Sample records for current sheets formed

  1. Electrical-assisted double side incremental forming and processes thereof

    DOEpatents

    Roth, John; Cao, Jian

    2014-06-03

    A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.

  2. Current-sheet formation in two-dimensional coronal fields

    NASA Astrophysics Data System (ADS)

    Billinghurst, M. N.; Craig, I. J. D.; Sneyd, A. D.

    1993-11-01

    The formation of current sheets by shearing motions in line-tied twin-lobed fields is examined. A general analytic argument shows that current sheets form along the fieldline bounding the two lobes in the case of both symmetric and asymmetric footpoint motions. In the case of strictly antisymmetric motions however no current sheets can form. These findings are reinforced by magnetic relaxation experiments involving sheared two-lobed fields represented by Clebsh variables. It is pointed out that, although current singularites cannot be expected to form when the line-tying assumption is relaxed, the two-lobed geometry is still consistent with the formation of highly localised currents - and strong resistive dissipation - along field lines close to the bounding fieldline.

  3. Tearing Instability of a Current Sheet Forming by Sheared Incompressible Flow

    NASA Astrophysics Data System (ADS)

    Tolman, Elizabeth; Loureiro, Nuno; Uzdensky, Dmitri

    2017-10-01

    Sweet-Parker current sheets are unstable to the tearing mode, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Such formation can occur as a result of sheared, sub-Alfvénic incompressible flows into and along the sheet. This work presents an analysis of how tearing perturbations behave in a current sheet forming under the influence of such flows, beginning with a phase when the growth rate of the tearing mode is small and the behavior of perturbations is primarily governed by ideal MHD. Later, after the tearing growth rate becomes significant relative to the time scale of the driving flows, the flows cause a slight reduction in the tearing growth rate and wave vector of the dominant mode. Once the tearing mode enters the nonlinear regime, the flows accelerate the tearing growth slightly; during X-point collapse, the flows have negligible effect on the system behavior. This analysis allows greater understanding of reconnection in evolving systems and increases confidence in the application of tools developed in time-independent current sheets to changing current sheets. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

  4. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru; Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  5. Dynamo-driven plasmoid formation from a current-sheet instability

    DOE PAGES

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less

  6. Time Evolution of the Macroscopic Characteristics of a Thin Current Sheet in the Course of Its Formation in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Domrin, V. I.; Malova, H. V.; Popov, V. Yu.

    2018-04-01

    A numerical model is developed that allows tracing the time evolution of a current sheet from a relatively thick current configuration with isotropic distributions of the pressure and temperature in an extremely thin current sheet, which plays a key role in geomagnetic processes. Such a configuration is observed in the Earth's magnetotail in the stage preceding a large-scale geomagnetic disturbance (substorm). Thin current sheets are reservoirs of the free energy released during geomagnetic disturbances. The time evolution of the components of the pressure tensor caused by changes in the structure of the current sheet is investigated. It is shown that the pressure tensor in the current sheet evolves in two stages. In the first stage, a current sheet with a thickness of eight to ten proton Larmor radii forms. This stage is characterized by the plasma drift toward the current sheet and the Earth and can be described in terms of the Chu-Goldberger-Low approximation. In the second stage, an extremely thin current sheet with an anisotropic plasma pressure tensor forms, due to which the system is maintained in an equilibrium state. Estimates of the characteristic time of the system evolution agree with available experimental data.

  7. Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line

    NASA Astrophysics Data System (ADS)

    Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.

    2004-11-01

    Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.

  8. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  9. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  10. Apparatus for electrical-assisted incremental forming and process thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, John; Cao, Jian

    A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less

  11. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5%Si steel sheet

    NASA Astrophysics Data System (ADS)

    Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.

    2018-05-01

    In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.

  12. Ring current dynamics and plasma sheet sources. [magnetic storms

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1984-01-01

    The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.

  13. Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima

    2017-10-01

    We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.

  14. Spontaneous formation of electric current sheets and the origin of solar flares

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Wolfson, R.

    1988-01-01

    It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.

  15. Eddy current thickness measurement apparatus

    DOEpatents

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  16. THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, Gregory G.

    2016-08-20

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less

  17. Substorms: The Attempt at Magnetospheric Dynamic Equilibrium between Magnetically-Driven Frontside Reconnection and Particle-Driven Reconnection in a Multiple-Current-Sheet Magnetotail

    NASA Astrophysics Data System (ADS)

    Sofko, G. J.; Hussey, G. C.; McWilliams, K. A.; Reimer, A. S.

    2016-12-01

    We propose a multi-current-sheet model for magnetic substorms. Those storms are normally driven by frontside magnetically-driven reconnection (MDRx), in which the diffusion zone current JD and the electric field E have a "load" relationship JD*E >0, indicating transfer if magnetic energy to the particles in the "reconnection jets". As a result of lobe field line transport over the north and south poles, polar cap particles are subject to parallel energization as they flow upward out of the ionosphere. These particles convectively drift toward the equator and subsequently mirror near the Neutral Sheet (NSh) region, forming an extended westward NSh current sheet which is unstable and "tears up" into multiple current sheets. Each current sheet has very different behaviour at its ends: (a) strong magnetic pressure and weak particle pressure at its tailward end; (b) strong particle pressure and weak magnetic field at its earthward end. Therefore, in each Separation Zone (SZ) between current sheets, a strong eastward magnetic curl develops. The associated eastward SZ current, caused by diamagnetic electron drift, is squeezed by the repulsion of the westward currents tailward and earthward. That current becomes intense enough to act as a diffusion zone for "generator-type" or Particle-driven reconnection (PDRx) for which JD*E<0, indicating that the particles return energy to the magnetic field. The PDRx produces a Dipolarization Front (DF) on the earthward side of the SZ and a Plasmoid (PMD) on the tailward side. Such DF-PMD pairs form successively in time and radial downtail SZ distance. In this way, the magnetosphere attempts to achieve a dynamic equilibrium between magnetic and particle energy.

  18. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  19. Current Sheet Properties and Dynamics During Sympathetic Breakout Eruptions

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Edmondson, J. K.

    2013-12-01

    We present the continued analysis of the high-resolution 2.5D MHD simulations of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the generation of X- and O-type null points during the current sheet tearing and track the magnetic island formation and evolution during periods of reconnection. The magnetic breakout eruption scenario forms an overlying 'breakout' current sheet that evolves slowly and removes restraining flux from above the sheared field core that will eventually become the center of the erupting flux rope-like structure. The runaway expansion from the expansion-breakout reconnection positive feedback enables the formation of the second, vertical/radial current sheet underneath the rising sheared field core as in the standard CHSKP eruptive flare scenario. We will examine the flux transfer rates through the breakout and flare current sheets and compare the properties of the field and plasma inflows into the current sheets and the reconnection jet outflows into the flare loops and flux rope ejecta.

  20. Fluctuation dynamics in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  1. Development of Turbulent Magnetic Reconnection in a Magnetic Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Can; Lu, Quanming; Wang, Rongsheng

    In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.

  2. Development of tearing instability in a current sheet forming by sheared incompressible flow

    NASA Astrophysics Data System (ADS)

    Tolman, Elizabeth A.; Loureiro, Nuno F.; Uzdensky, Dmitri A.

    2018-02-01

    Sweet-Parker current sheets in high Lundquist number plasmas are unstable to tearing, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Formation can occur due to sheared, sub-Alfvénic incompressible flows which narrow the sheet. Standard tearing theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459-484, Rutherford, Phys. Fluids, vol. 16 (11), 1973, pp. 1903-1908, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961-966) is not immediately applicable to such forming sheets for two reasons: first, because the flow introduces terms not present in the standard calculation; second, because the changing equilibrium introduces time dependence to terms which are constant in the standard calculation, complicating the formulation of an eigenvalue problem. This paper adapts standard tearing mode analysis to confront these challenges. In an initial phase when any perturbations are primarily governed by ideal magnetohydrodynamics, a coordinate transformation reveals that the flow compresses and stretches perturbations. A multiple scale formulation describes how linear tearing mode theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459-484, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961-966) can be applied to an equilibrium changing under flow, showing that the flow affects the separable exponential growth only implicitly, by making the standard scalings time dependent. In the nonlinear Rutherford stage, the coordinate transformation shows that standard theory can be adapted by adding to the stationary rates time dependence and an additional term due to the strengthening equilibrium magnetic field. Overall, this understanding supports the use of flow-free scalings with slight modifications to study tearing in a forming sheet.

  3. Development of a low energy micro sheet forming machine

    NASA Astrophysics Data System (ADS)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  4. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi

    2015-05-01

    Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.

  5. THEMIS two‐point measurements of the cross‐tail current density: A thick bifurcated current sheet in the near‐Earth plasma sheet

    PubMed Central

    2015-01-01

    Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039

  6. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    DOEpatents

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  7. Non-Evolutionarity of a Reconnecting Current Sheet as a Cause of Its Splitting into MHD Shocks

    NASA Astrophysics Data System (ADS)

    Markovsky, S. A.; Somov, B. V.

    1995-04-01

    Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.

  8. Graphene electron cannon: High-current edge emission from aligned graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianlong; Li, Nannan; Guo, Jing

    2014-01-13

    High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.

  9. Laboratory observation of resistive electron tearing in a two-fluid reconnecting current sheet

    DOE PAGES

    Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; ...

    2016-08-25

    The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. Furthermore, the reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate.

  10. On spontaneous formation of current sheets: Untwisted magnetic fields

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Low, B. C.; Smolarkiewicz, P. K.

    2010-11-01

    This is a study of the spontaneous formation of electric current sheets in an incompressible viscous fluid with perfect electrical conductivity, governed by the magnetohydrodynamic Navier-Stokes equations. Numerical solutions to two initial value problems are presented for a three-dimensional, periodic, untwisted magnetic field evolving, with no change in magnetic topology under the frozen-in condition and at characteristic fluid Reynolds numbers of the order of 500, from a nonequilibrium initial state with the fluid at rest. The evolution converts magnetic free energy into kinetic energy to be all dissipated away by viscosity so that the field settles into a minimum-energy, static equilibrium. The solutions demonstrate that, as a consequence of the frozen-in condition, current sheets must form during the evolution despite the geometric simplicity of the prescribed initial fields. In addition to the current sheets associated with magnetic neutral points and field reversal layers, other sheets not associated with such magnetic features are also in evidence. These current sheets form on magnetic flux surfaces. This property is used to achieve a high degree of the frozen-in condition in the simulations, by describing the magnetic field entirely in terms of the advection of its flux surfaces and integrating the resulting governing equations with a customized version of a general-purpose high-resolution (viz., nonoscillatory) hydrodynamical simulation code EULAG [J. M. Prusa et al., Comput. Fluids 37, 1193 (2008)]. Incompressibility imposes the additional global constraint that the flux surfaces must evolve with no change in the spatial volumes they enclose. In this approach, current sheet formation is demonstrated graphically by the progressive pressing together of suitably selected flux surfaces until their separation has diminished below the minimal resolved distance on a fixed grid. The frozen-in condition then fails in the simulation as the field reconnects through an effecting numerical resistivity. The principal results are related to the Parker theory of current-sheet formation and dissipation in the solar corona.

  11. Bursting reconnection of the two co-rotating current loops

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi

    2000-10-01

    Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.

  12. Low resistance, low-inductance power connectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony

    An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less

  13. The effect of a guide field on the structures of magnetic islands formed during multiple X line reconnections: Two-dimensional particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Huang, Can; Lu, Quanming; Lu, San; Wang, Peiran; Wang, Shui

    2014-02-01

    A magnetic island plays an important role in magnetic reconnection. In this paper, using a series of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island formed during multiple X line magnetic reconnections, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher density and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.

  14. Current sheet formation in a sheared force-free-magnetic field. [in sun

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard

    1989-01-01

    This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.

  15. Analysis of Magnetic Flux Rope Chains Embedded in Martian Current Sheets Using MAVEN Data

    NASA Astrophysics Data System (ADS)

    Bowers, C. F.; DiBraccio, G. A.; Brain, D.; Hara, T.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; Halekas, J. S.

    2017-12-01

    The magnetotail of Mars is formed as the interplanetary magnetic field (IMF) drapes around the planet's conducting ionosphere and localized crustal magnetic fields. In this scenario, a cross-tail current sheet separates the sunward and anti-sunward tail lobes. This tail current sheet is a highly dynamic region where magnetic reconnection is able to occur between the oppositely oriented fields. Magnetic flux ropes, a by-product of magnetic reconnection in the tail or in the ionosphere characterized by their helical outer wraps and strong axial core field, are commonly observed in the Martian magnetotail. An initial study using Mars Global Surveyor measurements reported a chain of flux ropes in the tail. During this event, 3 flux ropes were observed during a single traversal of the tail current sheet with a duration of 4 minutes. Here, we perform a statistical survey of these chain-of-flux-rope events to characterize their occurrence in the tail current sheet using Mars Atmosphere and Volatile EvolutioN (MAVEN) data. We implement the well-established technique of Minimum Variance Analysis to confirm the helical structure of the flux ropes and also determine local current sheet orientation. Thorough visual examination of more than 1600 orbits has resulted in the identification of 784 tail current sheet traversals. We determine the current sheet thickness to be on the order of 100-1000 km. From these current sheet observations, a subset of 30 events include embedded chain of flux ropes within the current sheet structure. We find that 87% of these flux rope chain events are identified in the southern latitude regions of Mars, associated with crustal fields. Their location suggests that magnetic reconnection occurring near crustal fields may be the source of these flux ropes. These statistical measurements of both current sheets and associated flux rope chains provide information about the complex magnetospheric dynamics at Mars, and how these dynamics affect atmospheric loss to space.

  16. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard "ballerina skirt" picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180° a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  17. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2013-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180 deg; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  18. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    NASA Astrophysics Data System (ADS)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  19. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    PubMed

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  20. Kinetic Studies of Thin Current Sheets at Magnetosheath Jets

    NASA Astrophysics Data System (ADS)

    Eriksson, E.; Vaivads, A.; Khotyaintsev, Y. V.; Graham, D. B.; Yordanova, E.; Hietala, H.; Markidis, S.; Giles, B. L.; Andre, M.; Russell, C. T.; Le Contel, O.; Burch, J. L.

    2017-12-01

    In near-Earth space one of the most turbulent plasma environments is the magnetosheath (MSH) downstream of the quasi-parallel shock. The particle acceleration and plasma thermalization processes there are still not fully understood. Regions of strong localized currents are believed to play a key role in those processes. The Magnetospheric Multiscale (MMS) mission has sufficiently high cadence to study these processes in detail. We present details of studies of two different events that contain strong current regions inside the MSH downstream of the quasi-parallel shock. In both cases the shape of the current region is in the form of a sheet, however they show internal 3D structure on the scale of the spacecraft separation (15 and 20 km, respectively). Both current sheets have a normal magnetic field component different from zero indicating that the regions at the different sides of the current sheets are magnetically connected. Both current sheets are boundaries between two different plasma regions. Furthermore, both current sheets are observed at MSH jets. These jets are characterized by localized dynamic pressure being larger than the solar wind dynamic pressure. One current sheet does not seem to be reconnecting while the other shows reconnection signatures. Inside the non-reconnecting current sheet we observe locally accelerated electron beams along the magnetic field. At energies above the beam energy we observe a loss cone consistent with part of the hot MSH-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within this current sheet is similar to the one that occurs at the bow shock, where electron beams and loss cones are also observed. Therefore, we conclude that electron beams observed in the MSH do not have to originate from the bow shock, but can also be generated locally inside the MSH. The reconnecting current sheet also shows signs of thermalization and electron acceleration processes that are discussed in detail.

  1. Extended score interval in the assessment of basic surgical skills.

    PubMed

    Acosta, Stefan; Sevonius, Dan; Beckman, Anders

    2015-01-01

    The Basic Surgical Skills course uses an assessment score interval of 0-3. An extended score interval, 1-6, was proposed by the Swedish steering committee of the course. The aim of this study was to analyze the trainee scores in the current 0-3 scored version compared to a proposed 1-6 scored version. Sixteen participants, seven females and nine males, were evaluated in the current and proposed assessment forms by instructors, observers, and learners themselves during the first and second day. In each assessment form, 17 tasks were assessed. The inter-rater reliability between the current and the proposed score sheets were evaluated with intraclass correlation (ICC) with 95% confidence intervals (CI). The distribution of scores for 'knot tying' at the last time point and 'bowel anastomosis side to side' given by the instructors in the current assessment form showed that the highest score was given in 31 and 62%, respectively. No ceiling effects were found in the proposed assessment form. The overall ICC between the current and proposed score sheets after assessment by the instructors increased from 0.38 (95% CI 0.77-0.78) on Day 1 to 0.83 (95% CI 0.51-0.94) on Day 2. A clear ceiling effect of scores was demonstrated in the current assessment form, questioning its validity. The proposed score sheet provides more accurate scores and seems to be a better feedback instrument for learning technical surgical skills in the Basic Surgical Skills course.

  2. Extended score interval in the assessment of basic surgical skills.

    PubMed

    Acosta, Stefan; Sevonius, Dan; Beckman, Anders

    2015-01-01

    Introduction The Basic Surgical Skills course uses an assessment score interval of 0-3. An extended score interval, 1-6, was proposed by the Swedish steering committee of the course. The aim of this study was to analyze the trainee scores in the current 0-3 scored version compared to a proposed 1-6 scored version. Methods Sixteen participants, seven females and nine males, were evaluated in the current and proposed assessment forms by instructors, observers, and learners themselves during the first and second day. In each assessment form, 17 tasks were assessed. The inter-rater reliability between the current and the proposed score sheets were evaluated with intraclass correlation (ICC) with 95% confidence intervals (CI). Results The distribution of scores for 'knot tying' at the last time point and 'bowel anastomosis side to side' given by the instructors in the current assessment form showed that the highest score was given in 31 and 62%, respectively. No ceiling effects were found in the proposed assessment form. The overall ICC between the current and proposed score sheets after assessment by the instructors increased from 0.38 (95% CI 0.77-0.78) on Day 1 to 0.83 (95% CI 0.51-0.94) on Day 2. Discussion A clear ceiling effect of scores was demonstrated in the current assessment form, questioning its validity. The proposed score sheet provides more accurate scores and seems to be a better feedback instrument for learning technical surgical skills in the Basic Surgical Skills course.

  3. The Effect of a Guide Field on the Structures of Magnetic Islands: 2D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Huang, C.; Lu, Q.; Lu, S.; Wang, P.; Wang, S.

    2014-12-01

    Magnetic island plays an important role in magnetic reconnection. Using a series of 2D PIC simulations, we investigate the magnetic structures of a magnetic island formed during multiple X-line magnetic reconnection, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the direction forms a tripolar structure inside a magnetic island during anti-parallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhance the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flows toward the X lines along the separatrices from the side with a higher density, and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.

  4. Collisionless reconnection in a quasi-neutral sheet near marginal stability

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.; Pellat, R.; Karimabadi, H.

    1989-01-01

    Particle simulations are used to investigate the process of collisionless reconnection in a magnetotail configuration which includes a pressure gradient along the tail axis and tail flaring. In the absence of electron stabilization effects, the tearing mode is stabilized when the ion gyrofrequency in the normal field exceeds the growth rate in the corresponding one-dimensional current sheet. The presence of a low-frequency electromagnetic perturbation in the lobes can serve to destabilize a marginally stable current sheet by producing an extended neutral-sheet region which can then undergo reconnection. These results help to explain how X-type neutral lines, such as those associated with the onset of magnetospheric substorms, can be formed in the near-earth plasma sheet.

  5. Comparing Sources of Storm-Time Ring Current O+

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.

    2015-12-01

    The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.

  6. Coronal Heating Topology: The Interplay of Current Sheets and Magnetic Field Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappazzo, A. F.; Velli, M.; Matthaeus, W. H.

    2017-07-20

    The magnetic topology and field line random walk (FLRW) properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, called current sheet connected (CSC) regions, which extend around them. CSC FLRW is strongly anisotropic, with preferential diffusion along the current sheets’ in-plane length. CSC FLRW properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind,more » and for solar moss formation are discussed.« less

  7. Current sheet characteristics of a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun

    2018-05-01

    The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.

  8. Nonlinear evolution of three-dimensional instabilities of thin and thick electron scale current sheets: Plasmoid formation and current filamentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen

    Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheetsmore » (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.« less

  9. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  10. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.

    PubMed

    Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  11. Electrically driven rapidly vaporizing foils, wires and strips used for collision welding and sheet metal forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek, Anupam; Daehn, Glenn S; Taber, Geoffrey A

    2015-05-05

    A method for forming a piece of a sheet metal is performed by positioning a consumable body, made of metal, proximate to the piece of the sheet metal. The consumable body is rapidly vaporized, and the gas pressure generated thereby is directed into the piece of the sheet metal. This results in acceleration of the piece of sheet metal, and it is collided into a stationary body at a velocity, generally in excess of 200 m/s. Depending upon the type of stationary body, the piece of sheet metal is deformed into a predetermined shape or is welded onto the stationarymore » body. The vaporization is accomplished by passing a high current of electricity into the consumable body. The effect of the vaporized metal may be augmented by additional components in the consumable body.« less

  12. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  13. Fact Sheet on the History of the Resource Conservation and Recovery Act (RCRA) Corrective Action Program

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the main events that have shaped the current RCRA Corrective Action Program. It also provides a brief history of the statutory authorities, regulations, and policy that form the framework for the program.

  14. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  15. A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1990-01-01

    A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.

  16. 76 FR 49433 - Notice To Request an Extension and Revision of Currently Approved Information Collection and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Previously Approved Information Collection'' for volunteer workers (73 FR 62949). In accordance with the... request an extension for currently approved information collection, Volunteer Program-Earth Team. This..., for the Volunteer Interest and Placement Summary form and the Time Sheet form. The collected...

  17. Magnesium-based methods, systems, and devices

    DOEpatents

    Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum

    2017-12-12

    An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.

  18. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  19. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  20. Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations

    NASA Astrophysics Data System (ADS)

    Guo, W.; Ma, J.; Yu, Z.

    2017-03-01

    A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.

  1. A Tailward Moving Current Sheet Normal Magnetic Field Front Followed by an Earthward Moving Dipolarization Front

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.

    2014-01-01

    A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.

  2. High-latitude Pi2 pulsations associated with kink-like neutral sheet oscillations

    NASA Astrophysics Data System (ADS)

    Wang, G. Q.; Volwerk, M.; Zhang, T. L.; Schmid, D.; Yoshikawa, A.

    2017-03-01

    A kink-like neutral sheet oscillation event observed by Cluster between 1436 and 1445 UT on 15 October 2004 has been investigated. The oscillations with periods between 40 and 60 s, observed at (-13.1, 8.7, -0.5) RE, are dominant in BX and BY. And they propagate mainly duskward with a velocity of (86, 147, 46) km/s. Their periods and velocity can be explained by the magnetic double-gradient instability. These oscillations are accompanied by strong field-aligned currents (FACs), which prefer to occur near the strongly tilted current sheet, and local maximum FAC tends to occur near the neutral sheet. The FACs show one-to-one correlated with a high-latitude Pi2 pulsation event recorded by KTN and TIK stations with a delay time of 60 and 90 s, respectively. Both the Pi2 and oscillations propagate westward with a comparative conjunctive speed. These findings suggest a strong relation between the FACs and Pi2, and we infer that the Pi2 is caused by the FACs. The periods of the FACs are modulated by the oscillations but not exactly equal, which is one possible reason that the period of the Pi2 caused by the FACs could be different from the oscillations. We speculate that a current circuit between the plasma sheet and ionosphere can be formed during strongly tilted current sheet, and successive tilted current sheet could generate quasiperiodic multiple FAC systems, which can generate high-latitude Pi2 pulsations and control their periods.

  3. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  4. Commercial scale production of Fe-6.5 wt. % Si sheet and its magnetic properties

    NASA Astrophysics Data System (ADS)

    Takada, Y.; Abe, M.; Masuda, S.; Inagaki, J.

    1988-11-01

    Commercial scale production of a Fe-6.5 wt. % Si sheet has been successfully developed. Presently manufactured sheets are in coil form, whose thickness ranges from 0.1 to 0.5 mm with a maximum width of 400 mm. Magnetic properties of the manufactured sheet have been investigated. The permeability of Fe-6.5 wt. % Si sheet is about 10 times higher than the conventional nonoriented silicon steel sheet. The core losses are less than half the conventional, and even less than that of the grain-oriented silicon steel sheet at frequencies over 400 Hz. Superior soft magnetic properties are attributed to the low magnetostriction and high electric resistivity of this alloy. It is well known that the Fe-6.5 wt. % Si alloy has poor ductility in conventional mechanical work. But investigation of the forming conditions has enabled the stamping and bending of alloy sheets. Low core losses and high permeability make Fe-6.5 wt. % Si sheet adequate for motor cores, transformer cores operating at high frequencies, and magnetic shielding. Application to the micromotor core shows that Fe-6.5 wt. % Si sheet reduces the consumption of no-load electric current by 25% in comparison with the conventional silicon steel.

  5. Kinetic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line

    NASA Technical Reports Server (NTRS)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; DeVore, C. R.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the plasma physics community, particularly in the context of magnetic reconnection. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high resolution particle-in-cell (PIC) simulations. The initial potential magnetic field is perturbed by thermal pressure introduced into the particle distribution far from the X line. The relaxation of this added stress leads to the development of a current sheet, which reconnects for imposed stress of sufficient strength. We compare the evolution and final state of our PIC simulations with magnetohydrodynamic simulations assuming both uniform and localized resistivities, and with force-free magnetic-field equilibria in which the amount of reconnect ion across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the terrestrial magnetotail and solar corona.

  6. Holocene reworking of a sand sheet in the Merrimack Embayment, Western Gulf of Maine

    USGS Publications Warehouse

    Hein, C.J.; FitzGerald, D.M.; Barnhardt, W.

    2007-01-01

    Recent bathymetric, backscatter, and seafloor sediment samples demonstrate that a large sand sheet was formed in the inner shelf by the reworking of the Merrimack River lowstand delta (deposited 12 kya; currently at 45 m depth) and braid plain during the Holocene transgression. Asymmetric bedforms and distinct grain size distributions suggest the sand sheet is actively being reworked by inner-shelf processes. Bottom sediments range from silty sand at the submerged delta to coarse sand and fine gravel in the innermost shelf (depth: 10-50 m). Coarse-grained sand comprises an expansive (32 km2 ) featureless sand sheet centered off the Merrimack River. Fine-grained sand discontinuously overlies this sand sheet in many locations and forms long wavelength (100 – 800 m), low amplitude (1-2 m), asymmetrical bedforms. Sets of these bedforms are oriented from slightly oblique offshore to onshore; several bedform sets are located within 1 km and oriented orthogonally to one another. Along the paleo-delta front north-northwest oriented bedforms are dominant. Inshore of these features, the bedforms become more closely spaced and have orientations to the west and westsouthwest. Preliminary data suggest that the combined forcings of instantaneous storm-wave generated shear stress and storm-induced currents associated with high energy northeast storm events may be responsible for sand sheet reworking and bedform development.

  7. Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model

    NASA Astrophysics Data System (ADS)

    Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.

    2017-12-01

    The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric escape from Mars.

  8. Plasmoid Instability in Forming Current Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisso, L.; Lingam, M.; Huang, Y. -M.

    The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less

  9. Plasmoid Instability in Forming Current Sheets

    DOE PAGES

    Comisso, L.; Lingam, M.; Huang, Y. -M.; ...

    2017-11-28

    The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less

  10. The Role of Ionospheric O+ in Forming the Storm-time Ring Current

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Mouikis, C.; Menz, A.; Bingham, S.

    2017-12-01

    During storm times, the particle pressure that creates the storm-time ring current in the inner magnetosphere can be dominated by O+. This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O+ is usually not the dominant species in the plasma sheet. In this talk we examine the many factors that lead to this result. The O+ outflow is enhanced during geomagnetically active times. The transport paths of O+ and H+ are different, such that the O+ that reaches the near-earth plasma sheet is more energetic than H+. The source spectrum in the near-earth plasma sheet can be harder for O+ than for H+, perhaps due to substorm injections, so that the more energetic plasma has a higher O+/H+ ratio. And finally the plasma sheet O+ can be more abundant towards the beginning of the storm, when the convection is largest, so the enhanced O+ is brought the deepest into the inner magnetosphere. We will discuss the interrelationships between these different effects as well as the ways in which O+ itself may influence the system.

  11. Electron transport in graphene/graphene side-contact junction by plane-wave multiple-scattering method

    DOE PAGES

    Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...

    2015-05-28

    Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less

  12. Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.

