Science.gov

Sample records for current sheet filamentation

  1. Current sheet oscillations in the magnetic filament approach

    SciTech Connect

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2012-06-15

    Magnetic filament approach is applied for modeling of nonlinear 'kink'-like flapping oscillations of thin magnetic flux tubes in the Earth's magnetotail current sheet. A discrete approximation for the magnetic flux tube was derived on a basis of the Hamiltonian formulation of the problem. The obtained system of ordinary differential equations was integrated by method of Rosenbrock, which is suitable for stiff equations. The two-dimensional exact Kan's solution of the Vlasov equations was used to set the background equilibrium conditions for magnetic field and plasma. Boundary conditions for the magnetic filament were found to be dependent on the ratio of the ionospheric conductivity and the Alfven conductivity of the magnetic tube. It was shown that an enhancement of this ratio leads to the corresponding increase of the frequency of the flapping oscillations. For some special case of boundary conditions, when the magnetic perturbations vanish at the boundaries, the calculated frequency of the 'kink'-like flapping oscillations is rather close to that predicted by the 'double gradient' analytical model. For others cases, the obtained frequency of the flapping oscillations is somewhat larger than that from the 'double gradient' theory. The frequency of the nonlinear flapping oscillations was found to be a decreasing function of the amplitude.

  2. New Class of Self-Consistent Current Sheets and Filaments in Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.; Martyanov, V. Yu.

    2006-08-01

    A continuous set of stationary current sheets and filaments in collisionless multi-component plasma is found analytically using integrals of two-dimensional motion of particles in the self-consistent magnetic field. In our solutions, which are relativistic in general, the magnetic energy density can be comparable to that of particles, and the spatial scale can be arbitrary compared to typical gyroradius of the particles. We consider the properties of newly found stationary solutions and their possible applications to analysis of magnetic field configurations emerging in various astrophysical plasmas, including coronal structures, shocks and jets. The results are used for interpretation of recent observations and numerical simulations. By choosing particular dependence of particle distribution function on the integrals of motion we are able to obtain various profiles of magnetic field and self-consistent current, including non-monotone. The obtained solutions describe much more general class of equilibrium configurations as compared to known generalizations of Harris current sheets. On this basis, we suggest a way to describe slow dynamics and filamentation of collisionless current configurations in coronal plasma and in Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars.

  3. Beam Filamentation Instability of Interacting Current Sheets in Striped Relativistic Winds: The Origin of Low Sigma?

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    Several lines of evidence suggest that relativistic winds from pulsars have flow energy dominated by kinetic energy at their termination, even though they emerge from the light cylinder as Poynting flux dominated flows. The wind sources are oblique rotators, thus the winds are "striped" - composed of interleaved sectors of oppositely directed B in a wide sector of latitude around the rotational equator. The electric current in the sheets separating the oppositely directed magnetic fields of the stripes, which provide the star's electric return current, is composed of a high energy particle beam, propagating across the magnetic field in an almost unmagnetized channel of thickness comparable to the particles' formal Larmor radius. The beams in neighboring sheets have opposite propagation directions, and interact across the stripes through the long range electromagnetic field. Thus the beams are subject to an electromagnetic shear instability which has strong kinship to Weibel beam filamentation instabilities in unmagnetized plasmas. I outline the physics of this instability, apply it to the pair dominated winds from pulsars, both in the case when the return current is composed of ions or high energy positrons (angle between the angular velocity and the magnetic moment less than 90 degrees, an "acute" pulsar) and also in the electron beam return current case (angle between the angular velocity and the magnetic moment greater than 90 degrees, an "obtuse" pulsar). I argue that the instability saturates through magnetic trapping, which leads to the appearance of an anomalous resistance in the pulsar circuit, and show that this resistance can account for the reduction of the striped component of the winds' magnetic fields, through broadening of the current layers until they merge and the stripes disappear. I discuss some possible observational consequences of this magnetic dissipation in the apparently dark region between the light cylinder and the winds' termination

  4. Nonlinear evolution of three-dimensional instabilities of thin and thick electron scale current sheets: Plasmoid formation and current filamentation

    SciTech Connect

    Jain, Neeraj; Büchner, Jörg

    2014-07-15

    Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.

  5. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  6. Folding of viscous sheets and filaments

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, M.; Mahadevan, L.

    2000-12-01

    We consider the nonlinear folding behavior of a viscous filament or a sheet under the influence of an external force such as gravity. Everyday examples of this phenomenon are provided by the periodic folding of a sheet of honey as it impinges on toast, or the folding of a stream of shampoo as it falls on one's hand. To understand the evolution of a fold, we formulate and solve a free-boundary problem for the phenomenon, give scaling laws for the size of the folds and the frequency with which they are laid out, and verify these experimentally.

  7. GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE

    SciTech Connect

    Tempel, Elmo; Libeskind, Noam I. E-mail: nlibeskind@aip.de

    2013-10-01

    The properties of galaxies are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the Sloan Digital Sky Survey to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments, a marked point process with interactions (the {sup B}isous model{sup )} is used. Sheets are found by detecting 'flattened' filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical galaxies formed via mergers, which predominantly occurred along the filaments. The spin axis of spiral galaxies is found to align with the host filament, with no correlation between spiral spin and sheet normal. When examined as a function of distance from the filament axis, a much stronger correlation is found in the outer parts, suggesting that the alignment is driven by the laminar infall of gas from sheets to filaments. When compared with numerical simulations, our results suggest that the connection between dark matter halo and galaxy spin is not straightforward. Our results provide an important input to the understanding of how galaxies acquire their angular momentum.

  8. Current filamentation model for the Weibel/Filamentation instabilities

    NASA Astrophysics Data System (ADS)

    Ryu, Chang-Mo; Huynh, Cong Tuan; Kim, Chul Min

    2016-10-01

    A current filamentaion model for a nonrelativistic plasma with e +/e- beam has been presented together with PIC simulations, which can explain the mangetic field enhancement during the Weibel/ Filamentation instabilities. This filament model assumes the Hammer-Rostoker equilibrium. In addition, this model predicts preferential acceleration/deceleration for electron-ion plasmas depending on the injected beam to be e +/e-.

  9. An Excursion Set Model of the Cosmic Web: the Abundance of Sheets, Filaments And Halos

    SciTech Connect

    Shen, Jiajian; Abel, Tom; Mo, Houjun; Sheth, Ravi; /Pennsylvania U.

    2006-01-11

    We discuss an analytic approach for modeling structure formation in sheets, filaments and knots. This is accomplished by combining models of triaxial collapse with the excursion set approach: sheets are defined as objects which have collapsed along only one axis, filaments have collapsed along two axes, and halos are objects in which triaxial collapse is complete. In the simplest version of this approach, which we develop here, large scale structure shows a clear hierarchy of morphologies: the mass in large-scale sheets is partitioned up among lower mass filaments, which themselves are made-up of still lower mass halos. Our approach provides analytic estimates of the mass fraction in sheets, filaments and halos, and its evolution, for any background cosmological model and any initial fluctuation spectrum. In the currently popular {Lambda}CDM model, our analysis suggests that more than 99% of the mass in sheets, and 72% of the mass in filaments, is stored in objects more massive than 10{sup 10}M{sub {circle_dot}} at the present time. For halos, this number is only 46%. Our approach also provides analytic estimates of how halo abundances at any given time correlate with the morphology of the surrounding large-scale structure, and how halo evolution correlates with the morphology of large scale structure.

  10. Experimental Investigation of Current Sheet Instabilities

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Choveiri, E. Y.; Schafer, Charles (Technical Monitor)

    2001-01-01

    Configuration space instabilities of propagating current sheets were studied in order to better understand acceleration mechanisms in pulsed plasma thrusters. Experiments were carried out in a parallel plate accelerator with argon as propellant. Propagating current sheets were visualized using fast framing cameras with inter-frame delays ranging between 0.05 - 2 microsecond. Schlieren photography using a pulse-burst Nd:YAG laser was used to image electron density gradients in the discharge. Magnetic field probes were used to map the magnetic field topology during the evolution of the discharge. Pressure probes were used to monitor axial pressure gradients. Emission spectroscopy was used to estimate the electron temperature in the arc. The motivation for applying all of these diagnostics was to gain an understanding of what parameters influence the macroscopic stability of a propagating current sheet. Since a stable current sheet is required for any effective snowplow-type of accelerator, an understanding of the processes which can cause current sheets to break apart into filaments is essential for the design of future pulsed plasma thrusters.

  11. Current sheets in solar flares

    NASA Technical Reports Server (NTRS)

    Priest, E. R.

    1985-01-01

    Numerical simulations of current sheets in solar flares are described, including new features such as the presence of a shock in Petschek's mechanism and impulsive burst-like reconnection due to secondary tearing and coalescence. The general properties of magnetic reconnection are discussed in connection with the basic requirements of numerical current sheet models. Emphasis is given to the need for realistic criteria for energy balance, the Lundquist number, and line tying in calculations of tearing and reconnection modes. The need for analytical models of current sheet processes to compare with the numerical simulations is also stressed.

  12. Hydrodynamic interactions of sheets vs filaments: Synchronization, attraction, and alignment

    NASA Astrophysics Data System (ADS)

    Olson, Sarah D.; Fauci, Lisa J.

    2015-12-01

    The synchronization of nearby sperm flagella as they swim in a viscous fluid was observed nearly a century ago. In the early 1950s, in an effort to shed light on this intriguing phenomenon, Taylor initiated the mathematical analysis of the fluid dynamics of microorganism motility. Since then, models have investigated sperm hydrodynamics where the flagellum is treated as a waving sheet (2D) or as a slender waving filament (3D). Here, we study the interactions of two finite length, flexible filaments confined to a plane in a 3D fluid and compare these to the interactions of the analogous pair of finite, flexible sheets in a 2D fluid. Within our computational framework using regularized Stokeslets, this comparison is easily achieved by choosing either the 2D or 3D regularized kernel to compute fluid velocities induced by the actuated structures. We find, as expected, that two flagella swimming with a symmetric beatform will synchronize (phase-lock) on a fast time scale and attract towards each other on a longer time scale in both 2D and 3D. For a symmetric beatform, synchronization occurs faster in 2D than 3D for sufficiently stiff swimmers. In 3D, a greater enhancement in efficiency and swimming velocity is observed for attracted swimmers relative to the 2D case. We also demonstrate the tendency of two asymmetrically beating filaments in a 3D fluid to align — in tandem — exhibiting an efficiency boost for the duration of their sustained alignment.

  13. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  14. The magnetohydrodynamics of current sheets

    NASA Technical Reports Server (NTRS)

    Priest, E. R.

    1985-01-01

    Examples of current sheets are summarized and their formation is described. A universal phenomenon in cosmic plasmas is the creation of sheets off intense current near X-type neutral points (where the magnetic field vanishes). These sheets are important as sites where the magnetic-field energy is converted efficiently into heat and bulk kinetic energy and where particles can be accelerated to high energies. Examples include disruptions in laboratory tokamaks, substorms in the earth's magnetosphere, and flares on the sun. The basic behavior of a one-dimensional sheet is presented, together with an account of the linear tearing-mode instability that can cause the field lines in such a sheet to reconnect. Such reconnection may develop in different ways: it may arise from a spontaneous instability or it may be driven, either from outside by motions or locally by a resistivity enhancement. Various processes are described that may occur during the nonlinear development of tearing, along with the many numerical and laboratory experiments that are aiding our understanding of this intriguing cosmical process.

  15. Reconnection in thin current sheets

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco; Pucci, Fulvia; Rappazzo, A. F.

    2016-05-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in nature and laboratory, but the question of reconnection speed and initial trigger have remained mysterious. How is fast magnetic energy release triggered in high Lundquist (S) and Reynolds (R) number plasmas?It has been shown that a tearing mode instability can grow on an ideal timescale, i.e., independent from the the Lundquist number, once the current sheet thickness becomes thin enough, or rather the inverse aspect ratio a/L reaches a scale a/L~S-1/3. As such, the latter provides a natural, critical threshold for current sheets that can be formed in nature before they disrupt in a few Alfvén time units. Here we discuss the transition to fast reconnection extended to simple viscous and kinetic models and we propose a possible scenario for the transition to explosive reconnection in high-Lundquist number plasmas, that we support with fully nonlinear numerical MHD simulations of a collapsing current sheet.

  16. Experimental Study of the Current Filamentation Instability

    NASA Astrophysics Data System (ADS)

    Allen, Brian; Muggli, Patric; Silva, Luis O.; Martins, Joana; Yakimenko, Vitaly; Fedurin, Mikhail; Kusche, Karl; Babzien, Marcus; Huang, Chengkun; Mori, Warren

    2012-10-01

    The Current Filamentation Instability (CFI) is of central importance for the propagation of relativistic electron beams in plasmas. CFI has potential relevance to astrophysics, afterglow of gamma ray bursts, inertial confinement fusion, energy transport in the fast-igniter concept, and places an upper limit on the plasma density and accelerating gradient in PWFA's. An experimental study at the Accelerator Test Facility at Brookhaven National Laboratory with the 60MeV e^- beam and cm length plasma. The experiment included the systematic study and characterization of the instability as a function of the beam charge and plasma density. The transverse beam profile is measured directly at the plasma exit using OTR. Experimental results show the transition from plasma focusing to CFI near kpσr=1 characterized by the appearance of multiple (1-5) beam filaments and scaling of the transverse filament size with the plasma skin depth. Suppression of the instability is seen by lowering the growth rate of the instability by reducing the beam charge. The experimental results are in excellent agreement with theory and simulations and we present and discuss simulation and experimental results.

  17. Modeling Harris Current Sheets with Themis Observations

    NASA Technical Reports Server (NTRS)

    Kepko, L.; Angelopoulos, V.; McPherron, R. L.; Apatenkov, S.; Glassmeier, K.-H.

    2010-01-01

    Current sheets are ubiquitous in nature. occurring in such varied locations as the solar atmosphere. the heliosphere, and the Earth's magnetosphere. The simplest current sheet is the one-dimensional Harris neutral sheet, with the lobe field strength and scale-height the only free parameters. Despite its simplicity, confirmation of the Harris sheet as a reasonable description of the Earth's current sheet has remained elusive. In early 2009 the orbits of the 5 THEMIS probes fortuitously aligned such that profiles of the Earth's current sheet could be modeled in a time dependent manner. For the few hours of alignment we have calculated the time history of the current sheet parameters (scale height and current) in the near-Earth region. during both quiet and active times. For one particular substorm. we further demonstrate good quantitative agreement with the diversion of cross tail current inferred from the Harris modeling with the ionospheric current inferred from ground magnetometer data.

  18. Ohm's law for a current sheet

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  19. Runaway electrons in plasma current sheets

    SciTech Connect

    Gurevich, A.V.; Sudan, R.N. )

    1994-01-31

    It is shown that a runaway electron population accelerates along the main magnetic field in a Sweet-Parker current sheet. After a characteristic distance the entire current is carried by runaways. The thickness of this runaway sheet is much smaller than the original Ohmic sheet. The influence of microinstabilities is discussed.

  20. Ion tearing in a magnetotail configuration with an embedded thin current sheet

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Drake, J. F.; Dusenbery, P. B.; Speiser, T. W.

    1992-01-01

    The ion tearing instability is investigated in a magnetotail configuration that consists of a diffuse plasma sheet current and an embedded, thin current sheet with a strong current. For historical reasons, the thin embedded current sheet will be called a 'neutral sheet', even though the normal component of the magnetic field, Bn, is nonzero. In particular, we assume that the current within the thin current sheet is due to the acceleration of 'Speiserlike' ion trajectories by a cross-tail electric field Ey. It is found that the strong current within the neutral sheet is essentially unimportant to the growth rate of the tearing instability, and that the growth rate scales as (lambda(0)/Lz) squared, where Lz is the overall half thickness of the plasma sheet and lambda (0) is the ion inertial length. In the absence of the current outside the neutral sheet, current filamentation is stable.

  1. Experimental study of the dynamics of a thin current sheet

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; DeHaas, T.; Van Compernolle, B.; Daughton, W.; Pribyl, P.; Vincena, S.; Hong, D.

    2016-05-01

    Many plasmas in natural settings or in laboratory experiments carry currents. In magnetized plasmas the currents can be narrow field-aligned filaments as small as the electron inertial length ≤ft(\\tfrac{c}{{ω }pe}\\right) in the transverse dimension or fill the entire plasma column. Currents can take the form of sheets, again with the transverse dimension the narrow one. Are laminar sheets of electric current in a magnetized plasma stable? This became an important issue in the 1960s when current-carrying plasmas became key in the quest for thermonuclear fusion. The subject is still under study today. The conditions necessary for the onset for tearing are known, the key issue is that of the final state. Is there a final state? One possibility is a collection of stable tubes of current. On the other hand, is the interaction between the current filaments which are the byproduct endless, or does it go on to become chaotic? The subject of three-dimensional current systems is intriguing, rich in a variety of phenomena on multiple scale sizes and frequencies, and relevant to fusion studies, solar physics, space plasmas and astrophysical phenomena. In this study a long (δz = 11 m) and narrow (δx = 1 cm, δy = 20 cm) current sheet is generated in a background magnetoplasma capable of supporting Alfvén waves. The current is observed to rapidly tear into a series of magnetic islands when viewed in a cross-sectional plane, but they are in essence three-dimensional flux ropes. At the onset of the current, magnetic field line reconnection is observed between the flux ropes. The sheet on the whole is kink-unstable, and after kinking exhibits large-scale, low-frequency (f ≪ f ci ) rotation about the background field with an amplitude that grows with distance from the source of the current. Three-dimensional data of the magnetic and electric fields is acquired throughout the duration of the experiment and the parallel resistivity is derived from it. The parallel

  2. Ion motion in a polarized current sheet

    NASA Astrophysics Data System (ADS)

    Tsai, E.; Artemyev, A. V.; Angelopoulos, V.

    2017-01-01

    We consider the effects of a polarization electric field on transient ion motion in a thin current sheet. Using adiabatic invariants, we analytically describe a variety of ion trajectories in current sheet configurations which include a local minimum or maximum of the scalar potential in the central region. Ions in the current sheet can either be trapped or ejected more efficiently than in an unpolarized current sheet, depending on the sign and magnitude of the polarization electric field. We derive an expression for the relative phase space volume filled by transient particles as a function of the electric field amplitude. This expression allows us to estimate the dependence of transient particle and current densities on the electric field. We discuss the applicability of these results for current sheets observed in planetary magnetospheres.

  3. The current sheet in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1975-01-01

    A theoretical model is presented for the plasma in the Jovian magnetosphere whose pressure is comparable to the corotational energy density. The model predicts a thin current sheet of 1 Jupiter radius to 2 Jupiter radii half-thickness. The current sheet lies almost precisely in the magnetic equatorial plane and is not appreciably warped as suggested previously.

  4. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  5. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.

  6. Particle motion in the tail current sheet

    NASA Technical Reports Server (NTRS)

    Speiser, T. W.

    1991-01-01

    Theory of particle motion in current sheets is reviewed. For small, approximately constant normal magnetic field, Bz, particles oscillate about the current sheet and 'live' within the sheet for one-half gyroperiod based on Bz. This lifetime replaces the mean collision time in the Lorentzian conductivity and thus gives rise to the concept of an inertial (or gyro-) conductivity. A substorm model by Coroniti utilizes this conductivity to allow reconnection to proceed without anomalous processes, due to wave-particle interactions. Chaotic particle orbits may at times be important to the dynamics, depending on parameters such as particle energy, current sheet thickness, and field line curvature. A current sheet model with neutral line predicts a ridge structure and asymmetries in the distribution function. Ion distributions near the plasma sheet boundary layer, during the CDAW 6 interval, are consistent with the model predictions. In recent studies by Mitchell et al. and Williams et al., the major current carriers during the growth phase of a substorm were found to be adiabatic electrons not more than 1 keV, but just before a current disruption event, the tail current was mainly carried by energetic ions undergoing current sheet oscillation.

  7. Origin of the warped heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Wilcox, J. M.; Hoeksema, J. T.; Scherrer, P. H.

    1980-08-01

    The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that 'ballerina skirt' effects may add small scale ripples.

  8. Particle acceleration in axisymmetric pulsar current sheets

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Philippov, Alexander; Parfrey, Kyle; Spitkovsky, Anatoly

    2015-03-01

    The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.

  9. Structure of the Magnetotail Current Sheet

    NASA Technical Reports Server (NTRS)

    Larson, Douglas J.; Kaufmann, Richard L.

    1996-01-01

    An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(E) less than x less than -14 R(E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.

  10. Structure of the Magnetotail Current Sheet

    NASA Technical Reports Server (NTRS)

    Larson, Douglas J.; Kaufmann, Richard L.

    1996-01-01

    An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(sub E) less than x less than - 14 R(sub E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.

  11. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  12. Nonlinear current sheet formation in ideal plasmas

    NASA Technical Reports Server (NTRS)

    Voge, A.; Schindler, K.; Otto, A.

    1994-01-01

    We present a numerical study of the formation of current sheets in ideal plasmas. First we confirm the development of singular current sheets in a one-dimensional model. In a second step we extend the analysis to two-dimensional equilibria. Here it is found that the resulting structures are quiet insensitive to the boundary conditions. For the special case of a magnetotail like equilibrium it will be shown that the resulting current distribution provides a possibility to understand the onset of a localized anomalous resistivity from a macroscopic point of view. Furthermore, the resulting structures provide an explanation for the dramatic decrease of the thickness of the current sheet in the magnetotail prior to the onset of geomagnetic substorms.

  13. Physics of the magnetotail current sheet

    NASA Technical Reports Server (NTRS)

    Chen, James

    1993-01-01

    The Earth's magnetotail plays an important role in the solar-wind-magnetosphere coupling. At the midplane of the magnetotail is a current sheet where the dominant magnetic field component reverses sign. The charged particle motion in and near the current sheet is collisionless and nonintegrable, exhibiting chaotic scattering. The current understanding of the dynamical properties of the charged particle motion is discussed. In particular, the relationships between particle dynamics and global attributes of the system are elucidated. Geometrical properties of the phase space determine important physical observables on both micro- and macroscales.

  14. Fluctuation dynamics in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  15. RADIATING CURRENT SHEETS IN THE SOLAR CHROMOSPHERE

    SciTech Connect

    Goodman, Michael L.; Judge, Philip G. E-mail: judge@ucar.edu

    2012-05-20

    An MHD model of a hydrogen plasma with flow, an energy equation, NLTE ionization and radiative cooling, and an Ohm's law with anisotropic electrical conduction and thermoelectric effects is used to self-consistently generate atmospheric layers over a 50 km height range. A subset of these solutions contains current sheets and has properties similar to those of the lower and middle chromosphere. The magnetic field profiles are found to be close to Harris sheet profiles, with maximum field strengths {approx}25-150 G. The radiative flux F{sub R} emitted by individual sheets is {approx}4.9 Multiplication-Sign 10{sup 5}-4.5 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1}, to be compared with the observed chromospheric emission rate of {approx}10{sup 7} erg cm{sup -2} s{sup -1}. Essentially all emission is from regions with thicknesses {approx}0.5-13 km containing the neutral sheet. About half of F{sub R} comes from sub-regions with thicknesses 10 times smaller. A resolution {approx}< 5-130 m is needed to resolve the properties of the sheets. The sheets have total H densities {approx}10{sup 13}-10{sup 15} cm{sup -3}. The ionization fraction in the sheets is {approx}2-20 times larger, and the temperature is {approx}2000-3000 K higher than in the surrounding plasma. The Joule heating flux F{sub J} exceeds F{sub R} by {approx}4%-34%, the difference being balanced in the energy equation mainly by a negative compressive heating flux. Proton Pedersen current dissipation generates {approx}62%-77% of the positive contribution to F{sub J} . The remainder of this contribution is due to electron current dissipation near the neutral sheet where the plasma is weakly magnetized.

  16. The Jovian magnetotail and its current sheet

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Burlaga, L. F.; Ness, N. F.

    1980-01-01

    Analyses of Voyager magnetic field measurements have extended the understanding of the structural and temporal characteristics of Jupiter's magnetic tail. The magnitude of the magnetic field in the lobes of the tail is found to decrease with Jovicentric distance approximately as r to he-1.4, compared with the power law exponent of -1.7 found for the rate of decrease along the Pioneer 10 outbound trajectory. Voyager observations of magnetic field component variations with Jovicentric distance in the tail do not support the uniform radial plasma outflow model derived from Pioneer data. Voyager 2 has shown that the azimuthal current sheet which surrounds Jupiter in the inner and middle magnetosphere extends tailward (in the anti-Sun direction) to a distance of at least 100 R sub J. In the tail this current sheet consists of a plasma sheet and embedded neutral sheet. In the region of the tail where the sheet is observed, the variation of the magnetic field as a result of the sheet structure and its 10 hr periodic motion is the dominant variation seen.

  17. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  18. Birkeland currents in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Tsyganenko, Nikolai A.; Stern, David P.; Kaymaz, Zerefsan

    1993-01-01

    A search was conducted for the signatures of Birkeland currents in the Earth's magnetic tail, using observed values of B(sub x) and B(sub y) from large sets of spacecraft data. The data were binned by x and y for -10 greater than x(sub GSM) greater than -35 and absolute value of y(sub GSM) less than or equal to 20 R(sub E) (less than or equal to 30 R(sub E) for x(sub GSM) less than or equal to -25 R(sub E)) and in each bin their distribution in the (B(sub x), B(sub y)) plane was fitted by least squares to a piecewise linear function. That gave average x-y distributions of the flaring angle between B(sub xy) and the x direction, as well as that angle's variation across the thickness of the plasma sheet. Angles obtained in the central plasma sheet differed from those derived near the lobe boundary. That is the expected signature if earthward or tailward Birkeland current sheets are embedded in the plasma sheet, and from this dfiference we derived the dawn-dusk profiles of the tail Birkeland currents for several x(sub GSM) intervals. It was found that (1) the Birkeland currents have the sense of region 1 currents, when mapped to the ionosphere; (2) both the linear current density (kiloamperes/R(sub E)) and the net magnitude of the field-aligned currents decrease rapidly down the tail; (3) the total Birkeland current at x approximately equals -10 R(sub E) equals approximately equals 500-700 kA, which is approx. 30% of the net region 1 current observed at ionospheric altitudes, in agreement with model mapping results; and (4) the B(sub z) and B(sub y) components of the interplanetary magnetic field influence the distribution of Birkeland currents in the tail.

  19. On ballooning instability in current sheets

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Kozlov, Daniil

    2015-06-01

    The problem of instability of the magnetotail current sheet to azimuthally small-scale Alfvén and slow magnetosonic (SMS) waves is solved. The solutions describe unstable oscillations in the presence of a current sheet and correspond to the region of stretched closed field lines of the magnetotail. The spectra of eigen-frequencies of several basic harmonics of standing Alfvén and SMS waves are found in the local and WKB approximation, which are compared. It is shown that the oscillation properties obtained in these approximations differ radically. In the local approximation, the Alfvén waves are stable in the entire range of magnetic shells. SMS waves go into the aperiodic instability regime (the regime of the "ballooning" instability), on magnetic shells crossing the current sheet. In the WKB approximation, both the Alfvén and SMS oscillations go into an unstable regime with a non-zero real part of their eigen-frequency, on magnetic shells crossing the current sheet. The structure of azimuthally small-scale Alfvén waves across magnetic shells is determined.

  20. The current-voltage relationship in auroral current sheets

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Gurnett, D. A.; Goertz, C. K.; Menietti, J. D.; Burch, J. L.

    1987-01-01

    The current-voltage relation within narrow auroral current sheets is examined through the use of high-resolution data from the high altitude Dynamics Explorer 1 satellite. The north-south perpendicular electric field and the east-west magnetic field are shown for three cases in which there are large amplitude, oppositely directed paired electric fields and narrow current sheets. These data are shown to indicate that there is a linear Ohm's law relationship between the current density and the parallel potential drop within the narrow current sheets. This linear relationship had previously been verified for large-scale auroral formations greater than 20 km wide at the ionosphere. The evidence shown here extends our knowledge down to the scale size of discrete auroral arcs.

  1. Hybrid simulations of thin current sheets

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Dusenbery, P. B.; Speiser, T. W.

    1993-01-01

    A one-dimensional, hybrid simulation code is used to study current sheets with a nonzero normal magnetic field B(sub z) and a dawn-to-dusk electric field E(sub y). Such configurations are dependent upon only two parameters: we use the normalized normal magnetic field B-normalized (sub z) = B(sub z)/(4(pi)(n(sub b)) (v(exp 2 sub T))(exp 1/2) and normalized electric field V-normalized (sub D) = (1/V(sub T)(cE(sub y)/B(sub z)), where V(sub T) is the thermal velocity of ions prior to their interaction with the current sheet and n(sub b) is the number density outside the current sheet (at the simulation boundary). A third parameter that is relevant to the motion of particles in current sheets is kappa(sub A), the value of kappa = (R(sub min)/rho(sub max))(exp 1/2) for particles of average energy. We find that if either B-normalized (sub z) is close to or greater than 1, or if kappa(sub A) is close to 1, a rotational mode develops in which the z = 0 current rotates with the ion sense about the normal magnetic field, while for small values of both B-normalized (sub z) or kappa(sub A), the configuration is quasi-steady. To achieve values of kappa(sub A) of the order of or larger than 1, we decrease the value of V-normalized (sub D) uniformly. We find that the magnetic field fluctuations and particle distribution functions are similar in many respects to what was observed in the day 240, 1986, Active Magnetospheric Particle Tracer Explorer (AMPTE)/CCE current disruption event, an event that appears to be located at the site of initiation of current disruption and related particle energization.

  2. Particle accelerations and current structures of Weibel and Filamentation instabilities

    NASA Astrophysics Data System (ADS)

    Ryu, C. M.; Huynh, C. T.

    2015-12-01

    Particle accelerations of the Wibel instability (WI) and the Filamentation instability(FI) are studied by using PIC simuations, comparing them side-by-side. Although two instabilities are almost identical in the linear growth phase, significant differences are found in the nonlinear phase in their particle accelerations and current structures. The FI shows enhanced electron acceleration, whereas particle acceleration is almost absent in the WI. The different particle accelerations between the FI and the WI seem to be associated with their different current structures; a hollow electron current structure for the FI and a center filled current structure for that of the WI. Different electron distributions seem to bring in different current filament structures, eventually leading to different magnetic characteristics.

  3. Update on the Experimental Study of Current Filamentation Instability

    NASA Astrophysics Data System (ADS)

    Allen, Brian; Muggli, Patric; Martins, Joana; Silva, Luis; Yakimenko, Vitaly; Fedurin, Mikhail; Kusche, Karl; Babzien, Marcus; Huang, Chengkun; Mori, Warren

    2011-10-01

    Current Filamentation Instability (CFI) is of central importance for propagation of relativistic electron beams in plasmas. CFI has potential relevance to astrophysics, magnetic field/radiation generation in afterglow of gamma ray bursts, and inertial confinement fusion, energy transport in fast-igniter concept. An experiment is underway at Accelerator Test Facility at BNL with 60 MeV electron beam and capillary discharge plasma. The goal is to conduct a systematic study and characterize CFI as function of beam (charge, transverse and longitudinal profile) and plasma (plasma density) parameters. The transverse beam profile is measured directly at the plasma exit with OTR from a gold-coated silicon window. Initial experimental results show reduction of the beam transverse size with the appearance of multiple beam filaments and the size and number of individual filaments depend on the plasma density. We will present early experimental results and outline next steps. Work supported by NSF and US DOE.

  4. Formation of current sheets in magnetic reconnection

    SciTech Connect

    Boozer, Allen H.

    2014-07-15

    An ideal evolution of magnetic fields in three spatial dimensions tends to cause neighboring field lines to increase their separation exponentially with distance ℓ along the lines, δ(ℓ)=δ(0)e{sup σ(ℓ)}. The non-ideal effects required to break magnetic field line connections scale as e{sup −σ}, so the breaking of connections is inevitable for σ sufficiently large—even though the current density need nowhere be large. When the changes in field line connections occur rapidly compared to an Alfvén transit time, the constancy of j{sub ||}/B along the magnetic field required for a force-free equilibrium is broken in the region where the change occurs, and an Alfvénic relaxation of j{sub ||}/B occurs. Independent of the original spatial distribution of j{sub ||}/B, the evolution is into a sheet current, which is stretched by a factor e{sup σ} in width and contracted by a factor e{sup σ} in thickness with the current density j{sub ||} increasing as e{sup σ}. The dissipation of these sheet currents and their associated vorticity sheets appears to be the mechanism for transferring energy from a reconnecting magnetic field to a plasma. Harris sheets, which are used in models of magnetic reconnection, are shown to break up in the direction of current flow when they have a finite width and are in a plasma in force equilibrium. The dependence of the longterm nature of magnetic reconnection in systems driven by footpoint motion can be studied in a model that allows qualitative variation in the nature of that motion: slow or fast motion compared to the Alfvén transit time and the neighboring footpoints either exponentially separating in time or not.

  5. 3-D Electromagnetic Instabilities in Current Sheet

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Chen, Liu; Tummel, Kurt

    2016-10-01

    3-D electromagnetic instabilities in a Harris current sheet with a finite guide magnetic field BG are systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle model with a realistic mass ratio mi /me . Our studies show that lower-hybrid drift instability (LHDI) with k√{ρiρe } 1 and drift kink instability (DKI) and drift sausage instability (DSI) with kρi 1 are excited in the current sheet. The most unstable DKI is away from k . B = 0 , and the most unstable DSI is at k . B = 0 , where k ≡ (kx ,ky) , with kx being along the anti-parallel field direction and ky is along the current direction. On the other hand, an instability with a compressional magnetic field perturbation located at the center of current sheet is also excited under a relatively large BG, and its maximum growth rate is at k × B = 0 . The presence and structure of these instabilities as a function of BG is presented. The GeFi simulation results are compared with those from the fully kinetic particle simulation.

  6. Inferring global characteristics of current sheet from local measurements

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.

    1993-01-01

    A new procedure to extract global characteristics of a current sheet based on local measurements of magnetic field, plasma, and current density from a single spacecraft is described. By adopting suitable current density profiles, this method permits an estimate of the following parameters: (1) the asymptotic magnetic field strength outside the current sheet, (2) the north-south thickness of the current sheet, (3) the spacecraft distance from the center of the current sheet, (4) the magnetic field line curvature at the center of the current sheet, (5) the volume current density at the center of the current sheet, (6) the integrated current density across the thickness of the current sheet, and (7) the kappa parameter used by many researchers in the study of particle orbits in a current sheet geometry.

  7. Structure of current and plasma in current sheets depending on the conditions of sheet formation

    NASA Astrophysics Data System (ADS)

    Frank, A. G.; Ostrovskaya, G. V.; Yushkov, E. V.; Artemyev, A. V.; Satunin, S. N.

    2017-01-01

    The structure of current sheets created under laboratory conditions is characterized by a large variety, which depends substantially on the conditions under which the sheet if formed. In this work, we present the results of an experimental study of the structure and evolution of current sheets that were formed in magnetic configurations with a singular line of the X type. It has been shown that the change in the transverse magnetic field gradient, the strength of the longitudinal magnetic field, and the mass of the ions in plasma makes it possible to significantly vary the main parameters of the current sheets. This offers the challenges of using laboratory experimental results for analyzing and simulating the cosmophysical processes.

  8. Plasma Relaxation Dynamics Moderated by Current Sheets

    NASA Astrophysics Data System (ADS)

    Dewar, Robert; Bhattacharjee, Amitava; Yoshida, Zensho

    2014-10-01

    Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed equilibrium model all these constraints are relaxed save for global magnetic flux and helicity. A Lagrangian is presented that leads to a new variational formulation of magnetized fluid dynamics, relaxed MHD (RxMHD), all static solutions of which are Taylor equilibrium states. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-relaxed MHD (MRxMHD), is developed. These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm and Kulsrud--the formation of an initial shielding current sheet after perturbation by boundary rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed through a reconnection sequence, is calculated using RxMHD. Australian Research Council Grant DP110102881.

  9. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  10. High Current, Multi-Filament Photoconductive Semiconductor Switching

    DTIC Science & Technology

    2011-06-01

    linear PCSS triggered with a 100 fs laser pulse . Figure 1. A generic photoconductive semiconductor switch rapidly discharges a charged capacitor...switching is the most critical challenge remaining for photoconductive semiconductor switch (PCSS) applications in Pulsed Power. Many authors have...isolation and control, pulsed or DC charging, and long device lifetime, provided the current per filament is limited to 20-30A for short pulse (10

  11. Nonlinear energy principle for model current sheets

    SciTech Connect

    Yoon, Peter H.; Lui, Anthony T.Y.

    2006-01-15

    It is demonstrated on the basis of exact invariants of nonlinear Vlasov equation and model current sheets that the change in magnetic topology (i.e., reconnection) in a finite closed system leads to the conversion of magnetic-field energy to particle energy. It is also shown that the volume-averaged conversion efficiency diminishes as the spatial average is taken over larger and larger system size, while it increases when the system size becomes smaller. This finding may have an important implication for numerical simulation of reconnection processes under finite geometry.

  12. Current sheets, reconnection and adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Marliani, Christiane

    1998-11-01

    Adaptive structured mesh refinement methods have proved to be an appropriate tool for the numerical study of a variety of problems where largely separated length scales are involved, e.g. [R. Grauer, C. Marliani, K. Germaschewski, PRL, 80, 4177, (1998)]. A typical example in plasma physics are the current sheets in magnetohydrodynamic flows. Their dynamics is investigated in the framework of incompressible MHD. We present simulations of the ideal and inviscid dynamics in two and three dimensions. In addition, we show numerical simulations for the resistive case in two dimensions. Specifically, we show simulations for the case of the doubly periodic coalescence instability. At the onset of the reconnection process the kinetic energy rises and drops rapidly and afterwards settles into an oscillatory phase. The timescale of the magnetic reconnection process is not affected by these fast events but consistent with the Sweet-Parker model of stationary reconnection. Taking into account the electron inertia terms in the generalized Ohm's law the electron skin depth is introduced as an additional parameter. The modified equations allow for magnetic reconnection in the collisionless regime. Current density and vorticity concentrate in extremely long and thin sheets. Their dynamics becomes numerically accessible by means of adaptive mesh refinement.

  13. Radiation from a current filament driven by a traveling wave

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.

    1976-01-01

    Solutions are presented for the electromagnetic fields radiated by an arbitrarily oriented current filament located above a perfectly conducting ground plane and excited by a traveling current wave. Both an approximate solution, valid in the fraunhofer region of the filament and predicting the radiation terms in the fields, and an exact solution, which predicts both near and far field components of the electromagnetic fields, are presented. Both solutions apply to current waveforms which propagate along the channel but are valid regardless of the actual waveshape. The exact solution is valid only for waves which propagate at the speed of light, and the approximate solution is formulated for arbitrary velocity of propagation. The spectrum-magnitude of the fourier transform-of the radiated fields is computed by assuming a compound exponential model for the current waveform. The effects of channel orientation and length, as well as velocity of propagation of the current waveform and location of the observer, are discussed. It is shown that both velocity of propagation and an effective channel length are important in determining the shape of the spectrum.

  14. Thin current sheets in the deep geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Owen, C. J.; Gosling, J. T.; Murphy, N.

    1993-01-01

    The International Sun-Earth Explorer 3 (ISEE-3) magnetic field and plasma electron data from Jan - March 1983 have been searched to study thin current sheets in the deep tail region. 33 events were selected where the spacecraft crossed through the current sheet from lobe to lobe within 15 minutes. The average thickness of the observed current sheets was 2.45 R(sub E), and in 24 cases the current sheet was thinner than 3.0 R(sub E); 6 very thin current sheets (thickness lambda less than 0.5 R(sub E) were found. The electron data show that the very thin current sheets are associated with considerable temperature anisotropy. On average, the electron gradient current was about 17% of the total current, whereas the current arising from the electron temperature anisotropy varied between 8-45% of the total current determined from the lobe field magnitude.

  15. Formation of thin bifurcated current sheets by quasisteady compression

    SciTech Connect

    Schindler, Karl; Hesse, Michael

    2008-04-15

    Thin current sheets with half-widths in the range of about 10 or less ion inertial lengths (or ion gyroradii) have been identified as the sites of important dynamical phenomena in space plasmas. Recent space observations established that thin current sheets often have a bifurcated (double-peaked) current density. Earlier suggestions of possible bifurcation mechanisms are based on the presence of microfluctuations, magnetic reconnection, or a normal magnetic field component or assumed simplified models of adiabatic dynamics. Despite these efforts, the cause (or causes) of the formation of thin bifurcated current sheets and the conditions under which they form have remained unclear. In this paper, we identify quasisteady compression of a plane, initially wide collisionless current sheet as an effective physical mechanism for the formation of thin bifurcated current sheets. Our main tool is electromagnetic particle simulation. The initial sheet has a singly peaked current and a half-width that is five times larger than the ion inertial length. This sheet is quasisteadily compressed by external forces. A three-scale structure develops and the current bifurcates during compression. It is shown that the bifurcation, pressure anisotropy, and other major properties of the embedded current sheet can be understood in terms of basic physical principles, such as electric field shielding and momentum conservation. Sufficient conditions for bifurcation of symmetric current sheets are presented. They suggest that bifurcation must generally occur by quasisteady compression if the (singly peaked) initial current sheet is sufficiently wide.

  16. Current Sheets Formation in Planetary Magnetotail

    NASA Astrophysics Data System (ADS)

    Otto, Antonius; Hsieh, Min-Shiu; Hall, Fred

    2015-01-01

    Current sheet (CS) formation and thinning are common and fundamentally important processes in space and laboratory plasmas. CSs are always present in the interaction of plasmas of different origins and their presence is a necessary requirement for the onset of magnetic reconnection. The thinning of the near-Earth CS is highly important because it represents a major reconfiguration of the magnetotail from a mostly dipolar to a highly stretched magnetic field, which determines the conditions for substorm onset. Processes that can alter flux tube entropy include magnetic reconnection, energy loss into the ionosphere, gradients in energetic particle drifts, or kinetic processes that change the pressure or its isotropy. The plasma entropy increases with radial distance in the Jovian magnetosphere, which requires non-adiabatic heating during the outward plasma transport. The formation of CSs represents a fundamentally important and not-well-understood problem of planetary magnetotails and magnetodiscs.

  17. Plasmoid instability in double current sheets

    SciTech Connect

    Nemati, M. J.; Wang, Z. X. Wei, L.; Selim, B. I.

    2015-01-15

    The linear behavior of plasmoid instability in double current sheet configurations, namely, double plasmoid mode (DPM), is analytically and numerically investigated within the framework of a reduced magnetohydrodynamic model. Analytical analysis shows that if the separation of double current sheets is sufficiently small [κx{sub s}≪κ{sup 2/9}S{sub L}{sup 1/3}], the growth rate of DPMs scales as κ{sup 2/3}S{sub L}{sup 0} in the non-constant-ψ regime, where κ=kL{sub CS}/2 is the wave vector measured by the half length of the system L{sub CS}/2, 2x{sub s} is the separation between two resonant surfaces, and S{sub L}=L{sub CS}V{sub A}/2η is Lundquist number with V{sub A} and η being Alfven velocity and resistivity, respectively. If the separation is very large [κx{sub s}≫κ{sup 2/9}S{sub L}{sup 1/3}], the growth rate scales as κ{sup −2/5}S{sub L}{sup 2/5} in the constant-ψ regime. Furthermore, it is also analytically found that the maximum wave number scales as x{sub s}{sup −9/7}S{sub L}{sup 3/7} at the transition position between these two regimes, and the corresponding maximum growth rate scales as x{sub s}{sup −6/7}S{sub L}{sup 2/7} there. The analytically predicted scalings are verified in some limits through direct numerical calculations.

  18. Theory of electron current filamentation instability and ion density filamentation in the early development of a DPF discharge

    SciTech Connect

    Guillory, J.; Rose, D. V.; Lerner, E. J.

    2009-01-21

    Two-dimensional simulations of the initial stages of plasma formation in a dense plasma focus show the formation, in a few tens of nanoseconds, of a dense layer of plasma (n{sub e}{approx}10{sup 18} cm{sup -3},T{sub e}{approx}3 eV) in a thin layer surrounding the insulator-covered central anode of the focus device, and carrying axially-directed current at rather high current density.Earlier work on the filamentation of dense cathode plasma in high-power diodes seems to indicate that the anode plasma current layer in a dense plasma focus (DPF) device could be subject to the same instability, creating a growth of axially-directed filaments in the current density. The growth rate for resistive-thermal-driven filamentation, e.g. at 30 torr and {approx}3 eV electron temperature, exceeds the that due to non-thermal current (JxB) driving, and is determined by electron dynamics, so its evolution is quicker than the response-time of the ions.Nonetheless, with such a growing current-density perturbation as a seed and its increasing rippling of the azimuthal magnetic field as a driver, the ions will eventually take part in the azimuthal bunching, forming filaments in the ion density as well. The resistive-thermal-driven filamentation fields thus serve to 'hurry-up' the development of ion density filamentation, as shown approximately in the work presented here. This theory predicts, for light ions, a relatively early ({<=}250 ns) development of visible filaments along the anode, perhaps even before the main rundown phase of the focus plasma motion, and these filaments may persist during the 'liftoff' phase of the current layer to form the rundown phase of the plasma front. This work is supported by Larwenceville Plasma Physics.

