurnal, seasonal and long term time domains for seismic zones in Asia (Japan, Taiwan, Sumatra), N-America (California), the Mid Atlantic Ridge, the Red Sea and Europe (Austria).
NASA Astrophysics Data System (ADS)
Cannata, Andrea; Del Bello, Elisabetta; Kueppers, Ulrich; Privitera, Eugenio; Ricci, Tullio; Scarlato, Piergiorgio; Sciotto, Mariangela; Spina, Laura; Taddeucci, Jacopo; Pena Fernandez, Juan Jose; Sesterhenn, Joern
2016-04-01
On 5th July 2014 an eruptive fissure (hereafter referred to as EF) opened at the base of North-East Crater (NEC) of Mt. Etna. EF produced both Strombolian explosions and lava effusion. Thanks to the multiparametric experiment planned in the framework of MEDSUV project, we had the chance to acquire geophysical and volcanological data, in order to investigate the ongoing volcanic activity at EF. Temporary instruments (2 broadband seismometers, 2 microphones, 3-microphone arrays, a high-speed video camera and a thermal-camera) were deployed near the active vents during 15-16 July 2014 and were integrated with the data recorded by the permanent networks. Several kinds of studies are currently in progress, such as: frequency analysis by Fourier Transform and Short Time Fourier Transform to evaluate the spectral content of both seismic and acoustic signals; partitioning of seismic and acoustic energies, whose time variations could reflect changes in the volcanic dynamics; investigation on the intertimes between explosions to investigate their recurrence behaviour; classification of the waveforms of infrasound events. Furthermore, joint analysis of video signals and seismic-acoustic wavefields outlined relationships between pyroclasts ejection velocity, total erupted mass, peak explosion pressure, and air-ground motion coupling. This multiparametric approach allowed distinguishing and characterizing individually the behavior of the two vents active along the eruptive fissure via their thermal, visible and infrasonic signatures and shed light in the eruptive dynamics.
High Resolution Seismic Study of the Holocene Infill of the Elkhorn Slough, Central California
The seismic analysis of the sedimentary infill of the Elkhorn Slough, central California, reveals a succession of three main seismic units: U1, U2, U3, with their correspondent discontinuities d2, d3. These units are deposited over a paleorelief representing the channel location ...
NASA Astrophysics Data System (ADS)
Leptokaropoulos, Konstantinos; Staszek, Monika; Lasocki, Stanisław; Martínez-Garzón, Patricia; Kwiatek, Grzegorz
2018-02-01
The Geysers geothermal field located in California, USA, is the largest geothermal site in the world, operating since the 1960s. We here investigate and quantify the correlation between temporal seismicity evolution and variation of the injection data by examination of time-series through specified statistical tools (binomial test to investigate significant rate changes, cross correlation between seismic and injection data, b-value variation analysis). To do so, we utilize seismicity and operational data associated with two injection wells (Prati-9 and Prati-29) which cover a time period of approximately 7 yr (from November 2007 to August 2014). The seismicity is found to be significantly positively correlated with the injection rate. The maximum correlation occurs with a seismic response delay of ˜2 weeks, following injection operations. Those results are very stable even after considering hypocentral uncertainties, by applying a vertical shift of the events foci up to 300 m. Our analysis indicates also time variations of b-value, which exhibits significant positive correlation with injection rates.
Applying Transmission Kikuchi Diffraction (TKD) to Understand Nanogranular Fault Rock Materials
NASA Astrophysics Data System (ADS)
Smith, S. A. F.; Demurtas, M.; Prior, D. J.; Di Toro, G.
2017-12-01
Nanoparticles (<< 1 µm) form in the localized slip zones of natural and experimental faults, but their origin (e.g. seismic vs. aseismic slip) and mechanical behaviour is still debated. Understanding the deformation processes that produce nanoparticles in faults requires an understanding of grain sizes, shapes and crystallographic orientations at higher spatial resolution than is currently possible using standard EBSD techniques. Transmission Kikuchi Diffraction (TKD) in the SEM is a technique that allows to overcome this spatial resolution issue by performing orientation mapping in a commercial EBSD system on electron transparent foils with resolutions that can be below 10 nm. Therefore, the potential of TKD to understand deformation processes in nanoparticles is very high. We present results of TKD analysis performed on mixed calcite-dolomite gouges deformed in a rotary-shear apparatus at slip rates ranging from sub-seismic to co-seismic (30 µm/s to 1 m/s). Samples for TKD were prepared by argon ion slicing, a method that yields relatively large (104 µm2) electron transparent areas, as well as standard argon ion milling. Coupled TKD-EDS analysis allows quantification of elemental contents at a scale of tens of nanometers. Preliminary results show that at a slip velocity of 1 m/s, the localized slip zone that forms in the gouges during shearing is composed of recrystallized grains of calcite and Mg-calcite (the latter being a decarbonation product of dolomite) with an average grain size of c. 300 nm. Individual grains are characterized by relatively straight boundaries, and many triple and quadruple grain junctions are present. The nanogranular aggregates show a polygonised texture with absence of clear porosity and shape preferred orientation. Orientation data show a random distribution of the calcite c-axes. Further investigation will help to obtain new insights into the deformation mechanisms active during seismic faulting in carbonate-bearing faults. The integration of grain size, grain shape and crystallographic information into flow laws will help to describe and predict the rheological behaviour of carbonate faults during seismic sliding.
NASA Astrophysics Data System (ADS)
Formisano, Antonio; Chiumiento, Giovanni; Fabbrocino, Francesco; Landolfo, Raffaele
2017-07-01
The general objective of the work is to draw attention to the issue of seismic vulnerability analysis of masonry building compounds, which characterise most of the Italian historic towns. The study is based on the analysis of an aggregated construction falling in the town of Arsita (Teramo, Italy) damaged after the 2009 L'Aquila earthquake. A comparison between the seismic verifications carried out by using the 3Muri commercial software and those deriving from the application of the Italian Guidelines on Cultural Heritage has been performed. The comparison has shown that Guidelines provide results on the safe side in predicting the seismic behaviour of the building compound under study. Further analyses should be performed aiming at suggesting some modifications of the used simplified calculation method to better interpret the behaviour of building compounds under earthquake.
Research on response spectrum of dam based on scenario earthquake
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Zhang, Yushan
2017-10-01
Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.
Improving resolution of crosswell seismic section based on time-frequency analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, H.; Li, Y.
1994-12-31
According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology whichmore » has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).« less
NASA Astrophysics Data System (ADS)
He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.
2016-04-01
Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
Compiling an earthquake catalogue for the Arabian Plate, Western Asia
NASA Astrophysics Data System (ADS)
Deif, Ahmed; Al-Shijbi, Yousuf; El-Hussain, Issa; Ezzelarab, Mohamed; Mohamed, Adel M. E.
2017-10-01
The Arabian Plate is surrounded by regions of relatively high seismicity. Accounting for this seismicity is of great importance for seismic hazard and risk assessments, seismic zoning, and land use. In this study, a homogenous earthquake catalogue of moment-magnitude (Mw) for the Arabian Plate is provided. The comprehensive and homogenous earthquake catalogue provided in the current study spatially involves the entire Arabian Peninsula and neighboring areas, covering all earthquake sources that can generate substantial hazard for the Arabian Plate mainland. The catalogue extends in time from 19 to 2015 with a total number of 13,156 events, of which 497 are historical events. Four polygons covering the entire Arabian Plate were delineated and different data sources including special studies, local, regional and international catalogues were used to prepare the earthquake catalogue. Moment magnitudes (Mw) that provided by original sources were given the highest magnitude type priority and introduced to the catalogues with their references. Earthquakes with magnitude differ from Mw were converted into this scale applying empirical relationships derived in the current or in previous studies. The four polygons catalogues were included in two comprehensive earthquake catalogues constituting the historical and instrumental periods. Duplicate events were identified and discarded from the current catalogue. The present earthquake catalogue was declustered in order to contain only independent events and investigated for the completeness with time of different magnitude spans.
NASA Astrophysics Data System (ADS)
Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.
2011-12-01
Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena
2016-04-01
Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) remained after the last major earthquake that occurred after the last glaciation. Seismic instruments for the DAFNE/FINLAND experiment were provided by the institute of Seismology of the University of Helsinki and by the Sodankylä Geophysical Observatory. The study was partly funded by Posiva Oy and Geological Survey of Finland. DAFNE/FINLAND Working Group: Ilmo Kukkonen Pekka Heikkinen Kari Komminaho Elena Kozlovskaya Riitta Hurskainen Tero Raita Hanna Silvennoinen
NASA Astrophysics Data System (ADS)
Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu
2016-11-01
A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. BEGNAUD; ET AL
2000-09-01
Obtaining accurate seismic event locations is one of the most important goals for monitoring detonations of underground nuclear teats. This is a particular challenge at small magnitudes where the number of recording stations may be less than 20. Although many different procedures are being developed to improve seismic location, most procedures suffer from inadequate testing against accurate information about a seismic event. Events with well-defined attributes, such as latitude, longitude, depth and origin time, are commonly referred to as ground truth (GT). Ground truth comes in many forms and with many different levels of accuracy. Interferometric Synthetic Aperture Radar (InSAR)more » can provide independent and accurate information (ground truth) regarding ground surface deformation and/or rupture. Relating surface deformation to seismic events is trivial when events are large and create a significant surface rupture, such as for the M{sub w} = 7.5 event that occurred in the remote northern region of the Tibetan plateau in 1997. The event, which was a vertical strike slip even appeared anomalous in nature due to the lack of large aftershocks and had an associated surface rupture of over 180 km that was identified and modeled using InSAR. The east-west orientation of the fault rupture provides excellent ground truth for latitude, but is of limited use for longitude. However, a secondary rupture occurred 50 km south of the main shock rupture trace that can provide ground truth with accuracy within 5 km. The smaller, 5-km-long secondary rupture presents a challenge for relating the deformation to a seismic event. The rupture is believed to have a thrust mechanism; the dip of the fimdt allows for some separation between the secondary rupture trace and its associated event epicenter, although not as much as is currently observed from catalog locations. Few events within the time period of the InSAR analysis are candidates for the secondary rupture. Of these, we have identified six possible secondary rupture events (mb range = 3.7-4.8, with two magnitudes not reported), based on synthetic tests and residual analysis. All of the candidate events are scattered about the main and secondary rupture. A Joint Hypocenter Determination (JHD) approach applied to the aftershocks using global picks was not able to identify the secondary event. We added regional data and used propagation path corrections to reduce scatter and remove the 20-km bias seen in the main shock location. A&r preliminary analysis using several different velocity models, none of the candidate events proved to relocate on the surface trace of the secondary rupture. However, one event (mb = not reported) moved from a starting distance of {approximately}106 km to a relocated distance of {approximately}28 km from the secondary rupture, the only candidate event to relocate in relative proximity to the secondary rupture.« less
Detection of rainfall-induced landslides on regional seismic networks
NASA Astrophysics Data System (ADS)
Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo
2017-04-01
Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For this last category of events, we have applied the approach proposed in Manconi et al. (2016), in order to evaluate the performance of automatic identification, location and first order classification of landslide events trough seismic data only. Our analysis may provide important insights for the development and calibration of landslide identification algorithms, which might be used to enhance the completeness of landslide catalogues by relying on quantitative data. Brunetti, M.T., Peruccacci, S., Antronico, L., Bartolini, D., Deganutti, A.M., Gariano, S.L., Iovine, G., Luciani, S., Luino, F., Melillo, M., Palladino, M.R., Parise, M., Rossi, M., Turconi, L., Vennari, C., Vessia, G., Viero, A., and Guzzetti, F.: Catalogue of Rainfall Events with Shallow Landslides and New Rainfall thresholds in Italy, in Lollino G, Giordan D, Crosta G B, Corominas J, Azzam R, Wasowski J, Sciarra N (eds.), Engineering Geology for Society and Territory - Volume 2, Springer International Publishing, Switzerland, 1575-1579, 2015. Manconi, A., Picozzi, M., Coviello, V., De Santis, F., and Elia, L.: Real-time detection, location, and characterization of rockslides using broadband regional seismic networks, Geophys. Res. Lett., 43, 6960-6967, doi:10.1002/2016GL069572, 2016.
NASA Astrophysics Data System (ADS)
Moran, S. C.; Malone, S. D.
