Assessing the vertical structure of baroclinic tidal currents in a global model
NASA Astrophysics Data System (ADS)
Timko, Patrick; Arbic, Brian; Scott, Robert
2010-05-01
Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.
Analysis and numerical modelling of eddy current damper for vibration problems
NASA Astrophysics Data System (ADS)
Irazu, L.; Elejabarrieta, M. J.
2018-07-01
This work discusses a contactless eddy current damper, which is used to attenuate structural vibration. Eddy currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the eddy current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless eddy current damper is proposed. The proposed inverse method and the eddy current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless eddy current damper, thereby avoiding the use of complex analytical models.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The dynamic aspects of auroral current structures are reviewed with emphasis on consequences for models of microscopic turbulence (MT). A number of models of MT are introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. The effect of a double layer (DL) electric field which scales with the plasma temperature and the Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is shown that the DL model is less diffusive than the resistive model, indicating the possibility of narrow intense current structures.
A comparison between block and smooth modeling in finite element simulations of tDCS*
Indahlastari, Aprinda; Sadleir, Rosalind J.
2018-01-01
Current density distributions in five selected structures, namely, anterior superior temporal gyrus (ASTG), hippocampus (HIP), inferior frontal gyrus (IFG), occipital lobe (OCC) and pre-central gyrus (PRC) were investigated as part of a comparison between electrostatic finite element models constructed directly from MRI-resolution data (block models), and smoothed tetrahedral finite element models (smooth models). Three electrode configurations were applied, mimicking different tDCS therapies. Smooth model simulations were found to require three times longer to complete. The percentage differences between mean and median current densities of each model type in arbitrarily chosen brain structures ranged from −33.33–48.08%. No clear relationship was found between structure volumes and current density differences between the two model types. Tissue regions nearby the electrodes demonstrated the least percentage differences between block and smooth models. Therefore, block models may be adequate to predict current density values in cortical regions presumed targeted by tDCS. PMID:26737023
Electromagnetic field radiation model for lightning strokes to tall structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoyama, H.; Janischewskyj, W.; Hussein, A.M.
1996-07-01
This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.
Current-limiting challenges for all-spin logic devices
Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng
2015-01-01
All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410
Numerical modelling of electromagnetic loads on fusion device structures
NASA Astrophysics Data System (ADS)
Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben
2014-03-01
In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.
A coronal magnetic field model with horizontal volume and sheet currents
NASA Technical Reports Server (NTRS)
Zhao, Xuepu; Hoeksema, J. Todd
1994-01-01
When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface or by limiting the interaction to thin current sheets between oppositely directed field regions. Yet observations and numerical Magnetohydrodynamic (MHD) calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low and the current-sheet modeling technique developed by Schatten. The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coro nal helmet structures better than the current-sheet model.
Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.
Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin
2011-01-01
In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Leifker, Daniel B.
1991-01-01
Current qualitative device and process models represent only the structure and behavior of physical systems. However, systems in the real world include goal-oriented activities that generally cannot be easily represented using current modeling techniques. An extension of a qualitative modeling system, known as functional modeling, which captures goal-oriented activities explicitly is proposed and how they may be used to support intelligent automation and fault management is shown.
X-56A MUTT: Aeroservoelastic Modeling
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey A.
2015-01-01
For the NASA X-56a Program, Armstrong Flight Research Center has been developing a set of linear states space models that integrate the flight dynamics and structural dynamics. These high order models are needed for the control design, control evaluation, and test input design. The current focus has been on developing stiff wing models to validate the current modeling approach. The extension of the modeling approach to the flexible wings requires only a change in the structural model. Individual subsystems models (actuators, inertial properties, etc.) have been validated by component level ground tests. Closed loop simulation of maneuvers designed to validate the flight dynamics of these models correlates very well flight test data. The open loop structural dynamics are also shown to correlate well to the flight test data.
Alfinito, Eleonora; Reggiani, Lino
2016-10-01
Current-voltage characteristics of metal-protein-metal structures made of proteorhodopsin and bacteriorhodopsin are modeled by using a percolation-like approach. Starting from the tertiary structure pertaining to the single protein, an analogous resistance network is created. Charge transfer inside the network is described as a sequential tunneling mechanism and the current is calculated for each value of the given voltage. The theory is validated with available experiments, in dark and light. The role of the tertiary structure of the single protein and of the mechanisms responsible for the photo-activity is discussed.
Modelling of nanoscale quantum tunnelling structures using algebraic topology method
NASA Astrophysics Data System (ADS)
Sankaran, Krishnaswamy; Sairam, B.
2018-05-01
We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.
Optically controlled resonant tunneling in a double-barrier diode
NASA Astrophysics Data System (ADS)
Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.
1991-03-01
The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.
Structural Equation Modeling of Multivariate Time Series
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Browne, Michael W.
2007-01-01
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
Benchmarking an Unstructured-Grid Model for Tsunami Current Modeling
NASA Astrophysics Data System (ADS)
Zhang, Yinglong J.; Priest, George; Allan, Jonathan; Stimely, Laura
2016-12-01
We present model results derived from a tsunami current benchmarking workshop held by the NTHMP (National Tsunami Hazard Mitigation Program) in February 2015. Modeling was undertaken using our own 3D unstructured-grid model that has been previously certified by the NTHMP for tsunami inundation. Results for two benchmark tests are described here, including: (1) vortex structure in the wake of a submerged shoal and (2) impact of tsunami waves on Hilo Harbor in the 2011 Tohoku event. The modeled current velocities are compared with available lab and field data. We demonstrate that the model is able to accurately capture the velocity field in the two benchmark tests; in particular, the 3D model gives a much more accurate wake structure than the 2D model for the first test, with the root-mean-square error and mean bias no more than 2 cm s-1 and 8 mm s-1, respectively, for the modeled velocity.
Multiple imputation to account for measurement error in marginal structural models
Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.
2015-01-01
Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338
NASA Astrophysics Data System (ADS)
Franz, Guilherme; Delpey, Matthias T.; Brito, David; Pinto, Lígia; Leitão, Paulo; Neves, Ramiro
2017-09-01
Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.
The Electrical Structure of Discharges Modified by Electron Beams
NASA Astrophysics Data System (ADS)
Haas, F. A.; Braithwaite, N. St. J.
1997-10-01
Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.
Predicting RNA 3D structure using a coarse-grain helix-centered model
Kerpedjiev, Peter; Höner zu Siederdissen, Christian; Hofacker, Ivo L.
2015-01-01
A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures. PMID:25904133
Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2000-01-01
"Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).
Model of lightning strike to a steel reinforce structure using PSpice
NASA Astrophysics Data System (ADS)
Koone, Neil; Condren, Brian
2003-03-01
Surges and arcs from lightning can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.
Design of Accelerator Online Simulator Server Using Structured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guobao; /Brookhaven; Chu, Chungming
2012-07-06
Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describesmore » the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.« less
Homology modeling a fast tool for drug discovery: current perspectives.
Vyas, V K; Ukawala, R D; Ghate, M; Chintha, C
2012-01-01
Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery.
Homology Modeling a Fast Tool for Drug Discovery: Current Perspectives
Vyas, V. K.; Ukawala, R. D.; Ghate, M.; Chintha, C.
2012-01-01
Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery. PMID:23204616
Datta, Abhishek; Dmochowski, Jacek P; Guleyupoglu, Berkan; Bikson, Marom; Fregni, Felipe
2013-01-15
The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS). In order to understand further the mechanisms of CES, we aimed to model CES using a magnetic resonance imaging (MRI)-derived finite element head model including cortical and also subcortical structures. Cortical electric field (current density) peak intensities and distributions were analyzed. We evaluated different electrode configurations of CES including in-ear and over-ear montages. Our results confirm that significant amounts of current pass the skull and reach cortical and subcortical structures. In addition, depending on the montage, induced currents at subcortical areas, such as midbrain, pons, thalamus and hypothalamus are of similar magnitude than that of cortical areas. Incremental variations of electrode position on the head surface also influence which cortical regions are modulated. The high-resolution modeling predictions suggest that details of electrode montage influence current flow through superficial and deep structures. Finally we present laptop based methods for tPCS dose design using dominant frequency and spherical models. These modeling predictions and tools are the first step to advance rational and optimized use of tPCS and CES. Copyright © 2012 Elsevier Inc. All rights reserved.
PSpice Model of Lightning Strike to a Steel Reinforced Structure
NASA Astrophysics Data System (ADS)
Koone, Neil; Condren, Brian
2003-12-01
Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.
Finite element modelling of crash response of composite aerospace sub-floor structures
NASA Astrophysics Data System (ADS)
McCarthy, M. A.; Harte, C. G.; Wiggenraad, J. F. M.; Michielsen, A. L. P. J.; Kohlgrüber, D.; Kamoulakos, A.
Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV - Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics.
NASA Technical Reports Server (NTRS)
Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Roelof, E. C.; Tsyganenko, N. A.; Le, G.
2016-01-01
The structure of storm time currents in the inner magnetosphere, including its innermost region inside 4R(sub E), is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at R > or approx. 3R(sub E) and the eastward ring current concentrated at R < or approx. 3R(sub E) resulting in a vortex current pattern. A similar pattern coined 'banana current' was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming banana currents. Near SYM-H minimum, the banana current is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.
EVIDENCE FOR QUASI-ADIABATIC MOTION OF CHARGED PARTICLES IN STRONG CURRENT SHEETS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.
We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplestmore » modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼10{sup 4} km) embedded into a wider region of about 10{sup 5} km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.« less
Elliptic-cylindrical analytical flux-rope model for ICMEs
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.
2016-12-01
We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.
Detecting defects in marine structures by using eddy current infrared thermography.
Swiderski, W
2016-12-01
Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.
The Command and Control of Communications in Joint and Combined Operations
1994-06-03
war. The Joint Task Force structure is used as the model for command and control relationships . The first part of the thesis assesses the current...Joint Task Force structure is used as the model for conmand and control relationships . The first part of the thesis assesses the current doctrine and...Message Switch Connectivity . . . . . . . 59 10. C4 Architecture Requirements . . . . . . 81 11. Functional Relationships . . . . . . 84 vi LIST OF
A 3D Model for Eddy Current Inspection in Aeronautics: Application to Riveted Structures
NASA Astrophysics Data System (ADS)
Paillard, S.; Pichenot, G.; Lambert, M.; Voillaume, H.; Dominguez, N.
2007-03-01
Eddy current technique is currently an operational tool used for fastener inspection which is an important issue for the maintenance of aircraft structures. The industry calls for faster, more sensitive and reliable NDT techniques for the detection and characterization of potential flaws nearby rivet. In order to reduce the development time and to optimize the design and the performances assessment of an inspection procedure, the CEA and EADS have started a collaborative work aiming at extending the modeling features of the CIVA non destructive simulation plat-form in order to handle the configuration of a layered planar structure with a rivet and an embedded flaw nearby. Therefore, an approach based on the Volume Integral Method using the Green dyadic formalism which greatly increases computation efficiency has been developed. The first step, modeling the rivet without flaw as a hole in a multi-stratified structure, has been reached and validated in several configurations with experimental data.
A cautionary note concerning the use of stabilized weights in marginal structural models.
Talbot, Denis; Atherton, Juli; Rossi, Amanda M; Bacon, Simon L; Lefebvre, Geneviève
2015-02-28
Marginal structural models are commonly used to estimate the causal effect of a time-varying treatment in presence of time-dependent confounding. When fitting an MSM to data, the analyst must specify both the structural model for the outcome and the treatment models for the inverse-probability-of-treatment weights. The use of stabilized weights is recommended because they are generally less variable than the standard weights. In this paper, we are concerned with the use of the common stabilized weights when the structural model is specified to only consider partial treatment history, such as the current or most recent treatments. We present various examples of settings where these stabilized weights yield biased inferences while the standard weights do not. These issues are first investigated on the basis of simulated data and subsequently exemplified using data from the Honolulu Heart Program. Unlike common stabilized weights, we find that basic stabilized weights offer some protection against bias in structural models designed to estimate current or most recent treatment effects. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray
2017-05-01
This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.
Current rectification for transport of room-temperature ionic liquids through conical nanopores
Jiang, Xikai; Liu, Ying; Qiao, Rui
2016-02-09
Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less
NASA Astrophysics Data System (ADS)
Maslovskaya, A. G.; Barabash, T. K.
2018-03-01
The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.
Wang, Ping; Zheng, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Huang, Feng; Song, Zhenjie; Zhang, Zhiyong
2014-01-15
The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.
Enhanced dielectric standoff and mechanical failure in field-structured composites
NASA Astrophysics Data System (ADS)
Martin, James E.; Tigges, Chris P.; Anderson, Robert A.; Odinek, Judy
1999-09-01
We report dielectric breakdown experiments on electric-field-structured composites of high-dielectric-constant BaTiO3 particles in an epoxy resin. These experiments show a significant increase in the dielectric standoff strength perpendicular to the field structuring direction, relative to control samples consisting of randomly dispersed particles. To understand the relation of this observation to microstructure, we apply a simple resistor-short breakdown model to three-dimensional composite structures generated from a dynamical simulation. In this breakdown model the composite material is assumed to conduct primarily through particle contacts, so the simulated structures are mapped onto a resistor network where the center of mass of each particle is a node that is connected to neighboring nodes by resistors of fixed resistance that irreversibly short to perfect conductors when the current reaches a threshold value. This model gives relative breakdown voltages that are in good agreement with experimental results. Finally, we consider a primitive model of the mechanical strength of a field-structured composite material, which is a current-driven, conductor-insulator fuse model. This model leads to a macroscopic fusing behavior and can be related to mechanical failure of the composite.
Covering complete proteomes with X-ray structures: A current snapshot
Mizianty, Marcin J.; Fan, Xiao; Yan, Jing; ...
2014-10-23
Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtainedmore » through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined.« less
The Structures of Centralized Governmental Privacy Protection: Approaches, Models, and Analysis.
ERIC Educational Resources Information Center
Jaeger, Paul T.; McClure, Charles R.; Fraser, Bruce T.
2002-01-01
Asserts that the federal government should adopt a centralized governmental structure for the privacy protection of personal information and data. Discusses the roles of federal law, federal agencies, and the judiciary; the concept of information privacy; the impact of current technologies; and models of centralized government structures for…
NASA Astrophysics Data System (ADS)
Hua, Wei; Qi, Ji; Jia, Meng
2017-05-01
Switched reluctance machines (SRMs) have attracted extensive attentions due to the inherent advantages, including simple and robust structure, low cost, excellent fault-tolerance and wide speed range, etc. However, one of the bottlenecks limiting the SRMs for further applications is its unfavorable torque ripple, and consequently noise and vibration due to the unique doubly-salient structure and pulse-current-based power supply method. In this paper, an inductance Fourier decomposition-based current-hysteresis-control (IFD-CHC) strategy is proposed to reduce torque ripple of SRMs. After obtaining a nonlinear inductance-current-position model based Fourier decomposition, reference currents can be calculated by reference torque and the derived inductance model. Both the simulations and experimental results confirm the effectiveness of the proposed strategy.
Buckling analysis of SMA bonded sandwich structure – using FEM
NASA Astrophysics Data System (ADS)
Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.
2018-03-01
Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.
Modelling of piezoelectric actuator dynamics for active structural control
NASA Technical Reports Server (NTRS)
Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas
1990-01-01
The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.
Modeling of Dual Gate Material Hetero-dielectric Strained PNPN TFET for Improved ON Current
NASA Astrophysics Data System (ADS)
Kumari, Tripty; Saha, Priyanka; Dash, Dinesh Kumar; Sarkar, Subir Kumar
2018-01-01
The tunnel field effect transistor (TFET) is considered to be a promising alternative device for future low-power VLSI circuits due to its steep subthreshold slope, low leakage current and its efficient performance at low supply voltage. However, the main challenging issue associated with realizing TFET for wide scale applications is its low ON current. To overcome this, a dual gate material with the concept of dielectric engineering has been incorporated into conventional TFET structure to tune the tunneling width at source-channel interface allowing significant flow of carriers. In addition to this, N+ pocket is implanted at source-channel junction of the proposed structure and the effect of strain is added for exploring the performance of the model in nanoscale regime. All these added features upgrade the device characteristics leading to higher ON current, low leakage and low threshold voltage. The present work derives the surface potential, electric field expression and drain current by solving 2D Poisson's equation at different boundary conditions. A comparative analysis of proposed model with conventional TFET has been done to establish the superiority of the proposed structure. All analytical results have been compared with the results obtained in SILVACO ATLAS device simulator to establish the accuracy of the derived analytical model.
NASA Astrophysics Data System (ADS)
Ozkaya, Efe; Yilmaz, Cetin
2017-02-01
The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.
OPTICON: Pro-Matlab software for large order controlled structure design
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1989-01-01
A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panneer Chelvam, Prem Kumar; Raja, Laxminarayan L.
2015-12-28
Electron emission from the electrode surface plays an important role in determining the structure of a direct-current microdischarge. Here we have developed a computational model of a direct-current microdischarge to study the effect of external electron injection from the cathode surface into the discharge to manipulate its properties. The model provides a self-consistent, multi-species, multi-temperature fluid representation of the plasma. A microdischarge with a metal-insulator-metal configuration is chosen for this study. The effect of external electron injection on the structure and properties of the microdischarge is described. The transient behavior of the microdischarge during the electron injection is examined. Themore » nonlinearities in the dynamics of the plasma result in a large increase of conduction current after active electron injection. For the conditions simulated a switching time of ∼100 ns from a low-current to high-current discharge state is realized.« less
Numerical ecosystem models of coastal acidification (CA) and hypoxia have been developed to synthesize current scientific understanding and provide predictions for nutrient management and policy. However, there is not a scientific consensus about the structure of these models an...
Structural modeling of HTS tapes and cables
NASA Astrophysics Data System (ADS)
Allen, N. C.; Chiesa, L.; Takayasu, M.
2016-12-01
Structural finite element analysis (FEA) has been used as an insightful tool to investigate the electromechanical behavior of HTS REBCO tapes and twisted stacked-tape cables under tension, torsion, bending and combined loads. A novel technique was developed for modeling the layered composite structure of the 2G tapes with structural solid-shell elements in ANSYS®. The FEA models produced detailed strain information for the REBCO superconducting layer which was then paired with an analytical model to predict the critical current performance of the 2G HTS tapes under various loads. Two commercially available HTS tapes (SuperPower and SuNAM) under tension, torsion and combined tension-torsion were first analyzed with FEA and compared with available experimental results at 77 K. A sharp critical current degradation was experienced at the yield strength of the tapes under tension and below a 100 mm twist-pitch under torsion. Combined tension-torsion loads had a more gradual degradation of critical current for twist-pitches of 115 mm or shorter but had a negligible difference compared to pure tension for longer twist-pitches. Using the structural solid-shell technique for modeling 2G tapes in ANSYS®, an FEA methodology for simulating full scale three-dimensional HTS stacked-tape cables under pure bending was created. A model of a Twisted-Stacked Tape Cable (TSTC), a configuration first proposed at MIT, was initially developed and then adapted to the slotted-core HTS Cable-In-Conduit Conductor produced by the ENEA laboratory in Italy. The numerical axial strain of the HTS REBCO tapes within the cables as calculated by FEA were found to agree with an analytical model for two cases: perfect-slip (frictionless) and no-slip (bonded). The ENEA CICC model was also compared with recent experimental critical current data at 77 K and was found to match best using a low friction coefficient of 0.02 indicating that the tapes within the cable freely slide with respect to each other helping to reduce the axial strain during bending.
Mathematical methods for protein science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.; Istrail, S.; Atkins, J.
1997-12-31
Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focusedmore » on two aspects of protein science: mathematical structure prediction, and inverse protein folding.« less
Model invariance across genders of the Broad Autism Phenotype Questionnaire.
Broderick, Neill; Wade, Jordan L; Meyer, J Patrick; Hull, Michael; Reeve, Ronald E
2015-10-01
ASD is one of the most heritable neuropsychiatric disorders, though comprehensive genetic liability remains elusive. To facilitate genetic research, researchers employ the concept of the broad autism phenotype (BAP), a milder presentation of traits in undiagnosed relatives. Research suggests that the BAP Questionnaire (BAPQ) demonstrates psychometric properties superior to other self-report measures. To examine evidence regarding validity of the BAPQ, the current study used confirmatory factor analysis to test the assumption of model invariance across genders. Results of the current study upheld model invariance at each level of parameter constraint; however, model fit indices suggested limited goodness-of-fit between the proposed model and the sample. Exploratory analyses investigated alternate factor structure models but ultimately supported the proposed three-factor structure model.
Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell
2012-09-25
Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less
ERIC Educational Resources Information Center
Robic, Srebrenka
2010-01-01
To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…
ERIC Educational Resources Information Center
Steed, Teneka C.
2013-01-01
Evaluating the psychometric properties of a newly developed instrument is critical to understanding how well an instrument measures what it intends to measure, and ensuring proposed use and interpretation of questionnaire scores are valid. The current study uses Structural Equation Modeling (SEM) techniques to examine the factorial structure and…
Rip Current Velocity Structure in Drifter Trajectories and Numerical Simulations
NASA Astrophysics Data System (ADS)
Schmidt, W. E.; Slinn, D. N.
2008-12-01
Estimates of rip current velocity and cross-shore structure were made using surfzone drifters, bathymetric surveys, and rectified video images. Over 60 rip current trajectories were observed during a three year period at a Southern California beach in July 2000, 2001, and 2002. Incident wave heights (Hs) immediately offshore (~7 m depth) were obtained by initializing a refraction model with data from nearby directional wave buoys, and varied from 0.3 to 1.0 m. Tide levels varied over approximately 1 m and winds were light. Numerical simulations using the non-linear shallow water equations and modeled over measured bathymetry also produced similar flows and statistics. Time series of drifter position, sampled at 1 Hz, were first-differenced to produce velocity time series. Maximum observed velocities varied between 25 and 80 cm s-1, whereas model maximum velocities were lower by a factor 2 to 3. When velocity maxima were non-dimensionalized by respective trajectory mean velocity, both observed and modeled values varied between 1.5 and 3.5. Cross-shore location of rip current velocity maxima for both shore-normal and shore-oblique rip currents were strongly coincident with the surfzone edge (Xb), as determined by rectified video (observations) or breakpoint (model). Once outside of the surfzone, observed and modeled rip current velocities decreased to 10% of their peak values within 2 surfzone widths of the shoreline, a useful definition of rip current cross-shore extent.
ERIC Educational Resources Information Center
Zhu, Xiaoshu
2013-01-01
The current study introduced a general modeling framework, multilevel mixture IRT (MMIRT) which detects and describes characteristics of population heterogeneity, while accommodating the hierarchical data structure. In addition to introducing both continuous and discrete approaches to MMIRT, the main focus of the current study was to distinguish…
NASA Astrophysics Data System (ADS)
Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Feng, Song-Lin
2009-11-01
A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interfacial layer and building a new device structure. The simulation results indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.
Influence of boundary conditions on the hydrodynamic forces of an oscillating sphere
NASA Astrophysics Data System (ADS)
Mirauda, Domenica; Negri, Marco; Martinelli, Luca; Malavasi, Stefano
2018-06-01
The design of submerged structures in sea currents presents certain problems that are not only connected to the shape of the obstacle but also to the number of acting forces as well as the correct modelling of the structures dynamic response. Currently, the common approach is that of integrated numerical modelling, which considers the contribution of both current and structure. The reliability of such an approach is better verified with experimental tests performed on models of simple geometry. On the basis of these considerations, the present work analyses the hydrodynamic forces acting on a sphere, which is characterised by a low mass ratio and damping. The sphere is immersed in a free surface flow and can oscillate along the streamwise and transverse flow direction. It is located at three different positions inside the current: close to the channel bottom, near the free surface and in the middle, and equally distant from both the bottom and free surface. The obtained results for different boundaries and flow kinematic conditions show a relevant influence of the free surface on the hydrodynamic forces along both the streamwise and transverse flow directions.
A fully dynamic magneto-rheological fluid damper model
NASA Astrophysics Data System (ADS)
Jiang, Z.; Christenson, R. E.
2012-06-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
Heterogeneity in the Latent Structure of PTSD Symptoms among Canadian Veterans
ERIC Educational Resources Information Center
Naifeh, James A.; Richardson, J. Don; Del Ben, Kevin S.; Elhai, Jon D.
2010-01-01
The current study used factor mixture modeling to identify heterogeneity (i.e., latent classes) in 2 well-supported models of posttraumatic stress disorder's (PTSD) factor structure. Data were analyzed from a clinical sample of 405 Canadian veterans evaluated for PTSD. Results were consistent with our hypotheses. Each PTSD factor model was best…
Tertiary structure-based analysis of microRNA–target interactions
Gan, Hin Hark; Gunsalus, Kristin C.
2013-01-01
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009
Protein Structure Determination using Metagenome sequence data
Ovchinnikov, Sergey; Park, Hahnbeom; Varghese, Neha; Huang, Po-Ssu; Pavlopoulos, Georgios A.; Kim, David E.; Kamisetty, Hetunandan; Kyrpides, Nikos C.; Baker, David
2017-01-01
Despite decades of work by structural biologists, there are still ~5200 protein families with unknown structure outside the range of comparative modeling. We show that Rosetta structure prediction guided by residue-residue contacts inferred from evolutionary information can accurately model proteins that belong to large families, and that metagenome sequence data more than triples the number of protein families with sufficient sequences for accurate modeling. We then integrate metagenome data, contact based structure matching and Rosetta structure calculations to generate models for 614 protein families with currently unknown structures; 206 are membrane proteins and 137 have folds not represented in the PDB. This approach provides the representative models for large protein families originally envisioned as the goal of the protein structure initiative at a fraction of the cost. PMID:28104891
Modes of interconnected lattice trusses using continuum models, part 1
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
This represents a continuing systematic attempt to explore the use of continuum models--in contrast to the Finite Element Models currently universally in use--to develop feedback control laws for stability enhancement of structures, particularly large structures, for deployment in space. We shall show that for the control objective, continuum models do offer unique advantages. It must be admitted of course that developing continuum models for arbitrary structures is no easy task. In this paper we take advantage of the special nature of current Large Space Structures--typified by the NASA-LaRC Evolutionary Model which will be our main concern--which consists of interconnected orthogonal lattice trusses each with identical bays. Using an equivalent one-dimensional Timoshenko beam model, we develop an almost complete continuum model for the evolutionary structure. We do this in stages, beginning only with the main bus as flexible and then going on to make all the appendages also flexible-except for the antenna structure. Based on these models we proceed to develop formulas for mode frequencies and shapes. These are shown to be the roots of the determinant of a matrix of small dimension compared with mode calculations using Finite Element Models, even though the matrix involves transcendental functions. The formulas allow us to study asymptotic properties of the modes and how they evolve as we increase the number of bodies which are treated as flexible. The asymptotics, in fact, become simpler.
Current systems of coronal loops in 3D MHD simulations
NASA Astrophysics Data System (ADS)
Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.
2017-11-01
Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-β conditions.
Luminosity function and jet structure of Gamma-Ray Burst
NASA Astrophysics Data System (ADS)
Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.
2015-02-01
The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(sub E) less than x less than - 14 R(sub E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(E) less than x less than -14 R(E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
NASA Astrophysics Data System (ADS)
Cojocaru, Ludmila; Uchida, Satoshi; Jayaweera, Piyankarage V. V.; Kaneko, Shoji; Toyoshima, Yasutake; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi
2017-02-01
Physical modeling of hysteretic behavior in current-voltage (I-V) curves of perovskite solar cells (PSCs) is necessary for further improving their power conversion efficiencies (PCEs). The reduction of hysteresis in inverted planar structure PSCs (p-PSCs) has been achieved by using a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer. In the cases, the opposite trend of the I-V hysteresis has been observed where the forward scan shows slightly higher efficiency than the reverse scan. In this paper, an equivalent circuit model with inductance is proposed. This model consists of a Schottky diode involving a parasitic inductance focusing PCBM/Al(Ca) interface and accurately represents the opposite trend of the I-V hysteresis of the p-PSC with an inverted structure.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
Formula Gives Better Contact-Resistance Values
NASA Technical Reports Server (NTRS)
Lieneweg, Udo; Hannaman, David J.
1988-01-01
Lateral currents in contact strips taken into account. Four-terminal test structures added to intergrated circuits to enable measurement of interfacial resistivities of contacts between thin conducting layers. Thin-film model simplified quasi-two-dimensional potential model that accounts adequately for complicated three-dimensional, nonuniform current densitites. Effects of nonuniformity caused by lateral current flow in strips summarized in equivalent resistance Rs and voltage Vs.
Turbulent structures in cylindrical density currents in a rotating frame of reference
NASA Astrophysics Data System (ADS)
Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas
2018-06-01
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.
ERIC Educational Resources Information Center
Fryer, Luke K.
2017-01-01
Many of our current higher education (HE) learning strategy models intersect at important points. At the same time, these theories also often demonstrate important unique perspectives on student learning within HE. Currently, research with one learning strategy model rarely leads to developments in others, as each group of researchers works in…
Persistent superconductor currents in holographic lattices.
Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo
2014-07-04
We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.
Noah’s Ark Conservation Will Not Preserve Threatened Ecological Communities under Climate Change
Harris, Rebecca Mary Bernadette; Carter, Oberon; Gilfedder, Louise; Porfirio, Luciana Laura; Lee, Greg; Bindoff, Nathaniel Lee
2015-01-01
Background Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened community. Methods We model current and future climatic suitability for the Lowland Themeda and the Lowland Poa Grassland communities, which make up the listed ecological community. We also model climatic suitability for the structurally dominant grass species of these communities, and for closely related grassland and woodland communities. We use a dynamically downscaled regional climate model derived from six CMIP3 global climate models, under the A2 SRES emissions scenario. Results All model projections showed a large reduction in climatically suitable area by mid-century. Outcomes are slightly better if closely related grassy communities are considered, but the extent of suitable area is still substantially reduced. Only small areas within the current distribution are projected to remain climatically suitable by the end of the century, and very little of that area is currently in good condition. Conclusions As the climate becomes less suitable, a gradual change in the species composition, structure and habitat quality of the grassland communities is likely. Conservation management will need to focus on maintaining diversity, structure and function, rather than attempting to preserve current species composition. Options for achieving this include managing related grassland types to maintain grassland species at the landscape-scale, and maximising the resilience of grasslands by reducing further fragmentation, weed invasion and stress from other land uses, while accepting that change is inevitable. Attempting to maintain the status quo by conserving the current structure and composition of Lowland Grassland communities is unlikely to be a viable management option in the long term. PMID:25881302
Noah's Ark conservation will not preserve threatened ecological communities under climate change.
Harris, Rebecca Mary Bernadette; Carter, Oberon; Gilfedder, Louise; Porfirio, Luciana Laura; Lee, Greg; Bindoff, Nathaniel Lee
2015-01-01
Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened community. We model current and future climatic suitability for the Lowland Themeda and the Lowland Poa Grassland communities, which make up the listed ecological community. We also model climatic suitability for the structurally dominant grass species of these communities, and for closely related grassland and woodland communities. We use a dynamically downscaled regional climate model derived from six CMIP3 global climate models, under the A2 SRES emissions scenario. All model projections showed a large reduction in climatically suitable area by mid-century. Outcomes are slightly better if closely related grassy communities are considered, but the extent of suitable area is still substantially reduced. Only small areas within the current distribution are projected to remain climatically suitable by the end of the century, and very little of that area is currently in good condition. As the climate becomes less suitable, a gradual change in the species composition, structure and habitat quality of the grassland communities is likely. Conservation management will need to focus on maintaining diversity, structure and function, rather than attempting to preserve current species composition. Options for achieving this include managing related grassland types to maintain grassland species at the landscape-scale, and maximising the resilience of grasslands by reducing further fragmentation, weed invasion and stress from other land uses, while accepting that change is inevitable. Attempting to maintain the status quo by conserving the current structure and composition of Lowland Grassland communities is unlikely to be a viable management option in the long term.
NASA Technical Reports Server (NTRS)
Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.;
2011-01-01
In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.
Acoustic Modeling of Lightweight Structures: A Literature Review
NASA Astrophysics Data System (ADS)
Yang, Shasha; Shen, Cheng
2017-10-01
This paper gives an overview of acoustic modeling for three kinds of typical lightweight structures including double-leaf plate system, stiffened single (or double) plate and porous material. Classical models are citied to provide frame work of theoretical modeling for acoustic property of lightweight structures; important research advances derived by our research group and other authors are introduced to describe the current state of art for acoustic research. Finally, remaining problems and future research directions are concluded and prospected briefly
A curved piezo-structure model: implications on active structural acoustic control.