    2017-06-01

    This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.Plain Language SummaryMars, which does not have a strong magnetic field, has an induced magnetic environment from the draping of the interplanetary magnetic field from the Sun. It folds around Mars, forming two "lobes" of magnetic field behind the planet with a current sheet of electrified gas (plasma) behind it. The current sheet is not directly behind the planet but rather shifted toward the dawn or dusk direction. It is shown here that one factor controlling the location of the current sheet is the dayside ionosphere. At solar maximum, the ionosphere is dense, the magnetic field slips easily by the planet, and the current sheet is shifted toward dawn. At solar minimum, the ionosphere is relatively weak, the magnetic field slippage is slowed down, and the current sheet shifts toward dusk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title12-vol7/pdf/CFR-2011-title12-vol7-sec1229-9.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title12-vol7/pdf/CFR-2011-title12-vol7-sec1229-9.pdf"><span>12 CFR 1229.9 - Discretionary actions applicable to significantly undercapitalized Banks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... absolute dollar amount, as a percentage of current obligations or in any other form chosen by the Director...-balance sheet obligations. Such reduction may be stated in an absolute dollar amount, as a percentage of... absolute dollar amount, as a percentage of current assets or in any other form chosen by the Director; (4...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title12-vol7/pdf/CFR-2010-title12-vol7-sec1229-9.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title12-vol7/pdf/CFR-2010-title12-vol7-sec1229-9.pdf"><span>12 CFR 1229.9 - Discretionary actions applicable to significantly undercapitalized Banks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... absolute dollar amount, as a percentage of current obligations or in any other form chosen by the Director...-balance sheet obligations. Such reduction may be stated in an absolute dollar amount, as a percentage of... absolute dollar amount, as a percentage of current assets or in any other form chosen by the Director; (4...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016mt15.book..263T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016mt15.book..263T"><span>The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre</p> <p></p> <p>Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23215495','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23215495"><span>Observations of ionospheric electron beams in the plasma sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K</p> <p>2012-11-16</p> <p>Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1960o0016W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1960o0016W"><span>Local laser-strengthening: Customizing the forming behavior of car body steel sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, M.; Jahn, A.; Beyer, E.; Balzani, D.</p> <p>2018-05-01</p> <p>Future trends in designing lightweight components especially for automotive applications increasingly require complex and delicate structures with highest possible level of capacity [1]. The manufacturing of metallic car body components is primarily realized by deep or stretch drawing. The forming process of especially cold rolled and large-sized components is typically characterized by inhomogeneous stress and strain distributions. As a result, the avoidance of undesirable deep drawing effects like earing and local necking is among the greatest challenges in forming complex car body structures [2]. Hence, a novel local laser-treatment approach with the objective of customizing the forming behavior of car body steel sheets is currently explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGP31A1094T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGP31A1094T"><span>Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, F.</p> <p>2011-12-01</p> <p>Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050207500&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEIT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050207500&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEIT"><span>Coronal Current Sheet Evolution in the Aftermath of a CME</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.</p> <p>2005-01-01</p> <p>We report on SOHO-UVCS observations of coronal restructuring following a Coronal Mass Ejection (CME) on November 26, 2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after the CME, which was directed towards Ulysses, UVCS began taking spectra at 1.7 solar radii, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6x10(6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by SWICS throughout the magnetic cloud associated with the CME, although the rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. Both the remote and in situ observations are compared with predictions of theoretical CME models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850030808&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMagnetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850030808&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMagnetic%2Benergy"><span>Driven magnetic reconnection in three dimensions - Energy conversion and field-aligned current generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sato, T.; Walker, R. J.; Ashour-Abdalla, M.</p> <p>1984-01-01</p> <p>The energy conversion processes occurring in three-dimensional driven reconnection is analyzed. In particular, the energy conversion processes during localized reconnection in a taillike magnetic configuration are studied. It is found that three-dimensional driven reconnection is a powerful energy converter which transforms magnetic energy into plasma bulk flow and thermal energy. Three-dimensional driven reconnection is an even more powerful energy converter than two-dimensional reconnection, because in the three-dimensional case, plasmas were drawn into the reconnection region from the sides as well as from the top and bottom. Field-aligned currents are generated by three-dimensional driven reconnection. The physical mechanism responsible for these currents which flow from the tail toward the ionosphere on the dawnside of the reconnection region and from the ionosphere toward the tail on the duskside is identified. The field-aligned currents form as the neutral sheet current is diverted through the slow shocks which form on the outer edge of the reconnected field lines (outer edge of the plasma sheet).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1187928','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1187928"><span>Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.</p> <p>2015-06-30</p> <p>The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patternedmore » conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820040615&hterms=divided+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddivided%2Battention','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820040615&hterms=divided+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddivided%2Battention"><span>Current status of solar cell performance of unconventional silicon sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yoo, H. I.; Liu, J. K.</p> <p>1981-01-01</p> <p>It is pointed out that activities in recent years directed towards reduction in the cost of silicon solar cells for terrestrial photovoltaic applications have resulted in impressive advancements in the area of silicon sheet formation from melt. The techniques used in the process of sheet formation can be divided into two general categories. All approaches in one category require subsequent ingot wavering. The various procedures of the second category produce silicon in sheet form. The performance of baseline solar cells is discussed. The baseline process included identification marking, slicing to size, and surface treatment (etch-polishing) when needed. Attention is also given to the performance of cells with process variations, and the effects of sheet quality on performance and processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22066471-resistance-spot-welding-ultra-fine-grained-steel-sheets-produced-constrained-groove-pressing-optimization-characterization','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22066471-resistance-spot-welding-ultra-fine-grained-steel-sheets-produced-constrained-groove-pressing-optimization-characterization"><span>Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.</p> <p>2012-07-15</p> <p>Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Nanot..28Q5705S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Nanot..28Q5705S"><span>Large patternable metal nanoparticle sheets by photo/e-beam lithography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru</p> <p>2017-10-01</p> <p>Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13B2380L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13B2380L"><span>Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.</p> <p>2017-12-01</p> <p>Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872712','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872712"><span>Solar module having reflector between cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kardauskas, Michael J.</p> <p>1999-01-01</p> <p>A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IAUS..308...97N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IAUS..308...97N"><span>An Origami Approximation to the Cosmic Web</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neyrinck, Mark C.</p> <p>2016-10-01</p> <p>The powerful Lagrangian view of structure formation was essentially introduced to cosmology by Zel'dovich. In the current cosmological paradigm, a dark-matter-sheet 3D manifold, inhabiting 6D position-velocity phase space, was flat (with vanishing velocity) at the big bang. Afterward, gravity stretched and bunched the sheet together in different places, forming a cosmic web when projected to the position coordinates. Here, I explain some properties of an origami approximation, in which the sheet does not stretch or contract (an assumption that is false in general), but is allowed to fold. Even without stretching, the sheet can form an idealized cosmic web, with convex polyhedral voids separated by straight walls and filaments, joined by convex polyhedral nodes. The nodes form in `polygonal' or `polyhedral' collapse, somewhat like spherical/ellipsoidal collapse, except incorporating simultaneous filament and wall formation. The origami approximation allows phase-space geometries of nodes, filaments, and walls to be more easily understood, and may aid in understanding spin correlations between nearby galaxies. This contribution explores kinematic origami-approximation models giving velocity fields for the first time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060016373&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEIT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060016373&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEIT"><span>Current Sheet Evolution In The Aftermath Of A CME Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bemporad, A.; Poletto, G.; Seuss, S. T.; Schwardron, N. A.; Elliott, H. A.; Raymond, J. C.</p> <p>2006-01-01</p> <p>We report on SOHO UVCS observations of the coronal restructuring following a coronal mass ejection (CME) on 2002 November 26, at the time of a SOHO-Ulysses quadrature campaign. Starting about 1.5 hr after a CME in the northwest quadrant, UVCS began taking spectra at 1.7 R, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 A line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature versus time in the current sheet and estimate its density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by the Ulysses SWICS throughout the magnetic cloud associated with the CME, although its rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. The SOHO-Ulysses data set provided us with the unique opportunity of analyzing a current sheet structure from its lowest coronal levels out to its in situ properties. Both the remote and in situ observations are compared with predictions of theoretical CME models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110009938','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110009938"><span>Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.</p> <p>2010-01-01</p> <p>Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663076-multiple-current-sheet-systems-outer-heliosphere-energy-release-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663076-multiple-current-sheet-systems-outer-heliosphere-energy-release-turbulence"><span>MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Burgess, D.; Gingell, P. W.; Matteini, L.</p> <p>2016-05-01</p> <p>In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence may generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long timescales, in order to capture the evolution from linear growthmore » of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of newborn interstellar pickup protons does not strongly affect these results. Finally, we conclude that reconnection between multiple current sheets can act as an important source of turbulence in the outer heliosphere, with implications for energetic particle acceleration and propagation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...847...98J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...847...98J"><span>Oscillations Excited by Plasmoids Formed During Magnetic Reconnection in a Vertical Gravitationally Stratified Current Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jelínek, P.; Karlický, M.; Van Doorsselaere, T.; Bárta, M.</p> <p>2017-10-01</p> <p>Using the FLASH code, which solves the full set of the 2D non-ideal (resistive) time-dependent magnetohydrodynamic (MHD) equations, we study processes during the magnetic reconnection in a vertical gravitationally stratified current sheet. We show that during these processes, which correspond to processes in solar flares, plasmoids are formed due to the tearing mode instability of the current sheet. These plasmoids move upward or downward along the vertical current sheet and some of them merge into larger plasmoids. We study the density and temperature structure of these plasmoids and their time evolution in detail. We found that during the merging of two plasmoids, the resulting larger plasmoid starts to oscillate with a period largely determined by L/{c}{{A}}, where L is the size of the plasmoid and c A is the Alfvén speed in the lateral parts of the plasmoid. In our model, L/{c}{{A}} evaluates to ˜ 25 {{s}}. Furthermore, the plasmoid moving downward merges with the underlying flare arcade, which causes oscillations of the arcade. In our model, the period of this arcade oscillation is ˜ 35 {{s}}, which also corresponds to L/{c}{{A}}, but here L means the length of the loop and c A is the average Alfvén speed in the loop. We also show that the merging process of the plasmoid with the flare arcade is a complex process as presented by complex density and temperature structures of the oscillating arcade. Moreover, all these processes are associated with magnetoacoustic waves produced by the motion and merging of plasmoids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871091','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871091"><span>Method for heating and forming a glass sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Boaz, Premakaran Tucker</p> <p>1997-01-01</p> <p>A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.734c2030F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.734c2030F"><span>Numerical assessment of residual formability in sheet metal products: towards design for sustainability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.</p> <p>2016-08-01</p> <p>A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016680','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016680"><span>Embedded Heaters for Joining or Separating Plastic Parts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bryant, Melvin A., III</p> <p>2004-01-01</p> <p>A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038002&hterms=SPIRAL+MODEL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSPIRAL%2BMODEL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038002&hterms=SPIRAL+MODEL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSPIRAL%2BMODEL"><span>A test of source-surface model predictions of heliospheric current sheet inclination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.</p> <p>1994-01-01</p> <p>The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122..618L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122..618L"><span>Oxygen acceleration in magnetotail reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Haoming; Lapenta, Giovanni; Walker, Raymond J.; Schriver, David; El-Alaoui, Mostafa; Berchem, Jean</p> <p>2017-01-01</p> <p>Motivated by the observed high concentration of oxygen ions in the magnetotail during enhanced geomagnetic activity, we investigated the oxygen acceleration in magnetotail reconnection by using 2.5-D implicit particle-in-cell simulations. We found that lobe oxygen ions can enter the downstream outflow region, i.e., the outflow region downstream of the dipolarization fronts (DFs) or the reconnection jet fronts. Without entering the reconnection exhaust, they are accelerated by the Hall electric field. They can populate the downstream outflow region before the DFs arrive there. This acceleration is in addition to acceleration in the exhaust by the Hall and reconnection electric fields. Oxygen ions in the preexisting current sheet are reflected by the propagating DF creating a reflected beam with a hook shape in phase space. This feature can be applied to deduce a history of the DF speed. However, it is difficult to observe for protons because their typical thermal velocity in the plasma sheet is comparable those of the DF and the reflection speed. The oxygen ions from the lobes and the preexisting current sheet form multiple beams in the distribution function in front of the DF. By comparing oxygen concentrations of 50%, 5%, and 0% with the same current sheet thickness, we found that the DF thickness is proportional to the oxygen concentration in the preexisting current sheet. All the simulation results can be used to compare with the observations from the Magnetospheric Multiscale mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/527755','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/527755"><span>Method for heating and forming a glass sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Boaz, P.T.</p> <p>1997-08-12</p> <p>A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration. 5 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871408','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/871408"><span>Extrusion of electrode material by liquid injection into extruder barrel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keller, David Gerard; Giovannoni, Richard Thomas; MacFadden, Kenneth Orville</p> <p></p> <p>An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830052715&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcurrent%2Bfeedback','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830052715&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcurrent%2Bfeedback"><span>Magnetic field line reconnection experiments. V - Current disruptions and double layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stenzel, R. L.; Gekelman, W.; Wild, N.</p> <p>1983-01-01</p> <p>An investigation is conducted of the stability of a large laboratory plasma current sheet, which has been generated in the process of magnetic field line reconnection, with respect to local current increases. Magnetic flux variations in regions remote from the current sheet generate an inductive voltage in the current loop that drops off inside the plasma in the form of a potential double layer, leading to particle acceleration with velocities much larger than those expected from the steady state electric fields in the plasma. A model for the mechanism of the current disruptions is formulated in which the potential structure leads to ion expulsion, creating a localized density drop. The associated current drop in an inductive circuit drives the potential structure, providing feedback for the disruptive instability. Similarities to, and differences from, magnetospheric substorm phenomena are noted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.1648S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.1648S"><span>Magnetic Configurations of the Tilted Current Sheets and Dynamics of Their Flapping in Magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.</p> <p>2009-04-01</p> <p>Based on multiple spacecraft measurements, the geometrical structures of tilted current sheet and tail flapping waves have been analyzed and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the magnetic equatorial plane, while the tilted current sheet may lean severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, its half thickness is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail thick current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1RE, while the neutral sheet may be very thin, with its half thickness being several tenths ofRE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070038263&hterms=VIG&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVIG','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070038263&hterms=VIG&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVIG"><span>Plasma Measurements in an Integrated-System FARAD Thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.</p> <p>2007-01-01</p> <p>Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871662','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871662"><span>Process to produce lithium-polymer batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>MacFadden, Kenneth Orville</p> <p>1998-01-01</p> <p>A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871928','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871928"><span>Method for heating, forming and tempering a glass sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Boaz, Premakaran Tucker; Sitzman, Gary W.</p> <p>1998-01-01</p> <p>A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22305772-accurate-potential-drop-sheet-resistance-measurements-laser-doped-areas-semiconductors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22305772-accurate-potential-drop-sheet-resistance-measurements-laser-doped-areas-semiconductors"><span>Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heinrich, Martin, E-mail: mh.seris@gmail.com; NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456; Kluska, Sven</p> <p>2014-10-07</p> <p>It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given onmore » how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51B2472L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51B2472L"><span>Oxygen Ions in Magnetotail Reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, H.; Walker, R. J.; Lapenta, G.; Schriver, D.; El-Alaoui, M.; Berchem, J.</p> <p>2016-12-01</p> <p>Spacecraft have observed a significant fraction of oxygen ions (O+) in Earth's magnetotail X-line during the periods of enhanced geomagnetic activity. It is important to understand how such O+ influences the reconnection process and how the O+ ions are heated due to reconnection. To this end we have used a 2.5D implicit Particle-in-Cell simulation (iPic3D) in a 2D Harris current sheet in the presence of H+ and O+. By comparing the simulation runs for oxygen concentrations of 50%, 5% and 0% (i.e. latter run only H+ ions), we found that (1) the dipolarization front (DF) propagation is encumbered by the current sheet O+ inertia, which reduces the DF speed and delays the fast reconnection phase; (2) the reconnection rate in the 50% O+ Run is much less than the 0% O+ Run, which can be attributed to the O+ drag on the convective magnetic flux via an ambipolar electric field in the O+ diffusion region; (3) without entering the exhaust, the lobe O+ can be accelerated near the separatrices away from the X-point by the Hall electric field and form the hot population downstream of the DFs; (4) the pre-existing current sheet O+ ions are reflected by the DFs and form a hook-shaped distribution in phase space, from which the DF speed history can be deduced; (5) the DF thickness is proportional to the O+ concentration in the pre-existing current sheet. These results illustrate the differences between storm-time and non-storm substorms due to a significant concentration of oxygen ions. The oxygen heating results are expected to be observable by the Magnetospheric Multiscale (MMS) mission in the magnetotail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850....6H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850....6H"><span>Inflows in the Inner White-light Corona: The Closing-down of Flux after Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hess, P.; Wang, Y.-M.</p> <p>2017-11-01</p> <p>During times of high solar activity, the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 coronagraph has recorded multitudes of small features moving inward through its 2{--}6 {R}⊙ field of view. These outer-coronal inflows, which are concentrated around the heliospheric current sheet, tend to be poorly correlated with individual coronal mass ejection (CME) events. Using running-difference movies constructed from Solar Terrestrial Relations Observatory/COR1 coronagraph images taken during 2008-2014, we have identified large numbers of inward-moving features at heliocentric distances below 2 {R}⊙ , with the rate increasing with sunspot and CME activity. Most of these inner-coronal inflows are closely associated with CMEs, being observed during and in the days immediately following the eruptions. Here, we describe several examples of the pinching-off of tapered streamer structures in the wake of CMEs. This type of inflow event is characterized by a separation of the flow into incoming and outgoing components connected by a thin spike, which is interpreted as a continually elongating current sheet viewed edge-on; by the prior convergence of narrow rays toward the current sheet; and by a succession of collapsing loops that form a cusp-shaped structure at the base of the current sheet. The re-forming streamer overlies a growing post-eruption arcade that is visible in EUV images. These observations provide support for standard reconnection models for the formation/evolution of flux ropes during solar eruptive events. We suggest that inflow streams that occur over a relatively wide range of position angles result from the pinching-off of loop arcades whose axes are oriented parallel rather than perpendicular to the sky plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013hell.conf...16D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013hell.conf...16D"><span>A statistical study of current-sheet formation above solar active regions based on selforganized criticality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.</p> <p>2013-09-01</p> <p>We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980JGR....85.3329J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980JGR....85.3329J"><span>Modeling Jupiter's current disc - Pioneer 10 outbound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, D. E.; Melville, J. G.; Blake, M. L.</p> <p>1980-07-01</p> <p>A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867286','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867286"><span>Electromagnetic confinement and movement of thin sheets of molten metal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.</p> <p>1990-01-01</p> <p>An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AnGeo..26.3525S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AnGeo..26.3525S"><span>Magnetic configurations of the tilted current sheets in magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.</p> <p>2008-11-01</p> <p>In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak magnetospheric activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22299965-three-dimensional-instabilities-electron-scale-current-sheet-collisionless-magnetic-reconnection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22299965-three-dimensional-instabilities-electron-scale-current-sheet-collisionless-magnetic-reconnection"><span>Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen</p> <p></p> <p>In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with themore » thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/675851','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/675851"><span>Method for heating, forming and tempering a glass sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Boaz, P.T.; Sitzman, G.W.</p> <p>1998-10-27</p> <p>A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1083439','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1083439"><span>Composite biaxially textured substrates using ultrasonic consolidation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Blue, Craig A; Goyal, Amit</p> <p>2013-04-23</p> <p>A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/597097','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/597097"><span>Extrusion of electrode material by liquid injection into extruder barrel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.</p> <p>1998-03-10</p> <p>An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/597097-extrusion-electrode-material-liquid-injection-extruder-barrel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/597097-extrusion-electrode-material-liquid-injection-extruder-barrel"><span>Extrusion of electrode material by liquid injection into extruder barrel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.</p> <p></p> <p>An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.more » 1 fig.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1081G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1081G"><span>Laboratory reconnection experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grulke, Olaf</p> <p></p> <p>Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43D..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43D..03W"><span>New Way of Characterizing the State of the Ring Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, R.; Bao, S.; Gkioulidou, M.; Yang, J.; Toffoletto, F.</p> <p>2017-12-01</p> <p>The flux tube entropy S is invariant in ideal MHD and is a good way to characterize the degree to which a closed flux tube is loaded with particle energy. Flux tube entropy generally increases with increasing geocentric distance. A flux tube that is injected from the plasma sheet into the ring current tends to be a bubble that has a lower S value than typical plasma sheet flux tubes, and it tends to penetrate to a position where the surroundings matches its S. From this point of view, a good way to characterize the state of the ring current is through the function dF/dS, which specifies how much magnetic flux is occupied by tubes with different degrees of loading. By displaying dF/dS curves before and during storm main phases simulated with the RCM-E code, we determine that, in the model, the injection of the stormtime ring current consists of replacing pre-storm low-S flux tubes with tubes from the plasma sheet that have a certain limited range of S, which is well below typical plasma-sheet values. We also display dF/dS curves for passes by the Van Allen Probes before and during storm main phases, and compare with the RCM-E-derived curves, to gain insight into the nature of the flux tubes that are injected to form the real storm-time ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009970','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009970"><span>Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.</p> <p>2011-01-01</p> <p>The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525539-spectroscopic-observations-evolving-flare-ribbon-substructure-suggesting-origin-current-sheet-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525539-spectroscopic-observations-evolving-flare-ribbon-substructure-suggesting-origin-current-sheet-waves"><span>SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brannon, S. R.; Longcope, D. W.; Qiu, J.</p> <p>2015-09-01</p> <p>We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10172E..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10172E..05C"><span>Multifunctional smart composites with integrated carbon nanotube yarn and sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark</p> <p>2017-04-01</p> <p>Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM22B..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM22B..02N"><span>Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.</p> <p>2017-12-01</p> <p>During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/672522','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/672522"><span>Process to produce lithium-polymer batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>MacFadden, K.O.</p> <p>1998-06-30</p> <p>A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1356181','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1356181"><span>Ceramic substrate including thin film multilayer surface conductor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wolf, Joseph Ambrose; Peterson, Kenneth A.</p> <p>2017-05-09</p> <p>A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599178-continuous-development-current-sheets-near-away-from-magnetic-nulls','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599178-continuous-development-current-sheets-near-away-from-magnetic-nulls"><span>Continuous development of current sheets near and away from magnetic nulls</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kumar, Sanjay; Bhattacharyya, R.</p> <p>2016-04-15</p> <p>The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scalingmore » than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830023295','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830023295"><span>A comparison of coronal and interplanetary current sheet inclinations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.</p> <p>1983-01-01</p> <p>The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8e5023C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8e5023C"><span>Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei</p> <p>2018-05-01</p> <p>An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA578718','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA578718"><span>Graphene Sheets Stabilized on Genetically Engineered M13 Viral Templates as Conducting Frameworks for Hybrid Energy-Storage Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-01-01</p> <p>Hammond, A. M. Belcher, Nat. Nanotechnol. 2011. [19] C. F. Barbass III, D. R. Burton, J. K. Scott, G. J. Silverman, Phage display : a laboratory manual...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...19b. TELEPHONE NUMBER (Include area code) New Reprint Graphene Sheets Stabilized on Genetically Engineered M13 Viral Templates as Conducting</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050092387&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEIT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050092387&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEIT"><span>Current Sheet Evolution in the Aftermath of a CME Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.</p> <p>2005-01-01</p> <p>We report on SOHO-UVCS observations of the coronal restructuring following a Coronal Mass Ejection (CME) on November 26,2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after a CME in the NW quadrant, UVCS began taking spectra at 1.7 solar radius, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the Fe XVIII emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by Ulysses-SWICS throughout the magnetic cloud associated with the CME. Both the remote and in situ observations are compared with predictions of theoretical CME models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896h0023S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896h0023S"><span>Architectural setup for online monitoring and control of process parameters in robot-based ISF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd</p> <p>2017-10-01</p> <p>This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2801L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2801L"><span>Formation of Dawn-Dusk Asymmetry in Earth's Magnetotail Thin Current Sheet: A Three-Dimensional Particle-In-Cell Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.</p> <p>2018-04-01</p> <p>Using a three-dimensional particle-in-cell simulation, we investigate the formation of dawn-dusk asymmetry in Earth's magnetotail. The magnetotail current sheet is compressed by an external driving electric field down to a thickness on the order of ion kinetic scales. In the resultant thin current sheet (TCS) where the magnetic field line curvature radius is much smaller than ion gyroradius, a significant portion of the ions becomes unmagnetized and decoupled from the magnetized electrons, giving rise to a Hall electric field Ez and an additional cross-tail current jy caused by the unmagnetized ions being unable to comove with the electrons in the Hall electric field. The Hall electric field transports via E × B drift magnetic flux and magnetized plasma dawnward, causing a reduction of the current sheet thickness and the normal magnetic field Bz on the duskside. This leads to an even stronger Hall effect (stronger jy and Ez) in the duskside TCS. Thus, due to the internal kinetic effects in the TCS, namely, the Hall effect and the associated dawnward E × B drift, the magnetotail dawn-dusk asymmetry forms in a short time without any global, long-term effects. The duskside preference of reconnection and associated dynamic phenomena (such as substorm onsets, dipolarizing flux bundles, fast flows, energetic particle injections, and flux ropes), which has been pervasively observed by spacecraft in the past 20 years, can thus be explained as a consequence of this TCS asymmetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvE..83e6315F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvE..83e6315F"><span>Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Felderhof, B. U.</p> <p>2011-05-01</p> <p>A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850067080&hterms=laws+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlaws%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850067080&hterms=laws+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlaws%2Bmotion"><span>Ohm's law for a current sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyons, L. R.; Speiser, T. W.</p> <p>1985-01-01</p> <p>The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663407-spatial-offsets-flare-cme-current-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663407-spatial-offsets-flare-cme-current-sheets"><span>Spatial Offsets in Flare-CME Current Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Raymond, John C.; Giordano, Silvio; Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu</p> <p></p> <p>Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emissionmore » features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51B2468S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51B2468S"><span>Triggering of explosive reconnection in a thick current sheet via current sheet compression: Less current sheet thinning, more temperature anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimizu, K.; Shinohara, I.; Fujimoto, M.</p> <p>2016-12-01</p> <p>Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..319a2035H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..319a2035H"><span>Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir</p> <p>2018-03-01</p> <p>Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e2104H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e2104H"><span>Particle-in-cell simulations of magnetically driven reconnection using laser-powered capacitor coils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Kai; Lu, Quanming; Gao, Lan; Ji, Hantao; Wang, Xueyi; Fan, Feibin</p> <p>2018-05-01</p> <p>In this paper, we propose an experimental scheme to fulfill magnetically driven reconnections. Here, two laser beams are focused on a capacitor-coil target and then strong currents are wired in two parallel circular coils. Magnetic reconnection occurs between the two magnetic bubbles created by the currents in the two parallel circular coils. A two-dimensional particle-in-cell simulation model in the cylindrical coordinate is used to investigate such a process, and the simulations are performed in the (r ,z ) plane. The results show that with the increase of the currents in the two coils, the associated magnetic bubbles expand and a current sheet is formed between the two bubbles. Magnetic reconnection occurs when the current sheet is sufficiently thin. A quadrupole structure of the magnetic field in the θ direction ( Bθ ) is generated in the diffusion region and a strong electron current along the r direction ( Je r ) is also formed due to the existence of the high-speed electron flow away from the X line in the center of the outflow region. Because the X line is a circle along the θ direction, the convergence of the plasma flow around r =0 will lead to the asymmetry of Je r and Bθ between the two outflow regions of magnetic reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8560Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8560Y"><span>An explanation of auroral intensification during the substorm expansion phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Zhonghua; Rae, I. J.; Lui, A. T. Y.; Murphy, K. R.; Owen, C. J.; Pu, Z. Y.; Forsyth, C.; Grodent, D.; Zong, Q.-G.; Du, A. M.; Kalmoni, N. M. E.</p> <p>2017-08-01</p> <p>A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001EP%26S...53..495B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001EP%26S...53..495B"><span>Spheromaks, solar prominences, and Alfvén instability of current sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellan, P. M.; Yee, J.; Hansen, J. F.</p> <p>2001-06-01</p> <p>Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experimental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vacuum chamber. The spheromak is formed without a flux conserver and internal λ profiles have been measured. Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar prominences. The physics of these structures is closely related to spheromaks (low β, force-free, relaxed state equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics of collisionless reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22239554-engineering-tubular-bone-using-mesenchymal-stem-cell-sheets-coral-particles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22239554-engineering-tubular-bone-using-mesenchymal-stem-cell-sheets-coral-particles"><span>Engineering tubular bone using mesenchymal stem cell sheets and coral particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Geng, Wenxin; Ma, Dongyang; Yan, Xingrong</p> <p></p> <p>Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2143449','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2143449"><span>A recipe for designing water-soluble, beta-sheet-forming peptides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mayo, K. H.; Ilyina, E.; Park, H.</p> <p>1996-01-01</p> <p>Based on observations of solubility and folding properties of peptide 33-mers derived from the beta-sheet domains of platelet factor-4 (PF4), interleukin-8 (IL-8), and growth related protein (Gro-alpha), as well as other beta-sheet-forming peptides, general guidelines have been developed to aid in the design of water soluble, self-association-induced beta-sheet-forming peptides. CD, 1H-NMR, and pulsed field gradient NMR self-diffusion measurements have been used to assess the degree of folding and state of aggregation. PF4 peptide forms native-like beta-sheet tetramers and is sparingly soluble above pH 6. IL-8 peptide is insoluble between pH 4.5 and pH 7.5, yet forms stable, native-like beta-sheet dimers at higher pH. Gro-alpha peptide is soluble at all pH values, yet displays no discernable beta-sheet structure even when diffusion data indicate dimer-tetramer aggregation. A recipe used in the de novo design of water-soluble beta-sheet-forming peptides calls for the peptide to contain 40-50% hydrophobic residues, usually aliphatic ones (I, L, V, A, M) (appropriately paired and mostly but not always alternating with polar residues in the sheet sequence), a positively charged (K, R) to negatively charged (E, D) residue ratio between 4/2 and 6/2, and a noncharged polar residue (N, Q, T, S) composition of about 20% or less. Results on four de novo designed, 33-residue peptides are presented supporting this approach. Under near physiologic conditions, all four peptides are soluble, form beta-sheet structures to varying degrees, and self-associate. One peptide folds as a stable, compact beta-sheet tetramer, whereas the others are transient beta-sheet-containing aggregates. PMID:8819163</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GApFD..99..433C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GApFD..99..433C"><span>Wave-induced drift of large floating sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christensen, K. H.; Weber, J. E.</p> <p></p> <p>In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011A%26A...525A..27P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011A%26A...525A..27P"><span>Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patsourakos, S.; Vourlidas, A.</p> <p>2011-01-01</p> <p>Context. Ray-like features observed by coronagraphs in the wake of coronal mass ejections (CMEs) are sometimes interpreted as the white light counterparts of current sheets (CSs) produced by the eruption. The 3D geometry of these ray-like features is largely unknown and its knowledge should clarify their association to the CS and place constraints on CME physics and coronal conditions. Aims: If these rays are related to field relaxation behind CMEs, therefore representing current sheets, then they should be aligned to the CME axis. With this study we test these important implications for the first time. Methods: An example of such a post-CME ray was observed by various coronagraphs, including these of the Sun Earth Connection Coronal and Heliospheric investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO) twin spacecraft and the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). The ray was observed in the aftermath of a CME which occurred on 9 April 2008. The twin STEREO spacecraft were separated by about 48° on that day. This significant separation combined with a third “eye” view supplied by LASCO allow for a truly multi-viewpoint observation of the ray and of the CME. We applied 3D forward geometrical modeling to the CME and to the ray as simultaneously viewed by SECCHI-A and B and by SECCHI-A and LASCO, respectively. Results: We found that the ray can be approximated by a rectangular slab, nearly aligned with the CME axis, and much smaller than the CME in both terms of thickness and depth (≈0.05 and 0.15 R⊙ respectively). The ray electron density and temperature were substantially higher than their values in the ambient corona. We found that the ray and CME are significantly displaced from the associated post-CME flaring loops. Conclusions: The properties and location of the ray are fully consistent with the expectations of the standard CME theories for post-CME current sheets. Therefore, our multi-viewpoint observations supply strong evidence that the observed post-CME ray is indeed related to a post-CME current sheet. Movies are only available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090001843','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090001843"><span>Operational Characteristics and Plasma Measurements in a Low-Energy FARAD Thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polzin, K. A.; Best, S.; Rose, M. F.; Miller, R.; Owens, T.