  19. Effects of electron pressure anisotropy on current sheet configuration

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Vasko, I. Y.; Angelopoulos, V.; Runov, A.

    2016-09-01

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  20. Current sheet interaction and particle acceleration in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1990-01-01

    The thin, rapidly rotating current sheet in Jupiter's magnetodisk can energize heavy ions by hundreds of keV. If the magnetic field lines are azimuthally swept back, energetic ions undergoing nonadiabatic current sheet interactions will step radially outward and be centrifugally energized. Estimated energization times can be comparable to the Jovian rotation period. Nonadiabatic interactions with the rotating Jovian current sheet may be an important energization mechanism for heavy ions, but are not effective for energizing electrons or light ions like protons.

  1. Basic mechanisms controlling the sweeping efficiency of propagating current sheets

    NASA Astrophysics Data System (ADS)

    Berkery, J. W.; Choueiri, E. Y.

    2006-02-01

    The basic mechanisms controlling the sweeping efficiency of propagating current sheets are investigated through experiments and analytical modelling. The sweeping efficiency of a current sheet in a parallel plate gas-fed pulsed plasma accelerator is defined as the ratio of the current sheet mass to the total available propellant mass. Permeability of neutrals through the sheet, and leakage of mass out of the sheet and into a cathode wake, decrease the sweeping efficiency. The sweeping efficiency of current sheets in argon, neon, helium and hydrogen propellants at different initial pressures was determined through measurements of sheet velocity with high speed photography and of sheet mass with laser interferometry. The mechanism that controls the sweeping efficiency of propagating current sheets was found to be an interplay of two processes: the flux of mass entering the sheet and the leakage of mass at the cathode, with the former dependent on the degree of permeability and the latter dependent on the level of ion current as determined by the ion Hall parameter.

  2. Bashful ballerina: Southward shifted heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    2003-11-01

    It is known since long [Rosenberg and Coleman, 1969] that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  3. Bashful Ballerina: Southward shifted Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  4. Thick Bifurcated Current Sheet in the Near-Earth Tail Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Saito, M.

    2014-12-01

    The bifurcated structure of the current sheet in the mid tail (X~-20 RE) has been reported in several in-situ observational studies. The presented study examines a spatial distribution of current densities that statistically infer a thick bifurcated current sheet as a typical structure in the near-Earth tail (X=-8 to -12 RE). The current density is evaluated by using any two of THEMIS spacecraft measurements when certain conditions, such as spacecraft separation and orientation, are strictly met. A survey from 2007 to 2013 results in approximately 3000 current densities, which made it possible to study north-south profile of the current sheet. The peak of the current density is often found 0.5 RE to 1 RE off the magnetic equator, while the median half-thickness of the current sheet is approximately 3 RE. These indicate that the current sheet is thick and bifurcated on average. Presumably, owing to this non-uniform profile, local current densities sometimes become very intense. The intense current density preferentially occurs during growth phase and expansion phase of substorms, but also occur in quiet time. The intense current densities are found to be independent from the solar wind dynamic pressure. It is concluded that the intense current density is not caused by the compression of the plasma sheet. Other mechanisms need to be suggested to fully understand the structure and the evolution of the current sheet in the near-Earth tail.

  5. Dynamics of the current filament formation and its steady-state characteristics in chalcogenide based PCM

    NASA Astrophysics Data System (ADS)

    Bogoslovskiy, Nikita; Tsendin, Konstantin

    2017-03-01

    In the phase-change memory (PCM) crystallization occurs in the high-current filament which forms during switching to the conductive state. In the present paper we conduct a numerical modeling of the current filament formation dynamics in thin chalcogenide films using an electronic-thermal model based on negative-U centers tunnel ionization and Joule heating. The key role of inhomogeneities in the filament formation process is shown. Steady-state filament parameters were obtained from the analysis of the stationary heat conduction equation. The filament formation dynamics and the steady-state filament radius and temperature could be controlled by material parameters and contact resistance. Consequently it is possible to control the size of the region wherein crystallization occurs. A good agreement with numerous experimental data leads to the conclusion that thermal effects play a significant role in CGS conduction and high-current filament formation while switching.

  6. Current status of liquid sheet radiator research

    NASA Astrophysics Data System (ADS)

    Chubb, Donald L.; Calfo, Frederick D.; McMaster, Matthew S.

    1993-01-01

    Initial research on the external flow, low mass liquid sheet radiator (LSR), has been concentrated on understanding its fluid mechanics. The surface tension forces acting at the edges of the sheet produce a triangular planform for the radiating surface of width, W, and length, L. It has been experimentally verified that (exp L)/W agrees with the theoretical result, L/W = (We/8)exp 1/2, where We is the Weber number. Instability can cause holes to form in regions of large curvature such as where the edge cylinders join the sheet of thickness, tau. The W/tau limit that will cause hole formation with subsequent destruction of the sheet has yet to be reached experimentally. Although experimental measurements of sheet emissivity have not yet been performed because of limited program scope, calculations of the emissivity and sheet lifetime is determined by evaporation losses were made for two silicon based oils; Dow Corning 705 and Me(sub 2). Emissivities greater than 0.75 are calculated for tau greater than or equal to 200 microns for both oils. Lifetimes for Me(sub 2) are much longer than lifetimes for 705. Therefore, Me(sub 2) is the more attractive working fluid for higher temperatures (T greater than or equal to 400 K).

  7. Evidence for current sheet acceleration in the geomagnetic tail

    SciTech Connect

    Lyons, L.R.; Speiser, T.W.

    1982-04-01

    The existence of the current sheet and the dawn to dusk electric field in the geomagnetic tail implies there is particle energization in the tail current sheet of the order 2--10% of the total solar wind energy incident upon the dayside magnetopause. In this paper we determine that ion acceleration in a current sheet with a small magnetic field across the sheet, via single-particle motion which violates the guiding center approximation, can account for this large energization in the tail. We calculate the distribution of accelerated ions which result from the urrent sheet acceleration and compare the results with distributions of accelerated ions frequently observed flowing earthwards along the outer boundary of the plasma sheet. The comparison indicates that the observed earthward flowing ions result from current sheet acceleration. Comparison with measurements of auroral ion predictions at low precipitation at low altitudes implies that the accelerated ions ejected from the current sheet are also an important source of auroral ion precipitation. In addition, these acceletated ions may be an important source of plasma sheet ions.

  8. Cluster as current sheet surveyor in the magnetotail

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Nakamura, R.; Baumjohann, W.

    2013-09-01

    A novel analysis technique is presented to estimate the current sheet thickness unambiguously and directly, without associating time series data with spatial structure. The technique is a combination of eigenvalue analysis and minimum variance estimator adapted to Harris current sheet geometry, and needs one-time, four-point magnetic field data as provided by the Cluster spacecraft. Two current sheet parameters, thickness and distance to the spacecraft, can be determined at each time step of the magnetic field measurements. An example is shown from a Cluster magnetotail crossing under quiet magnetospheric conditions, yielding the result that the current sheet thickness is on the scale of the proton gyroradius. The analysis technique can also be used to track the dynamical evolution of the current sheet structure in three dimensions.

  9. Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak

    SciTech Connect

    O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.

    2012-08-15

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from the driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.

  10. Multipoint studies of 2D magnetotail current sheet

    NASA Astrophysics Data System (ADS)

    Petrukovich, Anatoli; Zelenyi, Lev; Nakamura, Rumi; Artemyev, Anton

    2016-07-01

    CLUSTER and Themis projects provide unique tools for magnetotail current sheet studies at a wide range of downtail distances: multipoint curlometer allows to measure electric current density, whereas regular electron data contains information on largescale tail structure. Observations show that moderately thin ion-scale embedded sheet is formed during substorm growth phase. Comparison of curlometer with particle data helps to estimate contributions of transient and magnetized ions as well as electrons to current density. Thin intense sheet with sub-ion scale is appearing after onset near reconnection zones, but vertical pressure balance requirement substantially limits the possible range of sheet thickness. Horizontal (along the tail) gradients become more important only in the near tail, within 10-12 Earth radii. Essential quantitative characteristics of ions-scale embedded sheet are boundary field b0 and maximal possible intensity of ion current.

  11. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    SciTech Connect

    Niknam, A. R.; Haghtalab, T.; Khorashadizadeh, S. M.

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  12. Magnetorotational instability, current relaxation, and current-vortex sheet

    SciTech Connect

    Silveira, F. E. M.; Galvão, R. M. O.

    2013-08-15

    The conjugate effect of current relaxation and of current-vortex sheet formation on the magnetorotational instability is explored in a conducting fluid. It is found that the relative amplification of the magnetic viscosity from marginal stability to the instability determined by the maximum growth rate is around 924% when resistive effects dominate, while the corresponding quantity is around 220% in the ideal limit. This shows that the conjugate influence is much more efficient to amplify the magnetic viscosity than just the effect due to the standard magnetic tension. It is also found that the magnitude of the magnetic viscosity is effectively enhanced by the conjugate influence. The results presented here may contribute to the understanding of the various processes that play a significant role in the mechanism of anomalous viscosity observed in Keplerian disks. It is argued that the new effect shall be relevant in thin accretion disks. It is also mentioned that the proposed formulation may be of interest for some theories of magnetic reconnection. Possible extensions of this work are suggested.

  13. Eruptive Current Sheets Trailing SOHO/LASCO CMEs

    NASA Astrophysics Data System (ADS)

    Webb, David F.

    2015-04-01

    Current sheets are important signatures of magnetic reconnection during the eruption of solar magnetic structures. Many models of eruptive flare/Coronal Mass Ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with the post-eruption magnetic loop arcade. Current sheets have been interpreted in white light images as narrow rays trailing the outward-moving CME, in ultraviolet spectra as narrow, bright hot features, and with different manifestations in other wavebands. This study continues that of Webb et al. (2003), who analyzed SMM white light CMEs having candidate magnetic disconnection features at the base of the CME. About half of those were followed by coaxial, bright rays suggestive of newly formed current sheets, and Webb et al. (2003) presented detailed results of analysis of those structures. In this work we extend the study of white light eruptive current sheets to the more sensitive and extensive SOHO/LASCO coronagraph data on CMEs. We comprehensively examined all LASCO CMEs during two periods that we identify with the minimum and maximum activity of solar cycle 23. We identified ~130 ray/current sheets during these periods, nearly all of which trailed CMEs with concave-outward backs. The occurrence rate of the ray/current sheets is 6-7% of all CMEs, irrespective of the solar cycle. We analyze the rays for durations, speeds, alignments, and motions and compare the observational results with some model predictions.

  14. Observational Evidence of Current Sheets Trailing Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Webb, David

    Field line reconnection in the wake of CMEs is a fundamental aspect of some flare-CME models, e.g., the "standard" CHSKP model. In recent versions of this model, the near-surface flare arcade and rising CME are connected by a stretched current sheet. Two such models, Lin and Forbes (2000) and Linker et al. (2003), predict that an extended, long lived current sheet must form for any physically plausible reconnection rate. SMM, Mauna Loa Solar Observatory and SOHO LASCO white light and UVCS spectroscopic observations have shown that some limb CMEs are followed by coaxial, narrow rays that occasionally contain high-temperature plasma, both suggestive of newly forming current sheets. Occasionally, plasma blobs are observed moving along the white light rays, which have been simulated as due to bursty tearing-mode reconnection, at least in the MHD code. Recent studies suggest that current sheet broadening and the plasma blobs may be due to tearing mode turbulence or Petschek-type reconnection. It is important to make measurements of certain key parameters of the observed current sheets, such as their thicknesses and densities as functions of height and time. We review recent results on measurements and modeling of current sheets using the data sets discussed above. This work was supported by ISSI-Bern through the project "The Role of Current Sheets in Solar Eruptive Phenomena".

  15. On the current sheet model with {kappa} distribution

    SciTech Connect

    Yoon, Peter H.; Lui, Anthony T. Y.; Sheldon, Robert B.

    2006-10-15

    The present paper (re)derives current sheet equilibrium solutions on the basis of the so-called {kappa} distribution functions for the particles. The present work builds upon a recent paper [W.-Z. Fu and L.-N. Hau, Phys. Plasmas 12, 070701 (2005)], where the authors formulated the equilibrium current sheet model with the {kappa} distribution. According to their work, however, the global temperature profile monotonically increases in the asymptotic regime. In the present paper it is shown that the presence of a finite stationary background population of the particles arrests the unlimited increase of the global temperature profile in the asymptotic limit. The present paper further extends the analysis by considering a current sheet model where the electron current is embedded within a thicker ion current layer, and where there exists a weak electrostatic potential drop across the current sheet.

  16. Dynamic Response of Magnetic Reconnection Due to Current Sheet Variability

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.; Burch, J. L.; Hesse, M.; Pollock, C. J.

    2014-12-01

    Magnetic reconnection is a process which regulates the interaction between regions of magnetized plasma. While many factors have an impact on the evolution of this process, there still remains a lack of understanding of the key behaviors involved in the triggering of fast reconnection. Despite an abundance of in-situ measurements, indicating the high degree of variability in the thickness, density and composition along the current sheet, no simulation studies exist which account for such current sheet variations. 2D and 3D simulations have a periodic boundary in the dimension along the current sheet and so tend to neglect these variations in the current sheet originating external to the modeled reconnection region. Here we focus on the effects on reconnection due to the variability in the thickness and density of the current sheet. Using 2.5D kinetic simulations of 2-species plasma, we isolate and explore the dynamic effects on reconnection associated with variations in the current sheet originating externally to the reconnection region. While periodic boundary conditions are still used, in the direction along the current sheet, a step-change perturbation in thickness or density of the current sheet is introduced once a stable reconnection rate is reached. The dynamic response of the overall system, after introducing the perturbation, is then evaluated, with a focus on the reconnection rate. When the reconnection rate is slowed significantly over time, loading of the inflow region occurs (a build-up of plasma and magnetic energy/pressure. This state is indicated by an asymptotic behavior in the reconnection rate over time. If a sudden variation in the current sheet is introduced under these conditions, a resultant triggering of fast reconnection may occur, which could lead to an episode of fast reconnection, saw-tooth-crash condition or even act as a trigger for sub-storms.

  17. The origin of the warped heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.

    1980-03-01

    The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.

  18. Prediction of the heliospheric current sheet tilt - 1992-1996

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Hoeksema, J. T.

    1993-01-01

    Heliospheric current sheet tilt evolves systematically over the solar cycle. Here we show that this evolution is different than the sunspot cycle and that tilt for the period 1992-1996 can be predicted using persistence. That is, the tilt over the coming cycle will be the same as for the past cycle. The Ulysses spacecraft has passed Jupiter and is moving out of the plane of the ecliptic, so we use the prediction of the changing heliospheric current sheet tilt to predict that Ulysses will pass beyond the envelope, or maximum latitude, of the heliospheric current sheet in November 1993.

  19. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    SciTech Connect

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  20. Development of bifurcated current sheets in solar wind reconnection exhausts

    NASA Astrophysics Data System (ADS)

    Mistry, R.; Eastwood, J. P.; Phan, T. D.; Hietala, H.

    2015-12-01

    Petschek-type reconnection is expected to result in bifurcations of reconnection current sheets. In contrast, Hall reconnection simulations show smooth changes in the reconnecting magnetic field. Here we study three solar wind reconnection events where different spacecraft sample oppositely directed reconnection exhausts from a common reconnection site. The spacecraft's relative separations and measurements of the exhaust width are used to geometrically calculate each spacecraft's distance from the X line. We find that in all cases spacecraft farthest from the X line observe clearly bifurcated reconnection current sheets, while spacecraft nearer to the X line do not. These observations suggest that clear bifurcations of reconnection current sheets occur at large distances from the X line (~1000 ion skin depths) and that Petschek-type signatures are less developed close to the reconnection site. This may imply that fully developed bifurcations of reconnection current sheets are unlikely to be observed in the near-Earth magnetotail.

  1. Eigenmodes of quasi-static magnetic islands in current sheet

    SciTech Connect

    Li Yi; Cai Xiaohui; Chai Lihui; Wang Shui; Zheng Huinan; Shen Chao

    2011-12-15

    As observation have shown, magnetic islands often appear before and/or after the onset of magnetic reconnections in the current sheets, and they also appear in the current sheets in the solar corona, Earth's magnetotail, and Earth's magnetopause. Thus, the existence of magnetic islands can affect the initial conditions in magnetic reconnection. In this paper, we propose a model of quasi-static magnetic island eigenmodes in the current sheet. This model analytically describes the magnetic field structures in the quasi-static case, which will provide a possible approach to reconstructing the magnetic structures in the current sheet via observation data. This model is self-consistent in the kinetic theory. Also, the distribution function of charged particles in the magnetic island can be calculated.

  2. The heliospheric current sheet and modulation of Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1990-01-01

    The posssible effect of the heliospheric current sheet on the modulation of cosmic rays is examined by examining the number and the nature of coronal mass ejections on the basis of data collected on an abrupt onset of cosmic ray modulation observed in May 1987 on earth and in September 1987 by Pioneer 10 and 11 and in a previous study of modulation for the years 1976-1986. The measure used to examine the gradient-drift theory (according to which modulation is associated with solar cycle changes in the current sheet) is the value of the difference in the maximum latitudinal extents for the current sheet in the northern and the southern solar hemispheres. These were obtained from contours of the current sheet produced by extrapolating photospheric magnetic field measurements to a solar wind source surface. The observations are found to be consistent with the predictions of the gradient drift model.

  3. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    NASA Astrophysics Data System (ADS)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  4. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    PubMed

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  5. Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.

    2001-01-01

    The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.

  6. Visco-resistive tearing in thin current sheets.

    NASA Astrophysics Data System (ADS)

    Velli, M. M. C.; Tenerani, A.; Rappazzo, A. F.; Pucci, F.

    2014-12-01

    How fast magnetic energy release is triggered and occurs in high Lundquist (S) and high Reynolds number ( R ) plasmas such as that of the solar corona is a fundamental problem for understanding phenomena ranging from coronal heating to flares and CMEs. Diffusion or collisional reconnection driven by macroscopic flows in quasi-steady Sweet-Parker (SP) current sheets are processes far too slow to fit observational data. Spontaneous reconnection, driven by the onset of the tearing instability inside current sheets, provides an alternative paradigm to SP reconnection. Nevertheless, as long as macroscopic current layers are considered, the growth of such an instability is also a slow process. Recently it has been shown that SP current sheets are rapidly unstable in high S plasmas, indeed have a growth rate diverging with increasing S. It has been suggested that such instabilities are triggered during the nonlinear stage of the primary tearing instability of a macroscopic layer. The formation of plasmoids in this presumed SP sheet speeds up the reconnection rate to ideal values. Recently, we have suggested that SP sheets can not be realized in quasi-ideal plasmas, and that the plasmoid instability is triggered on a much larger scale (i.e. with current sheets having a much larger ration of thickness to length than SP). Here we present a linear parametric study of the tearing instability for a Harris current sheet, while taking into account both viscosity and current sheets of variable aspect ratios. The present study shows that an explosive growth of the reconnection rate may be reached during the linear stage, once a critical width of the current layer is reached. In the absence of a strong guide field this depends on viscosity and a range of critical aspect ratios can be found for different values of S, R, or S and Prandtl number.

  7. Multiple heliospheric current sheets and coronal streamer belt dynamics

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Siscoe, G. L.; Shodhan, S.; Webb, D. F.; Gosling, J. T.; Smith, E. J.

    1993-01-01

    The occurrence of multiple directional discontinuities in the coronal streamer belt at sector boundary crossings in the heliosphere, often ascribed to waves or kinks in the heliospheric current sheet, may alternatively be attributed to a network of extended current sheets from multiple helmet streamers with a hierarchy of sizes at the base of the corona. Frequent transient outflows from these helmets can account for a variety of signatures observed at sector boundaries, including ordered field rotations, planar magnetic structures and sandwichlike plasma structure.

  8. Fundamental Mechanisms of Tensile Fracture in Aluminum Sheet Unidirectionally Reinforced with Boron Filament. Ph.D. Thesis - Virginia Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1971-01-01

    Results are presented from an experimental research effort to gain a more complete understanding of the physics of tensile fracture in unidirectionally reinforced B-Al composite sheet. By varying the degree of filament degradation resulting from fabrication, composite specimens were produced which failed in tension by the cumulative mode, the noncumulative mode, or by any desired combination of the two modes. Radiographic and acoustic emission techniques were combined to identify and physically describe a previously unrecognized fundamental fracture mechanism which was responsible for the noncumulative mode. The tensile strength of the composite was found to be severely limited by the noncumulative mechanism which involved the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level followed by ductile fracture of the matrix. The minimum average filament stress required for initiation of the fracture mechanism was shown to be approximately 170 ksi, and appeared to be independent of filament diameter, number of filament layers, and the identity of the matrix alloy.

  9. Solar wind double ions beams and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Feldman, W. C.; Phillips, J. L.; Goldstein, B. E.; Balogh, A.

    1995-01-01

    Double ion beams are often observed in the solar wind, but little work has been done in relating these beams to structures within the solar wind. Double ion beams are observed as beams of a given ion species and charge state occurring at two different energies. We use the three-dimensional ion plasma instrument on board the Ulysses spacecraft to look for evidence of such beams associated with the heliospheric current sheet. In a subset chosen independently of plasma parameters consisting of 8 of cover 47 crossings of the current sheet made during the inecliptic phase of the Ulysses mission we find that these double ion beams are always present on either side of the current sheet. The double beams are present in both the proton and helium species. The secondary beam typically has a higher helium abundance, which suggests that these beams are formed in the helium-rich corona rather than in interplanetary space. The double beams are not present in the interior of the current sheet. Neither collisions nor effects of plasma beta can account for the disappearance of the double beams inside the current sheet in all eight cases. We postulate that these beams are formed by reconnection occurring near the Sun in the boundary region between the open field lines of the coronal holes and the closed field line region of the heliospheric current sheet. Such a scenario would be consistent with previous X ray measurements which suggect that reconnection is occurring in this region.

  10. Tearing mode instability in a multiple current sheet system

    NASA Technical Reports Server (NTRS)

    Yan, M.; Otto, A.; Muzzell, D.; Lee, L. C.

    1994-01-01

    The tearing mode and magnetic reconnection are studied for multiple current sheet systems by two-dimensional magnetohydrodynamic (MHD) simulations. Both the linear and nonlinear evolution of this process are anaylsed for laminar perturbations. The results illustrate the existence of a linear regime with a symmetric and antisymmetric mode and agree with previous analytic results (Otto and Birk, 1992). The nonlinear evolution shows a number of interesting new features and may explain some properties in corresponding studies of turbulent reconnection. For wavelengths larger than twice the current sheet separation the evolution of antisymmetric modes leads to an entire reconfiguration of the magnetic field and converts a major portion of the magnetic energy into kinetic energy. Antisymmetric modes with smaller wavelengths and symmetric modes are found to saturate. The influence of the value of the resistivity on the reconnection rate decreases in the nonlinear evolution, and the ratio of current sheet separation to wavelength seems to be of major importance. A comparion of the dynamics of periodic current sheets with the evolution of only two current sheets indicates that some of the results for the periodic system also apply to the evolution of only two interacting current sheets. The results are discussed with respect to observations of large-scale plasma and magnetic field reconfigurations in the magnetosheath and near the Earth's bow shock.

  11. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    NASA Astrophysics Data System (ADS)

    Frysz, Christine A.; Shui, Xiaoping; Chung, D. D. L.

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments' processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm 3 of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon™ binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 405 less volume electrical resistivity than the carbon black electrode, both without a binder.

  12. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  13. Thickness of Heliospheric Current and Plasma Sheets: Dependence on Distance

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Smith, E. J.; Winterhalter, D.; McComas, D. J.; Skoug, R. M.; Goldstein, B. E.; Smith, C. W.

    2005-05-01

    Heliospheric current sheets (HCS) are well defined structures that separate the interplanetary magnetic fields with inverse polarities. Surrounded by heliospheric plasma sheets (HPS), the current sheets stretch throughout the heliosphere. Interesting questions that still remain unanswered include how the thickness of these structures will change along the distance? And what determines the thickness of these structures? To answer these fundamental questions, we have carried out a study of the HCS and HPS using recent Ulysses data near 5 AU. When the results were compared with earlier studies at 1 AU using ISEE-3 data, they were surprising and unexplained. Although the plasma sheet grew thicker, the embedded current sheet grew thinner! Using data under the same (or very similar) circumstances, we have extended the analysis in two ways. First, the same current-plasma sheets studied at 5 AU have been identified at 1 AU using ACE data. Second, data obtained while Ulysses was en-route to Jupiter near 3 AU have been analyzed. This three-point investigation reveals the thickness variation along the distance and enables the examination of the controller of this variation.

  14. Dynamics of charged current sheets at high-latitude magnetopause

    NASA Astrophysics Data System (ADS)

    Savin, S.; Amata, E.; Zelenyi, L.; Dunlop, M.; Andre, M.; Song, P.; Blecki, J.; Buechner, J.; Rauch, J. L.; Skalsky, A.

    E. Amata (2), L. Zelenyi (1), M. Dunlop (3), M. Andre (4), P. Song (5), J. Blecki (6), J. Buechner (7), J.L Rauch, J.G. Trotignon (8), G. Consolini, F. Marcucci (2), B. Nikutowski (7), A. Skalsky, S. Romanov, E. Panov (1) (2) IFSI, Roma, Italy, (3) RAL, UK, (4) IRFU, Uppsala, Sweden, (5) U. Mass. Lowell, USA, (6) SRC, Warsaw, Poland, (7) MPAe, Germany, (8) LPCE, Orleans, France; We study dynamics of thin current sheets over polar cusps from data of Interball-1 and Cluster. At the high-beta magnetopause current sheet width often reaches ion gyroradius scales, that leads to their Hall dynamics in the presence of local surface charges. Respective perpendicular electric fields provide the means for momentum coupling through the current sheets and are able to accelerate ions with gyroradius of the order or larger than the sheet width. At borders of large diamagnetic cavities this mechanism is able to support mass exchange and accelerate/ heat incoming magnetosheath particles. At larger scales the inhomogeneous electric fields at the current sheet borders can accelerate incident plasma downtail along magnetopause via inertial drift. It serves to move external plasma away for dynamic equilibrium supporting. Farther away from magnetopause similar nonlinear electric field wave trains, selfconsistently produced by interaction of reflected from the obstacle waves with magnetosheath fluctuations, destroy the incident flux into accelerated magnetosonic jets and decelerated Alfvenic flows and generate small-scale current sheets due to different sign of electron and ion inertial drift in the nonlinear electric field bursts. We suggest that this direct kinetic energy transformation creates current sheets with anomalous statistics of field rotation angles in the turbulent boundary layer in front of magnetopause, which have been attributed earlier to an intermittent turbulence. We compare measured spectra with a model of nonlinear system with intermittent chaotic behavior. Work was

  15. Current Sheet Properties and Dynamics During Sympathetic Breakout Eruptions

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Edmondson, J. K.

    2013-12-01

    We present the continued analysis of the high-resolution 2.5D MHD simulations of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the generation of X- and O-type null points during the current sheet tearing and track the magnetic island formation and evolution during periods of reconnection. The magnetic breakout eruption scenario forms an overlying 'breakout' current sheet that evolves slowly and removes restraining flux from above the sheared field core that will eventually become the center of the erupting flux rope-like structure. The runaway expansion from the expansion-breakout reconnection positive feedback enables the formation of the second, vertical/radial current sheet underneath the rising sheared field core as in the standard CHSKP eruptive flare scenario. We will examine the flux transfer rates through the breakout and flare current sheets and compare the properties of the field and plasma inflows into the current sheets and the reconnection jet outflows into the flare loops and flux rope ejecta.

  16. Cell sheet engineering for regenerative medicine: current challenges and strategies.

    PubMed

    Owaki, Toshiyuki; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-07-01

    Substantial progress made in the areas of stem cell research and regenerative medicine has provided a number of innovative methods to repair or regenerate defective tissues and organs. Although previous studies regarding regenerative medicine, especially those involving induced pluripotent stem cells, have been actively promoted in the past decade, there remain some challenges that need to be addressed in order to enable clinical applications. Designed for use in clinical applications, cell sheet engineering has been developed as a unique, scaffold-free method of cell processing utilizing temperature-responsive cell culture vessels. Clinical studies using cell sheets have shown positive outcomes and will be translated into clinical practice in the near future. However, several challenges stand in the way of the industrialization of cell sheet products and the widespread acceptance of regenerative medicine based on cell sheet engineering. This review describes current strategies geared towards the realization of the regenerative medicine approach.

  17. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  18. Dynamic of Current Sheets and Their Associated Particle Energization

    SciTech Connect

    Li, Hui; Guo, Fan; Makwan, Kirit; Li, Xiaocan; Zhandrin, Vladimir; Daughton, William Scott

    2015-08-19

    Magnetic reconnection in current sheets has relevance to Earth's magnetosphere, solar flares, high-energy astrophysics (pulsar wind nebula (e.g. Crab Nebula), gamma-ray bursts, black hole jets), and laboratory plasma/fusion. Data are shown for several cases with varying values of configuration energy Ec and β. Several conclusions were drawn: Depending on the “configuration energy”, the formation, shape, and lifetime of current sheets can vary. Plasma condition (configuration, β, driving, etc.) strongly affect the efficiency of particle acceleration. For low β and general “configuration energy”, particle heating is expected. For low β, large and long-lived current sheets, it is possible to produce highly non-thermal particles via collisionless plasmoid reconnection.

  19. What causes the warp in the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Scherrer, P. H.

    1981-01-01

    A comparative discussion of the warp in the heliospheric current sheet is presented. Pioneer 10 and 11 data of the interplanetary magnetic field compared with earlier data (Helios 1 and 2) show a good agreement on the phenomenon of the warp; however, the interpretations differ. One theory (Thomas and Smith, 1980) proposes that fast solar wind streams associated with interaction regions may move the current sheet higher to heliospheric latitudes, thus causing the warp; while the earlier theory (1976) adequately explained the phenomenon by using the observed photospheric magnetic field and the Zeeman effect but omitted the solar wind dynamical considerations as part of the computations. It is shown that the Helios data of the polarity of the interplanetary magnetic field are in good agreement with the computed location of the current sheet, confirming the earlier theory.

  20. A radiating one-dimensional current sheet configuration

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1993-01-01

    The structure of the x-independent (one-dimensional) forced current sheet including a self consistent By component is investigated for the case of small normal field component, Bz/B0 much less than 1. A hybrid (kinetic ions, massless fluid electrons) simulation model is used to demonstrate that such a current sheet has a time-dependent structure which radiates incompressible Alfven waves with amplitude of the order of the asymptotic (lobe) field strength B0. The central density enhancement acts as the source of a propagating wavetrain in which Bx rotates into By and back again. One of the characteristic signatures of the radiating current sheet is the presence of a reversal in Bx (or By) without a corresponding increase in density.

  1. On current sheet approximations in models of eruptive flares

    NASA Technical Reports Server (NTRS)

    Bungey, T. N.; Forbes, T. G.

    1994-01-01

    We consider an approximation sometimes used for current sheets in flux-rope models of eruptive flares. This approximation is based on a linear expansion of the background field in the vicinity of the current sheet, and it is valid when the length of the current sheet is small compared to the scale length of the coronal magnetic field. However, we find that flux-rope models which use this approximation predict the occurrence of an eruption due to a loss of ideal-MHD equilibrium even when the corresponding exact solution shows that no such eruption occurs. Determination of whether a loss of equilibrium exists can only be obtained by including higher order terms in the expansion of the field or by using the exact solution.

  2. Electron currents supporting the near-Earth magnetotail during current sheet thinning

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Angelopoulos, V.; Liu, J.; Runov, A.

    2017-01-01

    Formation of intense, thin current sheets (i.e., current sheet thinning) is a critical process for magnetospheric substorms, but the kinetic physics of this process remains poorly understood. Using a triangular configuration of the three Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft at the end of 2015 we investigate field-aligned and transverse currents in the magnetotail current sheet around 12 Earth radii downtail. Combining the curlometer technique with direct measurements of ion and electron velocities, we demonstrate that intense, thin current sheets supported by strong electron currents form in this region. Electron field-aligned currents maximize near the neutral plane Bx˜0, attaining magnitudes of ˜20 nA/m2. Carried by hot (>1 keV) electrons, they generate strong magnetic shear, which contributes up to 20% of the vertical (along the normal direction to the equatorial plane) pressure balance. Electron transverse currents, on the other hand, are carried by the curvature drift of anisotropic, colder (<1 keV) electrons and gradually increase during the current sheet thinning. In the events under consideration the thinning process was abruptly terminated by earthward reconnection fronts which have been previously associated with tail reconnection further downtail. It is likely that the thin current sheet properties described herein are similar to conditions further downtail and are linked to the loss of stability and onset of reconnection there. Our findings are likely applicable to thin current sheets in other geophysical and astrophysical settings.

  3. Current disruptions in the near-earth neutral sheet region

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Lopez, R. E.; Anderson, B. J.; Takahashi, K.; Zanetti, L. J.; Mcentire, R. W.; Potemra, T. A.; Klumpar, D. M.; Greene, E. M.; Strangeway, R.

    1992-01-01

    Current disruption events observed by the Charge Composition Explorer during 1985 and 1986 are examined. Occurrence of current disruption was accompanied by large magnetic field turbulence and frequently with reversal in the sign of the field component normal to the neutral sheet. Current disruptions in the near-earth region are found to be typically shortlived (about 1-5 min), and their onsets coincide well with the ground onsets of substorm expansion or intensification in the local time sector of the footpoint of the spacecraft. These events are found almost exclusively close to the field reversal plane of the neutral sheet (within about 0.5 RE). Prior to current disruption the field strength can be reduced to as low as one seventh of the dipole field value and can recover to nearly the dipole value after disruption. The temporal evolution of particle pressure in the near-earth neutral sheet during the onset of current disruption indicates that the current buildup during the substorm growth phase is associated with enhancement in the particle pressure at the neutral sheet.

  4. A case study of magnetotail current sheet disruption and diversion

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.; Mcentire, R. W.; Zanetti, L. J.

    1988-01-01

    On June 1, 1985 the AMPTE/CCE spacecraft (at a geocentric distance of about 8.8 earth radii at the midnight neutral sheet region) observed a dispersionless energetic particle injection and an increase in magnetic field magnitude, which are features commonly attributed to disruption of the near-earth cross-tail current sheet during substorm expansion onsets. An analysis based on high time-resolution measurements from the magnetometer and the energetic particle detector indicates that the current sheet disruption region exhibited localized (less than 1 earth radius) and transient (less than 1 min) particle intensity enhancements, accompanied by complex magnetic field changes with occasional development of a southward magnetic field component. Similar features are seen in other current disruption/diversion events observed by the CCE. The present analysis suggests that the current disruption region is quite turbulent, similar to laboratory experiments on current sheet disruption, with signatures unlike those expected from an X-type neutral line configuration. No clear indication of periodicity in any magnetic field parameter is discernible for this current disruption event.

  5. Magnetic Reconnection Onset and Energy Release at Current Sheets

    NASA Astrophysics Data System (ADS)

    DeVore, C. R.; Antiochos, Spiro K.

    2015-04-01

    Reconnection and energy release at current sheets are important at the Sun (coronal heating, coronal mass ejections, flares, and jets) and at the Earth (magnetopause flux transfer events and magnetotail substorms) and other magnetized planets, and occur also at the interface between the Heliosphere and the interstellar medium, the heliopause. The consequences range from relatively quiescent heating of the ambient plasma to highly explosive releases of energy and accelerated particles. We use the Adaptively Refined Magnetohydrodynamics Solver (ARMS) model to investigate the self-consistent formation and reconnection of current sheets in an initially potential 2D magnetic field containing a magnetic null point. Unequal stresses applied to the four quadrants bounded by the X-line separatrix distort the potential null into a double-Y-type current sheet. We find that this distortion eventually leads to onset of fast magnetic reconnection across the sheet, with copious production, merging, and ejection of magnetic islands due to plasmoid instability. In the absence of a mechanism for ideal instability or loss of equilibrium of the global structure, however, this reconnection leads to minimal energy release. Essentially, the current sheet oscillates about its force-free equilibrium configuration. When the structure is susceptible to a large-scale rearrangement of the magnetic field, on the other hand, the energy release becomes explosive. We identify the conditions required for reconnection to transform rapidly a large fraction of the magnetic free energy into kinetic and other forms of plasma energy, and to restructure the current sheet and its surrounding magnetic field dramatically. We discuss the implications of our results for understanding heliophysical activity, particularly eruptions, flares, and jets in the corona.Our research was supported by NASA’s Heliophysics Supporting Research and Living With a Star Targeted Research and Technology programs.

  6. Coronal Current Sheet Evolution in the Aftermath of a CME

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of coronal restructuring following a Coronal Mass Ejection (CME) on November 26, 2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after the CME, which was directed towards Ulysses, UVCS began taking spectra at 1.7 solar radii, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6x10(6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by SWICS throughout the magnetic cloud associated with the CME, although the rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  7. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2017-02-01

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  8. Plasmoid formation in current sheet with finite normal magnetic component.

    PubMed

    Zhu, P; Raeder, J

    2013-06-07

    Current sheet configurations in natural and laboratory plasmas are often accompanied by a finite normal magnetic component that is known to stabilize the two-dimensional resistive tearing instability in the high Lundquist number regime. Recent magnetohydrodynamic simulations indicate that the nonlinear development of ballooning instability is able to induce the formation of X lines and plasmoids in a generalized Harris sheet with a finite normal magnetic component in the high Lundquist number regime where the linear two-dimensional resistive tearing mode is stable.

  9. Trigger of Fast Reconnection via Collapsing Current Sheets

    NASA Astrophysics Data System (ADS)

    Tenerani, A.; Velli, M.; Rappazzo, A. F.; Pucci, F.

    2015-12-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in astrophysical and laboratory plasmas. However, both the questions of how magnetic reconnection is triggered in high Lundquist (S) and Reynolds (R) number plasmas, and how it can then occur on fast, ideal, time-scales remain open. Indeed, it has been argued that fast reconnection rates could be achieved once kinetic scales are reached, or, alternatively, by the onset of the so-called plasmoid instability within Sweet-Parker current sheets. However, it has been shown recently that a tearing mode instability (the "ideal tearing") can grow on an ideal, i.e., S-independent, timescale once the width a of a current sheet becomes thin enough with respect to its macroscopic length L, a/L ~ S-1/3. This suggests that current sheet thinning down to such a threshold aspect ratio —much larger, for S>>1, than the Sweet-Parker one that scales as a/L ~ S-1/2— might provide the trigger for fast reconnection even within the fluid plasma framework. Here we discuss the transition to fast reconnection by studying with visco-resistive MHD simulations the onset and evolution of the tearing instability within a single collapsing current sheet. We indeed show that the transition to a fast tearing mode instability takes place when an inverse aspect ratio of the order of the threshold a/L ~ S-1/3 is reached, and that the secondary current sheets forming nonlinearly become the source of a succession of recursive tearing instabilities. The latter is reminiscent of the fractal reconnection model of flares, which we modify in the light of the "ideal tearing" scenario.

  10. Current Sheet Evolution In The Aftermath Of A CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Seuss, S. T.; Schwardron, N. A.; Elliott, H. A.; Raymond, J. C.

    2006-01-01

    We report on SOHO UVCS observations of the coronal restructuring following a coronal mass ejection (CME) on 2002 November 26, at the time of a SOHO-Ulysses quadrature campaign. Starting about 1.5 hr after a CME in the northwest quadrant, UVCS began taking spectra at 1.7 R, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 A line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature versus time in the current sheet and estimate its density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by the Ulysses SWICS throughout the magnetic cloud associated with the CME, although its rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. The SOHO-Ulysses data set provided us with the unique opportunity of analyzing a current sheet structure from its lowest coronal levels out to its in situ properties. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  11. Energization of Ions in near-Earth current sheet disruptions

    NASA Technical Reports Server (NTRS)

    Taktakishvili, A.; Lopez, R. E.; Goodrich, C. C.

    1995-01-01

    In this study we examine observations made by AMPTE/CCE of energetic ion bursts during seven substorm periods when the satellite was located near the neutral sheet, and CCE observed the disruption cross-tail current in situ. We compare ion observations to analytic calculations of particle acceleration. We find that the acceleration region size, which we assume to be essentially the current disruption region, to be on the order of 1 R(sub E). Events exhibiting weak acceleration had either relatively small acceleration regions (apparently associated with pseudobreakup activity on the ground) or relatively small changes in the local magnetic field (suggesting that the magnitude of the local current disruption region was limited). These results add additional support for the view that the particle bursts observed during turbulent current sheet disruptions are due to inductive acceleration of ions.

  12. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  13. Observational support for the current sheet catastrophe model of substorm current disruption

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Lopez, R. E.; Dusenbery, P. B.; Speiser, T. W.

    1992-01-01

    The principles of the current sheet catastrophe models are briefly reviewed, and observations of some of the signatures predicted by the theory are presented. The data considered here include AMPTE/CCE observations of fifteen current sheet disruption events. According to the model proposed here, the root cause of the current disruption is some process, as yet unknown, that leads to an increase in the k sub A parameter. Possible causes for the increase in k sub A are discussed.

  14. A Catapult (Slingshot) Current Sheet Relaxation Model for Substorm Triggering

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.

    2010-12-01

    Based on the results of our superposed epoch analysis of Geotail data, we have proposed a catapult (slingshot) current sheet relaxation model in which earthward flows are produced in the central plasma sheet (CPS) due to the catapult (slingshot) current sheet relaxation, together with the rapid enhancement of Poynting flux toward the CPS in the lobe around X ~ -15 Re about 4 min before the substrom onset. These earthward flows are characterized by plasma pressure decrease and large amplitude magnetic field fluctuations. When these flows reach X ~ 12Re in the magnetotail, they give significant disturbances to the inner magnetosphere to initiate some instability such as a ballooning instability or other instabilities, and the substorm starts in the inner magnetosphere. The occurrence of the magnetic reconnection is a natural consequence of the initial convective earthward flows, because the relaxation of a highly stretched catapult current sheet produces a very thin current at its tailward edge being surrounded by intense magnetic fields which were formerly the off-equatorial lobe magnetic fields. Recently, Nishimura et al. [2010] reported that the substorm onset begins when faint poleward discrete arcs collide with equatorward quiet arcs. The region of earthward convective flows correlatively moves earthward prior to the onset. Thus, this region of the earthward convective flows seems to correspond to the faint poleward discrete arcs. Interestingly, our statistical analysis shows that the earthward convective flows are not produced by the magnetic reconnection, but they are attributed to the dominance of the earthward JxB force over the tailward pressure associated with the progress of the plasma sheet thinning.

  15. Interaction of reflected ions with the firehose marginally stable current sheet - Implications for plasma sheet convection

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1992-01-01

    The firehose marginally stable current sheet, which may model the flow away from the distant reconnection neutral line, assumes that the accelerated particles escape and never return to re-encounter the current region. This assumption fails on the earthward side where the accelerated ions mirror in the geomagnetic dipole field and return to the current sheet at distances up to about 30 R(E) down the tail. Two-dimensional particle simulations are used to demonstrate that the reflected ions drive a 'shock-like' structure in which the incoming flow is decelerated and the Bz field is highly compressed. These effects are similar to those produced by adiabatic choking of steady convection. Possible implications of this interaction for the dynamics of the tail are considered.

  16. Quasilinear saturation of forced current sheet tearing modes

    NASA Astrophysics Data System (ADS)

    Liewer, Paulett C.; Payne, David G.

    1990-10-01

    Numerical studies of tearing modes in a nearly singular forced current sheet equilibrium (Liewer and Payne, 1990) show that the modes saturate quasilinearly when the width of the magnetic island formed by the reconnection is on the order of several times the linear mode width which scales as approximately (kS) exp -2/5, where S is the Lundquist number and k is the wavenumber. The modes saturate quasilinearly by flattening the current profile, converting magnetic energy into plasma energy. The longer wavelength modes, which saturate at higher levels, release the most energy. These modes may, nonlinearly, play a role in coronal heating when sharp current sheets form as a result of global magnetic stresses.

  17. Quasilinear saturation of forced current sheet tearing modes

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Payne, David G.

    1990-01-01

    Numerical studies of tearing modes in a nearly singular forced current sheet equilibrium (Liewer and Payne, 1990) show that the modes saturate quasilinearly when the width of the magnetic island formed by the reconnection is on the order of several times the linear mode width which scales as approximately (kS) exp -2/5, where S is the Lundquist number and k is the wavenumber. The modes saturate quasilinearly by flattening the current profile, converting magnetic energy into plasma energy. The longer wavelength modes, which saturate at higher levels, release the most energy. These modes may, nonlinearly, play a role in coronal heating when sharp current sheets form as a result of global magnetic stresses.