2013-12-01
The May 18, 1980, eruption of Mount St. Helens (MSH) was an historic event, both for society and for the field of volcanology. However, our knowledge of the eruption and the precursory period leading up it is limited by the fact that most of the data, particularly seismic recordings, were not kept due to severe limitations in the amount of digital data that could be handled and stored using 1980 computer technology. Because of these limitations, only about 900 digital event files have been available for seismic studies of the March-May seismic sequence out of a total of more than 4,000 events that were counted using paper records. Fortunately, data from a subset of stations were also recorded continuously on a series of 24 analog 14-track IRIG magnetic tapes. We have recently digitized these tapes and time-corrected and cataloged the resultant digital data streams, enabling more in-depth studies of the (almost) complete pre-eruption seismic sequence using modern digital processing techniques. Of the fifteen seismic stations operating near MSH for at least a part of the two months between March 20 and May 18, six stations have relatively complete analog recordings. These recordings have gaps of minutes to days because of radio noise, poor tape quality, or missing tapes. In addition, several other stations have partial records. All stations had short-period vertical-component sensors with very limited dynamic range and unknown response details. Nevertheless, because the stations were at a range of distances and were operated at a range of gains, a variety of earthquake sizes were recorded on scale by at least one station, and therefore a much more complete understanding of the evolution of event types, sizes and character should be achievable. In our preliminary analysis of this dataset we have found over 10,000 individual events as recorded on stations 35-40 km from MSH, spanning a recalculated coda-duration magnitude range of ~1.5 to 4.1, including many M < 3.0 events that are not part of the PNSN catalog. The closest stations (2-7 km from the summit) recorded several times as many events as the more remote stations during the times they were operational, although many signals are clipped. We see a range of event types including long-period events, tremor, and occasional volcano-tectonic earthquakes. The latter group includes small volcano-tectonic events that occurred at depths of > 7 km during the crypto-dome intrusion phase, which were recognized in 1980 but not fully described. In our analysis of the hours to days prior to the May 18 eruption, we find no obvious changes in seismicity that could have been interpreted as a short-term precursor to the May 18 eruption initiation. This new dataset is currently being formatted for permanent archiving in the IRIS Data Management Center, where it will be available for anyone to use.
Ma, Shaochun; Jiang, Nan
2015-01-01
In order to evaluate the seismic performance of new-type composite exterior wallboard, a total of six exterior and interior wallboards were incorporated in the experiment of seismic performance. Seismic performance such as the stress process, damage mode, hysteresis and skeleton curve, load-carrying and ductility coefficient, damping and energy dissipation, stiffness degradation as well as material strain of the exterior wallboards were analyzed with emphasis and compared with interior wallboards. Results of the experiment and analysis showed that both interior and exterior wallboards exhibited outstanding seismic performance. Due to the existence of insulation layer and externally bonded single gypsum board, the capacity of elastoplastic deformation and seismic energy dissipation of the exterior wallboards was improved and each seismic performance indicator of the exterior wallboards outperformed the interior wallboards.
Very-long-period seismic signals - filling the gap between deformation and seismicity
NASA Astrophysics Data System (ADS)
Neuberg, Jurgen; Smith, Paddy
2013-04-01
Good broadband seismic sensors are capable to record seismic transients with dominant wavelengths of several tens or even hundreds of seconds. This allows us to generate a multi-component record of seismic volcanic events that are located in between the conventional high to low-frequency seismic spectrum and deformation signals. With a much higher temporal resolution and accuracy than e.g. GPS records, these signals fill the gap between seismicity and deformation studies. In this contribution we will review the non-trivial processing steps necessary to retrieve ground deformation from the original velocity seismogram and explore which role the resulting displacement signals have in the analysis of volcanic events. We use examples from Soufriere Hills volcano in Montserrat, West Indies, to discuss the benefits and shortcomings of such methods regarding new insights into volcanic processes.
Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS
NASA Astrophysics Data System (ADS)
Ahmad, Raed; Adris, Ahmad; Singh, Ramesh
2016-07-01
In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.
A Novel Approach to Constrain Near-Surface Seismic Wave Speed Based on Polarization Analysis
NASA Astrophysics Data System (ADS)
Park, S.; Ishii, M.
2016-12-01
Understanding the seismic responses of cities around the world is essential for the risk assessment of earthquake hazards. One of the important parameters is the elastic structure of the sites, in particular, near-surface seismic wave speed, that influences the level of ground shaking. Many methods have been developed to constrain the elastic structure of the populated sites or urban basins, and here, we introduce a new technique based on analyzing the polarization content or the three-dimensional particle motion of seismic phases arriving at the sites. Polarization analysis of three-component seismic data was widely used up to about two decades ago, to detect signals and identify different types of seismic arrivals. Today, we have good understanding of the expected polarization direction and ray parameter for seismic wave arrivals that are calculated based on a reference seismic model. The polarization of a given phase is also strongly sensitive to the elastic wave speed immediately beneath the station. This allows us to compare the observed and predicted polarization directions of incoming body waves and infer the near-surface wave speed. This approach is applied to High-Sensitivity Seismograph Network in Japan, where we benchmark the results against the well-log data that are available at most stations. There is a good agreement between our estimates of seismic wave speeds and those from well logs, confirming the efficacy of the new method. In most urban environments, where well logging is not a practical option for measuring the seismic wave speeds, this method can provide a reliable, non-invasive, and computationally inexpensive estimate of near-surface elastic properties.
A Community Seismic Experiment in the ENAM Primary Site
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.
2012-12-01
Eastern North America (ENAM) was chosen as a GeoPRISMS Rift Initiation and Evolution primary site because it represents a mature continental margin with onshore and offshore rift basins in which the record of extension and continental break-up is preserved. The degree to which syn-rift magmatism and preexisting lithospheric weaknesses controlled the evolution of the margin can be further investigated if we image its 3-D structure at small and large length scales with active-source and earthquake seismic imaging. In the Summer of 2012 we submitted a proposal to the US National Science Foundation for an ambitious plan for data acquisition on a 400 km wide section of the mid-Atlantic East Coast margin around Cape Hatteras, from unextended continental lithosphere onshore to mature oceanic lithosphere offshore. This area includes an important along-strike transition in the morphology of the margin from the Carolina Trough to the Baltimore Canyon Trough, and two major fracture zones that are associated with significant offsets at the modern Mid-Atlantic Ridge. The study area also covers several features representing the post-rift modification of the margin by slope instability and fluid flow. As the Earthscope Transportable Array reaches the East Coast of the US in 2013 and 2014, we will have an unprecedented opportunity to image the detailed structure of the rifted margin. To make effective use of the research infrastructure, including the seismic vessel R/V Marcus Langseth, the Earthscope seismic instrumentation, and US OBS Instrument Pool, we propose to collect a suite of seismic data at the mid-Atlantic margin in the context of a community-driven experiment with completely open data access. This multi-faceted seismic experiment offers an immense opportunity for education of young scientists. We propose an integrated education effort during and after acquisition. The science and field parties for data acquisition will largely consist of young scientists, who will be chosen by application. Following the cruise, we propose to hold two short courses on multi-channel seismic reflection and wide-angle reflection and refraction data processing using the new seismic data. The acquisition of all seismic data, archiving of the data in existing data bases, and distribution to the community will take two years. Afterwards, proposals developed by any member of the science community can be submitted for further data analysis and testing of current scientific hypotheses regarding the evolution and dynamics of the ENAM margin.
NASA Astrophysics Data System (ADS)
Alawdin, Piotr; Bulanov, George
2017-06-01
In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.
NASA Astrophysics Data System (ADS)
Bragato, P. L.
2017-10-01
The strong earthquakes that occurred in Italy between 2009 and 2016 represent an abrupt acceleration of seismicity in respect of the previous 30 years. Such behavior seems to agree with the periodic rate change I observed in a previous paper. The present work improves that study by extending the data set up to the end of 2016, adopting the latest version of the historical seismic catalog of Italy, and introducing Schuster spectrum analysis for the detection of the oscillatory period and the assessment of its statistical significance. Applied to the declustered catalog of M w ≥ 6 earthquakes that occurred between 1600 and 2016, the analysis individuates a marked periodicity of 46 years, which is recognized above the 95% confidence level. Monte Carlo simulation shows that the oscillatory behavior is stable in respect of random errors on magnitude estimation. A parametric oscillatory model for the annual rate of seismicity is estimated by likelihood maximization under the hypothesis of inhomogeneous Poisson point process. According to the Akaike Information Criterion, such model outperforms the simpler homogeneous one with constant annual rate. A further element emerges form the analysis: so far, despite recent earthquakes, the Italian seismicity is still within a long-term decreasing trend established since the first half of the twentieth century.
Ren, Zhikun; Zhang, Zhuqi; Dai, Fuchu; Yin, Jinhui; Zhang, Huiping
2013-01-01
Hillslope instability has been thought to be one of the most important factors for landslide susceptibility. In this study, we apply geomorphic analysis using multi-temporal DEM data and shake intensity analysis to evaluate the topographic characteristics of the landslide areas. There are many geomorphologic analysis methods such as roughness, slope aspect, which are also as useful as slope analysis. The analyses indicate that most of the co-seismic landslides occurred in regions with roughness, hillslope and slope aspect of >1.2, >30, and between 90 and 270, respectively. However, the intersection regions from the above three methods are more accurate than that derived by applying single topographic analysis method. The ground motion data indicates that the co-seismic landslides mainly occurred on the hanging wall side of Longmen Shan Thrust Belt within the up-down and horizontal peak ground acceleration (PGA) contour of 150 PGA and 200 gal, respectively. The comparisons of pre- and post-earthquake DEM data indicate that the medium roughness and slope increased, the roughest and steepest regions decreased after the Wenchuan earthquake. However, slope aspects did not even change. Our results indicate that co-seismic landslides mainly occurred at specific regions of high roughness, southward and steep sloping areas under strong ground motion. Co-seismic landslides significantly modified the local topography, especially the hillslope and roughness. The roughest relief and steepest slope are significantly smoothed; however, the medium relief and slope become rougher and steeper, respectively.
2007-09-01
The data are recorded at depth (1–5 km) by arrays of three-component geophones operated by AngloGold Ashanti, Ltd. and Integrated Seismic Systems...case-based event identification using regional arrays , Bull. Seism. Soc. Am. 80: 1874–1892. Bennett, T. J. and J. R. Murphy, Analysis of seismic ... seismic event classification at the NORESS array : seismological measurements and the use of trained neural networks, Bull. Seism. Soc. Am. 80: 1910
Appalachian Play Fairway Analysis Seismic Hazards Supporting Data
Frank Horowitz
2016-07-20
These are the data used in estimating the seismic hazards (both natural and induced) for candidate direct use geothermal locations in the Appalachian Basin Play Fairway Analysis by Jordan et al. (2015). xMin,yMin -83.1407,36.7461 : xMax,yMax -71.5175,45.1729
NASA Astrophysics Data System (ADS)
Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.
2012-10-01
Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.
Kinematics of the New Madrid seismic zone, central United States, based on stepover models
Pratt, Thomas L.
2012-01-01
Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.
Seismic reflection constraints on the glacial dynamics of Johnsons Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Benjumea, Beatriz; Teixidó, Teresa
2001-01-01
During two Antarctic summers (1996-1997 and 1997-1998), five seismic refraction and two reflection profiles were acquired on the Johnsons Glacier (Livingston Island, Antarctica) in order to obtain information about the structure of the ice, characteristics of the ice-bed contact and basement topography. An innovative technique has been used for the acquisition of reflection data to optimise the field survey schedule. Different shallow seismic sources were used during each field season: Seismic Impulse Source System (SISSY) for the first field survey and low-energy explosives (pyrotechnic noisemakers) during the second one. A comparison between these two shallow seismic sources has been performed, showing that the use of the explosives is a better seismic source in this ice environment. This is one of the first studies where this type of source has been used. The analysis of seismic data corresponding to one of the reflection profiles (L3) allows us to delineate sectors with different glacier structure (accumulation and ablation zones) without using glaciological data. Moreover, vertical discontinuities were detected by the presence of back-scattered energy and the abrupt change in frequency content of first arrivals shown in shot records. After the raw data analysis, standard processing led us to a clear seismic image of the underlying bed topography, which can be correlated with the ice flow velocity anomalies. The information obtained from seismic data on the internal structure of the glacier, location of fracture zones and the topography of the ice-bed interface constrains the glacial dynamics of Johnsons Glacier.