Henry, J K; Clark, R L
1999-09-01
Current research in Active Structural Acoustic Control (ASAC) relies heavily upon accurately capturing the application physics associated with the structure being controlled. The application of ASAC to aircraft interior noise requires a greater understanding of the dynamics of the curved panels which compose the skin of an aircraft fuselage. This paper presents a model of a simply supported curved panel with attached piezoelectric transducers. The model is validated by comparison to previous work. Further, experimental results for a simply supported curved panel test structure are presented in support of the model. The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control.
The Voronoi spatio-temporal data structure
NASA Astrophysics Data System (ADS)
Mioc, Darka
2002-04-01
Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal information. This formal model of spatio-temporal change representation is currently applied to retroactive map updates and visualization of map evolution. It offers new possibilities in the domains of temporal GIS, transaction processing, spatio-temporal queries, spatio-temporal analysis, map animation and map visualization.
Some Observations on the Current Status of Performing Finite Element Analyses
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Knight, Norman F., Jr; Shivakumar, Kunigal N.
2015-01-01
Aerospace structures are complex high-performance structures. Advances in reliable and efficient computing and modeling tools are enabling analysts to consider complex configurations, build complex finite element models, and perform analysis rapidly. Many of the early career engineers of today are very proficient in the usage of modern computers, computing engines, complex software systems, and visualization tools. These young engineers are becoming increasingly efficient in building complex 3D models of complicated aerospace components. However, the current trends demonstrate blind acceptance of the results of the finite element analysis results. This paper is aimed at raising an awareness of this situation. Examples of the common encounters are presented. To overcome the current trends, some guidelines and suggestions for analysts, senior engineers, and educators are offered.
Delamination Modeling of Composites for Improved Crash Analysis
NASA Technical Reports Server (NTRS)
Fleming, David C.
1999-01-01
Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.
ERIC Educational Resources Information Center
Leite, Walter L.; Zuo, Youzhen
2011-01-01
Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…
ERIC Educational Resources Information Center
Leth-Steensen, Craig; Gallitto, Elena
2016-01-01
A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…
ERIC Educational Resources Information Center
Mazaheri, Mehrdad; Theuns, Peter
2009-01-01
The current study evaluates three hypothesized models on subjective well-being, comprising life domain ratings (LDR), overall satisfaction with life (OSWL), and overall dissatisfaction with life (ODWL), using structural equation modeling (SEM). A sample of 1,310 volunteering students, randomly assigned to six conditions, rated their overall life…
ERIC Educational Resources Information Center
Liu, Junhui
2012-01-01
The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…
NASA Technical Reports Server (NTRS)
Amundsen, R. M.; Feldhaus, W. S.; Little, A. D.; Mitchum, M. V.
1995-01-01
Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given.
Studying the Consistency between and within the Student Mental Models for Atomic Structure
ERIC Educational Resources Information Center
Zarkadis, Nikolaos; Papageorgiou, George; Stamovlasis, Dimitrios
2017-01-01
Science education research has revealed a number of student mental models for atomic structure, among which, the one based on Bohr's model seems to be the most dominant. The aim of the current study is to investigate the coherence of these models when students apply them for the explanation of a variety of situations. For this purpose, a set of…
Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
From Databases to Modelling of Functional Pathways
2004-01-01
This short review comments on current informatics resources and methodologies in the study of functional pathways in cell biology. It highlights recent achievements in unveiling the structural design of protein and gene networks and discusses current approaches to model and simulate the dynamics of regulatory pathways in the cell. PMID:18629070
From databases to modelling of functional pathways.
Nasi, Sergio
2004-01-01
This short review comments on current informatics resources and methodologies in the study of functional pathways in cell biology. It highlights recent achievements in unveiling the structural design of protein and gene networks and discusses current approaches to model and simulate the dynamics of regulatory pathways in the cell.
Active control of large space structures: An introduction and overview
NASA Technical Reports Server (NTRS)
Doane, G. B., III; Tollison, D. K.; Waites, H. B.
1985-01-01
An overview of the large space structure (LSS) control system design problem is presented. The LSS is defined as a class of system, and LSS modeling techniques are discussed. Model truncation, control system objectives, current control law design techniques, and particular problem areas are discussed.
Banking Structure and Monetary Policy: New Wine in Old Bottles.
ERIC Educational Resources Information Center
Hacche, John
1989-01-01
Provides an extension of the basic banking model used in introductory economics courses. This expanded model introduces the concept of banking capital and reserves, and includes the relationship existing between current issues and banking structure and money supply growth. Provides worksheet exercises and answers. (LS)
Armour, Cherie; Raudzah Ghazali, Siti; Elklit, Ask
2013-03-30
The underlying latent structure of Posttraumatic Stress Disorder (PTSD) is widely researched. However, despite a plethora of factor analytic studies, no single model has consistently been shown as superior to alternative models. The two most often supported models are the Emotional Numbing and the Dysphoria models. However, a recently proposed five-factor Dysphoric Arousal model has been gathering support over and above existing models. Data for the current study were gathered from Malaysian Tsunami survivors (N=250). Three competing models (Emotional Numbing/Dysphoria/Dysphoric Arousal) were specified and estimated using Confirmatory Factor Analysis (CFA). The Dysphoria model provided superior fit to the data compared to the Emotional Numbing model. However, using chi-square difference tests, the Dysphoric Arousal model showed a superior fit compared to both the Emotional Numbing and Dysphoria models. In conclusion, the current results suggest that the Dysphoric Arousal model better represents PTSD's latent structure and that items measuring sleeping difficulties, irritability/anger and concentration difficulties form a separate, unique PTSD factor. These results are discussed in relation to the role of Hyperarousal in PTSD's on-going symptom maintenance and in relation to the DSM-5. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dumitrache, P.; Goanţă, A. M.
2017-08-01
The ability of the cabins to insure the operator protection in the case of the shock loading that appears at the roll-over of the machine or when the cab is struck by the falling objects, it’s one of the most important performance criterions that it must comply by the machines and the mobile equipments. The experimental method provides the most accurate information on the behaviour of protective structures, but generates high costs due to experimental installations and structures which may be compromised during the experiments. In these circumstances, numerical simulation of the actual problem (mechanical shock applied to a strength structure) is a perfectly viable alternative, given that the hardware and software current performances provides the necessary support to obtain results with an acceptable level of accuracy. In this context, the paper proposes using FEA platforms for virtual testing of the actual strength structures of the cabins using their finite element models based on 3D models generated in CAD environments. In addition to the economic advantage above mentioned, although the results obtained by simulation using the finite element method are affected by a number of simplifying assumptions, the adequate modelling of the phenomenon can be a successful support in the design process of structures to meet safety performance criteria imposed by current standards. In the first section of the paper is presented the general context of the security performance requirements imposed by current standards on the cabins strength structures. The following section of the paper is dedicated to the peculiarities of finite element modelling in problems that impose simulation of the behaviour of structures subjected to shock loading. The final section of the paper is dedicated to a case study and to the future objectives.
Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.
Biophysics of cadherin adhesion.
Leckband, Deborah; Sivasankar, Sanjeevi
2012-01-01
Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.
Spectral Analysis of the Wake behind a Helicopter Rotor Hub
NASA Astrophysics Data System (ADS)
Petrin, Christopher; Reich, David; Schmitz, Sven; Elbing, Brian
2016-11-01
A scaled model of a notional helicopter rotor hub was tested in the 48" Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. LDV and PIV measurements in the far-wake consistently showed a six-per-revolution flow structure, in addition to stronger two- and four-per-revolution structures. These six-per-revolution structures persisted into the far-field, and have no direct geometric counterpart on the hub model. The current study will examine the Reynolds number dependence of these structures and present higher-order statistics of the turbulence within the wake. In addition, current activity using the EFPL Large Water Tunnel at Oklahoma State University will be presented. This effort uses a more canonical configuration to identify the source for these six-per-revolution structures, which are assumed to be a non-linear interaction between the two- and four-per-revolution structures.
Evaluating bacterial gene-finding HMM structures as probabilistic logic programs.
Mørk, Søren; Holmes, Ian
2012-03-01
Probabilistic logic programming offers a powerful way to describe and evaluate structured statistical models. To investigate the practicality of probabilistic logic programming for structure learning in bioinformatics, we undertook a simplified bacterial gene-finding benchmark in PRISM, a probabilistic dialect of Prolog. We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length modeling and three-state versions of the five model structures. The models are all represented as probabilistic logic programs and evaluated using the PRISM machine learning system in terms of statistical information criteria and gene-finding prediction accuracy, in two bacterial genomes. Neither of our implementations of the two currently most used model structures are best performing in terms of statistical information criteria or prediction performances, suggesting that better-fitting models might be achievable. The source code of all PRISM models, data and additional scripts are freely available for download at: http://github.com/somork/codonhmm. Supplementary data are available at Bioinformatics online.
Development of Large-Eddy Interaction Model for inhomogeneous turbulent flows
NASA Technical Reports Server (NTRS)
Hong, S. K.; Payne, F. R.
1987-01-01
The objective of this paper is to demonstrate the applicability of a currently proposed model, with minimum empiricism, for calculation of the Reynolds stresses and other turbulence structural quantities in a channel. The current Large-Eddy Interaction Model not only yields Reynolds stresses but also presents an opportunity to illuminate typical characteristic motions of large-scale turbulence and the phenomenological aspects of engineering models for two Reynolds numbers.
Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.
Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras
2015-08-01
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.
The Structural Basis of IKs Ion-Channel Activation: Mechanistic Insights from Molecular Simulations.
Ramasubramanian, Smiruthi; Rudy, Yoram
2018-06-05
Relating ion channel (iCh) structural dynamics to physiological function remains a challenge. Current experimental and computational techniques have limited ability to explore this relationship in atomistic detail over physiological timescales. A framework associating iCh structure to function is necessary for elucidating normal and disease mechanisms. We formulated a modeling schema that overcomes the limitations of current methods through applications of artificial intelligence machine learning. Using this approach, we studied molecular processes that underlie human IKs voltage-mediated gating. IKs malfunction underlies many debilitating and life-threatening diseases. Molecular components of IKs that underlie its electrophysiological function include KCNQ1 (a pore-forming tetramer) and KCNE1 (an auxiliary subunit). Simulations, using the IKs structure-function model, reproduced experimentally recorded saturation of gating-charge displacement at positive membrane voltages, two-step voltage sensor (VS) movement shown by fluorescence, iCh gating statistics, and current-voltage relationship. Mechanistic insights include the following: 1) pore energy profile determines iCh subconductance; 2) the entire protein structure, not limited to the pore, contributes to pore energy and channel subconductance; 3) interactions with KCNE1 result in two distinct VS movements, causing gating-charge saturation at positive membrane voltages and current activation delay; and 4) flexible coupling between VS and pore permits pore opening at lower VS positions, resulting in sequential gating. The new modeling approach is applicable to atomistic scale studies of other proteins on timescales of physiological function. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lynch, James F.; Irish, James D.; Gross, Thomas F.; Wiberg, Patricia L.; Newhall, Arthur E.; Traykovski, Peter A.; Warren, Joseph D.
1997-08-01
As part of the 1990-1991 Sediment TRansport Events on Shelves and Slopes (STRESS) experiment, a 5 MHz Acoustic BackScatter System (ABSS) was deployed in 90 m of water to measure vertical profiles of near-bottom suspended sediment concentration. By looking at the vertical profile of concentration from 0 to 50 cm above bottom (cmab) with 1 cm vertical resolution, the ABSS was able to examine the detailed structure of the bottom boundary layer created by combined wave and current stresses. The acoustic profiles clearly showed the wave-current boundary layer, which extends to (order) 10 cmab. The profiles also showed evidence of an "intermediate" boundary layer, also influenced by combined wave and current stresses, just above the wave-current boundary layer. This paper examines the boundary-layer structure by comparing acoustic data obtained by the authors to a 1-D eddy viscosity model formulation. Specifically, these data are compared to a simple extension of the Grant-Glenn-Madsen model formulation. Also of interest is the appearance of apparently 3-D "advective plume" structures in these data. This is an interesting feature in a site which was initially chosen to be a good example of (temporally averaged) 1-D bottom boundary-layer dynamics. Computer modeling and sector-scanning sonar images are presented to justify the plausibility of observing 3-D structure at the STRESS site. 1997 Elsevier Science Ltd
Structural Modeling Using "Scanning and Mapping" Technique
NASA Technical Reports Server (NTRS)
Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)
2000-01-01
Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar components, then passed to AutoCAD for modification and correction of any discrepancies seen in the Photomodeler version of the 3Dmodel. These three software packages are fully compatible. The DXF file can be used to transfer drawings among those packages. To begin this entire process, we are using a small replica of an actual engine blade as a test object. This paper introduces the accomplishment of our recent work.
Errors of Inference in Structural Equation Modeling
ERIC Educational Resources Information Center
McCoach, D. Betsy; Black, Anne C.; O'Connell, Ann A.
2007-01-01
Although structural equation modeling (SEM) is one of the most comprehensive and flexible approaches to data analysis currently available, it is nonetheless prone to researcher misuse and misconceptions. This article offers a brief overview of the unique capabilities of SEM and discusses common sources of user error in drawing conclusions from…
Visualization of RNA structure models within the Integrative Genomics Viewer.
Busan, Steven; Weeks, Kevin M
2017-07-01
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
NASA Astrophysics Data System (ADS)
Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.
2017-01-01
Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-bound rivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized, three-dimensional, turbulence-resolving model was developed to study the flow structures along lateral separation zones located in two pools along the Colorado River in Marble Canyon. The model employs the detached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacing in the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flow measurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-point validation using a number of skill metrics, often employed in hydrological research, is proposed here for fluvial modeling. The validation results show predictive capabilities of the DES model. The model reproduces the pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position of the primary and secondary eddy cells, and return current. The lateral recirculation zone is open, having continuous import of fluid upstream of the point of reattachment and export by the recirculation return current downstream of the point of separation. Differences in magnitude and direction of near-bed and near-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between the recirculation return current and the main flow is dynamic, with large temporal changes in flow direction and magnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer becoming three-dimensional without preferred orientation downstream.
Do gender and directness of trauma exposure moderate PTSD's latent structure?
Frankfurt, Sheila B; Armour, Cherie; Contractor, Ateka A; Elhai, Jon D
2016-11-30
The PTSD diagnosis and latent structure were substantially revised in the transition from DSM-IV to DSM-5. However, three alternative models (i.e., anhedonia model, externalizing behavior model, and hybrid model) of PTSD fit the DSM-5 symptom criteria better than the DSM-5 factor model. Thus, the psychometric performance of the DSM-5 and alternative models' PTSD factor structure needs to be critically evaluated. The current study examined whether gender or trauma directness (i.e., direct or indirect trauma exposure) moderates the PTSD latent structure when using the DSM-5 or alternative models. Model performance was evaluated with measurement invariance testing procedures on a large undergraduate sample (n=455). Gender and trauma directness moderated the DSM-5 PTSD and externalizing behavior model and did not moderate the anhedonia and hybrid models' latent structure. Clinical implications and directions for future research are discussed. Published by Elsevier Ireland Ltd.
Optimal estimation of large structure model errors. [in Space Shuttle controller design
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1979-01-01
In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.
A Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition
NASA Astrophysics Data System (ADS)
Pauplin, Olivier; Jiang, Jianmin
Pattern recognition using Dynamic Bayesian Networks (DBNs) is currently a growing area of study. In this paper, we present DBN models trained for classification of handwritten digit characters. The structure of these models is partly inferred from the training data of each class of digit before performing parameter learning. Classification results are presented for the four described models.
Integrating normal and abnormal personality structure: a proposal for DSM-V.
Widiger, Thomas A
2011-06-01
The personality disorders section of the American Psychiatric Association's fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) is currently being developed. The purpose of the current paper is to encourage the authors of DSM-V to integrate normal and abnormal personality structure within a common, integrative model, and to suggest that the optimal choice for such an integration would be the five-factor model (FFM) of general personality structure. A proposal for the classification of personality disorder from the perspective of the FFM is provided. Discussed as well are implications and issues associated with an FFM of personality disorder, including validity, coverage, feasibility, clinical utility, and treatment implications.
NASA Astrophysics Data System (ADS)
Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.
2011-12-01
Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.
2016-02-10
a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and...to assess the reliability of NDE and SHM characterization capability. Best practices of using models are presented for both an eddy current NDE... EDDY CURRENT NDE CASE STUDY An eddy current crack sizing case study is presented to highlight examples of some of these complex characteristics of
The protein structure prediction problem could be solved using the current PDB library
Zhang, Yang; Skolnick, Jeffrey
2005-01-01
For single-domain proteins, we examine the completeness of the structures in the current Protein Data Bank (PDB) library for use in full-length model construction of unknown sequences. To address this issue, we employ a comprehensive benchmark set of 1,489 medium-size proteins that cover the PDB at the level of 35% sequence identity and identify templates by structure alignment. With homologous proteins excluded, we can always find similar folds to native with an average rms deviation (RMSD) from native of 2.5 Å with ≈82% alignment coverage. These template structures often contain a significant number of insertions/deletions. The tasser algorithm was applied to build full-length models, where continuous fragments are excised from the top-scoring templates and reassembled under the guide of an optimized force field, which includes consensus restraints taken from the templates and knowledge-based statistical potentials. For almost all targets (except for 2/1,489), the resultant full-length models have an RMSD to native below 6 Å (97% of them below 4 Å). On average, the RMSD of full-length models is 2.25 Å, with aligned regions improved from 2.5 Å to 1.88 Å, comparable with the accuracy of low-resolution experimental structures. Furthermore, starting from state-of-the-art structural alignments, we demonstrate a methodology that can consistently bring template-based alignments closer to native. These results are highly suggestive that the protein-folding problem can in principle be solved based on the current PDB library by developing efficient fold recognition algorithms that can recover such initial alignments. PMID:15653774
Structure of high latitude currents in magnetosphere-ionosphere models
NASA Astrophysics Data System (ADS)
Wiltberger, M. J.; Lyon, J.; Merkin, V. G.; Rigler, E. J.
2016-12-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model the structure of the high latitude field-aligned current patterns is examined. Each LFM resolution was run for the entire Whole Heliosphere Interval (WHI), which contained two high-speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results from the Weimer 2005 computed using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and confined. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths in the model also results in a better shielding of mid- and low-latitude ionosphere from the polar cap convection, also in agreement with observations. Current-voltage relationships between the R1 strength and the cross-polar cap potential (CPCP) are quite similar at the higher resolutions indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Subminiature eddy current transducers for studying metal- dielectric junctions
NASA Astrophysics Data System (ADS)
Dmitriev, S.; Katasonov, A.; Malikov, V.; Sagalakov, A.; Davydchenko, M.; Shevtsova, L.; Ishkov, A.
2016-11-01
Based on an eddy current transducer (ECT), a probe has been designed to research metal-dielectric structures. The measurement procedure allowing one to detect defects in laminate composites with a high accuracy is described. The transducer was tested on the layered structure consisting of paper and aluminum layers with a thickness of 100 μm each in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given.
Structure of High Latitude Currents in Magnetosphere-Ionosphere Models
NASA Astrophysics Data System (ADS)
Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.
2017-03-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Structure of high latitude currents in global magnetospheric-ionospheric models
Wiltberger, M; Rigler, E. J.; Merkin, V; Lyon, J. G
2016-01-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Scaled Tank Test Design and Results for the Aquantis 2.5 MW Ocean Current Generation Device
Swales, Henry; Kils, Ole; Coakley, David B.; Sites, Eric; Mayer, Tyler
2015-06-03
Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This dataset also includes specific information on drivetrain, roller bearing, blade fabrication, mooring, and rotor characteristics.
The ‘structure-function’ relationship in glaucoma – past thinking and current concepts
Malik, Rizwan; Swanson, William H.; Garway-Heath, David F
2013-01-01
An understanding of the relationship between functional and structural measures in primary open angle glaucoma (POAG) is necessary for both grading the severity of disease and for understanding the natural history of the condition. This article outlines the current evidence for the nature of this relationship, and highlights the current mathematical models linking structure and function. Large clinical trials demonstrate that both structural and functional change are apparent in advanced stages of disease, while, at an individual level, detectable structural abnormality may precede functional abnormality in some patients whilst the converse in true in other patients. Although the exact nature of the ‘structure-function’ relationship in POAG is still the topic of scientific debate and the subject of continuing research, this article aims to provide the clinician with an understanding of the past concepts and contemporary thinking in relation to the structure-function relationship in POAG. PMID:22339936
Nagornov, Yuri S
2018-05-01
The charge model for efficiency of betavoltaics effect is proposed. It allows calculating the charge value for pin structures under irradiation of Ni-63. We approximated the current-voltage characteristics of the structures using an equivalent diode circuit with a charge on the barrier capacitance. We calculated the charge function from current-voltage characteristics for two types of silicon pin structures - with and without getter annealing. The charging on the surface of pin structure decreases the efficiency of betavoltaics effect. Value of charge for our structures is changed in the range from -50 to +15mC/cm 2 and depends on the applied potential. The getter annealing allows getting the structures with a higher efficiency of betavoltaic effect, but it does not exclude the surface charging under beta irradiation from Ni-63. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermal Effects Modeling Developed for Smart Structures
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
1998-01-01
Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.
Teacher's Corner: Structural Equation Modeling with the Sem Package in R
ERIC Educational Resources Information Center
Fox, John
2006-01-01
R is free, open-source, cooperatively developed software that implements the S statistical programming language and computing environment. The current capabilities of R are extensive, and it is in wide use, especially among statisticians. The sem package provides basic structural equation modeling facilities in R, including the ability to fit…
Koblitz, Amber R.; Persoskie, Alexander; Ferrer, Rebecca A.; Klein, William M. P.; Dwyer, Laura A.; Park, Elyse R.
2016-01-01
Introduction: Absolute and comparative risk perceptions, worry, perceived severity, perceived benefits, and self-efficacy are important theoretical determinants of tobacco use, but no measures have been validated to ensure the discriminant validity as well as test-retest reliability of these measures in the tobacco context. The purpose of the current study is to examine the reliability and factor structure of a measure assessing smoking-related health cognitions and emotions in a national sample of current and former heavy smokers in the National Lung Screening Trial. Methods: A sub-study of the National Lung Screening Trial assessed current and former smokers’ (age 55–74; N = 4379) self-reported health cognitions and emotions at trial enrollment and at 12-month follow-up. Items were derived from the Health Belief Model and Self-Regulation Model. Results: An exploratory factor analysis of baseline responses revealed a five-factor structure for former smokers (risk perceptions, worry, perceived severity, perceived benefits, and self-efficacy) and a six-factor structure for current smokers, such that absolute risk and comparative risk perceptions emerged as separate factors. A confirmatory factor analysis of 12-month follow-up responses revealed a good fit for the five latent constructs for former smokers and six latent constructs for current smokers. Longitudinal stability of these constructs was also demonstrated. Conclusions: This is the first study to examine tobacco-related health cognition and emotional constructs over time in current and former heavy smokers undergoing lung screening. This study found that the theoretical constructs were stable across time and that the factor structure differed based on smoking status (current vs. former). PMID:25964503
Large Dataset of Acute Oral Toxicity Data Created for Testing ...
Acute toxicity data is a common requirement for substance registration in the US. Currently only data derived from animal tests are accepted by regulatory agencies, and the standard in vivo tests use lethality as the endpoint. Non-animal alternatives such as in silico models are being developed due to animal welfare and resource considerations. We compiled a large dataset of oral rat LD50 values to assess the predictive performance currently available in silico models. Our dataset combines LD50 values from five different sources: literature data provided by The Dow Chemical Company, REACH data from eChemportal, HSDB (Hazardous Substances Data Bank), RTECS data from Leadscope, and the training set underpinning TEST (Toxicity Estimation Software Tool). Combined these data sources yield 33848 chemical-LD50 pairs (data points), with 23475 unique data points covering 16439 compounds. The entire dataset was loaded into a chemical properties database. All of the compounds were registered in DSSTox and 59.5% have publically available structures. Compounds without a structure in DSSTox are currently having their structures registered. The structural data will be used to evaluate the predictive performance and applicable chemical domains of three QSAR models (TIMES, PROTOX, and TEST). Future work will combine the dataset with information from ToxCast assays, and using random forest modeling, assess whether ToxCast assays are useful in predicting acute oral toxicity. Pre
Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loopmore » for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.« less
Study of a control strategy for grid side converter in doubly- fed wind power system
NASA Astrophysics Data System (ADS)
Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.
2016-08-01
The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, J.; van Lint, V.; Sherwood, S.
This report is a compilation of two previous sets of pretest calculations, references 1 and 2 and the grounding and shielding report, reference 3. The calculations performed in reference 1 were made for the baseline system, with the instrumentation trailers not isolated from ground, and wider ranges of ground conductivity were considered. This was used to develop the grounding and shielding plan included in the appendix. The final pretest calculations of reference 2 were performed for the modified system with isolated trailers, and with a better knowledge of the ground conductivity. The basic driving mechanism for currents in the modelmore » is the motion of Compton electrons, driven by gamma rays, in the air gaps and soil. Most of the Compton current is balanced by conduction current which returns directly along the path of the Compton electron, but a small fraction will return by circuitous paths involving current flow on conductors, including the uphole cables. The calculation of the currents is done in a two step process -- first the voltages in the ground near the conducting metallic structures is calculated without considering the presence of the structures. These are then used as open circuit drivers for an electrical model of the conductors which is obtained from loop integrals of Maxwell`s equations. The model which is used is a transmission line model, similar to those which have been used to calculate EMP currents on buried and overhead cables in other situations, including previous underground tests, although on much shorter distance and time scales, and with more controlled geometries. The behavior of air gaps between the conducting structure and the walls of the drift is calculated using an air chemistry model which determines the electron and ion densities and uses them to calculate the air conductivity across the gap.« less
Finite element modeling of truss structures with frequency-dependent material damping
NASA Technical Reports Server (NTRS)
Lesieutre, George A.
1991-01-01
A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Wacker, Soren; Noskov, Sergei Yu; Perissinotti, Laura L
2017-01-01
The rapid delayed rectifier current IKr is one of the major K+ currents involved in repolarization of the human cardiac action potential. Various inherited or drug-induced forms of the long QT syndrome (LQTS) in humans are linked to functional and structural modifications in the IKr conducting channels. IKr is carried by the potassium channel Kv11.1 encoded by the gene KCNH2 (commonly referred to as human ether-a-go-go-related gene or hERG) [1, 2]. The first necessary step for predicting emergent drug effects on the heart is determining and modeling the binding thermodynamics and kinetics of primary and major off-target drug interactions with subcellular targets. The bulk of drugs that target hERG channels are known to have complex interactions at the atomic scale. Accordingly, one of the goals for this review is to provide comprehensive guide in the universe of computational models aiming to refine our understanding of structure-function relations in Kv11.1 and its isoforms. The special emphasis is placed on the mapping of drug binding sites and tentative mechanisms of channel inhibition and activation by drugs. An overview over recent structural models and mapping of binding sites for blockers and activators of IKr current along with the discussion on agreements and discrepancies among different models is presented. There is an apparent reciprocity or feedback loop between drug binding and action potential of the cardiac myocytes. Thus one has to connect drug binding to a particular receptor so that its functional consequences impact on the action potential duration. The natural pathway is to develop multi-scale models that connect between receptor and cellular scales. The potential for such multi-scale model development is discussed through the lens of common gating models. Accordingly, the second part of this review covers an ongoing development of the kinetic models of gating transitions and cardiac ion currents carried by hERG channels with and without drug bound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A unified framework for group independent component analysis for multi-subject fMRI data
Guo, Ying; Pagnoni, Giuseppe
2008-01-01
Independent component analysis (ICA) is becoming increasingly popular for analyzing functional magnetic resonance imaging (fMRI) data. While ICA has been successfully applied to single-subject analysis, the extension of ICA to group inferences is not straightforward and remains an active topic of research. Current group ICA models, such as the GIFT (Calhoun et al., 2001) and tensor PICA (Beckmann and Smith, 2005), make different assumptions about the underlying structure of the group spatio-temporal processes and are thus estimated using algorithms tailored for the assumed structure, potentially leading to diverging results. To our knowledge, there are currently no methods for assessing the validity of different model structures in real fMRI data and selecting the most appropriate one among various choices. In this paper, we propose a unified framework for estimating and comparing group ICA models with varying spatio-temporal structures. We consider a class of group ICA models that can accommodate different group structures and include existing models, such as the GIFT and tensor PICA, as special cases. We propose a maximum likelihood (ML) approach with a modified Expectation-Maximization (EM) algorithm for the estimation of the proposed class of models. Likelihood ratio tests (LRT) are presented to compare between different group ICA models. The LRT can be used to perform model comparison and selection, to assess the goodness-of-fit of a model in a particular data set, and to test group differences in the fMRI signal time courses between subject subgroups. Simulation studies are conducted to evaluate the performance of the proposed method under varying structures of group spatio-temporal processes. We illustrate our group ICA method using data from an fMRI study that investigates changes in neural processing associated with the regular practice of Zen meditation. PMID:18650105
Computational modeling of membrane proteins
Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.
2014-01-01
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688
Subic-Wrana, Claudia; Beutel, Manfred E; Garfield, David A S; Lane, Richard D
2011-04-01
The need to establish the efficacy of psychoanalytic long-term treatments has promoted efforts to operationalize psychic structure and structural change as key elements of psychoanalytic treatments and their outcomes. Current, promising measures of structural change, however, require extensive interviews and rater training. The purpose of this paper is to present the theory and measurement of Levels of Emotional Awareness (LEA) and to illustrate its use based on clinical case vignettes. The LEA model lays out a developmental trajectory of affective processing, akin to Piaget's theory of sensory-cognitive development, from implicit to explicit processing. Unlike other current assessments of psychic structure (Scales of Psychological Capacities, Reflective Functioning, Operationalized Psychodynamic Diagnostics) requiring intensive rater and interviewer training, it is easily assessed based on a self-report performance test. The LEA model conceptualizes a basic psychological capacity, affect processing. As we will illustrate using two case vignettes, by operationalizing implicit and explicit modes of affect processing, it provides a clinical measure of emotional awareness that is highly pertinent to the ongoing psychoanalytic debate on the nature and mechanisms of structural change. Copyright © 2011 Institute of Psychoanalysis.
Cilia/Ift protein and motor -related bone diseases and mouse models.
Yuan, Xue; Yang, Shuying
2015-01-01
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Tomographic reconstruction of layered tissue structures
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Azeez-Jan, Mohideen; Bartel, Sebastian
2001-11-01
In recent years the interest in the determination of optical properties of layered tissue structure has resurfaced. Applications include, for example, studies on layered skin tissue and underlying muscles, imaging of the brain underneath layers of skin, skull, and meninges, and imaging of the fetal head in utero beneath the layered structures of the maternal abdomen. In this work we approach the problem of layered structures in the framework of model-based iterative image reconstruction schemes. These schemes are currently developed to determine the optical properties inside tissue from measurement on the surface. If applied to layered structure these techniques yield substantial improvements over currently available semi-analytical approaches.
Structure and dynamics of coronal plasmas
NASA Technical Reports Server (NTRS)
Golub, Leon (Principal Investigator)
1996-01-01
Progress for the period July 1995 - June 1996 included work on the differential magnetic field shear in an active region; observations and modeling of the solar chromosphere seen in soft X-ray absorption by NIXT; and modeling magnetic flux emergence. These were the subjects of three papers. The plans for the current year include projects on a converging flux model for point-like brightenings around sunspots, and difficulties in observing coronal structure.
A model for heliospheric flux-ropes
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.
2017-12-01
This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.
Blind tests of methods for InSight Mars mission: Open scientific challenge
NASA Astrophysics Data System (ADS)
Clinton, John; Ceylan, Savas; Giardini, Domenico; Khan, Amir; van Driel, Martin; Böse, Maren; Euchner, Fabian; Garcia, Raphael F.; Drilleau, Mélanie; Lognonné, Philippe; Panning, Mark; Banerdt, Bruce
2017-04-01
The Marsquake Service (MQS) will be the ground segment service within the InSight mission to Mars, which will deploy a single seismic station on Elysium Planitia in November 2018. The main tasks of the MQS are the identification and characterisation of seismicity, and managing the Martian seismic event catalogue. In advance of the mission, we have developed a series of single station event location methods that rely on a priori 1D and 3D structural models. In coordination with the Mars Structural Service, we expect to use iterative inversion techniques to revise these structural models and event locations. In order to seek methodological advancements and test our current approaches, we have designed a blind test case using Martian synthetics combined with realistic noise models for the Martian surface. We invite all scientific parties that are interested in single station approaches and in exploring the Martian time-series to participate and contribute to our blind test. We anticipate the test will can improve currently developed location and structural inversion techniques, and also allow us explore new single station techniques for moment tensor and magnitude determination. The waveforms for our test case are computed employing AxiSEM and Instaseis for a randomly selected 1D background model and event catalogue that is statistically consistent with our current expectation of Martian seismicity. Realistic seismic surface noise is superimposed to generate a continuous time-series spanning 6 months. The event catalog includes impacts as well as Martian quakes. The temporal distribution of the seismicity in the timeseries, as well as the true structural model, are not be known to any participating parties including MQS till the end of competition. We provide our internal tools such as event location codes, suite of background models, seismic phase travel times, in order to support researchers who are willing to use/improve our current methods. Following the deadline of our blind test in late 2017, we plan to combine all outcomes in an article with all participants as co-authors.