</p> <p>2008-01-01</p> <p>Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In this paper, we present measurements aimed at quantifying the thruster's overall operational characteristics and providing additional insight into the nature of operation. Measurements of the terminal current and voltage characteristics during the pulse help quantify the output of the pulsed power train driving the acceleration coil. A fast ionization gauge is used to measure the evolution of the neutral gas distribution in the accelerator prior to a pulse. The preionization process is diagnosed by monitoring light emission from the gas using a photodiode, and a time-resolved global view of the evolving, accelerating current sheet is obtained using a fast-framing camera. Local plasma and field measurements are obtained using an array of intrusive probes. The local induced magnetic field and azimuthal current density are measured using B-dot probes and mini-Rogowski coils, respectively. Direct probing of the number density and electron temperature is performed using a triple probe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28332479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28332479"><span>3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li</p> <p>2017-03-23</p> <p>We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol2/pdf/CFR-2010-title48-vol2-sec53-301-1427.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol2/pdf/CFR-2010-title48-vol2-sec53-301-1427.pdf"><span>48 CFR 53.301-1427 - Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form). 53.301-1427 Section 53.301-1427... Illustrations of Forms 53.301-1427 Standard Form 1427, Inventory Schedule A—Construction Sheet (Metals in Mill...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872196','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872196"><span>Solid oxide fuel cell with multi-unit construction and prismatic design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.</p> <p>1999-01-01</p> <p>A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..908..955L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..908..955L"><span>Sectional Finite Element Analysis on Viscous Pressure Forming of Sheet Metal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Jianguang; Wang, Zhongjin; Liu, Yan</p> <p>2007-05-01</p> <p>Viscous pressure forming (VPF) is a recently developed sheet flexible-die forming process, which uses a kind of semi-solid, flowable and viscous material as pressure-carrying medium that typically applied on one side of the sheet metal or on both sides of sheet metal. Different from traditional sheet metal forming processes in which sheet metal is the unique deformation-body, VPF is a coupling process of visco-elastoplastic bulk deformation of viscous medium and elasto-plastic deformation of sheet metal. A sectional finite element model for the coupled deformation between visco-elastoplastic body and elasto-plastic sheet metal was proposed to analyze VPF. The resolution of the Updated Lagrangian formulation is based on a static approach. By using static-explicit time integration strategy, the deformation of elasto-plastic sheet metal and visco-elastoplastic body can keep stable. The frictional contact between sheet metal and visco-elastoplastic body is treated by penalty function method. Using the proposed algorithm, sheet metal viscous pressure bulging (VPB) process is analyzed and compared with experiments. A good agreement between numerical simulation results and experimental ones proved the efficiency and stability of this algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.896a2026H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.896a2026H"><span>Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hol, J.; Wiebenga, J. H.; Carleer, B.</p> <p>2017-09-01</p> <p>In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1567..667U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1567..667U"><span>Characteristics of the aluminum alloy sheets for forming and application examples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uema, Naoyuki; Asano, Mineo</p> <p>2013-12-01</p> <p>In this paper, the characteristics and application examples of aluminum alloy sheets developed for automotive parts by Sumitomo Light Metal are described. For the automotive closure panels (ex., hood, back-door), an Al-Mg-Si alloy sheet having an excellent hemming performance was developed. The cause of the occurrence and the propagation of cracks by bending were considered to be the combined effect of the shear bands formed across several crystal grains and the micro-voids formed around the second phase particles. By reducing the shear band formation during bending by controlling the crystallographic texture, the Al-Mg-Si alloy sheets showed an excellent hemming performance. For the automotive outer panels (ex., roof, fender, trunk-lid), an Al-Mg alloy sheet, which has both a good hot blow formability and excellent surface appearance after hot blow forming was developed, and hot blow forming technology was put to practical use using this developed Al-Mg alloy sheet. For automotive heat insulators, a high ductile Al-Fe alloy sheet was developed. The heat insulator, which integrated several panels, was put into practical use using this developed Al-Fe alloy sheet. The textured sheet was often used as a heat insulator in order to reduce the thickness of the aluminum alloy sheet and obtain good press formability. The new textured sheet, which has both high rigidity and good press formability for heat insulators, was developed by FE analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970016572&hterms=heinemann&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheinemann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970016572&hterms=heinemann&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheinemann"><span>Towards a complete conceptual model of substorm onsets and expansions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Erickson, Gary M.; Burke, William J.; Heinemann, Michael; Samson, John C.; Maynard, Nelson C.</p> <p>1996-01-01</p> <p>Observational results from the CRRES satellite near times of substorm onsets support the theoretical premise that substorms initiate near the inner edge of the plasma sheet. The region is connected latitudinally to the equatorward-most pre-breakup arc. During the growth phase, the inner edge of the plasma sheet moves towards the earth. This motion is modulated by various cavity oscillations of the magnetosphere-ionosphere coupled magnetosphere. This modulation can locally reverse the background convection electric field. The reversed convection taps energy stored in the inner-edge region of the plasma sheet. The near earth plasma sheet moves out of equilibrium with the lobes, and a rarefaction is launched tailward. This allows current driven dissipation to grow and a near-earth X-line to form. A model is presented which explains the observations of the CRRES satellite, and can account for the behavior associated with auroral intensification and substorm onset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22299645-dynamic-topology-flux-rope-evolution-during-non-linear-tearing-null-point-current-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22299645-dynamic-topology-flux-rope-evolution-during-non-linear-tearing-null-point-current-sheets"><span>Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wyper, P. F., E-mail: peterw@maths.dundee.ac.uk; Pontin, D. I., E-mail: dpontin@maths.dundee.ac.uk</p> <p>2014-10-15</p> <p>In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer.more » We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22113418-general-formulation-magnetohydrodynamic-wave-propagation-fire-hose-mirror-instabilities-harris-type-current-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22113418-general-formulation-magnetohydrodynamic-wave-propagation-fire-hose-mirror-instabilities-harris-type-current-sheets"><span>General formulation for magnetohydrodynamic wave propagation, fire-hose, and mirror instabilities in Harris-type current sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.</p> <p></p> <p>Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1260N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1260N"><span>Multiscale Currents Observed by MMS in the Flow Braking Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.</p> <p>2018-02-01</p> <p>We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPYO6002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPYO6002S"><span>Magnetic flux pile-up and ion heating in a current sheet formed by colliding magnetized plasma flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suttle, L.; Hare, J.; Lebedev, S.; Ciardi, A.; Loureiro, N.; Niasse, N.; Burdiak, G.; Clayson, T.; Lane, T.; Robinson, T.; Smith, R.; Stuart, N.; Suzuki-Vidal, F.</p> <p>2017-10-01</p> <p>We present data from experiments carried out at the Magpie pulsed power facility, which show the detailed structure of the interaction of counter-streaming magnetized plasma flows. In our quasi-2D setup, continuous supersonic flows are produced with strong embedded magnetic fields of opposing directions. Their interaction leads to the formation of a dense and long-lasting current sheet, where we observe the pile-up of the magnetic flux at the sheet boundary, as well as the annihilation of field inside, accompanied by an increase in plasma temperature. Spatially resolved measurements with Faraday rotation polarimetry, B-dot probes, XUV imaging, Thomson scattering and laser interferometry diagnostics show the detailed distribution of the magnetic field and other plasma parameters throughout the system. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/G001324/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850059791&hterms=FAC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DFAC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850059791&hterms=FAC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DFAC"><span>ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elphic, R. C.; Kelly, T. J.; Russell, C. T.</p> <p>1985-01-01</p> <p>Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830000108&hterms=baxter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbaxter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830000108&hterms=baxter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbaxter"><span>Reinforcement for Stretch Formed Sheet Metal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lea, J. B.; Baxter, C. R.</p> <p>1983-01-01</p> <p>Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900008209','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900008209"><span>A current disruption mechanism in the neutral sheet for triggering substorm expansions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.</p> <p>1989-01-01</p> <p>Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21024544-magnetic-double-gradient-instability-flapping-waves-current-sheet','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21024544-magnetic-double-gradient-instability-flapping-waves-current-sheet"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Erkaev, N. V.; Siberian Federal University, Krasnoyarsk; Semenov, V. S.</p> <p></p> <p>A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B{sub {tau}}) and normal (B{sub n}) magnetic field components along the normal ({nabla}{sub n}B{sub {tau}}) and tangential ({nabla}{sub {tau}}B{sub n}) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted asmore » so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApSS..362...56W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApSS..362...56W"><span>One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Wang, Weixuan; Chen, Lingyun; Bai, Yitong; Ming, Zhu; Yang, Sheng-Tao</p> <p>2016-01-01</p> <p>Graphene sponge (GS) has found applications in oil removal due to the hydrophobic nature of graphene sheets. Current hydrothermal preparations of GS use toxic reducing reagents, which might cause environmental pollution. In this study, we reported that graphene oxide (GO) could be hydrothermally reduced by glucose to form GS for the adsorption of oils and various organic solvents. Graphene sheets were reduced by glucose during the hydrothermal treatment and formed 3D porous structure. GS efficiently adsorbed organic solvents and oils with competitive adsorption capacities. GS was able to treat pollutants in pure liquid form and also in the simulated seawater. GS could be easily regenerated by evaporating or burning. After 10 cycles, the adsorption capacity still retained 77% by evaporating and 87% by burning. The implication to the applications of GS in water remediation is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7252579','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7252579"><span>Dual circuit embossed sheet heat transfer panel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Morgan, G.D.</p> <p>1984-02-21</p> <p>A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5955851','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5955851"><span>Dual-circuit embossed-sheet heat-transfer panel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Morgan, G.D.</p> <p>1982-08-23</p> <p>A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864892','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864892"><span>Dual circuit embossed sheet heat transfer panel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Morgan, Grover D.</p> <p>1984-01-01</p> <p>A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740057195&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740057195&hterms=nike&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnike"><span>Field-aligned currents and the auroral electrojet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cahill, L. J.; Potter, W. E.; Kintner, P. M.; Arnoldy, R. L.; Choy, L. W.</p> <p>1974-01-01</p> <p>A Nike Tomahawk with fields and particles payload was launched on Nov. 18, 1970, over a strong westward electrojet current and auroral forms moving rapidly to the east. Electron fluxes moving up and down the magnetic field lines were measured. Upward-moving electrons below 1-keV energy were dominant and were equivalent to a net downward electric current that fluctuated between .2 and .6 microamp/sq m during the flight above 130 km. As the rocket traversed this broad region of downward electric current over and to the north of the auroral forms, the horizontal electric field slowly rotated from east to west. The magnetic measurements indicate that the westward electrojet was a horizontal sheet of current several hundred kilometers in north-south extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSM51A2278N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSM51A2278N"><span>A Description of Local Time Asymmetries in the Kronian Current Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nickerson, J. S.; Hansen, K. C.; Gombosi, T. I.</p> <p>2012-12-01</p> <p>Cassini observations imply that Saturn's magnetospheric current sheet is displaced northward above the rotational equator [C.S. Arridge et al., Warping of Saturn's magnetospheric and magnetotail current sheets, Journal of Geophysical Research, Vol. 113, August 2008]. Arridge et al. show that this hinging of the current sheet above the equator occurs over the noon, midnight, and dawn local time sectors. They present an azimuthally independent model to describe this paraboloid-like geometry. We have used our global MHD model, BATS-R-US/SWMF, to study Saturn's magnetospheric current sheet under various solar wind dynamic pressure and solar zenith angle conditions. We show that under reasonable conditions the current sheet does take on the basic shape of the Arridge model in the noon, midnight, and dawn sectors. However, the hinging distance parameter used in the Arridge model is not a constant and does in fact vary in Saturn local time. We recommend that the Arridge model should be adjusted to account for this azimuthal dependence. Arridge et al. does not discuss the shape of the current sheet in the dusk sector due to an absence of data but does presume that the current sheet will assume the same geometry in this region. On the contrary, our model shows that this is not the case. On the dusk side the current sheet hinges (aggressively) southward and cannot be accounted for by the Arridge model. We will present results from our simulations showing the deviation from axisymmetry and the general behavior of the current sheet under different conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100035255','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100035255"><span>Why S, Not X, Marks the Spot for CME/Flare Eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Ronald L.; Sterling, Alphonse; Gary, Allen; Cirtain, Jonathan; Falconer, David</p> <p>2010-01-01</p> <p>For any major CME/flare eruption: I. The field that erupts is an arcade in which the interior is greatly sheared and twisted. Most of the free magnetic energy to be released: a) Is in the shear and twist of the interior field. b) Is Not due to a big current sheet. The eruption is unleashed by reconnection at a growing current sheet. The current sheet is still little when the reconnection turns on. The unleashed eruption then makes the current sheet much bigger by building it up faster than the reconnection can tear it down. II. Most X-ray jets work the opposite way: a) Tapped free energy is in the field of a pre-jet current sheet. b) Current sheet built by small arcade emerging into ambient field. c) Current sheet still much smaller than the arcade when reconnection turns on and tears it down, producing a jet. III. These rules reflect the low-beta condition in the eruptive magnetic field</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/335449','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/335449"><span>Solid oxide fuel cell with multi-unit construction and prismatic design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>McPheeters, C.C.; Dees, D.W.; Myles, K.M.</p> <p>1999-03-16</p> <p>A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599868-effects-electron-pressure-anisotropy-current-sheet-configuration','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599868-effects-electron-pressure-anisotropy-current-sheet-configuration"><span>Effects of electron pressure anisotropy on current sheet configuration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.</p> <p>2016-09-15</p> <p>Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090001288','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090001288"><span>Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.</p> <p>2008-01-01</p> <p>Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH11C..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH11C..07R"><span>Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.</p> <p>2017-12-01</p> <p>We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM21B..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM21B..06G"><span>Energized Oxygen : Speiser Current Sheet Bifurcation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>George, D. E.; Jahn, J. M.</p> <p>2017-12-01</p> <p>A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs significantly from previous investigations involving heavy ions in that they are energized as opposed to being simply thermal. This is a variation based firmly on published in-situ measurements. It also differs in that a complete population is used as opposed to simply test particles in a magnetic field model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015845','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015845"><span>Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.</p> <p>2011-01-01</p> <p>Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590924-electron-acceleration-magnetic-islands-dynamically-evolved-coronal-current-sheet','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590924-electron-acceleration-magnetic-islands-dynamically-evolved-coronal-current-sheet"><span>Electron acceleration by magnetic islands in a dynamically evolved coronal current sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Shaohua, E-mail: shzhang@mail.iggcas.ac.cn; Wang, Bin; Meng, Lifei</p> <p>2016-03-25</p> <p>This work simulated the electron acceleration by magnetic islands in a drastically evolved solar coronal current sheet via the combined 2.5-dimensional (2.5D) resistive Magnetohydrodynamics (MHD) and guiding-center approximation test-particle methods. With high magnetic Reynolds number of 105, the long–thin current sheet is evolved into a chain of magnetic islands, growing in size and coalescing with each other, due to tearing instability. The acceleration of electrons is studied in one typical phase when several large magnetic islands are formed. The results show that the electrons with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20% of themore » electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The most energetic electrons have a tendency to be around the outer regions of the magnetic islands or to be located in the small secondary magnetic islands. We find that the acceleration and spatial distributions of the energetic electrons is caused by the trapping effect of the magnetic islands and the distributions of the parallel electric field E{sub p}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920033163&hterms=magnetic+cooling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmagnetic%2Bcooling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920033163&hterms=magnetic+cooling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmagnetic%2Bcooling"><span>A numerical simulation of magnetic reconnection and radiative cooling in line-tied current sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forbes, T. G.; Malherbe, J. M.</p> <p>1991-01-01</p> <p>Radiative MHD equations are used for an optically thin plasma to carry out a numerical experiment related to the formation of 'postflare' loops. The numerical experiment starts with a current sheet that is in mechanical and thermal equilibrium but is unstable to both tearing-mode and thermal-condensation instabilities. The current sheet is line-tied at one end to a photospheric-like boundary and evolves asymmetrically. The effects of thermal conduction, resistivity variation, and gravity are ignored. In general, reconnection in the nonlinear stage of the tearing-mode instability can strongly affect the onset of condensations unless the radiative-cooling time scale is much smaller than the tearing-mode time scale. When the ambient plasma is less than 0.2, the reconnection enters a regime where the outflow from the reconnection region is supermagnetosonic with respect to the fast-mode wave speed. In the supermagnetosonic regime the most rapidly condensing regions occur downstream of a fast-mode shock that forms where the outflow impinges on closed loops attached to the photospheric-like boundary. A similar shock-induced condensation might occur during the formation of 'postflare' loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1367324-nonlinear-reconnecting-edge-localized-modes-current-carrying-plasmas','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1367324-nonlinear-reconnecting-edge-localized-modes-current-carrying-plasmas"><span>Nonlinear reconnecting edge localized modes in current-carrying plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ebrahimi, F.</p> <p>2017-05-22</p> <p>Nonlinear edge localized modes in a tokamak are examined using global three-dimensional resistive magnetohydrodynamics simulations. Coherent current-carrying filament (ribbon-like) structures wrapped around the torus are nonlinearly formed due to nonaxisymmetric reconnecting current sheet instabilities, the so-called peeling-like edge localized modes. These fast growing modes saturate by breaking axisymmetric current layers isolated near the plasma edge and go through repetitive relaxation cycles by expelling current radially outward and relaxing it back. The local bidirectional fluctuation-induced electromotive force (emf) from the edge localized modes, the dynamo action, relaxes the axisymmetric current density and forms current holes near the edge. Furthermore, the three-dimensionalmore » coherent current-carrying filament structures (sometimes referred to as 3-D plasmoids) observed here should also have strong implications for solar and astrophysical reconnection.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002249','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002249"><span>Global Network of Slow Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.</p> <p>2012-01-01</p> <p>The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740026848','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740026848"><span>Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsang, F. Y.</p> <p>1974-01-01</p> <p>Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004962','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004962"><span>Current status of liquid sheet radiator research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chubb, Donald L.; Calfo, Frederick D.; Mcmaster, Matthew S.</p> <p>1993-01-01</p> <p>Initial research on the external flow, low mass liquid sheet radiator (LSR), has been concentrated on understanding its fluid mechanics. The surface tension forces acting at the edges of the sheet produce a triangular planform for the radiating surface of width, W, and length, L. It has been experimentally verified that (exp L)/W agrees with the theoretical result, L/W = (We/8)exp 1/2, where We is the Weber number. Instability can cause holes to form in regions of large curvature such as where the edge cylinders join the sheet of thickness, tau. The W/tau limit that will cause hole formation with subsequent destruction of the sheet has yet to be reached experimentally. Although experimental measurements of sheet emissivity have not yet been performed because of limited program scope, calculations of the emissivity and sheet lifetime is determined by evaporation losses were made for two silicon based oils; Dow Corning 705 and Me(sub 2). Emissivities greater than 0.75 are calculated for tau greater than or equal to 200 microns for both oils. Lifetimes for Me(sub 2) are much longer than lifetimes for 705. Therefore, Me(sub 2) is the more attractive working fluid for higher temperatures (T greater than or equal to 400 K).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29938154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29938154"><span>Multiscale Currents Observed by MMS in the Flow Braking Region.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A; Apatenkov, Sergey; Ergun, Robert E; Fuselier, Stephen A; Gershman, Daniel J; Giles, Barbara J; Khotyaintsev, Yuri V; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T; Stawarz, Julia; Strangeway, Robert J; Anderson, Brian; Burch, James L; Bromund, Ken R; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J; Slavin, James A; Torbert, Roy B; Turner, Drew L</p> <p>2018-02-01</p> <p>We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51D2515L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51D2515L"><span>Distribution of Region 1 and 2 currents in the quietand substorm time plasma sheetfrom THEMIS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Angelopoulos, V.; Chu, X.; McPherron, R. L.</p> <p>2016-12-01</p> <p>Although Earth's Region 1 and 2 currents are related to activities such as substorm initiation, their magnetospheric origin remains unclear. Utilizing the triangular configuration of THEMIS probes at 8-12 RE downtail, we seek the origin of nightside Region 1 and 2 currents. The triangular configuration allows a curlometer-like technique which do not rely on active-time boundary crossings, so we can examine the current distribution in quiet times as well as active times. Our statistical study reveals that both Region 1 and 2 currents exist in the plasma sheet during quiet and active times. Especially, this is the first unequivocal, in-situ evidence of the existence of Region 2 currents in the plasma sheet. Farther away from the neutral sheet than the Region 2 currents lie the Region 1 currents which extend at least to the plasma sheet boundary layer. At geomagnetic quiet times, the separation between the two currents is located 2.5 RE from the neutral sheet. These findings suggest that the plasma sheet is a source of Region 1 and 2 currents regardless of geomagnetic activity level. During substorms, the separation between Region 1 and 2 currents migrates toward (away from) the neutral sheet as the plasma sheet thins (thickens). This migration indicates that the deformation of Region 1 and 2 currents is associated with redistribution of FAC sources in the magnetotail. In some substorms when the THEMIS probes encounter a dipolarization, a substorm current wedge (SCW) can be inferred from our technique, and it shows a distinctively larger current density than the pre-existing Region 1 currents. This difference suggests that the SCW is not just an enhancement of the pre-existing Region 1 current; the SCW and the Region 1 currents have different sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1532.1079Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1532.1079Z"><span>Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo</p> <p>2013-05-01</p> <p>Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013TCry....7.1721L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013TCry....7.1721L"><span>Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livingstone, S. J.; Clark, C. D.; Woodward, J.; Kingslake, J.</p> <p>2013-11-01</p> <p>We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006MMI....12..121O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006MMI....12..121O"><span>Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.</p> <p>2006-04-01</p> <p>It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940033528&hterms=kaufmann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dkaufmann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940033528&hterms=kaufmann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dkaufmann"><span>Cross-tail current - Resonant orbits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufmann, Richard L.; Lu, Chen</p> <p>1993-01-01</p> <p>A technique to generate self-consistent 1D current sheets is described. Groups of monoenergetic protons were followed in a modified Harris magnetic field. This sample current sheet is characterized by resonant quasi-adiabatic orbits. The magnetic moment of a quasi-adiabatic ion which is injected from outside a current sheet changes substantially during the orbit but returns to almost its initial value by the time the ion leaves. Several ion and electron groups were combined to produce a plasma sheet in which the charged particles carry the currents needed to generate the magnetic field in which the orbits were traced. An electric field also is required to maintain charge neutrality. Three distinct orbit types, one involving untrapped ions and two composed of trapped ions, were identified. Limitations associated with the use of a 1D model also were investigated; it can provide a good physical picture of an important component of the cross-tail current, but cannot adequately describe any region of the magnetotail in which the principal current sheet is separated from the plasma sheet boundary layer by a nearly isotropic outer position of the central plasma sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec331-4.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec331-4.pdf"><span>33 CFR 331.4 - Notification of appealable actions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... appeal. For approved JDs, the notification must include an NAP fact sheet, an RFA form, and a basis of JD... application, an NAP fact sheet and an RFA form. For proffered individual permits, when the initial proffered...), the notification must include an NAP fact sheet and an RFA form. Additionally, an affected party has...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-10-18/pdf/2012-25588.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-10-18/pdf/2012-25588.pdf"><span>77 FR 64186 - Proposed Collection; Comment Request for Form 13614</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-10-18</p> <p>... 13614, Interview and Intake Sheet. DATES: Written comments should be received on or before December 17... INFORMATION: Title: Interview and Intake Sheet. OMB Number: 1545-1964. Form Number: Form 13614-C and 13614-C... questions to guide volunteers in asking taxpayers basic questions about themselves. The intake sheet is an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19494912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19494912"><span>The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bo, Sun; Siegert, Martin J; Mudd, Simon M; Sugden, David; Fujita, Shuji; Xiangbin, Cui; Yunyun, Jiang; Xueyuan, Tang; Yuansheng, Li</p> <p>2009-06-04</p> <p>Ice-sheet development in Antarctica was a result of significant and rapid global climate change about 34 million years ago. Ice-sheet and climate modelling suggest reductions in atmospheric carbon dioxide (less than three times the pre-industrial level of 280 parts per million by volume) that, in conjunction with the development of the Antarctic Circumpolar Current, led to cooling and glaciation paced by changes in Earth's orbit. Based on the present subglacial topography, numerical models point to ice-sheet genesis on mountain massifs of Antarctica, including the Gamburtsev mountains at Dome A, the centre of the present ice sheet. Our lack of knowledge of the present-day topography of the Gamburtsev mountains means, however, that the nature of early glaciation and subsequent development of a continental-sized ice sheet are uncertain. Here we present radar information about the base of the ice at Dome A, revealing classic Alpine topography with pre-existing river valleys overdeepened by valley glaciers formed when the mean summer surface temperature was around 3 degrees C. This landscape is likely to have developed during the initial phases of Antarctic glaciation. According to Antarctic climate history (estimated from offshore sediment records) the Gamburtsev mountains are probably older than 34 million years and were the main centre for ice-sheet growth. Moreover, the landscape has most probably been preserved beneath the present ice sheet for around 14 million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DPPYI2001L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DPPYI2001L"><span>A new magnetic reconnection paradigm: Stochastic plasmoid chains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loureiro, Nuno</p> <p>2015-11-01</p> <p>Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873879','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873879"><span>Manifold free multiple sheet superplastic forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Elmer, John W.; Bridges, Robert L.</p> <p>2001-01-01</p> <p>Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1174679','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1174679"><span>Manifold free multiple sheet superplastic forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Elmer, John W.; Bridges, Robert L.</p> <p>2004-01-13</p> <p>Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...858L...4X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...858L...4X"><span>Spectral and Imaging Observations of a Current Sheet Region in a Small-scale Magnetic Reconnection Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Feng, Song; Li, Qiaoling; Ji, Kaifan; Zhao, Li</p> <p>2018-05-01</p> <p>We report a possible current sheet region associated with a small-scale magnetic reconnection event by using the spectral and imaging observations of the Interface Region Imaging Spectrograph (IRIS) and the magnetograms obtained by the Solar Dynamics Observatory on 2016 August 08. The length and width of the current sheet region are estimated to be from 1.4 ± 0.1 Mm to 3.0 ± 0.3 Mm and from 0.34 ± 0.01 Mm to 0.64 ± 0.09 Mm, respectively. The evolutions of the length of the current sheet region are positively correlated with that of the width. These measurements are among the smallest reported. When the IRIS slit scans the current sheet region, the spectroscopic observations show that the Si IV line is broadened in the current sheet region and the plasma has a blueshifted feature at the middle and a redshifted feature at the ends of the current sheet region. The maximum measured blueshifted and redshifted Doppler velocities are ‑20.8 ± 0.9 and 34.1 ± 0.4 km s‑1, respectively. Additionally, the electron number densities of the plasma in the current sheet region are computed to be around 1011 cm‑3 based on the spectrums of the two O IV lines. The emergence, movement, and cancellation of a small sunspot with negative polarity are observed during the formation and shift of the current sheet region. We suggest that the occurrence and evolution of the magnetic reconnection are driven by the movement of the small sunspot in the photosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750004960','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750004960"><span>Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)</p> <p>1974-01-01</p> <p>The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866343','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866343"><span>Bipolar battery with array of sealed cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kaun, Thomas D.; Smaga, John A.</p> <p>1987-01-01</p> <p>A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P24C..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P24C..08S"><span>Topography of Sputnik Planitia Basin on Pluto: What We Know and Don't Know</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Moore, J.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.</p> <p>2017-12-01</p> <p>Pluto's topography is complex and reflects a diversity of geologic processes throughout its history. The most dominant feature is the deep 1200-by-2000-km-wide topographic depression enclosing the Sputnik Planitia nitrogen-rich ice sheet. Centered in the encounter hemisphere this large basin is ideally suited for topographic analysis. Despite this, considerable effort is required to constrain the true depth of this giant feature due to the uncertainties in controlling MVIC line-scan images, our primary source for long-wavelength information. Here we will summarize the current state of knowledge of this feature, as processing continues. Current estimates are that the floor of the observed basin (i.e., the top of the ice sheet) is 2-2.5 km depressed below the mean elevation of the surface. There is a highly eroded annular raised arched-ridge surrounding most of the basin that rises up to 1 km above mean surface. The surface of most of the ice sheet appears to be remarkably level within the limits of measurement ( 125 m). Comparison to other similar-sized depressions on Mars and the Moon support the interpretation that this is a large ancient impact structure. The outer 20-40- km of the ice sheet can be either depressed or raised several hundred meters, with the depressed moat forming north of 30° latitude or so, the raised portions forming south of this and corresponding to areas where glacier-like flow of material from the elevated rim regions meets the ice sheet. This suggests that the equatorial areas are areas of net accumulation of ice and the areas to the north are net deflation or lateral flow. The ice sheet is also characterized by polygonal and ovoid `cells' diagnostic of convection. These have shading patterns consistent with cell centers being raised in elevation. Preliminary shape-from-shading measurements suggest elevations of 100-200 m, consistent with weak stereo observations, though much more work is required on all these topics. Interpolation of d/D statistics for smaller craters implies a minimum depth of the original basin floor of 10 km below the rim (assuming that low angle or low-impact-velocity effects do not produce an anomalous basin profile). Pending updates, this would imply a possible maximum thickness of the observed ice sheet of 6 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..908..545Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..908..545Z"><span>Applications of Computer Simulation Methods in Plastic Forming Technologies for Magnesium Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, S. H.; Zheng, W. T.; Shang, Y. L.; Wu, X.; Palumbo, G.; Tricarico, L.</p> <p>2007-05-01</p> <p>Applications of computer simulation methods in plastic forming of magnesium alloy parts are discussed. As magnesium alloys possess very poor plastic formability at room temperature, various methods have been tried to improve the formability, for example, suitable rolling process and annealing procedures should be found to produce qualified magnesium alloy sheets, which have the reduced anisotropy and improved formability. The blank can be heated to a warm temperature or a hot temperature; a suitable temperature field is designed, tools should be heated or the punch should be cooled; suitable deformation speed should be found to ensure suitable strain rate range. Damage theory considering non-isothermal forming is established. Various modeling methods have been tried to consider above situations. The following situations for modeling the forming process of magnesium alloy sheets and tubes are dealt with: (1) modeling for predicting wrinkling and anisotropy of sheet warm forming; (2) damage theory used for predicting ruptures in sheet warm forming; (3) modeling for optimizing of blank shape and dimensions for sheet warm forming; (4) modeling in non-steady-state creep in hot metal gas forming of AZ31 tubes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22261651-application-technologies-effective-utilization-advanced-high-strength-steel-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22261651-application-technologies-effective-utilization-advanced-high-strength-steel-sheets"><span>Application technologies for effective utilization of advanced high strength steel sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Suehiro, Masayoshi, E-mail: suehiro.kp5.masayoshi@jp.nssmc.com</p> <p></p> <p>Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same timemore » application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/587914','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/587914"><span>Spray forming -- Aluminum: Third annual report (Phase 2). Technical progress -- Summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kozarek, R.L.</p> <p>1998-04-20</p> <p>Commercial production of aluminum sheet and plate by spray atomization and deposition is a potentially attractive manufacturing alternative to conventional ingot metallurgy/hot-milling and to continuous casting processes because of reduced energy requirements and reduced cost. To realize the full potential of the technology, the Aluminum Company of America (Alcoa), under contract by the US Department of Energy, is investigating currently available state-of-the-art atomization devices to develop nozzle design concepts whose spray characteristics are tailored for continuous sheet production. This third technical progress report will summarize research and development work conducted during the period 1997 October through 1998 March. Included aremore » the latest optimization work on the Alcoa III nozzle, results of spray forming runs with 6111 aluminum alloy and preliminary rolling trials of 6111 deposits.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013atp..prop..192A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013atp..prop..192A"><span>Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arons, Jonathan</p> <p></p> <p>The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of electric current that separate regions of differing magnetization into the domain of highly relativistic magnetic fields - those with energy density large compared to the rest mass energy of the charged particles - the plasma - caught in that field. The investigators will create theoretical and computational models of the magnetic dissipation - a form of viscous flow in the thin sheets of electric current that form in the magnetized regions around the rotating stars - using Particle in-Cell plasma simulations. These simulations use a large computer to solve the equations of motion of many charged particles - millions to billions in the research that will be pursued - to unravel the dissipation of those fields and the acceleration of beams of particles in the thin sheets. The results will be incorporated into macroscopic MHD models of the magnetic structures around the stars which determine the location and strength of the current sheets, so as to model and analyze the pulsed gamma ray emission seen from hundreds of Rotation Powered Pulsars. The computational models will be assisted by ``pencil and paper'' theoretical modeling designed to motivate and interpret the computer simulations, and connect them to the observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22047043-intermittent-magnetic-reconnection-ts-merging-experiment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22047043-intermittent-magnetic-reconnection-ts-merging-experiment"><span>Intermittent magnetic reconnection in TS-3 merging experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ono, Y.; Hayashi, Y.; Ii, T.</p> <p>2011-11-15</p> <p>Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittentmore » reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175509','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175509"><span>Battery with a microcorrugated, microthin sheet of highly porous corroded metal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>LaFollette, Rodney M.</p> <p>2005-09-27</p> <p>Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030056633','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030056633"><span>Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.</p> <p>2003-01-01</p> <p>A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19660000014','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19660000014"><span>Explosive force of primacord grid forms large sheet metal parts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1966-01-01</p> <p>Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790064333&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddebye%2Blength','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790064333&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddebye%2Blength"><span>Two-dimensional potential double layers and discrete auroras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kan, J. R.; Lee, L. C.; Akasofu, S.-I.</p> <p>1979-01-01</p> <p>This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ChPhB..19l6102Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ChPhB..19l6102Z"><span>Study on the impedance of aligned carbon microcoils embedded in silicone rubber matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Ya-Bo; Zhang, Lin; Guo, Li-Tong; Xiang, Dong-Hu</p> <p>2010-12-01</p> <p>This paper reports that carbon microcoils are grown through a chemical vapour deposit process, they are then embedded in silicone rubber, and manipulated to parallel with each other along their axes in the resulting composite. The impedance |Z| as well as phase angle θ of both the original carbon microcoil sheets and the aligned carbon microcoil/silicone rubber composites are measured. The results illustrate that carbon microcoils in different forms show different alternating current electric properties. The aligned carbon microcoils in the composites show stable parameters for f < 104 Hz but a sharp decrease in both |Z| and θ for frequencies > 104 Hz, which will also change as the carbon microcoils are extended. But, the original sheets have a pure resistance with their parameters stable throughout the entire alternating current frequency range investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486405-fast-magnetic-reconnection-supported-sporadic-small-scale-petschek-type-shocks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486405-fast-magnetic-reconnection-supported-sporadic-small-scale-petschek-type-shocks"><span>Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi; Kusano, Kanya</p> <p>2015-10-15</p> <p>Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate thatmore » fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P14B..