  18. Dynamic Harris current sheet thickness from Cluster current density and plasma measurements

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.

    2005-01-01

    We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.

  19. Test Report - Fault Current Through Graphite Filament Reinforced Plastic

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Tests were performed to determine the damage to samples of composite material when a current carrying wire is shorted to the surface of the composite material, and to determine whether enough current can flow through the material to blow a fuse before damage can occur. Fault current tests were performed on samples of graphite epoxy materials. Samples consisted of six layers of IM7 graphite fiber mat in Hercules 8552 epoxy resin. A variable power supply provided up to 35 amps of current. The high voltage side of the power supply was attached to a wire at the end of a hinged arm, and the low side was attached to the edge of the sample. To test joints, the return was connected to the edge of one sample, and the high side was shorted to the top of the other sample. Tests show that when current exceeds approximately 5 amps, the graphite glows, and the epoxy melts out at the shorted contact. At higher current levels the epoxy burns. At voltages above 15 volts the epoxy outer coat is easily broken, and fire, flame, and a rise in current occur suddenly. When joints are introduced, resistance is increased, and the maximum current resulting from a short circuit to the graphite epoxy is reduced. This condition can easily result in fault current lower than the circuit breaker limit and higher than the 5 amp ignition level. The shorting contact and the joint become hot spots with melting epoxy, smoke, and fire.

  20. CURRENT SHEETS FORMATION IN TANGLED CORONAL MAGNETIC FIELDS

    SciTech Connect

    Rappazzo, A. F.; Parker, E. N. E-mail: parker@oddjob.uchicago.edu

    2013-08-10

    We investigate the dynamical evolution of magnetic fields in closed regions of solar and stellar coronae. To understand under which conditions current sheets form, we examine dissipative and ideal reduced magnetohydrodynamic models in Cartesian geometry, where two magnetic field components are present: the strong guide field B{sub 0}, extended along the axial direction, and the dynamical orthogonal field b. Magnetic field lines thread the system along the axial direction that spans the length L and are line-tied at the top and bottom plates. The magnetic field b initially has only large scales, with its gradient (current) length scale of the order of l{sub b}. We identify the magnetic intensity threshold b/B{sub 0} {approx} l{sub b}/L. For values of b below this threshold, field-line tension inhibits the formation of current sheets, while above the threshold they form quickly on fast ideal timescales. In the ideal case, above the magnetic threshold, we show that current sheets thickness decreases in time until it becomes smaller than the grid resolution, with the analyticity strip width {delta} decreasing at least exponentially, after which the simulations become underresolved.

  1. Neutron spin evolution through broadband current sheet spin flippers

    NASA Astrophysics Data System (ADS)

    Stonaha, P.; Hendrie, J.; Lee, W. T.; Pynn, Roger

    2013-10-01

    Controlled manipulation of neutron spin is a critical tool for many neutron scattering techniques. We have constructed current-sheet, neutron spin flippers for use in Spin Echo Scattering Angle Measurement (SESAME) that comprise pairs of open-faced solenoids which introduce an abrupt field reversal at a shared boundary. The magnetic fields generated by the coils have been mapped and compared with both an analytical approximation and a numerical boundary integral calculation. The agreement is generally good, allowing the former method to be used for rapid calculations of the Larmor phase acquired by a neutron passing through the flipper. The evolution of the neutron spin through the current sheets inside the flipper is calculated for various geometries of the current-carrying conductors, including different wire shapes, arrangements, and common imperfections. The flipping efficiency is found to be sensitive to gaps between wires and between current sheets. SESAME requires flippers with high fields and flipping planes inclined to the neutron beam. To avoid substantial neutron depolarization, such flippers require an interdigitated arrangement of wires.

  2. Neutron spin evolution through broadband current sheet spin flippers.

    PubMed

    Stonaha, P; Hendrie, J; Lee, W T; Pynn, Roger

    2013-10-01

    Controlled manipulation of neutron spin is a critical tool for many neutron scattering techniques. We have constructed current-sheet, neutron spin flippers for use in Spin Echo Scattering Angle Measurement (SESAME) that comprise pairs of open-faced solenoids which introduce an abrupt field reversal at a shared boundary. The magnetic fields generated by the coils have been mapped and compared with both an analytical approximation and a numerical boundary integral calculation. The agreement is generally good, allowing the former method to be used for rapid calculations of the Larmor phase acquired by a neutron passing through the flipper. The evolution of the neutron spin through the current sheets inside the flipper is calculated for various geometries of the current-carrying conductors, including different wire shapes, arrangements, and common imperfections. The flipping efficiency is found to be sensitive to gaps between wires and between current sheets. SESAME requires flippers with high fields and flipping planes inclined to the neutron beam. To avoid substantial neutron depolarization, such flippers require an interdigitated arrangement of wires.

  3. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    SciTech Connect

    Ren, Chuang

    2013-02-13

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

  4. Kink deformation of Weibel-mediated current filaments and onset of shock formation

    NASA Astrophysics Data System (ADS)

    Ruyer, Charles; Alves, E. Paulo; Fiuza, Frederico

    2016-10-01

    The Weibel instability is believed to mediate the interaction of high Mach number collisionless shocks in weakly magnetized astrophysical environments. Although the generation of current filaments and strong magnetic fields by this instability has now been demonstrated experimentally, it is still not clear what is the long-term evolution of these filaments and how they lead to shock formation. We have studied the stability of Weibel-mediated current filaments using 2D/3D Particle-In-Cell simulations and analytical theory. We show that these are prone to kink-like instabilities that we characterize in both the linear and non-linear stage for a single filament, leading to an efficient ion slowing down and isotropization. We then demonstrate that our results are relevant to the self-consistent counter-streaming plasma interaction. Our 3D simulations show that the kink deformation dominates the late-stage of the interaction, when the current filaments break and most of the flow dissipation occurs, leading to the onset of magnetic turbulence and shock formation. We will discuss the important implications of these results for the shock structure and its ability to accelerate particles. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  5. Drift instabilities in current sheets with guide field

    SciTech Connect

    Yoon, P. H.; Lui, A. T. Y.

    2008-07-15

    Drift instabilities in current sheets with or without the guide field are investigated with a newly developed improved electrostatic dispersion relation. Traditional (local) theories of lower-hybrid drift instability typically assumes small electron drift speed, and expand the electron distribution function in Taylor series. This approximate treatment is removed in this paper. The resulting formalism is uniformly valid for an arbitrary magnitude of relative ion and electron drift speeds, and is valid for an arbitrary strength of the guide field.

  6. Thermal-resistive current filamentation in the cathode plasma of a pinch-reflex diode

    SciTech Connect

    Tripathi, V.K.; Ottinger, P.F.; Guillory, J.

    1983-06-01

    Electron current flow drawn off a hollow cylindrical cathode in a pinch-reflex ion diode is observed to have a filamentary structure. Such filamentation can lead to nonuniform anode turn on and ion emission. Consequently, ion beam brightness is degraded. In this context a purely growing thermal-resistive instability in the cathode plasma is examined. The instability causes current filamentation and grows on a time scale comparable to the electron--ion energy equilibration time. Electron inelastic collisions have a stabilizing influence on the instability.

  7. Current carriers in the near-earth cross-tail current sheet during substorm growth phase

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Williams, D. J.; Huang, C. Y.; Frank, L. A.; Russell, C. T.

    1990-01-01

    Throughout most of the growth phase of a substorm, the cross-tail current at x about -10 Re can be supplied by the curvature drift of a bi-directional field aligned distribution of 1 keV electrons. Just prior to its local disruption after substorm onset, the cross-tail current in the now thin (about 400 km) current sheet is carried by the cross-tail serpentine motion of non-adiabatic ions (Speiser, 1965). The instability of this latter current leads to the local disruption of the near-earth current sheet.

  8. Morphology and Density Structure of Post-CME Current Sheets

    NASA Technical Reports Server (NTRS)

    Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.

    2009-01-01

    Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.

  9. Current Sheets Formation and Relaxation of Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.

    2013-12-01

    We investigate the relaxation of magnetic fields in closed regions of solar and stellar coronae, extending to further topologies our previous work (Rappazzo, A.F. & Parker, E.N., ApJL, 773, L2 (2013)). The dynamical evolution is integrated with the equations of reduced magnetohydrodynamics (RMHD) apt to model a plasma embedded in a strong guide field B0 extended along the axial direction, where the dynamical field is the orthogonal component b. Dissipative and ideal simulations are carried out in Cartesian geometry: magnetic field lines thread the system along the axial direction that spans the length L and are line-tied at the top and bottom plates in a motionless photosphere. The magnetic field b initially has only large scales, and is not in equilibrium. We show that the magnetic relaxation leads to the formation of current sheets when the intensity of the magnetic field b is beyond a critical value b_c. For values of b below this threshold (b < b_c), line-tying and field-line tension inhibit the formation of current sheets, while above the threshold (b > b_c) they form quickly on fast ideal timescales. In the ideal case, above the magnetic threshold, we show that current sheets thickness decreases in time until it becomes smaller than the grid resolution, with the analyticity strip width δ decreasing at least exponentially, after which the simulations become under-resolved.

  10. Current Sheet Evolution in the Aftermath of a CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of the coronal restructuring following a Coronal Mass Ejection (CME) on November 26,2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after a CME in the NW quadrant, UVCS began taking spectra at 1.7 solar radius, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the Fe XVIII emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by Ulysses-SWICS throughout the magnetic cloud associated with the CME. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  11. Heliospheric current sheet inclinations predicted from source surface maps

    NASA Technical Reports Server (NTRS)

    Shodhan, S.; Crooker, N. U.; Hughes, W. J.; Siscoe, G. L.

    1994-01-01

    The inclinations of the neutral line at the ecliptic plane derived from source surface model maps of coronal fields are measured for the interval from June 1976 to March 1992. The mean and median values of 53 deg and 57 deg are close to the average inclinations determined earlier from minimum variance analyses of solar wind measurements at sector boundaries, but the mode falls in the 80 deg - 90 deg bin. This result, which is based on the model assumptions implicit in deriving the source surface maps, predicts that the heliospheric current sheet typically intersects the ecliptic plane nearly at right angles, even without steepening by stream interaction regions. High inclinations dominate the solar cycle for about 7 years around solar maximum. Dips to lower inclination occur near solar minimum, but high variance admits a wide range of inclinations throughout the cycle. Compared to the smooth solar cycle variation of the maximum latitudinal excursion of the neutral line, often treated as the tilt angle of a flat heliospheric current sheet, the noisy variation of the inclinations reflects the degree to which the neutral line deviates from a sine wave, implying warps and corrugations in the current sheet. About a third of the time the neutral line so deviates that it doubles back in longitude.

  12. Filamental quenching of the current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.; Krumm, P. H.

    1985-01-01

    Since their discovery by D'Angelo and Motley (1962), ion-cyclotron waves have been an area of active research. Drummond and Rosenbluth (1962) have first conducted a theoretical analysis of the current-driven ion-cyclotron wave instability, taking into account a uniform, magnetized plasma, without magnetic shear, in which electrons drift along B field lines with the same drift velocity at all points in the plasma. Bakshi et al. (1983) have found conditions for which the instability is completely quenched. This phenomenon has been referred to as filamental quenching. The present investigation is concerned with a systematic test of the filamental quenching effect. It is found that filamental quenching operates at widths of the current channel comparable to the local Larmor radius, in agreement with the conclusions of Bakshi et al.

  13. Current sheet disruptions caused by explosive diamagnetic cavities

    NASA Astrophysics Data System (ADS)

    Vincena, S. T.; Gekelman, W. N.; Pribyl, P.

    2012-12-01

    Rapid temporal changes in the magnetic field topology of current-carrying plasmas can enhance or disrupt these currents and trigger magnetic reconnection. A clear natural example of this can be found in the earth's magnetotail during magnetic substorms. In this laboratory study, preliminary results are presented of an effectively steady-state current sheet which is disrupted by the production of an impulsive diamagnetic cavity. The process is impulsive in that it occurs on a timescale less than the ion cyclotron period. The experiments are performed on UCLA's Large Plasma Device (LAPD). This is a linear device with L=17m, d=60cm, 300G< B0<2kG, ne=2×1012cm-3, Te=6eV,Ti≈1eV, and He, H, or Ar). The diamagnetic cavity is produced by a pulsed (8ns, 1J) Nd:YAG laser-solid target ablation. The current sheet is produced using a CeB6 cathode, embedded within the main plasma column,(h=10cm, w=1cm). In the current sheet, the plasma has higher density, n≈ 4× 1012cm-3, yielding scaled cross-field dimensions of h=0.9c/ω pi and w=3.8c/ω pe for a H plasma. The radius of the diamagnetic cavity r can be varied, but is here chosen to be w < r < h. Results will be presented which include fast camera imaging, magnetic field probe data, and the resulting time varying currents during the disruption. These experiments were conducted at UCLA's Basic Plasma Science Facility, which is jointly funded by the US DoE and the NSF.

  14. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  15. Heliospheric current sheet and its interaction with solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Malova, Helmi; Popov, Victor; Grigorenko, Elena; Dunko, Andrey; Petrukovich, Anatoly

    2016-04-01

    We investigated effects resulting from the interaction of solar cosmic rays (SCR) with the heliospheric current sheet (HCS) in the solar wind. Self-consistent kinetic model of the HCS is developed, where ions demonstrate quasi-adiabatic dynamics. HCS is considered as the equilibrium embedded current structure, where the two main kinds of plasma with different temperatures give the main contribution to the current (low-energy background plasma and SCR). It is shown that HCS is a relatively thin multiscale configuration of the current sheet, embedded in a thicker plasma layer. The taking into account of SCR particles in HCS could lead to a change of its structure and to enhancement of its properties such as the embedding and multi-scaling. Parametric family of solutions is considered where the current balance in HCS is provided at different temperatures of SCR and different concentrations of high-energy plasma. Concentrations of SCR are determined which may contribute to the thickening of the HCS that can be observed in satellite studies. The possibility to apply this modeling for the explanation of experimental observations is considered.

  16. Firing wave instability of the current filaments in a semiconductor. An analogy with neurodynamics

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Yamamoto, K.

    1983-10-01

    Periodic oscillations and chaos have been observed in the firing density wave of the current filaments in n-GaAs at 4.2 K. The mechanism of the firing-wave instability has been discussed by an analogy with neurodynamics.

  17. Schlieren photography of current filaments in surface-related breakdown of silicon

    SciTech Connect

    Hankla, B.J.; Williams, P.F.

    1996-02-01

    The authors have used a modified Schlieren technique to photograph current filaments formed inside silicon during the very early stages of surface-related breakdown. They believe that the features they see are due to heating in the filamentary channel. The very rapid formation of these channels suggests that they result from streamer-like phenomena in the bulk silicon.

  18. AC transport current losses of multifilamentary Bi(2223) tapes with varying filament geometries

    NASA Astrophysics Data System (ADS)

    Eckelmann, H.; Däumling, M.; Quilitz, M.; Goldacker, W.

    1998-02-01

    We have measured the ac transport current loss of eight different Bi(2223) tapes with varying filament geometries in the frequency range from 13 to 500 Hz at 77 K. The investigated tapes have an Ag sheath (i.e. 37 or 703 filaments) or a modified sheath using AgMg. Furthermore tapes with novel geometries such as multifilamentary wire-in-tube (WIT) tapes and jelly-roll tapes have been studied. In addition we have investigated twisted tapes with a twist-pitch of 1.4 cm in the 37 filamentary Ag and the 85 filamentary AgMg tapes. To compare these tapes with different Ic values we calculated the loss factors of the tapes. We find that all the loss factors lay within the limits given for an elliptical or a strip like conductor. Furthermore we find differences in the loss factors due to the filament geometries.

  19. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  20. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    DTIC Science & Technology

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  1. Kinetic scale current sheet observed at the magnetopause

    NASA Astrophysics Data System (ADS)

    Norgren, Cecilia; Graham, Daniel; Khotyaintsev, Yuri; André, Mats; Vaivads, Andris

    2016-04-01

    Kinetic scale current sheets associated with sharp plasma boundaries are often formed in plasmas. Studying the processes responsible for plasma transport and acceleration operating within these thin boundaries require high-resolution data. We present an event observed by the Magnetospheric Multiscale (MMS) mission as the spacecraft cross a reconnection diffusion region at the magnetopause. We investigate the kinetic structure of the reconnection layer including particle distribution functions and waves and find what terms in the generalized Ohm's law balances the observed electric field.

  2. THREE-DIMENSIONAL WAVY HELIOSPHERIC CURRENT SHEET DRIFTS

    SciTech Connect

    Pei, C.; Bieber, J. W.; Clem, J.; Burger, R. A.

    2012-01-10

    We present an analytic method to determine the directions of the three-dimensional (3D) heliospheric current sheet (HCS) drift for any tilt angle based on Parker's heliospheric magnetic field and compare it with published two-dimensional and quasi-3D methods. We also present a new approach to determine the magnitude of the 3D HCS drift numerically. Implications of these new methods for the solar modulation of Galactic cosmic rays are considered and compared with results from prior methods reported in the literature. Our results support the concept that HCS drift plays an important role in the solar modulation of cosmic rays.

  3. Unsteady magnetic reconnection in laboratory experiments with current sheets

    NASA Astrophysics Data System (ADS)

    Frank, Anna

    2009-11-01

    According to present notion, unsteady magnetic reconnection in current sheets (CS) is basic to dramatic natural phenomena: solar and stellar flares, substorms in the Earth and other planetary magnetospheres, as well as to disruptive instabilities in tokamak plasmas. We present a review of laboratory experiments studying evolution of CS formed in 3D and 2D magnetic configurations with an X line, in the CS-3D device. Usually CS exists during an extended period in a metastable stage, without essential changes of its structure and parameters. Under certain conditions this stage may be suddenly interrupted by unsteady phase of magnetic reconnection, which manifests itself in a rapid change of the magnetic field topology, current redistribution, excitation of pulsed electric fields, and other dynamic effects. The unsteady phase results in effective conversion of magnetic energy into the energy of plasma and accelerated particles, and may finally bring about the CS disruption. In the context of the solar flares, a metastable CS is associated with a pre-flare situation, while CS disruption -- with the flare itself. The physical mechanisms triggering the unsteady magnetic reconnection in the laboratory produced current sheets are discussed. Supported by the Russian Foundation for Basic Research (project # 09-02-00971).

  4. Reconnection in photospheric-chromospheric current sheet and coronal heating

    SciTech Connect

    Kumar, P.; Kumar, N.; Uddin, W.

    2011-02-15

    It has been observed by various ground and space based solar missions that magnetic reconnection occurs frequently in the photosphere-chromosphere region as well as in the solar corona. The purpose of this article is to examine the process of reconnection in thin current sheet formed between two oppositely directed magnetic flux tubes in photospheric-chromospheric region. Using the data of different atmospheric models for the solar photosphere and chromosphere, we have estimated the rate of magnetic reconnection in terms of Alfvenic Mach number, growth rate of tearing mode, island length scales, and energy dissipation rate necessary to heat the chromospheric plasma. It is found that magnetic Reynolds number for the current sheet in the chromosphere varies from 1.14 Multiplication-Sign 10{sup 3} to 7.14 Multiplication-Sign 10{sup 6} which indicates that the field lines in the photosphere and chromosphere reconnect with speed, that is, 0.00034 to 0.0297 times the Alfven speed. Frequency of the MHD waves generated in the chromosphere reconnection region is of the order of 100 Hz, so these high-frequency waves may be the sources of coronal heating and solar wind acceleration.

  5. THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA

    SciTech Connect

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Canu, P.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  6. ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION

    SciTech Connect

    Jelínek, P.; Karlický, M.; Murawski, K.

    2015-10-20

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  7. Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma.

    PubMed

    Honda, M

    2004-01-01

    I theoretically found eigenmodes and growth rates of relativistic current filamentation instability in collisional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by the interaction of high power laser pulses with plasma.

  8. Catapult current sheet relaxation model confirmed by THEMIS observations

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.

    2014-12-01

    In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.

  9. Magnetic double-gradient instability and flapping waves in a current sheet.

    PubMed

    Erkaev, N V; Semenov, V S; Biernat, H K

    2007-12-07

    A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B_{tau}) and normal (B_{n}) magnetic field components along the normal (nabla_{n}B_{tau}) and tangential (nabla_{tau}B_{n}) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted as so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.

  10. L-mode filament characteristics on MAST as a function of plasma current measured using visible imaging

    NASA Astrophysics Data System (ADS)

    Kirk, A.; Thornton, A. J.; Harrison, J. R.; Militello, F.; Walkden, N. R.; the MAST Team; the EUROfusion MST1 Team

    2016-08-01

    Clear filamentary structures are observed at the edge of tokamak plasmas. These filaments are ejected out radially and carry plasma in the far scrape off layer (SOL) region, where they are responsible for producing most of the transport. A study has been performed of the characteristics of the filaments observed in L-mode plasma on MAST, using visible imaging. A comparison has then been made with the observed particle and power profiles obtained at the divertor as a function of the plasma current. The radial velocity and to a lesser extent the radial size of the filaments are found to decrease as the plasma current is increased at constant density and input power. The results obtained in this paper on the dependence of the average filament dynamics on plasma current are consistent with the idea that the filaments are responsible for determining the particle profiles at the divertor.

  11. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    SciTech Connect

    Sorin Zaharia; C.Z. Cheng

    2003-04-30

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| {approx} 9 R{sub E}) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J{sub {phi}} {approx} 10 nA/m{sup 2}) and very high plasma {beta} ({beta} {approx} 40) between 7 and 10 R{sub E}. The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J{sub {parallel}max} {approx} 3 {micro}A/m{sup 2}) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents.

  12. Substorm onset: Current sheet avalanche and stop layer

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-03-01

    A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be

  13. The peculiarities of formation of thin current sheet in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Kropotkin, Alexey; Artemyev, Anton; Malova, Helmi; Domrin, Vladimir

    We investigate the process of self-consistent thinning of magnetotail current sheet in the presence of the evolving magnetic field normal component Bz, which usually decreases during the substorm growth phase. Using PIC codes to describe plasma processes with ions becoming demagnetized and electrons being considered as the cold neutralizing background, we show that the appearance of the self-consistent electric field component inside CS can lead to the current sheet thinning and to the appearance of an extremely thin current sheet with thickness close to the ion gyroradius. Due to particle [ExB] drift during the current sheet evolution, the enhanced trapping of ions near the current sheet central plane takes place. It is shown that the density of quasi-trapped particles around current sheet at the final stage depends on both the value of the initial magnetic field normal component Bz, and the speed of the Bz decrease. If the initial magnetic field normal component is less than about 0.14 of the tangential field at the edges, the trapped plasma density near the current sheet is small. As a result, the above mentioned extremely thin current sheet is formed. In the opposite case, when the initial normal component related to the tangential field is larger than 0.14, the density of trapped particles is much higher, which produces effective thickening of the current sheet. In both cases transient (Speiser) ions are the main current carriers, but in the second case local diamagnetic currents of the trapped plasma perturb the сurrent sheet profile making it thicker. Also trapped particles can be responsible for intense negative currents at the current sheet edges. During the Bz decrease, an additional effect of ion polarization drifts in the Y direction can compete with these negative diamagnetic fields of quasi-trapped ions. Therefore the ion dynamics is probably the general mechanism which contributes to the formation of thin current sheet and its fine structure.

  14. Analogies between Jovian magnetodisk and heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Kislov, Roman; Khabarova, Olga; Malova, Helmi

    Recently due to the development of spatial missions the famous model by E. Parker [1] faced with some problems, such as the effect of magnetic flux excess and the existence of latitude component of magnetic field [2]. Thus the incomplete knowledge about large scale current system of heliospheric current sheet (HCS) motivated us to construct and investigate the self-consistent axisymmetric stationary MHD model of HCS and to compare it with earlier presented model of Jupiterian magnetodisk [3]. Both HCS and magnetodisk have inner plasma sources (i.e. the Sun in case of HCS and satellite Io in case of Jupiter); also they depend on the centrifugal force at small distances and on corotation processes. They both have strong radial component of current density, thin elongated structure etc. Thus in the frame of the MHD model we have calculated for HCS the parallel currents (analogous to Jovian Birkeland currents) and we obtained the latitude component of the magnetic field. The results of the model allowed us to explain the magnetic flux excess by the existence of the self-consistent HCS magnetic field. The decrease of radial magnetic field from the distance from the Sun as the power -5/3 obtained by numerical calculations is in good agreement with experimental data. Generally this model can be applied for the quiet period of the low solar activity when the perturbation of HCS structure named “ballerina skirt” does not play any role. References: 1. Parker E. N., Astrophys. J., V. 128, 664, pp. 664-676, 1958. 2. Khabarova O. V., Астрономический журнал, V. 90, №11, pp. 919-935, 2013. 3. Kislov R.A. et al., Bull. MSU, Physics and Astron., 2013

  15. THEMIS two-point measurements of the cross-tail current density: A thick bifurcated current sheet in the near-Earth plasma sheet.

    PubMed

    Saito, Miho

    2015-08-01

    The basic properties of the near-Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m(2) (1 to 8 nA/m(2)). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m(2). The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE . The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE . High current densities above 4 nA/m(2) were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail-like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets.

  16. THEMIS two‐point measurements of the cross‐tail current density: A thick bifurcated current sheet in the near‐Earth plasma sheet

    PubMed Central

    2015-01-01

    Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039

  17. Current sheet thinning, reconnection onset, and auroral morphology during geomagnetic substorms

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M. S.

    2015-12-01

    Geomagnetic substorms represent a fundamental energy release mechanism for the terrestrial magnetosphere. Specifically, the evolution of thin currents sheets during the substorm growth phase plays a key role for substorms because such current sheets present a much lower threshold for the onset of tearing modes and magnetic reconnection than the usually thick magnetotail current sheet. Here we examine and compare two basic processes for current sheet thinning in the Earth's magnetotail: Current sheet thinning (1) through closed magnetic flux depletion (MFD) in the near Earth magnetotail caused by divergent flux transport to replace closed flux on the dayside and (2) through accumulation of open flux magnetic flux in the tail lobes also caused by dayside reconnection. Both processes are expected to operate during any period of enhanced dayside reconnection. It is demonstrated that closed magnetic flux depletion (MFD) in the near Earth magnetotail and the increase of open lobe magnetic flux can lead to the evolution of two separate thin current sheets in the near Earth and the mid tail regions of the magnetosphere. While the auroral morphology associated with MFD and near Earth current sheet formation is well consistent with typical substorm growth observation, midtail current sheet formation through lobe flux increase shows only a minor influence on the auroral ionosphere. We discuss the physics of the dual current sheet formation and local and auroral properties of magnetic reconnection in either current sheet. It is suggested that only reconnection onset in the near Earth current sheet may be consistent with substorm expansion because the flux tube entropy depletion of mid tail reconnection appears insufficient to cause geosynchronous particle injection and dipolarization. Therefore reconnection in the mid tail current sheet is more likely associated with bursty bulk flows or dipolarization fronts which stop short of geosynchronous distances.

  18. A generalized hinged-magnetodisc model of Jupiter's nightside current sheet

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.

    1992-01-01

    A nonaxial hinged magnetodisk model of Jupiter's nightside current sheet is presented. The model organizes the current sheet crossings equally successfully for all three of the spacecraft that have visited the nightside of Jupiter. The model assumes that the hinging is caused by the action of the solar wind forcing on the magnetotail of Jupiter. It is found necessary to include both the hinging of the current sheet and the propagation delay to obtain good fits to the observations.

  19. Direct Observation of Current in Type-I Edge-Localized-Mode Filaments on the ASDEX Upgrade Tokamak

    SciTech Connect

    Vianello, N.; Zuin, M.; Cavazzana, R.; Naulin, V.; Rasmussen, J. J.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.

    2011-03-25

    Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result in intermediate mode number (n congruent with 10-15) structures (filaments) localized in the perpendicular plane and extended along the field lines. By detailed localized measurements of the magnetic field perturbation associated to type-I ELM filaments, it is shown that these filaments carry a substantial current.

  20. Hybrid modeling of the formation and structure of thin current sheets in the magnetotail

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Winske, Dan; Birn, Joachim

    1996-01-01

    Hybrid simulations are used to investigate the formation of a thin current sheet inside the plasma sheet of a magnetotail-like configuration. The initial equilibrium is subjected to a driving electric field which is qualitatively similar to what would be expected from solar wind driving. As a result, a new current sheet with the thickness of approximately the ion inertial length is formed. The current density inside the current sheet region is supplied largely by the electrons. Ion acceleration in the cross-tail direction is absent as the driving electric field fails to penetrate into the equatorial region.

  1. Current density filaments measured by electrostatic, magnetic and optical diagnostics in RFX-mod

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Spolaore, M.; Agostini, M.; Antoni, V.; Cavazzana, R.; Martines, E.; Serianni, G.; Scarin, P.; Spada, E.; Zuin, M.

    2008-11-01

    Edge turbulence is ubiquitous in fusion devices and characterized by the formation of coherent structures which are believed to play a relevant role in driving particle losses. These structures have been observed also in the edge region of the RFX-mod Reversed Field Pinch device. In order to gain insight into their origin and features an original probe system has been used measuring both magnetic and electrostatic fluctuations simultaneously and on the same location with a high time resolution. This insertable probe head allows the direct measurements of several plasma parameters including local vorticity patterns and current density fluctuations. An array of toroidally distributed sensors allows following the structures along the main flow direction. It is found that in the cross-field plane bursts correspond to pressure structures and are related to current density filaments mainly oriented along the magnetic field. These results are compared with those provided by the measured relationship between structures on HeI emitted radiation observed by the Gas Puffing Imaging system and magnetic fluctuations. The presence and features of the current density filaments are assessed at different plasma current regimes.

  2. The Thermodynamic Stability of Current Sheets Formed in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Larosa, T. N.

    1990-03-01

    Current sheets can be formed when two independent magnetic flux systems are mechanically driven together. The thermodynamic structures of current sheets formed by (i) a new magnetic flux system emerging from the photosphere and encountering a pre-existing overlying coronal flux system and (ii) when neighboring coronal magnetic flux systems are pressed together, are examined. In the case of emerging flux, the current sheet forms in a low temperature (T=104)region. Thus to maintain pressure balance across the sheet, the particle density in the sheet must be extremely large (ne = 1014-1016 cm-3). It can be demonstrated the with such a large density the radiative energy loss exceeds both the internal Joule heating and energy input from the surrounding medium in the form of convection and thermal conduction. Therefore as the current sheet rises from the photosphere into the corona the sheet temperature, in contradistinction to previous analyses, remains constant. Alternatively, current sheets generated by coronal flux systems driven together are formed in a high temperature (T=106) region. At such a temperature the internal Joule heating can be easily balanced by parallel thermal conduction. Thus the sheet temperature will merely adjust to the temperature of the surrounding corona. These results indicate that current sheets formed in the solar atmosphere are intrinsically thermally stable.

  3. Growth-phase thinning of the near-Earth current sheet during the CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Sanny, Jeff; Mcpherron, R. L.; Russell, C. T.; Baker, D. N.; Pulkkinen, T. I.; Nishida, A.

    1994-01-01

    The thinning of the near-Earth current sheet during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 magnetospheric substorm is studied. The expansion onset of the substorm occurred at 1054 UT, March 22, 1979. During the growth phase, two spacecraft, International Sun Earth Explorer (ISEE) 1 and ISEE 2, were within the current sheet approximately 13 R(sub E) from the Earth and obtained simultaneous high-resolution magnetic data at two points in the current sheet. Plasma data were also provided by the ISEE spacecraft and solar wind data by IMP 8. To facilitate the analysis, the GSM magnetic field data are transformed to a 'neutral sheet coordinate system' in which the new x axis is parallel to the average magnetic field above and below the neutral sheet and the new y axis lies in the GSM equatorial plane. A model based on the assumption that the current sheet is a time-invariant structure fails to predict neutral sheet crossing times. Consequently, the Harris sheet model, which allows one to remove the restriction of time invariancy, is used instead. It is found that during the growth phase, a model parameter corresponding to the thickness of the current sheet decreased exponentially from about 5 R(sub E) to 1 R(sub E) with a time constant of about 14 min. In addition, the ISEE 1 and ISEE 2 neutral sheet crossings after expansion onset indicate that the neutral sheet was moving upward at 7 km/s relative to the spacecraft. Since both crossings occurred in approximately 80 s, the current sheet thickness is estimated to be about 500 km. These results demonstrate that the near-Earth current sheet undergoes dramatic thinning during the substorm growth phase and expansion onset.

  4. Modeling the heliospheric current sheet: Solar cycle variations

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Linker, J. A.; Mikić, Z.

    2002-07-01

    In this report we employ an empirically driven, three-dimensional MHD model to explore the evolution of the heliospheric current sheet (HCS) during the course of the solar cycle. We compare our results with a simpler ``constant-speed'' approach for mapping the HCS outward into the solar wind to demonstrate that dynamic effects can substantially deform the HCS in the inner heliosphere (<~5 AU). We find that these deformations are most pronounced at solar minimum and become less significant at solar maximum, when interaction regions are less effective. Although solar maximum is typically associated with transient, rather than corotating, processes, we show that even under such conditions, the HCS can maintain its structure over the course of several solar rotations. While the HCS may almost always be topologically equivalent to a ``ballerina skirt,'' we discuss an interval approaching the maximum of solar cycle 23 (Carrington rotations 1960 and 1961) when the shape would be better described as ``conch shell''-like. We use Ulysses magnetic field measurements to support the model results.

  5. Solar wind eddies and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Bame, S. J.; Goldstein, B. E.

    1995-01-01

    Ulysses has collected data between 1 and 5 AU during, and just following solar maximum, when the heliospheric current sheet (HCS) can be thought of as reaching its maximum tilt and being subject to the maximum amount of turbulence in the solar wind. The Ulysses solar wind plasma instrument measures the vector velocity and can be used to estimate the flow speed and direction in turbulent 'eddies' in the solar wind that are a fraction of an astronomical unit in size and last (have either a turnover or dynamical interaction time of) several hours to more than a day. Here, in a simple exercise, these solar wind eddies at the HCS are characterized using Ulysses data. This character is then used to define a model flow field with eddies that is imposed on an ideal HCS to estimate how the HCS will be deformed by the flow. This model inherently results in the complexity of the HCS increasing with heliocentric distance, but the result is a measure of the degree to which the observed change in complexity is a measure of the importance of solar wind flows in deforming the HCS. By comparison with randomly selected intervals not located on the HCS, it appears that eddies on the HCS are similar to those elsewhere at this time during the solar cycle, as is the resultant deformation of the interplanetary magnetic field (IMF). The IMF deformation is analogous to what is often termed the 'random walk' of interplanetary magnetic field lines.

  6. Characteristics of a current sheet shear mode in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Fujimoto, Keizo

    2016-05-01

    The current study shows the characteristics of the kink-type electromagnetic mode excited in the thin current layer formed around the x-line during the quasi-steady phase of magnetic reconnection. The linear wave analyses are carried out for the realistic current sheet profile which differs significantly from the Harris current sheet. It is found that the peak growth rate is very sensitive to the current sheet width even though the relative drift velocity at the center of the current sheet is fixed. This indicates that the mode is excited by the velocity shear rather than the relative drift velocity. Thus, the mode is termed here a current sheet shear mode. It is also shown that the wavenumber ky has a clear mass ratio dependency as ky λi ∝ (mi /me )1/4, implying the coupling of the ion and electron dynamics, where λi is the ion inertia length.

  7. Thin current sheets: from the work of Ginzburg and Syrovatskii to the present day

    NASA Astrophysics Data System (ADS)

    Zelenyi, L. M.; Malova, H. V.; Grigorenko, E. E.; Popov, V. Yu

    2017-02-01

    We outline the history and development of the theory of thin current sheets in a collisionless space plasma from the early ideas of V L Ginzburg and S I Syrovatskii to the present day. We review the key achievements of the quasi-adiabatic theory, which provided insight into the fine structure of thin current sheets and enabled a comparison with experiment. This comparison showed the quasi-adiabatic approach to be more effective than the classical MHD approximation. With the development of the quasi-adiabatic theory in the last two decades, the existence of a number of new thin current sheet features, such as multi-scaling, metastability, and embedding, has been predicted and subsequently confirmed in situ; the role of individual particle populations in the formation of the current sheet fine structure has also been investigated. The role of nonadiabatic effects in accelerating plasma beamlets interacting with current sheets is examined. Asymmetry mechanisms in thin current sheets in the presence of a magnetic shear component are described. A study is carried out of current sheet self-organization processes leading to the formation of a shear magnetic component consistent with currents flowing in the plasma. It is demonstrated that the ongoing development of the theory of thin current structures is a logical continuation of Syrovatskii’s and Ginzburg’s ideas on cosmic rays and reconnected current sheets in the solar corona.

  8. Review on Current Sheets in CME Development: Theories and Observations

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Murphy, Nicholas A.; Shen, Chengcai; Raymond, John C.; Reeves, Katharine K.; Zhong, Jiayong; Wu, Ning; Li, Yan

    2015-11-01

    We introduce how the catastrophe model for solar eruptions predicted the formation and development of the long current sheet (CS) and how the observations were used to recognize the CS at the place where the CS is presumably located. Then, we discuss the direct measurement of the CS region thickness by studying the brightness distribution of the CS region at different wavelengths. The thickness ranges from 104 km to about 105 km at heights between 0.27 and 1.16 R_{⊙} from the solar surface. But the traditional theory indicates that the CS is as thin as the proton Larmor radius, which is of order tens of meters in the corona. We look into the huge difference in the thickness between observations and theoretical expectations. The possible impacts that affect measurements and results are studied, and physical causes leading to a thick CS region in which reconnection can still occur at a reasonably fast rate are analyzed. Studies in both theories and observations suggest that the difference between the true value and the apparent value of the CS thickness is not significant as long as the CS could be recognised in observations. We review observations that show complex structures and flows inside the CS region and present recent numerical modelling results on some aspects of these structures. Both observations and numerical experiments indicate that the downward reconnection outflows are usually slower than the upward ones in the same eruptive event. Numerical simulations show that the complex structure inside CS and its temporal behavior as a result of turbulence and the Petschek-type slow-mode shock could probably account for the thick CS and fast reconnection. But whether the CS itself is that thick still remains unknown since, for the time being, we cannot measure the electric current directly in that region. We also review the most recent laboratory experiments of reconnection driven by energetic laser beams, and discuss some important topics for future works.

  9. Current status of solar cell performance of unconventional silicon sheets

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Liu, J. K.

    1981-01-01

    It is pointed out that activities in recent years directed towards reduction in the cost of silicon solar cells for terrestrial photovoltaic applications have resulted in impressive advancements in the area of silicon sheet formation from melt. The techniques used in the process of sheet formation can be divided into two general categories. All approaches in one category require subsequent ingot wavering. The various procedures of the second category produce silicon in sheet form. The performance of baseline solar cells is discussed. The baseline process included identification marking, slicing to size, and surface treatment (etch-polishing) when needed. Attention is also given to the performance of cells with process variations, and the effects of sheet quality on performance and processing.

  10. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    SciTech Connect

    Catapano, F. Zimbardo, G.; Artemyev, A. V. Vasko, I. Y.

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  11. Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Uzdensky, Dmitri

    2016-10-01

    The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations.

  12. Statistical Analysis of Current Sheets in Three-dimensional Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Perez, Jean C.; Boldyrev, Stanislav

    2013-07-01

    We develop a framework for studying the statistical properties of current sheets in numerical simulations of magnetohydrodynamic (MHD) turbulence with a strong guide field, as modeled by reduced MHD. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.

  13. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Tearing Instability.

    PubMed

    Uzdensky, D A; Loureiro, N F

    2016-03-11

    The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations.

  14. High-latitude Conic Current Sheets in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Malova, Helmi V.; Kislov, Roman A.; Zelenyi, Lev M.; Obridko, Vladimir N.; Kharshiladze, Alexander F.; Tokumaru, Munetoshi; Sokół, Justyna M.; Grzedzielski, Stan; Fujiki, Ken’ichi

    2017-02-01

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  15. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  16. Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism

    SciTech Connect

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2010-06-15

    Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.

  17. On the role of topological complexity in spontaneous development of current sheets

    SciTech Connect

    Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-08-15

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  18. Plasma heating and acceleration in current sheets formed in discharges in argon

    NASA Astrophysics Data System (ADS)

    Kyrie, N. P.

    2016-12-01

    According to present notion, flares on the sun and other stars, substorms in magnetospheres of Earth and other planets, and disruptive instabilities in tokamak plasma are connected to development of current sheets in magnetized plasma. Therefore, current sheet dynamics and magnetic reconnection processes were studied actively during the last several decades. This paper presents the results of experimental studies of plasma heating and acceleration in current sheets formed in discharges in argon. The temperature and energy of directed motion of argon ions of different degrees of ionization were measured by spectroscopic methods. It was found that Ar II, Ar III and Ar IV ions are localized in different regions of the sheet. It was shown that Ampere forces applied to the sheet can accelerate the argon ions to observed energies.

  19. A coronal magnetic field model with horizontal volume and sheet currents

    NASA Technical Reports Server (NTRS)

    Zhao, Xuepu; Hoeksema, J. Todd

    1994-01-01

    When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface or by limiting the interaction to thin current sheets between oppositely directed field regions. Yet observations and numerical Magnetohydrodynamic (MHD) calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low and the current-sheet modeling technique developed by Schatten. The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coro nal helmet structures better than the current-sheet model.

  20. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    SciTech Connect

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikic, Zoran; Linker, Jon A.

    2013-08-20

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 A and 131 A channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model.

  1. Radial deformation of the solar current sheet as a cause of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6-48 h), as a result of a steep radial deformation of the current sheet.

  2. Differential measurement of cosmic-ray gradient with respect to interplanetary current sheet

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Behannon, K. W.; Burlaga, L. F.

    1985-01-01

    Simultaneous magnetic field and charged particle measurements from the Voyager spacecraft at heliographic latitude separations from 10 deg. to 21 deg. are used to determine the latitude gradient of the galactic cosmic ray flux with respect to the interplanetary current sheet. By comparing the ratio of cosmic ray flux at Voyager 1 to that a Voyager 2 during periods when both spacecraft are first nort and then south of the interplanetary current sheet, we find an estimate of the latitudinal gradient with respect to the current sheet of approximately -0.15 + or 0.05% deg under restricted interplanetary conditions.

  3. Magnetic Double-Gradient Instability and Flapping Waves in a Current Sheet

    SciTech Connect

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2007-12-07

    A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B{sub {tau}}) and normal (B{sub n}) magnetic field components along the normal ({nabla}{sub n}B{sub {tau}}) and tangential ({nabla}{sub {tau}}B{sub n}) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted as so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.

  4. The model of a collisionless current sheet in a homogeneous gravity field

    NASA Astrophysics Data System (ADS)

    Veselovsky, Igor S.; Kislov, Roman A.; Malova, Helmi V.; Khabarova, Olga V.

    2016-10-01

    The self-consistent 1D kinetic Harris-like model of a collisionless current sheet is developed for the case of the current sheet experiencing the impact of an external uniform gravity field. The ambipolar Pannekoek-Rosseland electric field appears in the system as a result of the additional drift motion of ions and electrons. This produces separation of charges, which is responsible for corresponding changes of the current sheet form. The presence of gravitation leads to formation of asymmetric distributions of the magnetic field as well as the plasma and the current density changes. Our estimations show that gravity-forced disruptions of the current sheet profile may occur in the Mercurial magnetosphere and, most probable, in the Io plasma torus near the Jupiter. Also, the model can be applied to magnetospheres of exoplanets.

  5. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Plasmoid Instability

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Uzdensky, Dmitri

    The recent realization that Sweet-Parker reconnection current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets are unlikely to be realized in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is just being formed. We present such an analysis in the context of nonlinear resistive MHD for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that, under most conditions, the longest-wavelength mode dominates, resulting in just one or two big plasmoids produced in the immediate aftermath of current sheet formation. Specific examples pertaining to solar flares and to parasitic modes of the magnetorotational instability are provided.