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano; Rocca, Michele; Boaga, Jacopo
2014-05-01
This presentation aims to outline the preliminary findings related to an extensive seismic survey conducted in the historical center of Venice, Italy. The survey was conducted via noninvasive and low-cost seismic techniques based on surface waves analysis and microtremor methods, mainly using single station horizontal to vertical spectral ratio techninques (HVSR) and multichannel analysis of surface waves in passive (ReMI) and active (MASW) configurations. The importance and the fragility of the cultural heritage of Venice, coupled with its peculiar geological and geotechnical characteristics, stress the importance of a good knowledge of its geological architecture and seismic characteristics as an opportunity to improve restoration and conservation planning. Even if Venice is located in a relatively low seismic hazard zone, a local characterization of soil resonance frequencies and surficial shear waves velocities could improve the planning of engineering interventions, furnishing important information on possible local effects related to seismic amplification and possible coupling within buildings and soil resonance frequencies. In the specific we collected more than 50 HVSR single station noise measurements and several passive and active multichannel analysis of surface waves located in the historical center. In this work we report the characteristics of the conducted seismic surveys (instrumentation, sampling geometry, etc.) and the preliminary findings of our analysis. Moreover, we discuss briefly the practical issues, mainly of logistic nature, of conducting this kind of surveys in a peculiar and crowed historical center as represented by Venice urban contest. Acknowledgments Instrumentation acquired in relation to the project co-financed by Regione Veneto, POR-CRO, FESR, 2007-2013, action 1.1.1. "Supporto ad attività di ricerca, processi e reti di innovazione e alla creazione di imprese in settori a elevato contenuto tecnologico"
SGRAPH (SeismoGRAPHer): Seismic waveform analysis and integrated tools in seismology
NASA Astrophysics Data System (ADS)
Abdelwahed, Mohamed F.
2012-03-01
Although numerous seismological programs are currently available, most of them suffer from the inability to manipulate different data formats and the lack of embedded seismological tools. SeismoGRAPHer, or simply SGRAPH, is a new system for maintaining and analyzing seismic waveform data in a stand-alone, Windows-based application that manipulates a wide range of data formats. SGRAPH was intended to be a tool sufficient for performing basic waveform analysis and solving advanced seismological problems. The graphical user interface (GUI) utilities and the Windows functionalities, such as dialog boxes, menus, and toolbars, simplify the user interaction with the data. SGRAPH supports common data formats, such as SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and provides the ability to solve many seismological problems with built-in inversion tools. Loaded traces are maintained, processed, plotted, and saved as SAC, ASCII, or PS (post script) file formats. SGRAPH includes Generalized Ray Theory (GRT), genetic algorithm (GA), least-square fitting, auto-picking, fast Fourier transforms (FFT), and many additional tools. This program provides rapid estimation of earthquake source parameters, location, attenuation, and focal mechanisms. Advanced waveform modeling techniques are provided for crustal structure and focal mechanism estimation. SGRAPH has been employed in the Egyptian National Seismic Network (ENSN) as a tool assisting with routine work and data analysis. More than 30 users have been using previous versions of SGRAPH in their research for more than 3 years. The main features of this application are ease of use, speed, small disk space requirements, and the absence of third-party developed components. Because of its architectural structure, SGRAPH can be interfaced with newly developed methods or applications in seismology. A complete setup file, including the SGRAPH package with the online user guide, is available.
Global regionalized seismicity in view of Non-Extensive Statistical Physics
NASA Astrophysics Data System (ADS)
Chochlaki, Kalliopi; Vallianatos, Filippos; Michas, Georgios
2018-03-01
In the present work we study the distribution of Earth's shallow seismicity on different seismic zones, as occurred from 1981 to 2011 and extracted from the Centroid Moment Tensor (CMT) catalog. Our analysis is based on the subdivision of the Earth's surface into seismic zones that are homogeneous with regards to seismic activity and orientation of the predominant stress field. For this, we use the Flinn-Engdahl regionalization (FE) (Flinn and Engdahl, 1965), which consists of fifty seismic zones as modified by Lombardi and Marzocchi (2007). The latter authors grouped the 50 FE zones into larger tectonically homogeneous ones, utilizing the cumulative moment tensor method, resulting into thirty-nine seismic zones. In each one of these seismic zones we study the distribution of seismicity in terms of the frequency-magnitude distribution and the inter-event time distribution between successive earthquakes, a task that is essential for hazard assessments and to better understand the global and regional geodynamics. In our analysis we use non-extensive statistical physics (NESP), which seems to be one of the most adequate and promising methodological tools for analyzing complex systems, such as the Earth's seismicity, introducing the q-exponential formulation as the expression of probability distribution function that maximizes the Sq entropy as defined by Tsallis, (1988). The qE parameter is significantly greater than one for all the seismic regions analyzed with value range from 1.294 to 1.504, indicating that magnitude correlations are particularly strong. Furthermore, the qT parameter shows some temporal correlations but variations with cut-off magnitude show greater temporal correlations when the smaller magnitude earthquakes are included. The qT for earthquakes with magnitude greater than 5 takes values from 1.043 to 1.353 and as we increase the cut-off magnitude to 5.5 and 6 the qT value ranges from 1.001 to 1.242 and from 1.001 to 1.181 respectively, presenting a significant decrease. Our findings support the ideas of universality within the Tsallis approach to describe Earth's seismicity and present strong evidence ontemporal clustering and long-range correlations of seismicity in each of the tectonic zonesanalyzed.
Multi-Phenomenological Analysis of the 12 August 2015 Tianjin, China Chemical Explosion
NASA Astrophysics Data System (ADS)
Pasyanos, M.; Kim, K.; Park, J.; Stump, B. W.; Hayward, C.; Che, I. Y.; Zhao, L.; Myers, S. C.
2016-12-01
We perform a multi-phenomenological analysis of the massive near-surface chemical explosions that occurred in Tianjin, China on 12 August 2015. A recent assessment of these events was performed by Zhao et al. (2016) using local (< 100 km) seismic data. This study considers a regional assessment of the same sequence in the absence of having any local data. We provide additional insight by combining regional seismic analysis with the use of infrasound signals and an assessment of the event crater. Event locations using infrasound signals recorded at Korean and IMS arrays are estimated based on the Bayesian Infrasonic Source Location (BISL) method (Modrak et al., 2010), and improved with azimuthal corrections using a raytracing (Blom and Waxler, 2012) and the Ground-to-Space (G2S) atmospheric models (Drob et al., 2003). The location information provided from the infrasound signals is then merged with the regional seismic arrivals to produce a joint event location. The yields of the events are estimated from seismic and infrasonic observations. Seismic waveform envelope method (Pasyanos et al., 2012) including the free surface effect (Pasyanos and Ford, 2015) is applied to regional seismic signals. Waveform inversion method (Kim and Rodgers, 2016) is used for infrasound signals. A combination of the seismic and acoustic signals can provide insights on the energy partitioning and break the tradeoffs between the yield and the depth/height of explosions, resulting in a more robust estimation of event yield. The yield information from the different phenomenologies are combined through the use of likelihood functions.
Rapid intraplate strain accumulation in the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L.; Zoback, M.D.; Segall, P.
1992-09-01
Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.
Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.
2010-09-24
The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.
Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.
Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400
Schoenball, Martin; Kaven, Joern; Glen, Jonathan M. G.; Davatzes, Nicholas C.
2015-01-01
Increased levels of seismicity coinciding with injection of reservoir fluids have prompted interest in methods to distinguish induced from natural seismicity. Discrimination between induced and natural seismicity is especially difficult in areas that have high levels of natural seismicity, such as the geothermal fields at the Salton Sea and Coso, both in California. Both areas show swarm-like sequences that could be related to natural, deep fluid migration as part of the natural hydrothermal system. Therefore, swarms often have spatio-temporal patterns that resemble fluid-induced seismicity, and might possibly share other characteristics. The Coso Geothermal Field and its surroundings is one of the most seismically active areas in California with a large proportion of its activity occurring as seismic swarms. Here we analyze clustered seismicity in and surrounding the currently produced reservoir comparatively for pre-production and co-production periods. We perform a cluster analysis, based on the inter-event distance in a space-time-energy domain to identify notable earthquake sequences. For each event j, the closest previous event i is identified and their relationship categorized. If this nearest neighbor’s distance is below a threshold based on the local minimum of the bimodal distribution of nearest neighbor distances, then the event j is included in the cluster as a child to this parent event i. If it is above the threshold, event j begins a new cluster. This process identifies subsets of events whose nearest neighbor distances and relative timing qualify as a cluster as well as a characterizing the parent-child relationships among events in the cluster. We apply this method to three different catalogs: (1) a two-year microseismic survey of the Coso geothermal area that was acquired before exploration drilling in the area began; (2) the HYS_catalog_2013 that contains 52,000 double-difference relocated events and covers the years 1981 to 2013; and (3) a catalog of 57,000 events with absolute locations from the local network recorded between 2002 and 2007. Using this method we identify 10 clusters of more than 20 events each in the pre-production survey and more than 200 distinct seismicity clusters that each contain at least 20 and up to more than 1000 earthquakes in the more extensive catalogs. The cluster identification method used yields a hierarchy of links between multiple generations of parent and offspring events. We analyze different topological parameters of this hierarchy to better characterize and thus differentiate natural swarms from induced clustered seismicity and also to identify aftershock sequences of notable mainshocks. We find that the branching characteristic given by the average number of child events per parent event is significantly different for clusters below than for clusters around the produced field.
The use of vertical seismic profiles in seismic investigations of the earth
Balch, Alfred H.; Lee, M.W.; Miller, J.J.; Ryder, Robert T.
1982-01-01
During the past 8 years, the U.S. Geological Survey has conducted an extensive investigation on the use of vertical seismic profiles (VSP) in a variety of seismic exploration applications. Seismic sources used were surface air guns, vibrators, explosives, marine air guns, and downhole air guns. Source offsets have ranged from 100 to 7800 ft. Well depths have been from 1200 to over 10,000 ft. We have found three specific ways in which VSPs can be applied to seismic exploration. First, seismic events observed at the surface of the ground can be traced, level by level, to their point of origin within the earth. Thus, one can tie a surface profile to a well log with an extraordinarily high degree of confidence. Second, one can establish the detectability of a target horizon, such as a porous zone. One can determine (either before or after surface profiling) whether or not a given horizon or layered sequence returns a detectable reflection to the surface. The amplitude and character of the reflection can also be observed. Third, acoustic properties of a stratigraphic sequence can be measured and sometimes correlated to important exploration parameters. For example, sometimes a relationship between apparent attenuation and sand percentage can be established. The technique shows additional promise of aiding surface exploration indirectly through studies of the evolution of the seismic pulse, studies of ghosts and multiples, and studies of seismic trace inversion techniques. Nearly all current seismic data‐processing techniques are adaptable to the processing of VSP data, such as normal moveout (NMO) corrections, stacking, single‐and multiple‐channel filtering, deconvolution, and wavelet shaping.
NASA Astrophysics Data System (ADS)
Hibert, C.; Stark, C. P.; Ekstrom, G.
2014-12-01
Landslide failures on the scale of mountains are spectacular, dangerous, and spontaneous, making direct observations hard to obtain. Measurement of their dynamic properties during runout is a high research priority, but a logistical and technical challenge. Seismology has begun to help in several important ways. Taking advantage of broadband seismic stations, recent advances now allow: (i) the seismic detection and location of large landslides in near-real-time, even for events in very remote areas that may have remain undetected, such as the 2014 Mt La Perouse supraglacial failure in Alaska; (ii) inversion of long-period waves generated by large landslides to yield an estimate of the forces imparted by the bulk accelerating mass; (iii) inference of the landslide mass, its center-of-mass velocity over time, and its trajectory.Key questions persist, such as: What can the short-period seismic data tell us about the high-frequency impacts taking place within the granular flow and along its boundaries with the underlying bedrock? And how does this seismicity relate to the bulk acceleration of the landslide and the long-period seismicity generated by it?Our recent work on the joint analysis of short- and long-period seismic signals generated by past and recent events, such as the Bingham Canyon Mine and the Oso-Steelhead landslides, provides new insights to tackle these issues. Qualitative comparison between short-period signal features and kinematic parameters inferred from long-period surface wave inversion helps to refine interpretation of the source dynamics and to understand the different mechanisms for the origin of the short-period wave radiation. Our new results also suggest that quantitative relationships can be derived from this joint analysis, in particular between the short-period seismic signal envelope and the inferred momentum of the center-of-mass. In the future, these quantitative relationships may help to constrain and calibrate parameters used in inversion or simulation of long-period waves generated by landslides. Relating the center-of-mass dynamics to the short-period seismic signal might also yield a new means to estimate kinematic parameters for the smaller events that generate too weak long-period seismic waves to allow inversion or simulation of the seismic source.
Development of seismic tomography software for hybrid supercomputers
NASA Astrophysics Data System (ADS)
Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton
2015-04-01
Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.
NASA Astrophysics Data System (ADS)
Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio
2013-04-01
The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB borehole station configuration and installation, with first results.
Microzonation of Seismic Hazard Potential in Taipei, Taiwan
NASA Astrophysics Data System (ADS)
Liu, K. S.; Lin, Y. P.