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P14B..02F"><span>On magnetic reconnection in the Venusian wake. The experimental evidences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedorov, A.; Volwerk, M.; Zhang, T.; Barabash, S.; Sauvaud, J.</p> <p>2009-12-01</p> <p>The Venusian magnetotail is formed by solar wind magnetic flux tubes draping around the planet and stretched antisunward. The magnetotail topology represents two magnetic lobes separated by a thin current sheet. Such a configuration is a free energy reservoir. The accumulated energy is generally released by acceleration of planetary ions antisunward. But in the case of a magnetic reconnection, hypothetically appeared somewhere in the equatorial current sheet, some part of the planetary ions filling the tail, should be accelerated toward the planet. The present paper is devoted to the study of such sunward flows observed by IMA mass spectrometer onboard of the Venus Express orbiter. The case study shows rare accidently observed precipitations of the heavy ions in the nightside of the planet. The statistical study gives us the spatial distribution of such precipitations and conditions of their appearance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012cosp...39..462D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012cosp...39..462D"><span>Could we use beamlets as a tool for remote sensing of the magnetotail?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolgonosov, Maxim; Zelenyi, Lev; Zimbardo, Gaetano; Perri, Silvia; Kovrazhkin, Rostislav</p> <p>2012-07-01</p> <p>In our presentation we are going to raise a question of exploiting beamlets for remote sensing of magnetotail. There is a long history of investigation of particle dynamics and features of distribution functions with prescribed electric and magnetic fields that could be measured by spacecrafts. But we would like to focus our attention on small part of this story and study in detail the behavior of ion the vicinity of the current sheet. Burkhart and Chen [Burkhart and Chen, 1991,JGR] employed the modified Harris model of the current sheet magnetic field [vec{B}=B_{0} tanh (z/L)vec{e}_{x} +B_{z} vec{e}_{z} ] and found a signature of nonlinear particle dynamics and an underlying partitioning of phase space that manifests itself as a series of peaks in the ion distribution function. The separation between the peaks is proportional to the fourth root of the particle energy and quantities that describe the current sheet structure. Formation of these peaks in the ion distribution function was explained on the basis resonant condition proposed by Buchner and Zelenyi [Buchner and Zelenyi,1989, JGR]. The non-adiabatic dynamics of the ions at vicinity of equatorial plane can be characterized by the action integral I_{z} =1/2 π \\oint \\dot{z}dz , which serves as an approximate integral of motion [Sonnerup, 1971]. Chaos is generated by the jumps Δ I_{z} of this invariant which accompany the particle crossing of the current sheet, which can lead both to the almost regular (field-aligned) motion of particles and to the capture of particles in the center of the current sheet, due to the unavoidable chaotic scattering. However, a subset of the ``regularity'' regions can exist in the physical space for certain combinations of current sheet parameters. Successive jumps of the adiabatic invariant Iz within these regions at the entry of particle into the current sheet and its exit from the current sheet, in the first approximation compensate each other, and ions ejected from these regions form almost monoenergetic highly accelerated and spatially localized ion beams, the so-called beamlets. The quasi-stationary dawn-dusk electric field Ey in the magnetotail accelerates ions between these jumps [Buchner and Zelenyi, 1990; Zelenyi et al., 2006a; Grigorenko et al., 2007]. The sites of acceleration depend on the value of Bn, and for a typical energy of the ions coming from the mantle, the resonance condition is satisfied at a number of discrete positions downtail. Zelenyi et al. [Zelenyi et al., 2007, JETP Letters] found the universal scaling characterizing the chain of these "regularity" regions. This ``law'' gives a relation between the typical beamlet energy WN and corresponding number of resonant region N: W_{N} =4/3 log N. Later Dolgonosov et al. [Dolgonosov et al., 2010, JGR] modified ``universal'' scaling and showed that to study experimentally observed beamlets one should take into account presence of the electric field perpendicular to the plane of the current sheet. On the basis of this paper [Kovrakhin et al., 2012, JETP Letters] it was analyzed spacecraft data (Cluster and Interball) to study properties of thin current sheets. Evidently, nonlinear particle dynamic result to the generation of the regularity ``island'' with some characteristic features. In the paper of Zelenyi et al. [Zelenyi et al, 2006, GRL] modulation of the normal component of the magnetic field under influence of self-consistent currents of particles was investigated. Peaks of Bz modulation nearly coincided with ``regularity'' islands. This result indicates on the fact that turbulence in the plasma sheet could be resulted from the nonlinear particle dynamic and properties of these ``noise'' are governed by features of particle motion. Thereby influence of ``noise'' constrains exploiting beamlets for remote sensing. It is also natural to ask what happens with these ``resonant'' regions under influence of external noise (or externally driven turbulence). Experimental observation of the magnetic field in the plasma sheet indicate on the permanent perturbation of the magnetic field and this perturbation could be very significant δBz ˜Bz. At the same time measurements of beamlets at the PSBL show that beamlets are long living structures [Grigorenko, 2003, JETP Letters]. What is the value of the magnetic field perturbation that could destroy generation of beamlets? In our report we are going to discuss current sheet properties obtained from beamlets analysis and natural restrictions imposed by turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..328a2031M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..328a2031M"><span>Early Shear Failure Prediction in Incremental Sheet Forming Process Using FEM and ANN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moayedfar, Majid; Hanaei, Hengameh; Majdi Rani, Ahmad; Musa, Mohd Azam Bin; Sadegh Momeni, Mohammad</p> <p>2018-03-01</p> <p>The application of incremental sheet forming process as a rapid forming technique is rising in variety of industries such as aerospace, automotive and biomechanical purposes. However, the sheet failure is a big challenge in this process which leads wasting lots of materials. Hence, this study tried to propose a method to predict the early sheet failure in this process using mathematical solution. For the feasibility of the study, design of experiment with the respond surface method is employed to extract a set of experiments data for the simulation. The significant forming parameters were recognized and their integration was used for prediction system. Then, the results were inserted to the artificial neural network as input parameters to predict a vast range of applicable parameters avoiding sheet failure in ISF. The value of accuracy R2 ∼0.93 was obtained and the maximum sheet stretch in the depth of 25mm were recorded. The figures generate from the trend of interaction between effective parameters were provided for future studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866108','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866108"><span>Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kuznetsov, Stephen B.</p> <p>1987-01-01</p> <p>A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7257762','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7257762"><span>Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kuznetsov, S.B.</p> <p>1987-01-13</p> <p>A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029339&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029339&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOpen%2BField"><span>A coronal magnetic field model with horizontal volume and sheet currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhao, Xuepu; Hoeksema, J. Todd</p> <p>1994-01-01</p> <p>When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface or by limiting the interaction to thin current sheets between oppositely directed field regions. Yet observations and numerical Magnetohydrodynamic (MHD) calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low and the current-sheet modeling technique developed by Schatten. The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coro nal helmet structures better than the current-sheet model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTA...48.4645B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTA...48.4645B"><span>Liquid Film Migration in Warm Formed Aluminum Brazing Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.</p> <p>2017-10-01</p> <p>Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS51B1294V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS51B1294V"><span>Experimental Recreation of Large-Scale Coastal Bedforms and Hummocky Cross-Stratification in Sheet Flow Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vermaas, T.; Kleinhans, M. G.; Huisman, C.; Schretlen, J. L.; van der Werf, J. J.; Ribberink, J. S.; Ruessink, G.</p> <p>2010-12-01</p> <p>In shallow marine environments various types of large bed forms emerge under waves and currents. There is no consensus on whether and how these bedforms can be classified in a genetically meaningful sense. Hypotheses for their genesis vary from a large variety of causal mechanisms for a number of different ripples to a single growing instability mechanism, reflecting a limited understanding. Our objective is to understand the formative mechanism of a family of large bedforms referred to as Large Wave Ripples in coastal literature and Hummocks in sedimentological literature, which also describes the hummocky cross stratification (HCS) found in the sedimentary rock record. The formative conditions for hummocks have been debated extensively, particularly whether currents or specific particle sizes were required. We collected and compared existing field and laboratory data and we conducted a full scale experiment in the Hannover Grosse Welle wave flume (300 m long, 5 m wide and 7 m deep). Experiments were done for several conditions, including a storm sequence, with 0.7-1.7 m regular trochoidal waves or irregular waves with periods of 5-7.5 s over sand with mean particle sizes of 0.256 (in 2007) or 0.137 mm (in 2008). Bed profiles were collected mechanically and acoustically. A conductivity probe (CCM) was used to measure sheet flow thickness or absence and near-bed flow and suspended sand concentrations were measured in detail with acoustical profilers. From the data collection, we found that there is no distinction empirically between LWR and Hummocks. Both are found around the inception of sheet flow and have the same dimensions. In the experiments we produced short wave ripples superimposed on large wave ripples below and in the transition to sheet flow conditions. The SWR were well predicted by a recent particle-size dependent ripple length predictor. No available predictor matched the LWR dimensions. The LWR remained present in strong sheet flow conditions and migrated slowly in the direction of wave advance due to wave asymmetry. LWR height was less than 0.07 m whilst lengths were about 13 m. Despite the sheet flow conditions and fine sediment, the LWR scaled as orbital ripples though a factor of 2 longer (i.e. with the orbital diameter d = uT/pi with u the orbital velocity amplitude and T the wave period). Laquer peels of the 2007 experiment demonstrated that the LWR formed Hummocky Cross-Stratification. We conclude that hummocks were experimentally created in a full-scale facility during sheet flow conditions without currents. Furthermore, LWR and hummocks are the same features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5342F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5342F"><span>On a magnetic reconnection in the Venusian wake. The experimental evidences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedorov, Andrei; Jarvinen, Riku; Volwerk, Martin; Barabash, Stas; Zhang, Tielong; Sauvaud, Jean-Andre</p> <p>2010-05-01</p> <p>The Venusian magnetotail is formed by solar wind magnetic flux tubes draping around the planet and stretched antisunward. The magnetotail topology represents two magnetic lobes separated by a thin current sheet. Such a configuration is a free energy reservoir. The accumulated energy is generally released by antisunward acceleration of the planetary ions. But in the case of a magnetic reconnection, hypothetically appeared somewhere in the equatorial current sheet, some part of the planetary ions filling the tail, should be accelerated toward the planet. To check this hypothesis we have performed statistical and case studies based on the data from the IMA mass-spectrometer and the magnetometer onboard ESA Venus Express mission. We found that the distribution function of the planetary ions in the equatorial plane of the wake, near the midnight, and at the distances less than 1.7Rv from the center of the planet contains the significant part moving toward the planet. At the same time the magnetic field statistics and the numerical simulation show the magnetic field minimum similar to an X-line in the current sheet at the distance about 1.7 Rv from the planet center. This could be an evidence for a quasi-permanent reconnection in the Venusian wake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060009468&hterms=BALANCE+SHEET&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DBALANCE%2BSHEET','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060009468&hterms=BALANCE+SHEET&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DBALANCE%2BSHEET"><span>Dynamic Harris current sheet thickness from Cluster current density and plasma measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.</p> <p>2005-01-01</p> <p>We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900047760&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddropout','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900047760&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddropout"><span>Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner plasma sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, D. N.; Mcpherron, R. L.</p> <p>1990-01-01</p> <p>A qualitative model of magnetic field reconfiguration as might result from neutral line formation in the central plasma sheet late in a substorm growth phase is considered. It is suggested that magnetic reconnection probably begins before the substorm expansion phase and that cross-tail current is enhanced across the plasma sheet both earthward and tailward of a limited region near the neutral line. Such an enhanced cross-tail current earthward of the original X line region may contribute to thinning the plasma sheet substantially, and this would in turn affect the drift currents in that location, thus enhancing the current even closer toward the earth. In this way a redistribution and progressive diversion of normal cross-tail current throughout much of the inner portion of the plasma sheet could occur. The resulting intensified current, localized at the inner edge of the plasma sheet, would lead to a very thin plasma confinement region. This would explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871716','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871716"><span>Method for heating a glass sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Boaz, Premakaran Tucker</p> <p>1998-01-01</p> <p>A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1315..401B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1315..401B"><span>New Modelling of Localized Necking in Sheet Metal Stretching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bressan, José Divo</p> <p>2011-01-01</p> <p>Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.4263T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.4263T"><span>Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takamoto, M.</p> <p>2018-05-01</p> <p>In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GSL.....4...18G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GSL.....4...18G"><span>Current structure and flow pattern on the electron separatrix in reconnection region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Ruilong; Pu, Zuyin; Wei, Yong</p> <p>2017-12-01</p> <p>Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1960j0006F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1960j0006F"><span>Single point incremental forming: Formability of PC sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece</p> <p>2018-05-01</p> <p>Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JTST...12..572Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JTST...12..572Y"><span>Corrosion behavior of HVOF coated sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yilbas, B. S.; Abdul-Aleem, B. J.; Khalid, M.</p> <p>2003-12-01</p> <p>High velocity oxygen-fuel (HVOF) thermal spray coating finds application in industry due to its superior resistance to corrosion and thermal loading. In the HVOF process, the metallic powders at elevated temperature are sprayed at supersonic speed onto a substrate material. The powder granules sprayed impact onto each other, forming a mechanical bonding across the coating layer. In most of the cases, the distances among the particles (powder granules sprayed) are not the same, which in turn results in inhomogeneous structure across the coating layer. Moreover, the rate of oxidation of the powder granules during the spraying process varies. Consequently, the electrochemical response of the coating layer surfaces next to the base material and free to atmosphere differs. In the current study, the electrochemical response of a coating sheet formed during HVOF thermal spraying was investigated. NiCrMoNb alloy (similar to Inconel 625) wass used for the powder granules. Thermal spraying was carried out onto a smooth surface of stainless steel workpiece (without grid blasting), and later the coating layer was removed from the surface to obtain the coating sheet for the electrochemical tests. It was found that the corrosion rate of the smooth surface (surface next to the stainless steel surface before its removal) is considerably larger than that corresponding to the rough surface (free surface) of the coating sheet, and no specific patterns were observed for the pit sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011561','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011561"><span>Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140011561'); toggleEditAbsImage('author_20140011561_show'); toggleEditAbsImage('author_20140011561_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140011561_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140011561_hide"></p> <p>2013-01-01</p> <p>The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030062108','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030062108"><span>Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Markusic, Thomas; Choueiri, E. Y.</p> <p>2003-01-01</p> <p>The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/672583','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/672583"><span>Method for heating a glass sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Boaz, P.T.</p> <p>1998-07-21</p> <p>A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22660967-heating-mechanisms-low-solar-atmosphere-through-magnetic-reconnection-current-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22660967-heating-mechanisms-low-solar-atmosphere-through-magnetic-reconnection-current-sheets"><span>HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ni, Lei; Lin, Jun; Roussev, Ilia I.</p> <p>2016-12-01</p> <p>We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the mainmore » mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016mt12.book..301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016mt12.book..301S"><span>The effects of strain and stress state in hot forming of mg AZ31 sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherek, Paul A.; Carpenter, Alexander J.; Hector, Louis G.; Krajewski, Paul E.; Carter, Jon T.; Lasceski, Joshua; Taleff, Eric M.</p> <p></p> <p>Wrought magnesium alloys, such as AZ31 sheet, are of considerable interest for light-weighting of vehicle structural components. The poor room-temperature ductility of AZ31 sheet has been a hindrance to forming the complex part shapes necessary for practical applications. However, the outstanding formability of AZ31 sheet at elevated temperature provides an opportunity to overcome that problem. Complex demonstration components have already been produced at 450°C using gas-pressure forming. Accurate simulations of such hot, gas-pressure forming will be required for the design and optimization exercises necessary if this technology is to be implemented commercially. We report on experiments and simulations used to construct the accurate material constitutive models necessary for finite-element-method simulations. In particular, the effects of strain and stress state on plastic deformation of AZ31 sheet at 450°C are considered in material constitutive model development. Material models are validated against data from simple forming experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6595E..1JY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6595E..1JY"><span>Simulation and experimental research on spherical dome by 3D laser forming of square feet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Lijun; Wang, Yang</p> <p>2007-01-01</p> <p>Laser forming is a technique of using the energy from a laser beam to modify and adjust the curvature of sheet metals or hard materials. 2-dimensional laser forming can reasonably accurately control bend angles with various materials. To advance this process further for realistic forming applications in a manufacturing industry, it is necessary to consider larger scale controlled 3-dimensional laser forming. However, this is a different situation for 3-dimensional laser forming. The work presented in this paper uses the spider scanning path to form the thin square sheet to spherical dome by laser forming. The explicit dynamic analysis on 3-dimentional laser forming is shown in the article. On the base of temperature gradient mechanism of 2-dimensional laser forming, depending on the geometry and the thermo-physical properties of stainless steel lCrl8Ni9Ti, develop the mechanism of laser forming of thin square sheet to the spherical dome. This paper discusses the interaction between moving laser beam and sheet, the temperature field on the sheet, and the step transition of stress and deformation in laser forming. In order to give the verification on the results of simulation, the correlative experiment has progressed with Lumonics JK7O2H Nd:YAG laser. The results of experiments are in accord with the simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080005897','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080005897"><span>Unitary plate electrode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)</p> <p>1985-01-01</p> <p>The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/co0859.photos.316987p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/co0859.photos.316987p/"><span>17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS WERE FORMED INTO SHAPES. (7/2/86) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990018006&hterms=kaufmann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dkaufmann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990018006&hterms=kaufmann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dkaufmann"><span>Structure of the Magnetotail Current Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Larson, Douglas J.; Kaufmann, Richard L.</p> <p>1996-01-01</p> <p>An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(sub E) less than x less than - 14 R(sub E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980018589','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980018589"><span>Structure of the Magnetotail Current Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Larson, Douglas J.; Kaufmann, Richard L.</p> <p>1996-01-01</p> <p>An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(E) less than x less than -14 R(E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896d0012R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896d0012R"><span>Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd</p> <p>2017-10-01</p> <p>The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3767119','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3767119"><span>Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W.; Schalek, Richard; Hayworth, Kenneth J.; Hand, Arthur R.; Yankova, Maya; Huber, Greg; Lichtman, Jeff W.; Rapoport, Tom A.; Kozlov, Michael M.</p> <p>2013-01-01</p> <p>The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used novel staining and automated ultra-thin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell. PMID:23870120</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22433000','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22433000"><span>Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan</p> <p>2012-04-11</p> <p>Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. © 2012 American Chemical Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8419P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8419P"><span>Coupling between Mercury and its nightside magnetosphere: Cross-tail current sheet asymmetry and substorm current wedge formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.</p> <p>2017-08-01</p> <p>We analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury's cross-tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of ≈3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawn-dusk current sheet asymmetries. We also report the direct measurement of Mercury's substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be ≈11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be ≈1.2 S, which is similar to earlier results derived from modeling of Mercury's Region 1 field-aligned currents. Hence, Mercury's regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury's highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by field-aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury's duskside current sheet provide explanation for cross-tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be ≈11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions and field-aligned currents driven by reconnection-related fast plasma flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871535','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871535"><span>Continuous process to produce lithium-polymer batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville</p> <p>1998-01-01</p> <p>Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM24A..06O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM24A..06O"><span>MMS observations of guide field reconnection at the interface between colliding reconnection jets inside flux rope-like structures at the magnetopause</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.</p> <p>2017-12-01</p> <p>The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..MARJ34010H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..MARJ34010H"><span>Determining Beta Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Xiao; Kaplan, David; Cebe, Peggy</p> <p>2007-03-01</p> <p>We report a study of self-assembled beta pleated sheets in Bombyx mori silk fibroin films using thermal analysis and infrared spectroscopy. Crystallization of beta pleated sheets was effected either by heating the films above the glass transition temperature (Tg) and holding isothermally, or by exposure to methanol. The fractions of secondary structural components including random coils, alpha helices, beta pleated sheets, turns, and side chains, were evaluated using Fourier self-deconvolution (FSD) of the infrared absorbance spectra. As crystalline beta sheets form, the heat capacity increment from the TMDSC trace at Tg is systematically decreased and is linearly well correlated with beta sheet content determined from FSD. This analysis of beta sheet content can serve as an alternative to X-ray methods and may have wide applicability to other crystalline beta sheet forming proteins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770000236&hterms=Cork&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCork','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770000236&hterms=Cork&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCork"><span>Molding cork sheets to complex shapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharpe, M. H.; Simpson, W. G.; Walker, H. M.</p> <p>1977-01-01</p> <p>Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880057821&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddisruption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880057821&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddisruption"><span>A case study of magnetotail current sheet disruption and diversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.; Mcentire, R. W.; Zanetti, L. J.</p> <p>1988-01-01</p> <p>On June 1, 1985 the AMPTE/CCE spacecraft (at a geocentric distance of about 8.8 earth radii at the midnight neutral sheet region) observed a dispersionless energetic particle injection and an increase in magnetic field magnitude, which are features commonly attributed to disruption of the near-earth cross-tail current sheet during substorm expansion onsets. An analysis based on high time-resolution measurements from the magnetometer and the energetic particle detector indicates that the current sheet disruption region exhibited localized (less than 1 earth radius) and transient (less than 1 min) particle intensity enhancements, accompanied by complex magnetic field changes with occasional development of a southward magnetic field component. Similar features are seen in other current disruption/diversion events observed by the CCE. The present analysis suggests that the current disruption region is quite turbulent, similar to laboratory experiments on current sheet disruption, with signatures unlike those expected from an X-type neutral line configuration. No clear indication of periodicity in any magnetic field parameter is discernible for this current disruption event.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...827L...3V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...827L...3V"><span>Particle Acceleration and Heating by Turbulent Reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios</p> <p>2016-08-01</p> <p>Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654257-particle-acceleration-heating-turbulent-reconnection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654257-particle-acceleration-heating-turbulent-reconnection"><span>PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz</p> <p>2016-08-10</p> <p>Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method tomore » estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5314023-cross-field-current-instability-substorm-expansions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5314023-cross-field-current-instability-substorm-expansions"><span>A cross-field current instability for substorm expansions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lui, A.T.Y.; Chang, C.L.; Mankofsky, A.</p> <p>1991-07-01</p> <p>The authors investigate a cross-field current instability (CFCI) as a candidate for current disruption during substorm expansions. The numerical solution of the linear dispersion equation indicates that (1) the proposed instability can occur at the inner edge or the midsection of the neutral sheet just prior to the substorm expansion onset although the former environment is found more favorable at the same drift speed scaled to the ion thermal speed, (2) the computed growth time is comparable to the substorm onset time, and (3) the excited waves have a mixed polarization with frequencies near the ion gyrofrequency at the innermore » edge and near the lower hybrid frequency in the midtail region. On the basis of this analysis, they propose a substorm development scenario in which plasma sheet thinning during the substorm growth phase leads to an enhancement in the relative drift between ions and electrons. This results in the neutral sheet being susceptible to the CHCI and initiates the diversion of the cross-tail current through the ionosphere. Whether or not a substorm current wedge is ultimately formed is regulated by the ionospheric condition. A large number of substorm features can be readily understood with the proposed scheme. These include (1) precursory activities (pseudobreakups) prior to substorm onset, (2) substorm initiation region to be spatially localized, (3) three different solar wind conditions for substorm occurence, (4) skew towards evening local times for substorm onset locations, (5) different acceleration characteristics between ions and electrons, (6) tailward spreading of current disruption region after substorm onset, and (7) local time expansion of substorm current wedge with possible discrete westward jump for the evening expansion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472500-possible-mechanism-enhancement-maintenance-shear-magnetic-field-component-current-sheet-earths-magnetotail','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472500-possible-mechanism-enhancement-maintenance-shear-magnetic-field-component-current-sheet-earths-magnetotail"><span>A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Grigorenko, E. E., E-mail: elenagrigorenko2003@yahoo.com; Malova, H. V., E-mail: hmalova@yandex.ru; Malykhin, A. Yu., E-mail: anmaurdreg@gmail.com</p> <p>2015-01-15</p> <p>The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formationmore » of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871048','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871048"><span>Fabrication method for cores of structural sandwich materials including star shaped core cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Christensen, Richard M.</p> <p>1997-01-01</p> <p>A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1769g0002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1769g0002S"><span>Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd</p> <p>2016-10-01</p> <p>This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SedG..269...15M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SedG..269...15M"><span>Tectonic triggering of slump sheets in the Upper Cretaceous carbonate succession of the Porto Selvaggio area (Salento peninsula, southern Italy): Synsedimentary tectonics in the Apulian Carbonate Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mastrogiacomo, G.; Moretti, M.; Owen, G.; Spalluto, L.</p> <p>2012-08-01</p> <p>Soft-sediment deformation structures crop out in the Upper Cretaceous carbonate succession in Porto Selvaggio cove in the western Salento peninsula, Apulian foreland, southern Italy. The deformed interval is about 13 m thick and occurs between shallow-water limestones and dolostones formed in peritidal and shallow subtidal environments. It comprises well-bedded grey mudstones interlayered with dark grey laminated microbioclastic wackestones characterized by couplets of closely spaced dark and bright laminae marked by the parallel orientation of calcareous microbioclasts and thin-shelled bivalves. The low biological diversity, scarcity of burrowing biota, and presence of a well preserved fish fauna provide evidence of anoxic conditions occurring in morphological depressions within the platform, and a stagnant, stratified water body affected by weak bottom currents, indicating the sudden development of a localised and short-lived intraplatform basin. Two soft-sediment deformation horizons (slump sheets) separated by undeformed limestones with similar facies occur in this part of the succession. The lower, thicker slump sheet (1.0-1.3 m thick) contains asymmetric and box folds. Well-developed décollement surfaces (locally containing thick brecciated zones) cut the folds, forming small-scale thrust-sheets and indicating mixed plastic to brittle behaviour. The upper, thinner slump sheet (0.25-0.35 m thick) contains only asymmetric folds, indicating plastic behaviour only. The differences in deformation style are attributed to differences in facies. Measurements of fold-axis orientations in the slump sheets show that they moved in similar directions, recording the development of a local, gently dipping palaeoslope. Autogenic (internal) trigger mechanisms are ruled out by a detailed consideration of facies. The slump sheets were triggered by allogenic, tectonic effects, either the weakening of sediment by seismic activity or the tectonically induced steepening of slopes, or a combination of both. Tectonically induced steepening is consistent with localised and sudden vertical facies changes related to the creation of an intraplatform basin. The occurrence of slump sheets in carbonate platform successions is unusual since carbonate platforms are normally associated with shelves or low-angle ramps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29158501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29158501"><span>Diverse landscapes beneath Pine Island Glacier influence ice flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bingham, Robert G; Vaughan, David G; King, Edward C; Davies, Damon; Cornford, Stephen L; Smith, Andrew M; Arthern, Robert J; Brisbourne, Alex M; De Rydt, Jan; Graham, Alastair G C; Spagnolo, Matteo; Marsh, Oliver J; Shean, David E</p> <p>2017-11-20</p> <p>The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53F..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53F..02V"><span>Massive units deposited by bedload transport in sheet flow mode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viparelli, E.; Hernandez Moreira, R. R.; Jafarinik, S.; Sanders, S.; Huffman, B.; Parker, G.; Kendall, C.</p> <p>2017-12-01</p> <p>A sandy massive (structureless) unit overlying a basal erosional surface and underlying a parallel or cross-laminated unit often characterizes turbidity current and coastal storm deposits. The basal massive units are thought to be the result of relatively rapid deposition of suspended sediment. However, suspension-based models fail to explain how basal massive units can be emplaced for long distances, far away from the source and can contain gravel particles as floating clasts. Here we present experimental results that can significantly change the understanding of the processes forming turbidity current and coastal storm deposits. The experiments were performed in open channel flow mode in the Hydraulics Laboratory at the University of South Carolina. The sediment was a mixture of sand size particles with a geometric mean diameter of 0.95 mm and a geometric standard deviation of 1.65. Five experiments were performed with a flow rate of 30 l/s and sediment feed rates varying between 1.5 kg/min and 20 kg/min. Each experiment was characterized by two phases, 1) the equilibration phase, in which we waited for the system to reach equilibrium condition, and 2) the aggradation phase, in which we slowly raised the water surface base level to induce channel bed aggradation under the same transport conditions observed over the equilibrium bed. Our experiments show that sandy massive units can be the result of deposition from a thick bedload layer of colliding grains, the sheet flow layer. The presence of this sheet flow layer explains how a strong, sustained current can emplace extensive massive units containing gravel clasts. Although our experiments were conducted in open-channel mode, observations of bedload driven by density underflows suggest that our results are directly applicable to sheet flows driven by deep-sea turbidity currents. More specifically, we believe that this mechanism offers an explanation for massive turbidites that heretofore have been identified as the deposits of "high density" turbidity currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010032398&hterms=1101&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231101','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010032398&hterms=1101&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231101"><span>Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.</p> <p>2001-01-01</p> <p>The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1960p0016L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1960p0016L"><span>Radial-rotation profile forming: A new processing technology of incremental sheet metal forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laue, Robert; Härtel, Sebastian; Awiszus, Birgit</p> <p>2018-05-01</p> <p>Incremental forming processes (i.e., spinning) of sheet metal blanks into cylindrical cups are suitable for lower lot sizes. The produced cups were frequently used as preforms to produce workpieces in further forming steps with additional functions like profiled hollow parts [1]. The incremental forming process radial-rotation profile forming has been developed to enable the production of profiled hollow parts with low sheet thinning and good geometrical accuracy. The two principal forming steps are the production of the preform by rotational swing-folding [2] and the subsequent radial profiling of the hollow part in one clamping position. The rotational swing-folding process is based on a combination of conventional spinning and swing-folding. Therefore, a round blank rotates on a profiled mandrel and due to the swinging of a cylindrical forming tool, the blank is formed to a cup with low sheet thinning. In addition, thickening results at the edge of the blank and wrinkling occurs. However, the wrinkles are formed into the indentation of the profiled mandrel and can be reshaped as an advantage in the second process step, the radial profiling. Due to the rotation and continuous radial feed of a profiled forming tool to the profiled mandrel, the axial profile is formed in the second process step. Because of the minor relative movement in axial direction between tool and blank, low sheet thinning occurs. This is an advantage of the principle of the process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940035204&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbalance%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940035204&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbalance%2Bsheet"><span>Self-consistent current sheet structures in the quiet-time magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holland, Daniel L.; Chen, James</p> <p>1993-01-01</p> <p>The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1132265','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1132265"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng</p> <p></p> <p>An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24184720','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24184720"><span>Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakajima, Ryota; Takeda, Shizu</p> <p>2014-01-01</p> <p>The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910067648&hterms=vector+fields&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvector%2Bfields','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910067648&hterms=vector+fields&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvector%2Bfields"><span>The optical analogy for vector fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, E. N. (Editor)</p> <p>1991-01-01</p> <p>This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863094','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863094"><span>Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>LeVert, Francis E.; Cox, Samson A.</p> <p>1978-01-01</p> <p>A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/988070','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/988070"><span>Multilayer radiation shield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Urbahn, John Arthur; Laskaris, Evangelos Trifon</p> <p>2009-06-16</p> <p>A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21511457-prediction-forming-limit-band-steel-sheets-using-new-formulation-hora-criterion-mmfc','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21511457-prediction-forming-limit-band-steel-sheets-using-new-formulation-hora-criterion-mmfc"><span>Prediction of the Forming Limit Band for Steel Sheets using a new Formulation of Hora's Criterion (MMFC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sorin Comsa, Dan; Dragos, George; Paraianu, Liana</p> <p>2011-01-17</p> <p>The paper analyzes the dispersion of the mechanical parameters and its influence on the forming limit curves of sheet metals. The tests have been made for the case of the DC01 steel sheets. The dispersion of the mechanical parameters has been observed during the experimental research. On the basis of this dispersion, a forming limit band has been calculated using an alternate formulation of Hora's model (MMFC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPD....40.2007D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPD....40.2007D"><span>Simulations of Flare Reconnection in Breakout Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeVore, C. Richard; Karpen, J. T.; Antiochos, S. K.</p> <p>2009-05-01</p> <p>We report 3D MHD simulations of the flare reconnection in the corona below breakout coronal mass ejections (CMEs). The initial setup is a single bipolar active region imbedded in the global-scale background dipolar field of the Sun, forming a quadrupolar magnetic configuration with a coronal null point. Rotational motions applied to the active-region polarities at the base of the atmosphere introduce shear across the polarity inversion line (PIL). Eventually, the magnetic stress and energy reach the critical threshold for runaway breakout reconnection, at which point the sheared core field erupts outward at high speed. The vertical current sheet formed by the stretching of the departing sheared field suffers reconnection that reforms the initial low-lying arcade across the PIL, i.e., creates the flare loops. Our simulation model, the Adaptively Refined MHD Solver, exploits local grid refinement to resolve the detailed structure and evolution of the highly dynamic current sheet. We are analyzing the numerical experiments to identify and interpret observable signatures of the flare reconnection associated with CMEs, e.g., the flare loops and ribbons, coronal jets and shock waves, and possible origins of solar energetic particles. This research was supported by NASA and ONR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..146a2054A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..146a2054A"><span>Electromagnetic flat sheet forming by spiral type actuator coil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akbar, S.; Aleem, M. A.; Sarwar, M. N.; Zillohu, A. U.; Awan, M. S.; Haider, A.; Ahmad, Z.; Akhtar, S.; Farooque, M.