Separate and Not Equal: The Implementation of Structured English Immersion in Arizona's Classrooms
ERIC Educational Resources Information Center
Lillie, Karen E.; Markos, Amy; Arias, M. Beatriz; Wiley, Terrence G.
2012-01-01
Background/Context: Over the last ten years, a convergence of laws and decrees has impacted the development and implementation of Arizona's current program for English language learners (ELLs): the four-hour Structured English Immersion (SEI) model. Arizona's new model, while being touted by some as the most effective program for ELLs (Clark,…
Structure and dynamics of the coronal magnetic field
NASA Technical Reports Server (NTRS)
VanHoven, Gerard; Schnack, Dalton D.
1996-01-01
The last few years have seen a marked increase in the sophistication of models of the solar corona. This has been brought about by a confluence of three key elements. First, the collection of high-resolution observations of the Sun, both in space and time, has grown tremendously. The SOHO (Solar Heliospheric Observatory) mission is providing additional correlated high-resolution magnetic, white-light and spectroscopic observations. Second, the power and availability of supercomputers has made two- and three-dimensional modeling routine. Third, the sophistication of the models themselves, both in their geometrical realism and in the detailed physics that has been included, has improved significantly. The support from our current Space Physics Theory grant has allowed us to exploit this confluence of capabilities. We have carried out direct comparisons between observations and models of the solar corona. The agreement between simulated coronal structure and observations has verified that the models are mature enough for detailed analysis, as we will describe. The development of this capability is especially timely, since observations obtained from three space missions that are underway (Ulysses, WIND and SOHO) offer an opportunity for significant advances in our understanding of the corona and heliosphere. Through this interplay of observations and theory we can improve our understanding of the Sun. Our achievements thus far include progress modeling the large-scale structure of the solar corona, three-dimensional models of active region fields, development of emerging flux and current, formation and evolution of coronal loops, and coronal heating by current filaments.
A validated approach for modeling collapse of steel structures
NASA Astrophysics Data System (ADS)
Saykin, Vitaliy Victorovich
A civil engineering structure is faced with many hazardous conditions such as blasts, earthquakes, hurricanes, tornadoes, floods, and fires during its lifetime. Even though structures are designed for credible events that can happen during a lifetime of the structure, extreme events do happen and cause catastrophic failures. Understanding the causes and effects of structural collapse is now at the core of critical areas of national need. One factor that makes studying structural collapse difficult is the lack of full-scale structural collapse experimental test results against which researchers could validate their proposed collapse modeling approaches. The goal of this work is the creation of an element deletion strategy based on fracture models for use in validated prediction of collapse of steel structures. The current work reviews the state-of-the-art of finite element deletion strategies for use in collapse modeling of structures. It is shown that current approaches to element deletion in collapse modeling do not take into account stress triaxiality in vulnerable areas of the structure, which is important for proper fracture and element deletion modeling. The report then reviews triaxiality and its role in fracture prediction. It is shown that fracture in ductile materials is a function of triaxiality. It is also shown that, depending on the triaxiality range, different fracture mechanisms are active and should be accounted for. An approach using semi-empirical fracture models as a function of triaxiality are employed. The models to determine fracture initiation, softening and subsequent finite element deletion are outlined. This procedure allows for stress-displacement softening at an integration point of a finite element in order to subsequently remove the element. This approach avoids abrupt changes in the stress that would create dynamic instabilities, thus making the results more reliable and accurate. The calibration and validation of these models are shown. The calibration is performed using a particle swarm optimization algorithm to establish accurate parameters when calibrated to circumferentially notched tensile coupons. It is shown that consistent, accurate predictions are attained using the chosen models. The variation of triaxiality in steel material during plastic hardening and softening is reported. The range of triaxiality in steel structures undergoing collapse is investigated in detail and the accuracy of the chosen finite element deletion approaches is discussed. This is done through validation of different structural components and structural frames undergoing severe fracture and collapse.
Statistical survey of day-side magnetospheric current flow using Cluster observations: magnetopause
NASA Astrophysics Data System (ADS)
Liebert, Evelyn; Nabert, Christian; Perschke, Christopher; Fornaçon, Karl-Heinz; Glassmeier, Karl-Heinz
2017-05-01
We present a statistical survey of current structures observed by the Cluster spacecraft at high-latitude day-side magnetopause encounters in the close vicinity of the polar cusps. Making use of the curlometer technique and the fluxgate magnetometer data, we calculate the 3-D current densities and investigate the magnetopause current direction, location, and magnitude during varying solar wind conditions. We find that the orientation of the day-side current structures is in accordance with existing magnetopause current models. Based on the ambient plasma properties, we distinguish five different transition regions at the magnetopause surface and observe distinctive current properties for each region. Additionally, we find that the location of currents varies with respect to the onset of the changes in the plasma environment during magnetopause crossings.
Three-dimensional effects for radio frequency antenna modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Stallings, D.C.
1994-10-15
Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less
Three-dimensional effects for radio frequency antenna modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Stallings, D.C.
1993-12-31
Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
New method to monitor RF safety in MRI-guided interventions based on RF induced image artefacts.
van den Bosch, Michiel R; Moerland, Marinus A; Lagendijk, Jan J W; Bartels, Lambertus W; van den Berg, Cornelis A T
2010-02-01
Serious tissue heating may occur at the tips of elongated metallic structures used in MRI-guided interventions, such as vascular guidewires, catheters, biopsy needles, and brachytherapy needles. This heating is due to resonating electromagnetic radiofrequency (RF) waves along the structure. Since it is hard to predict the exact length at which resonance occurs under in vivo conditions, there is a need for methods to monitor this resonance behavior. In this study, the authors propose a method based on the RF induced image artefacts and demonstrate its applicability in two phantom experiments. The authors developed an analytical model that describes the RF induced image artefacts as a function of the induced current in an elongated metallic structure placed parallel to the static magnetic field. It describes the total RF field as a sum of the RF fields produced by the transmit coil of the MR scanner and by the elongated metallic structure. Several spoiled gradient echo images with different nominal flip angle settings were acquired to map the B1+ field, which is a quantitative measure for the RF distortion around the structure. From this map, the current was extracted by fitting the analytical model. To investigate the sensitivity of our method we performed two phantom experiments with different setup parameters: One that mimics a brachytherapy needle insertion and one that resembles a guidewire intervention. In the first experiment, a short needle was placed centrally in the MR bore to ensure that the induced currents would be small. In the second experiment, a longer wire was placed in an off-center position to mimic a worst case scenario for the patient. In both experiments, a Luxtron (Santa Clara, CA) fiberoptic temperature sensor was positioned at the structure tip to record the temperature. In the first experiment, no significant temperature increases were measured, while the RF image artefacts and the induced currents in the needle increased with the applied insertion depth. The maximum induced current in the needle was 44 mA. Furthermore, a standing wave pattern became clearly visible for larger insertion depths. In the second experiment, significant temperature increases up to 2.4 degrees C in 1 min were recorded during the image acquisitions. The maximum current value was 1.4 A. In both experiments, a proper estimation of the current in the metallic structure could be made using our analytical model. The authors have developed a method to quantitatively determine the induced current in an elongated metallic structure from its RF distortion. This creates a powerful and sensitive method to investigate the resonant behavior of RF waves along elongated metallic structures used for MRI-guided interventions, for example, to monitor the RF safety or to inspect the influence of coating on the resonance length. Principally, it can be applied under in vivo conditions and for noncylindrical metallic structures such as hip implants by taking their geometry into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaton, Daniel B.; Darnel, Jonathan M.; Bartz, Allison E., E-mail: daniel.seaton@noaa.gov
2017-02-01
We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops.more » We estimate that the rate of reconnection during the event was M{sub A} ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.« less
76 FR 68366 - Airworthiness Directives; The Boeing Company Model 777-200 and -300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
...-induced currents and subsequent damage to composite structures, hydraulic tubes, and actuator control... and could subsequently damage composite structures, hydraulic tubes, and actuator control electronics... subsequent damage to composite structures, hydraulic tubes, and actuator control electronics. In the event of...
NASA Technical Reports Server (NTRS)
Martinovic, Zoran N.; Cerro, Jeffrey A.
2002-01-01
This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.
In search of a consensus model of the resting state of a voltage-sensing domain.
Vargas, Ernesto; Bezanilla, Francisco; Roux, Benoît
2011-12-08
Voltage-sensing domains (VSDs) undergo conformational changes in response to the membrane potential and are the critical structural modules responsible for the activation of voltage-gated channels. Structural information about the key conformational states underlying voltage activation is currently incomplete. Through the use of experimentally determined residue-residue interactions as structural constraints, we determine and refine a model of the Kv channel VSD in the resting conformation. The resulting structural model is in broad agreement with results that originate from various labs using different techniques, indicating the emergence of a consensus for the structural basis of voltage sensing. Copyright © 2011 Elsevier Inc. All rights reserved.
Finite Element Based HWB Centerbody Structural Optimization and Weight Prediction
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2012-01-01
This paper describes a scalable structural model suitable for Hybrid Wing Body (HWB) centerbody analysis and optimization. The geometry of the centerbody and primary wing structure is based on a Vehicle Sketch Pad (VSP) surface model of the aircraft and a FLOPS compatible parameterization of the centerbody. Structural analysis, optimization, and weight calculation are based on a Nastran finite element model of the primary HWB structural components, featuring centerbody, mid section, and outboard wing. Different centerbody designs like single bay or multi-bay options are analyzed and weight calculations are compared to current FLOPS results. For proper structural sizing and weight estimation, internal pressure and maneuver flight loads are applied. Results are presented for aerodynamic loads, deformations, and centerbody weight.
Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow
NASA Astrophysics Data System (ADS)
Horner-Devine, Alexander R.; Chickadel, C. Chris
2017-05-01
Gravity currents represent a broad class of geophysical flows including turbidity currents, powder avalanches, pyroclastic flows, sea breeze fronts, haboobs, and river plumes. A defining feature in many gravity currents is the formation of three-dimensional lobes and clefts along the front and researchers have sought to understand these ubiquitous geophysical structures for decades. The prevailing explanation is based largely on early laboratory and numerical model experiments at much smaller scales, which concluded that lobes and clefts are generated due to hydrostatic instability exclusively in currents propagating over a nonslip boundary. Recent studies suggest that frontal dynamics change as the flow scale increases, but no measurements have been made that sufficiently resolve the flow structure in full-scale geophysical flows. Here we use thermal infrared and acoustic imaging of a river plume to reveal the three-dimensional structure of lobes and clefts formed in a geophysical gravity current front. The observed lobes and clefts are generated at the front in the absence of a nonslip boundary, contradicting the prevailing explanation. The observed flow structure is consistent with an alternative formation mechanism, which predicts that the lobe scale is inherited from subsurface vortex structures.
Empirically evaluating decision-analytic models.
Goldhaber-Fiebert, Jeremy D; Stout, Natasha K; Goldie, Sue J
2010-08-01
Model-based cost-effectiveness analyses support decision-making. To augment model credibility, evaluation via comparison to independent, empirical studies is recommended. We developed a structured reporting format for model evaluation and conducted a structured literature review to characterize current model evaluation recommendations and practices. As an illustration, we applied the reporting format to evaluate a microsimulation of human papillomavirus and cervical cancer. The model's outputs and uncertainty ranges were compared with multiple outcomes from a study of long-term progression from high-grade precancer (cervical intraepithelial neoplasia [CIN]) to cancer. Outcomes included 5 to 30-year cumulative cancer risk among women with and without appropriate CIN treatment. Consistency was measured by model ranges overlapping study confidence intervals. The structured reporting format included: matching baseline characteristics and follow-up, reporting model and study uncertainty, and stating metrics of consistency for model and study results. Structured searches yielded 2963 articles with 67 meeting inclusion criteria and found variation in how current model evaluations are reported. Evaluation of the cervical cancer microsimulation, reported using the proposed format, showed a modeled cumulative risk of invasive cancer for inadequately treated women of 39.6% (30.9-49.7) at 30 years, compared with the study: 37.5% (28.4-48.3). For appropriately treated women, modeled risks were 1.0% (0.7-1.3) at 30 years, study: 1.5% (0.4-3.3). To support external and projective validity, cost-effectiveness models should be iteratively evaluated as new studies become available, with reporting standardized to facilitate assessment. Such evaluations are particularly relevant for models used to conduct comparative effectiveness analyses.
Unified Deep Learning Architecture for Modeling Biology Sequence.
Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang
2017-10-09
Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.
Sub-keV ring current ions as the tracer of substorm injection
NASA Astrophysics Data System (ADS)
Yamauchi, M.; Lundin, R.
2006-03-01
The dynamics of the energy-latitude dispersed sub-keV trapped ions inside the ring current region, the so-called wedge-like dispersions structure, were statistically studied using Viking satellite data. Probabilities with/without these signatures at various local times in the dayside are obtained in terms of different time-lags from the substorm activity monitored by the AE index. The structure appears in the early morning sector within a few hours after the substorm, and it slowly propagates eastward while decaying with a time scale of several hours. The result qualitatively confirmed the previous model that the wedge-like dispersions are originated from past substorm-related plasma injections into the nightside ring current region, and that the dispersion is formed when these injected plasma slowly moves eastward to the dayside by the drift motion (E×B (eastward), grad-<|B| (westward), and curvature (westward) drifts). However, the appearance of the structure is twice or three times faster than the model prediction, and some structure reaches even to the evening sector. The results indicate that the start location of the drift is not as far as midnight and that the drift speed is slightly faster than the model prediction. The former means that the substorm-related increase of hot plasma in the ring current region shifts or extends to the early morning sector for large substorms, and the latter means that the substantial electric field driving the sub-keV ion drift is slightly different from the model field. We also detected the evacuating effect starting right after the substorm (or storm) onset. The electric field imposed in the dayside magnetosphere seems to remove the remainder of trapped ions.
Estimation and Model Selection for Finite Mixtures of Latent Interaction Models
ERIC Educational Resources Information Center
Hsu, Jui-Chen
2011-01-01
Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…
NASA Astrophysics Data System (ADS)
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo
NASA Astrophysics Data System (ADS)
Takahashi, F.
2011-12-01
Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.
Comparison between two photovoltaic module models based on transistors
NASA Astrophysics Data System (ADS)
Saint-Eve, Frédéric; Sawicki, Jean-Paul; Petit, Pierre; Maufay, Fabrice; Aillerie, Michel
2018-05-01
The main objective of this paper is to verify the possibility to reduce to a simple electronic circuit with very few components the behavior simulation of an un-shaded photovoltaic (PV) module. Particularly, two models based on well-tried elementary structures, i.e., the Darlington structure in first model and the voltage regulation with programmable Zener diode in the second are analyzed. Specifications extracted from the behavior of a real I-V characteristic of a panel are considered and the principal electrical variables are deduced. The two models are expected to match with open circuit voltage, maximum power point (MPP) and short circuit current, without forgetting realistic current slopes on the both sides of MPP. The robustness is mentioned when irradiance varies and is considered as an additional fundamental property. For both models, two simulations are done to identify influence of some parameters. In the first model, a parameter allowing to adjust current slope on left side of MPP proves to be also important for the calculation of open circuit voltage. Besides this model does not authorize an entirely adjustment of I-V characteristic and MPP moves significantly away from real value when irradiance increases. On the contrary, the second model seems to have only qualities: open circuit voltage is easy to calculate, current slopes are realistic and there is perhaps a good robustness when irradiance variations are simulated by adjusting short circuit current of PV module. We have shown that these two simplified models are expected to make reliable and easier simulations of complex PV architecture integrating many different devices like PV modules or other renewable energy sources and storage capacities coupled in parallel association.
Heating of the corona by magnetic singularities
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
1990-01-01
Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.
Generalized Kähler geometry and current algebras in classical N=2 superconformal WZW model
NASA Astrophysics Data System (ADS)
Parkhomenko, S. E.
2018-04-01
I examine the Generalized Kähler (GK) geometry of classical N = (2, 2) superconformal WZW model on a compact group and relate the right-moving and left-moving Kac-Moody superalgebra currents to the GK geometry data using biholomorphic gerbe formulation and Hamiltonian formalism. It is shown that the canonical Poisson homogeneous space structure induced by the GK geometry of the group manifold is crucial to provide N = (2, 2) superconformal σ-model with the Kac-Moody superalgebra symmetries. Then, the biholomorphic gerbe geometry is used to prove that Kac-Moody superalgebra currents are globally defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vexler, M. I.; A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytechnicheskaya Str., 194021 St.-Petersburg; Sokolov, N. S.
2009-04-15
Au/CaF{sub 2}/nSi(111) structures with 4-5 monolayers of epitaxial fluoride are fabricated and electrically tested. The leakage current in these structures was substantially smaller than in similar samples reported previously. Simulations adopting a Franz-type dispersion relation with Franz mass of m{sub F}approx1.2m{sub 0} for carriers in the forbidden band of CaF{sub 2} reproduced the measured current-voltage curves quite satisfactorily. Roughly, these curves could also be reproduced using the parabolic dispersion law with the electron mass of m{sub e}=1.0m{sub 0}, which is a material constant rather than a fitting parameter. Experimental facts and their comparison to modeling results allow qualification of themore » crystalline quality of fabricated structures as sufficient for device applications.« less
Parametric Workflow (BIM) for the Repair Construction of Traditional Historic Architecture in Taiwan
NASA Astrophysics Data System (ADS)
Ma, Y.-P.; Hsu, C. C.; Lin, M.-C.; Tsai, Z.-W.; Chen, J.-Y.
2015-08-01
In Taiwan, numerous existing traditional buildings are constructed with wooden structures, brick structures, and stone structures. This paper will focus on the Taiwan traditional historic architecture and target the traditional wooden structure buildings as the design proposition and process the BIM workflow for modeling complex wooden combination geometry, integrating with more traditional 2D documents and for visualizing repair construction assumptions within the 3D model representation. The goal of this article is to explore the current problems to overcome in wooden historic building conservation, and introduce the BIM technology in the case of conserving, documenting, managing, and creating full engineering drawings and information for effectively support historic conservation. Although BIM is mostly oriented to current construction praxis, there have been some attempts to investigate its applicability in historic conservation projects. This article also illustrates the importance and advantages of using BIM workflow in repair construction process, when comparing with generic workflow.
Structural Identification and Comparison of Intelligent Mobile Learning Environment
ERIC Educational Resources Information Center
Upadhyay, Nitin; Agarwal, Vishnu Prakash
2007-01-01
This paper proposes a methodology using graph theory, matrix algebra and permanent function to compare different architecture (structure) design of intelligent mobile learning environment. The current work deals with the development/selection of optimum architecture (structural) model of iMLE. This can be done using the criterion as discussed in…
Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.
1984-01-01
Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.
NASA Astrophysics Data System (ADS)
Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.
2017-06-01
Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Given that next-generation infrastructures will contain large numbers of grid-connected inverters and these interfaces will be satisfying a growing fraction of system load, it is imperative to analyze the impacts of power electronics on such systems. However, since each inverter model has a relatively large number of dynamic states, it would be impractical to execute complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the pointmore » of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. That is, we show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as an individual inverter in the paralleled system. Numerical simulations validate the reduced-order models.« less
Titanium and advanced composite structures for a supersonic cruise arrow wing configuration
NASA Technical Reports Server (NTRS)
Turner, M. J.; Hoy, J. M.
1976-01-01
Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.
Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode
NASA Astrophysics Data System (ADS)
Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi
2018-04-01
A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.
ERIC Educational Resources Information Center
Morell, Linda; Collier, Tina; Black, Paul; Wilson, Mark
2017-01-01
This paper builds on the current literature base about learning progressions in science to address the question, "What is the nature of the learning progression in the content domain of the structure of matter?" We introduce a learning progression in response to that question and illustrate a methodology, the Construct Modeling (Wilson,…
ERIC Educational Resources Information Center
King, Daniel W.; And Others
1996-01-01
Structural equation modeling was used to examine relationships among prewar factors, dimensions of war-zone stress, and current posttraumatic stress disorder (PTSD) symptomatology using data from 1,632 female and male participants in the National Vietnam Veterans Readjustment Study. Discusses research findings. Recommends more attention be given…
Structural Equation Modeling in Language Testing and Learning Research: A Review
ERIC Educational Resources Information Center
In'nami, Yo; Koizumi, Rie
2011-01-01
Despite the recent increase of structural equation modeling (SEM) in language testing and learning research and Kunnan's (1998) call for the proper use of SEM to produce useful findings, there seem to be no reviews about how SEM is applied in these areas or about the extent to which the current application accords with appropriate practices. To…
ERIC Educational Resources Information Center
Sadi, Özlem; Dagyar, Miray
2015-01-01
The current work reveals the data of the study which examines the relationships among epistemological beliefs, conceptions of learning, and self-efficacy for biology learning with the help of the Structural Equation Modeling. Three questionnaires, the Epistemological Beliefs, the Conceptions of Learning Biology and the Self-efficacy for Learning…
Moore, C.T.; Conroy, M.J.
2006-01-01
Stochastic and structural uncertainties about forest dynamics present challenges in the management of ephemeral habitat conditions for endangered forest species. Maintaining critical foraging and breeding habitat for the endangered red-cockaded woodpecker (Picoides borealis) requires an uninterrupted supply of old-growth forest. We constructed and optimized a dynamic forest growth model for the Piedmont National Wildlife Refuge (Georgia, USA) with the objective of perpetuating a maximum stream of old-growth forest habitat. Our model accommodates stochastic disturbances and hardwood succession rates, and uncertainty about model structure. We produced a regeneration policy that was indexed by current forest state and by current weight of evidence among alternative model forms. We used adaptive stochastic dynamic programming, which anticipates that model probabilities, as well as forest states, may change through time, with consequent evolution of the optimal decision for any given forest state. In light of considerable uncertainty about forest dynamics, we analyzed a set of competing models incorporating extreme, but plausible, parameter values. Under any of these models, forest silviculture practices currently recommended for the creation of woodpecker habitat are suboptimal. We endorse fully adaptive approaches to the management of endangered species habitats in which predictive modeling, monitoring, and assessment are tightly linked.
Toward a Time-Domain Fractal Lightning Simulation
NASA Astrophysics Data System (ADS)
Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.
2010-12-01
Electromagnetic simulations of lightning are useful for prediction of lightning properties and exploration of the underlying physical behavior. Fractal lightning models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal lightning simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the lightning channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a lightning discharge. The model can be used to explore the electrical characteristics of the lightning channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.
NASA Astrophysics Data System (ADS)
Radevici, Ivan; Tiira, Jonna; Sadi, Toufik; Oksanen, Jani
2018-05-01
Current crowding close to electrical contacts is a common challenge in all optoelectronic devices containing thin current spreading layers (CSLs). We analyze the effects of current spreading on the operation of the so-called double diode structure (DDS), consisting of a light emitting diode (LED) and a photodiode (PD) fabricated within the same epitaxial growth process, and providing an attractive platform for studying electroluminescent (EL) cooling under high bias conditions. We show that current spreading in the common n-type layer between the LED and the PD can be dramatically improved by the strong optical coupling between the diodes, as the coupling enables a photo-generated current through the PD. This reduces the current in the DDS CSL and enables the study of EL cooling using structures that are not limited by the conventional light extraction challenges encountered in normal LEDs. The current spreading in the structures is studied using optical imaging techniques, electrical measurements, simulations, as well as simple equivalent circuit models developed for this purpose. The improved current spreading leads further to a mutual dependence with the coupling efficiency, which is expected to facilitate the process of optimizing the DDS. We also report a new improved value of 63% for the DDS coupling quantum efficiency.
Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes
NASA Technical Reports Server (NTRS)
Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.
1991-01-01
InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.
How to Choose the Suitable Template for Homology Modelling of GPCRs: 5-HT7 Receptor as a Test Case.
Shahaf, Nir; Pappalardo, Matteo; Basile, Livia; Guccione, Salvatore; Rayan, Anwar
2016-09-01
G protein-coupled receptors (GPCRs) are a super-family of membrane proteins that attract great pharmaceutical interest due to their involvement in almost every physiological activity, including extracellular stimuli, neurotransmission, and hormone regulation. Currently, structural information on many GPCRs is mainly obtained by the techniques of computer modelling in general and by homology modelling in particular. Based on a quantitative analysis of eighteen antagonist-bound, resolved structures of rhodopsin family "A" receptors - also used as templates to build 153 homology models - it was concluded that a higher sequence identity between two receptors does not guarantee a lower RMSD between their structures, especially when their pair-wise sequence identity (within trans-membrane domain and/or in binding pocket) lies between 25 % and 40 %. This study suggests that we should consider all template receptors having a sequence identity ≤50 % with the query receptor. In fact, most of the GPCRs, compared to the currently available resolved structures of GPCRs, fall within this range and lack a correlation between structure and sequence. When testing suitability for structure-based drug design, it was found that choosing as a template the most similar resolved protein, based on sequence resemblance only, led to unsound results in many cases. Molecular docking analyses were carried out, and enrichment factors as well as attrition rates were utilized as criteria for assessing suitability for structure-based drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regression Models For Multivariate Count Data
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2016-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
IN SILICO MODELLING OF HAZARDOUS ENDPOINTS: CURRENT PROBLEMS AND PROSPECTIVES
The primary hurdles for Quantitative Structure-Activity Relationships (QSARs) to overcome their acceptance for regulatory purposes will be discussed. They include (a) the development of more mechanistic representations of chemical structure, (b) the classification of toxicity pa...
Development Of Eej Model Based On Dense Ground-based Magnetometer Array
NASA Astrophysics Data System (ADS)
Matsushita, H.; Yoshikawa, A.; Uozumi, T.; Fujimoto, A.; Abe, S.; Ishitsuka I, J. K.; Veliz, O.; Rosales, D.; Safor, E.; Beteta, V.
2016-12-01
Equatorial Electro-jet(here after called EEJ) is the electric current which flows very narrow region in ionosphere of the earth, which is between +- 3 degree from dip latitude. The EEJ was noticed as the significant enhancement of daily variation of magnetic field, and later Hirono, (1950) explained it by adapting Cowling effect to the ionosphere of the earth. The EE index, is one of ICSWSE space weather indices, was developed by Uozumi et al., (2008). Then, ICSWSE has continued to monitor the EEJ activity by using this EE index. Fujimoto et al., (2016) investigated the relationship between solar activity and long term variation of EEJ, and Hamid et al., (2015) investigated longitudinal dependency of EEJ, both of them were based on EE index. The EE index provides EDst value, which is correspond to magnetic field change at dip equator caused by magnetospheric current such as ring current, and EUEL value, which is correspond to the one caused by ionospheric current such as EEJ and Sq. However, actual EEJ is not magnetic field but the current, and it has not only current intensity but also the width. Some previous paper reported the EEJ structure such as current density or the width of EEJ using satellite data (e.g. Lühr et al., 2004; Jadhav et al., 2002), which is good when it checks the longitudinal dependency because it shifts longitude in a day. However, the ground-based magnetometer may be well useful to investigate the day-to-day variability of EEJ because it is fixed to same location. So, we developed a model of EEJ, which can estimate the EEJ current structure by ground magnetometer using dense magnetometer array near dip equator. In this study, the EEJ structures along 75W and 135E longitude are represented, and are compared each other. The result shows that large standard deviation of both current density and the half width are identified, while previous studies reported constant half width (e.g. Lühr et al., 2004). When our EEJ model is compared with CM4 model, which was developed by Sabaka et al., (2004), large discrepancy between them was identified, so it should be more discussed the reason to produce more accurate EEJ model.
NASA Astrophysics Data System (ADS)
Chuang, Hsueh-Hua
The purpose of this dissertation is to develop an iterative model for the analysis of the current distribution in vertical-cavity surface-emitting lasers (VCSELs) using a circuit network modeling approach. This iterative model divides the VCSEL structure into numerous annular elements and uses a circuit network consisting of resistors and diodes. The measured sheet resistance of the p-distributed Bragg reflector (DBR), the measured sheet resistance of the layers under the oxide layer, and two empirical adjustable parameters are used as inputs to the iterative model to determine the resistance of each resistor. The two empirical values are related to the anisotropy of the resistivity of the p-DBR structure. The spontaneous current, stimulated current, and surface recombination current are accounted for by the diodes. The lateral carrier transport in the quantum well region is analyzed using drift and diffusion currents. The optical gain is calculated as a function of wavelength and carrier density from fundamental principles. The predicted threshold current densities for these VCSELs match the experimentally measured current densities over the wavelength range of 0.83 mum to 0.86 mum with an error of less than 5%. This model includes the effects of the resistance of the p-DBR mirrors, the oxide current-confining layer and spatial hole burning. Our model shows that higher sheet resistance under the oxide layer reduces the threshold current, but also reduces the current range over which single transverse mode operation occurs. The spatial hole burning profile depends on the lateral drift and diffusion of carriers in the quantum wells but is dominated by the voltage drop across the p-DBR region. To my knowledge, for the first time, the drift current and the diffusion current are treated separately. Previous work uses an ambipolar approach, which underestimates the total charge transferred in the quantum well region, especially under the oxide region. However, the total result of the drift current and the diffusion current is less significant than the Ohmic current, especially in the cavity region. This simple iterative model is applied to commercially available oxide-confined VCSELs. The simulation results show excellent agreement with experimentally measured voltage-current curves (within 3.7% for a 10 mum and within 4% for a 5 mum diameter VCSEL) and light-current curves (within 2% for a 10 mum and within 9% for a 5 mum diameter VCSEL) curves and provides insight into the detailed distributions of current and voltage within a VCSEL. This difference between the theoretically calculated results and the measured results is less than the variation shown in the data sheets for production VCSELs.
Analogies between Jovian magnetodisk and heliospheric current sheet
NASA Astrophysics Data System (ADS)
Kislov, Roman; Khabarova, Olga; Malova, Helmi
Recently due to the development of spatial missions the famous model by E. Parker [1] faced with some problems, such as the effect of magnetic flux excess and the existence of latitude component of magnetic field [2]. Thus the incomplete knowledge about large scale current system of heliospheric current sheet (HCS) motivated us to construct and investigate the self-consistent axisymmetric stationary MHD model of HCS and to compare it with earlier presented model of Jupiterian magnetodisk [3]. Both HCS and magnetodisk have inner plasma sources (i.e. the Sun in case of HCS and satellite Io in case of Jupiter); also they depend on the centrifugal force at small distances and on corotation processes. They both have strong radial component of current density, thin elongated structure etc. Thus in the frame of the MHD model we have calculated for HCS the parallel currents (analogous to Jovian Birkeland currents) and we obtained the latitude component of the magnetic field. The results of the model allowed us to explain the magnetic flux excess by the existence of the self-consistent HCS magnetic field. The decrease of radial magnetic field from the distance from the Sun as the power -5/3 obtained by numerical calculations is in good agreement with experimental data. Generally this model can be applied for the quiet period of the low solar activity when the perturbation of HCS structure named “ballerina skirt” does not play any role. References: 1. Parker E. N., Astrophys. J., V. 128, 664, pp. 664-676, 1958. 2. Khabarova O. V., V. 90, No.11, pp. 919-935, 2013. 3. Kislov R.A. et al., Bull. MSU, Physics and Astron., 2013
Comparison of field-aligned currents at ionospheric and magnetospheric altitudes
NASA Technical Reports Server (NTRS)
Spence, H. E.; Kivelson, M. G.; Walker, R. J.
1988-01-01
Using the empirical terrestrial magnetospheric magnetic field models of Tsyganenko and Usmanov (1982) and Tsyganenko (1987) the average field-aligned currents (FACs) in the magnetosphere were determined as a function of the Kp index. Three major model FAC systems were identified, namely, the dayside region 1, the nightside region 1, and the nightside polar cap. The models provide information about the sources of the current systems. Mapped ionospheric model FACs are compared with low-altitude measurements obtained by the spacecraft. It is found that low-altitude data can reveal either classic region 1/2 or more highly structured FAC patterns. Therefore, statistical results either obtained from observations or inferred from models are expected to be averages over temporally and spatially shifting patterns.
Identification of time-varying structural dynamic systems - An artificial intelligence approach
NASA Technical Reports Server (NTRS)
Glass, B. J.; Hanagud, S.