2017-12-01
The island of Taiwan lies at the boundary between the Philippine Sea plate and the Eurasia plate. Accordingly, the majority of seismic energy release near Taiwan originates from the two subduction zones. It is therefore not surprising that Taiwan has repeatedly been struck by large earthquakes such as 1986 Hualien earthquake, 1999 Chi Chi and 2002 Hualien earthquake. Microzonation of seismic hazard potential becomes necessary in Taipei City for the Central Geological Survey announced the Sanchiao active fault as Category II. In this study, a catalog of more than 2000 shallow earthquakes occurred from 1900 to 2015 with Mw magnitudes ranging from 5.0 to 8.2, and 11 disastrous earthquakes occurred from 1683-1899, as well as Sanchiao active fault in the vicinity are used to estimate the seismic hazard potential in Taipei City for seismic microzonation. Furthermore, the probabilities of seismic intensity exceeding CWB intensity 5, 6, 7 and MMI VI, VII, VIII in 10, 30, and 50-year periods in the above areas are also analyzed for the seismic microzonation. Finally, by comparing with the seismic zoning map of Taiwan in current building code that was revised after 921 earthquakes, Results of this study will show which areas with higher earthquake hazard potential in Taipei City. They provide a valuable database for the seismic design of critical facilities. It will help mitigate Taipei City earthquake disaster loss in the future, as well as provide critical information for emergency response plans.
Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.
Brodsky, Emily E; Lajoie, Lia J
2013-08-02
Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.
A Laser Interferometric Miniature Seismometer
2008-09-01
zero bias, convert the photodiode currents to voltages with transimpedance amplifiers based on operational amplifiers (op amps) and produce a...light is collected at the photodiodes and transimpedance amplifiers convert the photocurrent to a voltage, and the seismic signal is the difference... transimpedance amplifiers . CONCLUSIONS AND RECOMMENDATIONS Achieving LNM resolution in a seismic sensor is a very strong challenge. While we have built
Understanding Seismic Anisotropy in Hunt Well of Fort McMurray, Canada
NASA Astrophysics Data System (ADS)
Malehmir, R.; Schmitt, D. R.; Chan, J.
2014-12-01
Seismic imaging plays vital role in geothermal systems as a sustainable energy resource. In this paper, we acquired and processed zero-offset and walk-away VSP and logging as well as surface seismic in Athabasca oil sand area, Alberta. Seismic data were highly processed to make better image geothermal system. Through data processing, properties of natural fractures such as orientation and width were studied and high probable permeable zones were mapped along the deep drilled to the depth of 2363m deep into crystalline basement rocks. In addition to logging data, seismic data were processed to build a reliable image of underground. Velocity analysis in high resolution multi-component walk-away VSP informed us about the elastic anisotropy in place. Study of the natural and induced fracture as well as elastic anisotropy in the seismic data, led us to better map stress regime around the well bore. The seismic image and map of fractures optimizes enhanced geothermal stages through hydraulic stimulation. Keywords: geothermal, anisotropy, VSP, logging, Hunt well, seismic
Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing
NASA Astrophysics Data System (ADS)
Korkmaz, Kasim A.; Demir, Fuat
2017-01-01
The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.
Seismotectonics investigations in the internal Cottian Alps (Italian Western Alps)
NASA Astrophysics Data System (ADS)
Perrone, Gianluigi; Eva, Elena; Solarino, Stefano; Cadoppi, Paola; Balestro, Gianni; Fioraso, Gianfranco; Tallone, Sergio
2010-05-01
The inner Cottian Alps represent an area of a low- to moderate- magnitude seismicity (Eva et al., 1990) even though some historical earthquakes reached VIII degree of the Mercalli's scale. Although the frame of seismicity is quite well known, the relation between faults and earthquake sources is still under debate. The low deformation rates and the occurrence of several glacial-interglacial cycles during the Pleistocene partly masked the geomorphological evidences of the recent tectonic activity. Recent studies based on field mapping and structural analysis (Balestro et al., 2009; Perrone et al., 2009) allowed characterizing the size and extension of the regional-scale faults dissecting this area of the Western Alps. Here, we combine the results of these novel studies and updated seismological data with the aim to investigate the relations between mapped faults and seismic activity. In the analyzed area both continental crust and oceanic tectonic units, belonging to the Penninic Domain of the Western Alps, crop out. The main brittle tectonic feature of this area is represented by the Lis-Trana Deformation Zone (LTZ), an N-S striking, steep structure that extends for about 35 km from the Lower Lanzo valleys to the Lower Sangone Valley. The occurrence of steep faults displacing the metamorphic basement, showed in seismic sections carried out for oil exploration (Bertotti & Mosca, 2009), suggests that the LTZ may be prolonged Southward beneath the Plio-Quaternary deposits of the Po Plain. West of the LTZ some other minor E-W and N-S faults are also present. Zircon and apatite fission-track data indicate that the activity of these faults started since the Oligocene. Two main faulting stages characterize the post-metamorphic structural evolution of this area: the earlier (faulting stage A; Oligocene?-Early Miocene?) is associated to right-lateral movements along the LTZ and sinistral movements along E-W faults; the subsequent faulting stage (faulting stage B; post-Early Miocene) is related to transtensive/extensional movements along the LTZ and the development of minor sub-parallel N-S faults. This kinematic evolution fits in a model of dextral-transtension at regional scale. The more recent activity of the LTZ may have caused the development of Pleistocene lacustrine basin, several hundred metres thick, in the Lower Chisone and Pellice valleys, which did not hosted glacial tongues. Along the LTZ, however, Pleistocene deposits showing evidence of brittle deformation were also found. With the aim to better understand the relation between the current seismic activity and faults, an analysis was carried out by selecting the best located earthquakes (location error less than 3 km) recorded by the seismic network of the North Western Italy (RSNI). This selection is made necessary by the relatively small size of the structures under investigations in order to avoid fake attributions. In addition to get qualitative information about the seismogenic source, the focal mechanisms of four earthquakes occurring along the mapped faults were calculated sorting out the best locatable events among those occurred in the area. The good geometric and kinematic agreement between structural and seismological data indicates a possible dependence of the seismicity of the inner Cottian Alps with the current tectonic activity of the LTZ and its associated minor structures. Balestro G. et al. (2009) Ital. J. Geosci., 128(2), 331-339. Bertotti G., Mosca P. (2009) Tectonophysics, 475, 117-127. Eva C. et al. (1990) Atti del Convegno Gruppo Nazionale Difesa dai terremoti, Ed. Ambiente, Pisa, 1, 25-34. Perrone G. et al. (2009) Ital. J. Geosci., 128(2), 541-549.
Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame
NASA Astrophysics Data System (ADS)
Zhang, Cuiqiang; Zhou, Ying; Zhou, Deyuan; Lu, Xilin
2011-12-01
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
Saltus, R.W.; Kulander, Christopher S.; Potter, Christopher J.
2002-01-01
We have digitized, modified, and analyzed seismic interpretation maps of 12 subsurface stratigraphic horizons spanning portions of the National Petroleum Reserve in Alaska (NPRA). These original maps were prepared by Tetra Tech, Inc., based on about 15,000 miles of seismic data collected from 1974 to 1981. We have also digitized interpreted faults and seismic velocities from Tetra Tech maps. The seismic surfaces were digitized as two-way travel time horizons and converted to depth using Tetra Tech seismic velocities. The depth surfaces were then modified by long-wavelength corrections based on recent USGS seismic re-interpretation along regional seismic lines. We have developed and executed an algorithm to identify and calculate statistics on the area, volume, height, and depth of closed structures based on these seismic horizons. These closure statistics are tabulated and have been used as input to oil and gas assessment calculations for the region. Directories accompanying this report contain basic digitized data, processed data, maps, tabulations of closure statistics, and software relating to this project.
NASA Astrophysics Data System (ADS)
Kim, Sookwan; De Santis, Laura; Böhm, Gualtiero; Kuk Hong, Jong; Jin, Young Keun; Geletti, Riccardo; Wardell, Nigel; Petronio, Lorenzo; Colizza, Ester
2014-05-01
The Ross Sea, located between Victoria Land and Marie Byrd Land in Antarctica, is one of the main drainage of the Antarctic Ice Sheet (AIS). Reflection seismic data acquired by many countries during several decades have provided insights into the history of the Ross Sea and the AIS evolution. However the majority of the existing seismic data are concentrated in the shelf area, where hiatus formed by grounding ice sheet erosion multiple events prevent to reconstruct the entire sedimentary sequences depositional evolution. On the outer shelf and upper slope, the sedimentary sequences are relatively well preserved. The main purpose of this study is the investigation of the Cenozoic Antarctic Ice Sheet evolution through the seismic sequence analysis of the outer shelf and slope of the Central Basin, in the Ross Sea. The data used are the new multi-channel seismic data, KSL12, were acquired on the outer shelf and upper slope of the Central Bain in February 2013 by Korea Polar Research Institute. The reflection seismic data, previously collected by the Italian Antarctic Program (PNRA) and other data available from the Seismic Data Library System (SDLS) are also used for velocity tomography and seismic sequence mapping. The seismic data were processed by a conventional processing flow to produce the seismic profiles. Preliminary results show well-developed prograding wedges at the mouth of glacial troughs, eroded by a major glacial unconformity, the Ross Sea Unconformity 4 (RSU-4), correlated to a main event between early- and mid-Miocene. The velocity anomalies shown along KSL12-1 can be interpreted as showing the occurrence of gas and fluids, diagenetic horizons and sediment compactions. The isopach maps of each sequence show the variation of thickness of the sediments depocenter shift. The seismic sequence stratigraphy and acoustic facies analysis provide information about different phases of ice sheet's advance and retreat related to the AIS Cenozoic dynamics.
Research on Influencing Factors and Generalized Power of Synthetic Artificial Seismic Wave
NASA Astrophysics Data System (ADS)
Jiang, Yanpei
2018-05-01
Start your abstract here… In this paper, according to the trigonometric series method, the author adopts different envelope functions and the acceleration design spectrum in Seismic Code For Urban Bridge Design to simulate the seismic acceleration time history which meets the engineering accuracy requirements by modifying and iterating the initial wave. Spectral analysis is carried out to find out the the distribution law of the changing frequencies of the energy of seismic time history and to determine the main factors that affect the acceleration amplitude spectrum and energy spectrum density. The generalized power formula of seismic time history is derived from the discrete energy integral formula and the author studied the changing characteristics of generalized power of the seismic time history under different envelop functions. Examples are analyzed to illustrate that generalized power can measure the seismic performance of bridges.
NASA Astrophysics Data System (ADS)
Powell, T.; Neuberg, J.
2003-04-01
The low-frequency seismic events on Montserrat are linked to conduit resonance and the pressurisation of the volcanic system. Analysis of these events tell us more about the behaviour of the volcanic system and provide a monitoring and interpretation tool. We have written an Automated Event Classification Algorithm Program (AECAP), which finds and classifies seismic events and calculates seismic parameters such as energy, intermittency, peak frequency and event duration. Comparison of low-frequency energy with the tilt cycles in 1997 allows us to link pressurisation of the volcano with seismic behaviour. An empirical relationship provides us with an estimate of pressurisation through released seismic energy. During 1997, the activity of the volcano varied considerably. We compare seismic parameters from quiet periods to those from active periods and investigate how the relationships between these parameters change. These changes are then used to constrain models of magmatic processes during different stages of volcanic activity.
Seismic analysis for translational failure of landfills with retaining walls.
Feng, Shi-Jin; Gao, Li-Ya
2010-11-01
In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.
Seismic performance evaluation of RC frame-shear wall structures using nonlinear analysis methods
NASA Astrophysics Data System (ADS)
Shi, Jialiang; Wang, Qiuwei
To further understand the seismic performance of reinforced concrete (RC) frame-shear wall structures, a 1/8 model structure is scaled from a main factory structure with seven stories and seven bays. The model with four-stories and two-bays was pseudo-dynamically tested under six earthquake actions whose peak ground accelerations (PGA) vary from 50gal to 400gal. The damage process and failure patterns were investigated. Furthermore, nonlinear dynamic analysis (NDA) and capacity spectrum method (CSM) were adopted to evaluate the seismic behavior of the model structure. The top displacement curve, story drift curve and distribution of hinges were obtained and discussed. It is shown that the model structure had the characteristics of beam-hinge failure mechanism. The two methods can be used to evaluate the seismic behavior of RC frame-shear wall structures well. What’s more, the NDA can be somewhat replaced by CSM for the seismic performance evaluation of RC structures.