</p> <p>2016-08-01</p> <p>Focus of present work is to develop a setup for high strain rate electromagnetic forming of thin aluminum sheets (0.5, 1.0, 1.5 and 2.0 mm) and optimization of forming parameters. Flat spiral coil of 99.9% pure Cu strip (2.5x8.0 mm) with self-inductance 11 μH, 13 no. of turns and resultant outer diameter of 130mm has been fabricated and was coupled to a capacitor bank of energy, voltage and capacitance of 9 kJ, 900 V and 22.8 mF, respectively. To optimize the coil design, a commercially available software FEMM-4.2 was used to simulate the electromagnetic field profile generated by the coils of different pitch but same number of turns. Results of electromagnetic field intensity proposed by simulation agree in close proximity with those of theoretical as well as experimental data. The calculation of electromagnetic force and magnetic couplings between the coil and metal sheet are made. Forming parameters were optimized for different sheet thicknesses. Electromagnetic field intensity's profile plays a principal role in forming of typical shapes and patterns in sheets.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/875216','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/875216"><span>Heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brackenbury, Phillip J.</p> <p>1986-01-01</p> <p>A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6678913','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6678913"><span>Heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brackenbury, P.J.</p> <p>1983-12-08</p> <p>A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1176550','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1176550"><span>Heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brackenbury, Phillip J.</p> <p>1986-04-01</p> <p>A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920071979&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisruption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920071979&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisruption"><span>Observational support for the current sheet catastrophe model of substorm current disruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burkhart, G. R.; Lopez, R. E.; Dusenbery, P. B.; Speiser, T. W.</p> <p>1992-01-01</p> <p>The principles of the current sheet catastrophe models are briefly reviewed, and observations of some of the signatures predicted by the theory are presented. The data considered here include AMPTE/CCE observations of fifteen current sheet disruption events. According to the model proposed here, the root cause of the current disruption is some process, as yet unknown, that leads to an increase in the k sub A parameter. Possible causes for the increase in k sub A are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PPCF...60a4008N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PPCF...60a4008N"><span>Collisionless current sheet equilibria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neukirch, T.; Wilson, F.; Allanson, O.</p> <p>2018-01-01</p> <p>Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053475&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053475&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOpen%2BField"><span>Four large-scale field-aligned current systmes in the dayside high-latitude region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.</p> <p>1995-01-01</p> <p>A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for-current sheet structure is common in a certain prenoon localtime sector during strongly negative IMF B(sub Y).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616516N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616516N"><span>Plasma jets in the near-Earth's magnetotail (Julius Bartels Medal Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Rumi</p> <p>2014-05-01</p> <p>The Earth's magnetosphere is formed as a consequence of the interaction between the magnetized solar wind and the terrestrial magnetic field. While the large-scale and average (>hours) properties of the Earth's magnetotail current sheet can be well described by overall solar wind-magnetosphere interaction, the most dramatic energy conversion process takes place in an explosive manner involving transient (up to several minutes) and localized (up to a few RE) phenomena in the plasma sheet/current sheet regions. One of the most clear observables of such processes are the localized and transient plasma jets called Bursty bulk flows (BBF), embedding velocity peaks of 1-min duration, which are called flow bursts. This talk is a review of the current understanding of these plasma jets by highlighting the results from multi-spacecraft observations by the Cluster and THEMIS spacecraft. The first four-spacecraft mission Cluster crossed the near-Earth plasma sheet with inter-spacecraft distance of about 250 km to 10000 km, ideal for studying local structures of the flow bursts. The five-spacecraft THEMIS mission , separated by larger distances , succeeded to monitor the large-scale evolution of the fast flows from the mid-tail to the inner magnetosphere. Multi-point observations of BBFS have established the importance of measuring local gradients of the fields and the plasma to understand the BBF structures such as the spatial scales and 3D structure of localized Earthward convecting flux tubes. Among others the magnetic field disturbance forming at the front of BBF, called dipolarization front (DF), has been intensively studied. From the propagation properties of DF relative to the flows and by comparing with ionospheric data, the evolution of the fast flows in terms of magnetosphere-ionospheric coupling through field-aligned currents are established. An important aspect of BBF is the interaction of the Earthward plasma jets and the Earth's dipole field. Multi-point observations combined with ground-based observations enabled to resolve how the BBFs are braked , diverted, or bounced back at the high-pressure gradient region. The multi-point capabilities in space enabled to study the BBF structure as well as large-scale evolution of BBFs. These processes are also universal processes in space plasmas and are, for example, associated with the reconnection process during the solar flares or leading to auroral phenomena at different planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23870120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23870120"><span>Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W; Schalek, Richard; Hayworth, Kenneth J; Hand, Arthur R; Yankova, Maya; Huber, Greg; Lichtman, Jeff W; Rapoport, Tom A; Kozlov, Michael M</p> <p>2013-07-18</p> <p>The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used improved staining and automated ultrathin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell. Copyright © 2013 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075998','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075998"><span>Engineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration. PMID:24858072</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6004952','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6004952"><span>Microchannel crossflow fluid heat exchanger and method for its fabrication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Swift, G.W.; Migliori, A.; Wheatley, J.C.</p> <p>1982-08-31</p> <p>A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865451','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865451"><span>Microchannel crossflow fluid heat exchanger and method for its fabrication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Swift, Gregory W.; Migliori, Albert; Wheatley, John C.</p> <p>1985-01-01</p> <p>A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V31G..08A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V31G..08A"><span>Three-dimensional structure of dilute pyroclastic density currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrews, B. J.</p> <p>2013-12-01</p> <p>Unconfined experimental density currents dynamically similar to pyroclastic density currents (PDCs) suggest that cross-stream motions of the currents and air entrainment through currents' lateral margins strongly affects PDC behavior. Experiments are conducted within an air-filled tank 8.5 m long by 6.1 m wide by 2.6 m tall. Currents are generated by feeding heated powders down a chute into the tank at controlled rates to form dilute, particle-laden, turbulent gravity currents that are fed for 30 to 600 seconds. Powders include 5 μm aluminum oxide, 25 μm talc, 27 μm walnut, 76 μm glass beads and mixtures thereof. Experiments are scaled such that Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers, and thermal to kinetic energy densities are all in agreement with dilute PDCs; experiments have lower Reynolds numbers that natural currents, but the experiments are fully turbulent, thus the large scale structures should be similar. The experiments are illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps); this system provides synchronous observation of a vertical streamwise and cross-stream planes, and a horizontal plane. Ambient temperature currents tend to spread out radially from the source and have long run out distances, whereas warmer currents tend to focus along narrow sectors and have shorter run outs. In addition, when warm currents lift off to form buoyant plumes, lateral spreading ceases. The behavior of short duration currents are dominated by the current head; as eruption duration increases, current transport direction tends to oscillate back and forth (this is particularly true for ambient temperature currents). Turbulent structures in the horizontal plane show air entrainment and advection downstream. Eddies illuminated by the vertical cross-stream laser sheet often show vigorous mixing along the current margins, particularly after the current head has passed. In some currents, the head can persist as a large, vertically oriented vortex long after the bulk of the current has lifted off to form a coignimbrite plume. These unconfined experiments show that three-dimensional structures can affect PDC behavior and suggest that our typical cross-sectional or 'cartoon' understanding of PDCs misses what may be very important parts of PDC dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29478622','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29478622"><span>Supplying osteogenesis to dead bone using an osteogenic matrix cell sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uchihara, Yoshinobu; Akahane, Manabu; Okuda, Akinori; Shimizu, Takamasa; Masuda, Keisuke; Kira, Tsutomu; Kawate, Kenji; Tanaka, Yasuhito</p> <p>2018-02-22</p> <p>To evaluate whether osteogenic matrix cell sheets can supply osteogenesis to dead bone. Femur bone fragments (5 mm in length) were obtained from Fisher 344 rats and irradiated by a single exposure of 60 Gy to produce bones that were no longer viable. Osteogenic matrix cell sheets were created from rat bone marrow-derived stromal cells (BMSCs). After wrapping the dead bone with an osteogenic matrix cell sheet, it was subcutaneously transplanted into the back of a rat and harvested after 4 weeks. Bone formation around the dead bone was evaluated by X-ray imaging and histology. Alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression levels were measured to confirm osteogenesis of the transplanted bone. The contribution of donor cells to bone formation was assessed using the Sry gene and PKH26. After the cell sheet was transplanted together with dead bone, X-ray images showed abundant calcification around the dead bone. In contrast, no newly formed bone was seen in samples that were transplanted without the cell sheet. Histological sections also showed newly formed bone around dead bone in samples transplanted with the cell sheet, whereas many empty lacunae and no newly formed bone were observed in samples transplanted without the cell sheet. ALP and OC mRNA expression levels were significantly higher in dead bones transplanted with cell sheets than in those without a cell sheet (P < 0.01). Sry gene expression and cells derived from cell sheets labeled with PKH26 were detected in samples transplanted with a cell sheet, indicating survival of donor cells after transplantation. Our study indicates that osteogenic matrix cell sheet transplantation can supply osteogenesis to dead bone. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950063936&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMagnetic%2BFlux','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950063936&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMagnetic%2BFlux"><span>Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Otto, A.</p> <p>1995-01-01</p> <p>During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPD....40.2006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPD....40.2006K"><span>Intermittent Reconnection Downflow Enhancements In A Simulated Flux Rope Eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kliem, Bernhard; Linton, M. G.</p> <p>2009-05-01</p> <p>Supra-arcade downflows in X-ray and EUV flare emissions and post-eruption inflows in coronagraph data have been interpreted to be signatures of the downward reconnection outflow from a vertical (flare) current sheet. These downflows show an intermittent occurrence pattern, indicating that the reconnection is bursty in time or patchy in space, or both. We present MHD simulations of such reconnection in the realistic configuration of a vertical current sheet formed beneath and driven by an erupting flux rope. The reconnection is found to develop bursty outflows, both upward and downward, with the upward outflows generally showing the stronger variablity. While the reconnection starts early in the rise of the flux rope and its peak upward outflow velocity is closely correlated with the rope's rise velocity, the burstiness develops in a clear fashion only as the rope's height has increased from the initial position by about an order of magnitude, so that the current sheet has reached a sufficient vertical extent. The reconnection downflow shows a series of enhancements, each of them starting at a successively greater height from a newly developed magnetic X line. The plasma temporarily accelerated downward in such an enhancement soon turns into a gradual deceleration and then eventually comes to rest on top of previously accelerated plasma. These findings are consistent with the observations of intermittent downflows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/516948','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/516948"><span>Fabrication method for cores of structural sandwich materials including star shaped core cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Christensen, R.M.</p> <p>1997-07-15</p> <p>A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells is disclosed. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded. 3 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..314a2026M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..314a2026M"><span>Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markanday, H.; Nagarajan, D.</p> <p>2018-02-01</p> <p>Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-01-19/pdf/2010-771.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-01-19/pdf/2010-771.pdf"><span>75 FR 2929 - Proposed Collection; Comment Request for Form 13614-NR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-01-19</p> <p>... comments concerning Form 13614-NR, Nonresident Alien Intake and Interview Sheet. DATES: Written [email protected] . SUPPLEMENTARY INFORMATION: Title: Nonresident Alien Intake and Interview Sheet. OMB...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....13008H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....13008H"><span>Glaciological constraints on current ice mass changes from modelling the ice sheets over the glacial cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huybrechts, P.</p> <p>2003-04-01</p> <p>The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2047.6047A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2047.6047A"><span>The Topology and Dynamics of Mercury's Tail Plasma and Current Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al Asad, M. M.; Johnson, C. J.; Philpott, L. C.</p> <p>2018-05-01</p> <p>In Mercury's environment, the tail plasma and current sheets represent an integral part of the dynamic magnetosphere. Our study aims to understand the time-averaged, as well as the dynamic, properties of these "sheets" in 3D space using MAG data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001496','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001496"><span>Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.</p> <p>2011-01-01</p> <p>A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21378008-hall-magnetohydrodynamic-effects-current-sheet-flapping-oscillations-related-magnetic-double-gradient-mechanism','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21378008-hall-magnetohydrodynamic-effects-current-sheet-flapping-oscillations-related-magnetic-double-gradient-mechanism"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.</p> <p></p> <p>Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating alongmore » the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......113K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......113K"><span>Solution Conformations of Graphene Oxide Sheets, and Two-Dimensional Nanofluidics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koltonow, Andrew R.</p> <p></p> <p>This work reports studies on the physical properties of collections of nanosheets. First, the configurations of graphene oxide sheets in solution are studied. Polarized optical microscopy reveals quickly and decisively that sheets remain flat and form lyotropic liquid crystals over a wide range of solvent conditions. When solvent conditions are inhospitable enough, sheets agglomerate into stacks rather crumpling upon themselves. Theory and simulation suggest that the crumpled state, which can be formed by compressing sheets, is metastable. This work might correct a persistent misunderstanding about the solution physics of graphene oxide. The other major area of study concerns the hydration layers in between lamellar stacks of exfoliated, restacked nanosheets. These layers comprise massive arrays of parallel two-dimensional nanofluidic channels, which exhibit enhanced unipolar ionic conductivity with counterions as the majority charge carriers. Based on the previously discovered graphene oxide nanofluidic platform, exfoliated vermiculite nanofluidic channels are constructed, which shuttle protons through the hydration channels by a Grotthuss mechanism, and which show superior thermal stability to graphene oxide. The 2D nanofluidics platform is also used to demonstrate "kirigami nanofluidics", where ion transport can be manipulated by cutting the film into specific shapes. This can give rise to ionic current rectification. The rectification effect is attributed to the size and shape mismatch of the concentration polarization zones developed at the inlets and outlets of the nanofluidic channels. The kirigami nanofluidic platform can be used to fabricate ionic diodes and other simple devices. This material platform is expected to be a useful tool for nanofluidics researchers, because it offers a way to carry out nanofluidic experiments quickly with minimal equipment and little expense.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1333224','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1333224"><span>Apparatus for mixing fuel in a gas turbine nozzle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Barker, Carl Robert</p> <p></p> <p>A fuel nozzle in a combustion turbine engine that includes: a fuel plenum defined between an circumferentially extending shroud and axially by a forward tube-sheet and an aft tube-sheet; and a mixing-tube that extends across the fuel plenum that defines a passageway connecting an inlet formed through the forward tube-sheet and an outlet formed through the aft tube-sheet, the mixing-tube comprising one or more fuel ports that fluidly communicate with the fuel plenum. The mixing-tube may include grooves on an outer surface, and be attached to the forward tube-sheet by a connection having a fail-safe leakage path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSH33A1199F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSH33A1199F"><span>Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.</p> <p>2004-12-01</p> <p>Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DPPNI2002F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DPPNI2002F"><span>Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furno, Ivo</p> <p>2004-11-01</p> <p>Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920041910&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisruption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920041910&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisruption"><span>Current disruptions in the near-earth neutral sheet region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lui, A. T. Y.; Lopez, R. E.; Anderson, B. J.; Takahashi, K.; Zanetti, L. J.; Mcentire, R. W.; Potemra, T. A.; Klumpar, D. M.; Greene, E. M.; Strangeway, R.</p> <p>1992-01-01</p> <p>Current disruption events observed by the Charge Composition Explorer during 1985 and 1986 are examined. Occurrence of current disruption was accompanied by large magnetic field turbulence and frequently with reversal in the sign of the field component normal to the neutral sheet. Current disruptions in the near-earth region are found to be typically shortlived (about 1-5 min), and their onsets coincide well with the ground onsets of substorm expansion or intensification in the local time sector of the footpoint of the spacecraft. These events are found almost exclusively close to the field reversal plane of the neutral sheet (within about 0.5 RE). Prior to current disruption the field strength can be reduced to as low as one seventh of the dipole field value and can recover to nearly the dipole value after disruption. The temporal evolution of particle pressure in the near-earth neutral sheet during the onset of current disruption indicates that the current buildup during the substorm growth phase is associated with enhancement in the particle pressure at the neutral sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7207616','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7207616"><span>Compact vacuum insulation embodiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Benson, D.K.; Potter, T.F.</p> <p>1992-04-28</p> <p>An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6254869','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6254869"><span>Compact vacuum insulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Benson, D.K.; Potter, T.F.</p> <p>1993-01-05</p> <p>An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868618','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868618"><span>Compact vacuum insulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Benson, David K.; Potter, Thomas F.</p> <p>1993-01-01</p> <p>An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868256','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868256"><span>Compact vacuum insulation embodiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Benson, David K.; Potter, Thomas F.</p> <p>1992-01-01</p> <p>An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992AmJPh..60..693S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992AmJPh..60..693S"><span>Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saslow, W. M.</p> <p>1992-08-01</p> <p>Using the example of a monopole that is spontaneously generated above a thin conducting sheet, the simplicity and power of Maxwell's 1872 theory of eddy currents in thin conducting sheets is illustrated. This theory employs a receding image construction, with a characteristic recession velocity v0=2/(μ0σd), where the sheet has conductivity σ and thickness d. A modern derivation of the theory, employing the magnetic scalar potential, is also presented, with explicit use of the uniqueness theorem. Also discussed are limitations on the theory of which Maxwell, living in a time before the discovery of the electron, could not have been aware. Previous derivations either have not appealed explicitly to the uniqueness theorem, or have employed the now unfamiliar current function, and are therefore either incomplete or inaccessible to the modern reader. After the derivation, two important examples considered by Maxwell are presented-a monopole moving above a thin conducting sheet, and a monopole above a rotating thin conducting sheet (Arago's disk)-and it is argued that the lift force thus obtained makes Maxwell the grandfather, if not the father, of eddy current MAGLEV transportation systems. An energy conservation argument is given to derive Davis's result that, for a magnet of arbitrary size and shape moving parallel to a thin conducting sheet at a characteristic height h, with velocity v, the ratio of drag force to lift force is equal to v0/v, provided that d≪δc, where δc =√2h/(μ0σv). If d≫δc, the eddy currents are confined to a thickness δc, leading to an increase in the dissipation and the drag by a factor of d/δc, so that the ratio of drag to lift force becomes proportional to √v'0/v, where v'0 = 2/(μ0σh). The case of a monopole fixed in position, but oscillating in strength (such as can be simulated by one end of a long, narrow, ac solenoid), is also treated. This is employed to obtain the results for an oscillating magnetic dipole whose moment is normal to the sheet. A general discussion of electromagnetic induction and electrical conductors, both thick and thin, is given, emphasizing the difference between the high-frequency limit, where flux expulsion occurs and the self-inductance dominates, and the low-frequency limit, where the flux penetrates and the electrical resistance dominates. A discussion of Lenz's law, as a statement about motion, is given. It is argued that the most general form of such a statement of Lenz's law is that induced currents tend to accelerate a conductor in the direction that most effectively decreases the rate of Joule heating. A calculation, in the low-frequency limit, of the drag force on a magnetic dipole falling down a long conducting tube, is also given. This last case can be given a striking demonstration with the newly available neodymium-iron-boron magnets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1769g0016Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1769g0016Y"><span>Creep forming of an Al-Mg-Li alloy for aeronautic application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Younes, Wael; Giraud, Eliane; Fredj, Montassar; Dal Santo, Philippe; van der Veen, Sjoerd</p> <p>2016-10-01</p> <p>Creep forming of Al-Mg-Li alloy sheets is studied. An instrumented bulging machine is used to form a double curvature panel at a reduced scale. The deformation of the work-sheet is ensured by a 7475 aluminum alloy lost sheet deformed by a gas pressure applied on its upper surface. A numerical model using the ABAQUS software is developed in order to obtain the pressure law and to ensure the forming conditions during the cycle. This model is validated by comparing experiments and numerical results in terms of deformed shape and thickness evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896b0028A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896b0028A"><span>Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allazadeh, M. R.; Zuelli, N.</p> <p>2017-10-01</p> <p>A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25922305','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25922305"><span>Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Rui-Xin; Bi, Chun-Sheng; Yu, Yang; Zhang, Lin-Lin; Chen, Fa-Ming</p> <p>2015-08-01</p> <p>In this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application. It was found that human PDLSCs could be isolated from the PDL tissue of different-aged subjects. However, the ability of the PDLSCs to proliferate and to undergo osteogenic differentiation and their expression of pluripotency-associated transcription factors displayed age-related decreases. In addition, these cells exhibited an age-related increase in SA-βG expression. Aged cells showed an impaired ability to form functional cell sheets, as determined by morphological observations and Ki-67 immunohistochemistry staining. Based on the production of ECM proteins, such as fibronectin, integrin β1, and collagen type I; alkaline phosphatase (ALP) activity; and the expression of osteogenic genes, such as ALP, Runt-related transcription factor 2, and osteocalcin, cell sheets formed by PDLSCs derived from older donors demonstrated a less potent osteogenic capacity compared to those formed by PDLSCs from younger donors. Our data suggest that the age-associated decline in the matrix contents and osteogenic properties of PDLSC sheets should be taken into account in cell sheet engineering research and clinical periodontal regenerative therapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22596998-nanoscale-current-spreading-analysis-solution-processed-graphene-oxide-silver-nanowire-transparent-electrodes-via-conductive-atomic-force-microscopy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22596998-nanoscale-current-spreading-analysis-solution-processed-graphene-oxide-silver-nanowire-transparent-electrodes-via-conductive-atomic-force-microscopy"><span>Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.</p> <p>2016-05-21</p> <p>We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGO{sub X}) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGO{sub X} (1–3 monolayers-thick) and AgNWs exhibit sheet resistances of ∼100–1000 kΩ/□ and 100–900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGO{sub X}/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify themore » nanoscale phenomena responsible for this effect. For rGO{sub X} networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGO{sub X}/AgNWs' networks, rGO{sub X} flakes are found to form conductive “bridges” between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGO{sub X}/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Nanos...6.5645R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Nanos...6.5645R"><span>A highly crystalline single Au wire network as a high temperature transparent heater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, K. D. M.; Kulkarni, Giridhar U.</p> <p>2014-05-01</p> <p>A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. Electronic supplementary information (ESI) available: Optical micrographs, EDAX, XRD, SEM and TEM images of Au metal wires. See DOI: 10.1039/c4nr00869c</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850021595','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850021595"><span>The influence of the heliospheric current sheet and angular separation on flare accelerated solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Henning, H. M.; Scherrer, P. H.; Hoeksema, J. T.</p> <p>1985-01-01</p> <p>A complete set of major flares was used to investigate the effect of the heliospheric current sheet on the magnitude of the flare associated disturbance measured at Earth. It was also found that the angular separation tended to result in a smaller disturbance. Thirdly, it was determined that flares tend to occur near the heliospheric current sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820028337&hterms=1103&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231103','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820028337&hterms=1103&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231103"><span>Seasonal dependence of large-scale Birkeland currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.</p> <p>1981-01-01</p> <p>Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......128D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......128D"><span>A new solution chemical method to make low dimensional thermoelectric materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Zhongfen</p> <p>2001-11-01</p> <p>Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol1/pdf/CFR-2010-title48-vol1-sec43-301.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol1/pdf/CFR-2010-title48-vol1-sec43-301.pdf"><span>48 CFR 43.301 - Use of forms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... result of economic price adjustment, (ii) termination notices, and (iii) purchase order modifications as... Optional Form 336 (OF 336), Continuation Sheet, or a blank sheet of paper, may be used as a continuation...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910019059','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910019059"><span>Test of superplastically formed corrugated aluminum compression specimens with beaded webs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.</p> <p>1991-01-01</p> <p>Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol2/pdf/CFR-2010-title48-vol2-sec53-301-1446.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol2/pdf/CFR-2010-title48-vol2-sec53-301-1446.pdf"><span>48 CFR 53.301-1446 - Labor Standards Investigation Summary Sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Labor Standards Investigation Summary Sheet. 53.301-1446 Section 53.301-1446 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Illustrations of Forms 53.301-1446 Labor Standards...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001139','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001139"><span>Acceleration Modes and Transitions in Pulsed Plasma Accelerators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polzin, Kurt A.; Greve, Christine M.</p> <p>2018-01-01</p> <p>Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790061528&hterms=1055&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231055','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790061528&hterms=1055&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231055"><span>Radial deformation of the solar current sheet as a cause of geomagnetic storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Akasofu, S.-I.</p> <p>1979-01-01</p> <p>It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6-48 h), as a result of a steep radial deformation of the current sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..257a2006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..257a2006M"><span>Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.</p> <p>2017-10-01</p> <p>Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970020674','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970020674"><span>Disruption of Helmet Streamers by Current Emergence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guo, W. P.; Wu, S. T.; Tandberg-Hanssen, E.</p> <p>1996-01-01</p> <p>We have investigated the dynamic response of a coronal helmet streamer to the emergence from below of a current with its magnetic field in a direction opposite to the overlying streamer field. Once the emerging current moves into the closed region of the streamer, a current sheet forms between the emerging field and the streamer field, because the preexisting field and the newly emerging field have opposite polarities. Thus magnetic reconnection will occur at the flanks of the emerged structure where the current density is maximum. If the emerging current is large enough, the energy contained in the current and the reconnection will promptly disrupt the streamer. If the emerging current is small, the streamer will experience a stage of slow evolution. In this stage, slow magnetic reconnection occurring at the flanks of the emerged structure leads to the degeneration of the emerged current to a neutral point. Above this point, a new magnetic bubble will form. The resulting configuration resembles an inverse-polarity prominence. Depending on the initial input energy of the current, the resulting structure will either remain in situ, forming a quasi-static structure, or move upward, forming a coronal transient similar to coronal jets. The numerical method used in this paper can be used to construct helmet streamers containing a detached magnetic structure in their closed field region. The quasi-static solution may serve as a preevent corona for studying coronal mass ejection initiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7245438','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7245438"><span>Microchannel crossflow fluid heat exchanger and method for its fabrication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Swift, G.W.; Migliori, A.; Wheatley, J.C.</p> <p>1985-05-14</p> <p>A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......199S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......199S"><span>Investigation of the Formability of TRIP780 Steel Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Yang</p> <p></p> <p>The formability of a metal sheet is dependent on its work hardening behaviour and its forming limits; and both aspects must be carefully determined in order to accurately simulate a particular forming process. This research aims to characterize the formability of a TRIP780 sheet steel using advanced experimental testing and analysis techniques. A series of flat rolling and tensile tests, as well as shear tests were conducted to determine the large deformation work hardening behaviour of this TRIP780 steel. Nakazima tests were carried out up to fracture to determine the forming limits of this sheet material. A highly-automated method for generating a robust FLC for sheet materials from DIC strain measurements was created with the help of finite element simulations, and evaluated against the conventional method. A correction algorithm that aims to compensate for the process dependent effects in the Nakazima test was implemented and tested with some success.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/644386','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/644386"><span>Continuous process to produce lithium-polymer batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.</p> <p>1998-05-12</p> <p>Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911173L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911173L"><span>In situ Observations of Heliospheric Current Sheets Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yong; Peng, Jun; Huang, Jia; Klecker, Berndt</p> <p>2017-04-01</p> <p>We investigate the Heliospheric current sheet observation time difference of the spacecraft using the STEREO, ACE and WIND data. The observations are first compared to a simple theory in which the time difference is only determined by the radial and longitudinal separation between the spacecraft. The predictions fit well with the observations except for a few events. Then the time delay caused by the latitudinal separation is taken in consideration. The latitude of each spacecraft is calculated based on the PFSS model assuming that heliospheric current sheets propagate at the solar wind speed without changing their shapes from the origin to spacecraft near 1AU. However, including the latitudinal effects does not improve the prediction, possibly because that the PFSS model may not locate the current sheets accurately enough. A new latitudinal delay is predicted based on the time delay using the observations on ACE data. The new method improved the prediction on the time lag between spacecraft; however, further study is needed to predict the location of the heliospheric current sheet more accurately.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SZF.....1b..49L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SZF.....1b..49L"><span>On ballooning instability in current sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leonovich, Anatoliy; Kozlov, Daniil</p> <p>2015-06-01</p> <p>The problem of instability of the magnetotail current sheet to azimuthally small-scale Alfvén and slow magnetosonic (SMS) waves is solved. The solutions describe unstable oscillations in the presence of a current sheet and correspond to the region of stretched closed field lines of the magnetotail. The spectra of eigen-frequencies of several basic harmonics of standing Alfvén and SMS waves are found in the local and WKB approximation, which are compared. It is shown that the oscillation properties obtained in these approximations differ radically. In the local approximation, the Alfvén waves are stable in the entire range of magnetic shells. SMS waves go into the aperiodic instability regime (the regime of the "ballooning" instability), on magnetic shells crossing the current sheet. In the WKB approximation, both the Alfvén and SMS oscillations go into an unstable regime with a non-zero real part of their eigen-frequency, on magnetic shells crossing the current sheet. The structure of azimuthally small-scale Alfvén waves across magnetic shells is determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663852-observations-formation-development-structure-current-sheet-eruptive-solar-flare','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663852-observations-formation-development-structure-current-sheet-eruptive-solar-flare"><span>Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seaton, Daniel B.; Darnel, Jonathan M.; Bartz, Allison E., E-mail: daniel.seaton@noaa.gov</p> <p>2017-02-01</p> <p>We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops.more » We estimate that the rate of reconnection during the event was M{sub A} ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1567..808C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1567..808C"><span>A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young</p> <p>2013-12-01</p> <p>During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JOM....67e.938C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JOM....67e.938C"><span>Strength and Formability Improvement of Al-Cu-Mn Aluminum Alloy Complex Parts by Thermomechanical Treatment with Sheet Hydroforming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yi-Zhe; Liu, Wei; Yuan, Shi-Jian</p> <p>2015-05-01</p> <p>Normally, the strength and formability of aluminum alloys can be increased largely by severe plastic deformation and heat treatment. However, many plastic deformation processes are more suitable for making raw material, not for formed parts. In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts. The limiting drawing ratio, thickness, and strain distribution of complex parts formed by sheet hydroforming were investigated to study the formability and sheet-deformation behavior. Based on the optimal formed parts, the tensile strength, microhardness, grain structure, and strengthening precipitates were analyzed to identify the strengthening effect of thermomechanical treatment. The results show that in the solution state, the limiting drawing ratio of cylindrical parts could be increased for 10.9% compared with traditional deep drawing process. The peak values of tensile stress and microhardness of formed parts are 18.0% and 12.5% higher than that in T6 state. This investigation shows that the thermomechanical treatment by sheet hydroforming is a potential method for the products manufacturing of aluminum alloy with high strength and good formability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNS....27..531M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNS....27..531M"><span>Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsuoka, C.; Nishihara, K.; Sano, T.</p> <p>2017-04-01</p> <p>A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005APS..DPPCP1106F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005APS..DPPCP1106F"><span>Fine scale structure in the current sheet and electrostatic fields during driven magnetic reconnection on the VTF experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fox, William</p> <p>2005-10-01</p> <p>We have conducted a series of experiments in the VTF reconnection experiment[1] to measure with high resolution the current channel and electric structures that form in response to driven reconnection. Preliminary measurements have revealed that the current sheet is not symmetric across the X-line, contradicting an assumption fundamental to nearly every reconnection theory. Importantly, effects related to this asymmetry can account for momentum balance for the electrons at the X-line (i.e. fulfillment of the generalized Ohm's law) via convective inertia (m n v.∇v||). Measurements of strong in-plane electric field structures (E˜ 1 kV/m) near the X-point reveal a mechanism to efficiently heat ions, as has been recently observed by laser induced fluorescence (LIF) measurements of the ion distribution function[2].This work was supported by a DoE Fusion Energy Sciences Fellowship.[1] J. Egedal, et. al. (2001), Rev. Sci. Instrum. 71, 3351 [2] A. Stark, W. Fox, J.Egedal, O. Grulke, T. Klinger, (2005), submitted to Phys. Rev. Lett.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914075A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914075A"><span>Non-thermal electron distribution functions through 3D magnetic reconnection instabilities in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alejandro Munoz Sepulveda, Patricio; Buechner, Joerg</p> <p>2017-04-01</p> <p>The effects of kinetic instabilities on the solar wind electron velocity distribution functions (eVDFs) are mostly well understood under local homogeneous and stationary conditions. But the solar wind also contains current sheets, which affect the local properties of instabilities, turbulence and thus the observed non-maxwellian features in the eVDFs. Those processes are vastly unexplored. Therefore, we aim to investigate the influence of self-consistently generated turbulence via electron-scale instabilities in reconnecting current sheets on the formation of suprathermal features in the eVDFs. For this sake, we carry out 3D fully-kinetic Particle-in-Cell code numerical simulations of force free current sheets with a guide magnetic field. We find extended tails, anisotropic plateaus and non-gyrotropic features in the eVDFs, correlated with the locations and time where micro-turbulence is enhanced in the current sheet due to current-aligned streaming instabilities. We also discuss the influence of the plasma parameters, such as the ion to electron temperature ratio, on the excitation of current sheet instabilities and their effect on the properties of the eVDFs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DPPJP1083G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DPPJP1083G"><span>Spectroscopic Diagnostics of Electric Fields in the Plasma of Current Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gavrilenko, Valeri; Kyrie, Natalya P.; Frank, Anna G.; Oks, Eugene</p> <p>2004-11-01</p> <p>Spectroscopic measurements of electric fields (EFs) in current sheet plasmas were performed in the CS-3D device. The device is intended to study the evolution of current sheets and the magnetic reconnection phenomena. We used the broadening of spectral lines (SLs) of HeII ions for diagnostics of EFs in the current sheet middle plane, and the broadening of SLs of HeI atoms for detection of EFs in the current sheet peripheral regions. For detection of EFs in current sheet plasma, we used SLs of HeII ions at 468.6; 320.3 and 656.0 nm, as well as SLs of HeI atoms at 667.8; 587.6; 492.2 and 447.1 nm. The latter two lines are of a special interest since their profiles include the dipole-forbidden components along with the allowed components. The experimental data have been analyzed by using the numerical calculations based on the Model Microfield Method. The maximum plasma density in the middle of the sheet was in the range (2-8) × 10^16 cm-3, the density in the peripheral regions was (1-2)×10^15 cm-3, and the strength of the quasi-one-dimensional anomalous electric fields in the peripheral regions reached the value of 100 kV/cm. Supported by CRDF, grant RU-P1-2594-MO-04; by the RFBR, grant 03-02-17282; and by the ISTC, project 2098.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.1857D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.1857D"><span>"Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Del Sarto, Daniele; Pucci, Fulvia; Tenerani, Anna; Velli, Marco</p> <p>2016-03-01</p> <p>This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfvén time calculated on the macroscopic scale. For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio de2/L2, where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor radius effects are then included, and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GSL.....3...12M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GSL.....3...12M"><span>Relation of the auroral substorm to the substorm current wedge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McPherron, Robert L.; Chu, Xiangning</p> <p>2016-12-01</p> <p>The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C22A..