1992-01-01
An application of the artificial intelligence-derived methodologies of heuristic search and object-oriented programming to the problem of identifying the form of the model and the associated parameters of a time-varying structural dynamic system is presented in this paper. Possible model variations due to changes in boundary conditions or configurations of a structure are organized into a taxonomy of models, and a variant of best-first search is used to identify the model whose simulated response best matches that of the current physical structure. Simulated model responses are verified experimentally. An output-error approach is used in a discontinuous model space, and an equation-error approach is used in the parameter space. The advantages of the AI methods used, compared with conventional programming techniques for implementing knowledge structuring and inheritance, are discussed. Convergence conditions and example problems have been discussed. In the example problem, both the time-varying model and its new parameters have been identified when changes occur.
Building Path Diagrams for Multilevel Models
ERIC Educational Resources Information Center
Curran, Patrick J.; Bauer, Daniel J.
2007-01-01
Multilevel models have come to play an increasingly important role in many areas of social science research. However, in contrast to other modeling strategies, there is currently no widely used approach for graphically diagramming multilevel models. Ideally, such diagrams would serve two functions: to provide a formal structure for deriving the…
Forecasting Pell Program Applications Using Structural Aggregate Models.
ERIC Educational Resources Information Center
Cavin, Edward S.
1995-01-01
Demand for Pell Grant financial aid has become difficult to predict when using the current microsimulation model. This paper proposes an alternative model that uses aggregate data (based on individuals' microlevel decisions and macrodata on family incomes, college costs, and opportunity wages) and avoids some limitations of simple linear models.…
Structural modeling for multicell composite rotor blades
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.
A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..
Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.
2017-01-01
Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the flow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flowmeasurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forfluvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of fluid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main flow is dynamic, with large temporal changes in flow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.
Electrical resistivity measurements in the mammalian cochlea after neural degeneration.
Micco, Alan G; Richter, Claus-Peter
2006-08-01
In the present series of experiments, the effect of neural degeneration on the cochlear structure electrical resistivities was evaluated to test if it alters the current flow in the cochlea and if increased current levels are needed to stimulate the impaired cochlea. In cochlear implants, frequency information is encoded in part by stimulating discrete populations of spiral ganglion cells along the cochlea. However, electrical properties of the cochlear structures result in shunting of the current away from the auditory neurons. This consumes energy, makes cochlear implants less efficient, and drastically reduces battery life. Models of the electrically stimulated cochlea serve to make predictions on current paths using modified and improved cochlear implant electrodes. However, one of the model's shortcomings is that most of the values for tissue impedances are not direct measurements. They are derived from bulk impedance measurements, which are fitted to lumped-element models. The four-electrode reflection-coefficient technique was used to measure resistivities in the gerbil cochlea. In vivo and in vitro (the hemicochlea) models were used. Measurements were made in normal and in deafened animals. Cochlear damage was induced by neomycin injection into the animals' middle ears. Neural degeneration was allowed to occur over 2 months before performing the measurements in the deafened animals. The resistivity values in deafened animals were smaller than in the normal-hearing animals, thus altering the current flow within the cochlea. Resistivity changes and subsequent changes in current path should be considered in future designs of cochlear implants.
Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; ...
2016-01-06
Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictionsmore » for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzi, P., E-mail: lorenzi@die.uniroma1.it; Rao, R.; Irrera, F.
2015-09-14
According to previous reports, filamentary electron transport in resistive switching HfO{sub 2}-based metal-insulator-metal structures can be modeled using a diode-like conduction mechanism with a series resistance. Taking the appropriate limits, the model allows simulating the high (HRS) and low (LRS) resistance states of the devices in terms of exponential and linear current-voltage relationships, respectively. In this letter, we show that this simple equivalent circuit approach can be extended to represent the progressive reset transition between the LRS and HRS if a generalized logistic growth model for the pre-exponential diode current factor is considered. In this regard, it is demonstrated heremore » that a Verhulst logistic model does not provide accurate results. The reset dynamics is interpreted as the sequential deactivation of multiple conduction channels spanning the dielectric film. Fitting results for the current-voltage characteristics indicate that the voltage sweep rate only affects the deactivation rate of the filaments without altering the main features of the switching dynamics.« less
Modeling and analysis of a novel planar eddy current damper
NASA Astrophysics Data System (ADS)
Zhang, He; Kou, Baoquan; Jin, Yinxi; Zhang, Lu; Zhang, Hailin; Li, Liyi
2014-05-01
In this paper, a novel 2-DOF permanent magnet planar eddy current damper is proposed, of which the stator is made of a copper plate and the mover is composed of two orthogonal 1-D permanent magnet arrays with a double sided structure. The main objective of the planar eddy current damper is to provide two orthogonal damping forces for dynamic systems like the 2-DOF high precision positioning system. Firstly, the basic structure and the operating principle of the planar damper are introduced. Secondly, the analytical model of the planar damper is established where the magnetic flux density distribution of the permanent magnet arrays is obtained by using the equivalent magnetic charge method and the image method. Then, the analytical expressions of the damping force and damping coefficient are derived. Lastly, to verify the analytical model, the finite element method (FEM) is adopted for calculating the flux density and a planar damper prototype is manufactured and thoroughly tested. The results from FEM and experiments are in good agreement with the ones from the analytical expressions indicating that the analytical model is reasonable and correct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mészárosová, Hana; Karlický, Marian; Jelínek, Petr
Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was foundmore » that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.« less
Kozic, Mara; Fox, Stephen J; Thomas, Jens M; Verma, Chandra S; Rigden, Daniel J
2018-05-01
Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β-hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation-π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF-B1 peptide, which have α-helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs. © 2018 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Current singularities at quasi-separatrix layers and three-dimensional magnetic nulls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, I. J. D.; Effenberger, Frederic, E-mail: feffen@waikato.ac.nz
2014-11-10
The open problem of how singular current structures form in line-tied, three-dimensional magnetic fields is addressed. A Lagrangian magneto-frictional relaxation method is employed to model the field evolution toward the final near-singular state. Our starting point is an exact force-free solution of the governing magnetohydrodynamic equations that is sufficiently general to allow for topological features like magnetic nulls to be inside or outside the computational domain, depending on a simple set of parameters. Quasi-separatrix layers (QSLs) are present in these structures and, together with the magnetic nulls, they significantly influence the accumulation of current. It is shown that perturbations affectingmore » the lateral boundaries of the configuration lead not only to collapse around the magnetic null but also to significant QSL currents. Our results show that once a magnetic null is present, the developing currents are always attracted to that specific location and show a much stronger scaling with resolution than the currents that form along the QSL. In particular, the null-point scalings can be consistent with models of 'fast' reconnection. The QSL currents also appear to be unbounded but give rise to weaker singularities, independent of the perturbation amplitude.« less
Sahakyan, Aleksandr B; Vendruscolo, Michele
2013-02-21
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
NASA Astrophysics Data System (ADS)
Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.
2018-01-01
There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.
Computational Aeroelastic Modeling of Airframes and TurboMachinery: Progress and Challenges
NASA Technical Reports Server (NTRS)
Bartels, R. E.; Sayma, A. I.
2006-01-01
Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.
Development of eddy current probe for fiber orientation assessment in carbon fiber composites
NASA Astrophysics Data System (ADS)
Wincheski, Russell A.; Zhao, Selina
2018-04-01
Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.
J.C.G. Goelz; Daniel J. Leduc
2002-01-01
As longleaf pine (Pinus palustris Mill.) may currently represent as little as 1/30th of its former acreage, restoration within its former range in the southern coastal plain is active. Although the focus of these new plantings is aimed at ecosystem restoration, knowledge of the growth and development of longleaf plantations is essential to...
Bayesian Network Webserver: a comprehensive tool for biological network modeling.
Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan
2013-11-01
The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.
Processing (Non)Compositional Expressions: Mistakes and Recovery
ERIC Educational Resources Information Center
Holsinger, Edward; Kaiser, Elsi
2013-01-01
Current models of idiom representation and processing differ with respect to the role of literal processing during the interpretation of idiomatic expressions. Word-like models (Bobrow & Bell, 1973; Swinney & Cutler, 1979) propose that idiomatic meaning can be accessed directly, whereas structural models (Cacciari & Tabossi, 1988;…
Magnetic field line reconnection experiments. V - Current disruptions and double layers
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Gekelman, W.; Wild, N.
1983-01-01
An investigation is conducted of the stability of a large laboratory plasma current sheet, which has been generated in the process of magnetic field line reconnection, with respect to local current increases. Magnetic flux variations in regions remote from the current sheet generate an inductive voltage in the current loop that drops off inside the plasma in the form of a potential double layer, leading to particle acceleration with velocities much larger than those expected from the steady state electric fields in the plasma. A model for the mechanism of the current disruptions is formulated in which the potential structure leads to ion expulsion, creating a localized density drop. The associated current drop in an inductive circuit drives the potential structure, providing feedback for the disruptive instability. Similarities to, and differences from, magnetospheric substorm phenomena are noted.
Vibration and shape control of hinged light structures using electromagnetic forces
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki
2003-08-01
This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.
Chrysikou, Evangelia G; Thompson, W Jake
2016-12-01
One aspect of higher order social cognition is empathy, a psychological construct comprising a cognitive (recognizing emotions) and an affective (responding to emotions) component. The complex nature of empathy complicates the accurate measurement of these components. The most widely used measure of empathy is the Interpersonal Reactivity Index (IRI). However, the factor structure of the IRI as it is predominantly used in the psychological literature differs from Davis's original four-factor model in that it arbitrarily combines the subscales to form two factors: cognitive and affective empathy. This two-factor model of the IRI, although popular, has yet to be examined for psychometric support. In the current study, we examine, for the first time, the validity of this alternative model. A confirmatory factor analysis showed poor model fit for this two-factor structure. Additional analyses offered support for the original four-factor model, as well as a hierarchical model for the scale. In line with previous findings, females scored higher on the IRI than males. Our findings indicate that the IRI, as it is currently used in the literature, does not accurately measure cognitive and affective empathy and highlight the advantages of using the original four-factor structure of the scale for empathy assessments. © The Author(s) 2015.
On tridimensional rip current modeling
NASA Astrophysics Data System (ADS)
Marchesiello, Patrick; Benshila, Rachid; Almar, Rafael; Uchiyama, Yusuke; McWilliams, James C.; Shchepetkin, Alexander
2015-12-01
Do lateral shear instabilities of nearshore circulation account for a substantial part of Very Low-Frequency (VLF) variability? If yes, it would promote stirring and mixing of coastal waters and surf-shelf exchanges. Another question is whether tridimensional transient processes are important for instability generation. An innovative modeling system with tridimensional wave-current interactions was designed to investigate transient nearshore currents and interactions between nearshore and innershelf circulations. We present here some validation of rip current modeling for the Aquitanian coast of France, using in-situ and remote video sensing. We then proceed to show the benefits of 3D versus 2D (depth-mean flow) modeling of rip currents and their low-frequency variability. It appears that a large part of VLF motions is due to intrinsic variability of the tridimensional flow. 3D models may thus provide a valuable, only marginally more expensive alternative to conventional 2D approaches that miss the vertical flow structure and its nonlinear interaction with the depth-averaged flow.
Time-dependent behavior in a transport-barrier model for the quasi-single helcity state
NASA Astrophysics Data System (ADS)
Terry, P. W.; Whelan, G. G.
2014-09-01
Time-dependent behavior that follows from a recent theory of the quasi-single-helicity (QSH) state of the reversed field pinch is considered. The theory (Kim and Terry 2012 Phys. Plasmas 19 122304) treats QSH as a core fluctuation structure tied to a tearing mode of the same helicity, and shows that strong magnetic and velocity shears in the structure suppress the nonlinear interaction with other fluctuations. By summing the multiple helicity fluctuation energies over wavenumber, we reduce the theory to a predator-prey model. The suppression of the nonlinear interaction is governed by the single helicity energy, which, for fixed radial structure, controls the magnetic and velocity shearing rates. It is also controlled by plasma current which, in the theory, sets the shearing threshold for suppression. The model shows a limit cycle oscillation in which the system toggles between QSH and multiple helicity states, with the single helicity phase becoming increasingly long-lived relative to the multiple helicity phase as plasma current increases.
Khanfar, Mohammad A; Banat, Fahmy; Alabed, Shada; Alqtaishat, Saja
2017-02-01
High expression of Nek2 has been detected in several types of cancer and it represents a novel target for human cancer. In the current study, structure-based pharmacophore modeling combined with multiple linear regression (MLR)-based QSAR analyses was applied to disclose the structural requirements for NEK2 inhibition. Generated pharmacophoric models were initially validated with receiver operating characteristic (ROC) curve, and optimum models were subsequently implemented in QSAR modeling with other physiochemical descriptors. QSAR-selected models were implied as 3D search filters to mine the National Cancer Institute (NCI) database for novel NEK2 inhibitors, whereas the associated QSAR model prioritized the bioactivities of captured hits for in vitro evaluation. Experimental validation identified several potent NEK2 inhibitors of novel structural scaffolds. The most potent captured hit exhibited an [Formula: see text] value of 237 nM.
Wave Propagation in Non-Stationary Statistical Mantle Models at the Global Scale
NASA Astrophysics Data System (ADS)
Meschede, M.; Romanowicz, B. A.
2014-12-01
We study the effect of statistically distributed heterogeneities that are smaller than the resolution of current tomographic models on seismic waves that propagate through the Earth's mantle at teleseismic distances. Current global tomographic models are missing small-scale structure as evidenced by the failure of even accurate numerical synthetics to explain enhanced coda in observed body and surface waveforms. One way to characterize small scale heterogeneity is to construct random models and confront observed coda waveforms with predictions from these models. Statistical studies of the coda typically rely on models with simplified isotropic and stationary correlation functions in Cartesian geometries. We show how to construct more complex random models for the mantle that can account for arbitrary non-stationary and anisotropic correlation functions as well as for complex geometries. Although this method is computationally heavy, model characteristics such as translational, cylindrical or spherical symmetries can be used to greatly reduce the complexity such that this method becomes practical. With this approach, we can create 3D models of the full spherical Earth that can be radially anisotropic, i.e. with different horizontal and radial correlation functions, and radially non-stationary, i.e. with radially varying model power and correlation functions. Both of these features are crucial for a statistical description of the mantle in which structure depends to first order on the spherical geometry of the Earth. We combine different random model realizations of S velocity with current global tomographic models that are robust at long wavelengths (e.g. Meschede and Romanowicz, 2014, GJI submitted), and compute the effects of these hybrid models on the wavefield with a spectral element code (SPECFEM3D_GLOBE). We finally analyze the resulting coda waves for our model selection and compare our computations with observations. Based on these observations, we make predictions about the strength of unresolved small-scale structure and extrinsic attenuation.
COMMUNITY LEVEL ANALYSIS OF VECTOR-BORNE DISEASE
Ecological community structure is particularly important in vector-borne zoonotic diseases with complex life cycles. Single population models, such as the so-called Ross-Macdonald model (Baily, 1982), have been important in developing and characterizing our current understanding...
Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Dunne, John P; Blanchard, Julia L
2013-03-01
Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupled climate model with a biogeochemical model including major nutrients, three phytoplankton functional groups, and zooplankton grazing. The size-based food web model includes linkages between two size-structured pelagic communities: primary producers and consumers. Our investigation focuses on seven sites in the North Pacific, each highlighting a specific aspect of projected climate change, and includes top-down ecosystem depletion through fishing. We project declines in large fish abundance ranging from 0 to 75.8% in the central North Pacific and increases of up to 43.0% in the California Current (CC) region over the 21st century in response to change in phytoplankton size structure and direct physiological effects. We find that fish abundance is especially sensitive to projected changes in large phytoplankton density and our model projects changes in the abundance of large fish being of the same order of magnitude as changes in the abundance of large phytoplankton. Thus, studies that address only climate-induced impacts to primary production without including changes to phytoplankton size structure may not adequately project ecosystem responses. © 2012 Blackwell Publishing Ltd.
Jupiter's Magnetodisc in the Juno Era and Implications for the Aurora
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Spalsbury, L.; Connerney, J. E. P.
2017-12-01
The magnetic field in Jupiter's middle and outer magnetosphere is highly radially stretched by the presence of an azimuthally directed current sheet or magnetodisc. Magnetic field measurements from the Voyager, Pioneer, and Galileo spacecraft have been used to construct models of this current sheet, but these observations were limited to latitudes near the jovigraphic equator. High-latitude measurements, such as those recently collected by the Juno spacecraft in its polar orbit of Jupiter, are needed to more fully constrain our understanding of the magnetodisc structure and its effects on the coupling between the ionosphere and middle and outer magnetosphere. Here we will present Juno magnetic field observations from Jupiter's middle magnetosphere and will fit these data to current sheet models, including the Connerney et al. (1981) and Khurana (1997) models, to study the structure of the magnetodisc. We will examine how well the observations are fit by the available current sheet models and discuss any model modifications that are necessary to accurately represent the magnetic field measurements at high latitudes. We will also discuss temporal changes in the magnetodisc between successive Juno orbits ( 53 days) and on longer time scales by comparing Juno data to data from the Voyager, Pioneer, and Galileo spacecraft. Finally, we will consider the implications of our findings for other magnetospheric and auroral processes, particularly the magnetic mapping between the ionosphere and middle and outer magnetosphere.
Ligand placement based on prior structures: the guided ligand-replacement method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klei, Herbert E.; Bristol-Myers Squibb, Princeton, NJ 08543-4000; Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov
2014-01-01
A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods formore » modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR leverages prior knowledge from earlier structures to facilitate ligand placement in the current structure.« less
Design principles for shift current photovoltaics
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; ...
2017-01-25
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less
Design principles for shift current photovoltaics
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E.
2017-01-01
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W−1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells. PMID:28120823
Design principles for shift current photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less
Yu, Lu; Xie, Dong; Shek, Daniel T. L.
2012-01-01
This study examined the factor structure of a scale based on the four-dimensional gender identity model (Egan and Perry, 2001) in 726 Chinese elementary school students. Exploratory factor analyses suggested a three-factor model, two of which corresponded to “Felt Pressure” and “Intergroup Bias” in the original model. The third factor “Gender Compatibility” appeared to be a combination of “Gender Typicality” and “Gender Contentment” in the original model. Follow-up confirmatory factor analysis (CFA) indicated that, relative to the initial four-factor structure, the three-factor model fits the current Chinese sample better. These results are discussed in light of cross-cultural similarities and differences in development of gender identity. PMID:22701363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibatov, R. T., E-mail: ren-sib@bk.ru; Morozova, E. V., E-mail: kat-valezhanina@yandex.ru
2015-05-15
A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed newmore » model in order to analyze time-of-flight experiments for nanostructured semiconductors.« less
Finite element model correlation of a composite UAV wing using modal frequencies
NASA Astrophysics Data System (ADS)
Oliver, Joseph A.; Kosmatka, John B.; Hemez, François M.; Farrar, Charles R.
2007-04-01
The current work details the implementation of a meta-model based correlation technique on a composite UAV wing test piece and associated finite element (FE) model. This method involves training polynomial models to emulate the FE input-output behavior and then using numerical optimization to produce a set of correlated parameters which can be returned to the FE model. After discussions about the practical implementation, the technique is validated on a composite plate structure and then applied to the UAV wing structure, where it is furthermore compared to a more traditional Newton-Raphson technique which iteratively uses first-order Taylor-series sensitivity. The experimental testpiece wing comprises two graphite/epoxy prepreg and Nomex honeycomb co-cured skins and two prepreg spars bonded together in a secondary process. MSC.Nastran FE models of the four structural components are correlated independently, using modal frequencies as correlation features, before being joined together into the assembled structure and compared to experimentally measured frequencies from the assembled wing in a cantilever configuration. Results show that significant improvements can be made to the assembled model fidelity, with the meta-model procedure producing slightly superior results to Newton-Raphson iteration. Final evaluation of component correlation using the assembled wing comparison showed worse results for each correlation technique, with the meta-model technique worse overall. This can be most likely be attributed to difficultly in correlating the open-section spars; however, there is also some question about non-unique update variable combinations in the current configuration, which lead correlation away from physically probably values.
NASA Astrophysics Data System (ADS)
Dzierka, M.; Jurczak, P.
2015-12-01
In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.
Dynamic behavior and deformation analysis of the fish cage system using mass-spring model
NASA Astrophysics Data System (ADS)
Lee, Chun Woo; Lee, Jihoon; Park, Subong
2015-06-01
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
Application Perspective of 2D+SCALE Dimension
NASA Astrophysics Data System (ADS)
Karim, H.; Rahman, A. Abdul
2016-09-01
Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar
This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.
Monotone Approximation for a Nonlinear Size and Class Age Structured Epidemic Model
2006-02-22
information if it does not display a currently valid OMB control number. 1. REPORT DATE 22 FEB 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00...follows from standard results, given the fact that they are all linear problems with local boundary conditions for Sinko-Streifer type systems. We...model, J. Franklin Inst., 297 (1974), 325-333. [14] K. E. Howard, A size and maturity structured model of cell dwarfism exhibiting chaotic be- havior
Examining the factor structure of the Multiple Sclerosis Impact Scale.
Fitzgerald, Shawn M; Li, Jian; Rumrill, Phillip D; Merchant, William; Bishop, Malachy
2014-01-01
The purpose of this study was to investigate the factor structure of the Multiple Sclerosis Impact Scale (MSIS-29) to assess its suitability for modeling the impact of MS on a nation-wide sample of individuals from the United States. Investigators completed a Confirmatory Factor Analysis (CFA) to examine the two-factor structure proposed by Hobart et al. [17]. Although the original MSIS-29 factor structure did not fit the data exactly, the hypothesized two-factor model was partially supported in the current data. Implications for future instrument development and rehabilitation practice are discussed.
Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP
NASA Astrophysics Data System (ADS)
Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.
2017-10-01
In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.
University Business Models and Online Practices: A Third Way
ERIC Educational Resources Information Center
Rubin, Beth
2013-01-01
Higher Education is in a state of change, and the existing business models do not meet the needs of stakeholders. This article contrasts the current dominant business models of universities, comparing the traditional non-profit against the for-profit online model, examining the structural features and online teaching practices that underlie each.…
Perspectives for computational modeling of cell replacement for neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James B.; Weick, Jason P.
In mathematical modeling of anatomically-constrained neural networks we provide significant insights regarding the response of networks to neurological disorders or injury. Furthermore, a logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impactmore » circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.« less
Perspectives for computational modeling of cell replacement for neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James B.; Weick, Jason P.
Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impact circuit behaviormore » in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.« less
Exploring tropical forest vegetation dynamics using the FATES model
NASA Astrophysics Data System (ADS)
Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.
2017-12-01
Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.
NASA Astrophysics Data System (ADS)
Huang, Shen-Che; Li, Heng; Zhang, Zhe-Han; Chen, Hsiang; Wang, Shing-Chung; Lu, Tien-Chang
2017-01-01
We report on the design of the geometry and chip size-controlled structures of microscale light-emitting diodes (micro-LEDs) with a shallow-etched oxide-refilled current aperture and their performance. The proposed structure, which combines an indium-tin-oxide layer and an oxide-confined aperture, exhibited not only uniform current distribution but also remarkably tight current confinement. An extremely high injection level of more than 90 kA/cm2 was achieved in the micro-LED with a 5-μm aperture. Current spreading and the droop mechanism in the investigated devices were characterized through electroluminescence measurements, optical microscopy, and beam-view imaging. Furthermore, we utilized the β-model and S-model to elucidate current crowding and the efficiency droop phenomenon in the investigated micro-LEDs. The luminescence results evidenced the highly favorable performance of the fabricated micro-LEDs, which is a result of their more uniform current spreading and lower junction temperature relative to conventional LEDs. Moreover, the maximum endured current density could be further increased by reducing the aperture size of the micro-LEDs. The proposed design, which is expected to be beneficial for the development of high-performance array-based micro-LEDs, is practicable through current state-of-the-art processing techniques.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.
2002-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.
Properties of Air Traffic Conflicts for Free and Structured Routing
NASA Technical Reports Server (NTRS)
Bilimoria, Karl D.; Lee, Hilda Q.
2001-01-01
This paper analyzes the properties of air traffic conflicts in a future free routing system against those in the current structured routing system. Simulation of en route air traffic operations (above 18,000 ft) over the contiguous United States for a 24-hour period, constructed with initial conditions from actual air traffic data, were conducted using the Future ATM Concepts Evaluation Tool (FACET). Free routes were modeled as great circle (direct) routes from origin to destination, and structured routes were derived from actual flight plans along the current system of air routes. The conflict properties analyzed in this study include: (1) Total number of conflicts; (2) Distributions of key conflict parameters; and, (3) Categorization of conflicts into independent conflicts and two types of interacting conflicts. Preliminary results (for Denver Center traffic) indicate that conflict properties in a free routing system are different from those in the current structured routing system. In particular, a free routing system has significantly fewer conflicts, involving a correspondingly smaller number of aircraft, compared to the current structured routing system. Additionally, the conflict parameter distributions indicate that free routing conflicts are less intrusive than structured routing conflicts, and would therefore require small trajectory deviations for resolution.
Python package for model STructure ANalysis (pySTAN)
NASA Astrophysics Data System (ADS)
Van Hoey, Stijn; van der Kwast, Johannes; Nopens, Ingmar; Seuntjens, Piet
2013-04-01
The selection and identification of a suitable hydrological model structure is more than fitting parameters of a model structure to reproduce a measured hydrograph. The procedure is highly dependent on various criteria, i.e. the modelling objective, the characteristics and the scale of the system under investigation as well as the available data. Rigorous analysis of the candidate model structures is needed to support and objectify the selection of the most appropriate structure for a specific case (or eventually justify the use of a proposed ensemble of structures). This holds both in the situation of choosing between a limited set of different structures as well as in the framework of flexible model structures with interchangeable components. Many different methods to evaluate and analyse model structures exist. This leads to a sprawl of available methods, all characterized by different assumptions, changing conditions of application and various code implementations. Methods typically focus on optimization, sensitivity analysis or uncertainty analysis, with backgrounds from optimization, machine-learning or statistics amongst others. These methods also need an evaluation metric (objective function) to compare the model outcome with some observed data. However, for current methods described in literature, implementations are not always transparent and reproducible (if available at all). No standard procedures exist to share code and the popularity (and amount of applications) of the methods is sometimes more dependent on the availability than the merits of the method. Moreover, new implementations of existing methods are difficult to verify and the different theoretical backgrounds make it difficult for environmental scientists to decide about the usefulness of a specific method. A common and open framework with a large set of methods can support users in deciding about the most appropriate method. Hence, it enables to simultaneously apply and compare different methods on a fair basis. We developed and present pySTAN (python framework for STructure Analysis), a python package containing a set of functions for model structure evaluation to provide the analysis of (hydrological) model structures. A selected set of algorithms for optimization, uncertainty and sensitivity analysis is currently available, together with a set of evaluation (objective) functions and input distributions to sample from. The methods are implemented model-independent and the python language provides the wrapper functions to apply administer external model codes. Different objective functions can be considered simultaneously with both statistical metrics and more hydrology specific metrics. By using so-called reStructuredText (sphinx documentation generator) and Python documentation strings (docstrings), the generation of manual pages is semi-automated and a specific environment is available to enhance both the readability and transparency of the code. It thereby enables a larger group of users to apply and compare these methods and to extend the functionalities.
Customizing G Protein-coupled receptor models for structure-based virtual screening.
de Graaf, Chris; Rognan, Didier
2009-01-01
This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.
Tang, T.; Oh, Sungho; Sadleir, R. J.
2010-01-01
We compared two 16-electrode electrical impedance tomography (EIT) current patterns on their ability to reconstruct and quantify small amounts of bleeding inside a neonatal human head using both simulated and phantom data. The current patterns used were an adjacent injection RING pattern (with electrodes located equidistantly on the equator of a sphere) and an EEG current pattern based on the 10–20 EEG electrode layout. Structures mimicking electrically important structures in the infant skull were included in a spherical numerical forward model and their effects on reconstructions were determined. The EEG pattern was found to be a better topology to localize and quantify anomalies within lateral ventricular regions. The RING electrode pattern could not reconstruct anomaly location well, as it could not distinguish different axial positions. The quantification accuracy of the RING pattern was as good as the EEG pattern in noise-free environments. However, the EEG pattern showed better quantification ability than the RING pattern when noise was added. The performance of the EEG pattern improved further with respect to the RING pattern when a fontanel was included in forward models. Significantly better resolution and contrast of reconstructed anomalies was achieved when generated from a model containing such an opening and 50 dB added noise. The EEG method was further applied to reconstruct data from a realistic neonatal head model. Overall, acceptable reconstructions and quantification results were obtained using this model and the homogeneous spherical forward model. PMID:20238166
Supersonic, subsonic and stationary filaments in the plasma focus
NASA Astrophysics Data System (ADS)
Nikulin, V. Ya; Startsev, S. A.; Tsybenko, S. P.
2017-10-01
Filaments in the plasma focus were investigated using a model of plasma with the London current. These structures involve a forward current that flows along the surface of a tangential discontinuity and reverse induction currents in the surrounding plasma, including those that flow over the surface of discontinuity, where the magnetic field reverses its direction. Supersonic filaments demonstrated the capture of plasma by the London current, and in subsonic and stationary filaments, the London current expelled the plasma.
CFD-ACE+: a CAD system for simulation and modeling of MEMS
NASA Astrophysics Data System (ADS)
Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha
1999-03-01
Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.
The Internal Structure of Jupiter Family Comet Nuclei: The Talps or Layered Pile Model
NASA Astrophysics Data System (ADS)
Belton, Michael J.; Members of theDeep Impact Science Team
2006-09-01
The characteristics of layered structures seen on the nucleus of Tempel 1 in the Deep Impact images, and also seen on Wild 2 and Borrelly are noted. We consider the implications of the hypothesis that such structures are ubiquitous on Jupiter Family Comets and is an essential element of their internal stucture. If correct this hypothesis implies that the internal structure of JFCs are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for possible compositional changes, is essentially as it was when they were formed. This hypothesis has implications for their place of origin and their subsequent collisional evolution. Current models of the latter are in conflict with this hypothesis. Possible resolutions of this conflict are noted. A new conceptual model of the interior of a typical JFC called the Talps or "layered pile" model is presented.
Jacob John Muller
2014-01-01
The ability of forest resource managers to understand and anticipate landscape-scale change in composition and structure relies upon an adequate characterization of the current forest composition and structure of various patches (or stands), along with the capacity of forest landscape models (FLMs) to predict patterns of growth, succession, and disturbance at multiple...
LPV control for the full region operation of a wind turbine integrated with synchronous generator.
Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D
2015-01-01
Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.
LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator
Grigoriadis, Karolos M.; Nyanteh, Yaw D.
2015-01-01
Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036
Frequentist Model Averaging in Structural Equation Modelling.
Jin, Shaobo; Ankargren, Sebastian
2018-06-04
Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a [Formula: see text] test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.
A numerical study of the South China Sea Warm Current during winter monsoon relaxation
NASA Astrophysics Data System (ADS)
Zhang, Cong; Ding, Yang; Bao, Xianwen; Bi, Congcong; Li, Ruixiang; Zhang, Cunjie; Shen, Biao; Wan, Kai
2018-03-01
Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current (SCSWC) in the northern South China Sea (NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea (SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.
Using Models to Understand Sea Level Rise
ERIC Educational Resources Information Center
Barth-Cohen, Lauren; Medina, Edwing
2017-01-01
Important science phenomena--such as atomic structure, evolution, and climate change--are often hard to observe directly. That's why an important scientific practice is to use scientific models to represent one's current understanding of a system. Using models has been included as an essential science and engineering practice in the "Next…
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations.
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-02-14
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiC x O 6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young's modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young's modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations
NASA Astrophysics Data System (ADS)
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-02-01
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.
Han, Dianwei; Zhang, Jun; Tang, Guiliang
2012-01-01
An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.
Quark-hadron duality in lepton scattering off nucleons
NASA Astrophysics Data System (ADS)
Graczyk, Krzysztof M.
2010-03-01
Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.
Nonlocal Models of Cosmic Acceleration
NASA Astrophysics Data System (ADS)
Woodard, R. P.
2014-02-01
I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation. Although these simple models are not consistent with data on the growth of cosmic structures many of their features are likely to carry over to more complicated models which are in better agreement with the data.
Stochastic inflation lattice simulations - Ultra-large scale structure of the universe
NASA Technical Reports Server (NTRS)
Salopek, D. S.
1991-01-01
Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients, a (exp -1), small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a toy model with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.
NASA Astrophysics Data System (ADS)
Yumnam, Nivedita; Hirwa, Hippolyte; Wagner, Veit
2017-12-01
Analysis of charge extraction by linearly increasing voltage is conducted on metal-insulator-semiconductor capacitors in a structure relevant to organic solar cells. For this analysis, an analytical model is developed and is used to determine the conductivity of the active layer. Numerical simulations of the transient current were performed as a way to confirm the applicability of our analytical model and other analytical models existing in the literature. Our analysis is applied to poly(3-hexylthiophene)(P3HT) : phenyl-C61-butyric acid methyl ester (PCBM) which allows to determine the electron and hole mobility independently. A combination of experimental data analysis and numerical simulations reveals the effect of trap states on the transient current and where this contribution is crucial for data analysis.