Seismic response reduction of a three-story building by an MR grease damper
NASA Astrophysics Data System (ADS)
Sakurai, Tomoki; Morishita, Shin
2017-06-01
This paper describes an application of magneto- rheological (MR) grease dampers as seismic dampers for a three-story steel structure. MR fluid is widely known as a smart material with rheological properties that can be varied by magnetic field strength. This material has been applied to various types of devices, such as dampers, clutches, and engine mounts. However, the ferromagnetic particles dispersed in MR fluid settle out of the suspension after a certain interval because of the density difference between the particles and their carrier fluid. To overcome this defect, we developed a new type of controllable working fluid using grease as the carrier of magnetic particles. MR grease was introduced into a cylindrical damper, and the seismic performance of the damper was subsequently studied via numerical analysis. The analysis results of the MR grease damper were compared with those of other seismic dampers. We confirmed that the MR grease damper is an effective seismic damper.
Monte Carlo simulation for slip rate sensitivity analysis in Cimandiri fault area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratama, Cecep, E-mail: great.pratama@gmail.com; Meilano, Irwan; Nugraha, Andri Dian
Slip rate is used to estimate earthquake recurrence relationship which is the most influence for hazard level. We examine slip rate contribution of Peak Ground Acceleration (PGA), in probabilistic seismic hazard maps (10% probability of exceedance in 50 years or 500 years return period). Hazard curve of PGA have been investigated for Sukabumi using a PSHA (Probabilistic Seismic Hazard Analysis). We observe that the most influence in the hazard estimate is crustal fault. Monte Carlo approach has been developed to assess the sensitivity. Then, Monte Carlo simulations properties have been assessed. Uncertainty and coefficient of variation from slip rate formore » Cimandiri Fault area has been calculated. We observe that seismic hazard estimates is sensitive to fault slip rate with seismic hazard uncertainty result about 0.25 g. For specific site, we found seismic hazard estimate for Sukabumi is between 0.4904 – 0.8465 g with uncertainty between 0.0847 – 0.2389 g and COV between 17.7% – 29.8%.« less
NASA Astrophysics Data System (ADS)
Maity, Debotyam
This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.
NASA Astrophysics Data System (ADS)
Kiros, T.; Wohnlich, S.; Hussien, B.
2017-12-01
The Central Highlands of Ethiopia have repeatedly experiencing large-scale landslide events. Debre Sina area is one of the most landslide prone areas located along the western Afar rift margin of Ethiopia, which is frequently affected by large-scale and deep-seated landslides. Despite that, urban and rural development is currently taking place in almost all constricted valleys as well as on the imposing cliffs. Therefore, understanding the major triggering factors and failure mechanisms in the Debre Sina area and surroundings is of critical importance. In the present study, we investigate the landslide in the area using geological and topographic analysis, structural settings, geophysical investigation (seismic refraction), rainfall data and seismicity. Furthermore, petrographical as well as X-ray Diffraction (XRD) analysis are conducted to explain the mineral composition of parent rock and its weathering products. The topographic analysis result revealed that the slope range from 100 - 400, with elevation of 1,800 - 2,500m, with aspect to east and southeast are highly prone to landslide. The seismic refraction method identified four main layers of geomaterials which contained a subsurface landslides anomaly within the layers. The results consist of clay, loosely cemented colluvial sediments and highly weathered agglomerates (1000-1500m/s) 7-15m, highly to moderately fractured porphyritic basalt, ignimbrite, rhyolite/trachyte and volcanic ash (1500-2500m/s) 10-30m, moderately to slightly fractured ignimbrite, rhyolite/trachyte and basalt (2500-3500m/s) 30-50m and very strong, massive, fresh rock/bed rock (>3500m/s) from 45m depth. The large-scale and deep-seated landslides problem in the study area appears to be caused by heavy rainfall, complex geology and rugged topography, the presence of geological structures oriented parallel to the rift margin N-S fault (NNE-SSW trending) of the central Ethiopian highlands and coinciding with the head scarp of the slides and seismicity. These findings could serve as a basis for planners and policy-makers, and will lead to an increased level of understanding of the natural geohazards problems in the country.
Berberich, Gabriele; Berberich, Martin; Grumpe, Arne; Wöhler, Christian; Schreiber, Ulrich
2013-01-01
Simple Summary For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the video streams. Based on this automated approach, a statistical analysis of the ant behavior will be carried out. Abstract Short-term earthquake predictions with an advance warning of several hours or days are currently not possible due to both incomplete understanding of the complex tectonic processes and inadequate observations. Abnormal animal behaviors before earthquakes have been reported previously, but create problems in monitoring and reliability. The situation is different with red wood ants (RWA; Formica rufa-group (Hymenoptera: Formicidae)). They have stationary mounds on tectonically active, gas-bearing fault systems. These faults may be potential earthquake areas. For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras with both a color and an infrared sensor. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the more than 45,000 hours of video streams. Based on this automated approach, a statistical analysis of the ants’ behavior will be carried out. In addition, other parameters (climate, geotectonic and biological), which may influence behavior, will be included in the analysis. PMID:26487310
NASA Astrophysics Data System (ADS)
Xiong, N.; Niu, F.
2017-12-01
A Mw 7.8 earthquake struck Gorkha, Nepal, on April 5, 2015, resulting in more than 8000 deaths and 3.5 million homeless. The earthquake initiated 70km west of Kathmandu and propagated eastward, rupturing an area of approximately 150km by 60km in size. However, the earthquake failed to fully rupture the locked fault beneath the Himalaya, suggesting that the region south of Kathmandu and west of the current rupture are still locked and a much more powerful earthquake might occur in future. Therefore, the seismic hazard of the unruptured region is of great concern. In this study, we investigated the Coulomb failure stress (CFS) accumulation on the unruptured fault transferred by the Gorkha earthquake and some nearby historical great earthquakes. First, we calculated the co-seismic CFS changes of the Gorkha earthquake on the nodal planes of 16 large aftershocks to quantitatively examine whether they were brought closer to failure by the mainshock. It is shown that at least 12 of the 16 aftershocks were encouraged by an increase of CFS of 0.1-3 MPa. The correspondence between the distribution of off-fault aftershocks and the increased CFS pattern also validates the applicability of the earthquake triggering hypothesis in the thrust regime of Nepal. With the validation as confidence, we calculated the co-seismic CFS change on the locked region imparted by the Gorkha earthquake and historical great earthquakes. A newly proposed ramp-flat-ramp-flat fault geometry model was employed, and the source parameters of historical earthquakes were computed with the empirical scaling relationship. A broad region south of the Kathmandu and west of the current rupture were shown to be positively stressed with CFS change roughly ranging between 0.01 and 0.5 MPa. The maximum of CFS increase (>1MPa) was found in the updip segment south of the current rupture, implying a high seismic hazard. Since the locked region may be additionally stressed by the post-seismic relaxation of the lower crust and upper mantle due to the historical great earthquakes, further researches incorporating post-seismic CFS change are expected if the rheological constraint of the studied region is available.
NASA Astrophysics Data System (ADS)
Busby, Robert; Frassetto, Andy; Hafner, Katrin; Woodward, Robert; Sauter, Allan
2013-04-01
In preparation for deployment of EarthScope's USArray Transportable Array (TA) in Alaska beginning in 2014, the National Science Foundation (NSF) is supporting exploratory work on seismic station design, sensor emplacement and communication concepts appropriate for the challenging high-latitude environment that is proposed for deployment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and the lower-48 U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the northern tundra. In this study we review our methods used for directly emplacing of broadband seismometers in comparison to the current methods used to deploy TA stations. These primarily focus on using an auger to drill three to five meters, beneath the active layer of the permafrost, or coring directly into surface bedrock to one meter depth using a portable drill. Both methods have proven logistically effective in trials. Subsequent station performance can be quantitatively assessed using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations equals or exceeds that of the quietest TA stations in the lower-48, particularly at long periods, and in exceptional cases approaches the performance of the GSN low noise model. The station at Poker Flat Research Range, Alaska co-locates a sensor in a 5 meter deep auger hole with a 2 meter deep TA tank installation typical of the lower-48. The augered seismometer is currently over 20 dB quieter at periods over 40 seconds than the TA tank installation. Similar performance has been observed at other TA stations, which also compare favorably to co-located permanent stations.
High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas
2017-04-01
Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
EMERALD: Coping with the Explosion of Seismic Data
NASA Astrophysics Data System (ADS)
West, J. D.; Fouch, M. J.; Arrowsmith, R.
2009-12-01
The geosciences are currently generating an unparalleled quantity of new public broadband seismic data with the establishment of large-scale seismic arrays such as the EarthScope USArray, which are enabling new and transformative scientific discoveries of the structure and dynamics of the Earth’s interior. Much of this explosion of data is a direct result of the formation of the IRIS consortium, which has enabled an unparalleled level of open exchange of seismic instrumentation, data, and methods. The production of these massive volumes of data has generated new and serious data management challenges for the seismological community. A significant challenge is the maintenance and updating of seismic metadata, which includes information such as station location, sensor orientation, instrument response, and clock timing data. This key information changes at unknown intervals, and the changes are not generally communicated to data users who have already downloaded and processed data. Another basic challenge is the ability to handle massive seismic datasets when waveform file volumes exceed the fundamental limitations of a computer’s operating system. A third, long-standing challenge is the difficulty of exchanging seismic processing codes between researchers; each scientist typically develops his or her own unique directory structure and file naming convention, requiring that codes developed by another researcher be rewritten before they can be used. To address these challenges, we are developing EMERALD (Explore, Manage, Edit, Reduce, & Analyze Large Datasets). The overarching goal of the EMERALD project is to enable more efficient and effective use of seismic datasets ranging from just a few hundred to millions of waveforms with a complete database-driven system, leading to higher quality seismic datasets for scientific analysis and enabling faster, more efficient scientific research. We will present a preliminary (beta) version of EMERALD, an integrated, extensible, standalone database server system based on the open-source PostgreSQL database engine. The system is designed for fast and easy processing of seismic datasets, and provides the necessary tools to manage very large datasets and all associated metadata. EMERALD provides methods for efficient preprocessing of seismic records; large record sets can be easily and quickly searched, reviewed, revised, reprocessed, and exported. EMERALD can retrieve and store station metadata and alert the user to metadata changes. The system provides many methods for visualizing data, analyzing dataset statistics, and tracking the processing history of individual datasets. EMERALD allows development and sharing of visualization and processing methods using any of 12 programming languages. EMERALD is designed to integrate existing software tools; the system provides wrapper functionality for existing widely-used programs such as GMT, SOD, and TauP. Users can interact with EMERALD via a web browser interface, or they can directly access their data from a variety of database-enabled external tools. Data can be imported and exported from the system in a variety of file formats, or can be directly requested and downloaded from the IRIS DMC from within EMERALD.
Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost
Dang, Yu; Han, Jian-ping; Li, Yong-tao
2015-01-01
This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677
Analysis of the seismic performance of isolated buildings according to life-cycle cost.
Dang, Yu; Han, Jian-Ping; Li, Yong-Tao
2015-01-01
This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment.
Intelligent seismic risk mitigation system on structure building
NASA Astrophysics Data System (ADS)
Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.
2018-01-01
Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.
Big Data Challenges in Global Seismic 'Adjoint Tomography' (Invited)
NASA Astrophysics Data System (ADS)
Tromp, J.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Smith, J.
2013-12-01
The challenge of imaging Earth's interior on a global scale is closely linked to the challenge of handling large data sets. The related iterative workflow involves five distinct phases, namely, 1) data gathering and culling, 2) synthetic seismogram calculations, 3) pre-processing (time-series analysis and time-window selection), 4) data assimilation and adjoint calculations, 5) post-processing (pre-conditioning, regularization, model update). In order to implement this workflow on modern high-performance computing systems, a new seismic data format is being developed. The Adaptable Seismic Data Format (ASDF) is designed to replace currently used data formats with a more flexible format that allows for fast parallel I/O. The metadata is divided into abstract categories, such as "source" and "receiver", along with provenance information for complete reproducibility. The structure of ASDF is designed keeping in mind three distinct applications: earthquake seismology, seismic interferometry, and exploration seismology. Existing time-series analysis tool kits, such as SAC and ObsPy, can be easily interfaced with ASDF so that seismologists can use robust, previously developed software packages. ASDF accommodates an automated, efficient workflow for global adjoint tomography. Manually managing the large number of simulations associated with the workflow can rapidly become a burden, especially with increasing numbers of earthquakes and stations. Therefore, it is of importance to investigate the possibility of automating the entire workflow. Scientific Workflow Management Software (SWfMS) allows users to execute workflows almost routinely. SWfMS provides additional advantages. In particular, it is possible to group independent simulations in a single job to fit the available computational resources. They also give a basic level of fault resilience as the workflow can be resumed at the correct state preceding a failure. Some of the best candidates for our particular workflow are Kepler and Swift, and the latter appears to be the most serious candidate for a large-scale workflow on a single supercomputer, remaining sufficiently simple to accommodate further modifications and improvements.