  6. Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition

    PubMed Central

    Hawaldar, Ranjit; Merino, P.; Correia, M. R.; Bdikin, Igor; Grácio, José; Méndez, J.; Martín-Gago, J. A.; Singh, Manoj Kumar

    2012-01-01

    We report hot filament thermal CVD (HFTCVD) as a new hybrid of hot filament and thermal CVD and demonstrate its feasibility by producing high quality large area strictly monolayer graphene films on Cu substrates. Gradient in gas composition and flow rate that arises due to smart placement of the substrate inside the Ta filament wound alumina tube accompanied by radical formation on Ta due to precracking coupled with substrate mediated physicochemical processes like diffusion, polymerization etc., led to graphene growth. We further confirmed our mechanistic hypothesis by depositing graphene on Ni and SiO2/Si substrates. HFTCVD can be further extended to dope graphene with various heteroatoms (H, N, and B, etc.,), combine with functional materials (diamond, carbon nanotubes etc.,) and can be extended to all other materials (Si, SiO2, SiC etc.,) and processes (initiator polymerization, TFT processing) possible by HFCVD and thermal CVD. PMID:23002423

  7. Reconnection of Quasi-singular Current Sheets: The "Ideal" Tearing Mode

    NASA Astrophysics Data System (ADS)

    Pucci, Fulvia; Velli, Marco

    2014-01-01

    A strong indication that fast reconnection regimes exist within resistive magnetohydrodynamics was given by the proof that the Sweet-Parker current sheet, maintained by a flow field with an appropriate inflow-outflow structure, could be unstable to a reconnecting instability which grows without bound as the Lundquist number, S, tends to infinity. The requirement of a minimum value for S in order for the plasmoid instability to kick in does little to resolve the paradoxical nature of the result. Here we argue against the realizability of Sweet-Parker current sheets in astrophysical plasmas with very large S by showing that an "ideal" tearing mode takes over before current sheets reach such a thickness. While the Sweet-Parker current sheet thickness scales as ~S -1/2, the tearing mode becomes effectively ideal when a current sheet collapses to a thickness of the order of ~S -1/3, up to 100 times thicker than S -1/2, when (as happens in many astrophysical environments) S is as large as 1012. Such a sheet, while still diffusing over a very long time, is unstable to a tearing mode with multiple x-points: here we detail the characteristics of the instability and discuss how it may help solve the flare trigger problem and effectively initiate the turbulent disruption of the sheet.

  8. RECONNECTION OF QUASI-SINGULAR CURRENT SHEETS: THE ''IDEAL'' TEARING MODE

    SciTech Connect

    Pucci, Fulvia; Velli, Marco E-mail: mvelli@jpl.nasa.gov

    2014-01-10

    A strong indication that fast reconnection regimes exist within resistive magnetohydrodynamics was given by the proof that the Sweet-Parker current sheet, maintained by a flow field with an appropriate inflow-outflow structure, could be unstable to a reconnecting instability which grows without bound as the Lundquist number, S, tends to infinity. The requirement of a minimum value for S in order for the plasmoid instability to kick in does little to resolve the paradoxical nature of the result. Here we argue against the realizability of Sweet-Parker current sheets in astrophysical plasmas with very large S by showing that an ''ideal'' tearing mode takes over before current sheets reach such a thickness. While the Sweet-Parker current sheet thickness scales as ∼S {sup –1/2}, the tearing mode becomes effectively ideal when a current sheet collapses to a thickness of the order of ∼S {sup –1/3}, up to 100 times thicker than S {sup –1/2}, when (as happens in many astrophysical environments) S is as large as 10{sup 12}. Such a sheet, while still diffusing over a very long time, is unstable to a tearing mode with multiple x-points: here we detail the characteristics of the instability and discuss how it may help solve the flare trigger problem and effectively initiate the turbulent disruption of the sheet.

  9. Spontaneous formation of electric current sheets and the origin of solar flares

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Wolfson, R.

    1988-01-01

    It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.

  10. Structure and evolution of the current sheet by multi-spacecraft observations

    SciTech Connect

    Zhou, X.Y.; Russell, C.T.; Gosling, J.

    1997-12-31

    On April 22, 1979, from 0840 to 1018 UT, ISEE 1, ISEE 2 and IMP 8 were all in or near the magnetotail current sheet at 17 Re, 16 Re and 35 Re respectively while ISEE 3 monitored the solar wind 206 Re upstream of the Earth. A global perspective of the four spacecraft observations and of the ground magnetic records is presented in this paper. The hyperbolic tangent current sheet model of Harris has been used to calculate the current sheet thickness and to analyze the plasma distribution in the vertical direction. It is found that during this event the current sheet thickness varied from 2.5 Re to 1.5 Re for northward IMF but thinned abruptly to 0.5 Re when the IMF turned southward.

  11. A Test of Source-Surfae Model Predictions of Heliospheric Current Sheet Inclination

    NASA Technical Reports Server (NTRS)

    Burton, M. E.; Smith, E. J.; Crooker, N. U.; Siscoe, G. L.

    1993-01-01

    The orientation of the heliospheric current sheet predicted from a source surfae model is compared with the orientation determined from minimum variance analysis of ISEE-3 magnetic field data at 1 AU near solar maximum.

  12. Doppler Scintillation Measurements of Coronal Streamers Embedded in the Heliospheric Current Sheet Close to the Sun

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Armstrong, John W.; Gazis, Paul R.

    1994-01-01

    Doppler scintillation transients overlying the neutral line and lasting a fraction of a day (solar source of several degrees)are the apparent interplanetary manifestation of coronal streamers embedded in the heliospheric current sheet.

  13. Dynamo-driven plasmoid formation from a current-sheet instability

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.

    2016-12-01

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from (1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and (2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. The plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.

  14. Dynamo-driven plasmoid formation from a current-sheet instability

    DOE PAGES

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less

  15. Dynamo-driven plasmoid formation from a current-sheet instability

    SciTech Connect

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.

  16. A Hybrid Kinetic Model of Asymmetric Thin Current Sheets with Sheared Flows in a Collisionless Plasma

    DTIC Science & Technology

    2010-12-27

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDREss. 1. REPORT DATE (DD-MM-YYVY) 12. REPORT TYPE 3 . DATES COVERED (From - To) 27-12...Current Sheets ........................................ 5 3 . Asymmetric Current Sheet Model ............................................. 6 3.1...Chen,l Robert A. Santoro, 2, t, Adam Szabo, 3 , and Davin E. Larson4 1 Plasma Physics Division, Naval Research Laboratory, Washington, DC 2 NRC

  17. CURRENT SHEET ENERGETICS, FLARE EMISSIONS, AND ENERGY PARTITION IN A SIMULATED SOLAR ERUPTION

    SciTech Connect

    Reeves, Katharine K.; Linker, Jon A.; Mikic, Zoran; Forbes, Terry G. E-mail: linkerj@predsci.co E-mail: terry.forbes@unh.ed

    2010-10-01

    We investigate coronal energy flow during a simulated coronal mass ejection (CME). We model the CME in the context of the global corona using a 2.5D numerical MHD code in spherical coordinates that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The simulation domain extends from 1 to 20 R{sub s} . To our knowledge, this is the first attempt to apply detailed energy diagnostics in a flare/CME simulation when these important terms are considered in the context of the MHD equations. We find that the energy conservation properties of the code are quite good, conserving energy to within 4% for the entire simulation (more than 6 days of real time). We examine the energy release in the current sheet as the eruption takes place, and find, as expected, that the Poynting flux is the dominant carrier of energy into the current sheet. However, there is a significant flow of energy out of the sides of the current sheet into the upstream region due to thermal conduction along field lines and viscous drag. This energy outflow is spatially partitioned into three separate components, namely, the energy flux flowing out the sides of the current sheet, the energy flowing out the lower tip of the current sheet, and the energy flowing out the upper tip of the current sheet. The energy flow through the lower tip of the current sheet is the energy available for heating of the flare loops. We examine the simulated flare emissions and energetics due to the modeled CME and find reasonable agreement with flare loop morphologies and energy partitioning in observed solar eruptions. The simulation also provides an explanation for coronal dimming during eruptions and predicts that the structures surrounding the current sheet are visible in X-ray observations.

  18. An Observational Research on Magnetic Reconnection Current Sheet Occurred in Two Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Cai, Q. W.; Wu, N.; Lin, J.

    2015-11-01

    The coronal magnetic configuration is severely stretched by the disruption in the process of coronal mass ejection (CME), pushing the magnetic fields of opposite polarity to approach one another, and creating a magnetic neutral region (current sheet) behind CME. Magnetic reconnection taking place inside the current sheet converts the magnetic energy into heat and kinetic energy of the plasma, and the kinetic energy of energetic particles. The role of the current sheet in this process is two-fold: the region where reconnection occurs, and connecting the flare to the associated CME. We studied the events of 2003 January 3 and 2003 November 4, respectively. Development of the current sheet was observed in both cases. We investigated the dynamic features of the two events, as well as physical properties of the current sheet, on the basis of analyzing the observational data from LASCO (Large Angle and Spectrometric Coronagraph) and UVCS (Ultraviolet Coronagraph Spectrometer) on board SOHO (Solar and Heliospheric Observatory), and the Hα data from BBSO (Big Bear Solar Observatory) and YNAO (Yunnan Observatories). The existence of ions with high ionization state, such as Fe^{+17} and Si^{+11}, indicated a high temperature up to 3×10^{6}-5×10^{6} K. Direct measurements showed that the apparent thickness of the current sheet varies from 1.3×10^{4} to 1.1×10^{5} km, which increases first and then decreases with time. Using the CHIANTI code (v.7.1), we further calculated the averages of the electron temperature and the corresponding emission measure in the current sheet of the 2003 January 3 event, which were about 3.86× 10^{6} K and 6.1× 10^{24} cm^{-5}, respectively. We also noticed that the current sheet twisted forth and back in a quasi-periodical fashion during the event on 2003 November 4 by analyzing the data from SOHO/UVCS.

  19. Observational Study on Current Sheet of Magnetic Reconnection in Two Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Qiang-wei, Cai; Ning, Wu; Jun, Lin

    2016-07-01

    The coronal magnetic configuration behind coronal mass ejections (CMEs) can commonly be stretched severely, thus to push the magnetic fields with opposite polarities to approach each other, and to form a current sheet of magnetic reconnection. The current sheet in solar eruptions is not only an important region to convert the magnetic free energy into thermal energy, plasma kinetic energy, and energetic particle beams, but also plays a role to connect CMEs and flares. In the CME events of 2003 January 3 and 2003 November 4, the development of current sheet has been observed in both cases. We have investigated the dynamic features and physical properties of current sheet in the two events, based on the data of LASCO (Large Angle and Spectrometric Coronagraph) and UVCS (Ultraviolet Coronagraph Spectrometer) on board of SOHO (Solar and Heliospheric Observatory), and the Hα data from BBSO (Big Bear Solar Observatory) and YNAO (Yunnan Astronomical Observatory). The existence of ions with a high degree of ionization, such as Fe+17 and Si+11, indicates a high temperature up to 3×106 ∼5×106 K in the region of current sheet. A direct measurement shows that the thickness of current sheet varies between 1.3×104 and 1.1×105 km, which increases first and then decreases with time. Using the CHIANTI code (v.7.1), we have further calculated the average values of electron temperature and corresponding emission measure (EM) respectively to be 3.86×106 K and 6.1×1024 cm-5 in the current sheet of the 2003 January 3 event. We also find that the current sheet twisted forth and back quasi-periodically during the eruption event on 2003 November 4 by analyzing the observational data from SOHO/UVCS.

  20. Plasma Sheet Response to the Ionosphere's Demand for Field-Aligned Current

    NASA Astrophysics Data System (ADS)

    Coroniti, F. V.; Pritchett, P. L.

    2007-12-01

    Magnetospheric convection electric fields and plasma stresses are transmitted to the ionosphere by Alfvén wave electric fields and field-aligned currents (FACs). The closure of the FACs by ionospheric Hall and Pedersen currents drives the ionospheric convection system. However, the ionospheric system does not necessarily mesh smoothly with the magnetospheric drivers, and the magnetosphere must respond by altering its convection and plasma stress configuration, thereby creating self-consistent closure paths for the complete coupled system of currents and electric potentials. Three-dimensional particle-in-cell plasma kinetic simulations are used to determine the plasma sheet response to various current systems imposed as boundary conditions at the near-Earth boundary. These systems consist of separate downward and upward tubes of FAC and a substorm current wedge configuration. The results demonstrate that the creation of closure paths for ionospheric FACs can result in large configuration changes within the near-Earth plasma sheet. The plasma sheet is forced to establish polarization electric fields that locally increase the cross-tail current by producing a duskward Hall electron current; this results in the formation of thin (in z), spatially localized (in y) electron-dominated Hall current sheets. The observed complex magnetic field configuration with opposite polarity Bz fields in close proximity separated by electron scale thin current sheets is reminiscent of the turbulent magnetic fields that are observed within the near-Earth current disruption region at substorm breakup [ Lui et al., 1988, 1992].

  1. A Model for the Electrically Charged Current Sheet of a Pulsar

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Antiochos, Spiro K.; Black, Carrie; Harding, Alice Kust; Kalapotharakos, Constantinos; Kazanas, Demosthenes; Timokhin, Andrey

    2014-06-01

    Global-scale electromagnetohydrodynamic solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity - an electric current sheet - consisting of nonneutral plasma. We have developed a self-consistent model for the internal structure of this sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris (1962) and Hoh (1966) to allow a net electric charge. The resulting equations for the electromagnetic field are identical for Maxwell (nonrelativistic) and Jüttner/Synge (relativistic) distribution functions of the particles. The solutions have a single sign of net charge everywhere, with the minority population concentrated near the current sheet and the majority population completely dominant far from the sheet. As the fractional charge imbalance at the sheet increases, for fixed relative drift speed and total thermal pressure of the particles, both the electric- and magnetic-field strengths far from the sheet increase. The electrostatic force acts to disperse the charged particles from the sheet, so the magnetic force must increase proportionately, relative to the charge-neutral case, to pinch the sheet together and maintain the equilibrium. The charge imbalance in the sheet that can be accommodated has an upper bound, which increases monotonically with the relative drift speed. Implications of the model for the steady-state structure of pulsar magnetospheres will be discussed. The model also provides a rigorous starting point for investigating electromagnetohydrodynamic and kinetic instabilities that could lead to magnetic reconnection and current-sheet disruption in pulsars. Exploratory particle-in-cell simulations of representative equilibria are presented in a companion paper at this conference (C. E. Black et al. 2014).This

  2. The Helium Abundance at Quiescent Current Sheets and the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Ko, Y.-K.; VonSteiger, R.

    2008-01-01

    Ulysses MAG data were used to identify current sheets during sunspot minimum years of 1994-1997 and 2004-2006. The purpose of limiting the dates was to focus attention on 'quiescent current sheets' with as little influence from ICMEs as possible. SWOOPS data were then used in a superposed epoch analysis to study Helium abundance in the vicinity of the current sheet, similar to the study done by Borrini et al. (1981). That earlier study found a narrow (ca. 2 day) minimum in He/H around the current sheet that is extremely variable from one year to the next in the period 1971-1978. A similar result is found here for data at all latitudes and distances in 2004-2006. Conversely, data from 1994-1997 produce a deep minimum several times wider (ca. 10 days). The reason for this is found to be that low He/H is more closely associated with slow wind than the current sheet per se. There are thus apparently at least two sources of slow wind, one associated with very low He/H of 0-0.02 and one associated with moderate abundance of 0.03-0.05. The large variability is a consequence of the relatively small number of current sheet encounters around solar minimum and the random distribution of low He/H intervals, lasting less than 1 day to more than 7 days, throughout slow wind.

  3. Electron temperature anisotropy effects on tearing mode in ion-scale current sheets

    NASA Astrophysics Data System (ADS)

    Haijima, K.; Tanaka, K. G.; Fujimoto, M.; Shinohara, I.

    Recent two-dimensional (2-D) particle-in-cell (PIC) simulations have shown that there is a critical thickness of a current sheet, above which no significant saturation amplitude of the 2-D tearing (TI) mode can be expected. Here, we have introduced the initial electron temperature anisotropy (αe0 = Te⊥/Te|| > 1), which is known to raise significantly the linear growth rates, and inspected if αe0 > 1 can change the saturation level of the TI in a super-critical current sheet. Varying αe0 and D (D: the current sheet half-thickness) systematically, we have found that while αe0 boosts up the linear growth rate in both sub- and super-critical current sheets, macroscopic effects are obtained only in sub-critical current sheets, that is, energy transfer from the fastest growing short wavelength modes to longer wavelength modes are available only in the sub-critical regime. Since the critical thickness is a fraction of the ion inertial length, the tearing mode assisted by the electron temperature anisotropy alone, despite its significant boost in the linear growth rate, cannot be the agent for reconnection triggering in a current sheet of ion-scale thickness.

  4. Excitation of an electrostatic wave by a cold electron current sheet of finite thickness

    NASA Technical Reports Server (NTRS)

    Hwang, K. S.; Fontheim, E. G.; Ong, R. S. B.

    1983-01-01

    Calculations for the threshold of current-driven instabilities and the growth rates of ion acoustic and electrostatic ion cyclotron instabilities in a magnetized plasma driven a current sheet with a finite width are presented. Maxwellian equations are employed to model the velocity distributions of electrons and ions in a direction perpendicular to the sheet. A dispersion relation is defined for the regions of instability, and boundary conditions are characterized in order to obtain a set of eigenvalue equations. Thresholds are delineated for various regions, including ducted mode solutions where only ion-acoustic waves are excited in areas where the frequency range significantly exceeds the ion cyclotron frequency. When a constant electron drift velocity is present, a thick current sheet is more unstable than a thin one. Fewer modes become unstable with a thinner sheet.

  5. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel B.; Bartz, Allison E.; Darnel, Jonathan M.

    2017-02-01

    We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was MA ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.

  6. Numerical simulation of current sheet formation in a quasiseparatrix layer using adaptive mesh refinement

    SciTech Connect

    Effenberger, Frederic; Thust, Kay; Grauer, Rainer; Dreher, Juergen; Arnold, Lukas

    2011-03-15

    The formation of a thin current sheet in a magnetic quasiseparatrix layer (QSL) is investigated by means of numerical simulation using a simplified ideal, low-{beta}, MHD model. The initial configuration and driving boundary conditions are relevant to phenomena observed in the solar corona and were studied earlier by Aulanier et al. [Astron. Astrophys. 444, 961 (2005)]. In extension to that work, we use the technique of adaptive mesh refinement (AMR) to significantly enhance the local spatial resolution of the current sheet during its formation, which enables us to follow the evolution into a later stage. Our simulations are in good agreement with the results of Aulanier et al. up to the calculated time in that work. In a later phase, we observe a basically unarrested collapse of the sheet to length scales that are more than one order of magnitude smaller than those reported earlier. The current density attains correspondingly larger maximum values within the sheet. During this thinning process, which is finally limited by lack of resolution even in the AMR studies, the current sheet moves upward, following a global expansion of the magnetic structure during the quasistatic evolution. The sheet is locally one-dimensional and the plasma flow in its vicinity, when transformed into a comoving frame, qualitatively resembles a stagnation point flow. In conclusion, our simulations support the idea that extremely high current densities are generated in the vicinities of QSLs as a response to external perturbations, with no sign of saturation.

  7. Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Merkin, V. G.

    2016-08-01

    Generalizations of the class of quasi-1-D solutions of the 2-D Grad-Shafranov equation, first considered by Schindler in 1972, are investigated. It is shown that the effect of the dipole field, treated as a perturbation, can be included into the original 1972 class solution by modification of the boundary conditions. Some of the solutions imply the formation of singularly thin current sheets. Equilibrium solutions for such sheets resolving their singular current structure on the scales comparable to the thermal ion gyroradius can be obtained assuming anisotropic and nongyrotropic plasma distributions. It is shown that one class of such equilibria with the dipole-like boundary perturbation describes bifurcation of the near-Earth current sheet. Another class of weakly anisotropic equilibria with thin current sheets embedded into a thicker plasma sheet helps explain the formation of thin current sheets in a relatively distant tail, where such sheets can provide ion Landau dissipation for spontaneous magnetic reconnection. The free energy for spontaneous reconnection can be provided due to accumulation of the magnetic flux at the tailward end of the closed field line region. The corresponding hump in the normal magnetic field profile Bz(x,z = 0) creates a nonzero gradient along the tail. The resulting gradient of the equatorial magnetic field pressure is shown to be balanced by the pressure gradient and the magnetic tension force due to the higher-order correction of the latter in the asymptotic expansion of the tail equilibrium in the ratio of the characteristic tail current sheet variations across and along the tail.

  8. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    SciTech Connect

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are approx.1-5 x 10/sup 4/ km and approx.5-50 nA/m/sup 2/. Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of approx.1.2 x 10/sup 5/ K and approx.40 in the center of the current sheet to approx.1 x 10/sup 6/ K and approx.3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (approx.1 at ICE), and that a region of strongly enhanced mass loading (ion source rate approx.24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is approx.2.6 x 10/sup 26/ H/sub 2/O+/sec, which is only approx.1% of the independently determined total cometary efflux. 79 refs., 37 figs.

  9. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  10. Local properties of the reconnecting magnetotail current sheet: a statistical study using Geotail and Cluster

    NASA Astrophysics Data System (ADS)

    Genestreti, K. J.; Fuselier, S. A.; Goldstein, J.; Nagai, T.; Eastwood, J. P.

    2015-12-01

    Reconnection in the near-Earth magnetotail occurs most frequently duskward of midnight. This asymmetry is evident in the spatial occurrence of both reconnection- driven transients and of the reconnection site itself. From a number of studies that investigated the cause of this asymmetry, there are two main, opposing explanations: 'global' and 'local'. The 'global' explanation is that asymmetric ionospheric conductance is the cause. The 'local' explanation points to the asymmetric thinning of the plasma sheet as the cause of the asymmetry. A number of observational studies have identified the effects of the 'local' and 'global' controls of the properties of the non-reconnecting magnetotail current sheet. In this study, we analyze the properties of the reconnecting current sheet (in the vicinity of an active reconnection site) using in situ data from Geotail and Cluster encounters with the reconnection site. Our method is specific to the geometry of the current sheet crossing for either Geotail or Cluster. For all of our observations, we approximate the current sheet with the Harris model. For Cluster data, we use a modified curlometer technique to analyze the strength and profile of the ion-scale current. For Geotail data, our analysis technique depends on whether the encounter with the reconnection site was driven by the motion of the current sheet or the motion of the spacecraft. We compare the properties of the current sheet for reconnection observations near the dawn and dusk flanks (infrequent) with those for reconnection observations on the near-midnight duskside (more frequent). Initial results are presented.

  11. A Tailward Moving Current Sheet Normal Magnetic Field Front Followed by an Earthward Moving Dipolarization Front

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.

    2014-01-01

    A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.

  12. A current sheet model for the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Stump, Daniel R.; Pollack, Gerald L.

    1998-09-01

    As an example in magnetostatics we consider the main magnetic field of the Earth and its current sources. The measured field on the surface is accurately given, in tables of the International Geological Reference Field, in terms of Gaussian coefficients. By applying Maxwell's equations to these data we calculate the extended field, inside the Earth, and give graphical representations of it. We also construct a simple theoretical model of the source of the field, in which the field is the result of currents flowing on the surface of a sphere inside the Earth. The current sources which give the observed field are calculated in terms of vector spherical harmonics. The stream function and currents are displayed on a Mercator projection for a sphere whose radius is half the Earth's radius. Interesting properties of vector operations on the Mercator plane are analytically and graphically described.

  13. Self-consistent current sheet structures in the quiet-time magnetotail

    NASA Technical Reports Server (NTRS)

    Holland, Daniel L.; Chen, James

    1993-01-01

    The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.

  14. Formation and stability of the self-consistent one-dimensional tail current sheet

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1992-01-01

    The paper investigates the formation, the structure, and the stability of self-consistent one-dimensional current sheets in which the ions carry most of the current and momentum (the occurrence of which was suggested by observations of Mitchell et al., 1990; and Sergeev et al., 1990). Results of the analysis showed that, for the case of a cold current sheet, the characteristic thickness lamba equals to about (Bz/B0) exp 4/3 c/omega(p0), where Bz is the normal field component, B0 is the asymptotic magnitude of the reversing field, and c/omega(p0)is the collisionless ion skin depth based on lobe density. A two-dimensional self-consistent dynamical simulation model is developed, which demonstrates that these idealized current sheets are unstable to kink perturbations driven by the anisotropic pressure distribution produced by the chaotic nature of the particle orbits in a field-reversal region.

  15. Linear evolution of current sheets in sheared force-free magnetic fields with discontinuous connectivity

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard

    1990-01-01

    Thin current sheets arising in tenuous, magnetized solar coronal plasmas may constitute an important mechanism for energy buildups and subsequent energy releases; they could arise from the continuous-and-random motion of magnetic footprints associated with photospheric velocity fields. A model is presented for study of the quasi-static evolution of current sheets due to shearing of the footpoints, in a highly idealized geometry that incorporates an abrupt jump in field-line connectivity. The model highlights that formation of thin current layers and allows large shearing motions prior to violation of the linear approximation. Excess energy comparable to that released by solar flares can be stored in a sheared field.

  16. Exact energy principle in magnetic reconnection for current-sheet models.

    PubMed

    Yoon, Peter H; Lui, Anthony T Y

    2005-05-06

    On the basis of an exact nonlinear energy principle, it is shown that the change in magnetic topology (i.e., reconnection) in a finite-domain system leads to the conversion of magnetic field energy to particle energy. However, it is also shown that the conversion efficiency gradually disappears as the system size increases. This principle is demonstrated with model current-sheet equilibria including Harris and Fadeev solutions, as well as a current-sheet equilibrium which contains a singular current layer. The finding that energy conversion in reconnection is highly dependent on the system size may have an important implication for numerical simulations performed under finite geometry.

  17. Nonlinear evolution of the lower-hybrid drift instability in a current sheet.

    PubMed

    Daughton, William; Lapenta, Giovanni; Ricci, Paolo

    2004-09-03

    The lower-hybrid drift instability is simulated in an ion-scale current sheet using a fully kinetic approach with values of the ion to electron mass ratio up to m(i)/m(e)=1836. Although the instability is localized on the edge of the layer, the nonlinear development increases the electron flow velocity in the central region resulting in a strong bifurcation of the current density and significant anisotropic heating of the electrons. This dramatically enhances the collisionless tearing mode and may lead to the rapid onset of magnetic reconnection for current sheets near the critical scale.

  18. Exact Energy Principle in Magnetic Reconnection for Current-Sheet Models

    SciTech Connect

    Yoon, Peter H.; Lui, Anthony T.Y.

    2005-05-06

    On the basis of an exact nonlinear energy principle, it is shown that the change in magnetic topology (i.e., reconnection) in a finite-domain system leads to the conversion of magnetic field energy to particle energy. However, it is also shown that the conversion efficiency gradually disappears as the system size increases. This principle is demonstrated with model current-sheet equilibria including Harris and Fadeev solutions, as well as a current-sheet equilibrium which contains a singular current layer. The finding that energy conversion in reconnection is highly dependent on the system size may have an important implication for numerical simulations performed under finite geometry.

  19. Current and future darkening of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated

  20. Properties of current sheet thinning at x ˜- 10 to -12 RE

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Petrokovich, A. A.

    2016-07-01

    We report on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations of current sheet thinning in Earth's magnetotail at around x =- 10 to -12 Earth radii. The THEMIS spacecraft configuration in October-December 2015 allows us to construct both gradients that contribute to the cross-tail current density jy=μ0-1(∂Bx/∂z-∂Bz/∂x) (GSM coordinates). For 17 events when the spacecraft observed a gradual Bz decrease and jy increase, we find the following average scaling relations: for the current density jy˜Bz-7/4, for the lobe magnetic field BL˜Bz-1/4, and for the plasma density ni˜Bz-3/4. We show that the temperature of ions and electrons decreases and the plasma pressure gradient ∂p/∂x rapidly increases during current sheet thinning. The scale Lx=(∂lnp/∂x)-1 decreases a few thousand kilometers. We also consider current carriers in thinning current sheets: both ion and electron current-dominated current sheets, preferentially located near dusk and midnight, respectively, are found.

  1. A Model for the Electrically Charged Current Sheet of a Pulsar

    NASA Astrophysics Data System (ADS)

    DeVore, C. R.; Antiochos, S. K.; Black, C. E.; Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A.

    2014-01-01

    Global-scale electromagnetohydrodynamic solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity - an electric current sheet - consisting of nonneutral plasma. We have developed a self-consistent model for the internal structure of this sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris (1962) and Hoh (1966) to allow a net electric charge. The resulting equations for the electromagnetic field are identical for Maxwell (nonrelativistic) and Jüttner/Synge (relativistic) distribution functions of the particles. The solutions have a single sign of net charge everywhere, with the minority population concentrated near the current sheet and the majority population completely dominant far from the sheet. As the fractional charge imbalance at the sheet increases, for fixed relative drift speed and total thermal pressure of the particles, both the electric- and magnetic-field strengths far from the sheet increase. The electrostatic force acts to disperse the charged particles from the sheet, so the magnetic force must increase proportionately, relative to the charge-neutral case, to pinch the sheet together and maintain the equilibrium. The charge imbalance in the sheet that can be accommodated has an upper bound, which increases monotonically with the relative drift speed. In the limit of maximum charge imbalance and field strength, the density of majority particles asymptotically approaches a uniform value far from the sheet, rather than falling exponentially to zero as in the charge-neutral case. This model provides a rigorous starting point for investigating electromagnetohydrodynamic and kinetic instabilities that could lead to magnetic reconnection and current-sheet disruption in pulsar magnetospheres. Exploratory

  2. Measurement of the current sheet during magnetic reconnection in a toroidal plasma.

    PubMed

    Crocker, N A; Fiksel, G; Prager, S C; Sarff, J S

    2003-01-24

    The current and magnetic-field fluctuations associated with magnetic-field-line reconnection have been measured in the reversed field pinch plasma configuration. The current sheet resulting from this reconnection has been measured. The current layer is radially broad, comparable to a magnetic-island width, as may be expected from current transport along magnetic-field lines. It is much larger than that predicted by resistive MHD for linear tearing modes and larger than prediction from two-fluid linear theory.

  3. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    NASA Astrophysics Data System (ADS)

    Holman, Gordon D.

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  4. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1986-01-01

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  5. Kink-like mode of a double gradient instability in a compressible plasma current sheet.

    PubMed

    Korovinskiy, D B; Ivanova, V V; Erkaev, N V; Semenov, V S; Ivanov, I B; Biernat, H K; Zellinger, M

    2011-11-01

    A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called "double gradient instability", - a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet.

  6. RICHTMYER-MESHKOV-TYPE INSTABILITY OF A CURRENT SHEET IN A RELATIVISTICALLY MAGNETIZED PLASMA

    SciTech Connect

    Inoue, Tsuyoshi

    2012-11-20

    The linear stability of a current sheet that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current sheet embedded in relativistically magnetized plasma always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current sheet, which can induce the so-called turbulent reconnection, the rate of which is essentially free from plasma resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.

  7. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  8. Kinetic models of two-dimensional plane and axially symmetric current sheets: Group theory approach

    SciTech Connect

    Vasko, I. Y.; Artemyev, A. V.; Popov, V. Y.; Malova, H. V.

    2013-02-15

    In this paper, we present new class of solutions of Grad-Shafranov-like (GS-like) equations, describing kinetic plane and axially symmetric 2D current sheets. We show that these equations admit symmetry groups only for Maxwellian and {kappa}-distributions of charged particles. The admissible symmetry groups are used to reduce GS-like equations to ordinary differential equations for invariant solutions. We derive asymptotes of invariant solutions, while invariant solutions are found analytically for the {kappa}-distribution with {kappa}=7/2. We discuss the difference of obtained solutions from equilibria widely used in other studies. We show that {kappa} regulates the decrease rate of plasma characteristics along the current sheet and determines the spatial distribution of magnetic field components. The presented class of plane and axially symmetric (disk-like) current sheets includes solutions with the inclined neutral plane.

  9. Intermittent Turbulence and SOC Dynamics in a 2-D Driven Current-Sheet Model

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vinas, A. F.; Vassiliasdis, D.; Baker, D. N.

    2005-01-01

    Borovsky et al. have shown that Earth's magnetotail plasma sheet is strongly turbulent. More recently, Borovsky and Funsten have shown that eddy turbulence dominates and have suggested that the eddy turbulence is driven by fast flows that act as jets in the plasma. Through basic considerations of energy and magnetic flux conservation, these fast flows are thought to be localized to small portions of the total plasma sheet and to be generated by magnetic flux reconnection that is similarly localized. Angelopoulos et al., using single spacecraft Geotail data, have shown that the plasma sheet turbulence exhibits signs of intermittence and Weygand et al., using four spacecraft Cluster data, have confirmed and expanded on this conclusion. Uritsky et al., using Polar UVI image data, have shown that the evolution of bright, nightside, UV auroral emission regions is consistent with many of the properties of systems in self-organized criticality (SOC). Klimas et al. have suggested that the auroral dynamics is a reflection of the dynamics of the fast flows in the plasma. sheet. Their hypothesis is that the transport of magnetic fludenergy through the magnetotail is enabled by scale-free avalanches of localized reconnection whose SOC dynamics are reflected in the auroral UV emission dynamics. A corollary of this hypothesis is that the strong, intermittent, eddy turbulence of the plasma sheet is closely related to its critical dynamics. The question then arises: Can in situ evidence for the SOC dynamics be found in the properties of the plasma sheet turbulence? A 2-dimensional numerical driven current-sheet model of the central plasma sheet has been developed that incorporates an idealized current-driven instability with a resistive MHD system. It has been shown that the model can evolve into SOC in a physically relevant parameter regime. Initial results from a study of intermittent turbulence in this model and the relationship of this turbulence to the model's known SOC

  10. Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration

    NASA Astrophysics Data System (ADS)

    Eriksson, E.; Vaivads, A.; Graham, D. B.; Khotyaintsev, Yu. V.; Yordanova, E.; Hietala, H.; André, M.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Giles, B. L.; Lavraud, B.; Paterson, W. R.; Pollock, C. J.; Saito, Y.; Magnes, W.; Russell, C.; Torbert, R.; Ergun, R.; Lindqvist, P.-A.; Burch, J.

    2016-10-01

    Localized kinetic-scale regions of strong current are believed to play an important role in plasma thermalization and particle acceleration in turbulent plasmas. We present a detailed study of a strong localized current, 4900 nA m-2, located at a fast plasma jet observed in the magnetosheath downstream of a quasi-parallel shock. The thickness of the current region is ˜3 ion inertial lengths and forms at a boundary separating magnetosheath-like and solar wind-like plasmas. On ion scales the current region has the shape of a sheet with a significant average normal magnetic field component but shows strong variations on smaller scales. The dynamic pressure within the magnetosheath jet is over 3 times the solar wind dynamic pressure. We suggest that the current sheet is forming due to high velocity shears associated with the jet. Inside the current sheet we observe local electron acceleration, producing electron beams, along the magnetic field. However, there is no clear sign of ongoing reconnection. At higher energies, above the beam energy, we observe a loss cone consistent with part of the hot magnetosheath-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within the current sheet is similar to the one that occurs at shocks, where electron beams and loss cones are also observed. Therefore, electron beams observed in the magnetosheath do not have to originate from the bow shock but can also be generated locally inside the magnetosheath.

  11. Experimental Study of Lower-hybrid Drift Turbulence in a Reconnecting Current Sheet

    SciTech Connect

    Carter, T. A.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Trintchouck, F.

    2002-06-18

    The role of turbulence in the process of magnetic reconnection has been the subject of a great deal of study and debate in the theoretical literature. At issue in this debate is whether turbulence is essential for fast magnetic reconnection to occur in collisionless current sheets. Some theories claim it is necessary in order to provide anomalous resistivity, while others present a laminar fast reconnection mechanism based on the Hall term in the generalized Ohm's law. In this work, a thorough study of electrostatic potential fluctuations in the current sheet of the Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] was performed in order to ascertain the importance of turbulence in a laboratory reconnection experiment. Using amplified floating Langmuir probes, broadband fluctuations in the lower hybrid frequency range (fLH approximately 5-15 MHz) were measured which arise with the formation of the current sheet in MRX. The frequency spectrum, spatial amplitude profile, and spatial correlation characteristics of the measured turbulence were examined carefully, finding consistency with theories of the lower-hybrid drift instability (LHDI). The LHDI and its role in magnetic reconnection has been studied theoretically for decades, but this work represents the first detection and detailed study of the LHDI in a laboratory current sheet. The observation of the LHDI in MRX has provided the unique opportunity to uncover the role of this instability in collisionless reconnection. It was found that: (1) the LHDI fluctuations are confined to the low-beta edge of current sheets in MRX; (2) the LHDI amplitude does not correlate well in time or space with the reconnection electric field, which is directly related to the rate of reconnection; and (3) significant LHDI amplitude persists in high collisionality current sheets where the reconnection rate is classical. These findings suggest that the measured LHDI fluctuations do not play an

  12. Thin current sheet instabilities relevant to the onset of reconnection in the geomagnetotail: Theory and observations

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Sharma, A. S.; Lui, A. T.; Yoon, P. H.; Guzdar, P. N.

    2002-12-01

    Two basic families of thin current sheet instabilities responsible for the onset of X- and Y-line reconnection in the tail current sheet of Earth's magnetosphere are discussed. The X-line reconnection onset becomes possible due to the growth of the tearing mode. Its stability is shown to crucially depend on the presence of a transient electron population and as a result the X-line can be formed only far enough from the Earth. Earthward of this critical distance the tail current sheet is tearing-stable and evolves into a thin current sheet (TCS). These results are fully consistent with recent Geotail observations [Asano, 2001], which show that the X-line is initially formed near the tailward edge of the evolved TCS. On the other hand, the formation of TCS creates the free energy source for current-driven instabilities that are not significant in the case of the conventional Harris equilibrium [Daughton, 1999]. This arises due to the bulk flow velocity shear provided by the nonadiabatic motion of ions. We provide the new results of the nonlocal stability analysis of TCS taking into account the effect of bulk flow velocity shear. In contrast to recent results [Shinohara et al., 2001; Daughton, 2002], where the shear appeared as a nonlinear effect resulting from the lower-hybrid turbulence in the pure Harris sheet with zero normal component of the magnetic field, we explore the stability of more realistic self-consistent TCS models with nonzero normal magnetic field that already have the velocity shear [Sitnov et al., 2000]. A distinctive feature of these models is the bean-shaped ion distribution at the center of the sheet. It is consistent with the characteristic ion distributions prior to the onset of the current disruption in the magnetotail [Lui, 2002].

  13. Laboratory Observation of Resistive Electron Tearing in a Two-Fluid Reconnecting Current Sheet

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; Yoo, Jongsoo; Fox, William

    2016-08-01

    The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. The reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate.

  14. Laboratory observation of resistive electron tearing in a two-fluid reconnecting current sheet

    SciTech Connect

    Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; Yoo, Jongsoo; Fox, William

    2016-08-25

    The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. Furthermore, the reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate.

  15. Investigation of Thickness and Electrical Resistivity of the Current Sheets in Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Lin, J.; Li, J.; Ko, Y.-K.; Raymond, J. C.

    2009-01-01

    A discussion of the thickness of current sheets in solar eruptions led Lin et al. in 2007 to estimate very large values for the effective resistivity. This paper addresses some questions raised by that paper. The limb synoptic map technique is applied to find the current sheet thickness to be between 5.OE4 and 4.6E5 km, increasing with both time and altitude. The possibility that large apparent values result from projection effects is examined and rejected. Theoretical scaling laws corroborate this conclusion.

  16. Current Sheet and Reconnection Inflow-Outflow Observations During Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina; Holman, Gordon; Reeves, Kathy R.; Seaton, Daniel B.; McKenzie, David E.; Su, Yang

    2011-01-01

    Magnetic reconnection is widely accepted as a dominant source of energy during solar flares; however, observations of it have been indirect and/or incomplete. Using the suite of instruments available spanning wavelength space, we will provide observations and measurements of both the inputs and outputs predicted from reconnection in the form of inflows preceding outflows (i.e. supra-arcade downflows, supra-arcade downflowing loops, upflows, and disconnection events). We will also present evidence for current sheets through which reconnection is expected to occur and discuss current sheet motion during flare progression.

  17. AN EXACT SOLUTION FOR MAGNETIC ANNIHILATION IN A CURVED CURRENT SHEET

    SciTech Connect

    Litvinenko, Yuri E.

    2013-09-10

    An exact magnetohydrodynamic solution is presented for steady magnetic annihilation (merging) in an incompressible resistive viscous plasma. The merging, driven by an axisymmetric stagnation flow on a cylinder, takes place in a curved current sheet that is perpendicular to the plane in which the plasma flow stagnates. The new solution extends earlier models of flux pileup merging in a flat current sheet, driven by stagnation-point flows. The new solution remains valid in the presence of both the isotropic and anisotropic (parallel) plasma viscosity. The geometry of the solution may make it useful in modeling the photospheric flux cancellation on the Sun.

  18. Observational study of the IMF spiral north and south of the current sheet

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Bieber, J. W.

    1992-01-01

    We have analyzed 23 years of spacecraft observations spanning 27 AU. Our analysis reveals both an overwinding of the interplanetary magnetic field (IMF) and a sustained asymmetry between the northern and southern hemispheres of the heliosphere. Nonzero azimuthal field components at the source boundary may account for the observed overwinding. The north-south asymmetry, whereby the IMF spiral north of the current sheet is more tightly wound than the IMF spiral south of the current sheet, persists due to unknown sources. It is also shown that there exist significant, correlated departures from the Parker theory in the azimuthal component of the field.

  19. Laboratory Observation of Resistive Electron Tearing in a Two-Fluid Reconnecting Current Sheet.

    PubMed

    Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; Yoo, Jongsoo; Fox, William

    2016-08-26

    The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. The reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate.

  20. Kink-mode Waves and Bifurcated Current Sheets: CLUSTER Observations and Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Cully, C.; Donovan, E.; Buchert, S.; Lucek, E.

    2003-12-01

    Although the magnetic configuration of the tail current sheet in the moments before reconnection is of considerable interest, many fundamental observational questions remain. What does the large-scale structure typically look like? How thick is the sheet? Is it bifurcated? What bulk wavemodes are active, and at what amplitude? Cluster observations, when combined with multipoint analysis techniques, offer the opportunity to observationally resolve some of these questions. We present an analysis technique that we use to first solve for the local normal vector to the current sheet at each data point, and then to identify the presence and wavemode of large-scale bulk wave modes (e.g. kink modes). We then take this motion into account when reconstructing the large-scale structure of the sheet from the measurements. We apply these techniques to Cluster observations of the tail current sheet before a substorm on the 11th of October, 2001. At the Cluster location 19 Re downtail, we find large-amplitude kink-mode waves that are propagating duskward in the minutes before reconnection onset.

  1. NUMERICAL EXPERIMENTS ON FINE STRUCTURE WITHIN RECONNECTING CURRENT SHEETS IN SOLAR FLARES

    SciTech Connect

    Shen Chengcai; Lin Jun; Murphy, Nicholas A.

    2011-08-10

    We perform resistive magnetohydrodynamic simulations to study the internal structure of current sheets that form during solar eruptions. The simulations start with a vertical current sheet in mechanical and thermal equilibrium that separates two regions of the magnetic field with opposite polarity which are line-tied at the lower boundary representing the photosphere. Reconnection commences gradually due to an initially imposed perturbation, but becomes faster when plasmoids form and produce small-scale structures inside the current sheet. These structures include magnetic islands or plasma blobs flowing in both directions along the sheet, and X-points between pairs of adjacent islands. Among these X-points, a principal one exists at which the reconnection rate reaches maximum. A fluid stagnation point (S-point) in the sheet appeared where the reconnection outflow bifurcates. The S-point and the principal X-point (PX-point) are not co-located in space though they are very close to one another. Their relative positions alternate as reconnection progresses and determine the direction of motion of individual magnetic islands. Newly formed islands move upward if the S-point is located above the PX-point, and downward if the S-point is below the PX-point. Merging of magnetic islands was observed occasionally between islands moving in the same direction. Reconnected plasma flow was observed to move faster than blobs nearby.

  2. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  3. Modeling of different scenarios of thin current sheet equilibria in the Earth’s magnetotail

    SciTech Connect

    Ul’kin, A. A.; Malova, H. V. Popov, V. Yu.; Zelenyi, L. M.

    2015-02-15

    The Earth’s magnetosphere is an open dynamic system permanently interacting with the solar wind, i.e., the plasma flow from the Sun. Some plasma processes in the magnetosphere are of spontaneous explosive character, while others develop rather slowly as compared to the characteristic times of plasma particle motion in it. The large-scale current sheet in the magnetotail can be in an almost equilibrium state both in quiet periods and during geomagnetic perturbations, and its variations can be considered quasistatic. Thus, under some conditions, the magnetotail current sheet can be described as an equilibrium plasma system. Its state depends on various parameters, in particular, on those determining the dynamics of charged particles. Knowing the main governing parameters, one can study the structure and properties of the current sheet equilibrium. This work is devoted to the self-consistent modeling of the equilibrium thin current sheet (TCS) of the Earth’s magnetotail, the thickness of which is comparable with the ion gyroradius. The main objective of this work is to examine how the TCS structure depends on the parameters characterizing the particle dynamics and magnetic field geometry. A numerical hybrid self-consistent TCS model in which the tension of magnetic field lines is counterbalanced by the inertia of ions moving through the sheet is constructed. The ion dynamics is considered in the quasi-adiabatic approximation, while the electron motion, in the conductive fluid approximation. Depending on the values of the adiabaticity parameter κ (which determines the character of plasma particle motion) and the dimensionless normal component of the magnetic field b{sub z}, the following two scenarios are considered: (A) the adiabaticity parameter is proportional to the particle energy and b{sub z} = const and (B) the particle energy is fixed and the adiabaticity parameter is proportional to b{sub z}. The structure of the current sheet and particle dynamics in it

  4. The effect of coronal mass ejections on the structure of the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Zhao, Xuepu; Hoeksema, J. Todd

    1994-01-01

    The existence of a stable heliospheric current sheet (HCS) structure near solar cycle maximum was questioned since the recognition that coronal mass ejections (CME's) occur in coronal helmet streamers. Evidence is presented suggesting that pre-existing helmet streamers disrupted or blown out by CME's reform in a time interval much shorter than the life time of the HCS, and that the concept of the HCS has a meaning at any time of thesolar cycle. It appears that the HCS, the current layer that separates adjacent interplanetary magnetic field regions with opposite magnetic polarity, exists throughout the solar cycle, though not always as a thin disk-like sheet. The sheet may be thickened by embedded magnetic ropes formed by CME's, especially near sunspot maximum. The HCS may be used as timing mark in identifying or predicting CME's in the interplanetary medium.