Sterpone, Fabio; Melchionna, Simone; Tuffery, Pierre; Pasquali, Samuela; Mousseau, Normand; Cragnolini, Tristan; Chebaro, Yassmine; Saint-Pierre, Jean-Francois; Kalimeri, Maria; Barducci, Alessandro; Laurin, Yohan; Tek, Alex; Baaden, Marc; Nguyen, Phuong Hoang; Derreumaux, Philippe
2015-01-01
The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows studying single protein properties, DNA/RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the on-going developments. PMID:24759934
Control technology development
NASA Astrophysics Data System (ADS)
Schaechter, D. B.
1982-03-01
The main objectives of the control technology development task are given in the slide below. The first is to develop control design techniques based on flexible structural models, rather than simple rigid-body models. Since large space structures are distributed parameter systems, a new degree of freedom, that of sensor/actuator placement, may be exercised for improving control system performance. Another characteristic of large space structures is numerous oscillatory modes within the control bandwidth. Reduced-order controller design models must be developed which produce stable closed-loop systems when combined with the full-order system. Since the date of an actual large-space-structure flight is rapidly approaching, it is vitally important that theoretical developments are tested in actual hardware. Experimental verification is a vital counterpart of all current theoretical developments.
Simulation study of disruption characteristics in KSTAR
NASA Astrophysics Data System (ADS)
Lee, Jongkyu; Kim, J. Y.; Kessel, C. E.; Poli, F.
2012-10-01
A detailed simulation study of disruption in KSTAR had been performed using the Tokamak Simulation Code(TSC) [1] during the initial design phase of KSTAR [2]. Recently, however, a partial modification in the structure of passive plate was made in relation to reduce eddy current and increase the efficiency of control of vertical position. A substantial change can then occur in disruption characteristics and plasma behavior during disruption due to changes in passive plate structure. Because of this, growth rate of vertical instability is expected to be increased and eddy current and its associated electomagnetic force are expected to be reduced. To check this in more detail, a new simulation study is here given with modified passive plate structure of KSTAR. In particular, modeling of vertical disruption that is vertical displacement event (VDE) was carried out. We calculated vertical growth rate for a drift phase of plasma and electromagnetic force acting on PFC structures and compared the results between in a new model and an old model. [4pt] [1] S.C. Jardin, N. Pomphrey and J. Delucia, J. Comp. Phys. 66, 481 (1986).[0pt] [2] J.Y. Kim, S.Y. Cho and KSTAR Team, Disruption load analysis on KSTAR PFC structures, J. Accel. Plasma Res. 5, 149 (2000).
Liu, Jing-Dong; Chung, Pak-Kwong
2017-08-01
The purpose of the current study was to examine the factor structure and measurement invariance of a scale measuring students' perceptions of need-supportive teaching (Need-Supportive Teaching Style Scale in Physical Education; NSTSSPE). We sampled 615 secondary school students in Hong Kong, 200 of whom also completed a follow-up assessment two months later. Factor structure of the scale was examined through exploratory structural equation modeling (ESEM). Further, nomological validity of the NSTSSPE was evaluated by examining the relationships between need-supportive teaching style and student satisfaction of psychological needs. Finally, four measurement models-configural, metric invariance, scalar invariance, and item uniqueness invariance-were assessed using multiple group ESEM to test the measurement invariance of the scale across gender, grade, and time. ESEM results suggested a three-factor structure of the NSTSSPE. Nomological validity was supported, and weak, strong, and strict measurement invariance of the NSTSSPE was evidenced across gender, grade, and time. The current study provides initial psychometric support for the NSTSSPE to assess student perceptions of teachers' need-supportive teaching style in physical education classes.
The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam
NASA Astrophysics Data System (ADS)
Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina
2016-01-01
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.
Active Structural Control for Aircraft Efficiency with the X-56A Aircraft
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey
2015-01-01
The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.
Structural design methodologies for ceramic-based material systems
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.
1991-01-01
One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.
Configurable product design considering the transition of multi-hierarchical models
NASA Astrophysics Data System (ADS)
Ren, Bin; Qiu, Lemiao; Zhang, Shuyou; Tan, Jianrong; Cheng, Jin
2013-03-01
The current research of configurable product design mainly focuses on how to convert a predefined set of components into a valid set of product structures. With the scale and complexity of configurable products increasing, the interdependencies between customer demands and product structures grow up as well. The result is that existing product structures fails to satisfy the individual customer requirements and hence product variants are needed. This paper is aimed to build a bridge between customer demands and product structures in order to make demand-driven fast response design feasible. First of all, multi-hierarchical models of configurable product design are established with customer demand model, technical requirement model and product structure model. Then, the transition of multi-hierarchical models among customer demand model, technical requirement model and product structure model is solved with fuzzy analytic hierarchy process (FAHP) and the algorithm of multi-level matching. Finally, optimal structure according to the customer demands is obtained with the calculation of Euclidean distance and similarity of some cases. In practice, the configuration design of a clamping unit of injection molding machine successfully performs an optimal search strategy for the product variants with reasonable satisfaction to individual customer demands. The proposed method can automatically generate a configuration design with better alternatives for each product structures, and shorten the time of finding the configuration of a product.
Surface circulation in the Gulf of Cadiz: Model and mean flow structure
NASA Astrophysics Data System (ADS)
Peliz, Alvaro; Dubert, Jesus; Marchesiello, Patrick; Teles-Machado, Ana
2007-11-01
The mean flow structure of the Gulf of Cadiz is studied using a numerical model. The model consists of a set of one-way nested configurations attaining resolutions on the order of 2.6 km in the region of the Gulf of Cadiz. In the large-scale configuration, the entrainment of the Mediterranean Water is parameterized implicitly through a nudging term. In medium- and small-scale nested configurations, the Mediterranean outflow is introduced explicitly. The model reproduces all the known features of the Azores Current and of the circulation inside the Gulf of Cadiz. A realistic Mediterranean Undercurrent is generated and Meddies develop at proper depths on the southwest tip of the Iberian slope. The hypothesis that the Azores Current may generate in association with the Mediterranean outflow (β-plume theories) is confirmed by the model results. The time-mean flow is dominated by a cyclonic cell generated in the gulf which expands westward and has transports ranging from 4 to 5 Sv. The connection between the cell and the Azores Current is analyzed. At the scale of the Gulf, the time-mean flow cell is composed by the westward Mediterranean Undercurrent, and by a counterflow running eastward over the outer edge of the Mediterranean Undercurrent deeper vein, as the latter is forced downslope. This counterflow feeds the entrainment at the depths of the Mediterranean Undercurrent and the Atlantic inflow at shallower levels. Coastward and upslope of this recirculation cell, a second current running equatorward all the way along the northern part of the gulf is revealed. This current is a very robust model result that promotes continuity between the southwestern Iberian coast and the Strait of Gibraltar, and helps explain many observations and recurrent SST features of the Gulf of Cadiz.
Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan
2015-07-15
A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time which proved to be both, positive and negative. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag
2018-06-01
Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.
NASA Astrophysics Data System (ADS)
Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag
2018-04-01
Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.
Rostami, A; Leilaeioun, M; Golmmohamadi, S; Rasooli Saghai, H
2012-06-01
In this paper, we present a self-consistent theoretical model for a metal-insulator semiconductor (MIS) dual band ultraviolet (UV) photodetector with a modified structure implying an arbitrarily defined insulating potential barrier as its active region. Utilizing our proposed model, the dark and photocurrent density-voltage (J-V) characteristics of MIS UV photodetectors with multi-quantum wells of silicon (MQWs) are calculated. We demonstrate that dark current is reduced in the suggested structure, because the electron-tunneling probability becomes unity at energies coincident with the peak detection wavelength. This is due to the resonant tunneling and decreases at energies that are significantly smaller than this optimum value. In consequence, the number of carriers contributing to the dark current, which have a broad energy distribution at high temperatures, will decrease. It is also shown that the designed structure could detect two individual UV wavelengths, simultaneously. The width of each Si quantum well has been considered at around 1.2 nm, in order to observe these two absorption peaks in the middle and near UV regions of photon spectrum (about 365 nm, 175 nm).
Toward superconducting critical current by design
Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...
2016-03-31
The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less
Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons
Azpiroz-Zabala, Maria; Cartigny, Matthieu J. B.; Talling, Peter J.; Parsons, Daniel R.; Sumner, Esther J.; Clare, Michael A.; Simmons, Stephen M.; Cooper, Cortis; Pope, Ed L.
2017-01-01
Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can explain why these are far more prolonged than all previously monitored oceanic turbidity currents, which lasted for only hours or minutes at other locations. The observed Congo Canyon flows consist of a short-lived zone of fast and dense fluid at their front, which outruns the slower moving body of the flow. We propose that the sustained duration of these turbidity currents results from flow stretching and that this stretching is characteristic of mud-rich turbidity current systems. The lack of stretching in previously monitored flows is attributed to coarser sediment that settles out from the body more rapidly. These prolonged seafloor flows rival the discharge of the Congo River and carry ~2% of the terrestrial organic carbon buried globally in the oceans each year through a single submarine canyon. Thus, this new structure explains sustained flushing of globally important amounts of sediment, organic carbon, nutrients, and fresh water into the deep ocean. PMID:28983506
Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.
Azpiroz-Zabala, Maria; Cartigny, Matthieu J B; Talling, Peter J; Parsons, Daniel R; Sumner, Esther J; Clare, Michael A; Simmons, Stephen M; Cooper, Cortis; Pope, Ed L
2017-10-01
Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can explain why these are far more prolonged than all previously monitored oceanic turbidity currents, which lasted for only hours or minutes at other locations. The observed Congo Canyon flows consist of a short-lived zone of fast and dense fluid at their front, which outruns the slower moving body of the flow. We propose that the sustained duration of these turbidity currents results from flow stretching and that this stretching is characteristic of mud-rich turbidity current systems. The lack of stretching in previously monitored flows is attributed to coarser sediment that settles out from the body more rapidly. These prolonged seafloor flows rival the discharge of the Congo River and carry ~2% of the terrestrial organic carbon buried globally in the oceans each year through a single submarine canyon. Thus, this new structure explains sustained flushing of globally important amounts of sediment, organic carbon, nutrients, and fresh water into the deep ocean.
Challenges in structural approaches to cell modeling
Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.
2016-01-01
Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863
Predicting Large Deflections of Multiplate Fuel Elements Using a Monolithic FSI Approach
Curtis, Franklin G.; Freels, James D.; Ekici, Kivanc
2017-10-26
As part of the Global Threat Reduction Initiative, the Oak Ridge National Laboratory is evaluating conversion of fuel for the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium. Currently, multiphysics simulations that model fluid-structure interaction phenomena are being performed to ensure the safety of the reactor with the new fuel type. A monolithic solver that fully couples fluid and structural dynamics is used to model deflections in the new design. A classical experiment is chosen to validate the capabilities of the current solver and the method. Here, a single-plate simulation with various boundary conditions as well asmore » a five-plate simulation are presented. Finally, use of the monolithic solver provides stable solutions for the large deflections and the tight coupling of the fluid and structure and the maximum deflections are captured accurately.« less
Adaptive machine and its thermodynamic costs
NASA Astrophysics Data System (ADS)
Allahverdyan, Armen E.; Wang, Q. A.
2013-03-01
We study the minimal thermodynamically consistent model for an adaptive machine that transfers particles from a higher chemical potential reservoir to a lower one. This model describes essentials of the inhomogeneous catalysis. It is supposed to function with the maximal current under uncertain chemical potentials: if they change, the machine tunes its own structure fitting it to the maximal current under new conditions. This adaptation is possible under two limitations: (i) The degree of freedom that controls the machine's structure has to have a stored energy (described via a negative temperature). The origin of this result is traced back to the Le Chatelier principle. (ii) The machine has to malfunction at a constant environment due to structural fluctuations, whose relative magnitude is controlled solely by the stored energy. We argue that several features of the adaptive machine are similar to those of living organisms (energy storage, aging).
Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2013-09-01
Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.
Isochoric structural recovery in molecular glasses and its analog in colloidal glasses
NASA Astrophysics Data System (ADS)
Banik, Sourya; McKenna, Gregory B.
2018-06-01
Concentrated colloidal dispersions have been regarded as models for molecular glasses. One of the many ways to compare the behavior in these two different systems is by comparing the structural recovery or the physical aging behavior. However, recent investigations from our group to examine structural recovery in thermosensitive colloidal dispersions have shown contrasting results between the colloidal and the molecular glasses. The differences in the behaviors of the two systems have led us to pose this question: Is structural recovery behavior in colloidal glasses truly distinct from that of molecular glasses or is the conventional experimental condition (isobaric temperature-jumps) in determining the structural recovery in molecular glasses different from the experimental condition in the colloidal experiments (concentration- or volume fraction-jumps); i.e., are colloidal glasses inherently different from molecular glasses or not? To address the question, we resort to model calculations of structural recovery in a molecular glass under constant volume (isochoric) conditions following temperature only- and simultaneous volume- and temperature-jumps, which are closer to the volume fraction-jump conditions used in the thermosensitive-colloidal experiments. The current model predictions are then compared with the signatures of structural recovery under the conventional isobaric state in a molecular glass and with structural recovery behavior in colloidal glasses following volume fraction-jumps. We show that the results obtained from the experiments conducted by our group were contrasting to classical molecular glass behavior because the basis of our comparisons were incorrect (the histories were not analogous). The present calculations (with analogous histories) are qualitatively closer to the colloidal behavior. The signatures of "intrinsic isotherms" and "asymmetry of approach" in the current isochoric model predictions are quite different from those in the classical isobaric conditions while the "memory" signatures remain essentially the same. While there are qualitative similarities between the current isochoric model predictions and results from colloidal glasses, it appears from the calculations that the origins of these are different. The isochoric histories in the molecular glasses have compensating effects of pressure and departure from equilibrium which determines the structure dependence on mobility of the molecules. On the other hand, in the colloids it simply appears that the volume fraction-jump conditions simply do not exhibit such structure mobility dependence. The determining interplay of thermodynamic phase variables in colloidal and molecular systems might be very different or at least their correlations are yet to be ascertained. This topic requires further investigation to bring the similarities and differences between molecular and colloidal glass formers into fuller clarity.
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level
ERIC Educational Resources Information Center
Savalei, Victoria; Rhemtulla, Mijke
2017-01-01
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…
NASA Astrophysics Data System (ADS)
Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu
2018-03-01
For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.
Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Liu, Jianxiong; Weinstein, Roy; Lau, Kwong
1992-01-01
Spatial distributions of persistent magnetic field trapped by sintered and melt-textured ceramic-type high-temperature superconductor (HTS) samples have been studied. The trapped field can be reproduced by a model of the current consisting of two components: (1) a surface current Js and (2) a uniform volume current Jv. This Js + Jv model gives a satisfactory account of the spatial distribution of the magnetic field trapped by different types of HTS samples. The magnetic moment can be calculated, based on the Js + Jv model, and the result agrees well with that measured by standard vibrating sample magnetometer (VSM). As a consequence, Jc predicted by VSM methods agrees with Jc predicted from the Js + Jv model. The field mapping method described is also useful to reveal the granular structure of large HTS samples and regions of weak links.
Structural and Molecular Modeling Features of P2X Receptors
Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos
2014-01-01
Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936
Hartley, Chelsey M.; Barroso, Nicole; Rey, Yasmin; Pettit, Jeremy W.; Bagner, Daniel M.
2015-01-01
Background Although a number of studies have examined the factor structure of the Edinburgh Postnatal Depression Scale (EPDS) in predominately White or African American samples, no published research has reported on the factor structure among Hispanic women who reside in the United States. Objective The current study examined the factor structure of the EPDS among Hispanic mothers in the United States. Method Among 220 Hispanic women, drawn from a pediatric primary care setting, with an infant aged 0 to 10 months, 6 structural models guided by the empirical literature were evaluated using confirmatory factor analysis. Results Results supported a 2-factor model of depression and anxiety as the best fitting model. Multigroup models supported the factorial invariance across women who completed the EDPS in English and Spanish. Conclusion These findings provide initial support for the 2-factor structure of the EPDS among Hispanic women in the United States. PMID:24807217
Hartley, Chelsey M; Barroso, Nicole; Rey, Yasmin; Pettit, Jeremy W; Bagner, Daniel M
2014-12-01
Although a number of studies have examined the factor structure of the Edinburgh Postnatal Depression Scale (EPDS) in predominately White or African American samples, no published research has reported on the factor structure among Hispanic women who reside in the United States. The current study examined the factor structure of the EPDS among Hispanic mothers in the United States. Among 220 Hispanic women, drawn from a pediatric primary care setting, with an infant aged 0 to 10 months, 6 structural models guided by the empirical literature were evaluated using confirmatory factor analysis. Results supported a 2-factor model of depression and anxiety as the best fitting model. Multigroup models supported the factorial invariance across women who completed the EDPS in English and Spanish. These findings provide initial support for the 2-factor structure of the EPDS among Hispanic women in the United States. © 2014 Wiley Periodicals, Inc.
Ab initio solution of macromolecular crystal structures without direct methods.
McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J
2017-04-04
The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
Using structure to explore the sequence alignment space of remote homologs.
Kuziemko, Andrew; Honig, Barry; Petrey, Donald
2011-10-01
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.
Unger, Bertram J; Kraut, Jay; Rhodes, Charlotte; Hochman, Jordan
2014-01-01
Physical models of complex bony structures can be used for surgical skills training. Current models focus on surface rendering but suffer from a lack of internal accuracy due to limitations in the manufacturing process. We describe a technique for generating internally accurate rapid-prototyped anatomical models with solid and hollow structures from clinical and microCT data using a 3D printer. In a face validation experiment, otolaryngology residents drilled a cadaveric bone and its corresponding printed model. The printed bone models were deemed highly realistic representations across all measured parameters and the educational value of the models was strongly appreciated.
Field-induced assembly of colloidal ellipsoids into well-defined microtubules
Crassous, Jérôme J.; Mihut, Adriana M.; Wernersson, Erik; Pfleiderer, Patrick; Vermant, Jan; Linse, Per; Schurtenberger, Peter
2014-01-01
Current theoretical attempts to understand the reversible formation of stable microtubules and virus shells are generally based on shape-specific building blocks or monomers, where the local curvature of the resulting structure is explicitly built-in via the monomer geometry. Here we demonstrate that even simple ellipsoidal colloids can reversibly self-assemble into regular tubular structures when subjected to an alternating electric field. Supported by model calculations, we discuss the combined effects of anisotropic shape and field-induced dipolar interactions on the reversible formation of self-assembled structures. Our observations show that the formation of tubular structures through self-assembly requires much less geometrical and interaction specificity than previously thought, and advance our current understanding of the minimal requirements for self-assembly into regular virus-like structures. PMID:25409686
A fragmentation and reassembly method for ab initio phasing.
Shrestha, Rojan; Zhang, Kam Y J
2015-02-01
Ab initio phasing with de novo models has become a viable approach for structural solution from protein crystallographic diffraction data. This approach takes advantage of the known protein sequence information, predicts de novo models and uses them for structure determination by molecular replacement. However, even the current state-of-the-art de novo modelling method has a limit as to the accuracy of the model predicted, which is sometimes insufficient to be used as a template for successful molecular replacement. A fragment-assembly phasing method has been developed that starts from an ensemble of low-accuracy de novo models, disassembles them into fragments, places them independently in the crystallographic unit cell by molecular replacement and then reassembles them into a whole structure that can provide sufficient phase information to enable complete structure determination by automated model building. Tests on ten protein targets showed that the method could solve structures for eight of these targets, although the predicted de novo models cannot be used as templates for successful molecular replacement since the best model for each target is on average more than 4.0 Å away from the native structure. The method has extended the applicability of the ab initio phasing by de novo models approach. The method can be used to solve structures when the best de novo models are still of low accuracy.
Highlights from High Energy Neutrino Experiments at CERN
NASA Astrophysics Data System (ADS)
Schlatter, W.-D.
2015-07-01
Experiments with high energy neutrino beams at CERN provided early quantitative tests of the Standard Model. This article describes results from studies of the nucleon quark structure and of the weak current, together with the precise measurement of the weak mixing angle. These results have established a new quality for tests of the electroweak model. In addition, the measurements of the nucleon structure functions in deep inelastic neutrino scattering allowed first quantitative tests of QCD.
MANPRINT Methods Monograph: Aiding the Development of Manned System Performance Criteria
1989-06-01
the need for the new system. It may be necessary co derive these requirements from combat models. By modeling the capabilities of the current force ...FORMAT The O&O Plan describes how a system will be integrated into the force structure, deployed, operated, and supported in peacetime and wartime...for evaluation during OT I. 9. MANPOWER/ FORCE STRUCTURE ASSESSMENT. Estimate manpower require- ments per system, using unit, and total Army by
An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*
Huang, Yu; Su, Yuzhuo; Rorden, Christopher; Dmochowski, Jacek; Datta, Abhishek; Parra, Lucas C.
2014-01-01
Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an automated processing chain that computes current distributions in the head starting from a structural magnetic resonance image (MRI). The main purpose of automating this process is to reduce the substantial effort currently required for manual segmentation, electrode placement, and solving of finite element models. In doing so, several weeks of manual labor were reduced to no more than 4 hours of computation time and minimal user interaction, while current-flow results for the automated method deviated by less than 27.9% from the manual method. Key facilitating factors are the addition of three tissue types (skull, scalp and air) to a state-of-the-art automated segmentation process, morphological processing to correct small but important segmentation errors, and automated placement of small electrodes based on easily reproducible standard electrode configurations. We anticipate that such an automated processing will become an indispensable tool to individualize transcranial direct current stimulation (tDCS) therapy. PMID:23367144
The Kinematics of Turbulent Boundary Layer Structure
NASA Technical Reports Server (NTRS)
Robinson, Stephen Kern
1991-01-01
The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.
Spyrakis, Francesca; Cavasotto, Claudio N
2015-10-01
Structure-based virtual screening is currently an established tool in drug lead discovery projects. Although in the last years the field saw an impressive progress in terms of algorithm development, computational performance, and retrospective and prospective applications in ligand identification, there are still long-standing challenges where further improvement is needed. In this review, we consider the conceptual frame, state-of-the-art and recent developments of three critical "structural" issues in structure-based drug lead discovery: the use of homology modeling to accurately model the binding site when no experimental structures are available, the necessity of accounting for the dynamics of intrinsically flexible systems as proteins, and the importance of considering active site water molecules in lead identification and optimization campaigns. Copyright © 2015 Elsevier Inc. All rights reserved.
Calibration of aero-structural reduced order models using full-field experimental measurements
NASA Astrophysics Data System (ADS)
Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.
2017-03-01
The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.
Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.
1993-01-01
Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.
Kinematics of the New Madrid seismic zone, central United States, based on stepover models
Pratt, Thomas L.
2012-01-01
Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.
A nationwide survey of patient centered medical home demonstration projects.
Bitton, Asaf; Martin, Carina; Landon, Bruce E
2010-06-01
The patient centered medical home has received considerable attention as a potential way to improve primary care quality and limit cost growth. Little information exists that systematically compares PCMH pilot projects across the country. Cross-sectional key-informant interviews. Leaders from existing PCMH demonstration projects with external payment reform. We used a semi-structured interview tool with the following domains: project history, organization and participants, practice requirements and selection process, medical home recognition, payment structure, practice transformation, and evaluation design. A total of 26 demonstrations in 18 states were interviewed. Current demonstrations include over 14,000 physicians caring for nearly 5 million patients. A majority of demonstrations are single payer, and most utilize a three component payment model (traditional fee for service, per person per month fixed payments, and bonus performance payments). The median incremental revenue per physician per year was $22,834 (range $720 to $91,146). Two major practice transformation models were identified--consultative and implementation of the chronic care model. A majority of demonstrations did not have well-developed evaluation plans. Current PCMH demonstration projects with external payment reform include large numbers of patients and physicians as well as a wide spectrum of implementation models. Key questions exist around the adequacy of current payment mechanisms and evaluation plans as public and policy interest in the PCMH model grows.
Inflationary tensor fossils in large-scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimastrogiovanni, Emanuela; Fasiello, Matteo; Jeong, Donghui
Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to bemore » satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.« less
Capturing Gases in Carbon Honeycomb
NASA Astrophysics Data System (ADS)
Krainyukova, Nina V.
2017-04-01
In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.
Calculation of effective transport properties of partially saturated gas diffusion layers
NASA Astrophysics Data System (ADS)
Bednarek, Tomasz; Tsotridis, Georgios
2017-02-01
A large number of currently available Computational Fluid Dynamics numerical models of Polymer Electrolyte Membrane Fuel Cells (PEMFC) are based on the assumption that porous structures are mainly considered as thin and homogenous layers, hence the mass transport equations in structures such as Gas Diffusion Layers (GDL) are usually modelled according to the Darcy assumptions. Application of homogenous models implies that the effects of porous structures are taken into consideration via the effective transport properties of porosity, tortuosity, permeability (or flow resistance), diffusivity, electric and thermal conductivity. Therefore, reliable values of those effective properties of GDL play a significant role for PEMFC modelling when employing Computational Fluid Dynamics, since these parameters are required as input values for performing the numerical calculations. The objective of the current study is to calculate the effective transport properties of GDL, namely gas permeability, diffusivity and thermal conductivity, as a function of liquid water saturation by using the Lattice-Boltzmann approach. The study proposes a method of uniform water impregnation of the GDL based on the "Fine-Mist" assumption by taking into account the surface tension of water droplets and the actual shape of GDL pores.
Two-dimensional quasineutral description of particles and fields above discrete auroral arcs
NASA Technical Reports Server (NTRS)
Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.
1985-01-01
Stationary hot and cool particle distributions in the auroral magnetosphere are modelled using adiabatic assumptions of particle motion in the presence of broad-scale electrostatic potential structure. The study has identified geometrical restrictions on the type of broadscale potential structure which can be supported by a multispecies plasma having specified sources and energies. Without energization of cool thermal ionospheric electrons, a substantial parallel potential drop cannot be supported down to altitudes of 2000 km or less. Observed upward-directed field-aligned currents must be closed by return currents along field lines which support little net potential drop. In such regions the plasma density appears significantly enhanced. Model details agree well with recent broad-scale implications of satellite observations.
Theory and observations of upward field-aligned currents at the magnetopause boundary layer.
Wing, Simon; Johnson, Jay R
2015-11-16
The dependence of the upward field-aligned current density ( J ‖ ) at the dayside magnetopause boundary layer is well described by a simple analytic model based on a velocity shear generator. A previous observational survey confirmed that the scaling properties predicted by the analytical model are applicable between 11 and 17 MLT. We utilize the analytic model to predict field-aligned currents using solar wind and ionospheric parameters and compare with direct observations. The calculated and observed parallel currents are in excellent agreement, suggesting that the model may be useful to infer boundary layer structures. However, near noon, where velocity shear is small, the kinetic pressure gradients and thermal currents, which are not included in the model, could make a small but significant contribution to J ‖ . Excluding data from noon, our least squares fit returns log( J ‖,max_cal ) = (0.96 ± 0.04) log( J ‖_obs ) + (0.03 ± 0.01) where J ‖,max_cal = calculated J ‖,max and J ‖_obs = observed J ‖ .
Data and methodological problems in establishing state gasoline-conservation targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, D.L.; Walton, G.H.
The Emergency Energy Conservation Act of 1979 gives the President the authority to set gasoline-conservation targets for states in the event of a supply shortage. This paper examines data and methodological problems associated with setting state gasoline-conservation targets. The target-setting method currently used is examined and found to have some flaws. Ways of correcting these deficiencies through the use of Box-Jenkins time-series analysis are investigated. A successful estimation of Box-Jenkins models for all states included the estimation of the magnitude of the supply shortages of 1979 in each state and a preliminary estimation of state short-run price elasticities, which weremore » found to vary about a median value of -0.16. The time-series models identified were very simple in structure and lent support to the simple consumption growth model assumed by the current target method. The authors conclude that the flaws in the current method can be remedied either by replacing the current procedures with time-series models or by using the models in conjunction with minor modifications of the current method.« less
A description of STEMS-- the stand and tree evaluation and modeling system.
David M. Belcher; Margaret R. Holdaway; Gary J. Brand
1982-01-01
This paper describes STEMS (Stand and Tree Evaluation and Modeling System), the current computerized Lake State tree growth projection system. It presents the program structure, discusses the growth and mortality components, the management subsystem, and the regeneration subsystem. Some preliminary results of model testing are presented and an application is...
ERIC Educational Resources Information Center
Fleener, M. Jayne
Current research and learning theory suggest that a hierarchy of proportional reasoning exists that can be tested. Using G. Vergnaud's four complexity variables (structure, content, numerical characteristics, and presentation) and T. E. Kieren's model of rational number knowledge building, an epistemic model of proportional reasoning was…
Buonomo, Roberto; Assis, Jorge; Fernandes, Francisco; Engelen, Aschwin H; Airoldi, Laura; Serrão, Ester A
2017-02-01
Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping-stone oceanographic transport and habitat continuity, using as model an ecosystem-structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping-stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life-history traits. Our results highlight the importance of spatially explicit modelling of stepping-stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications. © 2016 John Wiley & Sons Ltd.
Parazzini, Marta; Rossi, Elena; Ferrucci, Roberta; Liorni, Ilaria; Priori, Alberto; Ravazzani, Paolo
2014-03-01
Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS. Computational electromagnetics techniques were applied in three human realistic models of different ages and gender. The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique. Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS. Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Paraboloid magnetospheric magnetic field model and the status of the model as an ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions It is a reason why the method of the paraboloid magnetospheric model construction based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters Such approach is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace equation for each of these large-scale current systems in the magnetosphere with a
Coupling between structure and liquids in a parallel stage space shuttle design
NASA Technical Reports Server (NTRS)
Kana, D. D.; Ko, W. L.; Francis, P. H.; Nagy, A.
1972-01-01
A study was conducted to determine the influence of liquid propellants on the dynamic loads for space shuttle vehicles. A parallel-stage configuration model was designed and tested to determine the influence of liquid propellants on coupled natural modes. A forty degree-of-freedom analytical model was also developed for predicting these modes. Currently available analytical models were used to represent the liquid contributions, even though coupled longitudinal and lateral motions are present in such a complex structure. Agreement between the results was found in the lower few modes.
Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model
NASA Technical Reports Server (NTRS)
Elgin, Stephen D.; Sutliff, Thomas J.
1993-01-01
The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed.
NASA Technical Reports Server (NTRS)
Mateev, L. N.; Nenovski, P. I.; Vellinov, P. I.
1989-01-01
In connection with the recently detected quasiperiodical magnetic disturbances in the ionospheric cusp, the penetration of compressional surface magnetohydrodynamic (MHD) waves through the middle atmosphere is modelled numerically. For the COSPAR International Reference Atmosphere (CIRA) 72 model the respective energy density flux of the disturbances in the middle atmosphere is determined. On the basis of the developed model certain conclusions are reached about the height distribution of the structures (energy losses, currents, etc.) initiated by intensive magnetic cusp disturbances.
Challenges in the global QCD analysis of parton structure of nucleons
NASA Astrophysics Data System (ADS)
Tung, Wu-Ki
2000-12-01
We briefly summarize the current status of global QCD analysis of the parton structure of the nucleon and then highlight the open questions and challenges which confront this endeavor on which much of the phenomenology of the Standard Model and the search of New Physics depend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.
Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating alongmore » the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.« less
Teaching macromolecular modeling.