NASA Astrophysics Data System (ADS)
Mazza, Mirko
2015-12-01
Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifications and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the superstructure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber bearings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal components of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high values of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction bearings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.
The Need for More Earthquake Science in Southeast Asia
NASA Astrophysics Data System (ADS)
Sieh, K.
2015-12-01
Many regions within SE Asia have as great a density of active seismic structures as does the western US - Sumatra, Myanmar, Bangladesh, New Guinea and the Philippines come first to mind. Much of Earth's release of seismic energy in the current millennium has, in fact, come from these regions, with great losses of life and livelihoods. Unfortunately, the scientific progress upon which seismic-risk reduction in SE Asia ultimately depends has been and continues to be slow. Last year at AGU, for example, I counted 57 talks about the M6 Napa earthquake. In contrast, I can't recall hearing any talk on a SE Asian M6 earthquake at any venue in the past many years. In fact, even M7+ earthquakes often go unstudied. Not uncommonly, the region's earthquake scientists face high financial and political impediments to conducting earthquake research. Their slow speed in the development of scientific knowledge doesn't bode well for speedy progress in the science of seismic hazards, the sine qua non for substantially reducing seismic risk. There are two basic necessities for the region to evolve significantly from the current state of affairs. Both involve the development of regional infrastructure: 1) Data: Robust and accessible geophysical monitoring systems would need to be installed, maintained and utilized by the region's earth scientists and their results shared internationally. Concomitantly, geological mapping (sensu lato) would need to be undertaken. 2) People: The training, employment, and enduring support of a new, young, international corps of earth scientists would need to accelerate markedly. The United States could play an important role in achieving the goal of significant seismic risk reduction in the most seismically active countries of SE Asia by taking the lead in establishing a coalition to robustly fund a multi-decadal program that supports scientists and their research institutions to work alongside local expertise.
NASA Astrophysics Data System (ADS)
Correa-Otto, Sebastián; Ariza, Juan; Lince Klinger, Federico; Giménez, Mario; López Hidalgo, Andrés
2018-03-01
The city of San Juan, in the Central-Western region of Argentina, has been the target of very destructive superficial earthquakes, some of which have not been associated to a clear structural source up to this date. The city is constantly growing outside the valley where it is located, towards the area of Eastern Precordillera which is currently having an increased socio-cultural activity. Thus, this study is focused on increasing the geological knowledge of the latter by studying the eastern flank of Sierra Chica de Zonda (Eastern Precordillera) whose proved neotectonic activity represents a geohazard. On the basis of the general geological setting the neotectonic structures in the study area are related to a major active synclinal folding located just under the western sector of the San Juan city. Geophysical potential methods (gravimetric and magnetometric surveys) were used to recognize contacts by contrast of density and magnetic susceptibility. In order to reduce the ambiguity of these methods the gravi-magnetometric results were constrained by using seismic and electrical tomographies. These contacts where geophysical properties abruptly change, were interpreted as faults despite many of them not having a superficial expression. The latter being of great importance to asses the seismic hazard of the study area.
Background noise spectra of global seismic stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, M.M.; Claassen, J.P.
1996-08-01
Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefitsmore » those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.« less
Integration between well logging and seismic reflection techniques for structural a
NASA Astrophysics Data System (ADS)
Mohamed, Adel K.; Ghazala, Hosni H.; Mohamed, Lamees
2016-12-01
Abu El Gharadig basin is located in the northern part of the Western Desert, Egypt. Geophysical investigation in the form of thirty (3D) seismic lines and well logging data of five wells have been analyzed in the oil field BED-1 that is located in the northwestern part of Abu El Gharadig basin in the Western Desert of Egypt. The reflection sections have been used to shed more light on the tectonic setting of Late Jurassic-Early Cretaceous rocks. While the well logging data have been analyzed for delineating the petrophysical characteristics of the two main reservoirs, Bahariya and Kharita Formations. The constructed subsurface geologic cross sections, seismic sections, and the isochronous reflection maps indicate that the area is structurally controlled by tectonic trends affecting the current shape of Abu El Gharadig basin. Different types of faults are well represented in the area, particularly normal one. The analysis of the average and interval velocities versus depth has shown their effect by facies changes and/or fluid content. On the other hand, the derived petrophysical parameters of Bahariya and Kharita Formations vary from well to another and they have been affected by the gas effect and/or the presence of organic matter, complex lithology, clay content of dispersed habitat, and the pore volume.
Design concepts for a Global Telemetered Seismograph Network
Peterson, Jon; Orsini, Nicholas A.
1982-01-01
This study represents a first step in developing an integrated, real-time global seismic data acquisition system a Global Telemetered Seismograph Network (GTSN). The principal objective of the GTSN will be to acquire reliable, high-quality, real-time seismic data for rapid location and analysis of seismic events. A secondary, but important, objective of the GTSN is to augment the existing off-line seismic data base available for research. The deployment of the GTSN will involve a variety of interrelated activities development of the data acquisition and receiving equipment, establishment of satellite and terrestrial communication links, site selection and preparation, training of station personnel, equipment installation, and establishment of support facilities. It is a complex program and the development of a sound management plan will be essential. The purpose of this study is not to fix design goals or dictate avenues of approach but to develop working concepts that may be used as a framework for program planning.The international exchange of seismic data has been an important factor in the progress that has been made during the past two decades in our understanding of earthquakes and global tectonics. The seismic data base available for analysis and research is derived principally from the Global Seismograph Network (GSN), which is funded and managed by the U.S. Geological Survey (USGS). The GSN comprises some 120 seismograph stations located in more than 60 countries of the world. Established during the 1960 s with the installation of the World-Wide Standardized Seismograph Network (WWSSN) , the GSN has been augmented in recent years by the installation of more advanced data systems, such as the Seismic Research Observatories (SRO), the modified High-Gain LongPeriod (ASRO) seismographs, and the digital WWSSN (DWWSSN). The SRO, ASRO, and DWWSSN stations have the common, distinctive feature of digital data recording, so they are known collectively as the Global Digital Seismograph Network (GDSN).The fundamental objective in operating the GSN is to create and update a seismic data base that is accessible without restrictions to organizations and research scientists throughout the world. The USGS provides cooperating stations with instrumentation, training, and continuing support, including supplies and on-site maintenance. In return, the host organization operates the equipment and sends the recorded data to the USGS. Analog data (seismograms) are microfilmed and about four million copies are requested annually by researchers. Digital data, which are recorded on magnetic tape, are organized by the USGS Albuquerque Seismological Laboratory (ASL) into networkday tapes and copies of the day tapes are furnished to data users through national and regional data centers. After copying, original data are returned to the stations and used for local research. Most of the stations in the GSN also provide the USGS with seismic readings « phase arrival times and amplitudes scaled from the seismograms. These readings are transmitted on a daily or biweekly basis via commercial or diplomatic communication channels. They are used by the USGS National Earthquake Information Service (NEIS) to determine the location and magnitude of earthquakes occurring throughout the world. The results are published monthly in bulletins that are distributed to the participating stations and virtually all scientific organizations that are involved in seismological studies. It is a much-valued service that provides a current, updated catalog of seismic activity on a global scale.The NEIS also has the responsibility for rapid reporting of large and potentially destructive earthquakes. The NEIS issues news bulletins as soon as possible after the occurrence of magnitude 6.5 or greater earthquakes (magnitude 5 or greater in the conterminous United States). The news bulletins are sent to disaster relief, public safety, and other interested organizations. Tsunami warnings issued to countries bordering the Pacific Ocean are based initially on earthquake location and magnitude data. Rapid reporting of earthquakes requires real-time waveform data or readings. Currently, signals are being telemetered from more than thirty stations in the United States to the NEIS, which is located in Golden, Colorado. An extension of the telemetry network to other countries will provide the seismological community with a significantly improved means of monitoring earthquake activity in real time; it will lower the response time for determining the location and magnitude of potentially destructive or tsunamigenic earthquakes and it will provide more timely information that may be needed by governments to respond promptly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller
2012-01-31
This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to representmore » the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a technical integration team, consists of a series of tasks designed to meet the project objectives. This report was reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S. Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were considered when preparing the report. The SSC model was completed at the end of 2011.« less
Ambient seismic noise study in Taiwan for two different scale arrays
NASA Astrophysics Data System (ADS)
Huang, Y.; Yao, H.; Liang, W.; Huang, B.; Wen, K.; Huang, W.; van der Hilst, R. D.
2008-12-01
It has been demonstrated that Time Domain Empirical Green's Function (TDEGF) from ambient seismic noise cross-correlation can be used to investigate crustal velocity structure from many studies around the world. For surface wave tomographic studies from ambient noise, the maximum exploring depth depends on the aperture of receiver array and the lateral resolution relies on the density of station-pair paths. To decipher subsurface structures in various scales, researchers can utilize some existing continuous-recording seismic stations and/or deploy a newly dense receiver array in the study region. In this study, we perform tomographic applications of ambient seismic noise analysis in Taiwan region for two arrays with very different scales. Taiwan is located at a complex convergent plate boundary zone where the Philippine Sea plate interacts with the Eurasian plate. As a result, the lateral velocity variations show dramatic patterns among different geologic provinces. In the past decade, many continuous-recording broadband stations have already been set up to monitor earthquake activities in the Taiwan region. The BATS (Broadband Array in Taiwan for Seismology) network is being operated by the Institute of Earth Sciences, Academia Sinica (IESAS) since 1994. Currently, there are 20 permanent stations covering approximately 350 km by 400 km area around Taiwan, including some remote islets. In this study we selected 7 years data (2000-2006) from BATS to get the TDEGFs which were then used to measure inter-station phase velocities in the period band 5-30s. Finally we then constructed 2D phase velocity maps. At shorter periods (5-10s), phase velocity distribution can compare well with surface geology. At longer periods (14-22s), there is a saxophone shape low velocity zone beneath the Taiwan Island. Taipei Basin is a high-level artificial noise metropolis with a nearly triangular shape basin located close to northern tip of Taiwan with area just around 20 km by 20 km, much smaller than the area BATS covers. Central Geological Survey (CGS) entrusted IESAS to monitor seismicity in this region from 2004. There were around 20 continuous-recording broadband stations with about 5km average inter-station distance. For this study we selected 3 months data, from mid July to mid October in 2005, to calculate TDEGFs. Finally we obtained 0.5-3s phase velocity maps, which can compare well with surface geologic structure. The days with typhoon warnings were excluded from ambient seismic noise analysis due to the fact that TDEGFs are affected by temporarily close and massive moving sources like typhoons. We also found that the source direction of ambient seismic noise in typhoon days had close relationship with typhoon location.
Bárðarbunga volcano - post-eruption trends following the Holuhraun eruption in 2014-2015
NASA Astrophysics Data System (ADS)
Jónsdóttir, Kristín; Hooper, Andrew; Jónasson, Kristján; Vogfjörð, Kristín; Tumi Gudmundsson, Magnús; Hjorleifsdóttir, Vala; Rodríguez-Cardozo, Felix R.; Sigmundsson, Freysteinn; Ófeigsson, Benedikt G.; Parks, Michelle M.; Roberts, Matthew; Gudmundsson, Gunnar B.; Hognadóttir, Thordis; Pfeffer, Melissa A.; Geirsson, Halldór; Barsotti, Sara; Oddsson, Bjorn
2017-04-01
The Bárdarbunga volcano in central Iceland experienced a major unrest, lateral dyking, and eruption in August 2014-February 2015. The eruption was accompanied by caldera collapse, a truly rare event that has not been monitored in such detail before, providing a unique opportunity for better understanding the volcanic structure and processes. The collapse was extensive as the 8x11 km caldera gradually subsided and a subsidence bowl up to 65 m deep was formed, while about 1.8 km3 of magma drained laterally along a subterranean path, forming a flood basalt 47 km northeast of the volcano. The collapse was accompanied by high rates of seismicity and 80 earthquakes between M5-M5.8 were recorded. Using various geophysical and geochemical data, together with modelling, the magma reservoir has been estimated to reside at about 8-12 km depth beneath the caldera and recent findings show that the subsidence was driven by a feedback between the pressure of the piston-like block overlying the reservoir, and the 47 km long magma outflow path. The collapse and magma outflow gradually declined until the eruption ended on the 27th February 2015. After the end of the eruption, GPS deformation data show horizontal movements that seem to be in line with an inflation signal centered at the caldera, but the pattern is more complicated than during the co-eruptive period. The seismicity continued to decline, both in the far end of the dyke as well as within the caldera. However, in September 2015 seismicity within the caldera started to increase again. Interestingly, this increase was identified in terms of increased earthquake magnitudes while earthquake rate remained relatively constant. This resulted in a volcanic earthquake catalog with the highest seismic moment release rate ever recorded in Iceland during times of volcanic quiescence. Here we present a seismic waveform correlation analysis which reveals a dramatic change occurring between February and May 2015, where the earthquakes' first motion polarity reverses sign. This time coincides with the ending of the caldera collapse and the eruption. We investigate relative locations of the earthquakes as well as moment tensor solutions and compare results of the post-eruption period to the period during caldera subsidence and eruptive activity. In addition, we present analysis of post-eruption trends of the deformation data as well as seismicity trends. Preliminary results suggest that caldera fault movements where reversed soon after the eruption ended in spring 2015 when we also observe outwards movement of GPS stations around the caldera, indicating re-inflation long before any seismicity increase was detected. These data and their interpretation are vital to understanding the current status of the volcano and, eventually, to perform a more accurate and reliable hazard assessment.