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C22A..06R"><span>Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.</p> <p>2017-12-01</p> <p>A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730018681','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730018681"><span>Development of forming and joining technology for TD-NiCr sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Torgerson, R. T.</p> <p>1973-01-01</p> <p>Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0324.photos.211788p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0324.photos.211788p/"><span>10. Fuel tanks concrete form plans, elevations and details, sheet ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>10. Fuel tanks concrete form plans, elevations and details, sheet 95 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.734c2062J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.734c2062J"><span>Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Junk, S.</p> <p>2016-08-01</p> <p>Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26196849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26196849"><span>New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N</p> <p>2015-12-30</p> <p>This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1089409','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1089409"><span>Recompressed exfoliated graphite articles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z</p> <p>2013-08-06</p> <p>This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApSS..366...46L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApSS..366...46L"><span>Facile synthesis of porous graphene as binder-free electrode for supercapacitor application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Guangsheng; Huang, Haifu; Lei, Chenglong; Cheng, Zhenzhi; Wu, Xiaoshan; Tang, Shaolong; Du, Youwei</p> <p>2016-03-01</p> <p>Here, porous grapheme oxide (GO) gel deposited on nickel foam was prepared by using polystyrene (PS) colloidal particles as spacers for use as electrodes in high rate supercapacitors, then reduced by Vitamin C aqueous solution in ambient condition. The PS particles were surrounded by reduced graphene oxide (rGO) sheets, forming crinkles and rough textures. When PS particles were selectively removed, rGO gel coated on the skeleton of Ni foam can formed an open porous structure, which prevents elf-aggregation and restacking of graphene sheets. The porous rGO-based supercapacitors exhibit excellent electrochemical performances such as a specific capacitance of 152 F g-1 at 1 A g-1, high rate capability of 53% capacitance retention upon a current increase to 100 A g-1 and good cycle stability, due to effective rapid and short pathways for ionic and electronic transport provided by the sub-micrometer structure of rGO gel and 3D interconnected network of Ni foam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMEP...25.4837M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMEP...25.4837M"><span>Experimental and Numerical Studies on Isothermal and Non-isothermal Deep Drawing of IS 513 CR3 Steel Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.</p> <p>2016-11-01</p> <p>The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanot..29B5702M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanot..29B5702M"><span>Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert</p> <p>2018-07-01</p> <p>Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29664411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29664411"><span>Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert</p> <p>2018-04-17</p> <p>Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364916-electrodynamics-axisymmetric-pulsar-magnetosphere-electron-positron-discharge-numerical-experiment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364916-electrodynamics-axisymmetric-pulsar-magnetosphere-electron-positron-discharge-numerical-experiment"><span>ELECTRODYNAMICS OF AXISYMMETRIC PULSAR MAGNETOSPHERE WITH ELECTRON-POSITRON DISCHARGE: A NUMERICAL EXPERIMENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Alexander Y.; Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu</p> <p>2014-11-01</p> <p>We present the first self-consistent global simulations of pulsar magnetospheres with operating e {sup ±} discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the ''particle-in-cell'' method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e {sup ±} discharge. We follow the system evolution for severalmore » revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e {sup ±} pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the ''dead'' state with suppressed pair creation and electric currents, regardless of the discharge voltage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhPl...21f2305C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhPl...21f2305C"><span>Two-fluid description of wave-particle interactions in strong Buneman turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Che, H.</p> <p>2014-06-01</p> <p>To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23940337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23940337"><span>Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas</p> <p>2013-08-27</p> <p>We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMEP...25.1136B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMEP...25.1136B"><span>Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen</p> <p>2016-03-01</p> <p>To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409590-principles-designing-proteins-cavities-formed-curved-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409590-principles-designing-proteins-cavities-formed-curved-sheets"><span>Principles for designing proteins with cavities formed by curved β sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.</p> <p></p> <p>Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheetmore » curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003142','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003142"><span>Ceramic Composite Thin Films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)</p> <p>2013-01-01</p> <p>A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OptLT..71...29C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OptLT..71...29C"><span>Investigation on laser forming of stainless steel sheets under coupling mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakraborty, Shitanshu S.; Maji, Kuntal; Racherla, Vikranth; Nath, Ashish K.</p> <p>2015-08-01</p> <p>In laser forming of three dimensional surfaces simultaneous bending and thickening of the sheet being formed are often required. Laser forming by the coupling mechanism has the capability to generate both of them. However, literature is scarce on the study of laser forming under coupling mechanism. A part of this work investigates the effect of Fourier number and laser spot diameter on bending angle and thickness increment induced by laser scans promoting coupling mechanism. Peak surface temperature was maintained nearly constant. It was chosen so as to avoid surface melting and sensitization at the scan track on top surface. The required laser parameters were determined with the help of an analytical model for temperature estimation. The experimental results showed that while the bending angle reduced with the increase of Fourier number, the thickness increment increased. And, with the increase of laser spot diameter both bending angle and thickness increased. Finite element simulations were carried out using ABAQUS software on a three dimensional model for developing a better understanding of the deformation behaviour. Multimode intensity distribution of the laser beam and temperature dependant material properties were considered in the simulations. Finite element analysis and microstructure study showed that chances of sensitization are rare with the current laser parameter combinations. Based on temperature gradient and coupling mechanisms a different laser scanning strategy has been proposed for laser forming of deep pillow shaped surfaces retaining symmetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24048435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24048435"><span>Two-step electrodeposition construction of flower-on-sheet hierarchical cobalt hydroxide nano-forest for high-capacitance supercapacitors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Wanlu; Gao, Zan; Ma, Jing; Wang, Jun; Zhang, Xingming; Liu, Lianhe</p> <p>2013-11-28</p> <p>A novel flower-on-sheet hierarchical morphology of α-Co(OH)2 nanostructures was achieved via an easy two-step synthesis strategy. The method is based on first a galvanostatic electrodeposition (GE) of vertically aligned interconnected Co(OH)2 nanosheets to form a branch layer and second a potentiostatic electrodeposition (PE) of Co(OH)2 microflowers on the obtained branch layer from the secondary growth of their sheet-like precursors. The formation mechanism of this special PE time-dependent nanostructure was proposed and their morphology-dependent supercapacitor properties were also investigated. For a given areas mass loading, high specific capacitances of 1822 F g(-1) have been achieved for the electrode obtained after 200 s GE followed by a 300 s PE in a three-electrode configuration, and it maintained 91% of its initial capacity after 1000 constant-current charge/discharge cycles. Even when the discharge current density was increased from 1 to 50 mA cm(-2), the capacitance was still as high as 1499 F g(-1), indicating an excellent rate performance of the fabricated electrodes. The high performances of the electrodes are attributed to the special porous structure, 3D hierarchical morphology, vertical aligned orientation, and low contact resistance between active material and charge collector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1252..910H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1252..910H"><span>Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred</p> <p>2010-06-01</p> <p>The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27324079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27324079"><span>The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min</p> <p>2016-06-21</p> <p>Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..225a2004A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..225a2004A"><span>Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akinlabi, Stephen; Akinlabi, Esther</p> <p>2017-08-01</p> <p>Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JFuE...28..229W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JFuE...28..229W"><span>Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.</p> <p>2009-06-01</p> <p>By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661418-evidence-quasi-adiabatic-motion-charged-particles-strong-current-sheets-solar-wind','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661418-evidence-quasi-adiabatic-motion-charged-particles-strong-current-sheets-solar-wind"><span>EVIDENCE FOR QUASI-ADIABATIC MOTION OF CHARGED PARTICLES IN STRONG CURRENT SHEETS IN THE SOLAR WIND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.</p> <p></p> <p>We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplestmore » modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼10{sup 4} km) embedded into a wider region of about 10{sup 5} km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25b2904K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25b2904K"><span>On the influence of the local maxima of total pressure on the current sheet stability to the kink-like (flapping) mode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korovinskiy, D. B.; Erkaev, N. V.; Semenov, V. S.; Ivanov, I. B.; Kiehas, S. A.; Ryzhkov, I. I.</p> <p>2018-02-01</p> <p>The stability of the Fadeev-like current sheet with respect to transversally propagating kink-like perturbations (flapping mode) is considered in terms of two-dimensional linear magnetohydrodynamic numerical simulations. It is found that the current sheet is stable when the total pressure minimum is located in the sheet center and unstable when the maximum value is reached there. It is shown that an unstable spot of any size enforces the whole sheet to be unstable, though the increment of instability decreases with the reduction of the unstable domain. In unstable sheets, the dispersion curve of instability shows a good match with the double-gradient (DG) model prediction. Here, the typical growth rate (short-wavelength limit) is close to the DG estimate averaged over the unstable region. In stable configurations, the typical frequency matches the maximum DG estimate. The dispersion curve of oscillations demonstrates a local maximum at wavelength ˜0.7 sheet half-width, which is a new feature that is absent in simplified analytical solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810007408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810007408"><span>The Jovian magnetotail and its current sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Behannon, K. W.; Burlaga, L. F.; Ness, N. F.</p> <p>1980-01-01</p> <p>Analyses of Voyager magnetic field measurements have extended the understanding of the structural and temporal characteristics of Jupiter's magnetic tail. The magnitude of the magnetic field in the lobes of the tail is found to decrease with Jovicentric distance approximately as r to he-1.4, compared with the power law exponent of -1.7 found for the rate of decrease along the Pioneer 10 outbound trajectory. Voyager observations of magnetic field component variations with Jovicentric distance in the tail do not support the uniform radial plasma outflow model derived from Pioneer data. Voyager 2 has shown that the azimuthal current sheet which surrounds Jupiter in the inner and middle magnetosphere extends tailward (in the anti-Sun direction) to a distance of at least 100 R sub J. In the tail this current sheet consists of a plasma sheet and embedded neutral sheet. In the region of the tail where the sheet is observed, the variation of the magnetic field as a result of the sheet structure and its 10 hr periodic motion is the dominant variation seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900036674&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddropout','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900036674&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddropout"><span>Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner plasma sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, D. N.; Mcpherron, R. L.</p> <p>1990-01-01</p> <p>A qualitative model of cross-tail current flow is considered. It is suggested that when magnetic reconnection begins, the current effectively flows across the plasma sheet both earthward and tailward of the disruption region near the neutral line. It is shown that an enhanced cross-tail current earthward of this region would thin the plasma sheet substantially due to the magnetic pinch effect. The results explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998SedG..115...33S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998SedG..115...33S"><span>Sediment drifts and contourites on the continental margin off northwest Britain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoker, M. S.; Akhurst, M. C.; Howe, J. A.; Stow, D. A. V.</p> <p>1998-01-01</p> <p>Seismic reflection profiles and short cores from the continental margin off northwest Britain have revealed a variety of sediment-drift styles and contourite deposits preserved in the northeast Rockall Trough and Faeroe-Shetland Channel. The sediment drifts include: (1) distinctly mounded elongate drifts, both single- and multi-crested; (2) broad sheeted drift forms, varying from gently domed to flat-lying; and (3) isolated patch drifts, including moat-related drifts. Fields of sediment waves are locally developed in association with the elongate and gently domed, broad sheeted drifts. The contrasting styles of the sediment drifts most probably reflect the interaction between a variable bottom-current regime and the complex bathymetry of the continental margin. The bulk of the mounded/gently domed drifts occur in the northeast Rockall Trough, whereas the flat-lying, sheet-form deposits occur in the Faeroe-Shetland Channel, a much narrower basin which appears to have been an area more of sediment export than drift accumulation. Patch drifts are present in both basins. In the northeast Rockall Trough, the along-strike variation from single- to multi-crested elongate drifts may be a response to bottom-current changes influenced by developing drift topography. Muddy, silty muddy and sandy contourites have been recovered in sediment cores from the uppermost parts of the drift sequences. On the basis of their glaciomarine origin, these mid- to high-latitude contourites can be referred to, collectively, as glacigenic contourites. Both partial and complete contourite sequences are preserved; the former consist largely of sandy (mid-only) and top-only contourites. Sandy contourites, by their coarse-grained nature and their formation under strongest bottom-current flows, are the most likely to be preserved in the rock record. However, the very large scale of sediment drifts should be borne in mind with regard to the recognition of fossil contourites in ancient successions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..164a2009G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..164a2009G"><span>A numerical analysis on forming limits during spiral and concentric single point incremental forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gipiela, M. L.; Amauri, V.; Nikhare, C.; Marcondes, P. V. P.</p> <p>2017-01-01</p> <p>Sheet metal forming is one of the major manufacturing industries, which are building numerous parts for aerospace, automotive and medical industry. Due to the high demand in vehicle industry and environmental regulations on less fuel consumption on other hand, researchers are innovating new methods to build these parts with energy efficient sheet metal forming process instead of conventionally used punch and die to form the parts to achieve the lightweight parts. One of the most recognized manufacturing process in this category is Single Point Incremental Forming (SPIF). SPIF is the die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any process time to plastic deformation zone. In the present work, finite element method (FEM) is applied to analyze the forming limits of high strength low alloy steel formed by single point incremental forming (SPIF) by spiral and concentric tool path. SPIF numerical simulations were model with 24 and 29 mm cup depth, and the results were compare with Nakajima results obtained by experiments and FEM. It was found that the cup formed with Nakajima tool failed at 24 mm while cups formed by SPIF surpassed the limit for both depths with both profiles. It was also notice that the strain achieved in concentric profile are lower than that in spiral profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1177241','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1177241"><span>Steady State Load Characterization Fact Sheet: 2012 Chevy Volt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Scoffield, Don</p> <p>2015-03-01</p> <p>This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH51C2116L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH51C2116L"><span>Transition in Electron Physics of Magnetic Reconnection in Weakly Collisional Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le, A.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.; Egedal, J.; Forest, C.</p> <p>2013-12-01</p> <p>Using self-consistent fully kinetic simulations with a Monte-Carlo treatment of the Coulomb collision operator, we explore the transition between collisional and kinetic regimes of magnetic reconnection in high-Lundquist-number current sheets. Recent research in collisionless reconnection has shown that electron kinetic physics plays a key role in the evolution. Large-scale electron current sheets may form, leading to secondary island formation and turbulent flux rope interactions in 3D. The new collisional simulations demonstrate how increasing collisionality modifies or eliminates these electron structures in the kinetic regimes. Additional basic questions that are addressed include how the reconnection rate and the release of magnetic energy into electrons and ions vary with collisionality. The numerical study provides insight into reconnection in dense regions of the solar corona, the solar wind, and upcoming laboratory experiments at MRX (Princeton) and MPDX (UW-Madison). The implications of these results for studies of turbulence dissipation in weakly collisional plasmas are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24103929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24103929"><span>One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David</p> <p>2013-09-09</p> <p>The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2018P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2018P"><span>Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paschmann, G.; Haaland, S. E.; Phan, T. D.; Sonnerup, B. U. Ö.; Burch, J. L.; Torbert, R. B.; Gershman, D. J.; Dorelli, J. C.; Giles, B. L.; Pollock, C.; Saito, Y.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Baumjohann, W.; Fuselier, S. A.</p> <p>2018-03-01</p> <p>This paper describes the generation and initial utilization of a database containing 80 vector and scalar quantities, for a total of 8,670 magnetopause and magnetosheath current sheet crossings by MMS1, using plasma and magnetic field data from the Fast Plasma Investigation, Fluxgate Magnetometer, and Hot Plasma Composition Analyzer instruments, augmented by solar wind and interplanetary magnetic field data from CDAWeb. Based on a determination of the current sheet width, measured and calculated vector and scalar quantities are stored for the two sides of the current sheet and for selected times within the current sheet. The only manual operations were the classification of the current sheets according to the type of boundary, the character of the magnetic field transition, and the quality of the current sheet fit. To characterize the database, histograms of selected key quantities are presented. We then give the statistics for the duration, motion, and thicknesses of the magnetopause current sheet, using single-spacecraft techniques for the determination of the normal velocities, obtaining median results of 12.9 s, 38.5 km/s, and 705.4 km, respectively. When scaled to the ion inertial length, the median thickness became 12.6; there were no thicknesses less than one. Next, we apply the Walén relation to find crossings that are rotational discontinuities and thus may indicate ongoing magnetic reconnection. For crossings where the velocities in the outflow region exceed the velocity on the magnetosheath side by at least 250 km/s, 47% meet our rotational discontinuity criteria. If we require the outflow to exceed 250 km/s along the L direction, then the percentage rises to 68%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984JElCo..67..106M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984JElCo..67..106M"><span>Polycrystalline silicon sheets for solar cells by the spinning method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maeda, Y.; Yokoyama, T.; Hide, I.</p> <p>1984-03-01</p> <p>A new method has been developed in which polycrystalline silicon sheets are formed directly from molten silicon on a spinning wheel. The sheet is 5 cm x 5 cm, 0.1-0.5 mm thick, and made at a rate of four sheets per 15 s; power conversion rate of a solar cell assembled with these silicon sheets is more than 10 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989NTN.....1...21.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989NTN.....1...21."><span>Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25019709','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25019709"><span>Optimal swimming of a sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Montenegro-Johnson, Thomas D; Lauga, Eric</p> <p>2014-06-01</p> <p>Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=30146','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=30146"><span>An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Balbirnie, Melinda; Grothe, Robert; Eisenberg, David S.</p> <p>2001-01-01</p> <p>X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding. PMID:11226247</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRA..117.2209Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRA..117.2209Y"><span>Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, T.</p> <p>2012-02-01</p> <p>The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA43B2655H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA43B2655H"><span>Extremely Nonthermal Monoenergetic Precipitation in the Auroral Acceleration Region: In Situ Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatch, S.; Chaston, C. C.; Labelle, J. W.</p> <p>2017-12-01</p> <p>We report in situ measurements through the auroral acceleration region that reveal extremely nonthermal monoenergetic electron distributions. These auroral primaries are indicative of source populations in the plasma sheet well described as kappa distributions with κ ≲ 2. We show from observations and modeling how this large deviation from Maxwellian form may modify the acceleration potential required to drive current closure through the auroral ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4891677','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4891677"><span>Electrical Oscillations in Two-Dimensional Microtubular Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cantero, María del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.</p> <p>2016-01-01</p> <p>Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton. PMID:27256791</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSM11C2314O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSM11C2314O"><span>Convection Constraints and Current Sheet Thinning During the Substorm Growth Phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otto, A.; Hsieh, M.</p> <p>2012-12-01</p> <p>A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 RE. We propose that the cause for this current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux that is eroded at the dayside as a result of dayside reconnection. Slow (adiabatic) convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is illustrated and examined by three-dimensional meso-scale MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase. The developing thin current sheet is easily destabilized and can undergo localized reconnection events. We present properties of the thinning current sheet, the associated entropy evolution, examples of localized reconnection onset and we discuss the dependence of this process on external parameters such the global reconnection rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSM11B2022H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSM11B2022H"><span>Current Sheet Thinning Associated with Dayside Reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsieh, M.; Otto, A.; Ma, X.</p> <p>2011-12-01</p> <p>The thinning of the near-Earth current sheet during the growth phase is of critical importance to understand geomagnetic substorms and the conditions that lead to the onset of the expansion phase. We have proposed that convection from the midnight tail region to the dayside as the cause for this current sheet thinning. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. The process is examined by three-dimensional MHD simulations. The properties of the current sheet thinning are determined as a function of the magnitude of convection toward the dayside and the lobe boundary conditions. It is shown that the model yields a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663797-solar-energetic-particle-transport-near-heliospheric-current-sheet','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663797-solar-energetic-particle-transport-near-heliospheric-current-sheet"><span>Solar Energetic Particle Transport Near a Heliospheric Current Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Battarbee, Markus; Dalla, Silvia; Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk</p> <p>2017-02-10</p> <p>Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibitmore » multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896h0015K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896h0015K"><span>Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael</p> <p>2017-10-01</p> <p>Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15458633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15458633"><span>Anatomy of an amyloidogenic intermediate: conversion of beta-sheet to alpha-sheet structure in transthyretin at acidic pH.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Armen, Roger S; Alonso, Darwin O V; Daggett, Valerie</p> <p>2004-10-01</p> <p>The homotetramer of transthyretin (TTR) dissociates into a monomeric amyloidogenic intermediate that self-assembles into amyloid fibrils at low pH. We have performed molecular dynamics simulations of monomeric TTR at neutral and low pH at physiological (310 K) and very elevated temperature (498 K). In the low-pH simulations at both temperatures, one of the two beta-sheets (strands CBEF) becomes disrupted, and alpha-sheet structure forms in the other sheet (strands DAGH). alpha-sheet is formed by alternating alphaL and alphaR residues, and it was first proposed by Pauling and Corey. Overall, the simulations are in agreement with the available experimental observations, including solid-state NMR results for a TTR-peptide amyloid. In addition, they provide a unique explanation for the results of hydrogen exchange experiments of the amyloidogenic intermediate-results that are difficult to explain with beta-structure. We propose that alpha-sheet may represent a key pathological conformation during amyloidogenesis. Copyright 2004 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930081763','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930081763"><span>Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heimerl, George J; Woods, Walter</p> <p>1946-01-01</p> <p>Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518602-turbulence-generated-proton-scale-structures-terrestrial-magnetosheath','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518602-turbulence-generated-proton-scale-structures-terrestrial-magnetosheath"><span>TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vörös, Zoltán; Narita, Yasuhito; Yordanova, Emiliya</p> <p>2016-03-01</p> <p>Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives.more » During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920071978&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920071978&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents"><span>Interaction of reflected ions with the firehose marginally stable current sheet - Implications for plasma sheet convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pritchett, P. L.; Coroniti, F. V.</p> <p>1992-01-01</p> <p>The firehose marginally stable current sheet, which may model the flow away from the distant reconnection neutral line, assumes that the accelerated particles escape and never return to re-encounter the current region. This assumption fails on the earthward side where the accelerated ions mirror in the geomagnetic dipole field and return to the current sheet at distances up to about 30 R(E) down the tail. Two-dimensional particle simulations are used to demonstrate that the reflected ions drive a 'shock-like' structure in which the incoming flow is decelerated and the Bz field is highly compressed. These effects are similar to those produced by adiabatic choking of steady convection. Possible implications of this interaction for the dynamics of the tail are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28342879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28342879"><span>Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong</p> <p>2017-05-01</p> <p>In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by high-density culture of chondrocytes in vitro could cearte a chondrogenic niche in subcutaneous environment and efficiently retain the chondrogenic phenotype of in vitro BMSC engineered cartilage (vitro-BEC). Furthermore, cell tracing results revealed that the regenerated cartilage mainly derived from the implanted vitro-BEC. The current study not only proposes a novel research model for microenvironment simulation but also provides a useful strategy for stable ectopic cartilage regeneration of stem cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24h2903Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24h2903Z"><span>Electron flat-top distributions and cross-scale wave modulations observed in the current sheet of geomagnetic tail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong</p> <p>2017-08-01</p> <p>We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3334875','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3334875"><span>The Decisional Balance Sheet to Promote Healthy Behavior Among Ethnically Diverse Older Adults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Geller, Karly S.; Mendoza, Ilora D.; Timbobolan, Jasah; Montjoy, Holly L.; Nigg, Claudio R.</p> <p>2012-01-01</p> <p>Objective The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Design and Sample Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Measures Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Results Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Conclusions Specific suggestions for similar programs are reported. PMID:22512425</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...163..141P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...163..141P"><span>Large-scale evolution of the central-east Greenland margin: New insights to the North Atlantic glaciation history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pérez, Lara F.; Nielsen, Tove; Knutz, Paul C.; Kuijpers, Antoon; Damm, Volkmar</p> <p>2018-04-01</p> <p>The continental shelf of central-east Greenland is shaped by several glacially carved transverse troughs that form the oceanward extension of the major fjord systems. The evolution of these troughs through time, and their relation with the large-scale glaciation of the Northern Hemisphere, is poorly understood. In this study seismostratigraphic analyses have been carried out to determine the morphological and structural development of this important sector of the East Greenland glaciated margin. The age of major stratigraphic discontinuities has been constrained by a direct tie to ODP site 987 drilled in the Greenland Sea basin plain off Scoresby Sund fan system. The areal distribution and internal facies of the identified seismic units reveal the large-scale depositional pattern formed by ice-streams draining a major part of the central-east Greenland ice sheet. Initial sedimentation along the margin was, however, mainly controlled by tectonic processes related to the margin construction, continental uplift, and fluvial processes. From late Miocene to present, progradational and erosional patterns point to repeated glacial advances across the shelf. The evolution of depo-centres suggests that ice sheet advances over the continental shelf have occurred since late Miocene, about 2 Myr earlier than previously assumed. This cross-shelf glaciation is more pronounced during late Miocene and early Pliocene along Blosseville Kyst and around the Pliocene/Pleistocene boundary off Scoresby Sund; indicating a northward migration of the glacial advance. The two main periods of glaciation were separated by a major retreat of the ice sheet to an inland position during middle Pliocene. Mounded-wavy deposits interpreted as current-related deposits suggest the presence of changing along-slope current dynamics in concert with the development of the modern North Atlantic oceanographic pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22493834-ion-electron-dynamics-generating-hall-current-exhaust-far-downstream-reconnection-line','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22493834-ion-electron-dynamics-generating-hall-current-exhaust-far-downstream-reconnection-line"><span>Ion and electron dynamics generating the Hall current in the exhaust far downstream of the reconnection x-line</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp; Takamoto, Makoto</p> <p>2016-01-15</p> <p>We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modifiedmore » around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850....8J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850....8J"><span>Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with a Homologous X-shaped Flare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Chaowei; Yan, Xiaoli; Feng, Xueshang; Duan, Aiying; Hu, Qiang; Zuo, Pingbing; Wang, Yi</p> <p>2017-11-01</p> <p>As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during a solar flare, and they are essential for magnetic energy dissipation in the solar corona because they enable magnetic reconnection. However, the static reconstruction of a CS is rare, possibly due to limitations that are inherent in the available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by the SDO/HMI vector magnetogram. The CS is associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration.This is evidenced by an ’X’ shape, formed from the field lines traced from the CS to the photosphere. This nearly reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS via reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of a data-constrained MHD model in reproducing a CS in the corona as well as providing insight into the magnetic mechanism of solar flares.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648601-collective-epithelial-cell-sheet-adhesion-migration-polyelectrolyte-multilayers-uniform-gradients-compliance','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648601-collective-epithelial-cell-sheet-adhesion-migration-polyelectrolyte-multilayers-uniform-gradients-compliance"><span>Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu</p> <p></p> <p>Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion andmore » migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces. Interestingly, cells throughout the interior region of the sheets on uncrosslinked PEMUs retained their actin and vinculin organization at adherens junctions after treatment with Blebbistatin. Like Blebbistatin, a Rho-kinase (ROCK) inhibitor, Y27632, promoted loss of cell-cell connections between edge cells, whereas a Rac1 inhibitor, NSC23766, primarily altered the lamellipodial protrusion in edge cells. Compliance gradient PAH-PEMUs promoted durotaxis of the cell sheets but not of individual keratocytes, demonstrating durotaxis, like plithotaxis, is an emergent property of cell sheet organization. - Highlights: • Fish scale cell sheets migrate on PAH-PAABp polyelectrolyte multilayers. • Sheets migrating on softer PEMUs periodically retract. • Sheets durotax on modulus gradients. • Myosin II inhibitors inhibit sheet integrity and migration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040129661','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040129661"><span>Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.</p> <p>1993-01-01</p> <p>Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AIPC..712.1645A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AIPC..712.1645A"><span>An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alves, J. L.; Oliveira, M. C.; Menezes, L. F.</p> <p>2004-06-01</p> <p>Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1039743','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1039743"><span>Seal for fluid forming tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Golovashchenko, Sergey Fedorovich [Beverly Hills, MI; Bonnen, John Joseph Francis [Milford, MI</p> <p>2012-03-20</p> <p>An electro-hydraulic forming tool for forming a sheet metal blank in a one-sided die has first and second rigid rings that engage opposite sides of a sheet metal blank. The rigid rings are contained within slots on a die portion and a hydraulic force applicator portion of the forming tool. The seals are either resiliently biased by an elastomeric member or inherently resiliently biased into contact with the blank.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896h0010M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896h0010M"><span>A modular tooling set-up for incremental sheet forming (ISF) with subsequent stress-relief annealing under partial constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maqbool, Fawad; Bambach, Markus</p> <p>2017-10-01</p> <p>Incremental sheet forming (ISF) is a manufacturing process most suitable for small-batch production of sheet metal parts. In ISF, a CNC-controlled tool moves over the sheet metal, following a specified contour to form a part of the desired geometry. This study focuses on one of the dominant process limitations associated with the ISF, i.e., the limited geometrical accuracy. In this regard, a case study is performed which shows that increased geometrical accuracy of the formed part can be achieved by a using stress-relief annealing before unclamping. To keep the tooling costs low, a modular die design consisting of a stiff metal frame and inserts made from inexpensive plastics (Sika®) were devised. After forming, the plastics inserts are removed. The metal frame supports the part during stress-relief annealing. Finite Element (FE) simulations of the manufacturing process are performed. Due to the residual stresses induced during the forming, the geometry of the formed part, from FE simulation and the actual manufacturing process, shows severe distortion upon unclamping the part. Stress relief annealing of the formed part under partial constraints exerted by the tool frame shows that a part with high geometrical accuracy can be obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ApSS..253..530E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ApSS..253..530E"><span>Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.</p> <p>2006-11-01</p> <p>Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1960o0009M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1960o0009M"><span>Experimental analysis of the sheet metal forming behavior of newly developed press hardening steels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meza-García, Enrique; Kräusel, Verena; Landgrebe, Dirk</p> <p>2018-05-01</p> <p>The aim of this work was the characterization of the newly developed press hardening sheet alloys 1800 PHS and 2000 PHS developed by SSAB with regard to their hot forming behavior on the basis of the experimental determination of relevant mechanical and technological properties. For this purpose conventional and non-conventional sheet metal testing methods were used. To determine the friction coefficient, the strip drawing test was applied, while the deep drawing cup test was used to determine the maximum draw depth. Finally, a V-bending test was carried out to evaluate the springback behavior of the investigated alloys by varying the blank temperature and quenching media. This work provides a technological guideline for the production of press hardened sheet parts made of these investigated sheet metals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4914939','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4914939"><span>The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min</p> <p>2016-01-01</p> <p>Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol4/pdf/CFR-2012-title49-vol4-sec236-338.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol4/pdf/CFR-2012-title49-vol4-sec236-338.pdf"><span>49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol4/pdf/CFR-2014-title49-vol4-sec236-338.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol4/pdf/CFR-2014-title49-vol4-sec236-338.pdf"><span>49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol4/pdf/CFR-2013-title49-vol4-sec236-338.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol4/pdf/CFR-2013-title49-vol4-sec236-338.pdf"><span>49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol4/pdf/CFR-2011-title49-vol4-sec236-338.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol4/pdf/CFR-2011-title49-vol4-sec236-338.pdf"><span>49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol4/pdf/CFR-2010-title49-vol4-sec236-338.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol4/pdf/CFR-2010-title49-vol4-sec236-338.pdf"><span>49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011467','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011467"><span>Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parham, Walter E.</p> <p>1969-01-01</p> <p>Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19630000005','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19630000005"><span>Vacuum forming of thermoplastic sheet results in low-cost investment casting patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clarke, A. E., Jr.</p> <p>1964-01-01</p> <p>Vacuum forming of a sheet of thermoplastic material around a mandrel conforming to the shape of the finished object provides a pattern for an investment mold. The thickness of the metal part is determined by the thickness of the plastic pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5446277','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5446277"><span>Permission Form Synopses to Improve Parents' Understanding of Research: A Randomized Trial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>D'Angio, Carl T.; Wang, Hongyue; Hunn, Julianne E.; Pryhuber, Gloria S.; Chess, Patricia R.; Lakshminrusimha, Satyan</p> <p>2017-01-01</p> <p>Objective We hypothesized that, among parents of potential neonatal research subjects, an accompanying cover sheet added to the permission form (intervention) would increase understanding of the research, when compared to a standard form (control). Study Design This pilot study enrolled parents approached for one of two index studies: one randomized trial and one observational study. A one-page cover sheet described critical study information. Families were randomized 1:1 to receive the cover sheet or not. Objective and subjective understanding and satisfaction were measured. Result Thirty-two parents completed all measures (17 control, 15 intervention). There were no differences in comprehension score (16.8 ± 5.7 v. 16.3 ± 3.5), subjective understanding (median 6.0 v. 6.5), or overall satisfaction with consent (median 7.0 v. 6.5) between control and intervention groups (all p>0.50). Conclusion A simplified permission form cover sheet had no effect on parents' understanding of studies for which their newborns were being recruited. PMID:28358380</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720010935','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720010935"><span>Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blankenship, C. P.; Saunders, N. T.