  5. Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.

    2014-12-01

    How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.

  6. Fe, O, and C Charge States Associated with Quiescent Versus Active Current Sheets in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Ko, Y.-K.; vonSteiger, R.

    2008-01-01

    Ulysses MAG data were used to locate the heliospheric current sheet in data from 1991 through 2006. The purpose was to characterize typical charge states for Fe, O, and C in the vicinity of the current sheet and provide insight into the physical sources for these charge states in the corona. A study of He/H around the current sheets has led to a clear distinction between quiescent current sheets at times of low solar activity and active current sheets associated with magnetic clouds (and, presumably, ICMES). It has been shown that high ionization state Fe is produced in the corona in current sheets associated with CMEs through spectroscopic observations of the corona and through in situ detection at Ulysses. Here we show that the ionization state of Fe is typically only enhanced around active current sheets while the ionization states of O and C are commonly enhanced around both quiescent and active current sheets. This is consistent with UV coronal spectroscopy, which has shown that reconnection in current sheets behind CMEs leads to high temperatures not typically seen above quiet streamers.

  7. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Wang, Ya-Guang

    2008-03-01

    Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy

  8. Analysis of the heliospheric current sheet at Earth's orbit and model comparisons

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Szabo, A.; Peredo, M.; Hoeksema, T.

    1995-01-01

    IMP 8 magnetic field data for the first half of the year 1994, i.e., for about 6 solar rotations, are analyzed around regions of sector boundary crossings with the purpose of obtaining both gross- and fine-scale characteristics of the related heliospheric current sheets separating the observed sectors. For purposes of estimating the attitudes of the normals to the sector boundaries. analysis intervals (sometimes 30 min or more in length) allowing the field to fully complete an excursion of about 180 deg were used in the study, which consisted of variance analyses of the field within those intervals. The resulting boundary normals were analyzed and compared to known (generic) models of projected heliospheric current sheets and to a coronal field model for the same time period. One of the most outstanding features of the resulting ensemble of estimated boundary normals for this period is that they strongly prefer low inclinations, indicating that the observations do not support a 1 AU model that predicts a current sheet whose surface is approximately parallel with the sun's equator, such as the 'sombrero' model. They instead support a model that predicts a relatively high inclination current sheet at 1 AU. Also the normals assume a surprisingly large range of longitudes, somewhat favoring those consistent with a Parker model (45 deg and 225 deg) and/or radial alignment (0 deg and 180 deg). These boundary structures, as defined, are shown typically to be as broad as several hundred proton gyroradii, but having embedded within them very thin structures associated with stronger currents. Such thin structures have normals usually differing markedly from the gross boundary. For some crossings there are indications of a wave-like structure in the current sheet as it passed the spacecraft.

  9. Evidence for two separate heliospheric current sheets of cylindrical shape during MID-2012

    SciTech Connect

    Wang, Y.-M.; Young, P. R.; Muglach, K. E-mail: pyoung@ssd5.nrl.navy.mil

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180°; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  10. MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS

    SciTech Connect

    Yu Cong

    2013-07-10

    We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when current sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.

  11. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Mortier, Jérémy; Philippov, Alexander A.

    2016-11-01

    Polarization is a powerful diagnostic tool to constrain the site of the high-energy pulsed emission and particle acceleration in gamma-ray pulsars. Recent particle-in-cell simulations of pulsar magnetosphere suggest that high-energy emission results from particles accelerated in the equatorial current sheet emitting synchrotron radiation. In this study, we re-examine the simulation data to compute the phase-resolved polarization properties. We find that the emission is mildly polarized and that there is an anti-correlation between the flux and the degree of linear polarization (on-pulse: ˜15 per cent, off-pulse: ˜30 per cent). The decrease of polarization during pulses is mainly attributed to the formation of caustics in the current sheet. Each pulse of light is systematically accompanied by a rapid swing of the polarization angle due to the change of the magnetic polarity when the line of sight passes through the current sheet. The optical polarization pattern observed in the Crab can be well-reproduced for a pulsar inclination angle ˜60° and an observer viewing angle ˜130°. The predicted high-energy polarization is a robust feature of the current sheet emitting scenario which can be tested by future X-ray and gamma-ray polarimetry instruments.

  12. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2013-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180 deg; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  13. Instability of current sheets with a localized accumulation of magnetic flux

    NASA Astrophysics Data System (ADS)

    Pritchett, P. L.

    2015-06-01

    The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small "normal" Bz component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing Bz profile and the other with a localized Bz "hump." The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no Bz accumulation even in the presence of open boundary conditions.

  14. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  15. The Self-Consistent Generation of Current Sheets in Astrophysical Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory

    2014-10-01

    In space and astrophysical plasma turbulence, it has long been recognized that dissipation occurs predominantly in intermittent current sheets, with vigorous activity in the past few years focused on obtaining observational evidence for such localized dissipation in the near-Earth solar wind. The nature of these magnetic discontinuities and their associated current sheets measured in the solar wind remains unclear--are these discontinuities due to filamentary magnetic structure in the solar wind, or do they arise dynamically from turbulent interactions? Recent analytical solution, numerical validation, and experimental verification of the nonlinear energy transfer in Alfven wave collisions, the nonlinear interactions between counterpropagating Alfven waves, has established this interaction as the fundamental building block of astrophysical plasma turbulence. Here I will present first-principles analytical calculations and supporting numerical simulations that Alfven wave collisions in the strong turbulence limit naturally produce current sheets, providing the first theoretical unification of models of plasma turbulence mediated by Alfven waves with ideas on localized dissipation in current sheets. Supported by NSF CAREER Award AGS-1054061, NSF Grant PHY-10033446, and NASA Grant NNX10AC91G.

  16. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard "ballerina skirt" picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180° a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  17. Instability of current sheets with a localized accumulation of magnetic flux

    SciTech Connect

    Pritchett, P. L.

    2015-06-15

    The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small “normal” B{sub z} component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing B{sub z} profile and the other with a localized B{sub z} “hump.” The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no B{sub z} accumulation even in the presence of open boundary conditions.

  18. Global and local current sheet thickness estimates during the late growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Mitchell, D. G.; Mcpherron, Robert L.; Huang, C. Y.; Frank, L. A.

    1992-01-01

    The thinning and intensification of the cross tail current sheet during the substorm growth phase are analyzed during the CDAW 6 substorm (22 Mar. 1979) using two complementary methods. The magnetic field and current sheet development are determined using data from two spacecraft and a global magnetic field model with several free parameters. These results are compared with the local calculation of the current sheet location and structure previously done by McPherron et al. Both methods lead to the conclusion that an extremely thin current sheet existed prior to the substorm onset, and the thicknesses estimated by the two methods at substorm onset agree relatively well. The plasma data from the ISEE 1 spacecraft at 13 R(sub E) show an anisotropy in the low energy electrons during the growth phase which disappears just before the substorm onset. The global magnetic model results suggest that the field is sufficiently stretched to scatter such low energy electrons. The strong stretching may improve the conditions for the growth of the ion tearing instability in the near Earth tail at substorm onset.

  19. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    NASA Astrophysics Data System (ADS)

    Zharkova, V.; Khabarova, O.

    2015-04-01

    Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS) or in a front of interplanetary coronal mass ejections (ICMEs) often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons) measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC) simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012). The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR), which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS) are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic suprathermal

  20. Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection

  1. Implicit PIC Simulations of Magnetospheric Reconnection Initialized with Fully Kinetic Asymmetric Current-Sheet Equilibria

    NASA Astrophysics Data System (ADS)

    Newman, David L.; Goldman, Martin V.; Lapenta, Giovanni; Markidis, Stefano

    2013-10-01

    A family of one-dimensional kinetic current sheet equilibria has been developed in which the density difference across the sheet is maintained by ambipolar electric fields (with E perpendicular to J and B). These electric fields can form an effective potential barrier that allows particles of one species (e.g., electrons) with the same energy to have different phase-space densities on the two sides of the current sheet, thereby breaking the symmetry. Such solutions necessarily require the inclusion of non-Maxwellian features, and share characteristics with double layers and other nonlinear electrostatic structures. Implicit PIC simulations were initialized with the electron and ion distribution functions corresponding to specific solutions of this type and were found to behave as equilibria that are subject to an asymmetric tearing-mode-like instability. As expected, the instability growth rate increases as the width of the current sheet decreases. Imposing a weak perturbation on the equilibrium allows for a controlled study of the evolution of the asymmetric reconnecting plasma. Examples will be presented of the evolution for different initial states relevant to magnetospheric reconnection, including varying values of the guide magnetic field. Research supported by NSF and NASA.

  2. Statistical and spectral properties of magnetic islands in reconnecting current sheets during two-ribbon flares

    SciTech Connect

    Shen, Chengcai; Lin, Jun; Murphy, Nicholas A.; Raymond, John C.

    2013-07-15

    We perform a set of two dimensional resistive magnetohydrodynamic simulations to study the reconnection process occurring in current sheets that develop during solar eruptions. Reconnection commences gradually and produces small-scale structures inside the current sheet, which has one end anchored to the bottom boundary and the other end open. The main features we study include plasmoids (or plasma blobs) flowing in the sheet, and X-points between pairs of adjacent islands. The statistical properties of the fine structure and the dependence of the spectral energy on these properties are examined. The flux and size distribution functions of plasmoids roughly follow inverse square power laws at large scales. The mass distribution function is steep at large scales and shallow at small scales. The size distribution also shows that plasmoids are highly asymmetric soon after being formed, while older plasmoids tend to be more circular. The spectral profiles of magnetic and kinetic energy inside the current sheet are both consistent with a power law. The corresponding spectral indices γ are found to vary with the magnetic Reynolds number R{sub m} of the system, but tend to approach a constant for large R{sub m} (>10{sup 5}). The motion and growth of blobs change the spectral index. The growth of new islands causes the power spectrum to steepen, but it becomes shallower when old and large plasmoids leave the computational domain.

  3. A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1990-01-01

    A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.

  4. A test of source-surface model predictions of heliospheric current sheet inclination

    NASA Technical Reports Server (NTRS)

    Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.

    1994-01-01

    The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.

  5. Current sheet in plasma as a system with a controlling parameter

    SciTech Connect

    Fridman, Yu. A. Chukbar, K. V.

    2015-08-15

    A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.

  6. Magnetotail Current Sheet Thinning and Magnetic Reconnection Dynamics in Global Modeling of Substorms

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; DeZeeuw, D. L.; Gombosi, T. I.

    2008-01-01

    Magnetotail current sheet thinning and magnetic reconnection are key elements of magnetospheric substorms. We utilized the global MHD model BATS-R-US with Adaptive Mesh Refinement developed at the University of Michigan to investigate the formation and dynamic evolution of the magnetotail thin current sheet. The BATSRUS adaptive grid structure allows resolving magnetotail regions with increased current density up to ion kinetic scales. We investigated dynamics of magnetotail current sheet thinning in response to southwards IMF turning. Gradual slow current sheet thinning during the early growth phase become exponentially fast during the last few minutes prior to nightside reconnection onset. The later stage of current sheet thinning is accompanied by earthward flows and rapid suppression of normal magnetic field component $B-z$. Current sheet thinning set the stage for near-earth magnetic reconnection. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. One of the major challenges in global MHD modeling of the magnetotail magnetic reconnection is to reproduce fast reconnection rates typically observed in smallscale kinetic simulations. Bursts of fast reconnection cause fast magnetic field reconfiguration typical for magnetospheric substorms. To incorporate nongyritropic effects in diffusion regions we developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated self-consistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites and spatial scales of the diffusion region are updated

  7. Collisional tearing instability in the current sheet with a low magnetic Lundquist number

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Fu, Z. F.

    1986-01-01

    An MHD model is used to calculate the growth rate of the collisional tearing mode instability in a current layer with a Lundquist number in the range 3-100,000. The maximum growth rate is found to be a function of the Alfven transit time in the current sheet and the Lundquist number. When the Lundquist number is below 50, the growth rate asymptotically approaches a value of about -0.075/transit time. The discovery of the dependence of the asymptotic value is considered to be of use in studies of the current sheet in the diffusion region of a magnetic reconnection configuration, where the Lundquist number will be in the range 2-100.

  8. On the radial force balance in the quiet time magnetotail current sheet

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.

    2016-05-01

    Using Time History of Events and Macroscale Interactions spacecraft observations of the quite magnetotail current sheet within the r∈[9,35]RE region (r is the radial distance from Earth and RE is Earth's radius), we investigate the thermal plasma pressure distribution along the magnetotail. Taking advantage of flapping motions of an ensemble of current sheets at various distances, we estimate the current density magnitude jy (in GSM coordinates). Comparing the tension force jyBz (Bz is the magnetic field component) with the radial gradient of the plasma pressure demonstrates that this gradient is only a small fraction, ˜10-15%, of the Ampere force exerted on the cross-tail current, in the r > 15RE region. We also estimate the contribution of the electron temperature anisotropy to the pressure balance: in the r > 15RE region the corresponding force can balance only 10-15% of the observed tension force jyBz. Thus, we conclude that about 70% of the tension force is not balanced by the combination of isotropic radial pressure gradient or the electron anisotropy. We discuss mechanisms that could be responsible for balancing the magnetotail current sheet.

  9. Magnetic Reconnection: Recursive Current Sheet Collapse Triggered by “Ideal” Tearing

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco; Rappazzo, Antonio Franco; Pucci, Fulvia

    2015-11-01

    We study, by means of MHD simulations, the onset and evolution of fast reconnection via the “ideal” tearing mode within a collapsing current sheet at high Lundquist numbers (S\\gg {10}4). We first confirm that as the collapse proceeds, fast reconnection is triggered well before a Sweet-Parker-type configuration can form: during the linear stage, plasmoids rapidly grow in a few Alfvén times when the predicted “ideal” tearing threshold S-1/3 is approached from above; after the linear phase of the initial instability, X-points collapse and reform nonlinearly. We show that these give rise to a hierarchy of tearing events repeating faster and faster on current sheets at ever smaller scales, corresponding to the triggering of “ideal” tearing at the renormalized Lundquist number. In resistive MHD, this process should end with the formation of sub-critical (S ≤ 104) Sweet-Parker sheets at microscopic scales. We present a simple model describing the nonlinear recursive evolution that explains the timescale of the disruption of the initial sheet.

  10. Dynamical and Physical Properties of a Post-Coronal Mass Ejection Current Sheet

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Raymond, John C.; Lin, Jun; Lawrence, Gareth; Li, Jing; Fludra, Andrzej

    2003-01-01

    In the eruptive process of the Kopp-Pneuman type, the closed magnetic field is stretched by the eruption so much that it is usually believed to be " open " to infinity. Formation of the current sheet in such a configuration makes it possible for the energy in the coronal magnetic field to quickly convert into thermal and kinetic energies and cause significant observational consequences, such as growing postflare/CME loop system in the corona, separating bright flare ribbons in the chromosphere, and fast ejections of the plasma and the magnetic flux. An eruption on 2002 January 8 provides us a good opportunity to look into these observational signatures of and place constraints on the theories of eruptions. The event started with the expansion of a magnetic arcade over an active region, developed into a coronal mass ejection (CME), and left some thin streamer-like structures with successively growing loop systems beneath them. The plasma outflow and the highly ionized states of the plasma inside these streamer-like structures, as well as the growing loops beneath them, lead us to conclude that these structures are associated with a magnetic reconnection site, namely, the current sheet, of this eruptive process. We combine the data from the Ultraviolet Coronagraph Spectrometer, Large Angle and Spectrometric Coronagraph Experiment, EUV Imaging Telescope, and Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory, as well is from the Mauna Loa Solar Observatory Mark IV K-coronameter, to investigate the morphological and dynamical properties of this event, as well as the physical properties of the current sheet. The velocity and acceleration of the CME reached up to 1800 km/s and 1 km/sq s, respectively. The acceleration is found to occur mainly at the lower corona (<2.76 Solar Radius). The post-CME loop systems showed behaviors of both postflare loops (upward motion with decreasing speed) and soft X-ray giant arches (upward motion with constant

  11. Plasmoid formation in the elongated current sheet during transient CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi

    2016-10-01

    The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.

  12. Magnetoacoustic waves propagating along a dense slab and Harris current sheet and their wavelet spectra

    SciTech Connect

    Mészárosová, Hana; Karlický, Marian; Jelínek, Petr; Rybák, Ján

    2014-06-10

    Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was found that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.

  13. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  14. 3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM

    SciTech Connect

    Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.

    2015-07-01

    Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.

  15. Current sheet flapping motions in the tailward flow of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Vörös, Zoltán.; Ma, Xuanye; Wang, Shui

    2016-08-01

    The feature and origin of current sheet flapping motions are one of most interesting issues of magnetospheric dynamics. In this paper we report the flapping motion of the current sheet detected in the tailward flow of a magnetic reconnection event on 7 February 2009. This flapping motion with frequency about 12 mHz was accompanied by magnetic turbulence. The observations by the tail-elongated fleet of five Time History of Events and Macroscale Interactions during Substorms probes indicate that these flapping oscillations were rather confined within the tailward flow than were due to a global process. This flapping motion could be due to the instability driven by the free energy associated with the ion temperature anisotropy in the tailward flow. Our observations indicate that the flapping motion in the tailward flow could have a different generation mechanism with that in the earthward flow.

  16. Instability of the current sheet in the Earth's magnetotail with normal magnetic field

    SciTech Connect

    Bessho, N.; Bhattacharjee, A.

    2014-10-15

    Instability of a current sheet in the Earth's magnetotail has been investigated by two-dimensional fully kinetic simulations. Two types of magnetic configuration have been studied; those with uniform normal magnetic field along the current sheet and those in which the normal magnetic field has a spatial hump. The latter configuration has been proposed by Sitnov and Schindler [Geophys. Res. Lett. 37, L08102 (2010)] as one in which ion tearing modes might grow. The first type of configuration exhibits electron tearing modes when the normal magnetic field is small. The second type of configuration exhibits an instability which does not tear or change the topology of magnetic field lines. The hump in the initial configuration can propagate Earthward in the nonlinear regime, leading to the formation of a dipolarization front. Secondary magnetic islands can form in regions where the normal magnetic field is very weak. Under no conditions do we find the ion tearing instability.

  17. Current sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-Frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Choueiri, Edgar Y.; Polzin, Kurt A.

    2007-01-01

    The inductive formation of current sheets in a conical theta pinch FARAD (Faraday Accelerator with Radio-frequency Assisted Discharge) thruster is investigated experimentally with time-integrated photography. The goal is to help in understanding the mechanisms and conditions controlling the strength and extent of the current sheet, which are two indices important for FARAD as a propulsion concept. The profiles of these two indices along the inside walls of the conical acceleration coil are assumed to be related to the profiles of the strength and extent of the luminosity pattern derived from photographs of the discharge. The variations of these profiles as a function of uniform back-fill neutral pressure (with no background magnetic field and all parameters held constant) provided the first clues on the nature and qualitative dependencies of current sheet formation. It was found that there is an optimal pressure for which both indices reach a maximum and that the rate of change in these indices with pressure differs on either side of this optimal pressure. This allowed the inference that current sheet formation follows a Townsend-like breakdown mechanism modified by the existence of a finite pressure-dependent radio-frequency-generated electron density background. The observation that the effective location of the luminosity pattern favors the exit-half of the conical coil is explained as the result of the tendency of the inductive discharge circuit to operate near its minimal self-inductance. Movement of the peak in the luminosity pattern towards the upstream side of the cone with increasing pressure is believed to result from the need of the circuit to compensate for the increase in background plasma resistivity due to increasing pressure.

  18. Structure of the Heliospheric Current Sheet in the Early Portion of Sunspot Cycle 21,

    DTIC Science & Technology

    1982-04-01

    an active region , but for the large-scale, quasi-stationary fields that dominate the present analysis the source surface gives a reasonably good...contour levels. The predominance of away polarity magnetic field in most of the northern region of the heliosphere and of toward field in most of the...was confined in a narrower latitude region is not consistent with the current sheets shown in Figure 3b. In Figures 3a and 3b intervals of significant

  19. On the cause of thin current sheets in the near-Earth magnetotail and their possible significance for magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Schindler, K.; Birn, J.

    1993-01-01

    The formation of thin current sheets in the near-Earth magnetotail during substorm growth phases is addressed in terms of a simple model. An appropriate part of the unperturbed magnetotail is represented by a plane sheet model. Perturbations are applied to the upper and to the left boundaries, representing the magnetopause and the near-Earth tail boundary, where the perturbation at the latter models the interaction between the tail and the inner magnetosphere. Treating the perturbation as ideal (dissipation-free), we found that singular current sheets develop in the midplane of the tail. The analytical results are explored numerically. Using realistic dimensions of the domain considered, the influence of the earthward boundary on current sheet formation dominates. It is argued that current sheet formation of this type plays an important role in the processes associated with the onset of magnetospheric substorms.

  20. The 3-D description of vertical current sheets with application to solar flares

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Davis, J. M.

    1991-01-01

    Following a brief review of the processes which have been suggested for explaining the occurrence of solar flares we suggest a new scenario which builds on the achievements of the previous suggestion that the current sheets, which develop naturally in 3-D cases with gravity from impacting independent magnetic structures (i.e., approaching current systems), do not consist of horizontal currents but are instead predominantly vertical current systems. This suggestion is based on the fact that as the subphotospheric sources of the magnetic field displace the upper photosphere and lower chromosphere regions, where plasma beta is near unity, will experience predominantly horizontal mass motions which will lead to a distorted 3-D configurations of the magnetic field having stored free energy. In our scenario, a vertically flowing current sheet separates the plasma regions associated with either of the subphotospheric sources. This reflects the balanced tension of the two stressed fields which twist around each other. This leads naturally to a metastable or unstable situation as the twisted field emerges into a low beta region where vertical motions are not inhibited by gravity. In our flare scenario the impulsive energy release occurs, initially, not by reconnection but mainly by the rapid change of the magnetic field which has become unstable. During the impulsive phase the field lines contort in such way as to realign the electric current sheet into a minimum energy horizontal flow. This contortion produces very large electric fields which will accelerate particles. As the current evolves to a horizontal configuration the magnetic field expands vertically, which can be accompanied by eruptions of material. The instability of a horizontal current is well known and causes the magnetic field to undergo a rapid outward expansion. In our scenario, fast reconnection is not necessary to trigger the flare, however, slow reconnection would occur continuously in the current layer

  1. Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source

    NASA Astrophysics Data System (ADS)

    Christy, Larry

    Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.

  2. Kinetic model of force-free current sheets with non-uniform temperature

    NASA Astrophysics Data System (ADS)

    Kolotkov, D. Y.; Vasko, I. Y.; Nakariakov, V. M.

    2015-11-01

    The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by Harrison and Neukirch [Phys. Rev. Lett. 102(13), 135003 (2009)] predicts uniform distributions of the plasma temperature and density across the CS. However, in realistic physical systems, inhomogeneities of these plasma parameters may arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD limit), it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the MHD limit. In this paper, we generalise the kinetic model of a force-free current sheet, taking into account the inhomogeneity of the density and temperature across the CS. In the developed model, the density may either be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile, keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution functions for the protons and electrons, are determined analytically. Applications of the developed model to current sheets observed in space plasmas are discussed.

  3. Conditions for the formation of nongyrotropic current sheets in slowly evolving plasmas

    SciTech Connect

    Schindler, Karl; Hesse, Michael

    2010-08-15

    This paper addresses the formation of nongyrotropic current sheets resulting from slow external driving. The medium is a collisionless plasma with one spatial dimension and a three-dimensional velocity space. The study is based on particle simulation and an analytical approach. Earlier results that apply to compression of an initial Harris sheet are generalized in several ways. In a first step a general sufficient criterion for the presence of extra ion and electron currents due to nongyrotropic plasma conditions is derived. Then cases with antisymmetric magnetic and electric fields are considered. After establishing consistency of the criterion with the earlier case, the usefulness of this concept is illustrated in detail by two further particle simulations. The results indicate that the formation of nongyrotropic current sheets is a ubiquitous phenomenon for plasmas with antisymmetric fields that have evolved slowly from initial gyrotropic states. A fourth case concerns a plasma with a unidirectional magnetic field. Consistent with the general criterion, the observed final state is fluidlike in that it is approximately gyrotropic. Momentum balance is shown to include a contribution that results from accumulation of an off-diagonal pressure tensor component during the evolution. Heat flux also plays an important role.

  4. Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection

    SciTech Connect

    Jain, Neeraj; Büchner, Jörg

    2014-06-15

    In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with the thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.

  5. Current Sheet Statistics in Three-Dimensional Simulations of Coronal Heating

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ng, C. S.; Bhattacharjee, A.

    2013-04-01

    In a recent numerical study [Ng et al., Astrophys. J. 747, 109, 2012], with a three-dimensional model of coronal heating using reduced magnetohydrodynamics (RMHD), we have obtained scaling results of heating rate versus Lundquist number based on a series of runs in which random photospheric motions are imposed for hundreds to thousands of Alfvén time in order to obtain converged statistical values. The heating rate found in these simulations saturate to a level that is independent of the Lundquist number. This scaling result was also supported by an analysis with the assumption of the Sweet-Parker scaling of the current sheets, as well as how the width, length and number of current sheets scale with Lundquist number. In order to test these assumptions, we have implemented an automated routine to analyze thousands of current sheets in these simulations and return statistical scalings for these quantities. It is found that the Sweet-Parker scaling is justified. However, some discrepancies are also found and require further study.

  6. Instabilities of collisionless current sheets revisited: The role of anisotropic heating

    SciTech Connect

    Muñoz, P. A. Kilian, P. Büchner, J.

    2014-11-15

    In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initially triggered ones. Numerical effects causing anisotropic heating at electron time scales become especially important for higher mass ratios (above m{sub i}/m{sub e}=180). If numerical effects are carefully taken into account, one can recover the theoretical estimated linear growth rates of the tearing instability of thin isotropic collisionless current sheets, also for higher mass ratios.

  7. Distribution of Plasmoids in Post-Coronal Mass Ejection Current Sheets

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Guo, L.; Huang, Y.

    2013-12-01

    Recently, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has been proposed as a possible mechanism for fast reconnection. In this work, we investigate this scenario by comparing the distribution of plasmoids obtained from Large Angle and Spectrometric Coronagraph (LASCO) observational data of a coronal mass ejection event with a resistive magnetohydrodynamic simulation of a similar event. The LASCO/C2 data are analyzed using visual inspection, whereas the numerical data are analyzed using both visual inspection and a more precise topological method. Contrasting the observational data with numerical data analyzed with both methods, we identify a major limitation of the visual inspection method, due to the difficulty in resolving smaller plasmoids. This result raises questions about reports of log-normal distributions of plasmoids and other coherent features in the recent literature. Based on nonlinear scaling relations of the plasmoid instability, we infer a lower bound on the current sheet width, assuming the underlying mechanism of current sheet broadening is resistive diffusion.

  8. The Role of Current Sheets in Solar Eruptive Events: An ISSI International Team Project

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Poletto, Giannina

    2006-01-01

    Current sheets (CSs) are a prerequisite for magnetic reconnection. An International Space Science Institute (ISSI, of Bern, Switzerland) research team will work to empirically define current sheet properties in the solar atmosphere and their signatures in the interplanetary medium, and to understand their role in the development of solar eruptive events. The project was inspired by recently acquired ground and space based observations that reveal CS signatures at the time of flares and Coronal Mass Ejections (CMEs), in the chromosphere, in the corona and in the interplanetary medium. At the same time, theoretical studies predict the formation of CSs in different models and configurations, but theories and observational results have not yet developed an interaction efficient enough to allow us to construct a unified scenario. The team will generate synergy between observers, data analysts, and theoreticians, so as to enable a significant advance in understanding of current sheet behavior and properties. A further motivation for studying CSs is related to the expected electric fields in CSs that may be the source of solar energetic particles (SEPs). The team has 14 members from Europe and the US. The first meeting is in October 2006 and the second is late in 2007.

  9. Ion velocity distributions in the vicinity of the current sheet in Earth's distant magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Kivelson, M. G.; Yamamoto, T.; Fairfield, D. H.

    1994-01-01

    Observations of the three-dimensional velocity distributions of positive ions and electrons have been recently gained for the first time in Earth's distant magnetotail with the Galileo and Geotail spacecraft. For this brief discussion of these exciting results the focus is on the overall character of the ion velocity distributions during substorm activity. The ion velocity distributions within and near the magnetotail current sheet are not accurately described as convecting, isotropic Maxwellians. The observed velocity distributions are characterized by at least two robust types. The first type is similar to the 'lima bean'-shaped velocity distributions that are expected from the nonadiabatic acceleration of ions which execute Speiser-type trajectories in the current sheet. The second distribution is associated with the presence of cold ion beams that presumably also arise from the acceleration of plasma mantle ions in the electric and weak magnetic fields in the current sheet. The ion velocity distributions in a magnetic field structure that is similar to that for plasmoids are also examined. Again the velocity distributions are not Maxwellian but are indicative of nonadiabatic acceleration. An example of the pressure tensor within the plasmoid-like event is also presented because it is anticipated that the off-diagonal elements are important in a description of magnetotail dynamics. Thus our concept of magnetotail dynamics must advance from the present assumption of co-moving electron and ion Maxwellian distributions into reformulations in terms of global kinematical models and nonadiabatic particle motion.

  10. Kinetic model of force-free current sheets with non-uniform temperature

    SciTech Connect

    Kolotkov, D. Y.; Nakariakov, V. M.; Vasko, I. Y.

    2015-11-15

    The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by Harrison and Neukirch [Phys. Rev. Lett. 102(13), 135003 (2009)] predicts uniform distributions of the plasma temperature and density across the CS. However, in realistic physical systems, inhomogeneities of these plasma parameters may arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD limit), it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the MHD limit. In this paper, we generalise the kinetic model of a force-free current sheet, taking into account the inhomogeneity of the density and temperature across the CS. In the developed model, the density may either be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile, keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution functions for the protons and electrons, are determined analytically. Applications of the developed model to current sheets observed in space plasmas are discussed.

  11. Experimental and theoretical investigations into the paratropic ring current of a porphyrin sheet.

    PubMed

    Nakamura, Yasuyuki; Aratani, Naoki; Osuka, Atsuhiro

    2007-07-02

    Anomalous induced magnetic effects were observed in a directly fused square-planar porphyrin sheet 1, in that the protons above the center of the tetraporphyrin core were characteristically shifted downfield in the 1H NMR spectrum. These observations suggest a rare paratropic ring-current effect around the planar cyclooctatetraene (COT) core of 1. To examine the spatial distribution of the induced magnetic effect, face-to-face dimeric complexes of porphyrin sheet 1 with bipyridyl-type guest molecules (G1-G3) were prepared, which provided complexation-induced shifts (CISs) of the guest molecules as a neat experimental guide to the distance dependence of the induced magnetic effects in 1. Nucleus-independent chemical shift (NICS) values of 1 were calculated by varying the distance of the probe from the plane of 1. Whereas a simple bell-type profile was estimated for the complex (1)2-(G1)4, the distance profiles of the CIS became increasingly flat for (1)2-(G2)4 and (1)2-(G3)4. Finally, we investigated the paratropic ring-current effect just above the COT core of the complex 1-(G4)2, which agrees well with the theoretically estimated distance-dependent induced magnetic effect. Consequently, both experimental and theoretical studies on the complexes of porphyrin sheets with guest molecules revealed for the first time a unique distance dependence of the paratropic ring current.

  12. Pulse current assisted drawability of AZ31B magnesium alloy sheets

    NASA Astrophysics Data System (ADS)

    Song, J. H.; Choi, S.; Kang, M. J.; Kim, D.; Lee, M.-G.; Lim, C. Y.

    2016-11-01

    The thermal effect and athermal effect such as electro-plastic effect of metallic materials induced by high density current can dramatically reduce the flow stress, which is beneficial to the forming process of less formable metal. In this paper, pulse current-assisted deep drawing of the magnesium alloy is proposed due to lower energy consumption and higher efficiency. In this process, the metal sheet is designed in series in a pulse current circuit and heated directly by the pulse current. In addition, the insulated mould is employed to avoid the current leaking. Experiments were conducted to demonstrate the feasibility and advantages of the proposed process. An experimental process system was established and the electrical-assisted Erichsen cupping tests and rectangular cup drawing tests were performed. The experiments showed that the forming load was reduced and the cupping height and associated principal strains were increased in the Erichsen cupping and deep drawing process assisted by high-density electric current.

  13. A current disruption mechanism in the neutral sheet for triggering substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1989-01-01

    Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to

  14. Heliospheric current sheet and effects of its interaction with solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.; Dunko, A. V.; Petrukovich, A. A.

    2016-08-01

    The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in the given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.

  15. The energy-based scaling of a thin current sheet: Case study.

    PubMed

    Sasunov, Yu L; Khodachenko, M L; Alexeev, I I; Belenkaya, E S; Gordeev, E I; Kubyshkin, I V

    2015-11-28

    The influence of average plasma energy E~ on the half thickness ℓ of a thin current sheet (TCS) is investigated for three cases of TCSs crossings. The value of ℓ was estimated from the magnetic field data by means of Cluster observations. The obtained scaling values for TCSs, Z~=ℓ/ρT, where ρT is the thermal Larmor radius, were compared with the scaling Zμ=22E~/T, where E~ and T are the average plasma energy and the temperature of plasma, which assumes a specific dynamics (conservation of magnetic flux through the trajectory segment) of the current carriers. The comparison of Z~ and Zμ shows a good agreement.

  16. Comparison of Heliospheric Current Sheet Structure Obtained from Potential Magnetic Field Computations and from Observed Polarization Coronal Brightness,

    DTIC Science & Technology

    1983-02-01

    the current sheet computed with the potential field approximation appears to be distorted by a large photospheric region of unbalanced magnetic flux...1982) attributed the northward bulge in the PF current sheet to an unusually large photospheric region of unbalanced "towari" polarity that was observed...currents would not be very good observed at the earth iSvalgaard and Wilcox. 19751. Occa- for the strong localized fields of an active region , but for the

  17. Explosive Magnetic Reconnection in Double-current Sheet Systems: Ideal versus Resistive Tearing Mode

    NASA Astrophysics Data System (ADS)

    Baty, Hubert

    2017-03-01

    Magnetic reconnection associated with the tearing instability occurring in double-current sheet systems is investigated within the framework of resistive magnetohydrodynamics (MHD) in a two-dimensional Cartesian geometry. A special emphasis on the existence of fast and explosive phases is taken. First, we extend the recent theory on the ideal tearing mode of a single-current sheet to a double-current layer configuration. A linear stability analysis shows that, in long and thin systems with (length to shear layer thickness) aspect ratios scaling as {S}L9/29 (S L being the Lundquist number based on the length scale L), tearing modes can develop on a fast Alfvénic timescale in the asymptotic limit {S}L\\to ∞ . The linear results are confirmed by means of compressible resistive MHD simulations at relatively high S L values (up to 3× {10}6) for different current sheet separations. Moreover, the nonlinear evolution of the ideal double tearing mode (IDTM) exhibits a richer dynamical behavior than its single-tearing counterpart, as a nonlinear explosive growth violently ends up with a disruption when the two current layers interact trough the merging of plasmoids. The final outcome of the system is a relaxation toward a new state, free of magnetic field reversal. The IDTM dynamics is also compared to the resistive double tearing mode dynamics, which develops in similar systems with smaller aspect ratios, ≳ 2π , and exhibits an explosive secondary reconnection, following an initial slow resistive growth phase. Finally, our results are used to discuss the flaring activity in astrophysical magnetically dominated plasmas, with a particular emphasis on pulsar systems.

  18. Current sheet formation in a 3D line-tied plasma

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Huang, Yi-Min; Qin, Hong; Bhattacharjee, Amitava

    2016-10-01

    Recently a variational integrator for ideal MHD in Lagrangian labeling has been developed by discretizing Newcomb's Lagrangian on a moving mesh using discretized exterior calculus. With the frozen-in equation built-in, the method is free of artificial reconnection, and therefore optimal for studying current sheet formation. Using this method, it is confirmed that the nonlinear solution to the ideal Hahm-Kulsrud-Taylor problem in 2D yields a singular current sheet. We identify it by showing that the equilibrium solution converges with increasing resolution, except where there is singularity. This approach is in contrast to previous studies which use diverging peak current density as sole evidence of current singularity. We then extend the problem to 3D line-tied geometry. The linear solution, which is singular in 2D, is found to be smooth, but pathological when the system is sufficiently long. Accordingly, the nonlinear solution turns out to be smooth for short systems, but tends to become more singular when the system length increases. A resolution to this problem can potentially settle the long-standing controversy over Parker's conjecture on the formation of current singularity in 3D line-tied geometry. This research was supported by the U.S. DOE under Contract No. DE-AC02-09CH11466.

  19. Thin current sheets in the magnetotail during substorms: CDAW 6 revisited

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Mitchell, D. G.; Mcpherron, R. L.; Huang, C. Y.; Frank, L. A.

    1994-01-01

    The global magnetic field configuration during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 substorm (March 22, 1979, 1054 UT) is modeled using data from two suitably located spacecraft and temporally evolving variations of the Tsyganenko magnetic field model. These results are compared with a local calculation of the current sheet location and thickness carried out by McPherron et al. (1987) and Sanny et al. (this issue). Both models suggest that during the growth phase the current sheet rotated away from its nominal location, and simultaneously thinned strongly. The locations and thickness obtained from the two models are in good agreement. The global model suggests that the peak current density is approximately 120 nA/sq m and that the cross-tail current almost doubled its intensity during this very strong growth phase. The global model predicts a field configuration that is sufficiently stretched to scatter thermal electrons, which may be conducive to the onset of ion tearing in the tail. The electron plasma data further support this scenario, as the anisotropy present in the low-energy electrons disappears close to the substorm onset. The electron contribution to the intensifying current in this case is of the order of 10% before the isotropization of the distribution.

  20. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    SciTech Connect

    Ostrovskaya, G. V.; Markov, V. S.; Frank, A. G.

    2016-01-15

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  1. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    NASA Astrophysics Data System (ADS)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  2. First demonstration of an asymmetric kinetic equilibrium for a thin current sheet

    SciTech Connect

    Aunai, Nicolas; Belmont, Gerard; Smets, Roch

    2013-11-15

    The modeling of steady state collisionless asymmetric tangential current layers is a challenging and poorly understood problem. For decades now, this difficulty has been limiting numerical models to approximate equilibria built with locally Maxwellian current layers and theoretical analyses to the very restricted Harris equilibrium. We show how the use of any distribution functions depending only on local macroscopic quantities results in a strong alteration of the current layer internal structure, which converges toward an unpredictable quasi-steady state with emission of ion scale perturbations. This transient can be explained in terms of ion kinetic and electron fluid physics. We demonstrate, for the first time, the validity of an asymmetric kinetic equilibrium model as well as its usability as an initial condition of hybrid kinetic simulations. This offers broad perspectives for the current sheet modeling, for which the early phase of instabilities can be studied within the kinetic formalism.

  3. Coronal current-sheet formation - The effect of asymmetric and symmetric shears

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; Antiochos, Spiro K.; Devore, C. R.

    1991-01-01

    A 2.5D numerical code is used to investigate the results of an asymmetric shear imposed on a potential quadrupolar magnetic field under two sets of atmospheric boundary conditions - a low-beta plasma with line tying at the base, similar to the line-tied analytic model, and a hydrostatic-equilibrium atmosphere with solar gravity, typical of the observed photosphere-chromosphere interface. The low-beta simulation confirms the crucial role of the line-tying assumption in producting current sheets. The effects of a symmetric shear on the same hydrostatic-equilibrium atmosphere is examined, using more grid points to improve the resolution of the current structures which form along the flux surfaces. It is found that true current sheets do not form in the corona when a more realistic model is considered. The amount of Ohmic dissipation in the thick currents is estimated to be two to four orders of magnitude below that required to heat the corona. It is concluded that magnetic topologies of the type examined here do not contribute significantly to coronal heating.

  4. LASCO White-Light Observations of Eruptive Current Sheets Trailing CMEs

    NASA Astrophysics Data System (ADS)

    Webb, David F.; Vourlidas, Angelos

    2016-12-01

    Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984 - 1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, ˜130 CME-rays, than during SMM. Important results include: The occurrence rate of the rays is ˜11 % of all CMEs during solar minimum, but decreases to ˜7 % at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3 - 4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is ˜12 R_{⊙}, with the longest current sheet of 18.5 R_{⊙}. The mean CS growth rates are 188 km s^{-1} at minimum and 324 km s^{-1} at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of ˜350 km s^{-1} with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within ˜1 day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic

  5. Particle acceleration in 3D single current sheets formed in the solar corona and heliosphere: PIC approach

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Siversky, T.

    2015-09-01

    Acceleration of protons and electrons in a reconnecting current sheet (RCS) is investigated with the test particle and particle-in-cell (PIC) approaches in a 3D magnetic topology. PIC simulations confirm a spatial separation of electrons and protons with respect to the midplane depending on the guiding field. Simulation reveals that the separation occurs in magnetic topologies with strong guiding fields and lasts as long as the particles are kept dragged into a current sheet. This separation produces a polarisation electric field induced by the plasma feedback to a presence of accelerated particles, which shape can change from symmetric towards the midplane (for weak guiding field) to fully asymmetric (for strong guiding field). Particles are found accelerated at a midplane of any current sheets present in the heliosphere to the energies up to hundred keV for electrons and hundred MeV for protons. The maximum energy gained by particles during their motion inside the current sheet is defined by its magnetic field topology (the ratio of magnetic field components), the side and location from the X-nullpoint, where the particles enter a current sheet. In strong magnetic fields of the solar corona with weaker guiding fields, electrons are found circulating about the midplane to large distances where proton are getting accelerated, creating about the current sheet midplane clouds of high energy electrons, which can be the source of hard X-ray emission in the coronal sources of flares. These electrons are ejected into the same footpoint as protons after the latter reach the energy sufficicent to break from a current sheet. In a weaker magnetic field of the heliosphere the bounced electrons with lower energies cannot reach the midplane turning instead at some distance D before the current sheet midplane by 180 degrees from their initial motion. Also the beams of accelerated transit and bounced particles are found to generate turbulent electric fields in a form of Langmuir

  6. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    SciTech Connect

    Loizu, J.; Hudson, S. R.; Bhattacharjee, A.; Lazerson, S.; Helander, P.

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.

  7. Analysis of induction-type coilgun performance based on cylindrical current sheet model

    SciTech Connect

    He, J.L.; Levi, E.; Zabar, Z.; Birenbaum, L.; Naot, Y. )

    1991-01-01

    This paper presents a method based on a cylindrical current sheet model for the analysis and design of induction-type coilguns. The paper starts with a derivation of closed-form formulas which relate the dimensions of the gun to the performance expressed in terms of propulsive and local maximum forces on the projectile, power factor and efficiency of the system, thermal stress of the projectile armature, distributions of the flux density around the launcher, and the system parameters in a multisection coilgun. The paper ends with a numerical example.

  8. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  9. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    SciTech Connect

    Brannon, S. R.; Longcope, D. W.; Qiu, J.

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  10. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Whipple, E. C.

    1991-01-01

    The present study examines how the changes in the generalized first adiabatic invariant J derived from the separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. A method is proposed for determining distribution functions for an ensemble of particles following interaction with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant. Generalized drift velocities are obtained for a 1D tail configuration by using the generalized first invariant. The invariant remained constant except for the discrete changes caused by chaotic scattering as the particles cross the separatrix.

  11. Particle orbits in model current sheet with a nonzero B(y) component

    NASA Technical Reports Server (NTRS)

    Zhu, Zhongwei; Parks, George

    1993-01-01

    The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.