The Collaborative Seismic Earth Model Project
NASA Astrophysics Data System (ADS)
Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.
2017-12-01
We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.
Estimation of empirical site amplification factors in Taiwan
NASA Astrophysics Data System (ADS)
Chung, Chi-Hsuan; Wen, Kuo-Liang; Kuo, Chun-Hsiang
2017-04-01
Lots of infrastructures are under construction in metropolises in Taiwan in recent years and thus leads to increasement of population density and urbanization in those area. Taiwan island is located in plate boundaries in which the high seismicity is caused by active tectonic plates. The Chi-Chi earthquake (Mw 7.6) in 1999 caused a fatality of more than 2000, and the Meinong earthquake (Mw 6.5) in 2016 caused a fatality of 117 in Tainan city as well as damages on hundreds of buildings. The cases imply seismic vulnerability of urban area. During the improvements for seismic hazard analysis and seismic design, consideration of seismic site amplifications in different site conditions is one of important issues. This study used selected and processed strong motion records observed by the TSMIP network. The site conditions considered as Vs30 used in this study were investigated at most stations (Kuo et al. 2012; Kuo et al. 2016). Since strong motion records and site conditions are both available, we are able to use the data to analyze site amplifications of seismic waves at different periods. The result may be a reference for future modification of seismic design codes to decrease potential seismic hazards and losses. We adopted the strong motion and site database of the SSHAC (Senior Seismic Hazard Analysis Committee) Level 3 project in Taiwan. The selected significant crustal and subduction events of magnitude larger than six for analysis. The amplification factors of PGA, PGV, PGD, and spectra acceleration at 0.3, 1.0, and 3.0 seconds were evaluated using the processed strong motions. According to the recommendation of SSHAC Level 3 project, the site condition of Vs30 = 760 m/s is considered as the reference rock site in this study. The stations with Vs30 between 600 m/s and 900 m/s and used as the reference rock sites in reality. For each event, we find a reference rock site and other site within a certain distance (region dependent) to calculate site amplifications of ground motions. Relationships of site amplification factors and Vs30 are therefore derived for strong motions by regression analysis. Soil nonlinearity (decrease of amplifications) has to be considered at soft soil sites during a strong shaking. We also discuss amplification factors in terms of different intensities if data is available.
Normal-Faulting in Madagascar: Another Round of Continental Rifting?
NASA Astrophysics Data System (ADS)
Wysession, M. E.; Pratt, M. J.; Tsiriandrimanana, R.; Andriampenomanana Ny Ony, F. S. T.; Nyblade, A.; Durrheim, R. J.; Tilmann, F. J.; Rumpker, G.; Rambolamanana, G.; Aleqabi, G. I.; Shore, P.
2017-12-01
Analyses of seismicity and seismic structure within Madagascar suggest the current occurrence of crustal extension, which may be related to continental rifting associated with a diffuse boundary between the Somalia and Lwandle tectonic plates. Madagascar has participated in two major rifting events as part of the break-up of Gondwana: the break-away of Greater India (Madagascar, India, the Seychelles) away from mainland Africa during the Jurassic and the break-away of India from Madagascar during the Cretaceous. Seismic activity and the structures obtained from it, using data from the 2-year (2011-2013) MACOMO project, suggest that this break-up may not be finished, and that continental rifts may be developing again. There are fairly high levels of intraplate seismicity within Madagascar: over 800 events located during the 22 months of the deployment. For comparison, a 2-year deployment of seismometers within the upper Midwest of the U.S. yielded just 12 intraplate earthquakes. While the Madagascar seismicity occurs across the island, it is strongly concentrated in the central region, where Cenozoic volcanism has occurred through the Holocene, and earthquakes align along N-S-trending lineations associated with N-S-trending pull-apart graben structures. The thickness of the crust is still >40 km in this region, but it is underlain by a large low-velocity structure within the lithosphere and asthenosphere that is observed in our studies of surface-wave, body-wave, and Pn-phase tomography. Normal faulting is not observed everywhere on the island, however; seismicity in the north is largely strike-slip, and seismicity in the south appears to be largely reverse faulting. Several studies have suggested that the diffuse boundary between the Somalia and Lwandle plates runs roughly E-W across Madagascar. Extensional faulting seems to predominate only within central Madagascar, likely associated with the current volcanic activity, which also appears to be associated with the delamination of the northern half of Madagascar's subcrustal lithosphere. If so, it may be that the volcanism, seismicity, and extension are all occurring syntectonically, and that we may be witnessing the development of another continental rift involving Madagascar.
Seismic Risk Assessment of Italian Seaports Using GIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.
Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas ofmore » medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)« less
NASA Astrophysics Data System (ADS)
Chen, Linzhi; Lu, Xilin; Jiang, Huanjun; Zheng, Jianbo
2009-06-01
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests of ten column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.
Seismic event near Jarocin (Poland)
NASA Astrophysics Data System (ADS)
Lizurek, Grzegorz; Plesiewicz, Beata; Wiejacz, Paweł; Wiszniowski, Jan; Trojanowski, Jacek
2013-02-01
The earthquake of magnitude M L = 3:8 (EMSC) took place on Friday, 6 January 2012, north-east of the town of Jarocin in Wielkopolska Region, Poland. The only historical information about past earthquakes in the region was found in the diary from 1824; apart of it, there was a seismic event noticed in the vicinity of Wielkopolska in 1606 (Pagaczewski 1982). The scope of this paper is to describe the 6 January 2012 event in view of instrumental seismology, macroseismic data analysis and known tectonics of the region, which should be useful in future seismic hazard analysis of Poland.
Sideband analysis and seismic detection in a large ring laser
NASA Astrophysics Data System (ADS)
Stedman, G. E.; Li, Z.; Bilger, H. R.
1995-08-01
A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.
Yearly report, Yucca Mountain project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brune, J.N.
1992-09-30
We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.
NASA Astrophysics Data System (ADS)
Wan, Sheng; Li, Hui
2018-03-01
Though the test of blasting vibration, the blasting seismic wave propagation laws in southern granite pumped storage power project are studied. Attenuation coefficient of seismic wave and factors coefficient are acquired by the method of least squares regression analysis according to Sadaovsky empirical formula, and the empirical formula of seismic wave is obtained. This paper mainly discusses on the test of blasting vibration and the procedure of calculation. Our practice might as well serve as a reference for similar projects to come.
A Comprehensive Seismic Characterization of the Cove Fort-Sulphurdale Geothermal Site, Utah
NASA Astrophysics Data System (ADS)
Zhang, H.; Li, J.; Zhang, X.; Liu, Y.; Kuleli, H. S.; Toksoz, M. N.
2012-12-01
The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the extensional Basin and Range Province to the west and the uplifted Colorado Plateau to the east. The region around the geothermal site has the highest heat flow values of over 260 mWm-2 in Utah. To better understand the structure around the geothermal site, the MIT group deployed 10 seismic stations for a period of one year from August 2010. The local seismic network detected over 500 local earthquakes, from which ~200 events located within the network were selected for further analysis. Our seismic analysis is focused on three aspects: seismic velocity and attenuation tomography, seismic event focal mechanism analysis, and seismic shear wave splitting analysis. First P- and S-wave arrivals are picked manually and then the waveform cross-correlation technique is applied to obtain more accurate differential times between event pairs observed on common stations. The double-difference tomography method of Zhang and Thurber (2003) is used to simultaneously determine Vp and Vs models and seismic event locations. For the attenuation tomography, we first calculate t* values from spectrum fitting and then invert them to get Q models based on known velocity models and seismic event locations. Due to the limited station coverage and relatively low signal to noise ratio, many seismic waveforms do not have clear first P arrival polarities and as a result the conventional focal mechanism determination method relying on the polarity information is not applicable. Therefore, we used the full waveform matching method of Li et al. (2010) to determine event focal mechanisms. For the shear wave splitting analysis, we used the cross-correlation method to determine the delay times between fast and slow shear waves and the polarization angles of fast shear waves. The delay times are further taken to image the anisotropy percentage distribution in three dimensions using the shear wave splitting tomography method of Zhang et al. (2007). For the study region, overall the velocity is lower and attenuation is higher in the western part. Correspondingly, the anisotropy is also stronger, indicating the fractures may be more developed in the western part. The average fast polarization directions of fast shear waves at each station mostly point NNE. From the focal mechanism analysis from selected events, it shows that the normal faulting events have strikes in NNE direction, and the events with strike slip mechanism have strikes either parallel with the NNE trending faults or their conjugate ones. Assuming the maximum horizontal stress (SHmax) is parallel with the strike of the normal faulting events and bisects the two fault planes of the strike-slip events, the inverted source mechanism suggests a NNE oriented maximum horizontal stress regime. This area is under W-E tensional stress, which means maximum compressional stress should be in the N-E or NNE direction in general. The combination of shear wave splitting and focal mechanism analysis suggests that in this region the faults and fractures are aligned in the NNE direction.
NASA Astrophysics Data System (ADS)
Abdel Raheem, Shehata E.; Ahmed, Mohamed M.; Alazrak, Tarek M. A.
2015-03-01
Soil conditions have a great deal to do with damage to structures during earthquakes. Hence the investigation on the energy transfer mechanism from soils to buildings during earthquakes is critical for the seismic design of multi-story buildings and for upgrading existing structures. Thus, the need for research into soil-structure interaction (SSI) problems is greater than ever. Moreover, recent studies show that the effects of SSI may be detrimental to the seismic response of structure and neglecting SSI in analysis may lead to un-conservative design. Despite this, the conventional design procedure usually involves assumption of fixity at the base of foundation neglecting the flexibility of the foundation, the compressibility of the underneath soil and, consequently, the effect of foundation settlement on further redistribution of bending moment and shear force demands. Hence the SSI analysis of multi-story buildings is the main focus of this research; the effects of SSI are analyzed for typical multi-story building resting on raft foundation. Three methods of analysis are used for seismic demands evaluation of the target moment-resistant frame buildings: equivalent static load; response spectrum methods and nonlinear time history analysis with suit of nine time history records. Three-dimensional FE model is constructed to investigate the effects of different soil conditions and number of stories on the vibration characteristics and seismic response demands of building structures. Numerical results obtained using SSI model with different soil conditions are compared to those corresponding to fixed-base support modeling assumption. The peak responses of story shear, story moment, story displacement, story drift, moments at beam ends, as well as force of inner columns are analyzed. The results of different analysis approaches are used to evaluate the advantages, limitations, and ease of application of each approach for seismic analysis.
CORSSA: The Community Online Resource for Statistical Seismicity Analysis
Michael, Andrew J.; Wiemer, Stefan
2010-01-01
Statistical seismology is the application of rigorous statistical methods to earthquake science with the goal of improving our knowledge of how the earth works. Within statistical seismology there is a strong emphasis on the analysis of seismicity data in order to improve our scientific understanding of earthquakes and to improve the evaluation and testing of earthquake forecasts, earthquake early warning, and seismic hazards assessments. Given the societal importance of these applications, statistical seismology must be done well. Unfortunately, a lack of educational resources and available software tools make it difficult for students and new practitioners to learn about this discipline. The goal of the Community Online Resource for Statistical Seismicity Analysis (CORSSA) is to promote excellence in statistical seismology by providing the knowledge and resources necessary to understand and implement the best practices, so that the reader can apply these methods to their own research. This introduction describes the motivation for and vision of CORRSA. It also describes its structure and contents.
Reservoir Identification: Parameter Characterization or Feature Classification
NASA Astrophysics Data System (ADS)
Cao, J.