</p> <p>1972-01-01</p> <p>Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140009182','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140009182"><span>Climate Sensitivity in the Anthropocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Previdi, M.; Liepert, B. G.; Peteet, Dorothy M.; Hansen, J.; Beerling, D. J.; Broccoli, A. J.; Frolking, S.; Galloway, J. N.; Heimann, M.; LeQuere, C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140009182'); toggleEditAbsImage('author_20140009182_show'); toggleEditAbsImage('author_20140009182_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140009182_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140009182_hide"></p> <p>2014-01-01</p> <p>Climate sensitivity in its most basic form is defined as the equilibrium change in global surface temperature that occurs in response to a climate forcing, or externally imposed perturbation of the planetary energy balance. Within this general definition, several specific forms of climate sensitivity exist that differ in terms of the types of climate feedbacks they include. Based on evidence from Earth's history, we suggest here that the relevant form of climate sensitivity in the Anthropocene (e.g. from which to base future greenhouse gas (GHG) stabilization targets) is the Earth system sensitivity including fast feedbacks from changes in water vapour, natural aerosols, clouds and sea ice, slower surface albedo feedbacks from changes in continental ice sheets and vegetation, and climate-GHG feedbacks from changes in natural (land and ocean) carbon sinks. Traditionally, only fast feedbacks have been considered (with the other feedbacks either ignored or treated as forcing), which has led to estimates of the climate sensitivity for doubled CO2 concentrations of about 3 C. The 2×CO2 Earth system sensitivity is higher than this, being approx. 4-6 C if the ice sheet/vegetation albedo feedback is included in addition to the fast feedbacks, and higher still if climate-GHG feedbacks are also included. The inclusion of climate-GHG feedbacks due to changes in the natural carbon sinks has the advantage of more directly linking anthropogenic GHG emissions with the ensuing global temperature increase, thus providing a truer indication of the climate sensitivity to human perturbations. The Earth system climate sensitivity is difficult to quantify due to the lack of palaeo-analogues for the present-day anthropogenic forcing, and the fact that ice sheet and climate-GHG feedbacks have yet to become globally significant in the Anthropocene. Furthermore, current models are unable to adequately simulate the physics of ice sheet decay and certain aspects of the natural carbon and nitrogen cycles. Obtaining quantitative estimates of the Earth system sensitivity is therefore a high priority for future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43C2737M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43C2737M"><span>Impact of the storm-time plasma sheet ion composition on the ring current energy density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.</p> <p>2017-12-01</p> <p>The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920015552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920015552"><span>FDTD modeling of thin impedance sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Luebbers, Raymond; Kunz, Karl</p> <p>1991-01-01</p> <p>Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860048591&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860048591&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwind%2Bmonitor"><span>Variation of cosmic rays and solar wind properties with respect to the heliospheric current sheet. II - Rigidity dependence of the latitudinal gradient of cosmic rays at 1 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newkirk, G., Jr.; Asbridge, J.; Lockwood, J. A.; Garcia-Munoz, M.; Simpson, J. A.</p> <p>1986-01-01</p> <p>The role which empirical determinations of the latitudinal variation of cosmic rays with respect to the current sheet may have in illuminating the importance of the cross-field drift of particles in the large-scale heliospheric magnetic field is discussed. Using K coronameter observations and measured solar wind speeds, the latitudinal gradients have been determined with respect to the current sheet for cosmic rays in four rigidity ranges. Gradients vary between approximately -2 and -50 pct/AU. The rigidity dependence of the decrease of cosmic ray flux with distance from the current sheet lies between the -0.72 to -0.86 power of the rigidity, with the exact dependence being determined by the definition used for the median rigidity of each monitor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JaJAP..52cBC03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JaJAP..52cBC03J"><span>Highly Conductive Flexible Multi-Walled Carbon Nanotube Sheet Films for Transparent Touch Screen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, Daewoong; Lee, Kyung Hwan; Kim, Donghyun; Burk, Dorothea; Overzet, Lawrence J.; Lee, Gil Sik</p> <p>2013-03-01</p> <p>Highly conductive and transparent thin films were prepared using highly purified multi-walled carbon nanotube (MWCNT) sheets. The electrical properties of the MWCNT sheet were remarkably improved by an acid treatment, resulting in densely packed MWCNTs. The morphology of the sheets reveals that continuous electrical pathways were formed by the acid treatment, greatly improving the sheet resistance all the while maintaining an excellent optical transmittance. These results encourage the use of these MWCNT sheets with low sheet resistance (450 Ω/sq) and high optical transmittance (90%) as a potential candidate for flexible display applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA235163','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA235163"><span>Consolidating DoD Housing and Allowance Data Collection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-01-01</p> <p>data . In addition, the military staff chains of command, unit chains of command, DMDC, and the Navy’s Facilities Support Office (FACSO) become...non-pay section of the form if the Finance Office abandons it. However, the current methods of collecting data are equally risky, and statistical ...minimum standards are rescored as acceptable. The survey data sheets are then mailed to the Navy’s Facility Support Office (FACSO) at Port Hueneme, CA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA214898','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA214898"><span>Methods in Computational Neuroscience Course: Student Project Descriptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-09-02</p> <p>form of a "peri Geniculate Nucleus"). Currently, for some yet unknown reason (probably the lateral inhibition) layer 6 shows symmetrical end-inhibition...40 neurons each) in the inferior colliculus served as inputs to a sheet of 100 cells within the medial geniculate body where combination sensitivity is...tertiary dendritic function in the bushy cells, as well as lateral inhibition in the AVCN stellate cells yielded the results that feedback inhibition</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148d5103X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148d5103X"><span>Conversion between parallel and antiparallel β -sheets in wild-type and Iowa mutant Aβ40 fibrils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xi, Wenhui; Hansmann, Ulrich H. E.</p> <p>2018-01-01</p> <p>Using a variant of Hamilton-replica-exchange, we study for wild type and Iowa mutant Aβ40 the conversion between fibrils with antiparallel β-sheets and such with parallel β-sheets. We show that wild type and mutant form distinct salt bridges that in turn stabilize different fibril organizations. The conversion between the two fibril forms leads to the release of small aggregates that in the Iowa mutant may shift the equilibrium from fibrils to more toxic oligomers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA160508','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA160508"><span>Evaluation of the McFann, Gray & Associates’ BSEP (Basic Skills Education Program) 2. Curriculum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1985-08-01</p> <p>167 APPENDIX A - Tables APPENDIX B - Student Record Sheets, Module Record Sheets, Classroom Observation Form, and Questionnaires iv LIST OF...course data and demographic data about students, and classroom observation forms for recording classroom activities), * attended teacher-training...5.3% 27.5% (29) (7) (36) >=9.0 18.3% 54.2% 72.5% (24) (71) (95) Total 40.5% 59.5% 100% (53) (78) (131) ell APPENDIX B 4., ’-o CLASSROOM OBSERVATION SHEET</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28557204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28557204"><span>Anti-adhesive effects of a newly developed two-layered gelatin sheet in dogs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Torii, Hiroko; Takagi, Toshitaka; Urabe, Mamoru; Tsujimoto, Hiroyuki; Ozamoto, Yuki; Miyamoto, Hiroe; Ikada, Yoshihito; Hagiwara, Akeo</p> <p>2017-08-01</p> <p>Adhesion after pelvic surgery causes infertility, ectopic pregnancy, and ileus or abdominal pain. The materials currently available for clinical use are insufficient. The purpose of this study was to develop an anti-adhesive material that overcomes the limitations of conventional anti-adhesive agents. The adhesion prevention effects of three methods - a two-layered sheet composed of gelatin film and gelatin sponge, Seprafilm and INTERCEED - were evaluated in 37 dogs. Anti-adhesive effects were investigated macroscopically and microscopically in a cauterized uterus adhesion model. Cell growth on the materials in vitro using human peritoneal mesothelial cells, fibroblasts and uterine smooth muscle cells were also evaluated. The two-layered gelatin sheet had significantly superior anti-adhesive effects compared to the conventional materials (Seprafilm and INTERCEED). A single-cell layer of mature mesothelium formed three weeks after surgery in the gelatin group. Peritoneum regeneration in the Seprafilm and INTERCEED groups was delayed and incomplete in the early phase. Little inflammation around the materials occurred and cell growth was significantly proliferated with the gelatin sheet. The anti-adhesive effects of a two-layered gelatin sheet were superior to conventional agents in a cauterized canine uterus model, demonstrating early regeneration of the peritoneum, little inflammation and material endurance. The newly developed two-layered gelatin sheet is a useful option as an anti-adhesive agent for deeply injured and hemorrhagic sites. © 2017 The Authors. Journal of Obstetrics and Gynaecology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Obstetrics and Gynecology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518811-ab-initio-pulsar-magnetosphere-three-dimensional-particle-cell-simulations-oblique-pulsars','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518811-ab-initio-pulsar-magnetosphere-three-dimensional-particle-cell-simulations-oblique-pulsars"><span>AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF OBLIQUE PULSARS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Philippov, Alexander A.; Spitkovsky, Anatoly; Cerutti, Benoit, E-mail: sashaph@princeton.edu</p> <p>2015-03-01</p> <p>We present “first-principles” relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are accelerated by surface electric fields and emit photons capable of producing electron–positron pairs. We inject secondary pairs at the locations of primary energetic particles whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere with the Y-point and current sheet. Solutions with obliquities ≤40° do not show pair production in the open field line region because the local currentmore » density along the magnetic field is below the Goldreich–Julian value. The bulk outflow in these solutions is charge-separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of the pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved spacetime or multipolar surface fields.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMI...tmp...56C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMI...tmp...56C"><span>Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak</p> <p>2018-03-01</p> <p>An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMI....24..489C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMI....24..489C"><span>Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak</p> <p>2018-05-01</p> <p>An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.336..192C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.336..192C"><span>A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao</p> <p>2017-05-01</p> <p>In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPlPh..82c9005D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPlPh..82c9005D"><span>Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.</p> <p>2016-06-01</p> <p>> Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH54A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH54A..05S"><span>Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaffner, D. A.</p> <p>2015-12-01</p> <p>The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSH43C1975L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSH43C1975L"><span>Are current sheets the boundary of fluxtubes in the solar wind? -- A study from multiple spacecraft observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, G.; Arnold, L.; Miao, B.; Yan, Y.</p> <p>2011-12-01</p> <p>G. Li (1,2), L. Arnold (1), B. Miao (3) and Y. Yan (4) (1) Department of Physics, University of Alabama in Huntsville Huntsville, AL, 35899 (2) CSPAR, University of Alabama in Huntsville Huntsville, AL, 35899 (3) School of Earth and Space Sciences, University of Science and Technology of CHINA, Hefei, China (4) Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China Current sheets is a common structure in the solar wind and is a significant source of solar wind MHD turbulence intermittency. The origin of these structure is presently unknown. Non-linear interactions of the solar wind MHD turbulence can spontaneously generate these structures. On the other hand, there are proposals that these structures may represent relic structures having solar origins. Using a technique developed in [1], we examine current sheets in the solar wind from multiple spacecraft. We identify the "single-peak" and "double-peak" events in the solar wind and discuss possible scenarios for these events and its implication of the origin of the current sheets. [1] Li, G., "Identify current-sheet-like structures in the solar wind", ApJL 672, L65, 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960000279','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960000279"><span>Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.</p> <p>1995-01-01</p> <p>Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SPIE.5144..651M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SPIE.5144..651M"><span>Detection of defects in formed sheet metal using medial axis transformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murmu, Naresh C.; Velgan, Roman</p> <p>2003-05-01</p> <p>In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1383..927X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1383..927X"><span>Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Yanmin</p> <p>2011-08-01</p> <p>Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20703657','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20703657"><span>Building clinical data groups for electronic medical record in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tu, Haibo; Yu, Yingtao; Yang, Peng; Tang, Xuejun; Hu, Jianping; Rao, Keqin; Pan, Feng; Xu, Yongyong; Liu, Danhong</p> <p>2012-04-01</p> <p>This article aims at building clinical data groups for Electronic Medical Records (EMR) in China. These data groups can be reused as basic information units in building the medical sheets of Electronic Medical Record Systems (EMRS) and serve as part of its implementation guideline. The results were based on medical sheets, the forms that are used in hospitals, which were collected from hospitals. To categorize the information in these sheets into data groups, we adopted the Health Level 7 Clinical Document Architecture Release 2 Model (HL7 CDA R2 Model). The regulations and legal documents concerning health informatics and related standards in China were implemented. A set of 75 data groups with 452 data elements was created. These data elements were atomic items that comprised the data groups. Medical sheet items contained clinical records information and could be described by standard data elements that exist in current health document protocols. These data groups match different units of the CDA model. Twelve data groups with 87 standardized data elements described EMR headers, and 63 data groups with 405 standardized data elements constituted the body. The later 63 data groups in fact formed the sections of the model. The data groups had two levels. Those at the first level contained both the second level data groups and the standardized data elements. The data groups were basically reusable information units that served as guidelines for building EMRS and that were used to rebuild a medical sheet and serve as templates for the clinical records. As a pilot study of health information standards in China, the development of EMR data groups combined international standards with Chinese national regulations and standards, and this was the most critical part of the research. The original medical sheets from hospitals contain first hand medical information, and some of their items reveal the data types characteristic of the Chinese socialist national health system. It is possible and critical to localize and stabilize the adopted international health standards through abstracting and categorizing those items for future sharing and for the implementation of EMRS in China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021810','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021810"><span>Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.</p> <p>1999-01-01</p> <p>The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. By comparison, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean outflow current, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. Radiocarbon ages verify that the inner shelf shoreface sand facies (sedimentation rate 7.1 cm/kyr), mid-shelf mud facies (maximum rate 234 cm/kyr) and surface sandy contourite layer of 0.2-1.2 m thickness on the Cadiz slope (1-12 cm/kyr) have deposited during Holocene time when high sea level results in maximum water depth over the Gibraltar sill and full development of the Atlantic inflow and Mediterranean outflow currents. The transgressive sand sheet of the shelf, and the mud layer underlying the surface contourite sand sheet of the slope, correlate, respectively, with the late Pleistocene sea level lowstand and apparent weak Mediterranean outflow current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910011974','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910011974"><span>An evaluation of GTAW-P versus GTA welding of alloy 718</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gamwell, W. R.; Kurgan, C.; Malone, T. W.</p> <p>1991-01-01</p> <p>Mechanical properties were evaluated to determine statistically whether the pulsed current gas tungsten arc welding (GTAW-P) process produces welds in alloy 718 with room temperature structural performance equivalent to current Space Shuttle Main Engine (SSME) welds manufactured by the constant current GTAW-P process. Evaluations were conducted on two base metal lots, two filler metal lots, two heat input levels, and two welding processes. The material form was 0.125-inch (3.175-mm) alloy 718 sheet. Prior to welding, sheets were treated to either the ST or STA-1 condition. After welding, panels were left as welded or heat treated to the STA-1 condition, and weld beads were left intact or machined flush. Statistical analyses were performed on yield strength, ultimate tensile strength (UTS), and high cycle fatigue (HCF) properties for all the post welded material conditions. Analyses of variance were performed on the data to determine if there were any significant effects on UTS or HCF life due to variations in base metal, filler metal, heat input level, or welding process. Statistical analyses showed that the GTAW-P process does produce welds with room temperature structural performance equivalent to current SSME welds manufactured by the GTAW process, regardless of prior material condition or post welding condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912464S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912464S"><span>Bottom current deposition in the Antarctic Wilkes Land margin during the Oligocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salabarnada, Ariadna; Escutia, Carlota; Nelson, Hans C.; Evangelinos, Dimitris; López-Quirós, Adrián</p> <p>2017-04-01</p> <p>Sediment cores collected from the Antarctic Wilkes Land continental rise at IODP site 1356 provide evidence for bottom current sedimentation taking place since the early Oligocene (i.e., 33.6 Ma) (Escutia et al., 2011). Correlation between site 1356 sediments and the regional grid of multichannel seismic reflection profiles, complemented with bathymetric data, allow us to differentiate a variety of contourite deposits resulting from the interaction between bottom currents and seafloor paleomorphologies. Contourite deposits are identified based on the seismic signature, reflector configuration and geometry of the depositional bodies as elongated-mounded drifts, giant mounded drifts, confined drifts, infill drifts, plastered drifts, sediment waves, and moats. Based on the spatial and temporal distribution of these deposits, we differentiate three phases in contourite deposition in this margin: Phase 1) from 33.6-28 Ma sheeted drift morphologies dominate, related to high-energy deposits associated with fast flowing currents during the early Oligocene; Phase 2) At around 28 Ma, mounded drift morphologies and moat channels start forming. Continued intensification of contour currents results in larger contourite morphologies such as giant mounded drifts and moats forming around structural heights present in the Wilkes Land basin (e.g, the Adelie Rift Block). Phase 3) A shift in current configuration is recorded at around 15 Ma above regional unconformity WL-U5, which marks the Oligocene-Miocene Transition. This change is shown by a migration to the North of the drift crests and by a dominance of down-slope sedimentation processes that is indicated by mass transport deposits and channel levee formation. We interpret the evolution of the contourite deposits during the Oligocene in this margin to be driven by changes in the intensity of bottom current activity over time resulting from ice sheet growth, evolution of bottom morphology and related changes in paleoceanographic configuration in the Southern Ocean. This contribution results from work funded by the Spanish Ministry of Economy and Competitivity Grant CTM2014-60451-C2-1-P and FEDER funds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1943b0008K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1943b0008K"><span>Strain- and stress-based forming limit curves for DP 590 steel sheet using Marciniak-Kuczynski method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Gautam; Maji, Kuntal</p> <p>2018-04-01</p> <p>This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill's 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175662','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175662"><span>Device for reducing vehicle aerodynamic resistance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Graham, Sean C.</p> <p>2006-03-07</p> <p>A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2396686','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2396686"><span>Paired β-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sachse, Carsten; Fändrich, Marcus; Grigorieff, Nikolaus</p> <p>2008-01-01</p> <p>Alzheimer's disease is a neurodegenerative disorder that is characterized by the cerebral deposition of amyloid fibrils formed by Aβ peptide. Despite their prevalence in Alzheimer's and other neurodegenerative diseases, important details of the structure of amyloid fibrils remain unknown. Here, we present a three-dimensional structure of a mature amyloid fibril formed by Aβ(1-40) peptide, determined by electron cryomicroscopy at ≈8-Å resolution. The fibril consists of two protofilaments, each containing ≈5-nm-long regions of β-sheet structure. A local twofold symmetry within each region suggests that pairs of β-sheets are formed from equivalent parts of two Aβ(1-40) peptides contained in each protofilament. The pairing occurs via tightly packed interfaces, reminiscent of recently reported steric zipper structures. However, unlike these previous structures, the β-sheet pairing is observed within an amyloid fibril and includes significantly longer amino acid sequences. PMID:18483195</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866181','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866181"><span>Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ciszek, Theodore F.</p> <p>1987-01-01</p> <p>Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..548R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..548R"><span>The Magnetic Field Structure of Mercury's Magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rong, Z. J.; Ding, Y.; Slavin, J. A.; Zhong, J.; Poh, G.; Sun, W. J.; Wei, Y.; Chai, L. H.; Wan, W. X.; Shen, C.</p> <p>2018-01-01</p> <p>In this study, we use the magnetic field data measured by MErcury Surface, Space ENvironment, GEochemistry, and Ranging from 2011 to 2015 to investigate the average magnetic field morphology of Mercury's magnetotail in the down tail 0-3 <fi>R</fi><fi>M</fi> (<fi>R</fi><fi>M</fi> = 2,440 km, Mercury's radius). It is found that Mercury has a terrestrial-like magnetotail; the magnetic field structure beyond 1.5 <fi>R</fi><fi>M</fi> down tail is stretched significantly with typical lobe field 50 nT. A cross-tail current sheet separating the antiparallel field lines of lobes is present in the equatorial plane. The magnetotail width in north-south direction is about 5 <fi>R</fi><fi>M</fi>, while the transverse width is about 4 <fi>R</fi><fi>M</fi>. Thus, the magnetotail shows elongation along the north-south direction. At the cross-tail current sheet center, the normal component of magnetic field (10-20 nT) is much larger than the cross-tail component. The lobe-field-aligned component of magnetic field over current sheet can be well fitted by Harris sheet model. The curvature radius of field lines at sheet center usually reaches a minimum around midnight (100-200 km) with stronger current density (40-50 nA/m2), while the curvature radius increases toward both flanks (400-600 km) with the decreased current density (about 20 nA/m2). The half-thickness of current sheet around midnight is about 0.25 <fi>R</fi><fi>M</fi> or 600 km, and the inner edge of current sheet is located at the down tail about 1.5 <fi>R</fi><fi>M</fi>. Our results about the field structure in the near Mercury's tail show an evident dawn-dusk asymmetry as that found in the Earth's magnetotail, but reasons should be different. Possible reasons are discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003162','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003162"><span>Joule heating and runaway electron acceleration in a solar flare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.</p> <p>1989-01-01</p> <p>The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080032512','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080032512"><span>New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20080032512'); toggleEditAbsImage('author_20080032512_show'); toggleEditAbsImage('author_20080032512_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20080032512_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20080032512_hide"></p> <p>2008-01-01</p> <p>Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..DFD.BS007W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..DFD.BS007W"><span>Viscous grounding lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Worster, Grae; Huppert, Herbert; Robison, Rosalyn; Nandkishore, Rahul; Rajah, Luke</p> <p>2008-11-01</p> <p>We have used simple laboratory experiments with viscous fluids to explore the dynamics of grounding lines between Antarctic marine ice sheets and the freely floating ice shelves into which they develop. Ice sheets are shear-dominated gravity currents, while ice shelves are extensional gravity currents with zero shear to leading order. Though ice sheets have non-Newtonian rheology, fundamental aspects of their flow can be explored using Newtonian fluid mechanics. We have derived a mathematical model of this flow that incorporates a new dynamic boundary condition for the position of the grounding line, where the gravity current loses contact with the solid base. Good agreement between our theoretical predictions and our experimental measurements, made using gravity currents of syrup flowing down a rigid slope into a deep, dense salt solution, gives confidence in the fundamental assumptions of our model, which can be incorporated into shallow-ice models to make important predictions regarding the dynamical stability of marine ice sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003265&hterms=layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dlayer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003265&hterms=layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dlayer"><span>Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003265'); toggleEditAbsImage('author_20170003265_show'); toggleEditAbsImage('author_20170003265_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003265_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003265_hide"></p> <p>2016-01-01</p> <p>We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CMaPh.311..247C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CMaPh.311..247C"><span>A priori Estimates for 3D Incompressible Current-Vortex Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coulombel, J.-F.; Morando, A.; Secchi, P.; Trebeschi, P.</p> <p>2012-04-01</p> <p>We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27867235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27867235"><span>Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y</p> <p>2016-05-28</p> <p>We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5714065','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5714065"><span>Skiving stacked sheets of paper into test paper for rapid and multiplexed assay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Mingzhu; Zhang, Wei; Yang, Junchuan; Hu, Binfeng; Cao, Fengjing; Zheng, Wenshu; Chen, Yiping; Jiang, Xingyu</p> <p>2017-01-01</p> <p>This paper shows that stacked sheets of paper preincubated with different biological reagents and skiving them into uniform test paper sheets allow mass manufacturing of multiplexed immunoassay devices and simultaneous detection of multiplex targets that can be read out by a barcode scanner. The thickness of one sheet of paper can form the width of a module for the barcode; when stacked, these sheets of paper can form a series of barcodes representing the targets, depending on the color contrast provided by a colored precipitate of an immunoassay. The uniform thickness of sheets of paper allows high-quality signal readout. The manufacturing method allows highly efficient fabrication of the materials and substrates for a straightforward assay of targets that range from drugs of abuse to biomarkers of blood-transmitted infections. In addition, as a novel alternative to the conventional point-of-care testing method, the paper-based barcode assay system can provide highly efficient, accurate, and objective diagnoses. PMID:29214218</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1208660-changes-firn-structure-western-greenland-ice-sheet-caused-recent-warming','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1208660-changes-firn-structure-western-greenland-ice-sheet-caused-recent-warming"><span>Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>de la Peña, S.; Howat, I. M.; Nienow, P. W.; ...</p> <p>2015-06-11</p> <p>Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, when compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr -1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. Furthermore, if current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RAA....18...45Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RAA....18...45Z"><span>Numerical studies of the Kelvin-Hemholtz instability in a coronal jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Tian-Le; Ni, Lei; Lin, Jun; Ziegler, Udo</p> <p>2018-04-01</p> <p>Kelvin-Hemholtz (K-H) instability in a coronal EUV jet is studied via 2.5D MHD numerical simulations. The jet results from magnetic reconnection due to the interaction of the newly emerging magnetic field and the pre-existing magnetic field in the corona. Our results show that the Alfvén Mach number along the jet is about 5–14 just before the instability occurs, and it is even higher than 14 at some local areas. During the K-H instability process, several vortex-like plasma blobs with high temperature and high density appear along the jet, and magnetic fields have also been rolled up and the magnetic configuration including anti-parallel magnetic fields forms, which leads to magnetic reconnection at many X-points and current sheet fragments inside the vortex-like blob. After magnetic islands appear inside the main current sheet, the total kinetic energy of the reconnection outflows decreases, and cannot support the formation of the vortex-like blob along the jet any longer, then the K-H instability eventually disappears. We also present the results about how the guide field and flux emerging speed affect the K-H instability. We find that a strong guide field inhibits shock formation in the reconnecting upward outflow regions but helps secondary magnetic islands appear earlier in the main current sheet, and then apparently suppresses the K-H instability. As the speed of the emerging magnetic field decreases, the K-H instability appears later, the highest temperature inside the vortex blob gets lower and the vortex structure gets smaller.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1383...15S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1383...15S"><span>Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoughton, Thomas B.; Yoon, Jeong Whan</p> <p>2011-08-01</p> <p>This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016762','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016762"><span>Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.</p> <p>2014-01-01</p> <p>The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.896a2094D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.896a2094D"><span>On the lightweighting of automobile engine components : forming sheet metal connecting rod</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Date, P. P.; Kasture, R. N.; Kore, A. S.</p> <p>2017-09-01</p> <p>Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12211389L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12211389L"><span>Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, San; Artemyev, A. V.; Angelopoulos, V.</p> <p>2017-11-01</p> <p>Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3761614','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3761614"><span>Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shannon, Sarah R.; Payne, Antony J.; Bartholomew, Ian D.; van den Broeke, Michiel R.; Edwards, Tamsin L.; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J.; Huybrechts, Philippe; Mair, Douglas W. F.; Nienow, Peter W.; Perego, Mauro; Price, Stephen F.; Smeets, C. J. P. Paul; Sole, Andrew J.; van de Wal, Roderik S. W.; Zwinger, Thomas</p> <p>2013-01-01</p> <p>We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22512425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22512425"><span>The decisional balance sheet to promote healthy behavior among ethnically diverse older adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geller, Karly S; Mendoza, Ilora D; Timbobolan, Jasah; Montjoy, Holly L; Nigg, Claudio R</p> <p>2012-01-01</p> <p>The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Specific suggestions for similar programs are reported. © 2011 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850000125&hterms=baking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbaking','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850000125&hterms=baking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbaking"><span>Perforating Thin Metal Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davidson, M. E.</p> <p>1985-01-01</p> <p>Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26ARv..23....4T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26ARv..23....4T"><span>Spontaneous magnetic reconnection. Collisionless reconnection and its potential astrophysical relevance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treumann, R. A.; Baumjohann, W.</p> <p>2015-10-01</p> <p>The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) "diffusion region", where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as {<}10^{-5} per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape W_b∝ k^{-α } in wavenumber k with power becoming as low as α ≈ 2. Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, "current carpets". By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching F(γ )∝ γ ^{-1}, with γ the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM21A..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM21A..04K"><span>Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.</p> <p>2014-12-01</p> <p>How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896g0004A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896g0004A"><span>Testing single point incremental forming moulds for rotomoulding operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo</p> <p>2017-10-01</p> <p>Low pressure polymer processes as thermoforming or rotational moulding use much simpler moulds than high pressure processes like injection. However, despite the low forces involved in the process, moulds manufacturing for these applications is still a very material, energy and time consuming operation. Particularly in rotational moulding there is no standard for the mould manufacture and very different techniques are applicable. The goal of this research is to develop and validate a method for manufacturing plastically formed sheet metal moulds by single point incremental forming (SPIF) for rotomoulding and rotocasting operations. A Stewart platform based SPIF machine allow the forming of thick metal sheets, granting the required structural stiffness for the mould surface, and keeping a short manufacture lead time and low thermal inertia. The experimental work involves the proposal of a hollow part, design and fabrication of a sheet metal mould using dieless incremental forming techniques and testing its operation in the production of prototype parts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMMM..398..148A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMMM..398..148A"><span>Magneto-hydrodynamics of coupled fluid-sheet interface with mass suction and blowing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmad, R.</p> <p>2016-01-01</p> <p>There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid-sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA348408','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA348408"><span>The Effect of Prior Definitional Instruction of Targeted Vocabulary in German Texts on Vocabulary Knowledge and Reading Comprehension,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1998-01-01</p> <p>reduce the potential contribution of some form of instruction (Sternberg, 1987, Stahl & Fairbanks, 1987). As noted earlier, virtually all attempts at...step closer to practical reality . The grading sheets and the computerized program were used in the current study. 36 CHAPTER 3 PROCEDURES...values are virtually the same as they were on the immediate test. Non-Focus Focus Overall M SD M SD M SD No Lexical</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920041116&hterms=polymeric+membrane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpolymeric%2Bmembrane','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920041116&hterms=polymeric+membrane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpolymeric%2Bmembrane"><span>A novel method for producing microspheres with semipermeable polymer membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, K. C.; Wang, Taylor G.</p> <p>1992-01-01</p> <p>A new and systematic approach for producing polymer microspheres has been demonstrated. The membrane of the microsphere is formed by immersing the polyanionic droplet into a collapsing annular sheet, which is made of another polycation polymer solution. This method minimizes the impact force during the time when the chemical reaction takes place, hence eliminating the shortcomings of the current encapsulation techniques. The results of this study show the feasibility of this method for mass production of microcapsules.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PPCF...56f4008E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PPCF...56f4008E"><span>On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.</p> <p>2014-06-01</p> <p>We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad-Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865469','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865469"><span>Method of coextruding plastics to form a composite sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tsien, Hsue C.</p> <p>1985-06-04</p> <p>This invention pertains to a method of producing a composite sheet of plastic materials by means of coextrusion. Two plastic materials are matched with respect to their melt indices. These matched plastic materials are then coextruded in a side-by-side orientation while hot and soft to form a composite sheet having a substantially uniform demarkation therebetween. The plastic materials are fed at a substantially equal extrusion velocity and generally have substantially equal viscosities. The coextruded plastics can be worked after coextrusion while they are still hot and soft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1383..390F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1383..390F"><span>Die Deformation Measurement System during Sheet Metal Forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Funada, J.; Takahashi, S.; Fukiharu, H.</p> <p>2011-08-01</p> <p>In order to reduce affection to the earth environment, it is necessary to lighten the vehicles. For this purpose, high tensile steels are applied. Because of high strength, high forming force is required for producing automotive sheet metal parts. In this situation, since the dies are elastic, they are deformed during forming parts. For reducing die developing period, sheet metal forming simulation is widely applied. In the numerical simulation, rigid dies are usually used for shortening computing time. It means that the forming conditions in the actual forming and the simulation are different. It will make large errors in the results between actual forming and simulation. It can be said that if contact pressure between dies and a sheet metal in the simulation can be reproduced in the actual forming, the differences of forming results between them can also been reduced. The basic idea is to estimate die shape which can produce the same distribution as computed from simulation with rigid dies. In this study, die deformation analyses with Finite Element Method as basic technologies are evaluated. For example, simple shape and actual dies elastic contact problems were investigated. The contact width between simple shape dies was investigated. The computed solutions were in good agreement with experimental results. The one case of the actual dies in two cases was also investigated. Bending force was applied to the blank holder with a mechanical press machine. The methodology shown with applying inductive displacement sensor for measuring die deformation during applying force was also proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1960o0003D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1960o0003D"><span>Analysis of fracture in sheet bending and roll forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias</p> <p>2018-05-01</p> <p>The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JChPh.126f5101M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JChPh.126f5101M"><span>Probing amyloid fibril formation of the NFGAIL peptide by computer simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melquiond, Adrien; Gelly, Jean-Christophe; Mousseau, Normand; Derreumaux, Philippe</p> <p>2007-02-01</p> <p>Amyloid fibril formation, as observed in Alzheimer's disease and type II diabetes, is currently described by a nucleation-condensation mechanism, but the details of the process preceding the formation of the nucleus are still lacking. In this study, using an activation-relaxation technique coupled to a generic energy model, we explore the aggregation pathways of 12 chains of the hexapeptide NFGAIL. The simulations show, starting from a preformed parallel dimer and ten disordered chains, that the peptides form essentially amorphous oligomers or more rarely ordered β-sheet structures where the peptides adopt a parallel orientation within the sheets. Comparison between the simulations indicates that a dimer is not a sufficient seed for avoiding amorphous aggregates and that there is a critical threshold in the number of connections between the chains above which exploration of amorphous aggregates is preferred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanot..26f5401L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanot..26f5401L"><span>Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zijiong; Qin, Zhen; Yang, Baocheng; Guo, Jian; Wang, Haiyan; Zhang, Weiyang; Lv, Xiaowei; Stack, Alison</p> <p>2015-02-01</p> <p>Freestanding polyaniline (PANI) nanorods grown in situ on microwave-expanded graphene oxide (MEGO) sheets were prepared through a facile solution method. The morphological characterization indicates that large quantity of free-standing PANI nanorods with average diameter of 50 nm were uniformly deposited onto the double sides of the MEGO nanosheets to form a sandwich structure. The hybrid of PANI/MEGO (GPANI) exhibit high specific surface area and high electrical conductivity, compared with pristine PANI nanorods. When evaluated as electrodes for supercapacitors, the GPANI demonstrate high specific capacitance of 628 F g-1 at a current density of 1.1 A g-1, high-rate performance, and excellent cycle stability compared to individual component. Such excellent electrochemical performance should be attributed to the combined double-layer capacitance and pseudo -capacitance mechanisms from the MEGO sheets and PANI nanorods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872998','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872998"><span>Source of electrical power for an electric vehicle and other purposes, and related methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>LaFollette, Rodney M.</p> <p>2000-05-16</p> <p>Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (j) higher capacities (A.multidot.hr); and k) high specific capacitance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874868','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874868"><span>Source of electrical power for an electric vehicle and other purposes, and related methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>LaFollette, Rodney M.</p> <p>2002-11-12</p> <p>Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form corrugated thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026617','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026617"><span>Penetration of the Interplanetary Magnetic Field B(sub y) into Earth's Plasma Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hau, L.-N.; Erickson, G. M.</p> <p>1995-01-01</p> <p>There has been considerable recent interest in the relationship between the cross-tail magnetic field component B(sub y) and tail dynamics. The purpose of this paper is to give an overall description of the penetration of the interplanetary magnetic field (IMF) B(sub y) into the near-Earth plasma sheet. We show that plasma sheet B(sub y) may be generated by the differential shear motion of field lines and enhanced by flux tube compression. The latter mechanism leads to a B(sub y) analogue of the pressure-balance inconsistency as flux tubes move from the far tail toward the Earth. The growth of B(sub y), however, may be limited by the dawn-dusk asymmetry in the shear velocity as a result of plasma sheet tilting. B(sub y) penetration into the plasma sheet implies field-aligned currents flowing between hemispheres. These currents together with the IMF B(sub y) related mantle field-aligned currents effectively shield the lobe from the IMF B(sub y).