Harvey, S C; Tan, R K
1992-01-01
Training newcomers to the field of macromolecular modeling is as difficult as is training beginners in x-ray crystallography, nuclear magnetic resonance, or other methods in structural biology. In one or two lectures, the most that can be conveyed is a general sense of the relationship between modeling and other structural methods. If a full semester is available, then students can be taught how molecular structures are built, manipulated, refined, and analyzed on a computer. Here we describe a one-semester modeling course that combines lectures, discussions, and a laboratory using a commercial modeling package. In the laboratory, students carry out prescribed exercises that are coordinated to the lectures, and they complete a term project on a modeling problem of their choice. The goal is to give students an understanding of what kinds of problems can be attacked by molecular modeling methods and which problems are beyond the current capabilities of those methods. PMID:1489919
Chou, Eileen Y; Halevy, Nir; Galinsky, Adam D; Murnighan, J Keith
2017-09-01
Contracts are commonly used to regulate a wide range of interactions and relationships. Yet relying on contracts as a mechanism of control often comes at a cost to motivation. Integrating theoretical perspectives from psychology, economics, and organizational theory, we explore this control-motivation dilemma inherent in contracts and present the Contract-Autonomy-Motivation-Performance-Structure (CAMPS) model, which highlights the synergistic benefits of combining structure and autonomy. The model proposes that subtle reductions in the specificity of a contract's language can boost autonomy, which increases intrinsic motivation and improves a range of desirable behaviors. Nine field and laboratory experiments found that less specific contracts increased task persistence, creativity, and cooperation, both immediately and longitudinally, because they boosted autonomy and intrinsic motivation. These positive effects, however, only occurred when contracts provided sufficient structure. Furthermore, the effects were limited to control-oriented clauses (i.e., legal clauses), and did not extend to coordination-oriented clauses (i.e., technical clauses). That is, there were synergistic benefits when a contract served as a scaffold that combined structure with general clauses. Overall, the current model and experiments identify a low-cost solution to the common problem of regulating social relationships: finding the right amount of contract specificity promotes desirable outcomes, including behaviors that are notoriously difficult to contract. The CAMPS model and the current set of empirical findings explain why, when, and how contracts can be used as an effective motivational tool. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Golenko, Mariya; Golenko, Nikolay
2014-05-01
Numerical modeling of the currents' spatial structure in some regions of the Baltic Sea is performed on the base of POM (Princeton Ocean Model). The calculations were performed under the westerly (most frequent in the Baltic) and north-easterly wind forcings. In the regions adjacent to the Kaliningrad Region's, Polish and Lithuanian coasts these winds generate oppositely directed geostrophic, drift and others types of currents. On the whole these processes can be considered as downwelling and upwelling. Apart from the regions mentioned above the Slupsk Furrow region, which determines the mass and momentum exchange between the Western and Central Baltic, is also considered. During the analysis of currents not only the whole model velocity but also components directed along and across the barotropic geostrophic current velocity are considered. The along geostrophic component for one's turn is separated into the geostrophic current itself and an ageostrophic part. The across geostrophic component is totally ageostrophic. The velocity components directed along and across the geostrophic current approximately describe the velocity components directed along the coast (along isobathes) and from the coast towards the open sea. The suggested approach allowed to present the currents' spatial structures typical for different wind forcings as two maps with the components directed along and across the barotropic geostrophic current velocity. On these maps the areas of the intensive alongshore currents are clearly depicted (for ex. near the base of the Hel Spit, in the region of the Slupsk Sill). The combined analysis of the vectors of the whole and geostrophic velocities allows to reveal the areas where the geostrophic component is significantly strengthened or weakened by the ageostrophic component. Under the westerly wind such currents' features are clearly observed near the end of the Hel Spit and at the southern boarder of the Slupsk Sill, under the north-easterly wind - near the base of the Hel Spit, at the southern boarder of the Slupsk Furrow, near the Curonian Spit (where the relief is bent). On the maps presenting the spatial distributions of the across shore velocities the areas where the mass and momentum transport from the shore to the open sea in the surface layer and vice versa takes place are discriminated. There are also revealed the areas where sharp changes of different velocity components under the wind changes are expected as well as the areas where such changes are expected to be minimal. The model is validated using the field surveys of current velocities by ADCP in the area adjacent to the Kaliningrad region. The comparison of current velocities has shown a close correspondence. In rather wide area the directions and amplitudes of the model and ADCP surface velocities are close, that is additionally confirmed by the comparison of the local vorticity distributions. On the vertical transects of the ADCP current velocity directed across the shoreline the geostrophic jet is clearly pronounced. Its horizontal and vertical scales are in close correspondence with ones of the model jet. At that the more detail calculations which are allowed during the modeling have shown that the geostrophic currents amount to 40-60% (in average) of the whole velocity; two components of the ageostrophic velocity directed along and across the geostrophic velocity are highly variable (from 10 to 60% of the whole velocity). The ageostrophic component directed along the geostrophic current generally strengthens it (up to 20-40% in average and up to 60-70% near the end of the Hel Spit). But in some regions, for example, in the Slupsk Furrow the ageostrophic component slows down the geostrophic current (to 30-40%). In some narrow local areas immediately adjacent to the coast currents directed oppositely to the general quasi geostrophic jet were registered on both field and model data. Before the comparison with the field data these local jets revealed on the model data were considered as improbable. As a result, the comparative analysis of the field and model data led to more detail understanding of dynamic processes in some coastal parts of the Baltic Sea.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-04-10
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-01-01
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298
Nonlinear system identification of smart structures under high impact loads
NASA Astrophysics Data System (ADS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
Armour, Cherie; Elhai, Jon D; Layne, Christopher M; Shevlin, Mark; Duraković-Belko, Elvira; Djapo, Nermin; Pynoos, Robert S
2011-05-01
DSM-IV's three-factor model of posttraumatic stress disorder (PTSD) is rarely empirically supported, whereas other four-factor models (King et al., 1998; Simms, Watson, & Doebbeling, 2002) have proven to be better representations of PTSD's latent structure. To date, a clear consensus as to which model provides the best representation of PTSD's underlying dimensions has yet to be reached. The current study investigated whether gender is associated with factor structure differences using the King et al. (1998) model of reexperiencing, avoidance, numbing, and hyperarousal PTSD symptoms. Participants were war-exposed Bosnian secondary/high school boys and girls (N=1572) assessed nearly two years after the 1992-1995 Bosnian conflict. Confirmatory factor analytic tests of measurement invariance across PTSD model parameters revealed many significant sex-linked differences. Implications regarding the potential role of gender as a moderator of the King et al. (1998) model's factor structure are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
A new method for constructing networks from binary data
NASA Astrophysics Data System (ADS)
van Borkulo, Claudia D.; Borsboom, Denny; Epskamp, Sacha; Blanken, Tessa F.; Boschloo, Lynn; Schoevers, Robert A.; Waldorp, Lourens J.
2014-08-01
Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.
Neumann, Craig S.; Malterer, Melanie B.; Newman, Joseph P.
2010-01-01
Recent exploratory factor analysis (EFA) of the Psychopathic Personality Inventory (PPI; Lilienfeld, 1990) with a community sample suggested that the PPI subscales may be comprised of two higher-order factors (Benning et al., 2003). However, little research has examined the PPI structure in offenders. The current study attempted to replicate the Benning et al. two-factor solution using a large (N=1224) incarcerated male sample. Confirmatory factor analysis (CFA) of this model with the full sample resulted in poor model fit. Next, to identify a factor solution that would summarize the offender data, EFA was conducted using a split-half of the total sample, followed by an attempt to replicate the EFA solution via CFA with the other split-half sample. Using the recommendations of Prooijen and van der Kloot (2001) for recovering EFA solutions, model fit results provided some evidence that the EFA solution could be recovered via CFA. However, this model involved extensive cross-loadings of the subscales across three factors, suggesting item overlap across PPI subscales. In sum, the two-factor solution reported by Benning et al. (2003) was not a viable model for the current sample of offenders, and additional research is needed to elucidate the latent structure of the PPI. PMID:18557694
DNA/RNA transverse current sequencing: intrinsic structural noise from neighboring bases
Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.
2015-01-01
Nanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed. A very important source of the error is the intrinsic noise in the current arising from carrier dispersion along the chain of the molecule, i.e., from the influence of neighboring bases. In this work we perform calculations of the transverse current within an effective multi-orbital tight-binding model derived from first-principles calculations of the DNA/RNA molecules, to study the effect of this structural noise on the error rates in DNA/RNA sequencing via transverse current in nanopores. We demonstrate that a statistical technique, utilizing not only the currents through the nucleotides but also the correlations in the currents, can in principle reduce the error rate below any desired precision. PMID:26150827
Study of the upper airway of obstructive sleep apnea patient using fluid structure interaction.
Liu, Yang; Mitchell, Jennifer; Chen, Yitung; Yim, Woosoon; Chu, Wenxiao; Wang, Robert C
2018-02-01
Up to 14% of the U.S. population is estimated to have obstructive sleep apnea (OSA), while the outcomes of the treatments have variable results. In the current study, a three-dimensional fluid-structure interaction modeling was applied to simulate the upper airway to identify the precise location, severity, and characteristic of airway collapse. This was accomplished using Simpleware ® and ANSYS ® software applied to a 3-D rendering of the airway in a real patient with severe OSA. During this simulation, areas which are prone to collapse and precipitate apneic episodes were identified at the tip of the soft palate and the base of the tongue, with intrathoracic pressure as low as -1370 Pa. These results are consistent with anatomical structures currently indicated and targeted in the treatment of OSA. This improved FSI modeling simulation, which is the first to completely model the whole upper airway without consideration of the nasal cavity in OSA, and can allow virtual modification of the airway prior to actual treatment by doctors. Copyright © 2018 Elsevier B.V. All rights reserved.
Finite element analysis of displacement actuator based on giant magnetostrictive thin film
NASA Astrophysics Data System (ADS)
Yu, Shaopeng; Wang, Bowen; Zhang, Changgeng; Cui, Baozhi
2018-05-01
With the rapid development of science and technology, mechanical and electrical equipment become more and more miniature. In order to achieve precise control in less than 1cm3, the giant magnetostrictive thin film has become a research hotspot. The micro displacement actuator with planar and arc film is designed by the dynamic coupling model based on J-A model and magneto-mechanical effect method which is proposed in this paper. The different structure and thickness of films are analyzed by COMSOL Multiphysics software when the current flows through driving coil. After comparing the simulation results with the test ones, it can be seen that the coupling model is accurate and the structure is reliable. At the same time, MATLAB is used to fit the current density-displacement curve and higher order equation is obtained, and then the feasibility of design can be verified. The actuator with arc structure had advantages of small volume, fast response, high precision, easy integration, etc., which has a broad application prospect in the field of vibration control, micro positioning, robot and so on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, T.
Some aspects concerning the coupling of quasi-stationary electromagnetics and the dynamics of structure and fluid are investigated. The necessary equations are given in a dimensionless form. The dimensionless parameters in these equations are used to evaluate the importance of the different coupling effects. A finite element formulation of the eddy-current damping in solid structures is developed. With this formulation, an existing finite element method (FEM) structural dynamics code is extended and coupled to an FEM eddy-current code. With this program system, the influence of the eddy-current damping on the dynamic loading of the dual coolant blanket during a centered plasmamore » disruption is determined. The analysis proves that only in loosely fixed or soft structures will eddy-current damping considerably reduce the resulting stresses. Additionally, the dynamic behavior of the liquid metal in the blankets` poloidal channels is described with a simple two-dimensional magnetohydrodynamic approach. The analysis of the dimensionless parameters shows that for small-scale experiments, which are designed to model the coupled electromagnetic and structural/fluid dynamic effects in such a blanket, the same magnetic fields must be applied as in the real fusion device. This will be the easiest way to design experiments that produce transferable results. 10 refs., 7 figs.« less
Is nucleon spin structure inconsistent with the constituent quark model?
NASA Astrophysics Data System (ADS)
Qing, Di; Chen, Xiang-Song; Wang, Fan
1998-12-01
Proton spin structure discovered in polarized deep inelastic scattering is shown to be consistent with the valence-sea quark mixing constituent quark model. The relativistic correction and quark-antiquark pair creation (annihilation) terms inherently involved in the quark axial vector current suppress the quark spin contribution to the proton spin. The relativistic quark orbital angular momentum provides compensative terms to keep the proton spin 12 untouched. The tensor charge of the proton is predicted to have a similar but smaller suppression. An explanation on why baryon magnetic moments can be parametrized by the naive quark model spin content as well as the spin structure discovered in polarized deep inelastic scattering is given.
Neutrino Mass Bounds from 0{nu}{beta}{beta} Decays and Large Scale Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keum, Y.-Y.; Department of Physics, National Taiwan University, Taipei, Taiwan 10672; Ichiki, K.
2008-05-21
We investigate the way how the total mass sum of neutrinos can be constrained from the neutrinoless double beta decay and cosmological probes with cosmic microwave background (WMAP 3-year results), large scale structures including 2dFGRS and SDSS data sets. First we discuss, in brief, on the current status of neutrino mass bounds from neutrino beta decays and cosmic constrain within the flat {lambda}CMD model. In addition, we explore the interacting neutrino dark-energy model, where the evolution of neutrino masses is determined by quintessence scalar filed, which is responsable for cosmic acceleration today. Assuming the flatness of the universe, the constraintmore » we can derive from the current observation is {sigma}m{sub {nu}}<0.87 eV at the 95% confidence level, which is consistent with {sigma}m{sub {nu}}<0.68 eV in the flat {lambda}CDM model.« less
Comprehensive computational design of ordered peptide macrocycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple
Mixed chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to-date, but there is currently no way to systematically search through the structural space spanned by such compounds for new drug candidates. Natural proteins do not provide a useful guide: peptide macrocycles lack regular secondary structures and hydrophobic cores and have different backbone torsional constraints. Hence the development of new peptide macrocycles has been approached by modifying natural products or using library selection methods; the former is limited by the small number of known structures, and the latter by the limited size and diversity accessible throughmore » library-based methods. To overcome these limitations, here we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L and D amino acids. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. We synthesize and characterize by NMR twelve 7-10 residue macrocycles, 9 of which have structures very close to the design models in solution. NMR structures of three 11-14 residue bicyclic designs are also very close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide based macrocycles unparalleled for other molecular systems, and vastly increase the available starting scaffolds for both rational drug design and library selection methods.« less
Bioprinting the Cancer Microenvironment.
Zhang, Yu Shrike; Duchamp, Margaux; Oklu, Rahmi; Ellisen, Leif W; Langer, Robert; Khademhosseini, Ali
2016-10-10
Cancer is intrinsically complex, comprising both heterogeneous cellular compositions and microenvironmental cues. During the various stages of cancer initiation, development, and metastasis, cell-cell interactions (involving vascular and immune cells besides cancerous cells) as well as cell-extracellular matrix (ECM) interactions (e.g., alteration in stiffness and composition of the surrounding matrix) play major roles. Conventional cancer models both two- and three-dimensional (2D and 3D) present numerous limitations as they lack good vascularization and cannot mimic the complexity of tumors, thereby restricting their use as biomimetic models for applications such as drug screening and fundamental cancer biology studies. Bioprinting as an emerging biofabrication platform enables the creation of high-resolution 3D structures and has been extensively used in the past decade to model multiple organs and diseases. More recently, this versatile technique has further found its application in studying cancer genesis, growth, metastasis, and drug responses through creation of accurate models that recreate the complexity of the cancer microenvironment. In this review we will focus first on cancer biology and limitations with current cancer models. We then detail the current bioprinting strategies including the selection of bioinks for capturing the properties of the tumor matrices, after which we discuss bioprinting of vascular structures that are critical toward construction of complex 3D cancer organoids. We finally conclude with current literature on bioprinted cancer models and propose future perspectives.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
Rethinking the learning of belief network probabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musick, R.
Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rotemore » learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neutral networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar G.; Swaminathan S.; Kumaran, D.
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} ofmore » 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.« less
Kumar, Gyanendra; Kumaran, Desigan; Ahmed, S Ashraf; Swaminathan, Subramanyam
2012-05-01
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC(50) of 0.9 µM and a K(i) of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features. © 2012 International Union of Crystallography
The Earth's magnetosphere modeling and ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base Fairfield et al 1994 which contains Earth s magnetospheric magnetic field measurements accumulated during many years The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The last version of the Tsyganenko model has been constructed for a geomagnetic storm time interval This version based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters The same method has been used previously for paraboloid model construction This method is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace
1976-09-01
Univ., Corvallis, 71 p. barber, R. T. and J. H. Ryther, 1969. Organic chelators: factors affecting primary production in the Cromwell1 current upwelling...Mesoscale Air-Sea Interaction Group Technical Report I A MODEL OF THE SPATIAL STRUCTURE AND PRODUCTIVITY OF PHYTOPLANKTON POPULATIONS DURING...Variability in the wind stress affects the rate of ufpwelling and ultimtely the local biological productivity . To investigate the relationship between wind
The interaction of cannibalism and omnivory: consequences for community dynamics.
Rudolf, Volker H W
2007-11-01
Although cannibalism is ubiquitous in food webs and frequent in systems where a predator and its prey also share a common resource (intraguild predation, IGP), its impacts on species interactions and the dynamics and structure of communities are still poorly understood. In addition, the few existing studies on cannibalism have generally focused on cannibalism in the top-predator, ignoring that it is frequent at intermediate trophic levels. A set of structured models shows that cannibalism can completely alter the dynamics and structure of three-species IGP systems depending on the trophic position where cannibalism occurs. Contrary to the expectations of simple models, the IG predator can exploit the resources more efficiently when it is cannibalistic, enabling the predator to persist at lower resource densities than the IG prey. Cannibalism in the IG predator can also alter the effect of enrichment, preventing predator-mediated extinction of the IG prey at high productivities predicted by simple models. Cannibalism in the IG prey can reverse the effect of top-down cascades, leading to an increase in the resource with decreasing IG predator density. These predictions are consistent with current data. Overall, cannibalism promotes the coexistence of the IG predator and IG prey. These results indicate that including cannibalism in current models can overcome the discrepancy between theory and empirical data. Thus, we need to measure and account for cannibalistic interactions to reliably predict the structure and dynamics of communities.
NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansteen, V.; Pontieu, B. De; Carlsson, M.
2015-10-01
Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less
Analytic study of the effect of dark energy-dark matter interaction on the growth of structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Rafael J.F.; Landim, Ricardo C.G.; Costa, André A.
2016-12-01
Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of f σ{sub 8} can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. After correcting the growth function formore » the correspondence with the velocity field through the continuity equation in the interacting model, we use our analytic result to compare the model's predictions with large-scale structure observations.« less
Recent developments in broadly applicable structure-biodegradability relationships.
Jaworska, Joanna S; Boethling, Robert S; Howard, Philip H
2003-08-01
Biodegradation is one of the most important processes influencing concentration of a chemical substance after its release to the environment. It is the main process for removal of many chemicals from the environment and therefore is an important factor in risk assessments. This article reviews available methods and models for predicting biodegradability of organic chemicals from structure. The first section of the article briefly discusses current needs for biodegradability estimation methods related to new and existing chemicals and in the context of multimedia exposure models. Following sections include biodegradation test methods and endpoints used in modeling, with special attention given to the Japanese Ministry of International Trade and Industry test; a primer on modeling, describing the various approaches that have been used in the structure/biodegradability relationship work, and contrasting statistical and mechanistic approaches; and recent developments in structure/biodegradability relationships, divided into group contribution, chemometric, and artificial intelligence approaches.
Biophysical and structural considerations for protein sequence evolution
2011-01-01
Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS < 1 and gamma-distributed rates across sites. Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model. PMID:22171550
Challenges in structural approaches to cell modeling.
Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A
2016-07-31
Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Operations and support cost modeling of conceptual space vehicles
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1994-01-01
The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.
Eklund, Mona; Bäckström, Martin; Bejerholm, Ulrika
2018-05-01
To investigate how day center attendees with psychiatric disabilities perceived their worker role and the importance of current work situation and personal factors in that respect. Two-hundred attendees completed the Worker Role Self-assessment and questionnaires addressing possible predictors of the worker role: current employment situation, satisfaction with that situation, and a personal factor (encompassing self-esteem, self-mastery and engagement). Structural equation modeling was used. A model indicated two worker role factors; belief in a future worker role (WR1) and current capacities and routines (WR2). WR1 was positively influenced by having a job, younger age and the personal factor. Satisfaction with current work situation (usually unemployment) was negatively associated with WR1. The personal factor was single predictor of WR2. The attendees rated WR2 more positively than WR1. The personal factor was crucial for both WR1 and WR2. Work-related factors were only important for WR1. The more negative rating of belief in a future worker role may be interpreted as mistrust in the services. The attendees' positive ratings of capacities indicate, however, that they had a rehabilitation potential to develop. Enhancing self-esteem, mastery and engagement may be an avenue for staff in efforts to support the attendee's worker role.
Emission current formation in plasma electron emitters
NASA Astrophysics Data System (ADS)
Gruzdev, V. A.; Zalesski, V. G.
2010-12-01
A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.
Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning
Rouet-Leduc, Bertrand; Barros, Kipton Marcos; Lookman, Turab; ...
2016-04-26
A fundamental challenge in the design of LEDs is to maximise electro-luminescence efficiency at high current densities. We simulate GaN-based LED structures that delay the onset of efficiency droop by spreading carrier concentrations evenly across the active region. Statistical analysis and machine learning effectively guide the selection of the next LED structure to be examined based upon its expected efficiency as well as model uncertainty. This active learning strategy rapidly constructs a model that predicts Poisson-Schrödinger simulations of devices, and that simultaneously produces structures with higher simulated efficiencies.
Distribution of electric currents in sunspots from photosphere to corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosain, Sanjay; Démoulin, Pascal; López Fuentes, Marcelo
2014-09-20
We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z}more » has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.« less
Evans, Deborah J.; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A. Aziz
2011-01-01
The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then later homeostatic signals in AP axis regeneration. PMID:22125640
Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz
2011-01-01
The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then later homeostatic signals in AP axis regeneration.
NASA Astrophysics Data System (ADS)
Calciati, Marco; Goano, Michele; Bertazzi, Francesco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Bellotti, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin
2014-06-01
Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10-30 cm6/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at uncertainty quantification confirms, beyond the present case, the need for an improved description of carrier transport and microscopic radiative and nonradiative recombination mechanisms in device-level LED numerical models.
Development of a structured approach for decomposition of complex systems on a functional basis
NASA Astrophysics Data System (ADS)
Yildirim, Unal; Felician Campean, I.
2014-07-01
The purpose of this paper is to present the System State Flow Diagram (SSFD) as a structured and coherent methodology to decompose a complex system on a solution- independent functional basis. The paper starts by reviewing common function modelling frameworks in literature and discusses practical requirements of the SSFD in the context of the current literature and current approaches in industry. The proposed methodology is illustrated through the analysis of a case study: design analysis of a generic Bread Toasting System (BTS).
VAMPnets for deep learning of molecular kinetics.
Mardt, Andreas; Pasquali, Luca; Wu, Hao; Noé, Frank
2018-01-02
There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
Analysis of Structural MtrC Models Based on Homology with the Crystal Structure of MtrF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Marcus; Fredrickson, Jim K.; Zachara, John M.
2012-12-01
The outer-membrane decahaem cytochrome MtrC is part of the transmembrane MtrCAB complex required for mineral respiration by Shewanella oneidensis. MtrC has significant sequence similarity to the paralogous decahaem cytochrome MtrF, which has been structurally solved through X-ray crystallography. This now allows for homology-based models of MtrC to be generated. The structure of these MtrC homology models contain ten bis-histidine-co-ordinated c-type haems arranged in a staggered cross through a four-domain structure. This model is consistent with current spectroscopic data and shows that the areas around haem 5 and haem 10, at the termini of an octahaem chain, are likely to havemore » functions similar to those of the corresponding haems in MtrF. The electrostatic surfaces around haem 7, close to the β-barrels, are different in MtrF and MtrC, indicating that these haems may have different potentials and interact with substrates differently.« less
Unified control/structure design and modeling research
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.
1986-01-01
To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.
NASA Astrophysics Data System (ADS)
Narendar, Vadthiya; Rai, Saurabh; Tiwari, Siddharth; Mishra, R. A.
2016-12-01
The double-gate (DG) metal-oxide-semiconductor field effect transistors (MOSFETs) are the choice of technology in sub -100 nm regime of leading microelectronics industry. To enhance the analog and RF performance of DG MOSFET, an underlap dual-material (DM) DG MOSFET device structure has been considered because, it has the advantages of both underlap as well as that of dual-material gate (DMG). A 2D analytical surface potential, subthreshold current, subthreshold swing as well as transconductance modelling of underlap DMDG MOSFET has been done by solving the Poisson's equation. It has also been found that, numerically simulated data approves the analytically modelled data with commendable accuracy. As underlap length (Lun) increases, a substantial reduction of subthreshold current due to enhanced gate control over channel regime is observed. DMG structure facilitates to improve the average velocity of carriers which leads to superior drive current of the device. The underlap DMDG MOSFET device structure demonstrates an ameliorated subthreshold characteristic. The analog figure of merits (FOMs) such as transconductance (gm), transconductance generation factor (TGF), output conductance (gd), early voltage (VEA), intrinsic gain (AV) and RF FOMs namely cut-off frequency (fT), gain frequency product (GFP), transconductance frequency product (TFP) and gain transconductance frequency product (GTFP) have been evaluated. The aforesaid analysis revels that, the device is best suited for communication related Analog/RF applications.
Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure
NASA Technical Reports Server (NTRS)
Harding, A. K.
2016-01-01
The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.
Unconstrained Structure Formation in Coarse-Grained Protein Simulations
NASA Astrophysics Data System (ADS)
Bereau, Tristan
The ability of proteins to fold into well-defined structures forms the basis of a wide variety of biochemical functions in and out of the cell membrane. Many of these processes, however, operate at time- and length-scales that are currently unattainable by all-atom computer simulations. To cope with this difficulty, increasingly more accurate and sophisticated coarse-grained models are currently being developed. In the present thesis, we introduce a solvent-free coarse-grained model for proteins. Proteins are modeled by four beads per amino acid, providing enough backbone resolution to allow for accurate sampling of local conformations. It relies on simple interactions that emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic alpha/beta content is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are tuned to reproduce both local conformations and tertiary structures. By studying both helical and extended conformations we make sure the force field is not biased towards any particular secondary structure. Without any further adjustments or bias a realistic oligopeptide aggregation scenario is observed. The model is subsequently applied to various biophysical problems: (i) kinetics of folding of two model peptides, (ii) large-scale amyloid-beta oligomerization, and (iii) protein folding cooperativity. The last topic---defined by the nature of the finite-size thermodynamic transition exhibited upon folding---was investigated from a microcanonical perspective: the accurate evaluation of the density of states can unambiguously characterize the nature of the transition, unlike its corresponding canonical analysis. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition. Finally, we combine the peptide model with a high-resolution, solvent-free, lipid model. The lipid force field was systematically tuned to reproduce the structural and mechanical properties of phosphatidylcholine bilayers. The two models were cross-parametrized against atomistic potential of mean force curves for the insertion of single amino acid side chains into a bilayer. Coarse-grained transmembrane protein simulations were then compared with experiments and atomistic simulations to validate the force field. The transferability of the two models across amino acid sequences and lipid species permits the investigation of a wide variety of scenarios, while the absence of explicit solvent allows for studies of large-scale phenomena.
Modelling of current loads on aquaculture net cages
NASA Astrophysics Data System (ADS)
Kristiansen, Trygve; Faltinsen, Odd M.
2012-10-01
In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.
Fulmer, Erika B.; Neilands, Torsten B.; Dube, Shanta R.; Kuiper, Nicole M.; Arrazola, Rene A.; Glantz, Stanton A.
2015-01-01
Purpose Youth are exposed to many types of protobacco influences, including smoking in movies, which has been shown to cause initiation. This study investigates associations between different channels of protobacco media and susceptibility to smoking cigarettes, cigarette experimentation, and current tobacco use among US middle and high school students. Methods By using data from the 2012 National Youth Tobacco Survey, structural equation modeling was performed in 2013. The analyses examined exposure to tobacco use in different channels of protobacco media on smoking susceptibility, experimentation, and current tobacco use, accounting for perceived peer tobacco use. Results In 2012, 27.9% of respondents were never-smokers who reported being susceptible to trying cigarette smoking. Cigarette experimentation increased from 6.3% in 6th grade to 37.1% in 12th grade. Likewise, current tobacco use increased from 5.2% in 6th grade to 33.2% in 12th grade. Structural equation modeling supported a model in which current tobacco use is associated with exposure to static advertising through perception of peer use, and by exposure to tobacco use depicted on TV and in movies, both directly and through perception of peer use. Exposure to static advertising appears to directly increase smoking susceptibility but indirectly (through increased perceptions of peer use) to increase cigarette experimentation. Models that explicitly incorporate peer use as a mediator can better discern the direct and indirect effects of exposure to static advertising on youth tobacco use initiation. Conclusions These findings underscore the importance of reducing youth exposure to smoking in TV, movies, and static advertising. PMID:26308217
Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter.
Zeng, H; Parthasarathy, R; Rampal, A L; Jung, C Y
1996-01-01
A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:8770183
An ignition key for atomic-scale engines
NASA Astrophysics Data System (ADS)
Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T.; Todorov, Tchavdar N.
2012-10-01
A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.
NASA Astrophysics Data System (ADS)
Mohajer Iravani, Baharak
Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower dielectric constant. Meander lines can increase the effective inductive load which pushes down the lower edge of bandgap, thus resulting in a wider bandgap. Simulation results are included to show that the proposed EBG structures provide very wide bandgap (˜10GHz) covering the multiple harmonics of of currently available microprocessors and its harmonics. To speed up the design procedure, a model based on combination of lumped elements and transmission lines is proposed. The derived model predicts accurately the starting edge of bandgap. This result is verified with full-wave analysis. Finally, another novel compact wide band mushroom-type EBG structure using magneto-dielectric materials is designed. Numerical simulations show that the proposed EBG structure provides in-phase reflection bandgap which is several times greater than the one obtained from a conventional EBG operating at the same frequency while its cell size is smaller. This type of EBG structure can be used efficiently as a ground plane for low-profile wideband antennas.
Proactive Personality and the Successful Job Search : A Field Investigation with College Graduates
ERIC Educational Resources Information Center
Brown, Douglas J.; Cober, Richard T.; Kane, Kevin; Levy, Paul E.; Shalhoop, Jarrett
2006-01-01
The current article tests a model of proactive personality and job search success with a sample of 180 graduating college students. Using structural equation modeling, the authors tested a theoretical model that specified the relations among proactive personality, job search self-efficacy, job search behaviors, job search effort, and job search…
Forest product trade impacts of an invasive species: modeling structure and intervention trade-offs
Jeffrey Prestemon; Shushuai Zhu; James A. Turner; Joseph Buongiorno; Ruhong Li
2006-01-01
Asian gypsy and nun moth introductions into the United States, possibly arriving on imported Siberian coniferous logs, threaten domestic forests and product markers and could have global market consequences. We simulate, using the Global Forest Products Model (a spatial equilibrium model of the world forest sector), the consequences under current policies of a...
ERIC Educational Resources Information Center
Kilic, Eylem; Güler, Çetin; Çelik, H. Eray; Tatli, Cemal
2015-01-01
Purpose: The purpose of this study is to investigate the factors which might affect the intention to use interactive whiteboards (IWBs) by university students, using Technology Acceptance Model by the structural equation modeling approach. The following hypothesis guided the current study: H1. There is a positive relationship between IWB…
Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang
2017-01-01
Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.
Investigating melting induced mantle heterogeneities in plate driven mantle convection models
NASA Astrophysics Data System (ADS)
Price, M.; Davies, H.; Panton, J.
2017-12-01
Observations from geochemistry and seismology continue to suggest a range of complex heterogeneity in Earth's mantle. In the deep mantle, two large low velocity provinces (LLVPs) have been regularly observed in seismic studies, with their longevity, composition and density compared to the surrounding mantle debated. The cause of these observed LLVPs is equally uncertain, with previous studies advocating either thermal or thermo-chemical causes. There is also evidence that these structures could provide chemically distinct reservoirs within the mantle, with recent studies also suggesting there may be additional reservoirs in the mantle, such as bridgmanite-enriched ancient mantle structures (BEAMS). One way to test these hypotheses is using computational models of the mantle, with models that capture the full 3D system being both complex and computationally expensive. Here we present results from our global mantle model TERRA. Using our model, we can track compositional variations in the convecting mantle that are generated by self-consistent, evolving melting zones. Alongside the melting, we track trace elements and other volatiles which can be partitioned during melting events, and expelled and recycled at the surface. Utilising plate reconstruction models as a boundary condition, the models generate the tectonic features observed at Earth's surface, while also organising the lower mantle into recognisable degree-two structures. This results in our models generating basaltic `oceanic' crusts which are then brought into the mantle at tectonic boundaries, providing additional chemical heterogeneity in the mantle volume. Finally, by utilising thermodynamic lookup tables to convert the final outputs from the model to seismic structures, together with resolution filters for global tomography models, we are able to make direct comparisons between our results and observations. By varying the parameters of the model, we investigate a range of current hypotheses for heterogeneity in the mantle. Our work attempts to reconcile the many proposed current ideas for the deep mantle, giving additional insight from modelling on the latest observations from other Deep Earth disciplines.
Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P; Kushner, Jennifer
2016-04-01
Disaster-related interventions are actions or responses undertaken during any phase of a disaster to change the current status of an affected community or a Societal System. Interventional disaster research aims to evaluate the results of such interventions in order to develop standards and best practices in Disaster Health that can be applied to disaster risk reduction. Considering interventions as production functions (transformation processes) structures the analyses and cataloguing of interventions/responses that are implemented prior to, during, or following a disaster or other emergency. Since currently it is not possible to do randomized, controlled studies of disasters, in order to validate the derived standards and best practices, the results of the studies must be compared and synthesized with results from other studies (ie, systematic reviews). Such reviews will be facilitated by the selected studies being structured using accepted frameworks. A logic model is a graphic representation of the transformation processes of a program [project] that shows the intended relationships between investments and results. Logic models are used to describe a program and its theory of change, and they provide a method for the analyzing and evaluating interventions. The Disaster Logic Model (DLM) is an adaptation of a logic model used for the evaluation of educational programs and provides the structure required for the analysis of disaster-related interventions. It incorporates a(n): definition of the current functional status of a community or Societal System, identification of needs, definition of goals, selection of objectives, implementation of the intervention(s), and evaluation of the effects, outcomes, costs, and impacts of the interventions. It is useful for determining the value of an intervention and it also provides the structure for analyzing the processes used in providing the intervention according to the Relief/Recovery and Risk-Reduction Frameworks.
Counteracting structural errors in ensemble forecast of influenza outbreaks.
Pei, Sen; Shaman, Jeffrey
2017-10-13
For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.
Modelling short channel mosfets for use in VLSI
NASA Technical Reports Server (NTRS)
Klafter, Alex; Pilorz, Stuart; Polosa, Rosa Loguercio; Ruddock, Guy; Smith, Andrew
1986-01-01
In an investigation of metal oxide semiconductor field effect transistor (MOFSET) devices, a one-dimensional mathematical model of device dynamics was prepared, from which an accurate and computationally efficient drain current expression could be derived for subsequent parameter extraction. While a critical review revealed weaknesses in existing 1-D models (Pao-Sah, Pierret-Shields, Brews, and Van de Wiele), this new model in contrast was found to allow all the charge distributions to be continuous, to retain the inversion layer structure, and to include the contribution of current from the pinched-off part of the device. The model allows the source and drain to operate in different regimes. Numerical algorithms used for the evaluation of surface potentials in the various models are presented.
Rivas, Elena; Lang, Raymond; Eddy, Sean R
2012-02-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.
Rivas, Elena; Lang, Raymond; Eddy, Sean R.
2012-01-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308
Reuse: A knowledge-based approach
NASA Technical Reports Server (NTRS)
Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui
1992-01-01
This paper describes our research in automating the reuse process through the use of application domain models. Application domain models are explicit formal representations of the application knowledge necessary to understand, specify, and generate application programs. Furthermore, they provide a unified repository for the operational structure, rules, policies, and constraints of a specific application area. In our approach, domain models are expressed in terms of a transaction-based meta-modeling language. This paper has described in detail the creation and maintenance of hierarchical structures. These structures are created through a process that includes reverse engineering of data models with supplementary enhancement from application experts. Source code is also reverse engineered but is not a major source of domain model instantiation at this time. In the second phase of the software synthesis process, program specifications are interactively synthesized from an instantiated domain model. These specifications are currently integrated into a manual programming process but will eventually be used to derive executable code with mechanically assisted transformations. This research is performed within the context of programming-in-the-large types of systems. Although our goals are ambitious, we are implementing the synthesis system in an incremental manner through which we can realize tangible results. The client/server architecture is capable of supporting 16 simultaneous X/Motif users and tens of thousands of attributes and classes. Domain models have been partially synthesized from five different application areas. As additional domain models are synthesized and additional knowledge is gathered, we will inevitably add to and modify our representation. However, our current experience indicates that it will scale and expand to meet our modeling needs.
Hospital board structure: changing form and changing issues.
Tregoning, S
2000-01-01
Economic and social pressures are compelling many hospitals to consider their current board structure in an effort to position their hospital to meet changing demands. A national profile of the structures of hospital boards has been compiled from a questionnaire completed by hospital board representatives from both government and non-government sectors. Results show that hospital board structures are a hybrid of both philanthropic and corporate models. New structures may be required to meet future challenges. In developing new structures, consideration should be given to identifying the skills and processes required to undertake board business.
Cross-Ethnicity Measurement Equivalence of Family Coping for Breast Cancer Survivors
ERIC Educational Resources Information Center
Lim, Jung-won; Townsend, Aloen
2012-01-01
Objective: The current study examines the equivalence of a measure of family coping, the Family Crisis Oriented Personal Evaluation scales (F-COPES), in Chinese American and Korean American breast cancer survivors (BCS). Methods: Factor structure and cross-ethnicity equivalence of the F-COPES were tested using structural equation modeling with 157…
Factor Structure of the Exercise Self-Efficacy Scale
ERIC Educational Resources Information Center
Cornick, Jessica E.
2015-01-01
The current study utilized exercise self-efficacy ratings from undergraduate students to assess the factor structure of the Self-Efficacy to Regulate Exercise Scale (Bandura, 1997, 2006). An exploratory factor analysis (n = 759) indicated a two-factor model solution and three separate confirmatory factor analyses (n = 1,798) supported this…
Economics, Work, and Mental Health: Implications for Primary Prevention.
ERIC Educational Resources Information Center
Cahill, Janet
Recent research on the impact of economics on mental and physical health has raised fundamental questions about structural elements in the macro-economy and their role in creating stress. This paper reviews and integrates these sometimes conflicting findings into a cohesive model. Structural elements of our current economic system are identified…
ERIC Educational Resources Information Center
Demir Kaymak, Zeliha; Horzum, Mehmet Baris
2013-01-01
Current study tried to determine whether a relationship exists between readiness levels of the online learning students for online learning and the perceived structure and interaction in online learning environments. In the study, cross sectional survey model was used. The study was conducted with 320 voluntary students studying online learning…
Models and Systems for Structurization of Knowledge in Training
ERIC Educational Resources Information Center
Pelin, Nicolae; Pelin, Serghei
2007-01-01
In this work the problems of the automated structurization and activation of the knowledge, saved and used by mankind, during the organization and training, and also that knowledge which are generated by experts (including teachers) in the current activity, are analyzed. The purpose--the further perfection of methods and systems of the automated…
DOT National Transportation Integrated Search
1997-12-01
Highway structures are subjected to stream instability and foundation scour resulting from dynamic flow conditions caused by tides, currents, storm surges, and upland runoff. This phase of the study (Phase II) focused on (1) making useful modificatio...
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian
2016-12-01
The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.
Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana
Shi, Ming-Zhu; Xie, De-Yu
2014-01-01
Arabidopsis thaliana is the first model plant, the genome of which has been sequenced. In general, intensive studies on this model plant over the past nearly 30 years have led to many new revolutionary understandings in every single aspect of plant biology. Here, we review the current understanding of anthocyanin biosynthesis in this model plant. Although the investigation of anthocyanin structures in this model plant was not performed until 2002, numerous studies over the past three decades have been conducted to understand the biosynthesis of anthocyanins. To date, it appears that all pathway genes of anthocyanins have been molecularly, genetically and biochemically characterized in this plant. These fundamental accomplishments have made Arabidopsis an ideal model to understand the regulatory mechanisms of anthocyanin pathway. Several studies have revealed that the biosynthesis of anthocyanins is controlled by WD40-bHLH-MYB (WBM) transcription factor complexes under lighting conditions. However, how different regulatory complexes coordinately and specifically regulate the pathway genes of anthocyanins remains unclear. In this review, we discuss current progresses and findings including structural diversity, regulatory properties and metabolic engineering of anthocyanins in Arabidopsis thaliana. PMID:24354533
NASA Astrophysics Data System (ADS)
Breard, Eric C. P.; Lube, Gert
2017-01-01
Pyroclastic density currents (PDCs) are the most lethal threat from volcanoes. While there are two main types of PDCs (fully turbulent, fully dilute pyroclastic surges and more concentrated pyroclastic flows encompassing non-turbulent to turbulent transport) pyroclastic flows, which are the subject of the present study, are far more complex than dilute pyroclastic surges and remain the least understood type despite their far greater hazard, greater runout length and ability to transport vast quantities of material across the Earth's surface. Here we present large-scale experiments of natural volcanic material and gas in order to provide the missing quantitative view of the internal structure and gas-particle transport mechanisms in pyroclastic flows. We show that the outer flow structure with head, body and wake regions broadly resembles current PDC analogues of dilute gravity currents. However, the internal structure, in which lower levels consist of a concentrated granular fluid and upper levels are more dilute, contrasts significantly with the internal structure of fully dilute gravity currents. This bipartite vertical structure shows strong analogy to current conceptual models of high-density turbidity currents, which are responsible for the distribution of coarse sediment in marine basins and of great interest to the hydrocarbon industry. The lower concentrated and non-turbulent levels of the PDC (granular-fluid basal flow) act as a fast-flowing carrier for the more dilute and turbulent upper levels of the current (ash-cloud surge). Strong kinematic coupling between these flow parts reduces viscous dissipation and entrainment of ambient air into the lower part of the ash-cloud surge. This leads to a state of forced super-criticality whereby fast and destructive PDCs can endure even at large distances from volcanoes. Importantly, the basal flow/ash-cloud surge coupling yields a characteristically smooth rheological boundary across the non-turbulent/turbulent interface, as well as vertical velocity and density profiles in the ash-cloud surge, which strongly differ from current theoretical predictions. Observed generation of successive pulses of high dynamic pressure within the upper dilute levels of the PDC may be important to understand the destructive potential of PDCs. The experiments further show that a wide range in the degree of coupling between particle and gas phases is critical to the vertical and longitudinal segregation of the currents into reaches that have starkly contrasting sediment transport capacities. In particular, the formation of mesoscale turbulence clusters under strong particle-gas feedback controls vertical stratification inside the turbulent upper levels of the current (ash-cloud surge) and triggers significant transfers of mass and momentum from the ash-cloud surge onto the granular-fluid basal flow. These results open up new pathways to advance current computational PDC hazard models and to describe and interpret PDCs as well as other types of high-density gravity currents transported across the surfaces of Earth and other planets and across marine basins.
NASA Astrophysics Data System (ADS)
Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol
2018-01-01
Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.
NASA Astrophysics Data System (ADS)
Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong
2018-02-01
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.
NASA Astrophysics Data System (ADS)
Li, ZhaoYu; Chen, Tao; Yan, GuangQing
2016-10-01
A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.
Influence of magnet eddy current on magnetization characteristics of variable flux memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang
2018-05-01
In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.
Analysis of multicrystal pump–probe data sets. I. Expressions for the RATIO model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Bertrand; Coppens, Philip
2014-08-30
The RATIO method in time-resolved crystallography [Coppenset al.(2009).J. Synchrotron Rad.16, 226–230] was developed for use with Laue pump–probe diffraction data to avoid complex corrections due to wavelength dependence of the intensities. The application of the RATIO method in processing/analysis prior to structure refinement requires an appropriate ratio model for modeling the light response. The assessment of the accuracy of pump–probe time-resolved structure refinements based on the observed ratios was discussed in a previous paper. In the current paper, a detailed ratio model is discussed, taking into account both geometric and thermal light-induced changes.
An empirical model of the tidal currents in the Gulf of the Farallones
Steger, J.M.; Collins, C.A.; Schwing, F.B.; Noble, M.; Garfield, N.; Steiner, M.T.
1998-01-01
Candela et al. (1990, 1992) showed that tides in an open ocean region can be resolved using velocity data from a ship-mounted ADCP. We use their method to build a spatially varying model of the tidal currents in the Gulf of the Farallones, an area of complicated bathymetry where the tidal velocities in some parts of the region are weak compared to the mean currents. We describe the tidal fields for the M2, S2, K1, and O1 constituents and show that this method is sensitive to the model parameters and the quantity of input data. In areas with complex bathymetry and tidal structures, a large amount of spatial data is needed to resolve the tides. A method of estimating the associated errors inherent in the model is described.
Modeling Of Object- And Scene-Prototypes With Hierarchically Structured Classes
NASA Astrophysics Data System (ADS)
Ren, Z.; Jensch, P.; Ameling, W.
1989-03-01
The success of knowledge-based image analysis methodology and implementation tools depends largely on an appropriately and efficiently built model wherein the domain-specific context information about and the inherent structure of the observed image scene have been encoded. For identifying an object in an application environment a computer vision system needs to know firstly the description of the object to be found in an image or in an image sequence, secondly the corresponding relationships between object descriptions within the image sequence. This paper presents models of image objects scenes by means of hierarchically structured classes. Using the topovisual formalism of graph and higraph, we are currently studying principally the relational aspect and data abstraction of the modeling in order to visualize the structural nature resident in image objects and scenes, and to formalize. their descriptions. The goal is to expose the structure of image scene and the correspondence of image objects in the low level image interpretation. process. The object-based system design approach has been applied to build the model base. We utilize the object-oriented programming language C + + for designing, testing and implementing the abstracted entity classes and the operation structures which have been modeled topovisually. The reference images used for modeling prototypes of objects and scenes are from industrial environments as'well as medical applications.
Nonstationary Transient Vibroacoustic Response of a Beam Structure
NASA Technical Reports Server (NTRS)
Caimi, R. E.; Margasahayam, R. N.; Nayfeh, Jamal F.
1997-01-01
This study consists of an investigation into the nonstationary transient response of the Verification Test Article (VETA) when subjected to random acoustic excitation. The goal is to assess excitation models that can be used in the design of structures and equipment when knowledge of the structure and the excitation is limited. The VETA is an instrumented cantilever beam that was exposed to acoustic loading during five Space Shuttle launches. The VETA analytical structural model response is estimated using the direct averaged power spectral density and the normalized pressure spectra methods. The estimated responses are compared to the measured response of the VETA. These comparisons are discussed with a focus on prediction conservatism and current design practice.
A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.
Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang
2011-07-01
A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.
Advection by ocean currents modifies phytoplankton size structure.
Font-Muñoz, Joan S; Jordi, Antoni; Tuval, Idan; Arrieta, Jorge; Anglès, Sílvia; Basterretxea, Gotzon
2017-05-01
Advection by ocean currents modifies phytoplankton size structure at small scales (1-10 cm) by aggregating cells in different regions of the flow depending on their size. This effect is caused by the inertia of the cells relative to the displaced fluid. It is considered that, at larger scales (greater than or equal to 1 km), biological processes regulate the heterogeneity in size structure. Here, we provide observational evidence of heterogeneity in phytoplankton size structure driven by ocean currents at relatively large scales (1-10 km). Our results reveal changes in the phytoplankton size distribution associated with the coastal circulation patterns. A numerical model that incorporates the inertial properties of phytoplankton confirms the role of advection on the distribution of phytoplankton according to their size except in areas with enhanced nutrient inputs where phytoplankton dynamics is ruled by other processes. The observed preferential concentration mechanism has important ecological consequences that range from the phytoplankton level to the whole ecosystem. © 2017 The Author(s).
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1991-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.; Hiel, C. C.
1990-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.
NASA Astrophysics Data System (ADS)
Huismann, Tyler D.
Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous versions of the code assume an unknown dependence between particles' pre-collision velocities and post-collision scattering angles. This dissertation focuses on updating several of these types of collisions by assuming a curve fit based on the measurements of atom-ion interactions, such that previously unknown angular dependences are well-characterized.
NASA Astrophysics Data System (ADS)
Khairudin, Nurul Bahiyah Ahmad; Wahab, Habibah A.
In the current work, the structure of the enzyme CC chemokine eotaxin-3 (1G2S) was chosen as a case study to investigate the effects of gas phase on the predicted protein conformation using molecular dynamics simulation. Generally, simulating proteins in the gas phase tend to suffer from various drawbacks, among which excessive numbers of protein-protein hydrogen bonds. However, current results showed that the effects of gas phase simulation on 1G2S did not amplify the protein-protein hydrogen bonds. It was also found that some of the hydrogen bonds which were crucial in maintaining the secondary structural elements were disrupted. The predicted models showed high values of RMSD, 11.5 Å and 13.5 Å for both vacuum and explicit solvent simulations, respectively, indicating that the conformers were very much different from the native conformation. Even though the RMSD value for the in vacuo model was slightly lower, it somehow suffered from lower fraction of native contacts, poor hydrogen bonding networks and fewer occurrences of secondary structural elements compared to the solvated model. This finding supports the notion that water plays a dominant role in guiding the protein to fold along the correct path.
Forster, Brian P.; Franckowiak, Jerome D.; Lundqvist, Udda; Lyon, Jackie; Pitkethly, Ian; Thomas, William T. B.
2007-01-01
Background and Aims Morphological mutants have been useful in elucidating the phytomeric structure of plants. Recently described mutants have shed new light on the ontogeny (development of plant structures) and the phytomeric system of barley (Hordeum vulgare). Since the current model for barley phytomers was not adequate to explain the nature of some mutants, a new model is proposed. Methods New phytomer mutants were detected by visual assessment of mutant families in the Optic barley mutation grid population. This was done at various growth stages using laboratory, glasshouse and field screens. Simple explanations were adopted to account for aberrant phytomer phenotypes and a thesis for a new phytomer model was developed. Key Results and Conclusions A barley phytomer model is presented, in which the origins of vegetative and generative structures can be explained by a single repeating phytomer unit. Organs on the barley plant are divided into two classes, single or paired, depending on their origin. Paired structures are often fused together to create specific organs. The model can be applied to wheat (Triticum aestivum) and related grasses. PMID:17901062
Garrido, Luis Eduardo; Barrada, Juan Ramón; Aguasvivas, José Armando; Martínez-Molina, Agustín; Arias, Víctor B; Golino, Hudson F; Legaz, Eva; Ferrís, Gloria; Rojo-Moreno, Luis
2018-06-01
During the present decade a large body of research has employed confirmatory factor analysis (CFA) to evaluate the factor structure of the Strengths and Difficulties Questionnaire (SDQ) across multiple languages and cultures. However, because CFA can produce strongly biased estimations when the population cross-loadings differ meaningfully from zero, it may not be the most appropriate framework to model the SDQ responses. With this in mind, the current study sought to assess the factorial structure of the SDQ using the more flexible exploratory structural equation modeling approach. Using a large-scale Spanish sample composed of 67,253 youths aged between 10 and 18 years ( M = 14.16, SD = 1.07), the results showed that CFA provided a severely biased and overly optimistic assessment of the underlying structure of the SDQ. In contrast, exploratory structural equation modeling revealed a generally weak factorial structure, including questionable indicators with large cross-loadings, multiple error correlations, and significant wording variance. A subsequent Monte Carlo study showed that sample sizes greater than 4,000 would be needed to adequately recover the SDQ loading structure. The findings from this study prevent recommending the SDQ as a screening tool and suggest caution when interpreting previous results in the literature based on CFA modeling.
Cox, Brian J; Clara, Ian P; Worobec, Lydia M; Grant, Bridget F
2012-12-01
Individual personality disorders (PD) are grouped into three clusters in the DSM-IV (A, B, and C). There is very little empirical evidence available concerning the validity of this model in the general population. The current study included all 10 of the DSM-IV PD assessed in Wave 1 and Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Confirmatory factor analysis was used to evaluate three plausible models of the structure of Axis II personality disorders (the current hierarchical DSM-IV three-factor model in which individual PD are believed to load on their assigned clusters, which in turn load onto a single Axis II factor; a general single-factor model; and three independent factors). Each of these models was tested in both the total and also separately for gender. The higher order DSM-IV model demonstrated good fit to the data on a number of goodness-of-fit indices. The results for this model were very similar across genders. A model of PD based on the current DSM-IV hierarchical conceptualization of a higher order classification scheme received strong empirical support through confirmatory factor analysis using a number of goodness-of-fit indices in a nationally representative sample. Other models involving broad, higher order personality domains such as neuroticism in relation to personality disorders have yet to be tested in epidemiologic surveys and represent an important avenue for future research.
NASA Technical Reports Server (NTRS)
Lameris, J.
1984-01-01
The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.
Li, Min; Zhang, John Z H
2017-02-14
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Protein simulation using coarse-grained two-bead multipole force field with polarizable water models
NASA Astrophysics Data System (ADS)
Li, Min; Zhang, John Z. H.
2017-02-01
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Anisotropies of the cosmic microwave background in nonstandard cold dark matter models
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Silk, Joseph
1992-01-01
Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.
Armour, Cherie; Műllerová, Jana; Elhai, Jon D
2016-03-01
The factor structure of posttraumatic stress disorder (PTSD) has been widely researched, but consensus regarding the exact number and nature of factors is yet to be reached. The aim of the current study was to systematically review the extant literature on PTSD's latent structure in the Diagnostic and Statistical Manual of Mental Disorders (DSM) in order to identify the best-fitting model. One hundred and twelve research papers published after 1994 using confirmatory factor analysis and DSM-based measures of PTSD were included in the review. In the DSM-IV literature, four-factor models received substantial support, but the five-factor Dysphoric arousal model demonstrated the best fit, regardless of gender, measurement instrument or trauma type. The recently proposed DSM-5 PTSD model was found to be a good representation of PTSD's latent structure, but studies analysing the six- and seven-factor models suggest that the DSM-5 PTSD factor structure may need further alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Computerized modeling techniques predict the 3D structure of H₄R: facts and fiction.
Zaid, Hilal; Ismael-Shanak, Siba; Michaeli, Amit; Rayan, Anwar
2012-01-01
The functional characterization of proteins presents a daily challenge r biochemical, medical and computational sciences, especially when the structures are undetermined empirically, as in the case of the Histamine H4 Receptor (H₄R). H₄R is a member of the GPCR superfamily that plays a vital role in immune and inflammatory responses. To date, the concept of GPCRs modeling is highlighted in textbooks and pharmaceutical pamphlets, and this group of proteins has been the subject of almost 3500 publications in the scientific literature. The dynamic nature of determining the GPCRs structure was elucidated through elegant and creative modeling methodologies, implemented by many groups around the world. H₄R which belongs to the GPCR family was cloned in 2000; understandably, its biological activity was reported only 65 times in pubmed. Here we attempt to cover the fundamental concepts of H₄R structure modeling and its implementation in drug discovery, especially those that have been experimentally tested and to highlight some ideas that are currently being discussed on the dynamic nature of H₄R and GPCRs computerized techniques for 3D structure modeling.
Ueda, Masanori; Iwaki, Masafumi; Nishihara, Tokihiro; Satoh, Yoshio; Hashimoto, Ken-ya
2008-04-01
This paper describes a circuit model for the analysis of nonlinearity in the filters based on radiofrequency (RF) bulk acoustic wave (BAW) resonators. The nonlinear output is expressed by a current source connected parallel to the linear resonator. Amplitude of the nonlinear current source is programmed proportional to the product of linear currents flowing in the resonator. Thus, the nonlinear analysis is performed by the common linear analysis, even for complex device structures. The analysis is applied to a ladder-type RF BAW filter, and frequency dependence of the nonlinear output is discussed. Furthermore, this analysis is verified through comparison with experiments.
Intra-tidal variability of the vertical current structure in the western Dutch Wadden Sea
NASA Astrophysics Data System (ADS)
de Vries, Jurre; Ridderinkhof, Herman; van Aken, Hendrik
2014-05-01
Long-term velocity measurements are presented which were collected during three different seasons at one single location in an estuarine basin of the western Dutch Wadden Sea. These data are used to investigate the processes that determine the variability of the vertical current structure in the western Dutch Wadden Sea, in combination with simplified model runs using the one-dimensional water column model GETM (http://www.getm.eu/). Jay and Musiak [1996] were the first to suggest that intra-tidal variations in the vertical current might be important in determining the residual circulation patterns. More research [e.g. Stacey et al., 2001; Burchard and Hetland, 2010] has supported this hypothesis. Recently, lateral processes have been shown to influence the vertical current structure of alongstream velocity and hence the residual circulation [e.g. Lerczak and Geyer, 2004; Burchard and Schuttelaars, 2012]. Therefore to better understand the tidal dynamics in the western Dutch Wadden Sea, it is crucial to understand the processes that determine the vertical current structure. The two main findings of this study are that the complex bathymetry at the study site seems to produce an intra-tidal asymmetry in near-bed velocities and secondly that cross-stream processes strongly modify the current structure during late flood. Near-bed velocity and the bed roughness are greater during ebb than during flood. The GETM simulations suggest that vertical mixing during ebb is sufficient to destroy vertical stratification generated by classical tidal straining. The cross-stream current during late flood generate vertical stratification and drive an early reversal of the flood current near the surface. Therefore, it is hypothesized that this processes might increase the residual estuarine circulation at the study site. References - Burchard, H., Hetland, R.D. (2010), Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries, Journal of Physical Oceanography, 40(6), 1243-1262 - Burchard, H., Schuttelaars, H.M. (2012), Analysis of tidal straining as driver for estuarine circulation in well-mixed estuaries, Journal of Physical Oceanography, 42(2), 261-271 - Jay, D.A., Musiak, J.D. (1996), Internal tidal asymmetry in channel flows' origins and consequences, Coastal and Estuarine Studies, 50, 211-249 - Stacey, M.T., Burau J.R., Monismith, S.G. (2001), Creation of residual flows in a partially stratified estuary, Journal of Physical Oceanography, 34, 1410-1428
NASA Technical Reports Server (NTRS)
Ting, Eric; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.
Dimensional Model for Estimating Factors influencing Childhood Obesity: Path Analysis Based Modeling
Kheirollahpour, Maryam; Shohaimi, Shamarina
2014-01-01
The main objective of this study is to identify and develop a comprehensive model which estimates and evaluates the overall relations among the factors that lead to weight gain in children by using structural equation modeling. The proposed models in this study explore the connection among the socioeconomic status of the family, parental feeding practice, and physical activity. Six structural models were tested to identify the direct and indirect relationship between the socioeconomic status and parental feeding practice general level of physical activity, and weight status of children. Finally, a comprehensive model was devised to show how these factors relate to each other as well as to the body mass index (BMI) of the children simultaneously. Concerning the methodology of the current study, confirmatory factor analysis (CFA) was applied to reveal the hidden (secondary) effect of socioeconomic factors on feeding practice and ultimately on the weight status of the children and also to determine the degree of model fit. The comprehensive structural model tested in this study suggested that there are significant direct and indirect relationships among variables of interest. Moreover, the results suggest that parental feeding practice and physical activity are mediators in the structural model. PMID:25097878
Irreducible Uncertainty in Terrestrial Carbon Projections
NASA Astrophysics Data System (ADS)
Lovenduski, N. S.; Bonan, G. B.
2016-12-01
We quantify and isolate the sources of uncertainty in projections of carbon accumulation by the ocean and terrestrial biosphere over 2006-2100 using output from Earth System Models participating in the 5th Coupled Model Intercomparison Project. We consider three independent sources of uncertainty in our analysis of variance: (1) internal variability, driven by random, internal variations in the climate system, (2) emission scenario, driven by uncertainty in future radiative forcing, and (3) model structure, wherein different models produce different projections given the same emission scenario. Whereas uncertainty in projections of ocean carbon accumulation by 2100 is 100 Pg C and driven primarily by emission scenario, uncertainty in projections of terrestrial carbon accumulation by 2100 is 50% larger than that of the ocean, and driven primarily by model structure. This structural uncertainty is correlated with emission scenario: the variance associated with model structure is an order of magnitude larger under a business-as-usual scenario (RCP8.5) than a mitigation scenario (RCP2.6). In an effort to reduce this structural uncertainty, we apply various model weighting schemes to our analysis of variance in terrestrial carbon accumulation projections. The largest reductions in uncertainty are achieved when giving all the weight to a single model; here the uncertainty is of a similar magnitude to the ocean projections. Such an analysis suggests that this structural uncertainty is irreducible given current terrestrial model development efforts.
Refinement of protein termini in template-based modeling using conformational space annealing.
Park, Hahnbeom; Ko, Junsu; Joo, Keehyoung; Lee, Julian; Seok, Chaok; Lee, Jooyoung
2011-09-01
The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in atomic detail. In this work, we develop a new method for protein terminus modeling that can be applied to refinement of models with unreliable terminus structures. The energy function for terminus modeling consists of both physics-based and knowledge-based potential terms with carefully optimized relative weights. Effective sampling of both the framework and terminus is performed using the conformational space annealing technique. This method has been tested on a set of termini derived from a nonredundant structure database and two sets of termini from the CASP8 targets. The performance of the terminus modeling method is significantly improved over our previous method that does not employ terminus refinement. It is also comparable or superior to the best server methods tested in CASP8. The success of the current approach suggests that similar strategy may be applied to other types of refinement problems such as loop modeling or secondary structure rearrangement. Copyright © 2011 Wiley-Liss, Inc.
High-efficiency AlGaAs-GaAs Cassegrainian concentrator cells
NASA Technical Reports Server (NTRS)
Werthen, J. G.; Hamaker, H. C.; Virshup, G. F.; Lewis, C. R.; Ford, C. W.
1985-01-01
AlGaAs-GaAs heteroface space concentrator solar cells have been fabricated by metalorganic chemical vapor deposition. AMO efficiencies as high as 21.1% have been observed both for p-n and np structures under concentration (90 to 100X) at 25 C. Both cell structures are characterized by high quantum efficiencies and their performances are close to those predicted by a realistic computer model. In agreement with the computer model, the n-p cell exhibits a higher short-circuit current density.
Lyon, Aaron R; Pullmann, Michael D; Dorsey, Shannon; Martin, Prerna; Grigore, Alexandra A; Becker, Emily M; Jensen-Doss, Amanda
2018-05-11
Measurement-based care (MBC) is an increasingly popular, evidence-based practice, but there are no tools with established psychometrics to evaluate clinician use of MBC practices in mental health service delivery. The current study evaluated the reliability, validity, and factor structure of scores generated from a brief, standardized tool to measure MBC practices, the Current Assessment Practice Evaluation-Revised (CAPER). Survey data from a national sample of 479 mental health clinicians were used to conduct exploratory and confirmatory factor analyses, as well as reliability and validity analyses (e.g., relationships between CAPER subscales and clinician MBC attitudes). Analyses revealed competing two- and three-factor models. Regardless of the model used, scores from CAPER subscales demonstrated good reliability and convergent and divergent validity with MBC attitudes in the expected directions. The CAPER appears to be a psychometrically sound tool for assessing clinician MBC practices. Future directions for development and application of the tool are discussed.
Maleckar, Mary M; Edwards, Andrew G; Louch, William E; Lines, Glenn T
2017-01-01
Excitation-contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation-contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells' calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation-contraction coupling have been increasingly employed to probe these structure-function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
1998-01-01
The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model
Qin, Li-Tang; Liu, Shu-Shen; Liu, Hai-Ling
2010-02-01
A five-variable model (model M2) was developed for the bioconcentration factors (BCFs) of nonpolar organic compounds (NPOCs) by using molecular electronegativity distance vector (MEDV) to characterize the structures of NPOCs and variable selection and modeling based on prediction (VSMP) to select the optimum descriptors. The estimated correlation coefficient (r (2)) and the leave-one-out cross-validation correlation coefficients (q (2)) of model M2 were 0.9271 and 0.9171, respectively. The model was externally validated by splitting the whole data set into a representative training set of 85 chemicals and a validation set of 29 chemicals. The results show that the main structural factors influencing the BCFs of NPOCs are -cCc, cCcc, -Cl, and -Br (where "-" refers to a single bond and "c" refers to a conjugated bond). The quantitative structure-property relationship (QSPR) model can effectively predict the BCFs of NPOCs, and the predictions of the model can also extend the current BCF database of experimental values.
Microscopic model for intersubband gain from electrically pumped quantum-dot structures
Michael, Stephan; Chow, Weng Wah; Schneider, Han Christian
2014-10-03
We study theoretically the performance of electrically pumped self-organized quantum dots as a gain material in the mid-infrared range at room temperature. We analyze an AlGaAs/InGaAs based structure composed of dots-in-a-well sandwiched between two quantum wells. We numerically analyze a comprehensive model by combining a many-particle approach for electronic dynamics with a realistic modeling of the electronic states in the whole structure. We investigate the gain both for quasi-equilibrium conditions and current injection. We find, comparing different structures, that steady-state gain can only be realized by an efficient extraction process, which prevents an accumulation of electrons in continuum states, thatmore » make the available scattering pathways through the quantum-dot active region too fast to sustain inversion.« less
Modelling the growth process of porous aluminum oxide film during anodization
NASA Astrophysics Data System (ADS)
Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.
2015-11-01
Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.
NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-10-01
NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.
Models of Shared Leadership: Evolving Structures and Relationships.