2017-12-01
The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601
NASA Astrophysics Data System (ADS)
Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio; Contrafatto, Danilo; Galluzzo, Danilo; Rapisarda, Salvatore
2016-04-01
In volcanic environment the propagation of seismic signals through the shallowest layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Therefore tracing a seismic ray from the recording site back to the source is a complex matter, with obvious implications for the source location. For this reason the knowledge of the shallow velocity structure may improve the location of shallow volcano-tectonic earthquakes and volcanic tremor, thus contributing to improve the monitoring of volcanic activity. This work focuses on the analysis of seismic noise and volcanic tremor recorded in 2014 by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna. Several methods permit a reliable estimation of the shear wave velocity in the shallowest layers through the analysis of stationary random wavefield like the seismic noise. We have applied the single station HVSR method and SPAC array method to seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. We also applied the Beam Forming array method in the 0.5 Hz - 4 Hz frequency range to both seismic noise and volcanic tremor. The apparent velocity of coherent tremor signals fits quite well the dispersion curve estimated from the analysis of seismic noise, thus giving a further constrain on the estimated velocity model. Moreover, taking advantage of a borehole station installed at 130 m depth in the same area of the array, we obtained a direct estimate of the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave visible in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, in good agreement with the shear wave velocity found from the analysis of seismic noise. To better constrain the inversion we used the HVSR computed at each array station, which also give a lateral extension to the final 3D velocity model. The obtained results indicate that site effects in the investigate area are quite homogeneous among the array stations.
NASA Astrophysics Data System (ADS)
Masi, A.; Mucciarelli, M.; Chiauzzi, L.; De Costanzo, G.; Loperte, G.
2012-04-01
Facing natural disasters effects can be a very difficult task lacking suitable activities and tools to preventively prepare the involved community (people, authorities, professionals, …) to the expected events. Therefore, a suite of preventive actions should be carried out to mitigate natural risks, in particular working to reduce the territorial vulnerability with respect to the specific natural hazard at hand, and to increase people response capacity. In fact, building social capacity helps to increase the risk perception and the people capacity to adapt to and cope with natural hazards. Since October 2011 a seismic swarm is affecting the Pollino mountain range, Southern Italy. At present the sequence is still ongoing, with more than 500 events with M>1, at least 40 well perceived by the population and a maximum magnitude at 3.6. The area mainly affected by the seismic sequence includes 12 villages, with a total population of about 50.000 inhabitants and, according to the current seismic hazard map it has high seismicity level. Such area was hit by a magnitude Ml=5.7 event in 1998 that produced macroseismic intensity not higher that VII-VIII degree of MCS scale and caused one dead, some injured and widespread damage in at least six municipalities. During the sequence, the National Department of Civil Protection (DPC) and the Civil Protection of Basilicata Region decided to put in action some measures aimed at verifying and enhancing emergency preparedness. These actions have been carried out with a constant and fruitful collaboration among the main stakeholders involved (scientific community, local and national governmental agencies, civil protection volunteers, etc) trough the following main activities: 1. collaboration between scientific community and the local and national offices of Civil Protection especially in the relationship with local authorities (e.g. mayors, which are civil protection authorities in their municipality); 2. interaction between DPC, Italian Institute of Geophysics and Vulcanology (INGV) in order to transfer information to the population to enhance self-protection capability and decrease its state of worry ("what to do" in case of an earthquake); 3. review of local plans of emergency, where available, using ad hoc inspection forms to collect data for verifying and updating the emergency plan content and requirements. Specifically, in order to prepare seismic scenarios of building damage and effects on population for emergency planning and civil defense drills to be organized, two more activities have been carried out: 4. collection of current vulnerability data on the building stock and the strategic infrastructures located in the area; 5. accurate survey of data on post earthquake retrofitting and microzonation actions carried out after the 1998 Pollino earthquake that struck the same involved villages. In some cases, as a consequence of the position of the involved area, the activities were carried out also in collaboration with Calabria Region authorities. Several points have arisen in carrying out the activities, mostly due to the interaction between risk governance and risk perception in the pre-event emergency management. At the abstract submission date the seismic sequence, and thus the activities here described, are still ongoing. Therefore, analysis and discussion of pro's and con's of the actions taken are currently in progress on a week-by-week basis.
NASA Astrophysics Data System (ADS)
Visini, F.; Meletti, C.; D'Amico, V.; Rovida, A.; Stucchi, M.
2014-12-01
The recent release of the probabilistic seismic hazard assessment (PSHA) model for Europe by the SHARE project (Giardini et al., 2013, www.share-eu.org) arises questions about the comparison between its results for Italy and the official Italian seismic hazard model (MPS04; Stucchi et al., 2011) adopted by the building code. The goal of such a comparison is identifying the main input elements that produce the differences between the two models. It is worthwhile to remark that each PSHA is realized with data and knowledge available at the time of the release. Therefore, even if a new model provides estimates significantly different from the previous ones that does not mean that old models are wrong, but probably that the current knowledge is strongly changed and improved. Looking at the hazard maps with 10% probability of exceedance in 50 years (adopted as the standard input in the Italian building code), the SHARE model shows increased expected values with respect to the MPS04 model, up to 70% for PGA. However, looking in detail at all output parameters of both the models, we observe a different behaviour for other spectral accelerations. In fact, for spectral periods greater than 0.3 s, the current reference PSHA for Italy proposes higher values than the SHARE model for many and large areas. This observation suggests that this behaviour could not be due to a different definition of seismic sources and relevant seismicity rates; it mainly seems the result of the adoption of recent ground-motion prediction equations (GMPEs) that estimate higher values for PGA and for accelerations with periods lower than 0.3 s and lower values for higher periods with respect to old GMPEs. Another important set of tests consisted in analysing separately the PSHA results obtained by the three source models adopted in SHARE (i.e., area sources, fault sources with background, and a refined smoothed seismicity model), whereas MPS04 only uses area sources. Results seem to confirm the strong impact of the new generation GMPEs on the seismic hazard estimates. Giardini D. et al., 2013. Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi:10.12686/SED-00000001-SHARE. Stucchi M. et al., 2011. Seismic Hazard Assessment (2003-2009) for the Italian Building Code. Bull. Seismol. Soc. Am. 101, 1885-1911.
NASA Astrophysics Data System (ADS)
Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou
2014-12-01
Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.
Ivanov, Julian M.; Johnson, Carole D.; Lane, John W.; Miller, Richard D.; Clemens, Drew
2009-01-01
A limited seismic investigation of Ball Mountain Dam, an earthen dam near Jamaica, Vermont, was conducted using multiple seismic methods including multi‐channel analysis of surface waves (MASW), refraction tomography, and vertical seismic profiling (VSP). The refraction and MASW data were efficiently collected in one survey using a towed land streamer containing vertical‐displacement geophones and two seismic sources, a 9‐kg hammer at the beginning of the spread and a 40‐kg accelerated weight drop one spread length from the geophones, to obtain near‐ and far‐offset data sets. The quality of the seismic data for the purposes of both refraction and MASW analyses was good for near offsets, decreasing in quality at farther offsets, thus limiting the depth of investigation to about 12 m. Refraction tomography and MASW analyses provided 2D compressional (Vp) and shear‐wave (Vs) velocity sections along the dam crest and access road, which are consistent with the corresponding VSP seismic velocity estimates from nearby wells. The velocity sections helped identify zonal variations in both Vp and Vs (rigidity) properties, indicative of material heterogeneity or dynamic processes (e.g. differential settlement) at specific areas of the dam. The results indicate that refraction tomography and MASW methods are tools with significant potential for economical, non‐invasive characterization of construction materials at earthen dam sites.
NASA Astrophysics Data System (ADS)
Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.
2017-12-01
The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.
NASA Astrophysics Data System (ADS)
Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent
2015-08-01
With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.
NASA Astrophysics Data System (ADS)
Gunn, K. L.; White, N. J.; Larter, R. D.; Caulfield, C. P.
2018-04-01
Seismic reflection images of thermohaline circulation from the Bellingshausen Sea, adjacent to the West Antarctica Peninsula, were acquired during February 2015. This survey shows that bright reflectivity occurs throughout the upper 300 m. By calibrating these seismic images with coeval hydrographic measurements, intrusion of warm water features onto the continental shelf at Marguerite and Belgica Troughs is identified and characterized. These features have distinctive lens-shaped patterns of reflectivity with lengths of 0.75-11.00 km and thicknesses of 100-150 m, suggesting that they are small mesoscale to submesoscale eddies. Abundant eddies are observed along a transect that crosses Belgica Trough. Near Alexander Island Drift, a large, of order (O)102 km3, bowl-like feature, that may represent an anticyclonic Taylor column, is imaged on a pair of orthogonal images. A modified iterative procedure is used to convert seismic imagery into maps of temperature that enable the number and size of eddies being transported onto the shelf to be quantified. Finally, analysis of prestack shot records suggests that these eddies are advecting southward at speeds of O>(0.1>) m s-1, consistent with limited legacy hydrographic measurements. Concentration of observed eddies south of the Southern Antarctic Circumpolar Current Front implies they represent both a dominant, and a long-lived, mechanism of warm-water transport, especially across Belgica Trough. Our observations suggest that previous estimates of eddy frequency may have been underestimated by up to 1 order of magnitude, which has significant implications for calculations of ice mass loss on the shelf of the West Antarctic Peninsula.
NASA Astrophysics Data System (ADS)
Tian, Jingjing
Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.
Detecting Seismic Events Using a Supervised Hidden Markov Model
NASA Astrophysics Data System (ADS)
Burks, L.; Forrest, R.; Ray, J.; Young, C.
2017-12-01
We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A
Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.
2016-04-01
Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition, the flexibility of NDSHA allows for generation of ground shaking maps at specified long-term return times, which may permit a straightforward comparison between NDSHA and PSHA maps in terms of average rates of exceedance for specified time windows. The comparison of NDSHA and PSHA maps, particularly for very long recurrence times, may indicate to what extent probabilistic ground shaking estimates are consistent with those from physical models of seismic waves propagation. A systematic comparison over the territory of Italy is carried out exploiting the uniqueness of the Italian earthquake catalogue, a data set covering more than a millennium (a time interval about ten times longer than that available in most of the regions worldwide) with a satisfactory completeness level for M>5, which warrants the results of analysis. By analysing in some detail seismicity in the Vrancea region, we show that well constrained macroseismic field information for individual earthquakes may provide useful information about the reliability of ground shaking estimates. Finally, in order to generalise observations, the comparative analysis is extended to further regions where both standard NDSHA and PSHA maps are available (e.g. State of Gujarat, India). The final Global Seismic Hazard Assessment Program (GSHAP) results and the most recent version of Seismic Hazard Harmonization in Europe (SHARE) project maps, along with other national scale probabilistic maps, all obtained by PSHA, are considered for this comparative analysis.
Seismograms live from around the world
Woodward, Robert L.; Shedlock, Kaye M.; Bolton, Harold F.
1999-01-01
You can view earthquakes as they happen! Seismograms from seismic stations around the world are broadcast live, via the Internet, and are updated every 30 minutes, With an Internet connection and a web browser, you can view current seismograms and earthquake locations on your own computer. With special software also available via the Internet, you can obtain seismic data as it arrives from a global network of seismograph stations.
Multiple field-based methods to assess the potential impacts of seismic surveys on scallops.
Przeslawski, Rachel; Huang, Zhi; Anderson, Jade; Carroll, Andrew G; Edmunds, Matthew; Hurt, Lynton; Williams, Stefan
2018-04-01
Marine seismic surveys are an important tool to map geology beneath the seafloor and manage petroleum resources, but they are also a source of underwater noise pollution. A mass mortality of scallops in the Bass Strait, Australia occurred a few months after a marine seismic survey in 2010, and fishing groups were concerned about the potential relationship between the two events. The current study used three field-based methods to investigate the potential impact of marine seismic surveys on scallops in the region: 1) dredging and 2) deployment of Autonomous Underwater Vehicles (AUVs) were undertaken to examine the potential response of two species of scallops (Pecten fumatus, Mimachlamys asperrima) before, two months after, and ten months after a 2015 marine seismic survey; and 3) MODIS satellite data revealed patterns of sea surface temperatures from 2006-2016. Results from the dredging and AUV components show no evidence of scallop mortality attributable to the seismic survey, although sub-lethal effects cannot be excluded. The remote sensing revealed a pronounced thermal spike in the eastern Bass Strait between February and May 2010, overlapping the scallop beds that suffered extensive mortality and coinciding almost exactly with dates of operation for the 2010 seismic survey. The acquisition of in situ data coupled with consideration of commercial seismic arrays meant that results were ecologically realistic, while the paired field-based components (dredging, AUV imagery) provided a failsafe against challenges associated with working wholly in the field. This study expands our knowledge of the potential environmental impacts of marine seismic survey and will inform future applications for marine seismic surveys, as well as the assessment of such applications by regulatory authorities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.