  12. Secondary magnetic islands generated by the Kelvin-Helmholtz instability in a reconnecting current sheet.

    PubMed

    Fermo, R L; Drake, J F; Swisdak, M

    2012-06-22

    Magnetic islands or flux ropes produced by magnetic reconnection have been observed on the magnetopause, in the magnetotail, and in coronal current sheets. Particle-in-cell simulations of magnetic reconnection with a guide field produce elongated electron current layers that spontaneously produce secondary islands. Here, we explore the seed mechanism that gives birth to these islands. The most commonly suggested theory for island formation is the tearing instability. We demonstrate that in our simulations these structures typically start out, not as magnetic islands, but as electron flow vortices within the electron current sheet. When some of these vortices first form, they do not coincide with closed magnetic field lines, as would be the case if they were islands. Only after they have grown larger than the electron skin depth do they couple to the magnetic field and seed the growth of finite-sized islands. The streaming of electrons along the magnetic separatrix produces the flow shear necessary to drive an electron Kelvin-Helmholtz instability and produce the initial vortices. The conditions under which this instability is the dominant mechanism for seeding magnetic islands are explored.

  13. Linear tearing modes of a forced current-sheet equilibrium. [in solar corona

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Payne, David G.

    1990-01-01

    Linear tearing modes are studied in a nearly singular forced current-sheet equilibrium, such as could result from global magnetic forces in the solar corona. Growth rates for the tearing modes, determined by solving the linearized reduced MHD (Strauss) equations numerically, were found to scale as (gamma)tau(d) = about S exp 4/5 k(y) exp 4/5, where S is the Lundquist number, k(y) is the wavenumber, and tau(d) is the classical resistive diffusion time. This scaling is in agreement with predictions from analytical theory. Because of the faster S scaling of these modes compared to the tearing modes of a diffuse current-sheet equilibrium, the modes have much higher growth rates (by a factor of about 10,000) for coronal values of S (about 10 to the 12th). For coronal parameters, the growth times of these new modes are estimated to be on the order of several hours to days, as compared to growth times of months to years for the tearing modes in a diffuse current-shear equilibrium. The growth times are comparable to reconnection times scales required in models of coronal heating by magnetic field dissipation.

  14. Solution spinning of a high-? oxide superconductor: the effect of poly(vinyl alcohol) spinning medium on the critical current density of melt-processed ? superconducting filaments

    NASA Astrophysics Data System (ADS)

    Tomita, Hisayo; Sunohara, Makoto; Goto, Tomoko; Takahashi, Kiyohisa

    1996-12-01

    The precursor 0953-2048/9/12/014/img9 filament was prepared by solution spinning through a homogeneous aqueous poly(vinyl alcohol) (PVA) solution of Y, Ba and Cu acetates. The solution spinning was successfully performed using PVA with degrees of polymerization (DP) of 1700 and 2450 and a degree of saponification of 85 mol%. The as-drawn filament was heated to remove volatile components and partially melted to generate a superconducting phase. The effects of the DP of PVA and a content of mixed acetates in the precursor filament on the critical current density 0953-2048/9/12/014/img10 of the melt-processed filament were examined. The higher 0953-2048/9/12/014/img11 was obtained for the filament spun from PVA solution of higher DP and lower acetate content. The highest 0953-2048/9/12/014/img11 value of 0953-2048/9/12/014/img13 at 77 K and 0 T was achieved for the filament spun from the DP 2450 PVA with an acetate to PVA ratio of two.

  15. Energy transport by energetic electrons released during solar flares. II - Current filamentation and plasma heating

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.

    1988-01-01

    Two-dimensional electrostatic particle simulations are performed in order to investigate energy transport associated with the propagation of energetic electrons through a flaring flux tube. Results indicate that as the energetic electrons flow outward, a return current of ambient plasma electrons is drawn inward (to maintain quasi-neutrality) which can be spatially separate from the primary current carried by the energetic electrons. Return current electrons are shown to accumulate on either side of the acceleration region of the energetic electrons, and depletions of ambient plasma electrons develop in the return current regions. Plasma ions accelerate across the field lines to produce current closure or charge neutralization, achieving energies comparable to those of the energetic electrons.

  16. Weighted current sheets supported in normal and inverse configurations - A model for prominence observations

    NASA Technical Reports Server (NTRS)

    Demoulin, P.; Forbes, T. G.

    1992-01-01

    A technique which incorporates both photospheric and prominence magnetic field observations is used to analyze the magnetic support of solar prominences in two dimensions. The prominence is modeled by a mass-loaded current sheet which is supported against gravity by magnetic fields from a bipolar source in the photosphere and a massless line current in the corona. It is found that prominence support can be achieved in three different kinds of configurations: an arcade topology with a normal polarity; a helical topology with a normal polarity; and a helical topology with an inverse polarity. In all cases the important parameter is the variation of the horizontal component of the prominence field with height. Adding a line current external to the prominence eliminates the nonsupport problem which plagues virtually all previous prominence models with inverse polarity.

  17. Theory and simulation of lower-hybrid drift instability for current sheet with guide field

    SciTech Connect

    Yoon, P. H.; Lin, Y.; Wang, X. Y.; Lui, A. T. Y.

    2008-11-15

    The stability of a thin current sheet with a finite guide field is investigated in the weak guide-field limit by means of linear theory and simulation. The emphasis is placed on the lower-hybrid drift instability (LHDI) propagating along the current flow direction. Linear theory is compared against the two-dimensional linear simulation based on the gyrokinetic electron/fully kinetic ion code. LHDI is a flute mode characterized by k{center_dot}B{sub total}=0; hence, it is stabilized by a finite guide field if one is confined to k vector strictly parallel to the cross-field current. Comparison of the theory and simulation shows qualitatively good agreement.

  18. Electrodynamics in a Very Thin Current Sheet Leading to Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Deverapalli, Chakri; Khazanov, George

    2006-01-01

    We study the formation of a very thin current sheet (CS) and associated plasma electrodynamics using three-dimensional (3-D) particle-in-cell simulations with ion to electron mass ratio M/m=1836. The CS is driven by imposed anti-parallel magnetic fields. The noteworthy features of the temporal evolution of the CS are the following: (i) Steepening of the magnetic field profile B,(z) in the central part of the CS, (ii) Generation of three-peak current distribution with the largest peak in the CS center as B,(z) steepens, (iii) Generation of converging electric fields forming a potential well in the CS center in which ions are accelerated. (iv) Electron and ion heating in the central part of the CS by current-driven instabilities (CDI). (v) Re-broadening of the CS due to increased kinetic plasma pressure in the CS center. (vi) Generation of electron temperature anisotropy with temperature perpendicular to the magnetic field being larger than the parallel one. (vii) Current disruption by electron trapping in an explosively growing electrostatic instability (EGEI) and electron tearing instability (ETI). (viii)The onset of EGEI coincides with an increase in the electron temperature above the temperature of the initially hot ions as well as the appearance of new shear in the electron drift velocity. (ix) Bifurcation of the central CS by the current disruption. (x) Magnetic reconnection (MR) beginning near the null in B, and spreading outward. (xi) Generation of highly energized electrons reaching relativistic speeds and having isotropic pitch-angle distribution in the region of reconnected magnetic fields. We compare some of these features of the current sheet with results from laboratory and space experiments.

  19. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  20. Theory and simulations of a multi-scale magnetotail current sheet model

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Swisdak, M. M.; Guzdar, P. N.

    2010-12-01

    One of the key problems in modeling of the solar wind-magnetosphere interaction is the description of the magnetotail reconnection onset. It is widely accepted, that the explosive release of energy accumulated in the magnetotail, which occurs during substorms and bursty bulk flows, must involve some form of unsteady magnetic reconnection. However, the specific features of the magnetotail reconnection and its proper description at the kinetic level, not to speak about its reduced form suitable for global MHD modeling, remain poorly understood. Moreover, until recently the onset of spontaneous reconnection was thought to be fully prohibited, because the sufficient stability criterion of the corresponding plasma wave, the ion tearing mode, was fulfilled within the WKB approximation for all types of the considered magnetotail equilibria. Recently it was found (Sitnov and Schindler, 2010), that the ion tearing stability criterion might be relaxed in the tail current sheet models, which have more than two characteristic spatial scales. In particular, the substantial tearing destabilization takes place for equilibria with accumulation of the magnetic flux at the tailward end of an extended thin current sheet. We consider generalizations of the Sitnov-Schindler model including seed X-lines, and analyze their linear and nonlinear stability properties, as well as implications of the new stability criterion for global MHD models. The nonlinear stability issues are investigated with the help of an open-boundary modification of the full-particle code P3D (Zeiler et al., 2002).

  1. A MODEL FOR THE ELECTRICALLY CHARGED CURRENT SHEET OF A PULSAR

    SciTech Connect

    DeVore, C. R.; Antiochos, S. K.; Black, C. E.; Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A. N.

    2015-03-10

    Global-scale solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star, bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity—an electric current sheet—consisting of generally nonneutral plasma. We have developed a self-consistent model for the internal equilibrium structure of the sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris and Hoh to allow for net electric charge. The resulting equations for the electromagnetic field are solved analytically and numerically. Our results show that the internal thermal pressure needed to establish equilibrium force balance, and the associated effective current-sheet thickness and magnetization, can differ by orders of magnitude from the Harris/Hoh charge-neutral limit. The new model provides a starting point for kinetic or fluid investigations of instabilities that can cause magnetic reconnection and flaring in pulsar magnetospheres.

  2. The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    2009-02-01

    We prove the local-in-time existence of solutions with a surface of current-vortex sheet (tangential discontinuity) of the equations of ideal compressible magnetohydrodynamics in three space dimensions provided that a stability condition is satisfied at each point of the initial discontinuity. This paper is a natural completion of our previous analysis ( Trakhinin in Arch Ration Mech Anal 177:331-366, 2005) where a sufficient condition for the weak stability of planar current-vortex sheets was found and a basic a priori estimate was proved for the linearized variable coefficients problem for nonplanar discontinuities. The original nonlinear problem is a free boundary hyperbolic problem. Since the free boundary is characteristic, the functional setting is provided by the anisotropic weighted Sobolev spaces {H^m_*} . The fact that the Kreiss-Lopatinski condition is satisfied only in a weak sense yields losses of derivatives in a priori estimates. Therefore, we prove our existence theorem by a suitable Nash-Moser-type iteration scheme.

  3. Electron acceleration in the turbulent reconnecting current sheets in solar flares

    NASA Astrophysics Data System (ADS)

    Wu, G. P.; Huang, G. L.

    2009-07-01

    Context: We investigate the nonlinear evolution of the electron distribution in the presence of the strong inductive electric field in the reconnecting current sheets (RCS) of solar flares. Aims: We aim to study the characteristics of nonthermal electron-beam plasma instability and its influence on electron acceleration in RCS. Methods: Including the external inductive field, the one-dimensional Vlasov simulation is performed with a realistic mass ratio for the first time. Results: Our principal findings are as follows: 1) the Buneman instability can be quickly excited on the timescale of 10-7 s for the typical parameters of solar flares. After saturation, the beam-plasma instabilities are excited due to the non-Maxwellian electron distribution; 2) the final velocity of the electrons trapped by these waves is of the same order as the phase speed of the waves, while the untrapped electrons continue to be accelerated; 3) the inferred anomalous resistance of the current sheet and the energy conversion rate are basically of the same order as those previously estimated, e.g., “the analysis of Martens”. Conclusions: The Buneman instability is excited on the timescale of 10-7 s and the wave-particle resonant interaction limits the low-energy electrons to be further accelerated in RCS.

  4. Multi-spacecraft Characterization of Current Sheet Crossings in the Dynamic Solar Wind

    NASA Astrophysics Data System (ADS)

    Foster, N. D.; Stevens, M. L.; Biesecker, D. A.; Case, A. W.; Kasper, J. C.; Koval, A.; Szabo, A.

    2015-12-01

    The sun releases immense amounts of energy in the form of interplanetary coronal mass ejections (ICMEs) that can propagate through the solar wind towards Earth. Dragged along with it is a superconducting plasma of highly ionized gas that carries a "frozen-in" magnetic field. DSCOVR was recently launched and has joined Wind, ACE, and SOHO at L1 in order to make independent magnetic field measurements of the solar wind. These data, in conjunction with velocity measurements and the DSCOVR Faraday Cup ion spectra, can give us a sense of what shape the current sheets have as they pass through the spacecraft. Magnetic reconnection occurs as a result of the squeezing of opposing field lines to a cusp in a direction perpendicular to the direction of travel, and can continue to occur out to interplanetary distances due to the large amount of energy stored in ICME field lines. In particular, we are interested in high-density pile-up regions where the B-field components change sign during the June 22-23 ICME of this year. With at least three spacecraft, we are able to map the current sheet crossings in the solar wind at snapshots in time through planar timing calculations and minimum variance analysis. The advantages of multi-point and high time resolution plasma measurements will be assessed in determining large scale morphology, and for small scale dynamics of ICMEs, respectively.

  5. Physical and Dynamical Properties of a Post-CME Current Sheet

    NASA Astrophysics Data System (ADS)

    Ko, Y.; Raymond, J. C.; Lin, J.; Lawrence, G.; Li, J.; Fludra, A.

    2002-05-01

    On January 8, 2002 following a CME at the east limb, thin threads of materials are formed, as seen in the white light corona, with continuous outflow that lasted more than two days as it gradually moved toward the north. We interprete it as a current sheet left behind the CME. UV/EUV spectra were taken on January 10 by SOHO/UVCS and SOHO/CDS as part of the SOHO JOP 151. The UV spectra at 1.6 Ro show a small region (< 70 arcsec) of depleted low temperature emission and a high temperature region where lines from highly ionized ions such as Fe+17 and Ca+13 are observed. We combine the data from UVCS, LASCO, EIT and CDS on SOHO to derive the physical properties (electron temperature, electron density and elemental abundances) and dynamical properties (outflow speed and acceleration) of these regions which is likely to be associated with this current sheet. Implications on its formation and magnetic properties are discussed.

  6. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  7. Electron Acceleration in a Dynamically Evolved Current Sheet Under Solar Coronal Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Du, A. M.; Feng, Xueshang; Cao, Xin; Lu, Quanming; Yang, Liping; Chen, Gengxiong; Zhang, Ying

    2014-05-01

    Electron acceleration in a drastically evolved current sheet under solar coronal conditions is investigated via the combined 2.5-dimensional (2.5D) resistive magnetohydrodynamics (MHD) and test-particle approaches. Having a high magnetic Reynolds number (105), the long, thin current sheet is torn into a chain of magnetic islands, which grow in size and coalesce with each other. The acceleration of electrons is explored in three typical evolution phases: when several large magnetic islands are formed (phase 1), two of these islands are approaching each other (phase 2), and almost merging into a "monster" magnetic island (phase 3). The results show that for all three phases electrons with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20 % of the electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The lower-energy electrons are located away from the magnetic separatrices and the higher-energy electrons are inside the magnetic islands. The most energetic electrons have a tendency to be around the outer regions of the magnetic islands or to appear in the small secondary magnetic islands. It is the trapping effect of the magnetic islands and the distributions of E p that determine the acceleration and spatial distributions of the energetic electrons.

  8. Lower-hybrid drift and Buneman instabilities in current sheets with guide field

    SciTech Connect

    Yoon, P. H.; Lui, A. T. Y.

    2008-11-15

    Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15, 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k{center_dot}B=0 and k{center_dot}{nabla}n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and {nabla}n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by kxB=0 and k{center_dot}{nabla}n=0, rather than being a beam-aligned instability.

  9. A numerical simulation of magnetic reconnection and radiative cooling in line-tied current sheets

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Malherbe, J. M.

    1991-01-01

    Radiative MHD equations are used for an optically thin plasma to carry out a numerical experiment related to the formation of 'postflare' loops. The numerical experiment starts with a current sheet that is in mechanical and thermal equilibrium but is unstable to both tearing-mode and thermal-condensation instabilities. The current sheet is line-tied at one end to a photospheric-like boundary and evolves asymmetrically. The effects of thermal conduction, resistivity variation, and gravity are ignored. In general, reconnection in the nonlinear stage of the tearing-mode instability can strongly affect the onset of condensations unless the radiative-cooling time scale is much smaller than the tearing-mode time scale. When the ambient plasma is less than 0.2, the reconnection enters a regime where the outflow from the reconnection region is supermagnetosonic with respect to the fast-mode wave speed. In the supermagnetosonic regime the most rapidly condensing regions occur downstream of a fast-mode shock that forms where the outflow impinges on closed loops attached to the photospheric-like boundary. A similar shock-induced condensation might occur during the formation of 'postflare' loops.

  10. Gyrokinetic theory of electrostatic lower-hybrid drift instabilities in a current sheet with guide field

    SciTech Connect

    Tummel, K.; Chen, L.; Wang, Z.; Wang, X. Y.; Lin, Y.

    2014-05-15

    A kinetic electrostatic eigenvalue equation for the lower-hybrid drift instability (LHDI) in a thin Harris current sheet with a guide field is derived based on the gyrokinetic electron and fully kinetic ion(GeFi) description. Three-dimensional nonlocal analyses are carried out to investigate the influence of a guide field on the stabilization of the LHDI by finite parallel wavenumber, k{sub ∥}. Detailed stability properties are first analyzed locally, and then as a nonlocal eigenvalue problem. Our results indicate that at large equilibrium drift velocities, the LHDI is further destabilized by finite k{sub ∥} in the short-wavelength domain. This is demonstrated in a local stability analysis and confirmed by the peak in the eigenfunction amplitude. We find the most unstable modes localized at the current sheet edges, and our results agree well with simulations employing the GeFi code developed by Lin et al. [Plasma Phys. Controlled Fusion 47, 657 (2005); Plasma Phys. Controlled Fusion 53, 054013 (2011)].

  11. Chaotic scattering of pitch angles in the current sheet of the magnetotail

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1992-01-01

    The modified Harris field model is used to investigate the process of pitch angle scattering by a current sheet. The relationship between the incoming asymptotic pitch angle alpha(in) and the outgoing asymptotic pitch angle alpha(out) is studied from first principles by numerically integrating the equation of motion. Evidence that charged particles undergo chaotic scattering by the current sheet is found. For fixed alpha(in), it is shown that alpha(out) exhibits sensitive dependence on the energy parameter in certain energy ranges. For a fixed energy parameter value in the same energy ranges, alpha(out) sensitively depends on alpha(in). For other energy values, alpha(out) does not show sensitive dependence on alpha(in) for most phase angles. A distribution of alpha(in) is mapped from the asymptotic region to the midplane, and it is found that the resulting particle distribution should have beam structures with well-collimated pitch angles near each resonance energy value. Implications for the particle distribution functions in the earth's magnetotail are discussed.

  12. Macroscale coherence of the heliospheric current sheet: Pioneers 10 and 11 comparisons

    NASA Technical Reports Server (NTRS)

    Siscoe, George; Intriligator, Devrie

    1994-01-01

    We use the near radial alignments of Pioneers 10 and 11 during 1974 to study the macroscale geometry of the heliospheric current sheet (HCS). The interval of near alignment gave eight analyzable cases of encounters of both spacecraft with the same HCS and one case in which the IMP and Pioneer 11 spacecraft, while nearly radially aligned, encountered the same current sheet. The degree of macroscale coherence of the HCS was judged by comparing observed solar wind speeds against solar wind speeds calculated on the bases of HCS encounter times and ideal Parker spiral geometry. The correlation coefficient between the two sets of speeds is 0.53. The difference between the calculated and observed speeds can be understood in terms of observed deviations from ideal spiral geometry in the ecliptic plane or in terms of typical corrections to the calculations from small latitudinal factors. One case, however, defies explanation in these terms. This range of behavior demonstrates that the HCS is a useful probe of heliospheric dynamics.

  13. Mercury's cross-tail current sheet: Structure, X-line location and stress balance

    NASA Astrophysics Data System (ADS)

    Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.

    2017-01-01

    The structure, X-line location, and magnetohydrodynamic (MHD) stress balance of Mercury's magnetotail were examined between -2.6 < XMSM < -1.4 RM using MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) measurements from 319 central plasma sheet (CPS) crossings. The mean plasma β in the CPS calculated from MESSENGER data is 6. The CPS magnetic field was southward (i.e., tailward of X-line) 2-18% of the time. Extrapolation of downtail variations in BZ indicates an average X-line location at -3 RM. Modeling of magnetic field measurements produced a cross-tail current sheet (CS) thickness, current density, and inner CS edge location of 0.39 RM, 92 nA/m2 and -1.22 RM, respectively. Application of MHD stress balance suggests that heavy planetary ions may be important in maintaining stress balance within Mercury's CPS. Qualitative similarities between Mercury's and Earth's magnetotail are remarkable given the differences in upstream conditions, internal plasma composition, finite gyro-radius scaling, and Mercury's lack of ionosphere.

  14. PERISTALTIC PUMPING NEAR POST-CORONAL MASS EJECTION SUPRA-ARCADE CURRENT SHEETS

    SciTech Connect

    Scott, Roger B.; Longcope, Dana W.; McKenzie, David E.

    2013-10-10

    Temperature and density measurements near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of 'pre-heating' and 'pre-densification' prior to reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here, we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances, these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of descending regions of density depletion or supra-arcade downflows.

  15. Lower-hybrid drift and Buneman instabilities in current sheets with guide field

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Lui, A. T. Y.

    2008-11-01

    Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15, 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k ṡB=0 and k ṡ∇n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and ∇n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by k ×B=0 and k ṡ∇n=0, rather than being a beam-aligned instability.

  16. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  17. INDUCED MAXIMUM MAGNETIC FIELD IN COSMIC OUTFLOW SYSTEM BY A RELATIVISTIC CURRENT FILAMENTATION INSTABILITY: EXACT ANALYTICAL MODEL

    SciTech Connect

    Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A.

    2015-03-10

    We present an analytical study of current filamentation instability (CFI) in a fully relativistic cold plasma system, including arbitrary currents. For our purposes, we employ the cold fluid equations, together with Maxwell's equations as well as the plasma shell concept and boost frame method, to obtain an exact solution of the instability growth rate. A simple relation is found for the maximum growth rate of the CFI (for any arbitrary current system), which remarkably is used to calculate the large magnitude of an induced magnetic field in astrophysical environments such as active galactic nuclei (AGNs), microquasars, supernova remnants (SNRs), and stellar winds. We find that the magnetic field is amplified in the SNR up to the level required to justify the recent discovery of the year-scale variability in the X-ray emission of SNRs. Also, the maximum magnetic field of two and three orders higher (or two orders lower) than that of the SNR has been derived for microquasars and AGNs (or stellar winds), respectively. Moreover, making use of the exact analytical solution of the CFI, it is shown that the maximum magnetic field up to around 10{sup 8} G can be detected from a classical cold counterstreaming system after a saturation time.

  18. Filament Channels: Isolated Laboratories of Plasma Heating in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Velli, M.

    2015-12-01

    Solar filament channels are complex systems comprising photospheric, chromospheric and coronal components. These components include magnetic neutral lines, supergranule cells, fibrils (spicules), filaments (prominences when observed on the limb), coronal cells, filament cavities and their overlying coronal arcades. Filaments are very highly structured and extend in height from the photosphere to the corona. Filament cores have chromospheric temperatures - 10,000 K (even at coronal heights ~ 100 Mm), surrounded by hotter plasma with temperature up to ~50,000 K. The whole filament is isolated from the rest of the solar corona by an envelope - the filament channel cavity - with temperatures of about 2,000,000 K. The filament channel cavity is even hotter than the solar corona outside the filament channel arcade. The compactness and big temperature variations make filament channels unique ready-to-go laboratories of coronal plasma heating and thermodynamics. In this work we discuss possible sources and mechanisms of heating in the filament channel environment. In particular, we address the mechanisms of magnetic canceling and current sheet dissipation.

  19. Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes

    NASA Astrophysics Data System (ADS)

    Aulanier, G.; Pariat, E.; Démoulin, P.

    2005-12-01

    In 3D magnetic field configurations, quasi-separatrix layers (QSLs) are defined as volumes in which field lines locally display strong gradients of connectivity. Considering QSLs both as the preferential locations for current sheet development and magnetic reconnection, in general, and as a natural model for solar flares and coronal heating, in particular, has been strongly debated issues over the past decade. In this paper, we perform zero-β resistive MHD simulations of the development of electric currents in smooth magnetic configurations which are, strictly speaking, bipolar though they are formed by four flux concentrations, and whose potential fields contain QSLs. The configurations are driven by smooth and large-scale sub-Alfvénic footpoint motions. Extended electric currents form naturally in the configurations, which evolve through a sequence of quasi non-linear force-free equilibria. Narrow current layers also develop. They spontaneously form at small scales all around the QSLs, whatever the footpoint motions are. For long enough motions, the strongest currents develop where the QSLs are the thinnest, namely at the Hyperbolic Flux Tube (HFT), which generalizes the concept of separator. These currents progressively take the shape of an elongated sheet, whose formation is associated with a gradual steepening of the magnetic field gradients over tens of Alfvén times, due to the different motions applied to the field lines which pass on each side of the HFT. Our model then self-consistently accounts for the long-duration energy storage prior to a flare, followed by a switch-on of reconnection when the currents reach the dissipative scale at the HFT. In configurations whose potential fields contain broader QSLs, when the magnetic field gradients reach the dissipative scale, the currents at the HFT reach higher magnitudes. This implies that major solar flares which are not related to an early large-scale ideal instability, must occur in regions whose

  20. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Nickeler, Dieter H.; Wiegelmann, Thomas; Karlický, Marian; Kraus, Michaela

    2017-03-01

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.

  1. Visco-resistive plasmoid instability in Sweet-Parker current sheets

    NASA Astrophysics Data System (ADS)

    Grasso, Daniela; Comisso, Luca

    2016-10-01

    The linear analysis by Loureiro et al. is generalized to investigate the plasmoid instability in visco-resistive Sweet-Parker sheets. We cover both the linear and nonlinear growth of the plasmoids. The linear growth rate and the wavenumber scale as S 1 / 4 (1 +Pm)- 5 / 8 and S 3 / 8 (1 +Pm)- 3 / 16 with respect to the Lundquist number S and the magnetic Prandtl number Pm. The growth of the plasmoids slows down from an exponential growth to an algebraic growth when they enter into the nonlinear regime. The time-scale of the nonlinear growth of the plasmoids is found to be τNL S - 3 / 16 (1 +Pm)19/32τA , L . We also discuss how the plasmoid instability can enable fast magnetic reconnection in visco-resistive plasmas. In this regime, the global reconnection rate is shown to be 0.01vA , uBu (1 +Pm)- 1 / 2. The same author will present another poster in a closely related topic: ``Generalized Plasmoid Instability in Time Evolving Current Sheets''. Hence, we request the committee to ensure that these 2 posters are placed alongside each other.

  2. Experimental Demonstration of Resistive Electron Plasmoids in a Reconnecting Current Sheet

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, Jonathan

    2016-10-01

    Magnetic reconnection is an important process occurring in nearly all magnetized plasmas that involves the complex coupling of multiple physical scales. Significant progress has been made in understanding the cross-scale physics of magnetic reconnection around localized reconnection sites, but how reconnection couples to global physics is still an open question. Recently, the spontaneous formation of plasmoids has been proposed as a mechanism for bridging widely disparate scales, thereby permitting fast reconnection in large systems. Numerous works have demonstrated the existence of collisionless plasmoids in both space and laboratory plasmas, however to-date, direct evidence for collisional plasmoids has been confined to numerical simulations and analytic theory, although remote-sensing observations of solar and fusion plasmas have provided some indirect evidence. However, it is known that many naturally occurring plasmas, such as the solar chromosphere or the interstellar medium, are both large and collisional, thus requiring collisional plasmoids. In part, the current lack of experimental or in situ observational evidence for collisional plasmoids is due to the large Lundquist numbers required for plasmoid formation within the resistive MHD framework. In this work, experimental evidence for resistive electron plasmoid formation during magnetic reconnection in the two-fluid regime is given. Using the Magnetic Reconnection Experiment (MRX), driven reconnection is studied in collisional current sheets wherein the electric field is balanced solely by classical Spitzer resistivity. Despite low Lundquist numbers, these collisional current sheets are observed to be unstable to the spontaneous formation of plasmoids, which is explained by the importance of electron physics when in the two-fluid regime. The number of plasmoids is observed to scale with the Lundquist number. Due to the onset of plasmoids, both the local reconnection electric field and the globally

  3. Experiments on the tearing of a current sheet into a bundle of interacting flux ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Dehaas, Tim; van Compernolle, Bart; Latshaw, Alex; Daughton, William

    2014-10-01

    A narrow (δ/L ~ . 05 , δ ~= 3 - 10c/ωpe , δ = 1 cm) current sheet is established in a magnetized (B0z = 200 G, He, Len = 17 m, Dia = 60 cm) plasma column. The current sheet is observed to tear into multiple magnetic islands in several Alfvén transit times. Volumetric magnetic field data is acquired at 16,500 spatial locations and 16,000 time steps (δt = .34 μs). The flux ropes appear as multiple ``O'' and ``X'' points when viewed in a plane perpendicular to the local current but, in fact are three-dimensional. The kink unstable ropes writhe, and twist about each other as the ensemble of ropes spin about the background axial magnetic field. Fast framing camera images (τexp = 1 μs , 34,000 fps) clearly show the motion but differ from shot to shot. The movies are analyzed using correlation techniques. The rope dynamics becomes chaotic therefore correlation techniques using a fixed magnetic probe as well a He II line (λ = 303 A) are used to generate 3D images of the ropes. An emissive probe is used to measure the plasma potential and the total electric field, E-> = - ∇ ϕ -∂/A-> ∂ t , and plasma resistivity are evaluated. The perpendicular electric fields are two orders of magnitude larger than the parallel ones. The entropy and complexity of the flux ropes are evaluated. Work supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF.

  4. Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field.

    PubMed

    Zenitani, S; Hoshino, M

    2005-08-26

    The linear and nonlinear evolution of a relativistic current sheet of pair (e(+/-)) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely propagating modes, which we call the relativistic drift-kink-tearing instability. These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of nonthermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.

  5. Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure.

    PubMed

    Gilbert, Stephen H; Benson, Alan P; Li, Pan; Holden, Arun V

    2007-08-01

    The architecture of the heart remains controversial despite extensive effort and recent advances in imaging techniques. Several opposing and non-mutually compatible models have been proposed to explain cardiac structure, and these models, although limited, have advanced the study and understanding of heart structure, function and development. We describe key areas of similarity and difference, highlight areas of contention and point to the important limitations of these models. Recent research in animal models on the nature, geometry and interaction of cardiac sheet structure allows unification of some seemingly conflicting features of the structural models. Intriguingly, evidence points to significant inter-individual structural variability (within constrained limits) in the canine, leading to the concept of a continuum (or distribution) of cardiac structures. This variability in heart structure partly explains the ongoing debate on myocardial architecture. These developments are used to construct an integrated description of cardiac structure unifying features of fibre, sheet and band architecture that provides a basis for (i) explaining cardiac electromechanics, (ii) computational simulations of cardiac physiology and (iii) designing interventions.

  6. The thermal and plasma-physical evolution of laminar current sheets formed in the solar atmosphere by emerging flux

    NASA Technical Reports Server (NTRS)

    Larosa, T. N.

    1992-01-01

    A time-dependent analysis of emerging flux is carried out, and the time evolution of both the current sheet energetics and the plasma state is calculated. This evolution is determined in two different regimes. In the first case the width of the current sheet is assumed to be independent of the sheet thermodynamics and is fixed by the initial conditions. In the second, the width of the current sheet is a function of the resistivity and is allowed to decrease to its minimum given by the electron gyroradius. In both cases the resistivity is computed according to the marginal stability hypothesis. In each case the thermodynamic evolution is found to be quite rapid, with the temperature increasing from 10,000 to 1,000,000 K in a second or less. In contrast to previous studies, it is found that the resistivity is not significantly enhanced by the current-driven plasma wave turbulence. It is concluded that a laminar current sheet cannot be responsible for the activity associated with emerging flux.

  7. Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Pellinen, R. J.; Buechner, J.; Koskinen, H. E. J.; Lopez, R. E.; Dyson, R. L.; Frank, L. A.

    1992-01-01

    The particle scattering and current sheet stability features in the geomagnetic tail during the phase of substorm growth were investigated using Tsyganenko's (1989) magnetic field model. In a study of four substorm events which were observed both in the high-altitude nightside tail and in the auroral ionosphere, the model magnetic field was adjusted to each case so as to represent the global field development during the growth phase of the substorms. The model results suggest that the auroral brightenings are connected with processes taking place in the near-earth region inside about 15 earth radii. The results also suggest that there is a connection between the chaotization of the electrons and the auroral brightenings at substorm onset.

  8. Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets.

    PubMed

    Loureiro, N F; Schekochihin, A A; Uzdensky, D A

    2013-01-01

    A two-dimensional (2D) linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of reduced magnetohydrodynamics. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al., Phys. Plasmas 14, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids (k(max)L(CS)~S(3/8), where k(max) is the wave number of fastest growing mode, S=L(CS)V(A)/η is the Lundquist number, L(CS) is the length of the sheet, V(A) is the Alfvén speed, and η is the plasma resistivity), which grows super Alfvénically fast (γ(max)τ(A)~S(1/4), where γ(max) is the maximum growth rate, and τ(A)=L(CS)/V(A)). For typical background profiles, the growth rate and the wave number are found to increase in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the periphery of the layer, where the outflow velocity exceeds the Alfvén speed associated with the upstream magnetic field. The KH instability grows even faster than the plasmoid instability γ(max)τ(A)~k(max)L(CS)~S(1/2). The effect of viscosity (ν) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers Pm=ν/η, it is found that γ(max)~S(1/4)Pm(-5/8) and k(max)L(CS)~S(3/8)Pm(-3/16), leading to the prediction that the critical Lundquist number for plasmoid instability in the Pm>1 regime is S(crit)~10(4)Pm(1/2). These results are verified via direct numerical simulation of the linearized equations, using an analytical 2D SP equilibrium solution.

  9. Heating Mechanisms in the Low Solar Atmosphere through Magnetic Reconnection in Current Sheets

    NASA Astrophysics Data System (ADS)

    Ni, Lei; Lin, Jun; Roussev, Ilia I.; Schmieder, Brigitte

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 104 K) and low temperature (˜104 K) magnetic reconnection events can happen in the low solar atmosphere (100-600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 104 K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (˜104 K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 104) in the future.

  10. Electron Acceleration in a Dynamically Evolved Current Sheet of Solar Coronal Conditions

    NASA Astrophysics Data System (ADS)

    Shaohua, Z.; Du, A.; Feng, X.

    2012-12-01

    Electron acceleration in a drastically evolved current sheet of solar coronal conditions is investigated via the combined resistive Magnetohydrodynamics (MHD) and test particle approaches. With high magnetic Reynolds number, the long-thin current sheet is tearing into a chain of magnetic islands, which grow in size and coalesce together. The acceleration of electrons are explored in three typical evolvement phases: when several large magnetic islands are formed (phase1), two of them are approaching each other (phase2) and almost merging into a "monster" magnetic island (phase3). The results show that for all the three phases electrons with an initially Maxwellian distribution evolve into a heavy-tailed distribution and more than 20% of the electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. Most of the energetic electrons move around the magnetic islands in clockwise direction (anti-parallel to the magnetic field lines), drifting in the -Z direction. The energetic electrons with 10 keV < Ek < 200 keV are located outside the magnetic separatrices, where parallel electric field (Ep) is small. The electrons with 200 keV < Ek < 5000 keV are distributed inside the magnetic islands where Ep is moderate large but have complex structures. The electrons with Ek > 5000 keV are located around the outer regions of the magnetic islands or at the core regions of the magnetic islands. Some of the most energetic electrons even appear in the small secondary magnetic islands that are embedded in the diusion regions in between the magnetic islands. It is the trapping eect of the magnetic islands and the distributions of Ep that determine the acceleration processes and space distribution of the energetic electrons.

  11. Formation of a very thin current sheet in the near-earth magnetotail and the explosive growth phase of substorms

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Zhang, L.; Choe, G. S.; Cai, H. J.

    1995-01-01

    A magnetofricional method is used to construct two-dimensional MHD equilibria of the Earth's magnetosphere for a given distribution of entropy functions(S = pV(exp gamma), where p is the plasma pressure and V is the tube volume per unit magnetic flux. It is found that a very thin current sheet with B (sub zeta) is less than 0.5 nu T and thickness less than 1000 km can be formed in the near-earth magnetotail (x is approximately -8 to -20R(sub e) during the growth phase of substorm. The tail current sheets are found to become thinner as the entropy or the entropy gradient increases. It is suggested that the new entropy anti-diffusion instability associated with plasma transport across field lines leads to magnetic field dipolarization and accelerates the formation of thin current sheet, which may explain the observed explosive growth phase of substorms.

  12. The evolution of the ion diffusion region during collisionless magnetic reconnection in a force-free current sheet

    SciTech Connect

    Zhou, Fushun; Huang, Can Lu, Quanming; Wang, Shui; Xie, Jinlin

    2015-09-15

    Two-dimensional particle-in-cell simulation is performed to investigate magnetic reconnection in a force-free current sheet. The results show that the evolution of the ion diffusion region has two different phases. In the first phase, the electrons flow toward the X line along one pair of separatrices and away from the X line along the other pair of separatrices. Therefore, in the ion diffusion region, a distorted quadrupole structure of the out-of-plane magnetic field is formed, which is similar to that of a typical guide field reconnection in the Harris current sheet. In the second phase, the electrons move toward the X line along the separatrices and then flow away from the X line at the inner side of the separatrices. In the ion diffusion region, the out-of-plane magnetic field exhibits a characteristic quadrupole pattern with a good symmetry, which is similar to that of antiparallel reconnection in the Harris current sheet.

  13. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.

    PubMed

    Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y

    2016-05-28

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  14. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  15. Evidence for Quasi-adiabatic Motion of Charged Particles in Strong Current Sheets in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.; Petrukovich, A. A.; Delcourt, D.; Sharma, A. S.; Khabarova, O. V.; Zelenyi, L. M.

    2017-01-01

    We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplest modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼104 km) embedded into a wider region of about 105 km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.

  16. A study of weak anisotropy in electron pressure in the tail current sheet

    NASA Technical Reports Server (NTRS)

    Lee, D.-Y.; Voigt, G.-H.

    1995-01-01

    We adopt a magnetotail model with stretched field lines where ion motions are generally nonadiabatic and where it is assumed that the pressure anisotropy resides only in the electron pressure tensor. We show that the magnetic field lines with p(perpendicular) greater than p(parallel) are less stretched than the corresponding field lines in the isotropic model. For p(parallel) greater than p(perpendicular), the magnetic field lines become more and more stretched as the anisotropy approaches the marginal firehose limit, p(parallel) = p(perpendicular) + B(exp 2)/mu(sub 0). We also show that the tail current density is highly enhanced at the firehose limit, a situation that might be subject to a microscopic instability. However, we emphasize that the enhancement in the current density is notable only near the center of the tail current sheet (z = 0). Thus it remains unclear whether any microscopic instability can significantly alter the global magnetic field configuration of the tail. By comparing the radius of the field-line curvature at z = 0 with the particle's gyroradius, we suspect that even the conventional adiabatic description of electrons may become questionable very close to the marginal firehose limit.

  17. PARTICLE DYNAMICS IN THE RECONNECTING HELIOSPHERIC CURRENT SHEET: SOLAR WIND DATA VERSUS THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    SciTech Connect

    Zharkova, Valentina V.; Khabarova, Olga V. E-mail: habarova@izmiran.ru

    2012-06-10

    In this paper, we apply an assumption of the reconnecting heliospheric current sheet (HCS) for explanation of some contradictory results in the experimental detection of the sector boundaries (SBs) from the interplanetary magnetic field and electron pitch-angle measurements. Trajectories, densities, velocity, and pitch-angle distributions of particles accelerated by a super-Dreicer electric field are investigated with 2.5D full kinetic particle-in-cell approach in the HCS assumed to undergo a slow magnetic reconnection process with magnetic field configurations deduced from the solar wind observations. This approach reveals that during motion in a current sheet both kinds of particles, electrons and protons, are to be separated, either fully or partially, with respect to its midplane that can lead to their ejection to the opposite semiplanes that was also observed during the HCS crossings. This separation is found to form Hall's currents and polarization electric field across the current sheet, which distribution over the current sheets allows us to reproduce the magnitudes and temporal profiles of proton and ion velocities measured across the SB (current sheet midplane). This separation process, in turn, divides both kinds of particles on 'transit' and 'bounced' ones depending on a side of the current sheet where they enter it and where they are supposed to be ejected. The transit and bounced protons reproduce rather closely the measured distributions of proton/ion densities about the current sheet midplane with a larger maximum occurring at the heliospheric SB to be formed by the bounced protons and the other two smaller maximums on both sides from the central one to be formed by 'transit' protons. The observed electron distributions of density and energy before and after sector boundary crossings are found to fit the simulated ones for electrons accelerated in a current sheet revealing a sharp increase of density from one side from the HCS boundary and a

  18. Earthward electric field and its reversal in the near-Earth current sheet

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Zelenyi, L. M.

    2016-11-01

    Using Time History of Events and Macroscale Interactions during Substorms observations (radial distance r from 9 to 35 Earth radii, RE), we investigate ion and electron contributions to the cross-tail current density in the magnetotail current sheet. We analyze plasma pressure measurements (including the contribution from high-energy particles) and estimate the magnitudes of ion and electron diamagnetic drifts. In the downtail, r > 15RE, region, ion (electron) diamagnetic drifts are shown to provide more than 50% (less than 25%) of the cross-tail current density at the neutral plane, Bx=0. Conversely, in the near-Earth region, r≤15RE, the ion (electron) diamagnetic drift contribution to the cross-tail current density is 20% (50%). The directly measured duskward (dawnward) component of the ion (electron) velocity, vyi (-vye), where y is the GSM direction, is very small (quite large) in the downtail region but large (small) in the near-Earth region. This systematic discrepancy between the expected values of vyi, -vye (based on estimates of diamagnetic drifts) and the direct measurements of the velocity, vyi, -vye, is consistent with a contribution to the total velocity by an E × B drift caused by an electric field oriented parallel to the x axis, Ex. To decrease the ion (increase the electron) total drift to agree with the measured flows in the downtail region and increase (decrease) this total drift to match the measurements in the near-Earth region, this Ex would need to be directed earthward at r > 15RE and tailward at r≤15RE. Such an Ex distribution is consistent with the equatorial projection of the Harang discontinuity.

  19. Effect of coronal mass ejections on the structure of the heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Zhao, Xuepu; Hoeksema, J. Todd

    1996-03-01

    The existence of a relatively stable large-scale heliospheric current sheet (HCS) structure near sunspot maximum has recently been questioned [Hundhausen, 1992]. We consider this question here by determining the effect of coronal mass ejections (CMEs) on the spiral characteristics of the interplanetary magnetic field (IMF) and on the HCS. In general, CMEs do not have long-term effects on the location of the HCS. The evidence shows that (1) the coronal streamer belt locally disrupted or blown out by CMEs reforms in a time interval shorter than the lifetime of the HCS structure; (2) the internal structure of IMF sector boundaries is temporarily changed during the passage of the interplanetary counterpart of CMEs; (3) even in the Carrington rotation just 1 month after the sunspot maximum of solar cycle 21 the IMF spiral characteristics are maintained, and the calculated sector pattern agrees very well with that observed at 1 AU; and (4) the fact that the calculated closed field regions correspond to the helmet streamers observed in the February 16, 1980, solar eclipse confirms the validity of the three-dimensional model even at high activity, giving additional confidence in the predicted HCS location. The rapid reformation of disrupted helmet structures may explain the existence of a structured HCS during intervals when CMEs occur frequently and several coronal helmet streamers along the base of the HCS are disrupted or blown out. Ulysses observations at the next sunspot maximum may finally answer the question.

  20. Field-Aligned Current at Plasma Sheet Boundary Layers During Storm Time: Cluster Observation

    NASA Astrophysics Data System (ADS)

    Shi, J.; Cheng, Z.; Zhang, T.; Dunlop, M.; Liu, Z.

    2007-05-01

    The magnetic field data from the FGM instruments on board the four Cluster spacecrafts were used to study Field Aligned Current (FAC) at the Plasma Sheet Boundary Layers (PSBLs) with the so called "curlometer technique". We analyzed the date obtained in 2001 in the magnetotail and only two cases were found in the storm time. One (August 17, 2001) occurred from sudden commencement to main phase, and the other (October 1, 2001) lay in the main phase and recovery phase. The relationship between the FAC density and the AE index was studied and the results are shown as follows. (1) In the sudden commencement and the main phase the density of the FAC increases obviously, in the recovery phase the density of the FAC increases slightly. (2) From the sudden commencement to the initial stage of the main phase the FAC increases with decreasing AE index and decreases with increasing AE index. From the late stage of the main phase to initial stage of the recovery phase, the FAC increases with increasing AE index and decreases with decreasing AE index. In the late stage of the recovery phase the disturbance of the FAC is not so violent, so that the FAC varying with the AE index is not very obvious.

  1. Non-linear tearing of 3D null point current sheets

    SciTech Connect

    Wyper, P. F. Pontin, D. I.