ERIC Educational Resources Information Center
Hallinger, Philip; Richardson, Don
Current reform efforts, focusing on teacher empowerment, are based on the belief that lasting school improvement will occur when teachers become more involved in professional decision-making at the school site. Presented in this document are four conceptually distinct models of teacher involvement in schoolwide decision-making, identified on the…
ERIC Educational Resources Information Center
Blanco, Francesco; La Rocca, Paola; Petta, Catia; Riggi, Francesco
2009-01-01
An educational model simulation of the sound produced by lightning in the sky has been employed to demonstrate realistic signatures of thunder and its connection to the particular structure of the lightning channel. Algorithms used in the past have been revisited and implemented, making use of current computer techniques. The basic properties of…
Rainbow trout-based assays for estrogenicity are currently being used for development of predictive models based upon quantitative structure activity relationships. A predictive model based on a single species raises the question of whether this information is valid for other spe...
Modeling Spatial and Temporal Aspects of Visual Backward Masking
ERIC Educational Resources Information Center
Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo
2008-01-01
Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In the current contribution, the authors show that a structurally simple mathematical model can explain many spatial and temporal…
Jerrold E. Winandy
2000-01-01
One of the most, if not the most, efficient methods of extending our existing forest resource is to prolong the service life of wood currently in-service by using those existing structures to meet our future needs (Hamilton and Winandy 1998). It is currently estimated that over 7 x 109 m3 (3 trillion bd. ft) of wood is currently in service within the United States of...
Yamaguchi, Akihiro; Go, Mitiko
2006-01-01
We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617
NASA Technical Reports Server (NTRS)
Digman, R. Michael
1988-01-01
The goal of AdaNET is to transfer existing and emerging software engineering technology from the Federal government to the private sector. The views and perspectives of the current project participants on long and short term goals for AdaNET; organizational structure; resources and returns; summary of identified AdaNET services; and the summary of the organizational model currently under discussion are presented.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
Quantitative structure-property relationship modeling of Grätzel solar cell dyes.
Venkatraman, Vishwesh; Åstrand, Per-Olof; Alsberg, Bjørn Kåre
2014-01-30
With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative structure-property relationship models for DSSCs with PCE as one of the response variables have been reported. Thus, we report for the first time the successful application of comparative molecular field analysis (CoMFA) and vibrational frequency-based eigenvalue (EVA) descriptors to model molecular structure-photovoltaic performance relationships for a set of 40 coumarin derivatives. The results show that the models obtained provide statistically robust predictions of important photovoltaic parameters such as PCE, the open-circuit voltage (V(OC)), short-circuit current (J(SC)) and the peak absorption wavelength λ(max). Some of our findings based on the analysis of the models are in accordance with those reported in the literature. These structure-property relationships can be applied to the rational structural design and evaluation of new photovoltaic materials. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schooley, A. K.; Kahler, S.; Lepri, S. T.; Liemohn, M. W.
2017-12-01
Gradual solar energetic particle events (SEPs) are produced in the solar corona and as these particle events propagate through the inner heliosphere and interplanetary space they might encounter intervening magnetic obstacles such as the heliospheric current sheet. These encounters may impact SEP acceleration or production. We investigate the extent to which propagation through these intervening structures might be affecting later in-situ SEP measurements at 1 AU. By analyzing large gradual SEP rise phases in a multi-year survey, we investigate the impact crossing a current sheet or other interplanetary magnetic structure has on in-situ SEP time-intensity profiles. Simultaneous Advanced Composition Explorer (ACE) magnetometer observations and measurements of suprathermal electron pitch angle distributions from ACE's Solar Wind Electron, Proton & Alpha Monitor (SWEPAM) are considered to indicate changes in magnetic polarity and magnetic topology. Potential field source surface models of the heliospheric current sheet are used to validate potential current sheet crossing times. We discuss those magnetic obstacles identified that SEPs likely encountered. We discuss the frequency of such encounters, their possible structure and their impact on the SEP time-intensity profiles. Preliminary results indicate that possible intervening interplanetary magnetic structures should be considered when analyzing in-situ SEP observations.
Improved structural pricing model for the fair market price of Sukuk Ijarah in Indonesia
NASA Astrophysics Data System (ADS)
Rosadi, D.; Muslim
2017-12-01
Shariah financial products are currently developing in Indonesia financial market. One of the most important products is called as Sukuk which is commonly referred to as "sharia compliant" bonds. The type of Sukuk that have been widely traded in Indonesia until now are Sukuk Ijarah and Sukuk Mudharabah. In [1], we discuss various models for the price of the fixed-non-callable Sukuk Ijarah and provide the empirical studies using data from Indonesia Bonds market. We found that the structural model considered in [1] cannot model the market price empirically well. In this paper, we consider the improved model and show that it performs well for modelling the fair market price of Sukuk Ijarah.
A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.
1993-01-01
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
NASA Astrophysics Data System (ADS)
Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri
2015-10-01
The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr04678e
Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.
1991-01-01
The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.
NASA Technical Reports Server (NTRS)
Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan
2017-01-01
The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.
NASA Astrophysics Data System (ADS)
Ekolu, O. S.
2015-11-01
Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.
HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents
NASA Astrophysics Data System (ADS)
Navratil, G. A.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Levesque, J. P.; Mauel, M. E.; Stewart, I. G.; Hansen, C. J.
2017-10-01
The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. Comparison of kink mode structure and RMP response in circular versus diverted plasmas shows good agreement with DCON modeling. SOL current measurements have been used to study SOL current dynamics and current-sharing with the vacuum vessel wall during kink-mode growth and disruptions. A multi-chord extreme UV/soft X-ray array is being installed to provide detailed internal mode structure information. Internal local electrodes were used to apply local bias voltage at two radial locations to study the effect of rotation profile on MHD mode rotation and stability and radial current flow through the SOL. A GPU-based low latency control system using 96 inputs and 64 outputs to apply magnetic perturbations for active control of kink modes is extended to directly control the SOL currents for kink-mode control. An extensive array of SOL current monitors and edge drive electrodes are being installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation.
Millat, Thomas; Winzer, Klaus
2017-03-01
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the 'evolution' of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.
Solution to the Boltzmann equation for layered systems for current perpendicular to the planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, W. H.; Zhang, X.-G.; MacLaren, J. M.
2000-05-01
Present theories of giant magnetoresistance (GMR) for current perpendicular to the planes (CPP) are based on an extremely restricted solution to the Boltzmann equation that assumes a single free electron band structure for all layers and all spin channels. Within this model only the scattering rate changes from one layer to the next. This model leads to the remarkable result that the resistance of a layered material is simply the sum of the resistances of each layer. We present a solution to the Boltzmann equation for CPP for the case in which the electronic structure can be different for differentmore » layers. The problem of matching boundary conditions between layers is much more complicated than in the current in the planes (CIP) geometry because it is necessary to include the scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term couples different values of the momentum parallel to the planes. When the electronic structure is different in different layers there is an interface resistance even in the absence of intermixing of the layers. The size of this interface resistance is affected by the electronic structure, scattering rates, and thicknesses of nearby layers. For Co-Cu, the calculated interface resistance and its spin asymmetry is comparable to that measured at low temperature in sputtered samples. (c) 2000 American Institute of Physics.« less
Constraints and spandrels of interareal connectomes
Rubinov, Mikail
2016-01-01
Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls. PMID:27924867
Constraints and spandrels of interareal connectomes.
Rubinov, Mikail
2016-12-07
Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.
NASA Astrophysics Data System (ADS)
Marisarla, Soujanya; Ghia, Urmila; "Karman" Ghia, Kirti
2002-11-01
Towards a comprehensive aeroelastic analysis of a joined wing, fluid dynamics and structural analyses are initially performed separately. Steady flow calculations are currently performed using 3-D compressible Navier-Stokes equations. Flow analysis of M6-Onera wing served to validate the software for the fluid dynamics analysis. The complex flow field of the joined wing is analyzed and the prevailing fluid dynamic forces are computed using COBALT software. Currently, these forces are being transferred as fluid loads on the structure. For the structural analysis, several test cases were run considering the wing as a cantilever beam; these served as validation cases. A nonlinear structural analysis of the wing is being performed using ANSYS software to predict the deflections and stresses on the joined wing. Issues related to modeling, and selecting appropriate mesh for the structure were addressed by first performing a linear analysis. The frequencies and mode shapes of the deformed wing are obtained from modal analysis. Both static and dynamic analyses are carried out, and the results obtained are carefully analyzed. Loose coupling between the fluid and structural analyses is currently being examined.
Microscopic models for bridging electrostatics and currents
NASA Astrophysics Data System (ADS)
Borghi, L.; DeAmbrosis, A.; Mascheretti, P.
2007-03-01
A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.
FAME, a microprocessor based front-end analysis and modeling environment
NASA Technical Reports Server (NTRS)
Rosenbaum, J. D.; Kutin, E. B.
1980-01-01
Higher order software (HOS) is a methodology for the specification and verification of large scale, complex, real time systems. The HOS methodology was implemented as FAME (front end analysis and modeling environment), a microprocessor based system for interactively developing, analyzing, and displaying system models in a low cost user-friendly environment. The nature of the model is such that when completed it can be the basis for projection to a variety of forms such as structured design diagrams, Petri-nets, data flow diagrams, and PSL/PSA source code. The user's interface with the analyzer is easily recognized by any current user of a structured modeling approach; therefore extensive training is unnecessary. Furthermore, when all the system capabilities are used one can check on proper usage of data types, functions, and control structures thereby adding a new dimension to the design process that will lead to better and more easily verified software designs.
Kron-Branin modelling of ultra-short pulsed signal microelectrode
NASA Astrophysics Data System (ADS)
Xu, Zhifei; Ravelo, Blaise; Liu, Yang; Zhao, Lu; Delaroche, Fabien; Vurpillot, Francois
2018-06-01
An uncommon circuit modelling of microelectrode for ultra-short signal propagation is developed. The proposed model is based on the Tensorial Analysis of Network (TAN) using the Kron-Branin (KB) formalism. The systemic graph topology equivalent to the considered structure problem is established by assuming as unknown variables the branch currents. The TAN mathematical solution is determined after the KB characteristic matrix identification. The TAN can integrate various structure physical parameters. As proof of concept, via hole ended microelectrodes implemented on Kapton substrate were designed, fabricated and tested. The 0.1-MHz-to-6-GHz S-parameter KB model, simulation and measurement are in good agreement. In addition, time-domain analyses with nanosecond duration pulse signals were carried out to predict the microelectrode signal integrity. The modelled microstrip electrode is usually integrated in the atom probe tomography. The proposed unfamiliar KB method is particularly beneficial with respect to the computation speed and adaptability to various structures.
Structural Equation Modeling: Applications in ecological and evolutionary biology research
Pugesek, Bruce H.; von Eye, Alexander; Tomer, Adrian
2003-01-01
This book presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems. Supplementary information can be found at the authors website, http://www.jamesbgrace.com/. Details why multivariate analyses should be used to study ecological systems Exposes unappreciated weakness in many current popular analyses Emphasizes the future methodological developments needed to advance our understanding of ecological systems.
Structured Uncertainty Bound Determination From Data for Control and Performance Validation
NASA Technical Reports Server (NTRS)
Lim, Kyong B.
2003-01-01
This report attempts to document the broad scope of issues that must be satisfactorily resolved before one can expect to methodically obtain, with a reasonable confidence, a near-optimal robust closed loop performance in physical applications. These include elements of signal processing, noise identification, system identification, model validation, and uncertainty modeling. Based on a recently developed methodology involving a parameterization of all model validating uncertainty sets for a given linear fractional transformation (LFT) structure and noise allowance, a new software, Uncertainty Bound Identification (UBID) toolbox, which conveniently executes model validation tests and determine uncertainty bounds from data, has been designed and is currently available. This toolbox also serves to benchmark the current state-of-the-art in uncertainty bound determination and in turn facilitate benchmarking of robust control technology. To help clarify the methodology and use of the new software, two tutorial examples are provided. The first involves the uncertainty characterization of a flexible structure dynamics, and the second example involves a closed loop performance validation of a ducted fan based on an uncertainty bound from data. These examples, along with other simulation and experimental results, also help describe the many factors and assumptions that determine the degree of success in applying robust control theory to practical problems.
Identify High-Quality Protein Structural Models by Enhanced K-Means.
Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.
Identify High-Quality Protein Structural Models by Enhanced K-Means
Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198
Benchmarking on Tsunami Currents with ComMIT
NASA Astrophysics Data System (ADS)
Sharghi vand, N.; Kanoglu, U.
2015-12-01
There were no standards for the validation and verification of tsunami numerical models before 2004 Indian Ocean tsunami. Even, number of numerical models has been used for inundation mapping effort, evaluation of critical structures, etc. without validation and verification. After 2004, NOAA Center for Tsunami Research (NCTR) established standards for the validation and verification of tsunami numerical models (Synolakis et al. 2008 Pure Appl. Geophys. 165, 2197-2228), which will be used evaluation of critical structures such as nuclear power plants against tsunami attack. NCTR presented analytical, experimental and field benchmark problems aimed to estimate maximum runup and accepted widely by the community. Recently, benchmark problems were suggested by the US National Tsunami Hazard Mitigation Program Mapping & Modeling Benchmarking Workshop: Tsunami Currents on February 9-10, 2015 at Portland, Oregon, USA (http://nws.weather.gov/nthmp/index.html). These benchmark problems concentrated toward validation and verification of tsunami numerical models on tsunami currents. Three of the benchmark problems were: current measurement of the Japan 2011 tsunami in Hilo Harbor, Hawaii, USA and in Tauranga Harbor, New Zealand, and single long-period wave propagating onto a small-scale experimental model of the town of Seaside, Oregon, USA. These benchmark problems were implemented in the Community Modeling Interface for Tsunamis (ComMIT) (Titov et al. 2011 Pure Appl. Geophys. 168, 2121-2131), which is a user-friendly interface to the validated and verified Method of Splitting Tsunami (MOST) (Titov and Synolakis 1995 J. Waterw. Port Coastal Ocean Eng. 121, 308-316) model and is developed by NCTR. The modeling results are compared with the required benchmark data, providing good agreements and results are discussed. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)
Piatkowski, Pawel; Kasprzak, Joanna M; Kumar, Deepak; Magnus, Marcin; Chojnowski, Grzegorz; Bujnicki, Janusz M
2016-01-01
RNA encompasses an essential part of all known forms of life. The functions of many RNA molecules are dependent on their ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that either utilize information derived from known structures of other RNA molecules (by way of template-based modeling) or attempt to simulate the physical process of RNA structure formation (by way of template-free modeling). All computational methods suffer from various limitations that make theoretical models less reliable than high-resolution experimentally determined structures. This chapter provides a protocol for computational modeling of RNA 3D structure that overcomes major limitations by combining two complementary approaches: template-based modeling that is capable of predicting global architectures based on similarity to other molecules but often fails to predict local unique features, and template-free modeling that can predict the local folding, but is limited to modeling the structure of relatively small molecules. Here, we combine the use of a template-based method ModeRNA with a template-free method SimRNA. ModeRNA requires a sequence alignment of the target RNA sequence to be modeled with a template of the known structure; it generates a model that predicts the structure of a conserved core and provides a starting point for modeling of variable regions. SimRNA can be used to fold small RNAs (<80 nt) without any additional structural information, and to refold parts of models for larger RNAs that have a correctly modeled core. ModeRNA can be either downloaded, compiled and run locally or run through a web interface at http://genesilico.pl/modernaserver/ . SimRNA is currently available to download for local use as a precompiled software package at http://genesilico.pl/software/stand-alone/simrna and as a web server at http://genesilico.pl/SimRNAweb . For model optimization we use QRNAS, available at http://genesilico.pl/qrnas .
Strategies for Teaching Children with Autism to Imitate Response Chains Using Video Modeling
ERIC Educational Resources Information Center
Tereshko, Lisa; MacDonald, Rebecca; Ahearn, William H.
2010-01-01
Video modeling has been found to be an effective procedure for teaching a variety of skills to persons with autism, however, some individuals do not learn through video instruction. The purpose of the current investigation was to teach children with autism, who initially did not imitate a video model, to construct three toy structures through the…
C.R. Schwalm; D.N. Huntzinger; R.B. Cook; Y. Wei; I.T. Baker; R.P. Neilson; B. Poulter; Peter Caldwell; G. Sun; H.Q. Tian; N. Zeng
2015-01-01
Significant changes in the water cycle are expected under current global environmental change. Robust assessment of present-day water cycle dynamics at continental to global scales is confounded by shortcomings in the observed record. Modeled assessments also yield conflicting results which are linked to differences in model structure and simulation protocol. Here we...
ERIC Educational Resources Information Center
Kelava, Augustin; Nagengast, Benjamin
2012-01-01
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Excitable Neurons, Firing Threshold Manifolds and Canards
2013-01-01
We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674–1697, [2012]). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model. PMID:23945278
Early experiences building a software quality prediction model
NASA Technical Reports Server (NTRS)
Agresti, W. W.; Evanco, W. M.; Smith, M. C.
1990-01-01
Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.
NASA Technical Reports Server (NTRS)
McGhee, D. S.
2004-01-01
Launch vehicles consume large quantities of propellant quickly, causing the mass properties and structural dynamics of the vehicle to change dramatically. Currently, structural load assessments account for this change with a large collection of structural models representing various propellant fill levels. This creates a large database of models complicating the delivery of reduced models and requiring extensive work for model changes. Presented here is a method to account for these mass changes in a more efficient manner. The method allows for the subtraction of propellant mass as the propellant is used in the simulation. This subtraction is done in the modal domain of the vehicle generalized model. Additional computation required is primarily for constructing the used propellant mass matrix from an initial propellant model and further matrix multiplications and subtractions. An additional eigenvalue solution is required to uncouple the new equations of motion; however, this is a much simplier calculation starting from a system that is already substantially uncoupled. The method was successfully tested in a simulation of Saturn V loads. Results from the method are compared to results from separate structural models for several propellant levels, showing excellent agreement. Further development to encompass more complicated propellant models, including slosh dynamics, is possible.
NASA Astrophysics Data System (ADS)
Singh, Nidhi; Avery, Mitchell A.; McCurdy, Christopher R.
2007-09-01
Mycobacterium tuberculosis 1-deoxy- d-xylulose-5-phosphate reductoisomerase ( MtDXR) is a potential target for antitubercular chemotherapy. In the absence of its crystallographic structure, our aim was to develop a structural model of MtDXR. This will allow us to gain early insight into the structure and function of the enzyme and its likely binding to ligands and cofactors and thus, facilitate structure-based inhibitor design. To achieve this goal, initial models of MtDXR were generated using MODELER. The best quality model was refined using a series of minimizations and molecular dynamics simulations. A protein-ligand complex was also developed from the initial homology model of the target protein by including information about the known ligand as spatial restraints and optimizing the mutual interactions between the ligand and the binding site. The final model was evaluated on the basis of its ability to explain several site-directed mutagenesis data. Furthermore, a comparison of the homology model with the X-ray structure published in the final stages of the project shows excellent agreement and validates the approach. The knowledge gained from the current study should prove useful in the design and development of inhibitors as potential novel therapeutic agents against tuberculosis by either de novo drug design or virtual screening of large chemical databases.
Double-ring structure formation of intense ion beams with finite radius in a pre-formed plasma
NASA Astrophysics Data System (ADS)
Hu, Zhang-Hu; Wang, Xiao-Juan; Zhao, Yong-Tao; Wang, You-Nian
2017-12-01
The dynamic structure evolution of intense ion beams with a large edge density gradient is investigated in detail with an analytical model and two-dimensional particle-in-cell (PIC) simulations, with special attention paid to the influence of beam radius. At the initial stage of beam-plasma interactions, the ring structure is formed due to the transverse focusing magnetic field induced by the unneutralized beam current in the beam edge region. As the beam-plasma system evolves self-consistently, a second ring structure appears in the case of ion beams with a radius much larger than the plasma skin depth, due to the polarity change in the transverse magnetic field in the central regions compared with the outer, focusing field. Influences of the current-filamentation and two-stream instability on the ring structure can be clearly observed in PIC simulations by constructing two different simulation planes.
Feasibility of self-structured current accessed bubble devices in spacecraft recording systems
NASA Technical Reports Server (NTRS)
Nelson, G. L.; Krahn, D. R.; Dean, R. H.; Paul, M. C.; Lo, D. S.; Amundsen, D. L.; Stein, G. A.
1985-01-01
The self-structured, current aperture approach to magnetic bubble memory is described. Key results include: (1) demonstration that self-structured bubbles (a lattice of strongly interacting bubbles) will slip by one another in a storage loop at spacings of 2.5 bubble diameters, (2) the ability of self-structured bubbles to move past international fabrication defects (missing apertures) in the propagation conductors (defeat tolerance), and (3) moving bubbles at mobility limited speeds. Milled barriers in the epitaxial garnet are discussed for containment of the bubble lattice. Experimental work on input/output tracks, storage loops, gates, generators, and magneto-resistive detectors for a prototype device are discussed. Potential final device architectures are described with modeling of power consumption, data rates, and access times. Appendices compare the self-structured bubble memory from the device and system perspectives with other non-volatile memory technologies.
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
NASA Astrophysics Data System (ADS)
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
NASA Astrophysics Data System (ADS)
Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.
2015-12-01
The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the projection area of the structure are the main factors to the total force. Detailed results and discussion are presented as well.
Wave propagation in equivalent continuums representing truss lattice materials
Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...
2015-07-29
Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
Lee, Juyong; Lee, Jinhyuk; Sasaki, Takeshi N; Sasai, Masaki; Seok, Chaok; Lee, Jooyoung
2011-08-01
Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods. Copyright © 2011 Wiley-Liss, Inc.
The fluid events model: Predicting continuous task action change.
Radvansky, Gabriel A; D'Mello, Sidney; Abbott, Robert G; Morgan, Brent; Fike, Karl; Tamplin, Andrea K
2015-01-01
The fluid events model is a behavioural model aimed at predicting the likelihood that people will change their actions in ongoing, interactive events. From this view, not only are people responding to aspects of the environment, but they are also basing responses on prior experiences. The fluid events model is an attempt to predict the likelihood that people will shift the type of actions taken within an event on a trial-by-trial basis, taking into account both event structure and experience-based factors. The event-structure factors are: (a) changes in event structure, (b) suitability of the current action to the event, and (c) time on task. The experience-based factors are: (a) whether a person has recently shifted actions, (b) how often a person has shifted actions, (c) whether there has been a dip in performance, and (d) a person's propensity to switch actions within the current task. The model was assessed using data from a series of tasks in which a person was producing responses to events. These were two stimulus-driven figure-drawing studies, a conceptually driven decision-making study, and a probability matching study using a standard laboratory task. This analysis predicted trial-by-trial action switching in a person-independent manner with an average accuracy of 70%, which reflects a 34% improvement above chance. In addition, correlations between overall switch rates and actual switch rates were remarkably high (mean r = .98). The experience-based factors played a more major role than the event-structure factors, but this might be attributable to the nature of the tasks.
Historical range of variability in landscape structure: a simulation study in Oregon, USA.
Etsuko Nonaka; Thomas A. Spies
2005-01-01
We estimated the historical range of variability (HRV) of forest landscape structure under natural disturbance regimes at the scale of a physiographic province (Oregon Coast Range, 2 million ha) and evaluated the similarity to HRV of current and future landscapes under alternative management scenarios. We used a stochastic fire simulation model to simulate...
Structural composite panel performance under long-term load
Theodore L. Laufenberg
1988-01-01
Information on the performance of wood-based structural composite panels under long-term load is currently needed to permit their use in engineered assemblies and systems. A broad assessment of the time-dependent properties of panels is critical for creating databases and models of the creep-rupture phenomenon that lead to reliability-based design procedures. This...
Automated MRI segmentation for individualized modeling of current flow in the human head.
Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C
2013-12-01
High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.
Laschinger, H K; Finegan, J; Shamian, J; Wilk, P
2001-05-01
In this study, we tested an expanded model of Kanter's structural empowerment, which specified the relationships among structural and psychological empowerment, job strain, and work satisfaction. Strategies proposed in Kanter's empowerment theory have the potential to reduce job strain and improve employee work satisfaction and performance in current restructured healthcare settings. The addition to the model of psychological empowerment as an outcome of structural empowerment provides an understanding of the intervening mechanisms between structural work conditions and important organizational outcomes. A predictive, nonexperimental design was used to test the model in a random sample of 404 Canadian staff nurses. The Conditions of Work Effectiveness Questionnaire, the Psychological Empowerment Questionnaire, the Job Content Questionnaire, and the Global Satisfaction Scale were used to measure the major study variables. Structural equation modelling analyses revealed a good fit of the hypothesized model to the data based on various fit indices (chi 2 = 1140, df = 545, chi 2/df ratio = 2.09, CFI = 0.986, RMSEA = 0.050). The amount of variance accounted for in the model was 58%. Staff nurses felt that structural empowerment in their workplace resulted in higher levels of psychological empowerment. These heightened feelings of psychological empowerment in turn strongly influenced job strain and work satisfaction. However, job strain did not have a direct effect on work satisfaction. These results provide initial support for an expanded model of organizational empowerment and offer a broader understanding of the empowerment process.
Low energy dislocation structures in epitaxy
NASA Technical Reports Server (NTRS)
Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.
1986-01-01
The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.
Breeze, Johno; Newbery, T; Pope, D; Midwinter, M J
2014-09-01
Neck injuries sustained by UK service personnel serving on current operations from explosively propelled fragments result in significant mortality and long-term morbidity. Many of these injuries could potentially have been prevented had the soldiers been wearing their issued neck collars at the time of injury. The aim of this research is to develop an accurate method of predicting the resultant damage to cervical neurovascular structures from explosively propelled fragments. A finite element numerical model has been developed based on an anatomically accurate, anthropometrically representative 3D mathematical mesh of cervical neurovascular structures. Currently, the model simulates the passage of a fragment simulating projectile through all anatomical components of the neck using material models based upon 20% ballistic gelatin on the simplification that all tissue types act like homogenous muscle. The material models used to define the properties of each element within the model will be sequentially replaced by ones specific to each individual tissue within an anatomical structure. However, the cumulative effect of so many additional variables will necessitate experimental validation against both animal models and post-mortem human subjects to improve the credibility of any predictions made by the model. We believe this approach will in the future have the potential to enable objective comparisons between the mitigative effects of different body armour systems to be made with resultant time and financial savings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...
2017-11-20
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish
Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker
2015-01-01
A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314
A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.
Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker
2015-01-01
A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.
Tournebize, Rémi; Manel, Stéphanie; Vigouroux, Yves; Munoz, François; de Kochko, Alexandre
2017-01-01
Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km) and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion. PMID:28820899
Factor structure and clinical correlates of the 61-item Wender Utah Rating Scale (WURS).
Calamia, Matthew; Hill, Benjamin D; Musso, Mandi W; Pella, Russell D; Gouvier, Wm Drew
2018-02-09
The objective of this study was to assess the factor structure and clinical correlates of a 61-item version of the Wender Utah Rating Scale (WURS), a self-report retrospective measure of childhood problems, experiences, and behavior used in ADHD assessment. Given the currently mostly widely used form of the WURS was derived via a criterion-keyed approach, the study aimed to use latent variable modeling of the 61-item WURS to potentially identify more and more homogeneous set of items reflecting current conceptualizations of ADHD symptoms. Exploratory structural equation modeling was used to generate factor scores which were then correlated with neuropsychological measures of intelligence and executive attention as well as a broad measure of personality and emotional functioning. Support for a modified five-factor model was found: ADHD, disruptive mood and behavior, negative affectivity, social confidence, and academic problems. The ADHD factor differed somewhat from the traditional 25-item WURS short form largely through weaker associations with several measures of personality and psychopathology. This study identified a factor more aligned with DSM-5 conceptualization of ADHD as well as measures of other types of childhood characteristics and symptoms which may prove useful for both research and clinical practice.
The Search for Efficiency in Arboreal Ray Tracing Applications
NASA Astrophysics Data System (ADS)
van Leeuwen, M.; Disney, M.; Chen, J. M.; Gomez-Dans, J.; Kelbe, D.; van Aardt, J. A.; Lewis, P.
2016-12-01
Forest structure significantly impacts a range of abiotic conditions, including humidity and the radiation regime, all of which affect the rate of net and gross primary productivity. Current forest productivity models typically consider abstract media to represent the transfer of radiation within the canopy. Examples include the representation forest structure via a layered canopy model, where leaf area and inclination angles are stratified with canopy depth, or as turbid media where leaves are randomly distributed within space or within confined geometric solids such as blocks, spheres or cones. While these abstract models are known to produce accurate estimates of primary productivity at the stand level, their limited geometric resolution restricts applicability at fine spatial scales, such as the cell, leaf or shoot levels, thereby not addressing the full potential of assimilation of data from laboratory and field measurements with that of remote sensing technology. Recent research efforts have explored the use of laser scanning to capture detailed tree morphology at millimeter accuracy. These data can subsequently be used to combine ray tracing with primary productivity models, providing an ability to explore trade-offs among different morphological traits or assimilate data from spatial scales, spanning the leaf- to the stand level. Ray tracing has a major advantage of allowing the most accurate structural description of the canopy, and can directly exploit new 3D structural measurements, e.g., from laser scanning. However, the biggest limitation of ray tracing models is their high computational cost, which currently limits their use for large-scale applications. In this talk, we explore ways to more efficiently exploit ray tracing simulations and capture this information in a readily computable form for future evaluation, thus potentially enabling large-scale first-principles forest growth modelling applications.
Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures
NASA Astrophysics Data System (ADS)
Lenda, Grzegorz; Uznański, Andrzej; Strach, Michał; Lewińska, Paulina
2016-06-01
The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile), but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones). Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.
The review on tessellation origami inspired folded structure
NASA Astrophysics Data System (ADS)
Chu, Chai Chen; Keong, Choong Kok
2017-10-01
Existence of folds enhances the load carrying capacity of a folded structure which makes it suitable to be used for application where large open space is required such as large span roof structures and façade. Folded structure is closely related to origami especially the tessellation origami. Tessellation origami provides a folded configuration with facetted surface as a result from repeated folding pattern. Besides that, tessellation origami has flexible folding mechanism that produced a variety of 3-dimensional folded configurations. Despite the direct relationship between fold in origami and folded structure, the idea of origami inspired folded structure is not properly reviewed in the relevant engineering field. Hence, this paper aims to present the current studies from related discipline which has direct relation with application of tessellation origami in folded structure. First, tessellation origami is properly introduced and defined. Then, the review covers the topic on the origami tessellation design suitable for folded structure, its modeling and simulation method, and existing studies and applications of origami as folded structure is presented. The paper also includes the discussion on the current issues related to each topic.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
2011-09-01
tectonically active regions such as the Middle East. For example, we previously applied the code to determine the crust and upper mantle structure...Objective Optimization (MOO) for Multiple Datasets The primary goal of our current project is to develop a tool for estimating crustal structure that...be used to obtain crustal velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code has been
Martinez, Sydney A; Beebe, Laura A; Thompson, David M; Wagener, Theodore L; Terrell, Deirdra R; Campbell, Janis E
2018-01-01
The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking.
Beebe, Laura A.; Thompson, David M.; Wagener, Theodore L.; Terrell, Deirdra R.; Campbell, Janis E.
2018-01-01
The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking. PMID:29408939
NASA Astrophysics Data System (ADS)
Lu, Zheng; Huang, Biao; Zhang, Qi; Lu, Xilin
2018-05-01
Eddy-current tuned mass dampers (EC-TMDs) are non-contacting passive control devices and are developed on the basis of conventional tuned mass dampers. They comprise a solid mass, a stiffness element, and a damping element, wherein the damping mechanism originates from eddy currents. By relative motion between a non-magnetic conductive metal and a permanent magnet in a dynamic system, a time-varying magnetic field is induced in the conductor, thereby generating eddy currents. The eddy currents induce a magnetic field with opposite polarity, causing repulsive forces, i.e., damping forces. This technology can overcome the drawbacks of conventional tuned mass dampers, such as limited service life, deterioration of mechanical properties, and undesired additional stiffness. The experimental and analytical study of this system installed on a multi-degree-of-freedom structure is presented in this paper. A series of shaking table tests were conducted on a five-story steel-frame model with/without an EC-TMD to evaluate the effectiveness and performance of the EC-TMD in suppressing the vibration of the model under seismic excitations. The experimental results show that the EC-TMD can effectively reduce the displacement response, acceleration response, interstory drift ratio, and maximum strain of the columns under different earthquake excitations. Moreover, an analytical method was proposed on the basis of electromagnetic and structural dynamic theories. A comparison between the test and simulation results shows that the simulation method can be used to estimate the response of structures with an EC-TMD under earthquake excitations with acceptable accuracy.
Edge plasma boundary layer generated by kink modes in tokamaks
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2011-06-01
This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
A test of source-surface model predictions of heliospheric current sheet inclination
NASA Technical Reports Server (NTRS)
Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.
1994-01-01
The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.
Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity
Krasteva, Vessela TZ; Papazov, Sava P; Daskalov, Ivan K
2003-01-01
Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM) of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium. PMID:14693034