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080005909','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080005909"><span>Trace water sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stephens, James B. (Inventor); Yang, Mary M. (Inventor); Laue, Eric G. (Inventor)</p> <p>1985-01-01</p> <p>A solid electrolytic type hygrometer is described, which operates with high reliability while providing rapid and sensitive response. A gold foil electrode (16) is wrapped about a hollow glass cylinder (18), a sheet (12) of hygroscopic-electrolytic material is wrapped about the foil, and a wire (14) is wound around the outside of the electrolytic sheet. Moisture passing between wire turns can be absorbed by the electrolytic material (12), and then dissociated by current passed by the electrodes (14, 16) through the electrolytic material. The cylinder has a slit (20) extending along its length, to allow resilient expansion to press the sheet of electrolytic material firmly against the electrodes. The wire turns lie against one another to cause rapid dissociation of moisture throughout the electrolytic material. Additional guard wires (42,44, FIG. 2) lie at opposite ends of the electrolytic sheet, and currents pass through them to avoid moisture buildup at the ends of the main wire coil. The electrical current through the sheet or membrane is proportional to the partial pressure of the water-vapor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980200977','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980200977"><span>Nonguiding Center Motion and Substorm Effects in the Magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufmann, Richard L.; Kontodinas, Ioannis D.; Ball, Bryan M.; Larson, Douglas J.</p> <p>1997-01-01</p> <p>Thick and thin models of the middle magnetotail were developed using a consistent orbit tracing technique. It was found that currents carried near the equator by groups of ions with anisotropic distribution functions are not well approximated by the guiding center expressions. The guiding center equations fail primarily because the calculated pressure tensor is not magnetic field aligned. The pressure tensor becomes field aligned as one moves away from the equator, but here there is a small region in which the guiding center equations remain inadequate because the two perpendicular components of the pressure tensor are unequal. The significance of nonguiding center motion to substorm processes then was examined. One mechanism that may disrupt a thin cross-tail current sheet involves field changes that cause ions to begin following chaotic orbits. The lowest-altitude chaotic region, characterized by an adiabaticity parameter kappa approx. equal to 0.8, is especially important. The average cross-tail particle drift is slow, and we were unable to generate a thin current sheet using such ions. Therefore, any process that tends to create a thin current sheet in a region with kappa approaching 0.8 may cause the cross-tail current to get so low that it becomes insufficient to support the lobes. A different limit may be important in resonant orbit regions of a thin current sheet because particles reach a maximum cross-tail drift velocity. If the number of ions per unit length decreases as the tail is stretched, this part of the plasma sheet also may become unable to carry the cross-tail current needed to support the lobes. Thin sheets are needed for both resonant and chaotic orbit mechanisms because the distribution function must be highly structured. A description of current continuity is included to show how field aligned currents can evolve during the transition from a two-dimensional (2-D) to a 3-D configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec331-6.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec331-6.pdf"><span>33 CFR 331.6 - Filing an appeal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... objections to the permit. The district engineer, upon evaluation of the applicant's objections, may: Modify... such modified permit to the applicant, enclosing an NAP fact sheet and an RFA form as well. Should the... an NAP fact sheet, RFA form, and a copy of the decision document for the project. If the district...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080048048','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080048048"><span>Electromagnetically Clean Solar Arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stem, Theodore G.; Kenniston, Anthony E.</p> <p>2008-01-01</p> <p>The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the wiring on the back of the panel. Each step increases the potential for occurrence of latent defects, loss of process control, and attrition of components. An EMCSA panel includes an integral cover made from a transparent material. The silicone cover supplants the individual cover glasses on the cells and serves as an additional unitary structural support that offers the advantage, relative to glass, of the robust, forgiving nature of the silcone material. The cover contains pockets that hold the solar cells in place during the lamination process. The cover is coated with indium tin oxide to make its surface electrically conductive, so that it serves as a contiguous, electrically grounded shield over the entire panel surface. The cells are mounted in proximity to metallic printed wiring. The painted-wiring layer comprises metal-film traces on a sheet of Kapton (or equivalent) polyimide. The traces include contact pads on one side of the sheet for interconnecting the cells. Return leads are on the opposite side of the sheet, positioned to form the return currents substantially as mirror images of, and in proximity to, the cell sheet currents, thereby minimizing magnetic moments. The printed-wiring arrangement mimics the back-wiring arrangement of conventional solar arrays, but the current-loop areas and the resulting magnetic moments are much smaller because the return-current paths are much closer to the solar-cell sheet currents. The contact pads are prepared with solder fo electrical and mechanical bonding to the cells. The pocketed cover/shield, the solar cells, the printed-wiring layer, an electrical bonding agent, a mechanical-bonding agent, a composite structural front-side face sheet, an aluminum honeycomb core, and a composite back-side face sheet are all assembled, then contact pads are soldered to the cells and the agents are cured in a single lamination process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053332&hterms=geocentric+approach&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgeocentric%2Bapproach','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053332&hterms=geocentric+approach&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgeocentric%2Bapproach"><span>Observations of nonadiabatic acceleration of ions in Earth's magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.; Paterson, W. R.; Kivelson, M. G.</p> <p>1994-01-01</p> <p>We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity distributions are the result of fractional or few gyromotions before ejection out of the current sheet, but this speculation must be further investigated with appropriate kinetic simulation of trajectories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910039585&hterms=singularities&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsingularities','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910039585&hterms=singularities&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsingularities"><span>Heating of the corona by magnetic singularities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Antiochos, Spiro K.</p> <p>1990-01-01</p> <p>Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2268377','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2268377"><span>Use of a spread sheet to calculate the current-density distribution produced in human and rat models by low-frequency electric fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hart, F X</p> <p>1990-01-01</p> <p>The current-density distribution produced inside irregularly shaped, homogeneous human and rat models by low-frequency electric fields is obtained by a two-stage finite-difference procedure. In the first stage the model is assumed to be equipotential. Laplace's equation is solved by iteration in the external region to obtain the capacitive-current densities at the model's surface elements. These values then provide the boundary conditions for the second-stage relaxation solution, which yields the internal current-density distribution. Calculations were performed with the Excel spread-sheet program on a Macintosh-II microcomputer. A spread sheet is a two-dimensional array of cells. Each cell of the sheet can represent a square element of space. Equations relating the values of the cells can represent the relationships between the potentials in the corresponding spatial elements. Extension to three dimensions is readily made. Good agreement was obtained with current densities measured on human models with both, one, or no legs grounded and on rat models in four different grounding configurations. The results also compared well with predictions of more sophisticated numerical analyses. Spread sheets can provide an inexpensive and relatively simple means to perform good, approximate dosimetric calculations on irregularly shaped objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31B2738S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31B2738S"><span>Investigating the Impact of Current Sheet Crossings on the Propagation of Solar Energetic Particles in the Inner Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schooley, A. K.; Kahler, S.; Lepri, S. T.; Liemohn, M. W.</p> <p>2017-12-01</p> <p>Gradual solar energetic particle events (SEPs) are produced in the solar corona and as these particle events propagate through the inner heliosphere and interplanetary space they might encounter intervening magnetic obstacles such as the heliospheric current sheet. These encounters may impact SEP acceleration or production. We investigate the extent to which propagation through these intervening structures might be affecting later in-situ SEP measurements at 1 AU. By analyzing large gradual SEP rise phases in a multi-year survey, we investigate the impact crossing a current sheet or other interplanetary magnetic structure has on in-situ SEP time-intensity profiles. Simultaneous Advanced Composition Explorer (ACE) magnetometer observations and measurements of suprathermal electron pitch angle distributions from ACE's Solar Wind Electron, Proton & Alpha Monitor (SWEPAM) are considered to indicate changes in magnetic polarity and magnetic topology. Potential field source surface models of the heliospheric current sheet are used to validate potential current sheet crossing times. We discuss those magnetic obstacles identified that SEPs likely encountered. We discuss the frequency of such encounters, their possible structure and their impact on the SEP time-intensity profiles. Preliminary results indicate that possible intervening interplanetary magnetic structures should be considered when analyzing in-situ SEP observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5624059','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5624059"><span>Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ciszek, T.F.</p> <p>1984-09-12</p> <p>Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1433826','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1433826"><span>Rapid Freeform Sheet Metal Forming: Technology Development and System Verification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kiridena, Vijitha; Verma, Ravi; Gutowski, Timothy</p> <p></p> <p>The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, ismore » a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JMEP...19..527J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JMEP...19..527J"><span>Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome</p> <p>2010-06-01</p> <p>Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005E%26PSL.240...11G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005E%26PSL.240...11G"><span>Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grotzinger, J. P.; Arvidson, R. E.; Bell, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A.</p> <p>2005-11-01</p> <p>Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a "wetting-upward" succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes. The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with convolute bedding and possible small tepee or salt-ridge structures, and cm-scale festoon cross-lamination indicative of shallow subaqueous flows marked by current velocities of a few tens of cm/s. Most likely, these currents were gravity-driven, possibly unchannelized flows resulting from the flooding of interdune/playa surfaces. However, evidence for lacustrine sedimentation, including mudstones or in situ bottom-growth evaporites, has not been observed so far at Eagle and Endurance craters. Mineralogical and elemental data indicate that the eolian sandstones of the lower and middle units, as well as the subaqueous and eolian deposits of the Burns upper unit, were derived from an evaporitic source. This indirectly points to a temporally equivalent playa where lacustrine evaporites or ground-water-generated efflorescent crusts were deflated to provide a source of sand-sized particles that were entrained to form eolian dunes and sand sheets. This process is responsible for the development of sulfate eolianites at White Sands, New Mexico, and could have provided a prolific flux of sulfate sediment at Meridiani. Though evidence for surface water in the Burns formation is mostly limited to the upper unit, the associated sulfate eolianites provide strong evidence for the critical role of groundwater in controlling sediment production and stratigraphic architecture throughout the formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C54A..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C54A..06K"><span>Widespread surface meltwater drainage in Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.</p> <p>2016-12-01</p> <p>Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859...83S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859...83S"><span>Marginal Stability of Sweet–Parker Type Current Sheets at Low Lundquist Numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Chen; Velli, Marco; Tenerani, Anna</p> <p>2018-06-01</p> <p>Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number S c exists, hovering around S c ∼ 104, above which threshold Sweet–Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow along the sheet plays a stabilizing role, though a satisfactory explanation of the nonuniversality and variable critical Lundquist numbers observed is still lacking. Here we discuss this question using 2D linear MHD simulations and linear stability analyses of Sweet–Parker type current sheets in the presence of background stationary inflows and outflows at low Lundquist numbers (S ≤ 104). Simulations show that the inhomogeneous outflow stabilizes the current sheet by stretching the growing magnetic islands and at the same time evacuating the magnetic islands out of the current sheet. This limits the time during which fluctuations that begin at any given wavelength can remain unstable, rendering the instability nonexponential. We find that the linear theory based on the expanding-wavelength assumption works well for S larger than ∼1000. However, we also find that the inflow and location of the initial perturbation also affect the stability threshold.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22118677-magnetar-giant-flares-precursors-flux-rope-eruptions-current-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22118677-magnetar-giant-flares-precursors-flux-rope-eruptions-current-sheets"><span>MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yu Cong; Huang Lei, E-mail: cyu@ynao.ac.cn, E-mail: muduri@shao.ac.cn</p> <p>2013-07-10</p> <p>We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when currentmore » sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/875110','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/875110"><span>Microchannel laminated mass exchanger and method of making</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA</p> <p>2003-03-18</p> <p>The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873292','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873292"><span>Microchannel laminated mass exchanger and method of making</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun</p> <p>2000-01-01</p> <p>The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874260','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874260"><span>Microchannel laminated mass exchanger and method of making</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA</p> <p>2002-03-05</p> <p>The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1363762','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1363762"><span>Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kellerman, Peter L.; Thronson, Gregory D.</p> <p></p> <p>In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24416948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24416948"><span>Developing a medical emergency team running sheet to improve clinical handoff and documentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mardegan, Karen; Heland, Melodie; Whitelock, Tifany; Millar, Robert; Jones, Daryl</p> <p>2013-12-01</p> <p>During medical emergency team (MET) and cardiac arrest calls, a scribe usually records events on a running sheet. There is more agreement on what data should be recorded in cardiac arrest calls than for MET calls. In addition, handoff (handover) from ward staff to the arriving MET may be variable. In a quality improvement project, a novel MET running sheet was developed to document events and therapies administered during MET calls. Key characteristics of the form were improved form layout, increased space for event documentation, and prompts to assist handoff to the arriving MET using the Identity Situation, Background, Assessment, Request (ISBAR) format. Ward nurses commonly involved in MET activation were surveyed to assess their perceptions of the new MET running sheet. Files of 100 consecutive MET calls were reviewed to assess compliance. Of 109 nurses invited to complete the survey, 103 did so (94.5% response rate). Overall, 87 (84.5%) of the 103 respondents agreed or strongly agreed that the new MET running sheet was better than the previous form for documenting MET management, and 58 (57.4%) of 101 respondents agreed or strongly agreed that it assisted handoff. The form was completed in 91 of a sample of 100 consecutive MET calls. Areas of less complete documentation included aspects of the ISBAR handover to the arriving MET and notification of the next of kin and usual clinicians at the completion of the call. The MET running sheet, tailored to the clinical events that occur during episodes of MET review, may assist handoff from ward nurses to the arriving MET and event documentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.140....9N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.140....9N"><span>Modern sedimentary facies, depositional environments, and major controlling processes on an arid siliciclastic coast, Al qahmah, SE Red Sea, Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nabhan, Abdullah I.; Yang, Wan</p> <p>2018-04-01</p> <p>The facies and environments along the arid siliciclastic coast of Red Sea in Al Qahmah, Saudi Arabia are studied to establish a depositional model for interpretation of ancient rocks deposited in rift settings. Field and petrographic studies of 151 sediment samples in an area of 20 km2 define seven main facies types: beach, washover fan, tidal channel, dune, sabkha, delta, and wadi (seasonal stream). The wadi and delta facies are composed of poorly to moderately well-sorted, gravelly, medium-to-fine sands. Delta-front sands are redistributed by southward longshore currents to form a beach. Beach facies is composed of well-to-moderately sorted fine sands with minor gravels, which contain high concentrations of magnetite, ilmenite, garnet, pyroxene, amphibole, epidote, titanite, and apatite grains, indicating strong winnowing. Crabs and other burrowers destroy primary sedimentary structures and mix sediments in foreshore and backshore of the beaches. Wind and storm surge rework foreshore and backshore sediments to form washover fans. Sabkha facies occurs extensively in supratidal depressions behind beach, are flooded by rainstorms and spring tide, and capped by a 5-cm-thick crust composed of interlaminated halite, quartz, albite, minor gypsum and biotite, and rarely calcium carbonate. Halite occurs as thin sheets and gypsum as nodules with a chicken-wire structure. Clastic fraction in sabkha sediments ranges from coarse silt to coarse sand with moderate sorting, and is transported by currents and wind. Tidal inlets and tidal creeks assume abandoned wadis and are filled by muddy sand. Sand dunes and sand sheets are 1-7 m high and widely distributed due to variable wind directions. Fine-grained dune sands are moderately well sorted, whereas sheet sands are coarser and poorly sorted due to vegetation baffling. Most eolian sands are sourced from beach deposits. This suite of complex riverine, wave, tidal, wind, chemical, and biological processes form the facies mosaic along the arid Al Qahmah coast, which is strongly affected by climate-driven evaporation and wind action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.734c2094G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.734c2094G"><span>Effects of forming history on crash simulation of a vehicle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gökler, M. İ.; Doğan, U. Ç.; Darendeliler, H.</p> <p>2016-08-01</p> <p>The effects of forming on the crash simulation of a vehicle have been investigated by considering the load paths produced by sheet metal forming process. The frontal crash analysis has been performed by the finite element method, firstly without considering the forming history, to find out the load paths that absorb the highest energy. The sheet metal forming simulations have been realized for each structural component of the load paths and the frontal crash analysis has been repeated by including forming history. The results of the simulations with and without forming effects have been compared with the physical crash test results available in literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080036840','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080036840"><span>Laboratory-Model Integrated-System FARAD Thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.</p> <p>2008-01-01</p> <p>Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28339569','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28339569"><span>Acrolein Yields in Mainstream Smoke From Commercial Cigarette and Little Cigar Tobacco Products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cecil, Todd L; Brewer, Tim M; Young, Mimy; Holman, Matthew R</p> <p>2017-07-01</p> <p>Many carbonyls are produced from the combustion of tobacco products and many of these carbonyls are harmful or potentially harmful constituents of mainstream cigarette smoke. One carbonyl of particular interest is acrolein, which is formed from the incomplete combustion of organic matter and the most significant contributor to non-cancer respiratory effects from cigarette smoke. Sheet-wrapped cigars, also known as "little cigars," are a type of tobacco products that have not been extensively investigated in literature. This study uses standard cigarette testing protocols to determine the acrolein yields from sheet-wrapped cigars. Sheet-wrapped cigar and cigarette products were tested by derivatizing the mainstream smoke with 2,4-dinitrophenylhydrazine (DNPH) solution and then quantifying the derivatives using conventional analytical systems. The results demonstrate that sheet-wrapped cigars can be tested for acrolein yields in mainstream smoke using the same methods used for the evaluation of cigarettes. The variability in the sheet-wrapped cigars and cigarettes under the International Organization for Standardization smoking regimen is statistically similar at the 95% confidence interval; however, increased variability is observed for sheet-wrapped cigar products under the Health Canada Intense (CI) smoking regimen. The amount of acrolein released by smoking sheet-wrapped cigars can be measured using standard smoking regimen currently used for cigarettes. The sheet-wrapped cigars were determined to yield similar quantity of acrolein from commercial cigarette products using two standard smoking regimens. This article reports on the measured quantity of acrolein from 15 commercial sheet-wrapped cigars using a validated standard smoking test method that derivatizes acrolein in the mainstream smoke with DNPH solution, and uses Liquid Chromatography/Ultra-Violet Detection (LC/UV) for separation and detection. These acrolein yields were similar to the levels found in the smoke from 35 commercial cigarette products measured in the same manner. Although sheet-wrapped cigar data were slightly more variable than those found for the cigarette data, this article reports that the production of acrolein is similar to cigarettes. The results demonstrate that sheet-wrapped cigars can be tested for acrolein yields in mainstream smoke using the same methods used for the evaluation of cigarettes. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12212090V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12212090V"><span>Long-Term Variability of Jupiter's Magnetodisk and Implications for the Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogt, Marissa F.; Bunce, Emma J.; Nichols, Jonathan D.; Clarke, John T.; Kurth, William S.</p> <p>2017-12-01</p> <p>Observations of Jupiter's UV auroral emissions collected over several years show that the ionospheric positions of the main emission and the Ganymede footprint can vary by as much as 3° in latitude. One explanation for this shift is a change of Jupiter's current sheet current density, which would alter the amount of field line stretching and displace the ionospheric mapping of field lines from a given radial distance in the magnetosphere. In this study we measure the long-term variability of Jupiter's magnetodisk using Galileo magnetometer data collected from 1996 to 2003. Using the Connerney et al. (1981) current sheet model, we calculate the current sheet density parameter that gives the best fit to the data from each orbit and find that the current density parameter varies by about 15% of its average value during the Galileo era. We investigate possible relationships between the observed current sheet variability and quantities such as Io's plasma torus production rate inferred from volcanic activity and external solar wind conditions extrapolated from data at 1 AU but find only a weak correlation. Finally, we trace Khurana (1997) model field lines to show that the observed changes in Jupiter's current sheet are sufficient to shift the ionospheric footprint of Ganymede and main auroral emission by a few degrees of latitude, consistent with the magnitude of auroral variability observed by Hubble Space Telescope (HST). However, we find that the measured auroral shifts in HST images are not consistent with concurrent changes in the current density parameter measured by Galileo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/121634','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/121634"><span>Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xing, W.; Heinrich, B.; Zhou, H.</p> <p>1994-12-31</p> <p>Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010032393&hterms=Russell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CBTWN%2B20000101%2B20001231%26N%3D0%26No%3D20%26Ntt%3DRussell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010032393&hterms=Russell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CBTWN%2B20000101%2B20001231%26N%3D0%26No%3D20%26Ntt%3DRussell"><span>Reconnection in Planetary Magnetospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, C. T.</p> <p>2000-01-01</p> <p>Current sheets in planetary magnetospheres that lie between regions of "oppositely-directed" magnetic field are either magnetopause-like, separating plasmas with different properties, or tail-like, separating plasmas of rather similar properties. The magnetopause current sheets generally have a nearly limitless supply of magnetized plasma that can reconnect, possibly setting up steady-state reconnection. In contrast, the plasma on either side of a tail current sheet is stratified so that, as reconnection occurs, the plasma properties, in particular the Alfven velocity, change. If the density drops and the magnetic field increases markedly perpendicular to the sheet, explosive reconnection can occur. Even though steady state reconnection can take place at magnetopause current sheets, the process often appears to be periodic as if a certain low average rate was demanded by the conditions but only a rapid rate was available. Reconnection of sheared fields has been postulated to create magnetic ropes in the solar corona, at the Earth's magnetopause, and in the magnetotail. However, this is not the only way to produce magnetic ropes as the Venus ionosphere shows. The geometry of the reconnecting regions and the plasma conditions both can affect the rate of reconnection. Sorting out the various controlling factors can be assisted through the examination of reconnection in planetary settings. In particular we observe similar small-scale tearing in the magnetopause current layers of the Earth, Saturn. Uranus and Neptune and the magnetodisk current sheet at Jupiter. These sites may be seeds for rapid reconnection if the reconnection site reaches a high Alfven velocity region. In the Jupiter magnetosphere this appears to be achieved with resultant substorm activity. Similar seeds may be present in the Earth's magnetotail with the first one to reach explosive growth dominating the dynamics of the tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM53A2211B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM53A2211B"><span>Simulation of the 3-D Evolution of Electron Scale Magnetic Reconnection - Motivated by Laboratory Experiments Predictions for MMS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buechner, J.; Jain, N.; Sharma, A.</p> <p>2013-12-01</p> <p>The four s/c of the Magnetospheric Multiscale (MMS) mission, to be launched in 2014, will use the Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes. One of them is magnetic reconnection, an essentially multi-scale process. While laboratory experiments and past theoretical investigations have shown that important processes necessary to understand magnetic reconnection take place at electron scales the MMS mission for the first time will be able to resolve these scales by in space observations. For the measurement strategy of MMS it is important to make specific predictions of the behavior of current sheets with a thickness of the order of the electron skin depth which play an important role in the evolution of collisionless magnetic reconnection. Since these processes are highly nonlinear and non-local numerical simulation is needed to specify the current sheet evolution. Here we present new results about the nonlinear evolution of electron-scale current sheets starting from the linear stage and using 3-D electron-magnetohydrodynamic (EMHD) simulations. The growth rates of the simulated instabilities compared well with the growth rates obtained from linear theory. Mechanisms and conditions of the formation of flux ropes and of current filamentation will be discussed in comparison with the results of fully kinetic simulations. In 3D the X- and O-point configurations of the magnetic field formed in reconnection planes alternate along the out-of-reconnection-plane direction with the wavelength of the unstable mode. In the presence of multiple reconnection sites, the out-of-plane magnetic field can develop nested structure of quadrupoles in reconnection planes, similar to the 2-D case, but now with variations in the out-of-plane direction. The structures of the electron flow and magnetic field in 3-D simulations will be compared with those in 2-D simulations to discriminate the essentially 3D features. We also discuss the influence of guide fields, as in the magnetopause case and show how the 3-D evolution of an electron current sheet is influenced the strength of the guide field. This is unlike the 2-D case where reconnection takes place only in a plane. This work was partially funded by the Max-Planck/Princeton Center for Plasma Physics and the National Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21513156-model-based-approach-increase-part-accuracy-robot-based-incremental-sheet-metal-forming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21513156-model-based-approach-increase-part-accuracy-robot-based-incremental-sheet-metal-forming"><span>A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meier, Horst; Laurischkat, Roman; Zhu Junhong</p> <p></p> <p>One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1960p0007G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1960p0007G"><span>Numerical analysis of tailored sheets to improve the quality of components made by SPIF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagliardi, Francesco; Ambrogio, Giuseppina; Cozza, Anna; Pulice, Diego; Filice, Luigino</p> <p>2018-05-01</p> <p>In this paper, the authors pointed out a study on the profitable combination of forming techniques. More in detail, the attention has been put on the combination of the single point incremental forming (SPIF) and, generally, speaking, of an additional process that can lead to a material thickening on the initial blank considering the local thinning which the sheets undergo at. Focalizing the attention of the research on the excessive thinning of parts made by SPIF, a hybrid approach can be thought as a viable solution to reduce the not homogeneous thickness distribution of the sheet. In fact, the basic idea is to work on a blank previously modified by a deformation step performed, for instance, by forming, additive or subtractive processes. To evaluate the effectiveness of this hybrid solution, a FE numerical model has been defined to analyze the thickness variation on tailored sheets incrementally formed optimizing the material distribution according to the shape to be manufactured. Simulations based on the explicit formulation have been set up for the model implementation. The mechanical properties of the sheet material have been taken in literature and a frustum of cone as benchmark profile has been considered for the performed analysis. The outcomes of numerical model have been evaluated in terms of both maximum thinning and final thickness distribution. The feasibility of the proposed approach will be deeply detailed in the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ArRMA.187..369C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ArRMA.187..369C"><span>Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Gui-Qiang; Wang, Ya-Guang</p> <p>2008-03-01</p> <p>Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13B2365S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13B2365S"><span>Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.</p> <p>2017-12-01</p> <p>One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our knowledge, this is the first time PIC simulations show this kind of results, since previous simulations have predicted bipolar pattern in the asymmetric guide-field reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3845187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3845187"><span>Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Buchanan, Lauren E.; Dunkelberger, Emily B.; Tran, Huong Q.; Cheng, Pin-Nan; Chiu, Chi-Cheng; Cao, Ping; Raleigh, Daniel P.; de Pablo, Juan J.; Nowick, James S.; Zanni, Martin T.</p> <p>2013-01-01</p> <p>Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques. PMID:24218609</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850000068&hterms=silicone+sheet&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsilicone%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850000068&hterms=silicone+sheet&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsilicone%2Bsheet"><span>Silicone Coating on Polyimide Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Park, J. J.</p> <p>1985-01-01</p> <p>Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-12-09/pdf/2010-30942.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-12-09/pdf/2010-30942.pdf"><span>75 FR 76762 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-09</p> <p>... financial condition, as disclosed in its most recent balance sheet, available for inspection by any bona... delivering their balance sheet, in paper or electronic form, to customers who request it. Additionally, if the delivery is electronic, the requesting customer must provide consent to receive the balance sheet...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-29/pdf/2010-27339.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-29/pdf/2010-27339.pdf"><span>75 FR 66820 - Self-Regulatory Organizations; NASDAQ OMX BX; Notice of Filing and Immediate Effectiveness of...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-29</p> <p>... of its financial condition as disclosed in its most recently prepared balance sheet.] * * * * * II... relative to a member's financial condition, as disclosed in its most recent balance sheet, available for... option of delivering their balance sheet, in paper or electronic form, to customers who request it...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol9/pdf/CFR-2012-title49-vol9-sec1312-1.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol9/pdf/CFR-2012-title49-vol9-sec1312-1.pdf"><span>49 CFR 1312.1 - Scope; definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... Federal Maritime Commission (FMC) or the Interstate Commerce Commission under Federal law in effect on... Transportation Board. Bound tariff means a tariff consisting of two or more sheets bound at the left edge in.... Supplement means a single sheet, or two or more sheets bound at the left edge in pamphlet or book form...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol9/pdf/CFR-2014-title49-vol9-sec1312-1.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol9/pdf/CFR-2014-title49-vol9-sec1312-1.pdf"><span>49 CFR 1312.1 - Scope; definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... Federal Maritime Commission (FMC) or the Interstate Commerce Commission under Federal law in effect on... Transportation Board. Bound tariff means a tariff consisting of two or more sheets bound at the left edge in.... Supplement means a single sheet, or two or more sheets bound at the left edge in pamphlet or book form...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol9/pdf/CFR-2011-title49-vol9-sec1312-1.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol9/pdf/CFR-2011-title49-vol9-sec1312-1.pdf"><span>49 CFR 1312.1 - Scope; definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... Federal Maritime Commission (FMC) or the Interstate Commerce Commission under Federal law in effect on... Transportation Board. Bound tariff means a tariff consisting of two or more sheets bound at the left edge in.... Supplement means a single sheet, or two or more sheets bound at the left edge in pamphlet or book form...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol9/pdf/CFR-2013-title49-vol9-sec1312-1.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol9/pdf/CFR-2013-title49-vol9-sec1312-1.pdf"><span>49 CFR 1312.1 - Scope; definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... Federal Maritime Commission (FMC) or the Interstate Commerce Commission under Federal law in effect on... Transportation Board. Bound tariff means a tariff consisting of two or more sheets bound at the left edge in.... Supplement means a single sheet, or two or more sheets bound at the left edge in pamphlet or book form...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSM52A..07O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSM52A..07O"><span>CURRENT SHEET THINNING AND ENTROPY CONSTRAINTS DURING THE SUBSTORM GROWTH PHASE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otto, A.; Hall, F., IV</p> <p>2009-12-01</p> <p>A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 R_E. We propose that the cause for the current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux which is eroded at the dayside as a result of dayside reconnection. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is documented by three-dimensional MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution during the substorm growth phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25c2113P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25c2113P"><span>Onset of fast "ideal" tearing in thin current sheets: Dependence on the equilibrium current profile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pucci, F.; Velli, M.; Tenerani, A.; Del Sarto, D.</p> <p>2018-03-01</p> <p>In this paper, we study the scaling relations for the triggering of the fast, or "ideal," tearing instability starting from equilibrium configurations relevant to astrophysical as well as laboratory plasmas that differ from the simple Harris current sheet configuration. We present the linear tearing instability analysis for equilibrium magnetic fields which (a) go to zero at the boundary of the domain and (b) contain a double current sheet system (the latter previously studied as a Cartesian proxy for the m = 1 kink mode in cylindrical plasmas). More generally, we discuss the critical aspect ratio scalings at which the growth rates become independent of the Lundquist number S, in terms of the dependence of the Δ' parameter on the wavenumber k of unstable modes. The scaling Δ'(k) with k at small k is found to categorize different equilibria broadly: the critical aspect ratios may be even smaller than L/a ˜ Sα with α = 1/3 originally found for the Harris current sheet, but there exists a general lower bound α ≥ 1/4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4888122','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4888122"><span>Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak</p> <p>2016-01-01</p> <p>In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..DFD.HC008P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..DFD.HC008P"><span>Spray From a Rolling Tire: Mechanics of Droplet Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plocher, Dennis; Browand, Fred</p> <p>2010-11-01</p> <p>The spray pattern immediately behind a single-groove tire rolling on a wet surface is produced in the laboratory using a specially designed tire spray simulator. The spray development is examined using high speed video. Water from the groove forms a liquid sheet as the tire-tread lifts away from the surface. The sheet is not of uniform thickness, but it remains attached to the tread. The thinner portions of the sheet become even thinner as the tire rotates, and eventually break to produce holes near the tire surface. The holes grow as the sheet margins surrounding the holes retract into the thicker portions of the sheet which become roughly cylindrical "ligaments" aligned at right angles to the direction of spray motion. The ligaments break into large droplets via a Rayleigh instability. The smallest droplets form when the margins of two holes collide. As Weber number, We = ρU^2w/2σ , based on tire groove half width, w/2, varies by a factor of 25, the sheet-ligament structure persists, but ligaments become less organized, and more small droplets appear in the pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27245687','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27245687"><span>Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak</p> <p>2016-06-01</p> <p>In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH42A..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH42A..04B"><span>Distribution of Plasmoids in Post-Coronal Mass Ejection Current Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharjee, A.; Guo, L.; Huang, Y.</p> <p>2013-12-01</p> <p>Recently, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has been proposed as a possible mechanism for fast reconnection. In this work, we investigate this scenario by comparing the distribution of plasmoids obtained from Large Angle and Spectrometric Coronagraph (LASCO) observational data of a coronal mass ejection event with a resistive magnetohydrodynamic simulation of a similar event. The LASCO/C2 data are analyzed using visual inspection, whereas the numerical data are analyzed using both visual inspection and a more precise topological method. Contrasting the observational data with numerical data analyzed with both methods, we identify a major limitation of the visual inspection method, due to the difficulty in resolving smaller plasmoids. This result raises questions about reports of log-normal distributions of plasmoids and other coherent features in the recent literature. Based on nonlinear scaling relations of the plasmoid instability, we infer a lower bound on the current sheet width, assuming the underlying mechanism of current sheet broadening is resistive diffusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MMTA...47.2783L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MMTA...47.2783L"><span>Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong</p> <p>2016-06-01</p> <p>The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43D..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43D..01N"><span>Multi-scale multi-point observation of dipolarization in the near-Earth's magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, R.; Varsani, A.; Genestreti, K.; Nakamura, T.; Baumjohann, W.; Birn, J.; Le Contel, O.; Nagai, T.</p> <p>2017-12-01</p> <p>We report on evolution of the dipolarization in the near-Earth plasma sheet during two intense substorms based on observations when the four spacecraft of the Magnetospheric Multiscale (MMS) together with GOES and Geotail were located in the near Earth magnetotail. These multiple spacecraft together with the ground-based magnetogram enabled to obtain the location of the large- scale substorm current wedge (SCW) and overall changes in the plasma sheet configuration. MMS was located in the southern hemisphere at the outer plasma sheet and observed fast flow disturbances associated with dipolarizations. The high time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and the flow disturbances separately and to resolve signatures below the ion-scales. We found small-scale transient field-aligned current sheets associated with upward streaming cold plasmas and Hall-current layers in the fast flow shear region. Observations of these current structures are compared with simulations of reconnection jets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358665-multi-region-relaxed-magnetohydrodynamics-plasmas-slowly-changing-boundaries-resonant-response-plasma-slab','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358665-multi-region-relaxed-magnetohydrodynamics-plasmas-slowly-changing-boundaries-resonant-response-plasma-slab"><span>Multi-region relaxed magnetohydrodynamics in plasmas with slowly changing boundaries -- Resonant response of a plasma slab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.; ...</p> <p>2017-04-03</p> <p>The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>