    2014-08-15

    The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet creates a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.

  2. ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET

    SciTech Connect

    Wang, Y.-M.; Robbrecht, E. E-mail: eva.robbrecht@oma.be

    2011-08-01

    Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.

  3. A two-fluid study of oblique tearing modes in a force-free current sheet

    SciTech Connect

    Akçay, Cihan Daughton, William; Lukin, Vyacheslav S.; Liu, Yi-Hsin

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.

  4. A two-fluid study of oblique tearing modes in a force-free current sheet

    SciTech Connect

    Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; Liu, Yi-Hsin

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.

  5. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE PAGES

    Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  6. Current Sheets in the Corona and the Complexity of Slow Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  7. Development of a current sheet in the wake of a fast coronal mass ejection

    SciTech Connect

    Ling, A. G.; Webb, D. F.; Burkepile, J. T.

    2014-04-01

    A bright ray that developed in the wake of a fast coronal mass ejection (CME) on 2005 September 7 presents a unique opportunity to study the early development and physical characteristics of a reconnecting current sheet (CS). Polarization brightness images from the Mk4 K-Coronameter at the Mauna Loa Solar Observatory are used to determine the structure of the ray along its axis low in the corona as it progressed outward. Coverage of the early development of the ray out to ∼1.3 R {sub ☉} for a period of ∼27 hr after the start of the event enables for the first time in white light a measurement of a CME CS from the top of the arcade to the base of the flux rope. Measured widths of the ray are combined to obtain the kinematics of the upper and lower {sup Y-}points described in reconnection flux-rope models such as that of Lin and Forbes. The time dependence of these points are used to derive values for the speed and acceleration of the growth of the CS. We note the appearance of a large structure which increases in size as it expands outward in the early development of the ray and an apparent oscillation with a period of ∼0.5 hr in the position angle of the ray.

  8. PARTICLE ACCELERATION IN FRAGMENTING PERIODIC RECONNECTING CURRENT SHEETS IN SOLAR FLARES

    SciTech Connect

    Gordovskyy, M.; Browning, P. K.; Vekstein, G. E.

    2010-09-10

    Proton and electron acceleration in a fragmenting periodic current sheet (CS) is investigated, based on the forced magnetic reconnection scenario. The aim is to understand the role of CS fragmentation in high-energy beam generation in solar flares. We combine magnetohydrodynamics and test-particle models to consider particle trajectories consistent with a time-dependent reconnection model. It is shown that accelerated particles in such a model form two distinct populations. Protons and electrons moving in open magnetic field have energy spectra that are a combination of the initial Maxwellian distribution and a power-law high-energy (E>20 keV) part. The second population contains particles moving in a closed magnetic field around O-points. These particles move predominantly along the guiding field and their energies fall within quite a narrow range between {approx}1 MeV and {approx}10 MeV. It is also found that particles moving in an open magnetic field have a considerably wider pitch-angle distribution.

  9. Distribution of Nanoflares as Spatially Resolved Current Sheets in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Lin, L.

    2014-05-01

    In a recent numerical study [Ng et al., Astrophys. J. 747, 109, 2012], based on a three-dimensional model of coronal heating using reduced magnetohydrodynamics, we have obtained scaling results of heating rate versus Lundquist number S based on a series of runs in which random photospheric motions are imposed for hundreds to thousands of Alfvén time in order to obtain converged statistical values. The heating rate found in these simulations saturates to a level that is independent of S in the high S limit and is consistent with the required level for coronal heating. In a previous study based on the total heating rate time series [Ng and Lin, AIP Conf. Proc. 1500, 38, 2012] in these simulations, we have also calculated heating events distributions, which are consistent with observations but do not support the nanoflares scenario [Parker, Astrophys. J. 330, 474, 1988]. This method has a limitation of not distinguishing individual heating events. We now extend this analysis to investigate the distribution of energy release events defined as spatially resolved current sheets [Lin et el., ASP Conf. Ser. 474, 159, 2013]. We report preliminary results and compare to results obtained using only time-series analysis.

  10. A two-fluid study of oblique tearing modes in a force-free current sheet

    NASA Astrophysics Data System (ADS)

    Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; Liu, Yi-Hsin

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.

  11. Reconnection Properties of Large-scale Current Sheets During Coronal Mass Ejection Eruptions

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Edmondson, J. K.; Kazachenko, M. D.; Guidoni, S. E.

    2016-07-01

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch & Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ˜100:1), Lundquist number (˜103), and reconnection rate (inflow-to-outflow ratios reaching ˜0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  12. Development of a Current Sheet in the Wake of a Fast Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Ling, A. G.; Webb, D. F.; Burkepile, J. T.; Cliver, E. W.

    2014-04-01

    A bright ray that developed in the wake of a fast coronal mass ejection (CME) on 2005 September 7 presents a unique opportunity to study the early development and physical characteristics of a reconnecting current sheet (CS). Polarization brightness images from the Mk4 K-Coronameter at the Mauna Loa Solar Observatory are used to determine the structure of the ray along its axis low in the corona as it progressed outward. Coverage of the early development of the ray out to ~1.3 R ⊙ for a period of ~27 hr after the start of the event enables for the first time in white light a measurement of a CME CS from the top of the arcade to the base of the flux rope. Measured widths of the ray are combined to obtain the kinematics of the upper and lower "Y"-points described in reconnection flux-rope models such as that of Lin & Forbes. The time dependence of these points are used to derive values for the speed and acceleration of the growth of the CS. We note the appearance of a large structure which increases in size as it expands outward in the early development of the ray and an apparent oscillation with a period of ~0.5 hr in the position angle of the ray.

  13. Numerical simulation of solar cosmic ray acceleration in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    Balabin, Yury; Podgorny, Igor; Podgorny, Alexander; Vashenyuk, Eduard

    The set of neutron monitors measurements reveals two components of relativistic protons that accompaniment a flare. The prompt component of relativistic protons is created simultaneously with flare hard X-ray radiation. It possesses information about the mechanism of particle acceleration in a flare up to 10 GeV. Prompt component shows the exponential spectrum with W0 order of 0.5 GeV. The possibility of particle acceleration in a current sheet has been considered in the frame of the elctrodynamical solar flare model. Particles can get energy during acceleration in the Lorenz electric field along a singular line. The similar mechanism of acceleration has been observed in the powerful pinch discharge. In previous simulation works it has been shown that exponential spectrum appears, if the electric field is applied along a magnetic symmetrical X-type singular line. Such simulation can be considered as a first step for reality, because the real field distribution is much more complicated. Now numerical simulations have been carried out for the real magnetic and electric configurations calculated in MHD numerical experiments for the famous Bastille flare. The result of simulation shows that the spectrum of accelerated protons during a flare indeed is the exponential one. From comparison of simulation results with observable spectra of solar protons the rate of reconnection of order of 107 cm/s for W0 0.5 GeV is estimated.

  14. Laboratory study of magnetic reconnection with a density asymmetry across the current sheet.

    PubMed

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E; Chen, Li-Jen

    2014-08-29

    The effects of a density asymmetry across the current sheet on anti-parallel magnetic reconnection are studied systematically in a laboratory plasma. Despite a significant density ratio of up to 10, the in-plane magnetic field profile is not significantly changed. On the other hand, the out-of-plane Hall magnetic field profile is considerably modified; it is almost bipolar in structure with the density asymmetry, as compared to quadrupolar in structure with the symmetric configuration. Moreover, the ion stagnation point is shifted to the low-density side, and the electrostatic potential profile also becomes asymmetric with a deeper potential well on the low-density side. Nonclassical bulk electron heating together with electromagnetic fluctuations in the lower hybrid frequency range is observed near the low-density-side separatrix. The dependence of the ion outflow and reconnection electric field on the density asymmetry is measured and compared with theoretical expectations. The measured ion outflow speeds are about 40% of the theoretical values.

  15. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction.

    PubMed

    Dong, Quan-Li; Wang, Shou-Jun; Lu, Quan-Ming; Huang, Can; Yuan, Da-Wei; Liu, Xun; Lin, Xiao-Xuan; Li, Yu-Tong; Wei, Hui-Gang; Zhong, Jia-Yong; Shi, Jian-Rong; Jiang, Shao-En; Ding, Yong-Kun; Jiang, Bo-Bin; Du, Kai; He, Xian-Tu; Yu, M Y; Liu, C S; Wang, Shui; Tang, Yong-Jian; Zhu, Jian-Qiang; Zhao, Gang; Sheng, Zheng-Ming; Zhang, Jie

    2012-05-25

    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

  16. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    SciTech Connect

    Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-01-15

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.

  17. A multievent study of the coincidence of heliospheric current sheet and stream interface

    NASA Astrophysics Data System (ADS)

    Huang, Jia; Liu, Yong C.-M.; Qi, Zhaohui; Klecker, Berndt; Marghitu, Octav; Galvin, Antoinette B.; Farrugia, Charles J.; Li, Xiaoyu

    2016-11-01

    Generally, the heliospheric current sheet (HCS) is separated from the stream interface (SI) at about 1 AU. A recent study found an event where the HCS coincides with the SI, and in which the HCS is separated from the true sector boundary (TSB), defined by the switch of suprathermal electron pitch angle distributions. We present a multievent study by using STEREO, ACE, and Wind data during 2007 to 2010 to investigate whether other classes of such coincidence cases exist, as well as their stability. We find coincidence cases related to ideal HCSs, separated TSB and HCS, or heat flux dropouts in the vicinity; therefore, we define them as types I, II, and III. Among the nine coincidence cases, there are seven type I, one type II, and one type III. For each type, a possible schematic origin is presented. We also compared the observations on different spacecraft. Only two out of nine cases are observed by several spacecraft with a large separation, indicating that the coincidence structures are usually unstable. The study also shows that the coincidence cases have a variable connection with pseudostreamers. Interchange reconnection and pseudostreamers could play a role in forming these coincidence cases and lead to different configurations in different situations.

  18. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  19. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    NASA Astrophysics Data System (ADS)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  20. Modelling the coronal hole -- coronal loop boundary as a compressible current-vortex sheet

    NASA Astrophysics Data System (ADS)

    Dahlburg, R.; Einaudi, G.

    Recent observations and theoretical developments have re-awakened interest in finding out what happens at the boundary between closed and open magnetic field regions in the solar corona, i.e., between coronal loops and coronal holes. Habbal et al. (2001) report the existence of a pervasive radial magnetic field in the solar corona These observations appear to indicate that closed and open magnetic fields are in close proximity in the solar corona, making it likely that that interactions between the two are common. However, it is not necessary that open magnetic field lines thread through closed magnetic fields. It is possible that coronal holes have a fractal boundary, and that instead "estuaries" of open field intrude into active regions. Theoretical interest is shown in the ideas behind coronal whips (Pneumann 1974) and more recently models based of the magnetic junkyard (Dowdy et al. 1986) and the magnetic furnace (Axford and McKenzie 1992). A model for the coronal hole - coronal loop boundary, based on the linear and nonlinear evolution of a compressible current-vortex sheet, is proposed. The loop is modelled as force-free and massive, with the plasma in motion along the magnetic field. The hole is modelled with a potential magnetic field containing a rarer, static plasma. Both linear and nonlinear properties are explored. An acceleration along the coronal hole magnetic field direction is observed which would enhance the fast solar wind speed. W. I. Axford and J. F. McKenzie, in Solar Wind Seven, eds. E. Marsch and R. Schwenn, (Oxford: Pergamon Press), pp 1-5 (1992). J. F. Dowdy, D. Rabin, and R. L. Moore, Solar Phys. 105, 35 (1986). S. R. Habbal, R. Woo, and J. Arnaud, Astrophys. J. 55, 852 (2001). G. W. Pneumann, in Coronal Disturbances, ed. G. Newkirk, (Dordrecht: Reidel), p 35 (1974).

  1. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    SciTech Connect

    Huang, Lei; Yu, Cong E-mail: cyu@ynao.ac.cn

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  2. Nonlinear evolution of the Kelvin-Helmholtz instability in the double current sheet configuration

    NASA Astrophysics Data System (ADS)

    Mao, Aohua; Li, Jiquan; Liu, Jinyuan; Kishimoto, Yasuaki

    2016-03-01

    The nonlinear evolution of the Kelvin-Helmholtz (KH) instability driven by a radially antisymmetric shear flow in the double current sheet configuration is numerically investigated based on a reduced magnetohydrodynamic model. Simulations reveal different nonlinear fate of the KH instability depending on the amplitude of the shear flow, which restricts the strength of the KH instability. For strong shear flows far above the KH instability threshold, the linear electrostatic-type KH instability saturates and achieves a vortex flow dominated quasi-steady state of the electromagnetic (EM) KH turbulence with large-amplitude zonal flows as well as zonal fields. The magnetic surfaces are twisted significantly due to strong vortices but without the formation of magnetic islands. However, for the shear flow just over the KH instability threshold, a weak EM-type KH instability is saturated and remarkably damped by zonal flows through modifying the equilibrium shear flow. Interestingly, a secondary double tearing mode (DTM) is excited subsequently in highly damped KH turbulence, behaving as a pure DTM in a flowing plasma as described in Mao et al. [Phys. Plasmas 21, 052304 (2014)]. However, the explosive growth phenomenon is replaced by a gradually growing oscillation due to the extremely twisted islands. As a result, the release of the magnetic energy becomes slow and the global magnetic reconnection tends to be gentle. A complex nonlinear interaction between the EM KH turbulence and the DTMs occurs for the medium shear flows above the KH instability threshold, turbulent EM fluctuations experience oscillatory nonlinear growth of the DTMs, finally achieves a quasi-steady state with the interplay of the fluctuations between the DTMs and the EM KH instability.

  3. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE PAGES

    Makwana, K. D.; Zhdankin, V.; Li, H.; ...

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  4. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    SciTech Connect

    Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smaller simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.

  5. Spontaneous and chaotic fast reconnection in three dimensional current-sheets (Invited)

    NASA Astrophysics Data System (ADS)

    Bettarini, L.; Lapenta, G.

    2010-12-01

    Numerical experiments and analytical studies suggested that within the pure resistive magnetohydrodynamics framework it is not possible to have a magnetic field-line reconnecting dynamics that spontaneously evolves from a slow, resistive reconnection regime to a fast, high-power phase. The results presented here are the first able to show this transition in fully three dimensional volume-filling regions of macroscopic systems. It is provided a complete picture of the reconnecting dynamics of a current-sheet initially set in laminar conditions, which are representative of many laboratory and astrophysical plasmas. We show how the conversion of magnetic field energy via magnetic reconnection can progress in a fast, fully three-dimensional, volume-filling regime characterized by a chaotic evolution of the system. The process does not require any pre-existing turbulence seed which often is not observed in the host systems prior to the onset of the energy conversion. The two- and three-dimensional simulations presented here have an unprecedented low level of numerical diffusion that usually determines the dissipation of energy sources that otherwise can drive the instabilities sustaining the transition to the fast energy conversion process. Even though pre-existing two-dimensional simulation studies presented some signs of this transition, yet their limited dimensionality prevented them to correctly and completely describe the fully developed volume-filling energy conversion process. In fact this non-steady dynamics critically depends on the interplay of perturbations developing along the magnetic field lines and across them, a process possible only in three-dimensions. Examples and applications to astrophysical and solar plasmas are considered.

  6. ASYMMETRIC MAGNETIC RECONNECTION IN SOLAR FLARE AND CORONAL MASS EJECTION CURRENT SHEETS

    SciTech Connect

    Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.; Winter, H. D.; Reeves, K. K.; Van Ballegooijen, A. A.; Lin, J.; Seaton, D. B.

    2012-05-20

    We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is significantly faster than the exhaust directed toward it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.

  7. Numerical Experiments on the Detailed Energy Conversion and Spectrum Studies in a Corona Current Sheet

    NASA Astrophysics Data System (ADS)

    Ni, Lei; Lin, Jun; Mei, Zhixing; Li, Yan

    2015-10-01

    In this paper, we study the energy conversion and spectra in a corona current sheet (CS) by 2.5 dimensional MHD numerical simulations. Numerical results show that many Petschek-like fine structures with slow-mode shocks mediated by plasmoid instabilities develop during the magnetic reconnection process. The termination shocks can also be formed above the primary magnetic island and at the head of secondary islands. These shocks play important roles in generating thermal energy in a corona CS. For a numerical simulation with initial conditions close to the solar corona environment, the ratio of the generated thermal energy to the total dissipated magnetic energy is around 1/5 before secondary islands appear. After secondary islands appear, the generated thermal energy starts to increase sharply and this ratio can reach a value of about 3/5. In an environment with a relatively lower plasma density and plasma β, the plasma can be heated to a much higher temperature. After secondary islands appear, the one-dimensional energy spectra along the CS do not behave as a simple power law and the spectrum index increases with the wave number. The average spectrum index for the magnetic energy spectrum along the CS is about 1.8. The two-dimensional spectra intuitively show that part of the high energy is cascaded to large kx and ky space after secondary islands appear. The plasmoid distribution function calculated from numerical simulations behaves as a power law closer to f(\\psi )˜ {\\psi }-1 in the intermediate ψ regime. By using {η }{eff}={v}{inflow}\\cdot L, the effective magnetic diffusivity is estimated to be about 1011 ˜ 1012 m2 s-1.

  8. Local and global aspects of charge-current generating world-sheet scalar potentials

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon; Wali, Kameshwar C.

    1991-02-01

    The electromagnetic interactions of a test string, including in particular the intrinsic self-interactions, are governed by its charge-current two-vector density Qα ( α= τ, σ). Being locally conserved, Qα is derivable from a parent world-sheet scalar potential V( τ, σ), that is, Qα = ɛαβVβ. However, to characterize the electromagnetic properties of the string does not mean a priori specifying V( τ, σ) up to a global gauge transformation. In fact, it is only when V( τ, σ) is treated as an additional canonical variable that the superconductivity integrability constraint emerges as an equation of motion. Electric charge quantization then follows, exclusively for closed strings, provided the phase e iV stays single-valued with respect to the σ-periodicity ( Δσ = 2 π) in exactly the same way as the global property of the built-in phase e iV of an order parameter dictates magnetic flux quantization. The pedagogical case of a self-interacting circular loop, for which V=ƒ(τ)+nσ ⇔ χ = g(τ) + mσ, with n(m) counting the total number of electric charges (magnetic fluxons), is studied in the framework of two reparametrization invariant models. Following a Nielsen-Olsen type model, we advocate a novel approach to unification, with V (rather than χ) serving as the fifth dimension. The alternate model, favored on field-theoretical grounds, conceptually differs from the first one by strictly forbidding the collapse of a self-interacting loop.

  9. Scrape-off Layer Current Model for Filament Structure Observed during Edge Localized Modes (ELMs) in the DIII-D Tokamak

    SciTech Connect

    Takahashi, Hironori; Fredrickson, E. D.; Schaffer, M. J.

    2008-04-15

    The plasma in tokamaks often exhibits a relaxation oscillation called the edge localized mode (ELM), which is generally attributed to MHD instability driven by strong gradients at the plasma boundary. It is shown here that field-aligned currents flowing just outside the boundary may also play a role in the ELM process. The poloidal perturbation magnetic field during ELMs in the DIII–D tokamak calculated from measured currents can reproduce prominent observed features, including a narrow magnetic structure at the outboard midplane similar to filaments observed earlier in DIII–D and NSTX.

  10. Scrape-Off-Layer Current Model for Filament Structure Observed during Edge-Localized Modes in the DIII-D Tokamak

    SciTech Connect

    Takahashi, Hironori; Fredrickson, E. D.; Schaffer, M. J.

    2008-05-23

    The plasma in tokamaks often exhibits a relaxation oscillation called the edge-localized mode (ELM), which is generally attributed to MHD instability driven by strong gradients at the plasma boundary. It is shown here that field-aligned currents flowing just outside the boundary may also play a role in the ELM process. The poloidal perturbation magnetic field during ELMs in the DIII-D tokamak calculated from measured currents can reproduce prominent observed features, including a narrow magnetic structure at the outboard midplane similar to filaments observed earlier in DIII-D and NSTX.

  11. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, Ka-Ngo; Pincosy, Philip A.; Ehlers, Kenneth W.

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  12. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  13. Current sheets in the Discontinuous Galerkin Time-Domain method: an application to graphene

    NASA Astrophysics Data System (ADS)

    Werra, Julia F. M.; Wolff, Christian; Matyssek, Christian; Busch, Kurt

    2015-05-01

    We describe the treatment of thin conductive sheets within the Discontinuous Galerkin Time-Domain (DGTD) method for solving the Maxwell equations and apply this approach to the efficient computation of the optical properties of graphene-based systems. In particular, we show that a thin conductive sheet can be handled by incorporating the associated jump conditions of the electromagnetic field into the numerical flux of the DGTD approach. This results in a flexible and efficient numerical scheme that can be applied to a number of systems. Specifically, we show how to treat individual graphene sheets on substrates as well as finite stacks of alternating graphene and dielectric layers by modeling the dispersive and dissipative properties of graphene via a two-term critical-point model for its electrostatically doped conductivity.

  14. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  15. The North-South Asymmetry of the Heliospheric Current Sheet: Results of an MHD Simulation

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.

    2013-01-01

    A displacement of the heliospheric current sheet (HCS) south of the helioequator by approx.10deg was proposed by Simpson et al. (1996) as a possible explanation of the north-south asymmetry in the galactic cosmic rays observed by Ulysses during its first fast transit in 1994-1995. The idea was not supported by magnetic field measurements on Ulysses and, on this ground, was dismissed by Simpson et al. (1996). In addition, Erdos & Balogh (1998) argued that any north-south symmetry was unlikely as there should be flux balance between the magnetic sectors of opposite polarity. Nonetheless, many in the scientific community have accepted the original suggestion of Simpson et al. (1996) that a displacement of the HCS was responsible for the cosmic ray asymmetry. In this paper, using a magnetohydrodynamic model of the solar corona and solar wind that includes both dipole and quadrupole magnetic source terms, we show that a north-south asymmetry of the magnetic field on the Sun does not give rise to a displacement of the HCS. The lack of displacement of the HCS results from a latitudinal redistribution of magnetic flux near the Sun where the plasma beta much < 1. The latitudinal redistribution is a direct consequence of the magnetic field gradient between pole and equator. Near the Sun, the latitudinal gradient in magnetic field generates meridional flows directed equatorward that tend to relax the gradient in the magnetic field (to make it more latitude-independent) as heliocentric distance increases. If there is an asymmetry between north and south magnetic field strength then the meridional flows are also asymmetric (i.e., stronger in the hemisphere of stronger magnetic field). Because the magnetic fluxes (positive and negative) in the hemispheres must be equal, the redistribution shifts the HCS into balance by approx. 16 R(solar mass). At larger distances, where the magnetic field is relatively weak (beta much > 1), the HCS can be displaced if there is a difference in

  16. MODELING UV AND X-RAY EMISSION IN A POST-CORONAL MASS EJECTION CURRENT SHEET

    SciTech Connect

    Ko, Yuan-Kuen; Raymond, John C.; Vrsnak, Bojan; Vujic, Eugen

    2010-10-10

    A post-coronal mass ejection (CME) current sheet (CS) is a common feature developed behind an erupting flux rope in CME models. Observationally, white light observations have recorded many occurrences of a thin ray appearing behind a CME eruption that closely resembles a post-CME CS in its spatial correspondence and morphology. UV and X-ray observations further strengthen this interpretation by the observations of high-temperature emission at locations consistent with model predictions. The next question then becomes whether the properties inside a post-CME CS predicted by a model agree with observed properties. In this work, we assume that the post-CME CS is a consequence of Petschek-like reconnection and that the observed ray-like structure is bounded by a pair of slow mode shocks developed from the reconnection site. We perform time-dependent ionization calculations and model the UV line emission. We find that such a model is consistent with SOHO/UVCS observations of the post-CME CS. The change of Fe XVIII emission in one event implies an inflow speed of {approx}10 km s{sup -1} and a corresponding reconnection rate of M{sub A} {approx} 0.01. We calculate the expected X-ray emission for comparison with X-ray observations by Hinode/XRT, as well as the ionic charge states as would be measured in situ at 1 AU. We find that the predicted count rate for Hinode/XRT agrees with what was observed in a post-CME CS on 2008 April 9, and the predicted ionic charge states are consistent with high ionization states commonly measured in the interplanetary CMEs. The model results depend strongly on the physical parameters in the ambient corona, namely the coronal magnetic field, the electron density, and temperature during the CME event. It is crucial to obtain these ambient coronal parameters and as many facets of the CS properties as possible by observational means so that the post-CME CS models can be scrutinized more effectively.

  17. Multi-Spacecraft Study of the 21 January 2005 ICME. Evidence of Current Sheet Substructure Near the Periphery of a Strongly Expanding, Fast Magnetic Cloud

    NASA Astrophysics Data System (ADS)

    Foullon, C.; Owen, C. J.; Dasso, S.; Green, L. M.; Dandouras, I.; Elliott, H. A.; Fazakerley, A. N.; Bogdanova, Y. V.; Crooker, N. U.

    2007-08-01

    We examine the near-Earth Interplanetary Coronal Mass Ejection (ICME) apparently related to the intense Solar Energetic Particle (SEP) event of 20 January 2005. Our purpose is to contribute to the understanding of the macroscopic structure, evolution and dynamics of the solar corona and heliosphere. Using Cluster, ACE and Wind data in the solar wind, and Geotail data in the magnetosheath, we perform a multi-spacecraft analysis of the ICME-driven shock, post-shock magnetic discontinuities and ejecta. Traversals by the well-separated near-Earth spacecraft provide a coherent picture of the ICME geometry. Following the shock, the ICME sequence starts with a hot pileup, i.e., a sheath, followed by a fast ejecta characterised by a non-compressive density enhancement (NCDE), which is caused essentially by an enrichment in helium. The plasma and magnetic observations of the ejecta are consistent with the outskirts of a structure in strong expansion, consisting of nested magnetic loops still connected to the Sun. Within the leading edge of the ejecta, we establish the presence of a tilted current sheet substructure. An analysis of the observations suggests that the tilted current sheet is draped within the overlying cloud canopy, ahead of a magnetic cloud-like structure. The flux rope interpretation of this structure near L1, confirmed by observations of the corresponding magnetic cloud, provided by Ulysses at 5.3 AU and away from the Sun - Earth line, indicates that the bulk of the cloud is in the northwest sector as seen from the Earth, with its axis nearly perpendicular to the ecliptic. This is consistent with the primary direction of travel of the fast halo CME observed at the Sun. Moreover, the NCDE and helium enrichment are consistent with the position near the streamer belt of the flaring active region NOAA 10720 associated with the CME. However, differences between interplanetary and solar observations indicate a large rotation of the erupting filament and overlying

  18. Rapid large-scale magnetic-field dissipation in a collisionless current sheet via coupling between Kelvin-Helmholtz and lower-hybrid drift instabilities.

    PubMed

    Shinohara, I; Suzuki, H; Fujimoto, M; Hoshino, M

    2001-08-27

    Rapid large-scale magnetic-field dissipation is observed in a full kinetic simulation of cross-field current instabilities in a current sheet even when the thickness of the current sheet is at ion scale. The Kelvin-Helmholtz instability caused by the velocity shear between the current-carrying ions and the cold background ions excites the lower-hybrid drift instability at the edges of the undulated current sheet. We show that the nonlinear coupling between these two instabilities is responsible for the observed rapid dissipation. The simulation result presents a new route for magnetic-field dissipation in an ion-scale current sheet and demonstrates the general significance of nonlinear cross-scale coupling in collisionless plasmas.

  19. Antarctic polar plateau vertical electric field variations across heliocentric current sheet crossings

    NASA Astrophysics Data System (ADS)

    Burns, G. B.; Tinsley, B. A.; Klekociuk, A. R.; Troshichev, O. A.; Frank-Kamenetsky, A. V.; Duldig, M. L.; Bering, E. A.; Clem, J. M.

    2006-03-01

    A superposed epoch analysis of variations of the vertical electric field measured at Vostok (78.5°S, 107°E; magnetic latitude 83.6°S) during 1998 2002 heliocentric current sheet (HCS) crossings yields no significant variation other than an association imposed by polar-cap potential differences above the site. This result contradicts published reports of a reduction ˜15% in electric field 1 3 days after HCS crossings, an observation initially made ˜30 years ago. If such a reduction had been caused by reductions in stratospheric ionising radiation, the presence of polar stratospheric clouds (PSC) would seem necessary for the occurrence of this effect. PSCs would increase the resistance of the stratosphere thus making ionisation in that region significant in the context of the ionosphere ground current flow, in a manner analogous to the role of volcanic aerosols in the stratosphere in the explanation of the weakening of northern hemisphere winter cyclones associated with HCS crossings, the so-called ‘Wilcox effect’. However, separating the present data to correspond to the likely presence of PSC above Vostok also does not yield the reported reduction. Significant increases or decreases of the vertical electric field emerge from the observations when the HCS crossings are separated into sets depending on whether the solar wind magnetic field changes from ‘toward-to-away’ (increase of ˜11%) and ‘away-to-toward’ (decrease of ˜8%). Polar-cap potential changes above the site, inferred from solar wind parameters using the Weimer model, also show such step functions that reverse with the sign of HCS transition and are broadly consistent with the measured electric field increases or decreases. Remaining differences between the measurements and the model are consistent with a somewhat stronger solar wind speed and/or magnetic activity influence on polar-cap convection above Vostok than is predicted by the model. Variations in ground-level neutron counts, a

  20. Current sheets in the Earth's magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect

    NASA Astrophysics Data System (ADS)

    Frank, A. G.; Artemyev, A. V.; Zelenyi, L. M.

    2016-10-01

    The main characteristics of current sheets (CSs) formed in laboratory experiments are compared with the results of satellite observations of CSs in the Earth's magnetotail. We show that many significant features of the magnetic field structure and the distributions of plasma parameters in laboratory and magnetospheric CSs exhibit a qualitative similarity, despite the enormous differences of scales, absolute values of plasma parameters, magnetic fields, and currents. In addition to a qualitative comparison, we give a number of dimensionless parameters that demonstrate the possibility of laboratory modeling of the processes occurring in the magnetosphere.

  1. Cluster observations of solitary waves near the center of the current sheet in association with magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Hupach, A.; Cattell, C. A.; Wygant, J. R.; Schwartz, S. J.; Mouikis, C.

    2010-12-01

    Cluster observations of large amplitude solitary waves (up to ~250 mV/m), identified as electron holes, were studied for six days when the satellites repeatedly crossed the plasma sheet near a reconnection region. Examination of EFW instrument burst data, with an automated program [Dombeck et al., 2001] and visual inspection, detected solitary waves on 18 of the 24 bursts. There was one 10 second burst on each spacecraft each day with solitary waves detected in at least one burst from every day. Solitary waves were seen on all four spacecraft during three of the days. The variety of positions surveyed by Cluster due to both spacecraft separation and the differing locations with respect to the reconnection region at each of the six events enables a comparison of solitary wave duration and peak to peak electric field in many different parts of the reconnection region. The study expands work by Cattell et al. [2005] which, along with simulations by Drake et al. [2003], showed that electron holes could provide some of the particle scattering needed in the reconnection process. The August 24, 2003 burst on spacecraft 2 is unique because several solitary waves were detected less than 200 km from and some within a few km of the center of the current sheet (BXgse=0). This is in contrast to the Cattell et al. [2005] results where solitary waves were only seen on spacecraft greater than 1,500 km from the center of the current sheet. Peak to peak electric fields of a few to hundreds of mV/m and durations of tenths to tens of microseconds were consistent for solitary waves both near and far from the center of the current sheet. In agreement with previous studies and independent of position in the current sheet, all solitary waves were detected during times when PEACE measured narrow field aligned electron beams. While recent studies, such as Che et al. [2009] and Goldman et al. [2008], suggested different wave modes for the evolution of solitary waves, a determination of

  2. SDO Watches Giant Filament on the Sun

    NASA Video Gallery

    A snaking, extended filament of solar material currently lies on the front of the sun-- some 1 million miles across from end to end. Filaments are clouds of solar material suspended above the sun b...

  3. Coronal Hole-Active Region-Current Sheet (CHARCS) Association with Intense Interplanetary and Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Gonzalez, W. D.; Tsurutani, B. T.; McIntosh, P. S.; Gonzalez, A. L.

    1996-01-01

    Intense geomagnetic storms (Dstfilament eruptions) ocurring close to the streamer belt and to growing low altitude coronal holes. It is also shown that such type of coronal holes had a dual-peak solar cycle distribution during solar cycle 21, similar to that previously reported for the above mentioned interplanetary and geomagnetic phenomena.

  4. Current progress and challenges in ocular surface reconstruction using cultivated epithelial sheet transplantation.

    PubMed

    Inatomi, T; Nakamura, T; Koizumi, N; Sotozono, C; Kinoshita, S

    2008-07-01

    The cultivated epithelial transplantation is a new surgical modality for treating a variety of severe ocular surface disorders. This type of tissue-engineered epithelial sheet provides a rapid epithelial coverage on the corneal surface that reduces inflammation and postoperative complications. Although cultivated corneal epithelial transplantation is an effective surgical strategy, autologous transplantation is limited to unilateral cases. Autologous cultivated oral mucosal epithelial transplantation (COMET) enables surgeons to reconstruct the ocular surface using autologous, non-ocular surface cells, and has opened a new pathway for treating severe, bilateral ocular surface disorders.

  5. Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observation: from Kraichnan to Kolmogorov scaling.

    PubMed

    Li, G; Miao, B; Hu, Q; Qin, G

    2011-03-25

    The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k(-1.5) power spectrum. Solar wind observations, however, often show a k(-5/3) Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28,000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed.

  6. The Many Fates of Retracting Newtonian Filaments

    NASA Astrophysics Data System (ADS)

    Anthony, Christopher; Thete, Sumeet; Harris, Michael; Basaran, Osman

    2016-11-01

    The retraction of Newtonian filaments plays a central role in applications as diverse as inkjet printing and atomization where formation of satellite droplets is undesirable. In order to avoid satellite drop production, filaments formed after drop, jet, or sheet breakup should contract to spheres without undergoing further pinch-off. Therefore, it is important to understand all of the dynamical responses that can arise during filament recoil. To accomplish this goal, we use high accuracy simulations to analyze the retraction of Newtonian filaments in a passive ambient fluid. Previously, Notz and Basaran described the fate of low-viscosity filaments. More recent works by Hoepffner and Pare on intermediate viscosity filaments and by Lohse et al. on high viscosity filaments have greatly enhanced our understanding of filament recoil. Unfortunately, taking all of these works in aggregate does not provide a comprehensive picture of filament dynamics. Here, we overcome the deficiencies of these earlier studies to provide a comprehensive analysis of filament recoil and arrive at a complete phase diagram of the system response. While doing so, we also uncover a new mode of filament breakup that has been missed by earlier investigators.

  7. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGES

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; ...

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  8. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  9. ANALYTIC SOLUTIONS FOR CURRENT SHEET STRUCTURE DETERMINED BY SELF-CONSISTENT, ANISOTROPIC TRANSPORT PROCESSES IN A GRAVITATIONAL FIELD

    SciTech Connect

    Goodman, Michael L.

    2011-04-10

    A Harris sheet magnetic field with maximum magnitude B{sub 0} and length scale L is combined with the anisotropic electrical conductivity, viscosity, and thermoelectric tensors for an electron-proton plasma to define a magnetohydrodynamic model that determines the steady state of the plasma. The transport tensors are functions of temperature, density, and magnetic field strength, and are computed self-consistently as functions of position x normal to the current sheet. The flow velocity, magnetic field, and gravitational force lie along the z-axis. The plasma is supported against gravity by the viscous force. Analytic solutions are obtained for temperature, density, and velocity. They are valid over a broad range of temperature, density, and magnetic field strength, and so may be generally useful in astrophysical applications. Numerical examples of solutions in the parameter range of the solar atmosphere are presented. The objective is to compare Joule and viscous heating rates, determine the velocity shear that generates viscous forces that support the plasma and are self-consistent with a mean outward mass flux comparable to the solar wind mass flux, and compare the thermoelectric and conduction current contributions to the Joule heating rate. The ratio of the viscous to Joule heating rates per unit mass can exceed unity by orders of magnitude, and increases rapidly with L. The viscous heating rate can be concentrated outside the region where the current density is localized, corresponding to a resistively heated layer of plasma bounded by viscously heated plasma. The temperature gradient drives a thermoelectric current density that can have a magnitude greater than that of the electric-field-driven conduction current density, so thermoelectric effects are important in determining the Joule heating rate.

  10. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  11. Electrostatic drift waves in a 2D magnetic current sheet - a new kinetic theory

    NASA Astrophysics Data System (ADS)

    Fruit, G.; Louarn, P.; Tur, A.

    2015-12-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons has been proposed for several years. Fruit et al. 2013 already used it to investigate the possibilities for electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations.It turns out that some corrections should be added to the electrostatic version of Fruit et al. 2013. We propose to revist the theory in this present paper.Starting with a modified 2D Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electrostatic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electrostatic modes is finally obtained through the quasineutrality condition.The new feature of the present model is the inclusion of diamagnetic drift effects due to the density gradient in the tail. It is well known in MHD theory that drift waves are driven unstable through collisions or other dissipative effects. Here electrostatic drift waves are revisited in this more complete kinetic model including bouncing electrons and finite Larmor radius effects. A new mode has been found with original propagation proprieties. It is moreover mildly unstable due to electron or ion damping (dissipative instability).

  12. Thermal structure of current sheets and supra-arcade downflows in the solar corona

    SciTech Connect

    Hanneman, Will J.; Reeves, Katharine K. E-mail: kreeves@cfa.harvard.edu

    2014-05-10

    After the peak intensity of many large solar flares, magnetic and thermodynamic processes give rise to a phenomenon known as supra-arcade downflows (SADs). SADs are sunward flowing density depletions, often observed in post-flare plasma sheets. Some models have suggested that the plasma in the dark lanes is heated to temperatures of 20-80 MK, which is much hotter than temperatures of the surrounding plasma. In this work, we use data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and the X-Ray Telescope on the Hinode satellite to determine the thermal structure of SADs in the solar corona. We examine four flares that took place on 2011 October 22, 2012 January 14, 2012 January 16, and 2012 January 27. Differential emission measures are calculated for each flare and we compare the temperatures in the SADs to those of the surrounding plasma. We find that the SADs are hotter than the background, but cooler than the surrounding plasma in most cases, with only 1 out of the 11 SADs examined here having a slightly higher temperature than its surroundings.

  13. The Most Intense Electron-Scale Current Sheets in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-04-01

    Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of 1 pA/cm2. Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor's hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when νc≫ νb, where νc is the measurement bandwidth and νb ≈ 1/3 Hz is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately 1/νc, and the average peak current density is a weakly increasing function that scales approximately like νc^{0.1}.

  14. Magnetic Reconnection in the Heliospheric Current Sheet: The Implications of the Different Environments Seen by the VoyagerSpacecraft

    NASA Astrophysics Data System (ADS)

    Swisdak, M. M.; Drake, J. F.; Opher, M.

    2014-12-01

    The magnetic field abutting the heliospheric current sheet (HCS) is primarily in the azimuthal direction, either east-to-west or west-to-east. Mis-alignment of the solar rotational and magnetic axesleads to the characteristic ballerina-skirt shape of the HCS and during the solar cycle there can be large excursions in the sheet's latitudinal extent. Voyager 2's observations of energetic electrondropouts are related to its crossing of this boundary. Magnetic reconnection is also thought to occur as the HCS compresses and narrows between the termination shock and the heliopause. Near theequator the two HCS field alignments are present in roughly equal amounts, while near the edges the distribution can be considerably skewed. This will lead to substantial differences in the environmentsof the two Voyager spacecraft since Voyager 1 is north of the equator, but firmly in the sector region, while Voyager 2 is south of the equator and skirting the edges of the sector region. We presentparticle-in-cell simulations demonstrating the consequences of the reconnection of asymmetric amounts of flux. In particular, we will discuss Voyager 2's remaining time in the heliosphere -- including theimplications for the solar wind velocity, energetic particle transport, and the expected structure of Voyager 2's heliopause crossing -- and compare it with the data collected from Voyager 1.

  15. Carrier sheet density constrained anomalous current saturation of graphene field effect transistors: kinks and negative differential resistances.

    PubMed

    Wang, Xiaomu; Xu, Haitao; Min, Jie; Peng, Lian-Mao; Xu, Jian-Bin

    2013-04-07

    There has recently been a great deal of interest and excitement in applying graphene field effect transistors (GFETs) in digital and radio frequency (RF) circuits and systems. Peculiar output characteristics such as kinks and negative differential resistance (NDR) in a strong field are the unique transport properties of GFETs. Here we demonstrate that these unusual features are attributed to a carrier sheet density constrained transport framework. Simulation results based on a simple analytic model which includes the linear DOS structure are in very good agreement with experimental data. The kernel mechanism of NDR is ascribed to the fact that the total current increase of a channel with a high average carrier density is constrained by its minimum sheet density. Utilizing in situ Kelvin probe force microscopy (KPFM), the principle which naturally distinguishes NDR from kinks is further verified by studying the spatially resolved surface potential distribution along the channel. The influence and potential application of GFETs' unique output characteristics in the digital and RF fields are also proposed.

  16. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    SciTech Connect

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where $\\vec{k}$• $\\vec{B}$ =0, consistent with previous analytical and simulation studies. Here, $\\vec{B}$ is the equilibrium magnetic field and $\\vec{k}$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $\\vec{k}$ •$\\vec{B}$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  17. The Inner Edge of the Plasma Sheet, REGION-2 Currents, and Electron Precipitation: Plasma Observations from ISEE 1.

    NASA Astrophysics Data System (ADS)

    Paterson, William Russell

    1990-01-01

    On 17 April, 29 April, and 4 June of 1978 the ISEE 1 spacecraft encountered the inner edge of the plasma sheet on the dusk side of Earth at radial distances of 6 to 9 R_{rm E}. Measurements obtained with a plasma analyzer aboard this spacecraft are examined in an effort to determine the source of Region -2 Birkeland currents. Near the inner edge it is found that the distributions of both electrons and positive ions have low-energy field-aligned components that apparently originate at low altitudes. In two cases it is also found that the low-energy electrons carry a current that is consistent in direction and magnitude with Region-2 currents observed at low altitude. Positive ions with energies per charge _sp{~}{<}1 kV also stream along the field and sometimes provide a current that is comparable in magnitude but opposite in direction to the electron current. The low-energy electrons are counterstreaming and appear to be backscattered secondaries produced by precipitation of keV plasma sheet electrons into the atmosphere. The source of low-energy ions is not determined but is probably related to the electron flow, possibly by wave-particle interactions. An analysis of electron distributions indicates that the inner edge is a drift boundary separating open and closed flow trajectories. However, shielding there is found to be more localized than the shielding assumed in standard convection models. This shielding may be provided by the low-energy field-aligned plasmas. It is also found that the electron distributions at the inner edge are strongly modified, apparently by pitch-angle diffusion which drives keV electrons into the loss cone and scatters secondary electrons out of the source cone, and modification of the distributions by pitch-angle diffusion may also play a role in producing the field-aligned currents. Thus, it is found that precipitation and pitch -angle diffusion play important roles in determining the structure of the inner magnetosphere and may serve

  18. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  19. THE THREE-DIMENSIONAL EVOLUTION OF ION-SCALE CURRENT SHEETS: TEARING AND DRIFT-KINK INSTABILITIES IN THE PRESENCE OF PROTON TEMPERATURE ANISOTROPY

    SciTech Connect

    Gingell, P. W.; Burgess, D.; Matteini, L.

    2015-03-20

    We present the first three-dimensional (3D) hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent 3D structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the 3D evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of 3D current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection.

  20. Electric fields associated with small-scale magnetic holes in the plasma sheet: Evidence for electron currents

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine A.; Ergun, Robert E.; Stawarz, Julia E.

    2016-06-01

    We report observations of magnetic holes (MHs) in the near-Earth (8 RE to 12 RE) plasma sheet that have physical sizes perpendicular to the magnetic field (B) on the order of the ion Larmor radius (ρi) and, more importantly, have current layers less than ρi in thickness. Small-scale MHs can have >90% depletion in |B| and are commonly associated with the braking of bursty bulk flow events. The generation of MHs is often attributed to magnetohydrodynamic (MHD) instabilities, which requires a size greater than ρi; the depletion in |B| is from an ion current consistent with a pressure gradient. Electric field (E) observations indicate a negative potential inside of small-scale MHs that creates an outward E at the boundary, which drives an E × B electron current in a thin layer. These observations indicate that a Hall electron current is primarily responsible for the depletion of |B| in small-scale magnetic holes, rather than the ion pressure gradient.

  1. Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets

    SciTech Connect

    Wyper, P. F. Pontin, D. I.

    2014-10-15

    In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer. We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.

  2. Modulation loops, time lag and relationship between cosmic ray intensity and tilt of the heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Badruddin; Singh, M.; Singh, Y. P.

    2007-05-01

    Aims:We study certain aspects of the solar modulation of galactic cosmic ray intensity during different solar activity cycles and in different polarity states of the heliosphere. Methods: We plotted modulation loops between the cosmic ray intensity and the tilt angle of the heliospheric current sheet during three solar activity cycles 21, 22 and 23 and obtained the area of modulation loops. The time lag between the tilt angle and the cosmic ray intensity in odd, even solar activity cycles and during A > 0, A < 0 polarity states of the heliosphere are determined using correlation analysis. Rate of intensity decrease with tilt angle during different solar and magnetic cycles are estimated from best fit method. Results: Marked differences during the two odd and the one even solar cycles, as well as during different polarity states of the solar magnetic field (A > 0 and A < 0) are found. We observe variations in finer features of modulation loops obtained using one, three, six and twelve rotation averaged data. We find that the time lag in even cycle (22) is much different from that in odd cycles (21, 23). Moreover, considerable difference in time lags are also observed during A > 0 and A < 0 polarity states of the heliosphere. We also find that the cosmic ray intensity decreases at much faster rate (and with better correlation) with increase in tilt angle during A < 0 than A > 0, indicating stronger response to the tilt angle changes during A < 0. These results are discussed in the light of 3D modulation models including the gradient and curvature drifts and the tilt of the heliospheric current sheet.

  3. Plasma sheets, plasma currents and electric field double layers in the equatorial ionosphere

    SciTech Connect

    Gupta, S.P.

    1981-01-01

    Plasma measurements carried out in the equatorial ionosphere at altitudes of 80-200 km are discussed. It is found that within this region the ion collision frequency exceeds the gyro-frequency. For electrons, however, the collision frequency is much lower than their gyro-frequency. It is pointed out that the earth's magnetic field is horizontal in the equatorial ionosphere, particularly at altitudes of approximately 100 km, where the curvature of the magnetic field can be neglected. The results obtained from rocket-borne probes in the equatorial ionosphere over Thumba (India) are presented. Localized regions illustrating the polarity of the vertical electric field are shown, as are current density profiles obtained at different times of the day. It is found that as expected, the vertical electric field becomes very small during a weak magnetic storm.

  4. Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments

    SciTech Connect

    Salandro, Wesley A.; Jones, Joshua J.; McNeal, Timothy A.; Roth, John T.; Hong, Sung Tae; Smith, Mark T.

    2010-10-01

    Previous studies have shown that the presence of a pulsed electrical current, applied during the deformation process of an aluminum specimen, can significantly improve the formability of the aluminum without heating the metal above its maximum operating temperature range. The research herein extends these findings by examining the effect of electrical pulsing on 5052 and 5083 Aluminum Alloys. Two different parameter sets were used while pulsing three different heat treatments (As Is, 398°C, and 510°C) for each of the two aluminum alloys. For this research, the electrical pulsing is applied to the aluminum while the specimens are deformed, without halting the deformation process (a manufacturing technique known as Electrically-Assisted Manufacturing). The analysis focuses on establishing the effect the electrical pulsing has on the aluminum alloy’s various heat treatments by examining the displacement of the material throughout the testing region of dogbone-shaped specimens. The results from this research show that pulsing significantly increases the maximum achievable elongation of the aluminum (when compared to baseline tests conducted without electrical pulsing). Another beneficial effect produced by electrical pulsing is that the engineering flow stress within the material is considerably reduced. The electrical pulses also cause the aluminum to deform non-uniformly, such that the material exhibits a diffuse neck where the minimum deformation occurs near the ends of the specimen (near the clamps) and the maximum deformation occurs near the center of the specimen (where fracture ultimately occurs). This diffuse necking effect is similar to what can be experienced during superplastic deformation. However, when comparing the presence of a diffuse neck in this research, electrical pulsing does not create as significant of a diffuse neck as superplastic deformation. Electrical pulsing has the potential to be more efficient than traditional methods of incremental

  5. Fine scale structure in the current sheet and electrostatic fields during driven magnetic reconnection on the VTF experiment.

    NASA Astrophysics Data System (ADS)

    Fox, William

    2005-10-01

    We have conducted a series of experiments in the VTF reconnection experiment[1] to measure with high resolution the current channel and electric structures that form in response to driven reconnection. Preliminary measurements have revealed that the current sheet is not symmetric across the X-line, contradicting an assumption fundamental to nearly every reconnection theory. Importantly, effects related to this asymmetry can account for momentum balance for the electrons at the X-line (i.e. fulfillment of the generalized Ohm's law) via convective inertia (m n v.∇v||). Measurements of strong in-plane electric field structures (E˜ 1 kV/m) near the X-point reveal a mechanism to efficiently heat ions, as has been recently observed by laser induced fluorescence (LIF) measurements of the ion distribution function[2].This work was supported by a DoE Fusion Energy Sciences Fellowship.[1] J. Egedal, et. al. (2001), Rev. Sci. Instrum. 71, 3351 [2] A. Stark, W. Fox, J.Egedal, O. Grulke, T. Klinger, (2005), submitted to Phys. Rev. Lett.

  6. Superposed Epoch Analysis of Ring Current Geoeffectiveness Related to Solar Wind and Plasma Sheet Drivers

    NASA Technical Reports Server (NTRS)

    Liemohm, M. W.; Kozyra, J. U.; Thomsen, M. F.; Borovsky, J. E.; Gahurthakurta, Madulika (Technical Monitor)

    2004-01-01

    The goal of that proposal was to examine the relationship between solar wind drivers and ring current dynamics through data analysis and numerical simulations. The data analysis study was a statistical examination (via superposed epoch analyses) of a solar cycle's worth of storm data. Solar wind data, geophysical indices, and geosynchronous plasma data were collected for every time period with Dst< -50 nT from 1989 through 2002, and the storm list now exceeds 400 entries. This work was first conducted by a summer undergraduate student, Mr. John Vann (University of Kansas), with funding from the NSF Research Experience for Undergraduates program. It was then continued by a University of Michigan graduate student, Mr. Jichun Zhang. Mr. Zhang is now in his fourth year at U-M and is progressing very well toward a PhD in space science. His dissertation will be based on his data analysis and modeling efforts using this geomagnetic storm database. The results of the data analysis study have been the focus of several conference presentations, and the first manuscript has just been published. Two additional papers are presently being prepared, one on average (superposed) solar wind features for various storm subsets (e.g., intense storms at solar maximum), and another on geosynchronous plasma features for these same storm subsets. The latter result was highlighted by the TR&T program director in his presentation at the COSPAR meeting this summer.

  7. Adiabatic Phase Mixing and Fast Electron Heating in Thin current Sheet

    NASA Astrophysics Data System (ADS)

    Che, H.; Drake, J. F.; Swisdak, M. M.; Goldstein, M. L.

    2012-12-01

    Using particle-in-cell simulations and kinetic theory, it's found that strong Buneman instability develop non-linearly in thin current layer form in plasma with Ω e/ω pe< 1. The Buneman instability produces strong electric field and fast phase mixing which leads to the increase of electron temperature by more than a factor of 10 in a few tens of electron gyro-periods. The resonance of wave-particles feeds waves with particle's kinetic energy and causes the growth of waves and strong trapping of electrons at a large velocity range. We discovered it is the adiabatic movement of trapped electrons produce fast phase mixing when the particle's bounce rate is much larger than the growth and decay rate of waves. The adiabatic movement effectively exchange energy between particles and waves and redistribute the energy from high velocity electrons to low energy electrons with the assistance of the non-adiabatic crossing of separatrix of electron holes. The implications of the results for reconnection are being explored.

  8. Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)

    SciTech Connect

    Not Available

    2011-09-01

    New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can

  9. Dynamics of 3D isolated thermal filaments

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Easy, L.; Militello, F.; Omotani, J. T.

    2016-11-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the pressure perturbation within the filament is supported primarily through a temperature increase as opposed to density: they lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  10. Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.

    2016-06-01

    > Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.

  11. Properties of a large-scale flux rope and current sheet region on the dayside of Mars: MGS MAG/ER and MEX ASPERA-3 ELS observations

    NASA Astrophysics Data System (ADS)

    Soobiah, Yasir I. J.; Wild, James A.; Beharrell, Mathew J.; Barabash, Stas; Lillis, Robert J.; Mitchell, David L.; Coates, Andrew J.; Winningham, J. David; Frahm, Rudy A.

    2014-11-01

    We present dual spacecraft observations by MGS MAG/ER and MEX ASPERA-3 ELS of a large-scale magnetic flux rope on the dayside of Mars that occurs in close proximity to the crustal magnetic fields and a dayside current sheet region. A current sheet (including the large-scale flux rope) was observed on repeated MGS orbits when the draped solar wind magnetic field present in the ionosphere had a +By component (in MSO). Minimum Variance Analysis (MVA) of the large-scale flux rope and two current sheet crossings that occur after show a common peak in magnetic field along the intermediate variance direction, indicating the normal component of a reconnecting current sheet. All repeated orbits demonstrated evidence of a plasma boundary by the decrease in electron differential flux above 100 eV when moving into regions dominated by the crustal magnetic field, and coincided with the measured magnetic field strength being double the undisturbed crustal magnetic field. We argue this forms evidence of magnetic reconnection between crustal magnetic fields and draped solar wind magnetic field (from ionosphere or magnetosheath) at a "mini-magnetopause" type boundary on the dayside of Mars. Similar electron pitch angle distributions observed during the large-scale flux rope, current sheet crossings, and regions of radial crustal magnetic field, suggest these regions share a common magnetic field topology for the trapping of magnetosheath particles on open crustal magnetic fields on the dayside of Mars. As such, indicates a trapping quadrupole magnetic field exist either at the magnetic reconnection X-line region or where open crustal magnetic fields meet oppositely directed solar wind magnetic field. At a time when the draped solar wind magnetic field present in the ionosphere was weaker in strength, the current sheet crossing was observed over an extended region of 2000 km. The extended current sheet demonstrated properties of a hot diamagnetic region and features of a mirror mode

  12. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements

    NASA Astrophysics Data System (ADS)

    Li, ZhaoYu; Chen, Tao; Yan, GuangQing

    2016-10-01

    A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.

  13. Effect of plasma-β on the onset of plasmoid instability in Sweet-Parker current sheets

    NASA Astrophysics Data System (ADS)

    Baty, H.; Baty

    2014-10-01

    A numerical study of magnetic reconnection in two-dimensional resistive magnetohydrodynamics for Sweet-Parker current sheets that are subject to plasmoid instability is carried out. The effect of the initial upstream plasma-β on the critical Lundquist number Sc for the onset of plasmoid instability is studied. Our results indicate a weak dependence, with a value of Sc ~= 1.5 × 104 in the limit of zero β, and a value of Sc ~= 1 × 104 in the opposite high β regime (β >> 1). A similar dependence was previously obtained (Ni et al. 2012 Phys. Plasm. 19, 072902), but with a somewhat much larger variation, that can be largely attributed to the different configuration setup used in their study, and also to the definition of the Lundquist number. This conclusion does not depend significantly on the equilibrium used, i.e. both initial configurations with either plasma density or temperature spatial variations lead to very similar results. Finally, we show that the inner plasmoid structure appears as an under-dense hotted magnetic island, with a local temperature increase that is noticeably strengthened for low β cases.

  14. RECONNECTION OUTFLOWS AND CURRENT SHEET OBSERVED WITH HINODE/XRT IN THE 2008 APRIL 9 'CARTWHEEL CME' FLARE

    SciTech Connect

    Savage, Sabrina L.; McKenzie, David E.; Longcope, Dana W.; Reeves, Katharine K.; Forbes, Terry G.

    2010-10-10

    Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft X-rays (SXR)), TRACE (extreme ultraviolet (EUV)), SOHO/LASCO (white light), SOHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics such as low emissivity and trajectories, which slow as they reach the top of the arcade, are consistent with post-reconnection magnetic flux tubes retracting from a reconnection site high in the corona until they reach a lower-energy magnetic configuration. Viewed from a perpendicular angle, SADs should appear as shrinking loops rather than downflowing voids. We present X-ray Telescope (XRT) observations of supra-arcade downflowing loops (SADLs) following a coronal mass ejection (CME) on 2008 April 9 and show that their speeds and decelerations are consistent with those determined for SADs. We also present evidence for a possible current sheet observed during this flare that extends between the flare arcade and the CME. Additionally, we show a correlation between reconnection outflows observed with XRT and outgoing flows observed with LASCO.

  15. The Current Sheet Associated with the 2003 November 4 Coronal Mass Ejection: Density, Temperature, Thickness, and Line Width

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Raymond, J. C.

    2008-10-01

    In the wake of the 2003 November 4 coronal mass ejection associated with the largest solar flare of the last sunspot cycle, a current sheet (CS) was observed by the Ultraviolet Coronagraph Spectrometer (UVCS) as a narrow bright feature in the [Fe XVIII] (106.8 K) line. This is the first UV observation in which the CS evolution is followed from its onset. UV spectra provide diagnostics of electron temperature, emission measure, Doppler shift, line width, and size of the CS as function of time. Since the UVCS slit was inside the Mark IV K-coronameter (MK4) field of view, the combination of UV spectra and MK4 white light data provides estimates of the electron density and depth along the line of sight of the CS. The thickness of the CS in the [Fe XVIII] line is far larger than classical or anomalous resistivity would predict, and it might indicate an effective resistivity much larger than anomalous resistivity, such as that due to hyperdiffusion. The broad [Fe XVIII] line profiles in the CS cannot be explained as thermal widths. They result from a combination of bulk motions and turbulence. The Petschek reconnection mechanism and turbulent reconnection may be consistent with the observations.

  16. Oscillation of Current Sheets in the Wake of a Flux Rope Eruption Observed by the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Li, L. P.; Zhang, J.; Su, J. T.; Liu, Y.

    2016-10-01

    An erupting flux rope (FR) draws its overlying coronal loops upward, causing a coronal mass ejection. The legs of the overlying loops with opposite polarities are driven together. Current sheets (CSs) form, and magnetic reconnection, producing underneath flare arcades, occurs in the CSs. Employing Solar Dynamic Observatory/Atmospheric Imaging Assembly images, we study a FR eruption on 2015 April 23, and for the first time report the oscillation of CSs underneath the erupting FR. The FR is observed in all AIA extreme-ultraviolet passbands, indicating that it has both hot and warm components. Several bright CSs, connecting the erupting FR and the underneath flare arcades, are observed only in hotter AIA channels, e.g., 131 and 94 Å. Using the differential emission measure (EM) analysis, we find that both the temperature and the EM of CSs temporally increase rapidly, reach the peaks, and then decrease slowly. A significant delay between the increases of the temperature and the EM is detected. The temperature, EM, and density spatially decrease along the CSs with increasing heights. For a well-developed CS, the temperature (EM) decreases from 9.6 MK (8 × 1028 cm-5) to 6.2 MK (5 × 1027 cm-5) in 52 Mm. Along the CSs, dark supra-arcade downflows (SADs) are observed, and one of them separates a CS into two. While flowing sunward, the speeds of the SADs decrease. The CSs oscillate with a period of 11 minutes, an amplitude of 1.5 Mm, and a phase speed of 200 ± 30 km s-1. One of the oscillations lasts for more than 2 hr. These oscillations represent fast-propagating magnetoacoustic kink waves.

  17. Kink-mode oscillations of the magnetotail current sheet driven by quasi-continuous reconnection during a steady magnetospheric convection: Geotail and THEMIS conjunction

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.; Shinohara, I.; Nagai, T.; Hoshino, M.; Saito, Y.; Angelopoulos, V.; Teramoto, M.; Higashimori, K.

    2015-12-01

    We present in situ evidence for MHD-scale kink-mode waves propagating earthward in the Earth's magnetotail. The event occurred on 11 October 2014 when the Geotail spacecraft, situated at the GSM position (-26, 9, 0) Re, observed earthward reconnection jets almost continuously for a few hours under stably southward interplanetary magnetic field conditions. The reconnection jets had a speed of ~700 km/s, comparable to the lobe Alfven speed, and concurred with quasi-periodic crossings of the tail current sheet with a period of 2-3 min. Two of the THEMIS spacecraft, located in the pre-midnight sector at X ~ -10 Re, observed no significant flows, and the cross-polar cap potential estimated from SuperDARN remained more than 50 kV and roughly constant, signatures expected for a steady magnetospheric convection (SMC) interval. The Grad-Shafranov reconstruction of the oscillatory current sheet indicates that kink-mode waves propagated roughly earthward, with a wavelength of ~15 Re and amplitude of order 1 Re. The ions observed off the center of the tail current sheet consisted of field-aligned ion beams and cold lobe ions, characteristic of the plasma sheet boundary layer, which led to parallel ion temperature being higher than the perpendicular temperature. We interpret the observed kink-mode waves as being due to the streaming kink instability (SKI) excited in the reconnection jet and in the presence of temperature anisotropy. Since the SKI can generate Alfvénic waves or turbulence, the observed field fluctuations may be an energy source for auroral activities during SMC intervals. Our observations show that the tail plasma sheet can be dynamic even under a globally steady magnetospheric condition.

  18. The Hydrodynamic Stability of Gaseous Cosmic Filaments

    NASA Astrophysics Data System (ADS)

    Birnboim, Yuval; Padnos, Dan; Zinger, Elad

    2016-11-01

    Virial shocks at the edges of cosmic-web structures are a clear prediction of standard structure formation theories. We derive a criterion for the stability of the post-shock gas and of the virial shock itself in spherical, filamentary, and planar infall geometries. When gas cooling is important, we find that shocks become unstable, and gas flows uninterrupted toward the center of the respective halo, filament, or sheet. For filaments, we impose this criterion on self-similar infall solutions. We find that instability is expected for filament masses between 1011 and 1013 {M}⊙ Mpc-1. Using a simplified toy model, we then show that these filaments will likely feed halos with 1010 M ⊙ ≲ M halo ≲ 1013 M ⊙ at redshift z = 3, as well as 1012 M ⊙ ≲ M halo ≲ 1015 M ⊙ at z = 0. The instability will affect the survivability of the filaments as they penetrate gaseous halos in a non-trivial way. Additionally, smaller halos accreting onto non-stable filaments will not be subject to ram pressure inside the filaments. The instreaming gas will continue toward the center and stop either once its angular momentum balances the gravitational attraction, or when its density becomes so high that it becomes self-shielded to radiation.

  19. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films

    PubMed Central

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-01-01

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as “ferrite plating”. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management. PMID:26975208

  20. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films.

    PubMed

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-03-15

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as "ferrite plating". The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

  1. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films

    NASA Astrophysics Data System (ADS)

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-Ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-03-01

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as “ferrite plating”. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

  2. Collaborative protein filaments.

    PubMed

    Ghosal, Debnath; Löwe, Jan

    2015-09-14

    It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.

  3. Filamentation in Laser Wakefields

    NASA Astrophysics Data System (ADS)

    Los, Eva; Trines, Raoul; Silva, Luis; Bingham, Robert

    2016-10-01

    Laser filamentation instability is observed in plasma wakefields with sub-critical densities, and in high density inertial fusion plasmas. This leads to non-uniform acceleration or compression respectively. Here, we present simulation results on laser filamentation in plasma wakefields. The 2-D simulations are carried out using the particle-in-cell code Osiris. The filament intensity was found to increase exponentially before saturating. The maximum amplitude to which the highest intensity filament grew for a specific set of parameters was also recorded, and plotted against a corresponding parameter value. Clear, positively correlated linear trends were established between plasma density, transverse wavenumber k, laser pulse amplitude and maximum filament amplitude. Plasma density and maximum filament amplitude also showed a positive correlation, which saturated after a certain plasma density. Pulse duration and interaction length did not affect either filament intensity or transverse k value in a predictable manner. There was no discernible trend between pulse amplitude and filament width.

  4. Contraction dynamics of planar liquid filaments

    NASA Astrophysics Data System (ADS)

    Devlin, Nicole; Sambath, Krishnaraj; Harris, Michael; Basaran, Osman

    2012-11-01

    Thin liquid sheets are ubiquitous in nature and urban landscapes, e.g. waterfalls, and industry, e.g. in various atomizers where sheets of liquid emanate from a nozzle or off a solid surface. These liquid sheets contract due to surface tension and may or may not break into smaller fragments depending on physical properties and flow conditions. The cross-section of a liquid sheet in a plane perpendicular to the main flow direction is a planar or 2D filament. Here, we study the contraction dynamics of an idealized 2D filament of an incompressible Newtonian fluid the initial shape of which is a rectangle terminated by two identical semi-circles. The dynamics are analyzed by solving the full 2D Navier-Stokes system and a1D, slender-jet approximation to it by a numerical technique based on the Galerkin finite element method. Simulation results are summarized by means of a phase diagram in the space of Reynolds number and initial filament aspect ratio. The talk will conclude with a discussion of the different modes of contraction and a critique of the capabilities and limitations of the 1D model.

  5. Global, quasi-steady dynamics of the distant solar wind 2: Deformation of the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1994-01-01

    A three-dimensional (3-D) magnetohydrodynamic (MHD) numerical model is used to trace global deformations of the heliospheric current sheet (HCS) caused by large-scale dynamical interactions associated with corotating solar wind flows. Configurations incorporating the tilted-dipole geometry are investigated out past 30 AU for a variety of dipole tilt angles, alpha. Inclusion of the full, 3-D interplanetary dynamics allows north-south displacements and the east-west warping of the HCS by advective corotational effects to be accurately assessed for the first time. It is found that large-scale spatial correlations between velocity and density imposed at the coronal source (i.e., the geometric arrangement whereby regions of high-speed low-density material lying adjacent to areas of slow, dense flow interact obliquely under the influence of solar rotation) result in a distinctive pattern of deformation of the HCS. For an alpha = 30 deg tilted-dipole example, it is shown that typical zonal variations in radial velocity lead to significant folding of the HCS within about 5 AU of the Sun. By 10 AU, additional sharp bends appear near the latitudinal extremes of the HCS surface, where it is overtaken by shock fronts driven by 3-D corotating interaction regions (CIRs). Moreover, the model suggests that inside about 20 AU, major plasma structures are systematically organized, about the HCS, such that the greatest concentrations of material and magnetic field (the centroids of the 3-D CIR structures) are coincident with the folded crests of the HCS (near heliographic latitudes lambda = +/- alpha). Thus, in these circumstances many of the more interesting dynamical features inconveniently lie well away from the heliographic equator. At larger heliocentric distances, where neighboring CIRs begin to interact strongly, the warping of the HCS abates dramatically and the association between folds in the HCS and major field and density concentrations is weakened and ultimately breaks

  6. Filament Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2011-01-01

    We have been investigating filament eruptions in recent years. Use filament eruptions as markers of the coronal field evolution. Data from SoHO, Yohkoh, TRACE, Hinode, and other sources. We and others have observed: (1)Filaments often show slow rise, followed by fast rise, (2) Brightenings, preflares, microflares during slow rise (3) Magnetic evolution in hours prior to eruption onset. We investigated What do Hinode and SDO show for filament eruptions?

  7. Experimental investigation of possible geomagnetic feedback from energetic (0.1 to 16 keV) terrestrial O(+) ions in the magnetotail current sheet

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.; Klumpar, D. M.; Shelley, E. G.; Quinn, J. M.

    1994-01-01

    Data from energetic ion mass spectrometers on the ISEE 1 and AMPTE/CCE spacecraft are combined with geomagnetic and solar indices to investigate, in a statistical fashion, whether energized O(+) ions of terrestrial origin constitute a source of feedback which triggers or amplifies geomagnetic activity as has been suggested in the literature, by contributing a destabilizing mass increase in the magnetotail current sheet. The ISEE 1 data (0.1-16 keV/e) provide in situ observations of the O(+) concentration in the central plasma sheet, inside of 23 R(sub E), during the rising and maximum phases of solar cycle 21, as well as inner magnetosphere data from same period. The CCE data (0.1-17 keV/e) taken during the subsequent solar minimum all within 9 R(sub E). provide a reference for long-term variations in the magnetosphere O(+) content. Statistical correlations between the ion data and the indices, and between different indices. all point in the same direction: there is probably no feedback specific to the O(+) ions, in spite of the fact that they often contribute most of the ion mass density in the tail current sheet.

  8. Special issue on filamentation

    NASA Astrophysics Data System (ADS)

    Li, Ruxin; Milchberg, Howard; Mysyrowicz, André

    2014-05-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on filamentation, to appear in the spring of 2015, and invites you to submit a paper. This special issue will attempt to give an overview of the present status of this field in order to create synergies and foster future developments. The issue is open to papers on the following issues: Theoretical advances on filamentation. Self-focusing and collapse. Filamentation in various media. Pulse self-compression and ultrafast processes in filaments. Molecular alignment and rotation. Filamentation tailoring. Interaction between filaments. Filament weather and pollution control. Filament induced condensation and precipitation. Terahertz science with filaments. Lasing in filaments. Filament induced molecular excitation and reaction. Electric discharge and plasma. Cross-disciplinary applications. Novel concepts related to these topics are particularly welcome. Please submit your article by 1 October 2014 (expected web publication: spring 2015) using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be included in the special issue. The issue will be edited by Ruxin Li, Howard Milchberg and André Mysyrowicz.

  9. Radial Infall onto a Massive Molecular Filament

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Myers, Philip C.; Shirley, Yancy L.; Keto, Eric; Kirk, Helen

    The newly discovered Massive Molecular Filament (MMF) G32.02+0.05 (~ 70 pc long, 105 M⊙) has been shaped and compressed by older generations of massive stars. The similarity of this filament in physical structure (density profile, temperature) to much smaller star-forming filaments, suggests that the mechanism to form such filaments may be a universal process. The densest portion of the filament, apparent as an Infrared Dark Cloud (IRDC) shows a range of massive star formation signatures throughout. We investigate the kinematics in this filament and find widespread inverse P cygni asymmetric line profiles. These line asymmetries are interpreted as a signature of large-scale radial collapse. Using line asymmetries observed with optically thick HCO+ (1-0) and optically thin H13CO+ (1-0) across a range of massive star forming regions in the filament, we estimate the global radial infall rate of the filament to range from a few 100 to a few 1000 M⊙ Myr-1 pc-1. At its current infall rate the densest portions of the cloud will more than double their current mass within a Myr.

  10. Probing the sliding interactions between bundled actin filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andy; Dogic, Zvonimir

    2011-03-01

    Assemblies of filamentous biopolymers are hierarchical materials in which the properties of the overall assemblage are determined by structure and interactions between constituent particles at all hierarchical levels. For example, the overall bending rigidity of a two bundled filaments greatly depends on the bending rigidity of, and the adhesion strength between individual filaments. However, another property of importance is the ability for the filaments to slide freely against one another. Everyday experience indicates that it is much easier to bend a stack of papers in which individual sheets freely slide past each other than the same stack of papers in which all the sheets are irreversibly glued together. Similarly, in filamentous structures the ability for local re-arrangement is of the utmost importance in determining the properties of the structures observed. In order to study this phenomenon we create bundles of biopolymers by inducing attractive interactions between actin filaments via the depletion mechanism. We find that bundles of actin filaments to do not slide freely across one another. In order to characterize these sliding interactions, we perform active experiments using laser tweezers to pull one filament across the other at constant velocity.

  11. Rubella - Fact Sheet for Parents

    MedlinePlus

    ... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...

  12. Large-Scale Patterns of Filament Channels and Filaments

    NASA Astrophysics Data System (ADS)

    Mackay, Duncan

    2016-07-01

    In this review the properties and large-scale patterns of filament channels and filaments will be considered. Initially, the global formation locations of filament channels and filaments are discussed, along with their hemispheric pattern. Next, observations of the formation of filament channels and filaments are described where two opposing views are considered. Finally, the wide range of models that have been constructed to consider the formation of filament channels and filaments over long time-scales are described, along with the origin of the hemispheric pattern of filaments.

  13. Effects of Hall Current on the Flow and Heat Transfer of a Nanofluid Over a Stretching Sheet with Partial Slip

    NASA Astrophysics Data System (ADS)

    Abd El-Aziz, Mohamed

    2013-07-01

    The problem of a steady boundary layer MHD slip flow over a stretching sheet in a water-based nanofluid containing different type of nanoparticles: Cu, Al2O3 and Ag has been investigated. An external strong magnetic field is applied perpendicular to the plate and the Hall effect is taken into consideration. The surface of the stretching sheet is assumed to move with a linear velocity and subject to power-law variation of the surface temperature. The governing partial differential equations are transformed into nonlinear ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Effects of the physical parameters on the primary velocity, the secondary velocity and the temperature as well as on the wall shear stress and the rate of heat transfer have been presented graphically and discussed in detail. Investigated results indicate that the nanoparticle volume fraction and the slip parameter produce opposite effects on the skin friction coefficients of the primary and secondary flow. Also, the nanoparticle volume fraction and the types of nanoparticles demonstrate a more pronounced influence on the secondary flow than that on the primary flow and temperature distribution.

  14. Dynamics of equilibrium upset and electromagnetic energy transformation in the geomagnetotail: A theory and simulation using particles. 3. Versions of formation of thin current sheets

    NASA Astrophysics Data System (ADS)

    Domrin, V. I.; Kropotkin, A. P.

    2007-10-01

    The final part of the study is devoted to the process of rapid reconfiguration of the geomagnetotail after the upset of the equilibrium, i.e., to substorm activation. Such a version of spontaneous formation of nonlinear kinetic small-scale structures at the site occupied by an initial current sheet (CS), which results in the formation of a specific equilibrium current structure with strong ion anisotropy (forced kinetic current sheet, FKCS), has been revealed in the course of numerical simulation. This reconfiguration “channel” is realized when the relative value of the magnetic field component normal to CS is smaller than a certain critical value. In this case the disturbance intensity is SPONTANEOUSLY settled at a certain final level at the late stages. The obtained results are compared with the previous study of the system evolution under the action of the external trigger. The physical causes and specific features of different CS evolution regimes are considered. The studied plasma mechanisms are responsible for the effects of rapid energy transformation—magnetic field “annihilation”—that took place in the geomagnetotail.

  15. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  16. A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail

    SciTech Connect

    Grigorenko, E. E. Malova, H. V.; Malykhin, A. Yu.; Zelenyi, L. M.

    2015-01-15

    The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formation of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.

  17. Probing the sliding interactions between bundled actin filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andy; Dogic, Zvonimir

    2012-02-01

    Assemblies of filamentous biopolymers are hierarchical materials in which the properties of the overall assemblage are determined by structure and interactions between constituent particles at all hierarchical levels. For example, the overall bending rigidity of a two bundled filaments greatly depends on the bending rigidity of, and the adhesion strength between individual filaments. However, another property of importance is the ability for the filaments to slide freely against one another. Everyday experience indicates that it is much easier to bend a stack of papers in which individual sheets freely slide past each other than the same stack of papers in which all the sheets are irreversibly glued together. Similarly, in filamentous structures the ability for local re-arrangement is of the utmost importance in determining the properties of the structures observed. We have developed a method to directly measure the frictional interactions between a pair of aligned filaments in a well-defined and controllable configuration. This enables us to systematically investigate the role of adhesion strength, filament orientation, length, and surface structure.

  18. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    SciTech Connect

    Khabarova, O.; Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A.; Malandraki, O. E.

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  19. MESSENGER and Venus Express Observations of the Near-tail of Venus: Magnetic Flux Transport, Current Sheet Structure, and Flux Rope Formation

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Boardsen, S. A.; Sarantos, M.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Fraenz, M.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; Krimigis, S. M.; McNutt, R. L., Jr.; Raines, J. M.; Solomon, S. C.; Zhang, T.-L.; Zurbuchen, T. H.

    2008-01-01

    At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 km) during its second flyby of Venus en route to its 2011 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. We present MESSENGER observations of the near-tail of Venus with emphasis on determining the time scales for magnetic flux transport, the structure of the cross-tail current sheet at very low altitudes (approx. 300 to 1000 km), and the nature and origin of a magnetic flux rope observed in the current sheet. The availability of the simultaneous Venus Express upstream measurements provides a unique opportunity to examine the influence of solar wind plasma and interplanetary magnetic field conditions on this planet's solar wind interaction at solar minimum.

  20. Experimental investigation of possible geomagnetic feedback from energetic (0.1 to 16 keV) terrestrial O(+) ions in the magnetotail current sheet

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.; Klumpar, D. M.; Shelley, E. G.; Quinn, J. M.

    1993-01-01

    Data from energetic ion mass spectrometers on the International Sun Earth Explorer 1 (ISEE 1) and AMPTE/CCE spacecraft are combined with geomagnetic and solar indices to investigate, in a statistical fashion, whether energized O(+) ions of terrestrial origin constitute a source of feedback which triggers or amplifies geomagnetic magnetotail current sheet. The ISSE 1 data (0.1-16 keV/e) provide in situ observations of the O(+) solar cycle 21, as well as inner magnetosphere data from same period. The CCE data (0.1-17 keV/e), taken during the subsequent solar minimum, all within 9 R(sub E), provide a reference for long-term variations in the magnetosphere O(+) content. Statistical correlations between the ion data and the indices, and between different indices, all point in the same direction: there is probably no feedback specific to the O(+) ions, in spite of the fact that they often contribute most of the ion mass density in the tail current sheet.

  1. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  2. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  3. Production, characterization, and modeling of mineral filled polypropylene filaments

    NASA Astrophysics Data System (ADS)

    George, Brian Robert

    1999-11-01

    This research produced mineral filled polypropylene filaments using a variety of fillers, characterized these filaments, and attempted to model their mechanical properties with current composite models. Also, these filaments were compared with bone to determine if they are suitable for modeling the mechanical properties of bone. Fillers used consist of wollastonite, talc, calcium carbonate, titanium dioxide, and hydroxyapatite. Fillers and polypropylene chips were combined and extruded into rods with the use of a mixer. The rods were chipped up and then formed into filaments through melt extrusion utilizing a piston extruder. Filaments with volume fractions of filler of 0.05, 0.10, 0.15, and 0.20 were produced. Additionally, some methods of trying to improve the properties of these filaments were attempted, but did not result in any significant property improvements. The fillers and filaments were visually characterized with a scanning electron microscope. Cross-sections, filament outer surfaces, fracture surfaces, and longitudinal cut open surfaces were viewed in this manner. Those filaments with anisotropic filler had some oriented filler particles, while all filaments suffered from poor adhesion between the polypropylene and the filler as well as agglomerations of filler particles. Twenty specimens of each filament were tensile tested and the average tenacity, strain, and modulus were calculated. Filaments containing talc, talc and wollastonite, titanium dioxide, or hydroxyapatite suffered from a drastic transition from ductile to brittle with the addition of 0.05 volume fraction of filler. This is evidenced by the sharp decrease in strain at this volume fraction of filler when compared to the strain of the unfilled polypropylene filament. Additionally, these same filaments suffered a sharp decrease in tenacity at the same volume fraction. These instant decreases are attributed to the agglomerations of filler in the filament. Generally, the modulus of the

  4. Driven transport on open filaments with interfilament switching processes

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhadip; Pagonabarraga, Ignacio; Muhuri, Sudipto

    2017-02-01

    We study a two-filament driven lattice gas model with oppositely directed species of particles moving on two parallel filaments with filament-switching processes and particle inflow and outflow at filament ends. The filament-switching process is correlated with the occupation number of the adjacent site such that particles switch filaments with finite probability only when oppositely directed particles meet on the same filament. This model mimics some of the coarse-grained features observed in context of microtubule-(MT) based intracellular transport, wherein cellular cargo loaded and off-loaded at filament ends are transported on multiple parallel MT filaments and can switch between the parallel microtubule filaments. We focus on a regime where the filaments are weakly coupled, such that filament-switching rate of particles scale inversely as the length of the filament. We find that the interplay of (off-) loading processes at the boundaries and the filament-switching process of particles leads to some distinctive features of the system. These features includes occurrence of a variety of phases in the system with inhomogeneous density profiles including localized density shocks, density difference across the filaments, and bidirectional current flows in the system. We analyze the system by developing a mean field (MF) theory and comparing the results obtained from the MF theory with the Monte Carlo (MC) simulations of the dynamics of the system. We find that the steady-state density and current profiles of particles and the phase diagram obtained within the MF picture matches quite well with MC simulation results. These findings maybe useful for studying multifilament intracellular transport.

  5. Dynamic Current Sheet Formation and Evolution with Application to Inter-(Super)granular Flow Lanes and Quasi-Homologous Jet Activity

    NASA Astrophysics Data System (ADS)

    Edmondson, Justin K.; Velli, M.

    2011-05-01

    The coronal magnetic field structure is an immensely complex system constantly driven away from equilibrium by global drivers such as photospheric flow, flux emergence/cancellation at the lower boundary, helicity injection and transport, etc. In low-beta plasma systems, such as solar corona, the Maxwell stresses dominate forces and therefore the system dynamics. General Poynting stress injection (i.e., flux injection, helicity injection, translational motions, or any combination thereof) results in (possibly large) geometric deformations of the magnetic field, such that the Maxwell stresses distribute as uniformly as possible, constrained by the distorted geometry and topology of the bounding separatricies. Since the topological connectivity is discontinuous across these separatrix surfaces, the magnetic stresses will be discontinuous there as well, manifesting as current sheets within the field. The solar magnetic field undergoes major geometric expansion passing from the photosphere, through the chromosphere, into the corona. No matter the specific details, a mixed polarity distribution at the lower boundary and the divergence-free condition require invariant topological features such as an X-line and separatricies to exist between fields emanating from separate regions of the photosphere. We present the results of fully-3D numerical simulations of a simplified low-beta model of this field expansion. A symmetric injection of Maxwell stresses into this geometry inflates strongly line-tied fields, generating a region of large current densities and magnetic energy dissipation. Elsewhere the injected stresses accumulate along the existing separatricies. There is no evidence of reconnection dynamics until after the initial left-right parity is broken. Once the symmetry breaks, the X-line deforms explosively into a Syrovatskii-type current sheet, leading to a succession of quasi-homologous jet dynamics. The bursty-oscillations of these jets occur as the stresses within

  6. Monophasic Pulsed 200-μA Current Promotes Galvanotaxis With Polarization of Actin Filament and Integrin α2β1 in Human Dermal Fibroblasts

    PubMed Central

    Uemura, Mikiko; Maeshige, Noriaki; Koga, Yuka; Ishikawa-Aoyama, Michiko; Miyoshi, Makoto; Sugimoto, Masaharu; Terashi, Hiroto

    2016-01-01

    Objective: The monophasic pulsed microcurrent is used to promote wound healing, and galvanotaxis regulation has been reported as one of the active mechanisms in the promotion of tissue repair with monophasic pulsed microcurrent. However, the optimum monophasic pulsed microcurrent parameters and intracellular changes caused by the monophasic pulsed microcurrent have not been elucidated in human dermal fibroblasts. The purpose of this study was to investigate the optimum intensity for promoting galvanotaxis and the effects of electrical stimulation on integrin α2β1 and actin filaments in human dermal fibroblasts. Methods: Human dermal fibroblasts were treated with the monophasic pulsed microcurrent of 0, 100, 200, or 300 μA for 8 hours, and cell migration and cell viability were measured 24 hours after starting monophasic pulsed microcurrent stimulation. Polarization of integrin α2β1 and lamellipodia formation were detected by immunofluorescent staining 10 minutes after starting monophasic pulsed microcurrent stimulation. Results: The migration toward the cathode was significantly higher in the cells treated with the 200-μA monophasic pulsed microcurrent than in the controls (P < .01) without any change in cell viability; treatment with 300-μA monophasic pulsed microcurrent did not alter the migration ratio. The electrostimulus of 200 μA also promoted integrin α2β1 polarization and lamellipodia formation at the cathode edge (P < .05). Conclusion: The results show that 200 μA is an effective monophasic pulsed microcurrent intensity to promote migration toward the cathode, and this intensity could regulate polarization of migration-related intracellular factors in human dermal fibroblasts. PMID:26819649

  7. Formation of interstellar filaments: the role of magnetic fields

    NASA Astrophysics Data System (ADS)

    Ntormousi, Evangelia; Hennebelle, Patrick

    2014-07-01

    The filamentary structure of interstellar matter and its potential link to star formation has been brought back into focus recently by high resolution observational surveys. The densest of these filaments host pre-stellar and star forming cores, so explaining their properties is tightly correlated to revealing the initial conditions for star formation. To that end, in this work we employ high-resolution, 3D MHD simulations performed with the AMR code RAMSES to investigate two filament formation mechanisms: turbulence and sheet fragmentation. The first series of simulations has as a particular aim to address the origin of the characteristic filament thickness found in observations. Starting from the hypothesis that diffusive processes are responsible, our numerical experiments consist of (driven or decaying) ideal and non-ideal MHD turbulence, at a resolution that greatly exceeds the reported 0.1pc thickness. The comparison points to ion-neutral friction as an excellent candidate for setting a characteristic scale. In this picture dense filaments are the diffusive end of the turbulent cascade, an interpretation with important implications for our understanding of the dynamical behavior of the ISM. A second series of simulations investigates filament formation by the fragmentation of supershells, a scenario inspired by the analytical work of Nagai (1998). We find a striking difference between hydrodynamical and MHD runs as in the first case the sheets fragment into small cores, while in the latter they produce large filaments. In addition though, we see that low-density filaments preferentially form along the dominant component of the magnetic field. In this scenario filaments are prominent features in the ISM, but their fate is still determined by the local magnetic field. A detailed comparison of the filament properties between the two runs is work in progress and will reveal the physical mechanisms responsible for shaping the ISM and setting the initial conditions

  8. Design of the klystron filament power supply control system for EAST LHCD

    NASA Astrophysics Data System (ADS)

    Wu, Zege; Wang, Mao; Hu, Huaichuan; Ma, Wendong; Zhou, Taian; Zhou, Faxin; Liu, Fukun; Shan, Jiafang

    2016-09-01

    A filament is a critical component of the klystron used to heat the cathode. There are totally 44 klystrons in experimental advanced superconducting tokamak (EAST) lower hybrid current drive (LHCD) systems. All klystron filaments are powered by AC power suppliers through isolated transformers. In order to achieve better klystron preheat, a klystron filament power supply control system is designed to obtain the automatic control of all filament power suppliers. Klystron filament current is measured by PLC and the interlock between filament current and klystron high voltage system is also implemented. This design has already been deployed in two LHCD systems and proves feasible completely.

  9. Alignments of galaxies within cosmic filaments from SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  10. Snake Filament Eruption

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  11. Silicon sheet technologies

    SciTech Connect

    Ciszek, T.F.

    1982-09-01

    A classification of silicon sheet growth methods by meniscus geometry permits them to be discussed in three groups: short meniscus techniques, high meniscus techniques, and extended meniscus or large solid/liquid interface area techniques. A second parameter, meniscus shaper interaction with the liquid silicon, is also instrumental in determining the characteristics of the various sheet processes. The current status of each process is discussed in the context of meniscus geometry and shaper/melt interaction. One aspect of sheet growth, surface area generation rate, is quantitatively compared with combined ingot growth and wafering surface area generation rates.

  12. Modeling of the Convection and Interaction of Ring Current, Plasmaspheric and Plasma Sheet Plasmas in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Chen, Sheng-Hsien; Buzulukova, Natalia; Glocer, Alex

    2010-01-01

    Distinctive sources of ions reside in the plasmasphere, plasmasheet, and ring current regions at discrete energies constitute the major plasma populations in the inner/middle magnetosphere. They contribute to the electrodynamics of the ionosphere-magnetosphere system as important carriers of the global current system, in triggering; geomagnetic storm and substorms, as well as critical components of plasma instabilities such as reconnection and Kelvin-Helmholtz instability at the magnetospheric boundaries. Our preliminary analysis of in-situ measurements shoves the complexity of the plasmas pitch angle distributions at particularly the cold and warm plasmas, vary dramatically at different local times and radial distances from the Earth in response to changes in solar wind condition and Dst index. Using an MHD-ring current coupled code, we model the convection and interaction of cold, warm and energetic ions of plasmaspheric, plasmasheet, and ring current origins in the inner magnetosphere. We compare our simulation results with in-situ and remotely sensed measurements from recent instrumentation on Geotail, Cluster, THEMIS, and TWINS spacecraft.

  13. Evidence for a Current Sheet Forming in the Wake of a Coronal Mass Ejection from Multi-Viewpoint Coronagraph Observations

    DTIC Science & Technology

    2010-10-05

    2003; Raymond et al. 2003; Bemporad et al. 2006; Lee et al. 2006; Lin et al. 2007). Coronal CSs are places where one could expect higher heating rates...compress the plasma thereby increasing its density. Also significant heating may occur in CSs since they are characterized by enhanced current densities

  14. Lighting the universe with filaments.

    PubMed

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  15. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    PubMed

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  16. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB{sub 6}-filament

    SciTech Connect

    Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.

    2010-02-15

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB{sub 6}) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 {mu}H inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 Ax140 V) and a duty factor of more than 1.5%(600 {mu}sx25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H{sup -} ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 {mu}s and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  17. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament

    NASA Astrophysics Data System (ADS)

    Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB6) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 μH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A×140 V) and a duty factor of more than 1.5% (600 μs×25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H- ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 μs and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.